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PREFACE

This manual presents a brief discussion of the theory and

a detailed description of the computer program for an airfoil in-

version technique developed by Eppler. The program represents re-

vision of a deck supplied to us by Dr. Stanley Miley. Contribu-

tions by Dr. T. B. Edwards and by Mr. v . H. Awker are also grate-

fully acknowledged. While the program has been set up specifi-

cally for the University of Illinois IBM 560/75 computer, its

modification to other computers should be straightforward.

This work was funded by NASA under grant HGR 14-005-144 as

part of a low speed airfoil study.
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I. THEORY

The method developed by Eppler 1,2 is an inverse conformal mapping technique

that determines the x and y coordinates from a given velocity distribution. The

two planes . involved are shown in figure 1. The ^ plane shows the flow about a

circular cylinder, while the z plane represents the flow about the airfoil. The

velocity in the z plane is given in terms of coordinates determined in the

plane. z and 4 are defined as:

z = x + iy	 (l)

4 9 + in - re

The flow in the C plane is such that the rear stagnation point falls on the

real, axis at ^ = 1.

There exists a transformation of the ^ plane to the z plane such that the

z plane represents parallel flow about a closed airfoil at an angle of attack a.

Since I represents a stagnation point, the Kutta condition requires that this

must transform to the trailing edge of the airfoil. As this is to be an infinite

parallel flow, z Cam} = W and Cdr}. must be real. The general function that satis-

fies these requirements is

CO	 C'}

z W = ^ + X O-VCV
V=O

where l is real, but not equal to zero.

The complex potential in the ^ plane can be represented as 	 !i's

R	 0 + iT C Ce C + 
ea 

a } - 27ri In	
(4)

where p is given by
T	 ^

f - 47C sins	 Cs)	 ° ;:^.

The complex velocity in the z plane is given by

I
LF 1 fdF/d	 6 l
dz 	

^	 ^

4	 ^
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Figure 1, The complex mapping planes



The inverse of this will be used, or

dz dz/d^	 (7)
dF - dFdF%dC

In order to prevent an undesirable root, this can be written as

In dF =  d
In

	
- In	 (8)

dC

The velocity vector in the z plane can be introduced as V = Veld . Then

d^ = Ve 
z6	 (9)

Therefore,

In dF = - In V i.8.	 {10)

The real part of In dF is then .-In V. Outside the boundary of the unit circle,
In dF is regular, and can be calculated when the real part is known on the
boundary. Since F (Q is also known (eq (4) ) , equation (8) can be solved for

dz
d z (Q then can be found by integration. z (Q must be of the form of

equation (3) to match the boundary conditions. Therefore, the problem is to

find an equation for In dF which results in a satisfactory dz .
From equations (4) and (S)

dF	 a icy C (	 - 1) (	 e -2im)	 {ll)
d^

In light of the singularities involved at the stagnation points, In.dF

can be represented by

IndF = - In G - In fe'a (I + e-2i(x)) + g (a + ibm) ^-m (I2)

k
M=O

NO Using this equation and equations (8) and (11),

In d = In (1 -^) + Z (am + ibm)-m
m=o

(13)

f
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Expanding this yields

dZ	 ao + ibo (al + ibl) C
-1e(a2 + ib2)4-2	 (15)

Tr- (1 -) e	 e	 ......

z (4) must be of the form of equation (3), so dz must be of the fora

co
dz '
dz	 ^i +

V 

Z. - v$-v4;•-v-1	 (16)

If we let An n + ibn, equation (15) can be further expanded to

A 2	 3	 Al 	A 3	 A
[I -) (1 + A.0 t o + Ao + .. o) {^^: ^^ + 2_ Z + 3" '3 .F.....) (l+	 +

2 1 311	 ^

A2 
2	

(17)
Z;

Comparing equations (16) and (17) yields

	A 2 A 3	 A
^l = 1 + A  + 20 1 + 30 1 t ... _ e o	 (18)

Since ^l is real, Ao is also real. At infinity, we want = 1, indicating that

the flow at infinity in the circle plane is in the same direction as the flow at

infinity in the airfoil plane. From equation (16), L = ^ l at infinity. There-

fore,

^1 = 
eAo = 1
	

(lg)
ti.

.4 Because of this, Ao = 0.

Comparing the term yields

r ^i. + Al .01	 0
	 C20)



In 
zdF  ̂  ln[e	 Cei(a + 0/2) + e-i (a + ^/2 ) ] + P CO

+	 (24)

This can be written ' as

-ln. V[) + i8	 zn 21 cos CV2-a) !+p (0) + i[z + Rm

where {{7r}} is given as

{{7s}} _ 
7r CiT+2	 )	 C2a<^<27r) 



'	 r

The Mr}} term is necessary due to the shift in. the direction of the velocity

at the stagnation point.

The real part of equation (25) can be rearranged into the form

P (c) = In 2.1cos (2 a) I -lU V
	 (27)

Through harmonic analysis, the aIs and bm = s can be determined from

equation (27). However, we must have a  = 0, al = 1, and b l 0, due to

equations (19) and (20) . 'Therefore,

f 21 () d = 0
	 (28)

o-

f2UP (^) cosh # = Ir
	

(29)
0

27rP 
	 sink # = 0	 (30)

k 0

The velocity distribution we specify must meet these requirements.

By integrating equation (14), the transformation

CO

E 
(a 

+ ib) -m
m	 m

z {) = f (1-1/) a m-o	 , d^	 (31)

can be derived. This yields the flow for the entire z plane. If 	 e# is

entered into this transformation, the resulting z = x + iy will yield the profile

of the airfoil. The results are

xM = f-4 sin 2 I cos (2 - a). I 1	 cos (Z + Q{^) ) #	 (32)

Y{^) = f- 4 sin 2 cos (2 - a)	 v(F) sin {	 Q{^)) d	 (.33)

The only quantity remaining to be defined, then, is Q(^). However Q( ►)

is a conjugate harmonic function of P(¢), and can be derived from the formula

•-.. _

a



27r

Q { } = 2n ! P (
a) cot (? Z ) da	 (34)

0

Given a velocity distribution that yields a P (c) such that equations (29)

through (30) are satisfied, and an angle of attack, the x and y coordinates of

the desired airfoil can be generated using equations (32) and (33) . The angle

of attack, a, need not be held constant, but can be a function of ^. Thus,

the upper surface can be designed at a different (higher for reasonable airfoils)

angle of attack than the lower surface, or even different portions of the upper

(or lower) surface can be designed at different angles of attack.

The profile of the airfoil is determined by am and bm. Therefore, for

a fixed profile, m and bm are fixed. Altering the angle of attack will not

alter the airfoil profile, and, therefore, will not alter am or bm . This means

that P(^) is independent of the angle of attack. Equation (27) can, then, be

written in the form of

P($) = in 21 cos ( 2 a m) l - In V* Co	 (35)

*
where V	 is the specified velocity at the point on the airfoil corresponding

*
to c, and a (O .is the corresponding angle of attack. At any angle of attack, a,

then,.the velocity can be given as

V(^,a) = cos (^/2 -a)	 v* M(36)cos (^/2-a* ($))

The circle plane can be divided into i s segments, as in figure (2), where

^O	 Q<cl<c2<.... 1 ....<^1 . 0, indicates the stagnation point. The angle of
1.^	 a	 L

attack specification flakes the form

*
:	 a () = ai = constant for i_1<^5c i	 {37)
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Wm=WWm WM %

or, on the lower surface

1(w= WCo} wC^] 
YH

w	 s

(4l)

(4.2)

-9-

where V3. is a constant for 	 <0<¢i and W (r) is given as

2 KH
W CO] = I1+K { 202-0- - cos0m}}] 

-
11 [1- 

0,36{{cost - coso sf} 	 (39)
1 + cos ow	 1 - cos ^s

on the upper surface. On the lower surface, the velocity distribution is similar,

but different values of KH, ]J, ^W , and ^s are used, indicated by KH, u, caw, and

respectively. The terms in the double brackets of equation .(38) are defined by

{f (0) f (0)> 0 }if (^)} _ £	 }	 (40)

Equation (39) can be considered to be of the form

The Wr (or WW) term produces the major pressure recovery. This is in the 	 4
R

form specified by Wortmann, 9 in which the shape parameter is held constant, which

delays sepaxation_ The W$ (or Ws) term develops the cusp distribution. It is

generally applied to the last 3-5% of the airfoil length. Outside of the range

of the specified region, ^>o for W or 0>0 for WS. (or ^< or ^s on the lower

surface), the value of WW or % is one, as dictated by equation (40). Thus, the

variation of IV w and Ws is as is given by figure (3).

	

P Cc) must be continuous over the airfoil, so P C¢= P Co.	 and P (0) = P (27r)
i	 Z	 -

Substituting our values for V and a into equation (27) yields

	

P () = In 2 ! cos [ z - a () ] - In [Vin's ($] W (0))	 (43)

Since, at the trailing edge, P (0) = P (2Tr) ,

r ln2 ^ coraln2 coral l -In jVljYw C0) jqs {0) 
%j	 I=	 l a ..ln ^yx 

a 
w C2r)	 {

C44]IYg (27)H 	
t
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1.0	 ^(

1.0

o.o
0.0
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A` all other segment boundaries, which are generally outside of the cusp

region,	 lis = 7 = i,P(^i ) =P(^i+), and therefore

in2 l cos ( 2̂  - ai) I - In [Vii9w i ) ] = ln2 I cos (2 -ai+l) I -ln[Vi+li w (^i) j (45)

On the lower surface, W  is replaced by W  in equation (45).

If, in any segment, ^ = zr + tai , P(c) becomes infinite. This is most likely

to occur in the segments to either side of the stagnation point, ^I L-1
<^<c

1 +1,

where $I indicates the stagnation point. In order to prevent this, we require
L

a I L > aIL+1	 (46)

and

zr +2aI > h >7r +2 a1 +1	 (47)
L	 I 	 L

If all the pi 's and a3 I s along with u, k, ^w, $w, $s , and ^ s are given

in the problem specification, this leaves only K H and KH left to be determined.

However, with equations (28)-(30) there are three conditions that mush: be met.

Therefore, we need to free one of the quantities listed above. The quantity best

suited for this is ^ I , the location of the stagnation point.
L

If we use equation (43) to define P (c) , equation (29) becomes

27r

I	 I In I cos (2 -a (^) I - In [^ (cp) -In i1►w (c }-K^lni9s [^)+1n2] cos¢do=7r (48)

This can be expanded to

EL f [lni cos ( -ai) -Invi- lniY^^-K ln.11s+in21 coW

+ TIa 
f	 [111.1 cos ( -ai ) -InVi-lni w-KHlnifs+In2] cos¢dc =7r	 (49)

i=IL 
^i-I

r

9



-12--

The integral cosh lni cos 2 - a, I d^ can be evaluated as

fcos ^InIcos2 - ai # = (sink + sin2ai) Injcos

+ 1/2 (cos tai - sino) + constant	 (50)

If we denote Wci as

^i

Wci 	 co# In Ws C^) d^	 (51)

and introduce the notation

In (i,j) - in1cos ( 	 - a.)(	 (52)

equation (49) can be written as

_	 Ia
KH WcI + KH WcI + Z {sin tai (In (i,i) -In (i-1, i))

a i=l

+ 1 (^ - 
i-1)	 2	 zicos 2a	 z+ 1 (sine.2	 i	 - si3 1.

-1 )+ sinej ln(i,i) -1nV.
ẑ

43

-sin ¢ jln (i,-I, i) -In Vi]j - f w cos ^ IAW.W#
p

27r
- f cosh In W^ M #

	
(55)

` w

Due to equation (45), the next to the last term, with j.=k, and the last term,

with i=n+l (n=l, I a-1), cancel each other out. Out of these terms, only the 	
r

last with i=l and the next to the last with i=I a remain. However, since ^o=off

and ^Ia - 27', sin ^0 = sin ^Ia = 0, these terms also drop out. The third term

of the summation also drops out. Therefore, equation (55) can be written as	 3

a
K-	 __KKH Wcl +. H ^9c2 * ^;	 isin tai (In(i,i) -ln(i-1, i.))

a i=1

'w	 21r

+ 2 i - ^i- I) 
cos 2a,} - f cosh In ti ^ do - f	 cos	 in 

^ ^ 
	 do	 n

	

o	
;Fw	

(54)
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We now introduce J  such that

Ia
Jc =

	

	 {sin 2ai ((In(i,i)-In Ci-I,i)) + Chi - ^i_ l) cos 2=.
i=l

^w	 2Tr

f cos In W w # - r cos 0 In W ^ der	 (55^

0	 T_

If we define ao = al +1= 0, we can alter the indices to get
a

I
a

is - 7r a

	

	 {sin 2-=i In(i,i) -sin 2=i+1 ln(i, i+1)

x=1

^w
+ i (cos 2^i - cos 2=- + I)  - I cos In WW #

A

27r

f cos ^ In ww 	(56)

Now equation (54) can be written as

K  Wei + , WC  + jc - zr = 0	 (57)

In a similar manner, if we define Wsi as

Wsi = 1'	 sin ^ in Ws M do	 C58)

and we define Js as

Ia
Js =	 {- (I+cos 2-i) In Ci, i )	 Cl+cos 2-i+1) In {i,i•^-1)	 1

+^. (sin 2- - sin 2^. ) w ! sin In W+
2 ^.	 ^,	 z 1	 w

C1

27r	
a

J' sin In 
w (0) dO	 (s}

w

I`



Equation (30) can now be written as

KH WSI + KH WSI + JS = Q
	

(6 0)
a

From equation (45),

in V1 = In (i,i) - 1n (i,i+l) + In V2	 (61)

Substituting this value of V1 into equation (44) yields

1n1cos 1=I I -in (i,i) + in (i, i+l) + in V Z - K
1	

H In Ww ( )

in I cowl - in VIR ° KH in W (27r)	 (62)
a	 a

From equation (45), V2 can be determined as a function of V 3 , and so forth until

VI is reached. In this manner, VI and VI are eliminated from (44), yielding
a	 a

-Yh. In W r (0) + K^ in w (21r ) + ^ {-1n (i,i) + 1,n (i,i+l)} = 0
i=0

(63)

Defining JT as being the summation tern of this equation, equation (63) can be

written as - KH in WWCG) + KH in ^yw (27r) + J = 0	 (64)

We now have three equations (equations (57), (60), and (64)) for the

three unknowns W, KH , and ^i ). Eliminating KH and KH yields
L

(i e - 
zr) Di -`IsD2+JTD3=0	 (65)

where '

-14-
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11	 ,

Equation (65) is a transcendental equation for 0 1b . Once the value of	 is
1b

j	 determined, K. and KH can be determined from equations (57) and (60).

With equation (45), we now have 1 a - 1 equations for the l a values of Vi.

The last equation comes from the previously unused equation (29), which guarantees

uniform flow at infinity.

	

27r	 s a	 ^ i	 Vi
! P(¢) d^ -	 {	 I	 [ 1n 1 cos (	 - a.)[- Ini   	

Io	 .=1 	 h-I

-KH In 
W - 

In W^(0)] d^j + 27r(ln 2 - In Vl) = 0

(69)

Now that all of the 0i Is, KH, and KH are known, P {O) can be calrulated

from equation (43), Q(0) can be calculated from equation (34), and x(o) and

y(0) can be calculated from equations (32) and (33).

Fok practical numerical calculations, the circle plane is divided into

213 equal parts, with the positions given by

_ TV = N (U = 0, 1, 2, ..., 2N- 1)
	

(70)

Next, the ai l s (except i ) ai I s, K,	 and u are chosen. The values of Wcl'

WCs , and W5 can then be calculated (equations (51) and (58)). Using
I	 1	 1a	 a

equations (66) through (68), D I , D 2 , and 37 3 can be calculated, and the transcen-

dental equation can be established. Once 0 I is determined KH and T. can be

calculated from equations (57) and (60). P(0) and Q(0) can be determined at

eacn point on the circle.. x(^) and y(¢) are then determined, so 2N points are deter--

` mined on the airfoil. These points are equally spaced on the circle plane, but

ti they are not equally spaced in the airfoil plane.

The resulting coordinates will yield an airfoil, oriented at it t s zero lift

line. However, the angle between the zero lift line and the chord line (S) can be

determined and subtracted from « to yield the angle of attack with respect to the

chord line.

i



Since the values of KH and KH are determined by the closure requirements,

there is no direct control of these values in the input specifications. Ks

and KH determine the trailing edge angle. In order to maintain some control

over this trailing edge angle, a desired value of Ks = K1,+	 can be specified,

and by iteration, varying either a.3. on the upper or lower surface (or both
i

surfaces), or K or K, the desired K
5 

can be attained,
I^ 
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II. PROGRAM

a

The calculations required for the solution of the Eppler problem are

carried out with the aid of an IBM-360/75 computer at the University of Illinois.

The Eppler program not only determines the profile of the airfoil but also

determines the boundary layer momentum thickness and the energy form parameter.

However, in the present application, the boundary layer capabilities of the

program have not been fully utilized.

The required programs are kept in files on the PLORTS system. The

file name of the Eppler program is EPPLER, while the file names of the re-

quired input data are EDATA through EDATG. A sample input data deck is

shown in Figure Al.

The first card in an input data deck for the Eppler program is a card

with an Alpha-numeric listing of the titles of the cards that foll luw. These

titles are read in 20A4 format. It is essential that the order of the titles

not be changed and all titles must be included on this card, even if the

named card is not used in the program. This first card . can be thought of as

part of the program itself, as it is never changed. The remaining cards, with

the exception of the title, are in the format CA4, 16, 14F5..2). Some of the

data that is input through the FS.2 format is divided by a factor of 10 in

the program, so it is important not to specify the decimal point. All the data

should be right justified, and the program will convert the data to the correct

multiple of 10. The data that is divided by 10. in the .program will be identified

in the following discussion as having a psuedo-format of F5.3.

The manner in which the data on each card is treated is determined by the

title, which is listed in the first 4 spaces on each card. The data is read into

,i



'/	
r^."..•'F_+< _-'-.ut'zr. n.: 	 -'.^—va--ate",^a^.— _ — -	 - _ ^=_.-	 .«^	 ___ -.	

...	 .:.

J

TRAITRA2ALFAAGAMAB5Z REFNDEBETAPLOTTITL

ABSZ	 9200 100

AGAM	 ?00 100 100 100 100 100

TITL

U OF I HLE

PLOT

TRA1000027

TRA2000027

	

BETA	 -1

	RE	 03

ENDB

I6S7-20-28-19	 AIRFOIL

3470-8337212887.5625330711089424000

4120 4800 4290 0975 0000 4800 9200 3200

150 4290 100 5000 0542 300 4000 100 8000 0499 20014500 001

100

01633 00

ftgu^?e Al, A spmple input date. deck



the program as MARKE, NUPU, and PUFF, where MARKS is the title, NUPU is an integer,

and PUFF is a 14 element array. The data is then transferred to the appropriate

variable according to the title.

The first title listed on the first card is the TR41 title. The TRA,1

card is the card that inputs the ^i and ai . The ^i are input in terms of circle

divisions, and the ai are input in degrees..¢ 1 is determined by the program,
L

so it is input as zero, The ^i and a  are input as pairs, and up to seven pairs

can be input on one card. if it is desired to break the circle plane into moire

than seven segments, more-TRAI cards need be specified; with a maximum of four

cards, as storage is allowed for only 28 segments. The lash must be equal

to the number of divisions in the circle. The ^i must be listed in increasing

order, including the computed value of T b.

Spaces 5 through 10 of the TRA1 card (NUPU) are reserved for the profile

number. If several different airfoils are developed at the same time, they
t

can be identified by this profile number.

Spaces 5 through 10 of the TRA2 card are also reserved for the profile

number, but in this case, the profile number is used only to keep tract of the

input data, as this number is not used in the program. These spaces can also

he left blank on the TRA2 card.

The remainder of the words on the TRA2 card define the input velocity

function. Words 1 through 5 define the upper surface and words 6 through 10
.d

define the loiter surface. Word 1 is ^ s , given in circle divisions, and word 2

is	 The meaning of words 4 and 5 depends on word 3. if word 5 is 0.0, word 4

is k and word 5 is P. if word 3 is 1. 0, word 4 is if' and word 5 is w. If word 3

+ is 2.0, ward 4 is u and word 5 is w. Words 4 and 5 are divided by 10.0 in the

program, so the psuedo format is F5.3.

The specification of w and w' (word 3 being equal to 1.0) is recoirmended

only with large values of w z , so the path of Ww is strongly curved. The process



-20-

converges slowly when w' is small, and convergence is not guaranteed when p is

negative. For less strongly curved paths, the specification of u and w is

recommended (word 3 equals 2.0).

Words 6 through 10 define the lower surface in the same manner that words 1

through 5 define the upper surface. Thus, for a symmetrical airfoil, words 6

through 10 Mould repeat words 1 through S.

Word 11 is referred to as ITMOD, and determines the variable that is

changed in the iteration process to set Ks to the specified value. If ITMOD is

0.0, no iteration is carried out. If ITMOD is 1.0, the a  on the upper surface

are altered by a factor Lai until Ks attains the desired value. If ITMOD is 2.0,

the a  the lower surface will be altered and if ITMOD is 3.0, the u will be

altered on both the upper and lower surface by an equal amount. If ITMOD is 4.0,

K is modified, if ITMOD is 5.0, is modified, and if ITMOD is 6.0 .9 K and K are

modified by equal amounts. ITMOD = 3.0 or 6.0 is useful for symmetrical airfoils.

Word. 12 is K s , written in the psuedo-format of FS.3. Word 13 is the toler-

ance acceptable in the Ks computation, also written in the psuedo-format of FS.3.

A suggested value for this is .001, the smallest value available in the F5.3 format.

Word 14 is not used.

The next card in the list is the ALFA card. This card inputs the various

angles of attack that the pressure distribution is developed for and that are used

in the boundary layer portion of the program. The first word after the -title is

MAL, the number of angles of attack listed, in 16 format. NAL can be as large

as 14. If NAL is specified as larger than 14, it is reset to 4. The next 14 for

.less) words are the angles of attack, in degrees, tfxitten in FS.2 Format. If

NAL is given as a negative number, the angle of attack will be a. given on the

TRAI. card, where i is on :the ALFA card in FS.2 format (see the sample data deck

in Figure Al for an example of this). If an ALFA card is given with no angles of

attack and NATO=O, the angles of attack of the previous profile are repeated.



The AGAM card controls, the output of the Eppler program. The 16 of the

.AGAM card is ignored, but 14 AGAM(i)'s are read - fin VS.2 format. In general,

the AGAM(i) T s are either zero or not zero. If AGAM( l) is not 'ero, the r and y

coordinates of the airfoil are generated. If AGAM(l) is equal to zero, only

the transcendental equation is solved. If AGAM(Z) is not equal to zero s the

profile list will be printed, along with a velocity distribution for each angle

of attack on the ALFA. card. If AGAM(3) is not zero, the input data and the

solution to the transcendental equation is printed out for the initial input

and the final iteration. If AGAM(4) is not zero, the input data and the solu-

tion to the transcendental equation will be printed out for all iterations.

AGAM(S) and AGAM(6) refer to the boundary layer portion of the program. If

AGAM(S) is not zero, the program will. print out a listing of the distance along

the surface from the stagnation point, the local velocity, the energy thickness

form parameter H32 (the energy dissipation boundary layer thickness divided

by the momentum thiclaiess), and the momentum thickness. If AGAM(S) is equal

to 1.0, the local Reynolds number, based on the momentum thickness and the

local velocity is ' printed out instead of the momentum thickness. If AGAM(6)

is not equal to zero, the boundary layer. transition point, boundary layer

separation point, and drag (calculated by the Squire Young Method) are printed

out. AGAM(7) through AGAM(14) are not presently used, but are reserved for

further use.

At the University of Illinois, most runs are made with AGAM(l) through

AGAM(6) equal to 1.0. This results in the most complete output. An attempt

to run with AG.`1M(6) equal to zero resulted in the failure of the program for
r
unknown reasons.

Gard ABSZ lists the number of circle divisions, NKR, in spaces 11 through

15. NKR must be divisible by 4, and NKR + 1 points result in the profile of



the airfoil. As NKR is increased, the accuracy .;r the solution increases, as

well as the computational time required. The maximum NM is 120, but 60 is

usually a sufficient number unless large slopes in the velocity function are

encountered, as with a Stratford distribution.. For the airfoils designed at

the University of Illinois, an NKR of 92 was chosen.

The ABSZ card also lists ABFA in spaces 16 through 20, which multiplies

all values given in circle divisions. ABFA is normally equal, to 1.0. It is

necessary to change ABFA only if the number of circle divisions is changed, so

it is not necessary to change all the input data given iu circle divisions.

If no ABSZ card is givens, NKR is set to 60 and ABFA is set to I.G.

The RE card is used to input the Reynolds number into the program.

The psuedo-format of the RE card is (A4, 6X, 5(211, 3X, FS. 3)) . The first of

the II words represents IMA, which at one time was used to determine the suction

mode. Since the capability of boundary layer suction has been removed from the

program, this word is no longer used. The second I1 word is MU, the mode for

boundary layer transition. When MU is equal to 1, transition is by laminar

separation. If,MU is equal to 2, transition occurs at the first decrease in

velocity. If MU is equal to 3, transition occurs when tha velocity remains

constant throughout a step distance or decreases. If MU is 4, transition

occurs when the natural logarithm of the local Reynolds number based on 62

and the local velocity exceeds or equals 18.4 . 3 H32 - 21_74. MU = 5 is

similar to MU 4, except the value that In (RE) is compared to is 18.43

H32 - 22.10. Therefore, MU - S is a more conservative estimate for trans-

sition. The F5.3 word is the free stream Reynolds number, based on the chord

length and free stream velocity. All lengths in the program axe non dimensionalized

. with respect to this chord length, and all velocities are non-dimensionalized with

respect to this velocity. There can be up to 5 Reynolds numbers, each with its
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until a zero value is read as a Reynolds number.

The ENDE card is necessary for proper termination of the program. It

F is the final data card, and indicates all data has been read

The next three titles on the list are cards that have been added to

the program at the University of Illinois. The first of these cards is the BETA

card, which replaces the ALFA card. If a BETA card is used instead of an ALFA

card, either a punched output is generated or data is filed into the PLORTS

system that is used  by the Stratford program.. This data consists of four parts,

written in 6F12.9 formal. The first part is DS, the increment of the surface

distance for each x increment. There are NKR DS's generated. The other three

parts are a velocity function "), and x and y coordinates of the airfoil.

There are NKR + 1 of each of these values. The velocity function is equa-1 to

the local velocity divided. by Cl + cosai). The program was originally designed

to gave a pinched output, but was modified to file the data directly into PLORTS.

However, as the PLORTS system is due to be removed from the IBM-360 at the Uni-

versity of Illinois, it will be necessary to change back to a punched output

deck.

The next card that has been added to the program is the PLOT card. This

card reads data into the system that is then either punched out or filed into

PLORTS. Nothing is done with this data by the program, as this is only a con-

venient method of getting data into the input deck for the Stratford programs.

The last card to be described is. the TITL card. No data is on the TITL

card, but'this card signals that the next card is in 20A4 format, and is the

title of the airfoil.. This title will be printed in the output and inserted into

the Stratford input deck.

There are some restrictions on the order the cards are read in. The ABSZ

(if one is used), AGP.M, TITL, and PLOT cards should be read into the computer first, 	 iF
i, 4

i

F
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although not necessarily in that order. The data on these cards remains valid

until another similar card is read into the computer. Thus, for example, if

several profiles are to be developed with the same number of circle divisions,

it is not necessary to repeat the AASZ card. The next cards to be read in are

the TRAI and ' TRA2 cards, in that order. Once the TRA2 card is read in, the

profile is generated. The ALFA or BETA card is then read in, followed by the

RE card. -The RE card initiates the calculation of the boundary layer. If other

profiles are desired ., new TRAI. and TRA2 cards can now be read in, preceded by

new ABSZ, AGAM, PLOT, and TIM cards, as necessary. These cards can be followed

by ALFA or BETA and RE cards if boundary layer information is desired. The ENDE

card terminates the program after all. 'the profiles and boundary layer calculations

are complete.

The descriptions of the output which follows assumes AGAMCI) through AGAM(6)

are not equal to zero. If any of these words are equal to zero, the corresponding

portion of the output will be deleted.

The first data listed in the output axe the input data and the solution to

the transcendental equation. This data is pxeceded by the title, profile number,

iteration number s and iteration mode CO through 6). The headings of the table of

data do not agree with the nomenclature presented in this paper. MLE represents

the same quantity as cpi , ALPHA is ai , WS is w and w, ifflK is w' and 7,, DRAK is K

and K, DRAM is p and u, HK is KH and KH, FLA is ^w and w, and LAS is ¢s and s .

The next data listed are the profile of the aie oil in x and y coordinates

and the velocity distribution for each angle of attack on the ALFA or BETA card.

At the end of this listing, the values of Chi, BETA, ETA, SK, and SY are printed

out. CSI i..s the moment coefficient at zero lift and BETA is the angle between the

-zero lift line and the chord line. Since all angles of attack are given in reference

tp the zero lift lane, this angle is necessary to compute the geometric angle of
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attack. ETA, SX, and SY are apparently remnants of trouble shooting the program,

as they are not particularly useful. ETA is the number of points in the circle

plane divided by the chord and n. This term is used in non- dimensioralizing the

chord. SY and SY are summation of the x and y coordinates of the airfoil profile.

The last section of data is derived from the boundary layer portion of the

program. First there are 2 tables, one for the upper surface and one for the lower

surface. These tables list the surface coordinate, local velocity, H 32 , and $2.

If ACAICS) is equal, to 1.0, the local Reynolds number based on S2 and the local

velocity is printed in place of S 2 . However, nothing in the output indicates

that this has been done, so it is important that it be noted that AGM(S) is

equal to 1.0 if this data is to be used. If % 2 is a. negative number, the flcw

in the boundary layer is turbulent.

Following these two tables are listings for the upper and lower surface

transition points, separation points, and drag coefficients. Once again, there

is a: problem of nomenclature, as the transition points are under the heading

INS., the separation points are under the heading TRANS., and the drag coeffici4nit

are under the heading SEP.. The transition and separation points are given in

terms of surface coordinates.

I



DIME)SICN ALY(109Y(14)OMARKEA(16)
DI'MENSICN XM.3)tYYY(3)
DIRE) SICK REM OIA(5):Mkt(})
DIMEKSICN TST(5) # eANT(5 ) tZW(4r2914 ) tSU14#2tllt )tSA (472r1.4)
CDM)+ CIN P1(121)tXP(1211rYP6121) 9ARG(1211PN(1211tY(1.21.1tP(121)t

1PUFF114) . AGAP114 ) ICS(12U f`,VF(121 ) tANI ( 90)rALFA ( 90)tFKERN ( 30)rABSZr
ZABGRs!-APGR9U P ti C AMrt*tQrQPRG ' JAB rJST9'W P ET ArABFA t P1 9 BOG ENrSXv
3DARCtSVtIZZtVlgTITLM91

CCNNCN /GRZK /CDKtAA ( 7)tEd(7)
III f=1
DD 4 1 a 1116

4 MAPKENtI) :-C.
MAP R E zz C.
Cox	 .01
P1 : 1.1141592654
SCGEA s oC+114532925199

10 RE+4E ( SrI)tMAF# Ek(I)t1^lrlEa)
I FCRKA 't(16 A4)

AES2 _. 6C.
A E-F A	 I a 	

f9 ABGR _ 360,/ABSZ
HA EGR= .S# AE'GR	

LUp'1)3LU1TY OF THE
IB *-Ia ESZ
HD

	

	
^. 1
	t , ^A Is POOR'a 2^ IE

KKP = 2*MC
AM - KKR
NQ	 KXR +I
CO E USIrIR
ARI s MC + 1	 2*M

B 'FKE gZN I'P )x AR.GR*CCSGIAit1 MAUGRI I (SING (A q l*HABGR I *PI )
11 FEAC(5r2)PAPKEvNLFUvPUFF
2 FGRPAT4A4P16pl4F592)

DC12 I=1x16
IF tPARKE . EC.PARKEN ( I)) GJ T3 13

12 CCNTINUE
14 WRITE16 9 3) YAPKE
3 FOPPATUX 9 1 MCCRRECT GAIA %ARC WITH C3DE....d'tA4)

iii: TC 11
13 CO TC(15r22t333t140t142t25r150r 331.t375t376rl4pl4il4tl4tl4vl4)tr
15 NUPRC z NUPL

Ju l
16 1=1
17 ANI(J) = RUKD(P!!f-"F(1)*AdFAolGCC.)

IF (AN f (J) . EC. C . ).)ST wJ
I=I+1	 .
ALFA(J) =PUFF(I)
?FtAN4( J) —AESZ *.1) 1812LtY 1

is J=J+1
I.F( 1-1.4) 15 t 2Dr C

19 I=I+1
Gtr TV 17

20 READ(5:2)MARKEtNUPUrPJFF
rG TC 16

21 JA8=J
ALFA(Jtl)=C]
GDTV 1.1

22 CALL TFAFP:D
GO TC 11

25 1 F (PLFF i2) EC.D.) GO TC ZJ
OC 27. Jo l ts
RERXm&PUFF(2*J)



26

• 27
28

140
141

j! 142

331

333
332

3331

??32

3333

334
335
336
3361

r

33i
379

338

i
i^.

339

E+

i

3 40
i

'34 1
342

344

9

IFf(PElRX)26928g26
RE(J) = 1. E 5*RERX
IPU=lNT(FUFF (2*J-1) )
MA(J) = I Pia / 100
UU(J) = IPU710 — 10*MA(J)
JR	 J
CALL GRP(ALVYNL ALtRE t MtJ t Jrl t AAA:EBBtDDDtAZMtAZtAKKr EO)
GOTC 11
DO 141 I = 1 t14
AGAMII)= PLFF(I)
GC- TC 11
AESZ = PUFF(1)
ABFA = PUFF[2)
GC TC 9
IPLJNCH=1
rC TC ?32
IPUNCH=O
I F ( N'b P U 133 3 1 t315t33B3
NAL=—HL.PL
00 3332 I=1thAL
N=IF1`;(PLFF(1))
ALV (D=ALFA (K )
GC TC 335
N AL=RUPU
IF(KLPU.GT .14)NAL=4
DO 334 l=I:NAL
ALV(I)=PLFF(I)
IF{ADAM( 2))336tllt:a36
K=0
NZ=2
IF (i? Z.GT. C) NZ = 3
CALL ZEZ(1229NZvNZT)
WRITE(6 t 379) NZ —sr TITLE
WRITE (6 9 337INUPFCt (ALV(:dl tM=ljhAL)
FUMtT(li- t7FP R `:FIL vl5v7H 4LFFAtl4F7.2)
FCRuA7(A1t19A4)
IZZ = IZZ+1
WRITE{6,338}
FCRO411 51 2H N	 X	 Y	 V—DISTRIBUTIGN FOR GIVEN ALPHA)
IF(h.NE.C) CC TW 339
DC-341 N=lpNC
IF(IZZ.GT .62) GO Tr 3361
NE, = N-1
ZN= NG

PHIH= ZN4HA8GR

Xo p = lcc.*X (N )
YCR = 1CC. «Y (N )
OC 340Y=IINAL
VI M ) = AES(VF(N)*Ct-SGIPHlrt — AMP) ) )
IZZ = ILZ+l
WRITE(6 t 342)FCtXCR t YGA t(V(P)tM=1tt%AL)
FORMAT( I4t2FE.3914F7.3)
IZZ = IZZ+1
WRITE(6x344)CMtDARGtETAt,aXt`.Y
FORMAT14H CN=sF7,,4 t 6H 13E#'K= t F5.2 t 9l-CEG. ETA=,F5.3s4H

1Y= tFE-3)

IF(IFUKICF.EC-OI CC TO 11
Act= AC -1
IITI=IIII+1
l"RI T E(7,330) IDS(A')e0 = 191441)	 ^t
WRITE17030) (VF (V)tm,=lfA4j

SX=tF6. 3t4H 5



WRITE(703C) IX(P)#M=ltNQJ
WRITE(79330) (Y(F},N=ljNQJ
GC TC 11

330 FORMAT(OF12.8) )
375 AAA=PLFFi11/100.

BBB=Fi;FF (2 )/3.00.
DDD=FUFF(3)/100.
AZM=PUF +F (4) / ICC.
AZ=PLFF(5)/1C0.
AKK=PUFF ( 6) /loo.
REO=PUFFI7)*1£CCC.
GC T7 11

376 READ(57317) TITLE
WRITH7078) TITLE

377 FCPMAT11SA43
378 FCRMAZ(' 111944)

GO TE 11
150 STCP

CESLG SLBCHN
END

i



SUEFCUTINE	 ZEZ(IZPIDtIZT)
DI M ENSICh	 IT(4)
DATA	 IT/11 4 +01-	 :1i3O91H1!

'	 IF(IC-2)2i,2,1
1	 Ill=a ^

IZ =	 1
GC TC 3

2	 IZ =	 IZ+IC
3	 IZT	 =	 IT(IC+1)
RETLRN
END 5ti

l^

S
Y	 1

a

$	

q

3

r.

3

3	 ^

5

I



SUBPOLTINE CCCF(RET,UjUS9H,D2rCDvCF,1412)
CALL F12B(Hil-12tEPST)
IF(H)2v 15x1

3 CC=((H*6.6377961-20.5211i13)*F+15.707952)/RET
CF=EPS7/RET
GO TC 15

2 H32=-P
ALPHA=0 C29*(G.93-1.95*ALJG10((-12))**1.7C5
CF=ALPHA/RET**C.268
T=(1.C-1.0/F12)/SCPT(CFJ
PI=-F12*C2*LS/ (CF*(J)
IF(T-10.C)3t3t4

3 P1=-C.77380-7*(0.07212-T'c(e3.C3263-O.CO0942*T))
GO TC 5

4 P1 == (1.07.7651-T*(2C.4916-T*( 1.1407-T*(O.C2B1-#).00(11*T)) ))/
1	 (20.5403-T*(1.1341- T-F(0.0312-0.0007.*T)) )

5 IF(P7-P1)9r6v6
h C3=0.0

IF(7-10.C)8e6r7
7 CI=IG6.265I-T*t2C.4916-T*(1.14C7-T*{0.0281-0.0001*T)

C2=16.04€73-T*( 1.1341-T*(J.i7:12-0.0002*T) )
GC TC 14

8 C1=7.93440+T* (C.E7300-T*(J. 39.50 1-0.01139*T) )
C2=9.605
CC TC 34

9 P5=-3.63619+T*(C.S3C59-TgLU.05422-T*(O.CC4641-T*0.731E-04)))
IF(P?-P5)10,11s11

10 C1=-76.0+T*(63.7-7.0*T)
C2=-39.5-(C I+33.5) /P5
C3=0.0
GO TC 1.4

11 P3=-1.07221+T*(C.06537+T*(O.CIC46-T*(O.000174-T*0.6E-05))I
IF(PT-P3)13,I2912

12 P2=-C.422155-T* ( 0.11378-T .F(C.C4C22-T* (0.001426-T*0.25 E-G4)) )
C3=((6.5*P2-10.9*P3-2.S)rt(P 2-P1)+(6.5,vP2-2.5*P1+1.8)*(P3-P2)I/

i	 ((P3-P1)*(F3-P2)*(P2-P1))
C2 = ( 6.5*P2-2.5*P 1+1.8) / (Pl-P2 ) -C3*( P1+P2 )
C l=-i .5-F I* (C2+2.5 )-C3*P1i c P 1
GC Tr 14

13 P4=-2.24226+T*(C.45376+Tvc(C.03t52+T*(0.CC1926-T*0.277E-04)1)
C3=(  (19 .4*P4 -30.5*P5--16 .l) * ( P4 -P3 )+ (19 .4*P4--10 .9*P3+10.6)*(P5-P4 )1

1	 7((P5-P3 )* (F5-P4)*(P4-P3) )
C2=( 19.4*P4-IC.S*P3+IC.W/(P3-P4)-C3*(p?+P4)
CI=-6.2-P3*(CZ+10.9)-C3*Pi*P3

14 TP=C1+C24PI+C3 *Ft *PI*PI
TSP=(H12-(HI2-1.0)*(1,0-J. 72 IS5/(0.93-1.55-V ALJG10( H12)) J )*

I	 t0.55216-C.38750*H32+J.04855*SQFT(0.77500*H32-1.10667))/
2	 (SORT(0.1750C*H'2-1.1Jt-67)*S.RT(ALPHA)*(H12*0-32-1.43100))**21

CG = CF*t(TP-C.134-*T)*(1.0+P1*( 1.0+1.0/H12))/(TSP*PET**0.134)+h32*
1	 (1.0+PIx4l-0-1.0/H12)J)

15 RETURN
END

OF rHE
PA(Ig 10  FOOR



SUBRCUTINE GRUP( I's CZtUi 4RcitStOLiZtDZfD02,VYPA)
CUMEN /GRZK/CDK9AA(7)vbdt7)
Z = C2*AES(F)
RET = WRE*WRE*U*C2
CALL CDCF(RET,U!PtS* F-102iCOv £F:}-12)
IF(MA)1t1,2

I V = 0.
GC TC 13

2 GC TC(13,13,13:6,695s593)9PA
3 IF(H)41191
4 V = 25.*(H+1.58)*C2*l.S

GG TC 12
5 IF(F)6.plvl
b 0 = EE{MA)

PSI	 AA(MA)
M OV .I'IE X. )PSI=BV*ALOG (riET) *PSI
IF(PSI--1.52)89797

7 IF(PSI-1.99)11,1119
8 PST=1.52

GC TC 10
9 4^SI=I.99

1t) 8 = C.
11 FZ = SIGNIPSI9H)

CALL CDCF(PETtUIUSPHZ'U29i,DS9CFS9H12S)
V=(U*(CCS—(FSI+B)*£FSI+JZFUS*(E-PSI+FIZ*(B+PSI)))/tB+ABS(H)•-1.7

12 IF(V)1371t1
13 VDIJ =VII:

LSU =LS/L
17 CC2 = ( CF--t 2.+H12) *LSU*02.*VOU) *DL

OZ = tCC ° 3.*Z*USU + VJU)*DL
RETUFNI
END



SL$RCUTINE 1-12E(H?H12jEPST)
IF(H)4,5 i1

1 IF( F•-1.5725E)2p3r3
Z H12 =(SAPT(H-1.515090))•x((-227.18220*H+724.55916)*H-583.60182]

1+4.02922CC
EPST= ((-.0317285Df 55*H1Z+.3535405523)*1 4 12-1.686 }94T498)*Hl2

1+2.E125E8652
GO 'TC 5

3 EPST = (H*2.221687229-4. 26252829)*H+1.372390703
H12 = ( 2'5.71578574*H-89.532l4201) *H + 79.87084472
GC r C 5

4 H12= (0.04855-SORT (-0 * 775JtJ *F• -1 .106668)) /LH+1.43100)
5 PET URN

END



SUBROUTINE CRP(ALV#NALtRE#MUtJFIAAA•BBBiODDtAZMPAZrAKKsREO)
CCMMEN F1 ( 121)rXP ( 121) t YP(1 1)tARC4121 ) tX(121)rY(12L)tP(12l)r
1PUFF(14),AGAP(14)tES(120),rVF(1;1)tANI(90),ALFA(90)tFKEPN(30)tABSZ,
2AEGR tF-AEGR, IB,MG , NKRjpNC MUPS1 t JAB gJST t CM t ETA t ABFAtPI t BOGEN YSXt
3CARGtSYtIZZrVli TITLEtl9)

DIMENSICN ALV(14) , RE(5)t .AU (5)t6RE ( 5)tH(5)tD2(5).tCW(5t2r14)t
1SA(5t2tl4)tSU(5t2,14)rSAR(5),SUkR(5)tCWC(5)tDD(5),RR(5)PREI(5)
HABLC=2.49
UKK=C.0
DC Z J=1tJR
H(J) .= J
RR(J) = RE(J)*L.ET-6

2 WRE(J) = SQRT(PE(J)}
NALA = 1
N'AtE = IAES(NAL)
IF(NAL .LT.0) NiALA = DALE
00 36 IA = NALA t MALE
IF(AGAMM.NE .M IZ7 = S19
DC 38 JU =1,2
ND = 2*JL —3
NDSD = JU — 1
F KD w ND
g ENC = I + NDSD*RKR
AP = ALV(IA)IHASGR + .5*AdSZ	 It
NU = INTtAP+601*FND) + NJaD
NLNDSD = NU a NDSD
DS R = DS(NUNCSD)*A8S(FLJAT(NU)—AP)
S=C.
U(s=C.
IF (AGAM(5) )kt26t4

4 IZP = IZZ + IABS(NU —NENL;) —E4
IF(IZp)I.Cr1Ct6

6 CALF. ZEZ (ILZr3t IZT)
WRITE(6 i 7) IZTVTTT'LE
t+F ITE (E+, 8 }NL;FRC rAL^► (IA) 3

7 FORPAT(Air1SA4}
8 FURNAT(ll- o'BCUNCARY L.AYErt 	 PQOFILE'tI6t10XlrALPHA=e,F6.2)

10 CALL ZEZ( IZZt }.tIZT)
IFtJL-1}16t12r16

12 WRITE(6114)IZTt(RR(J)YYLLJ)t•.=1tJR)
14 FCRMAT(ALs13FU p PER SURFAGEt2Xf5(3Xt3HP.N=tFb.2t4Xt3HMU=sI2))

GCT7 20
16 WRITE(6,18)I21,(RR(J)tMUtj),,=1tjR)
18 F n RMdT(Aii13FLCWER SURF AI',Gt2X t5(3Xt3HRN=tF6.2r4Xt3HMU-rI2))

IF(IZP)26,26t20
20 CALL ZEZ(IZZtIFIZT)

WRITE (6 n 22)IZTt (Jrj=l iJR)
22 FGRPAT(A1v7F	 S	 t8H	 U	 t5( I1t9H	 H32	 111H	 C2	 )}

GE TZ 26
24 NUNDED = NL — NDSC

DSR = DS (NUNESD )
26 ZN = NIJ

CALV=CC'SG ((ZN--I..0)*HAB"aR —ALV (IP } )
UKI= ABSf bF(NL)*CALV)
S ` S + DSR
PC 33 J=1tJR
DSZ = DSR
UR = UK
CALL GRSIH(J),D2(J)fURtJetItDSZtWRE(J)PMU(J)PC#O.OYO.OtH(J)tC2(J)t
iXAtxLtCCC)
CC(J) = c2(j)



'_s

IF(ADAM(5).EQ.1.)DC(J)=UKI*PR(J)*D2{J)
4	 IF(UK)3f828130
#	 28 SAR(J)=C.0

SUP (J)=0.0
30 SAP (J)= SAR (J)+XA.
33 SLR(J)= SLR (J) +XU

333 IF(ACAM#5))31v35v31
31 CALL ZEZ(IZZ,l,llT)

WRITE (6v32)IZTvSyLiKiv(H(KK) vCC(KK)tKK=1vJR)
32 FORMAT(AIsF7.4tF8.4951F10.59F11.6))
35 IF (AU--NEND) 34,36, 34
34 UK = UK Z

IF (LK1.CT.LFK) LKK=UK1
r	 NU = N U + NO

GC TC 24
36 IF (J.EO.i) IFITE(7 * 376) RAAvE88vGCGvUKKvAZMiAZ*SvAKK

IF (J.EC.1) 4RITE(1077) BEG
377 FORMAT(F1594)

DC38 J=I,JR
CALL H12B(P(J)tF'12FvCTS)
IF(F12R.CT.FA8LC)HlZR = HABLC
CW(JvJU*IA)=(UK1**(2.5+*-.)*H ZP))*02(J)*2.
SA(JvJU P IA)= SAR(J)

38 SU(JtJU'vIA)= SLF(J)
316 FORMATE 10.4)

I = 0
IF(AGAM(6) )3Sw60r3S

39 lF(AGAM(5))44v40t44
40 IF (IIZ-55)42v44v44
42 IF UNA0 4Fi 44 t44
44 CALL ZEZ(ILZv3tITZ)

WRITE(60) TITLE
WPITE(6v46)NLFPC

46 FCRMAT (1F v 'BCUNCARY LAYcrt RESLLTS 	 PROFILE' il6)
48 CALL ZEZ(l ZZvZvIT'Z)

WPITEt6,4' )?TZv4BE(J)tMLt.1)t.=1vJR}
49 FCR'^ATM , 15X,5(3FRE=vE9.,-11Xt3MMU=vl2v3X))

IF(I.NE.0 CCTC 51
DC 60 I=AALA,VALE
IF(IZZ.CE .57) GETC 44

51 CALL 2EZ(IZZtivTTZ)
6RITE(6t5C)ITZ tA LV(I)t(,ItJ=1tJR)

• WPITE(7t55) ALVII)
55 FCRPAT( t ENAVI ALPhA=evF5.2#'vn=42vCENDt)
50 FrFNA 7 (A1t6FIALPH4=tF6.2v3Xv5(llt7H INS. * 7H TRANS. Y TH SEP. ))

CALL ZEZ(IZ2t1vlTZ)
WRITE(6v52)ITZv(SL(Svlvl)v5A(Jt1vI)tCW(Jtivl)vJ-1vJR)

52 FC'R V AT(41t13FUPPER SUiZFA4;tt2Xv°_(2F7.3vF7.4))
CALL ZEZ(ILZt1tITZ)
WRITE (6 ' 54) ITZv (SLIJ v2t I) vSA (.. v2vl) tCW (Jv2t I) tJ= 19JR )

• 54 FCR M AT(A1 9 13FLGWEF SURFAGcv2Xv5(2F7.3:F7.4))
oc 56 J = 1vJF

56 ClmE(J) = Ck(J i lvl) +CW(JtZvI)
"	 CALL ZEZ(IZZt1tlTZ)

WPITE(6t98)IT7t(C6C(J)vJ=IPJ::t)
58 FCF k A T (A1v8 10'AL CCv7Xv5(13XvF8.4) )
60 CC-NT INUE

RE'rLPN
E^ C



SUBRCUTINE LVP(UStUwD2,WREtN,N,FUM)
GO T0 (1,2g3,49Ep8,8)jM

_	 1 IFM5+.I.E--4) 7,818

2 IF(U5-1.E-4) 7,7,8
3 AK=21.74

GO TC 45
4 AK-22.10

45 FUP=AUCG(WRE*IPE*D2*U)+AK- 1f.4*H
GO TC .9

7 FUN=22.10
GC TO 9

8
ry F^7UCT

F=-22.10
7 PE i LFN	 .

END



a

SLBPCUTIRE CRS(HyC2lUKiUKIYOLtWREPMUYMAtVvVltHRYD2R4XAtXLPDCC)
EATA CAPPEUPPI-E/.00CGt75t.LU011-1,.0/
BIT=C.
IF(MA)3r10193

101 V1 = C.
V	 C.

IF{FE)3e371

I. IF(ABSIUK—UKV)+ABS(UKI-UK1VI+ABS(DL—OLV)+ABS(H—HV)—.1E-6)2r3r3.
2 IF(ABS(C2 x hPE — C2V*WREV).GE..1E--6) GC TG 3

BIT = I*
D2E = D2E*NPEV/VtRE

3 02V=C2

Hip = H
UKV= UK
DL. = DL
WREV = ARE
DCC	 0.
XA = CL
XU = CL
XI=DL
VV=V
IF (DL)A94Y5

4 FE=H
D2E= C2
GO TC SC

5 LSTR =(LK1—Lk)/CL
IF(FA.LT.4)VSTP =(V1.—V)IOL
IF ((JK )6006

6 IF((L.91—LK) /L;K — 1.)8,817
7 D2E _ .2SCC L /(WRE*SORTiLZ)Tf) ?

HE = 1.61S577
GC Tr 5C

E IF(C2)90r10
9 02E =(.6641CA/APE)*SWRT(2.xDL/(LK1 +GK))

FE = 1.5725134
C TC 5C

LO X = 0.
ISTAE = C
IF (F.L7.C. )XLj = 0.
T C! o st L o w	 ^ ^ ^

1	 f - f	 ^ Y r d-^

G M- T r W-
1313 IFIX ¢GL —CL4)l2r12fi9
12 XS = X

[.lK =M+LSTP^&XS
VG= VV + VS79*XS
lF(H.)141p14rl6

14 NAP=1.5162
IF(HAF+EAF4F)20,20r15

15 XA=X
CALL E-12E(FfF12rEPST)
02F = D2*R.K/UKl)**((5.4Hl2)f.5)
FE = F
O TC 5C

16 HAP = 1.515C95
IF(HA P +EAP — F)17 f 18, l8

17 CALL UMP(LSTR,E.KfC2 t WRE 7 H, ,LrFLM)
lF(FLN+ELv)2C,18 r lE

13 XL = X
H= —^
CSTA2 = C

i

h

^rY

!;E



19 DL	 DLV — 7c
GO TC 12

20 CALL GRLP(l. t C2 t L'E 0gREvUSTR rGLrZ?DZrDDZtVGrMA)
E SP = .CC2..
IF(i^4-3}Z2r^^i^1

21:. E SP	 .:GC1
IF(X .EC..0.JV = VG

2`2 : XS	 XS + 54'EL
D2 14 	 D2	 .5,#D0'2
ZM = Z.+ 51 CZ
UM=LKV+LSTR*XS

IF(C2M)25r25.23
2 3 ISG 	 Z.

FA N - I Zm /C2Y

IF(w . N	 2.)3ot25r25

	

-	 25. ISGV = ISG
IF(IST'AB-9)2tt45 ,49

26 ISTAB . =. ISTAB +1.
DL	 .5*CL
GC TC 13

30 IF (F-P — hAF+EA P )31 r32 02
31 GL = .5*DL*(AES(H)—HAP)/tABS(F)—Ht)I

GL TL 1?
3Z IF i^- ,LT .C.I FfJ W -HV

iF(VA.LT.4)VV= V ► + XS*VSTR
CALL G R UP(F1' t.D23 g UMtVREiU6TR tDLTZMvDZMtDD2M9VMvMAJ
ISG = 3
02E = 1 02 +CC2N
IF(C2E)25t25t33

33 FE= (Z+CZM) f C'2 E
ISG = 4
1F0-E-2.)34.225925

34 HCIFF = F-E—APSM
ISG = 5
IF(A8S(wCIFF)—.01135t35,25

35 HS = AES(A6S(H)-2.*AES(HMJ+FE)
ISG = 6
IF(F=—ESF13Et35t25

36 IF(l-E—HAF+FAv)37t3Ev38
37 DL = CL*(AE=(H)--FAP)/(AdalH)_FE)

GT TL 13
38 IF(P)39a39r4C
39 HE = —HE

GC TL' 47
40 UE=LK+LSTPoEL

CALL. Li%IP(LSTRvLaE902EtwRCthE,I'LyFUI
IF d UME — FUM)42r42241

41 DL = CL*FUv/(FLIP—FLME)
G." ; r 13

42 DCQ = PCC + CL*VM
424 X=X+EL

	

1	 IF(X -^DM47r5Cf5C
47 H = FE

D2 = 02E
G3 T_(43tl3,43t45t13t43)rISG4

43 IF (I-S--.1*E5F ) 44 r 13 9 l3
44 DL	 2.*CL

ISTAE =ISTA@-1
GE TC 13

45 IF(FC*FF)44t13r13



s

49 STP-Q.0
IF(ISTAt.RE.9) STP=FLJAT11J(ISTA6-9))
WRITEi61511

51 F—'R kg AT(1X, t ***** WASKING4*-v** E.L. IKFCPMAT1'—'AN IS NOT VALID AFTER
IFER E. STEP SIZE IS AT I IS LDWEST SCUND. e )

50 HR = FE
D2R = D2E
PETUSP
END

j

I



SUBFGUTINE CRAW(WC:WS0iLrL)K vVJ tFL,AGtMA)
CrSP = CCSG(AG*FL)

C	 CALL CRAim(4, CtkSekLtDRAK(J) t D-IAf (J),FLA(J),ABGRvPKP)
C	 VvE^N NKF=Q t i+IRD CK ALS KAPPA ALFGEFASSTtSCNST ALS K.

FK= CK
i	 IFiMA)2t1^^2

1 FK= FK* (1. — CCSP )/ (1.+CDSP)
2 SINP = SING(AG*FL)

WL	 Dt A ALCC( I..+FK)
IF (FL.EC.Q.) FK = 1.
BETA =(CCSP-1.)/FK + CQ5P
PQM1 = BETA**Z — 1.
WUSER= SCRT (ABS(L'QF1) )
U= (1a+EETA);tSINP /(1.+C0SP)
IF(BCM1 )3t5:4

3 WF = ALCC(AES((IALBECf+U)/(hUEEC.—(1)))
GC TO 6

4 WF = 2.* ATAAIU/kLBEQ)
GC TC 6

5 WF = C.
6 WC =(WUBEA # WF — SINP — dcTA*FL*AG*1.745329E-2)*DM

%S = (CCSP-1.)*(1.—(1./FK + 1. )';AL,9G(1.+FK) )$DM
RETLRN
END



SUSPLUTINE TRAPRQ
DINENSICh PLRES(I3),FLS(Z),FLA(.2),DOAK(2)9DRAM(2),AC(4,3),D(3),

1WSI(2)PWCI(2),FINT(3),A(4) tFK(2)tP(3)
COVPC I'l PI(121),XP(I21),YP(121),IERG(121)YX(121),Y(121)*P(121)i

I.PUFF(14)tAGAN(14),DS(1.20)FVF(121),ANI(90)iALFA(90)YFKERN(30),ABSZ,
2ASCR,FAEGP,,IF,NCtNKRvNCPNJPROtJAB,JST,CN,ETA,ABFA,PI,BOGEN,SXY
3DARG,SY,YZZ,LI,TITLE(19)
IZZ = 99
DD 23 I = 1,13

23 PURES(I)=FLND(PLFF(I),1ljUU.)
I=1
J=1

24 FLS(J) = PLRES(I)*AEFA
CALL CFAIn(kC,kSpliL,.6,-1.vFLS(J):AE(CP,1)
CALL CRA lk(WCI(J),kS1(J) ? W.Ll -oar-1.lFLS(J)PASGR?I)
WCI(J) = INC I(J)+6c
WSI(J) = 1ASIMOS
WLi = WLI+WL
FLA(jl= FURES (141) * AEFA
IF(FLA(J)125,25t26

25 CRAK(J)= 0
DRAN(J)= 1.
GCTr 34

26 WI = CCSC(AEGR*FLA(J))
IF(PUFES (1+2 1-1 . )2TOU,29

27 DPAK(J) = .1*PURES(I+3)
28 CRAP W)= .1'4PLPFS(I+4)

GCTC 34
29 Ca AK(J)=((. I*FLGES(1+4))4*(-!0./P<APES(I+3))-l.)*(I.+WI)/(l..-%I)

DRAK(, )= PUN[ (DRAK(J),10Jj.)
CRAN(J) = .1'+PURES(1+3}
GC -C 34

30 AA = .C5 % Q.-(+I )*PURES(1t3)
WILN = AL(7C(.1*PtFESii+4)!
FNIT = .5
MIT = C

2 1 Fu = -WTLN/dLCG(AA/FMIT +1.)
"IT=l'IT-+1
IF (A5S(FN- FNI7) -I.E-6) :x.1,32,32

32 FM I T = FP
GC TC 31

33 C P A ti (J) = RUhC(Fh,1c,00.1
DRAS = .C5* P LRES(I*3)*(Wifl .J/Fm
DRAK(.)) = cL1AC (DRASxlUOJ.1

34 I= I+5
J= J+l,
IF (J-3) 24:38,38

39 MEN - 0
-kSI(2)

Ctl} = kLi *4(wSI(2)+%SI(1)}
C(2) = -VLI *(^CIt2)+WLI(!} )
C(3) = k'CI(1}hSI(2)-wCItZ}^,5i(!)
ITMI'D = FL-; ES(11)
TT-%Q= I T V D
SHKS = .1*PLFES(12)
PKST = .1r.PLaES(13)

35 CC 3E J-Ir°
36 AC(1?J) = C.

ALIL = C.
S I ICI A I = C.
C r SAI = 1.



FNI = 0.
J=1

37 CSAIP = CCSG(2.*ALFA(AJ
SNA€P = SING(2.*ALFA(J))
IF(J—JST-1)40t39v4G

39 AC(2vll= SINAI
AC(2,2)= -1.—COSAI
AC(2,3)= —1.
AC(3 9 1)= —SNBIF
AC(3t2) = 1.}CSAIP
AC(3t3) = 1.
AC(4 v1) = CES41—CSAIP	 ".
AC(4 * 2)= SINAI—SNAIP
AC(4v3) = C.
ALTS- = ALIV
ALI SF = ALFA W))
GC7O 41

40 FII = CSLG(HAOGR*F( 1--9C.iALIV)
FIIP= CSLG{HABGR*FM1-90.PALFA(J)7
PQ=FNI*^-AE{^R*PG'C^E^1	 •

AC(Irl) =—FIIF*SNAIP+FllicSiNAI44COSAI —CSAIP)*PB +AC(ltU
AC( Lv2) =—FI I*(1.+CGSAI)+Fi IPi( 1.+CSAIP)+(SINAI--SNAIP)*FB+AC 11921 	 i
AC(lr3)= FIIP — F1I + AC(193)

41 IF(J —JAE-1)42v43,43	 7
42 ALIV =ALFA.(J)

S INN T=sNilP
CCSAI=C5AlP
:N I = AA I M
J=J+I
GC TC 37

43 DC 47 J=1v2
IF('--LA(J)) 47947r4g

49 CALL CRAW(WC P INS 9^LvCRAK(J) vD'g kPW tFLA(J)iA6GRPO)
AC(l,l)= WC+ AC(ltl)
IF(J-2)45 x44 445

44 WS — —WS
WL	 WL

45 AC{1,2} = t,S f4C(lv2)
AC110) = — WL +AC(lr3)

47 CONTINUE
DC 52 J =1v4
A(J) = C.
PC 92 1 =10

52 A(J) = A(J)-+D(I)*AC(Jvi,}
C	 LOTGA

c3 1-.0
FV = 9.E9

	

PFIC'N =	 .5 *(ALTS+ALISP)
60 CSL I = CSLG lPHlSF• vALiii

CSLIF= CSLG(FF-ISH9AL15P} 	 3
FP=(A(1)+A( 4)x'90.*E•IGEN)+(A(2)*CSLI+A(3)*CSLIF)+A(41*PHISH*BCGEA
lF(!-20)6lvt6v66

E1 I g #AES(FF} — AES(FV) + .5E—i)62vf3v63
_ 63 I = 2C

PHIS!- = PHISF- — PCIF
GC T^ 6C

62 PC:F = —FP / (Atz)/ PHIS-1 — ALM + At MPHISi--ALISP) )	 rI

I = I+1
65 Fb=FF

PI-ISF = PF1SF• + POIF
GC T r 6C



66 AN I (JST) _ (F4- ISF +9O.) /HAdGR
70 DC 71 1=10
71 FIP-T(I)=AC(1, I)+AC(ZyI)*CSLI+AC( 3tI) *CSLIP+AC(4iI)*BOGEN*(PHISH+

F9O.)
fi g F- (1) = (FINT(1)*)eLI-FINT(3)*14C I(Zl )/C(2)

Hl<(2) = ( FIN-T ( 1 )*WLI-iFINT(3)*WCI (l))10(2)
HKS = HK(1)+FK(2)
IF(AES(I-KS -SHKS) -HNST) l402,72

72 IF(ITNCD )73 r75t73
73 IF(AGAM(4))76,S8j 76
1 f- ITMC1' =C
75 IFtAGAY(3))7Et3CCt76
76 NZ = 2_

IF( IZZ+JAB.CE.59) AZ=3
CALL ZEZ(IZZtK'ZtNZT)
WRITE(6r7)NZTtTITLE

89 WRjTE(6t77)KUPPEvMERtITMR
7 FOP9AT(A1t1SA4)
77 FI:R O AT(11- v2OHPESLLTS F0 PF3FILE tI5t5X i lOHITERATlON il3r5Xt51-NCOE

1 ,I23
IZZ = IZZ+1
WRITE(6978)

78 FCPPAT(' NIL 	 ALPHA	 'A	 bHK	 DRAK	 CRAM	 HK	 FLA LAS
11)
JF-= 1
JN= 1

79 IZZ = IZZ+l
IF (Jig - Z )ECs Elr PC

80 IF (Jh-JAP)Q2rd).t83
81 X1 = .5-(1.+ Cr5C.(FLAWH)4AL;R})

	

hF°K	 = E1.+t(^pK(JF^)*(.1^-X^.IEX1.}**(-DFA^+tJH]I
I+STP = EPAP'(JF)v-CFAK(J#4)IXl
WPITE(6,82)ANI(JN)rALFk(J,I)#WSTRiWNKiDPAK(JH)iDRAM(JHIrI-K(JH)iFLA(
1JH)?FLS(JH)

E2 FCRV" 1(F7. 2, F6.2tF7.3vFb.312F7.3rF9.61PF5.1,F4.1}
JF= JF-+1
IF(JP-JAE)f5, E6,F5

83. V I F1TE161E2)ANI(Jh), ALFA (Joi1
f' S JN=JN+1

GCTC74
E6 IF111110C)ICC r:?COr1OO
S8 IF(MFE )1CGr'9Sr100
99 IF(AGAM(3))!6.1CCr76

100 IF( ITVnD -4) IOl f12O,12U
101 IF ( w E F ) IC2 r IC21103
102 DAL = .1

G" 7 .r  1 04
103 DAL _ ( SI-K 5-HKE )*CALI (HKS-HKSV )

GAL = FLNC(CAL:100.}
IF(EAL )1C4v 7AilO4

• 104 J = 1
HL=C.

105 IF( F L) lC7 t 1C6 t IC7
106 IF(ITM ."C--2) ICE, IC9 t LC8

	

IC7 TF (	 I ) IC8 r 111 1 106
1018 ALFA(J) _ ALFA(J)+EAL#(I.-1-L)
109 IF(J-JST)111r11Ovlil
11C F•L=2.
111 J = J+I

TF(J--JA2--1) 1C5r112TI(j5
112 HKSV=FKS



MCk =MEEK+1
C,CTc 35

120 IF(MER)122r121v122
1-21 009 =. l

GC-TC 123	 Uly^,`	 ^(
122 DDK=tS)-KS-HKS)*DESK/tFKS-HKSV)	 IGE

OCR= RUNE(OCK91000.)
IF(CLK)123974,123

123 IF(ITMCD-5)1.249125x124
124 GRAKW= EPAK(1)+DEK
125 IF( ITMOC-4) 126 9 112412-6
126 C-RAK(2)= DPAK(2)+CCK

GC TC 112
300 IF (ADAM M) 301411001
301 AK=' .5*(C: SG(PHISH-ALFA(JST+1))/SING(PHISH-•ALFA(JST+1))

1	 -Cn,SC-(PHISP-ALFA(J.>T))/SltIG(PFISI-.-ALFA(JST)))
AKP =AK*180./998656044
PHIM = C.
KU=1
1 = I
ANU =C.
JH=C
VI= C.

302 JH=JH+1
FFI = CCSG(AE3R*FL4(JH))
FF2 = GRAK(JH'J/(x.+FF1)
FG1 = CCSGtA@GR*FLS(JH)i
FC3 = .6/(FC1-1.)

304 VI - If  - CSLC(PHIM-90., AUFAM)
G'-' TC 310

306 ARG^ = ANU
IFtAAU'.GT..5* ABSZ)ARGN= ABEZ — ANU
CSI: = CC5G(APGPJ*A8GR)
F=O.
IF(AFGN.LT.FLA(JH) )F = CRA? (JF)*AICG((CSP—FF1)*FF2}1.)
G=O.
IF(AI-GA.LT.FLS(JH))G=—FK(JF)*ALCGII.—(ICSP—FGI)*FG3)**2)
P( :•iU) = F+G+CSLG(ANU*HABGt-9C. 4 ALFA(I)) + VI
P 1 M. )= F I NU )-AK*AES (SING( i ANU*FAf3GR	 9C.1 - PHISH) )
K  = NU + 1
ANU= ANN+ 1.

310 r F ( AKU — AN I ( I) )306, 306,3 12
312 IF (ANU— ABSZ )314:32U93ZU
314 PHIS = ANItI)-5HABGR

Vl=VI+CSLGfFFIM-90v9ALFA(t))
I = I +1
IF(I-• 1-JST) 3C4 4 302 t 30A

320 PS=C.
B2=C.
DC 324 1=1.AKR
FS=pc+ptl)
BI — 271(1-1)

324 82 = 82 + SING(Bl*A3G^) W(I }
V1 = 2.wEXP(P=/ACSZ)
EXI = .CCCCCCCC
SY=C.
D0328 N=IYNC
f;=0.
11 17326 h=1 1 1 E

M N = h + I + Mo — 2*M
NI P = 2*A — M1+:

s



I F (V" .G . j% K P ) f N = MN - iNKR

IFIMP.L.T.I) VP = Pm + NKR
326 Q = 0* FKERK(M)*(I'1(MN) —P.l(lv l0 ) )

ANU= N-1
Z O = ANL*HABGR — 9C.
ZL = CDSG(Z P — P{-ISN)
ZL = ABS((l.—ZL}/(1.+ZL})
IF(ZL.NE.O. }ZL=ALOG(ZL)
ARG(N) = 9 — AKP*SING(ZP — PHISE)*ZL	 ZP

HIV = CnSGIZrl)/VF(N)
XP(N) = kV*SING(ARG(N))
YP(N)=—kV*CrSC(ARG(N))
SXI= SXI+ XP(N)

328 SY	 SY + YF(N)
SX = SXI
XPK = SXI(AESZ — 1.1

329 X(1)=C.
YPK = EY/(AESZ —I.)
SXI = .CGCCCc00
Y(I)=C.
XP(I)= XPK
YP(1)= YFK
XP(NC)=XPK
YPINCI=YFK
RCV = 0.
CO33Ct1 = 2,RC

SXI= XP(N -1) — XPK — XPK + XP(N) + SXI
X(N) = SXI

k	 Y(K) 
E 

Y(N-1) + (YP(N-1) — YFK + YP(N) — YPK)
RQ =X(k')l%X (N)$Y(N)*Y(N)
IFtGG.GT.R91r)L=N

330 RQV = RC
DC 327 I = 10
IEPPL = L--2+I	 {

327 R(I)=SCRT(X(IEPPL)#X(IEF-70+Y(IEPPL)*Y(IEPPL)}
333 TA L I = (Q(3) — R( 1))/(4.*(R(2)+0,(2)—P(1)—R(3)})

XA.AF = X(L)A-TAU*(X(L +l)—XLL-1)+2.*TAU*(X(L+I)+X(L-1)—X(L)—X(L)))
YNAS = Y(L)+TAU*(Y(L+1)-Y(L--1)+2.kTAL*(Y(L+I)+Y(L--I)-Y(L)-Y(L)I)
SQ = XNAS*XNAS + YDASFYNAa
AT=XMAS/Sr
?= YNAS/SQ
STRFF = I./SCRT(SC)
ETA = AESZ*9-IREF/Pi
CM = .5A ETA* cT'R EF*B2
CARE = 19.C5E59 *(3.*Y^%AS/XNAS - (YhAS/XMAS)**3)
SX=S?REF*SX*200.
SY=STREF*SY42CO3

i pn 33I A=2,NC

X(N') = I.-B^Y(N)-AT*XR
!	 Y(r:)= B*XR -AT*Y(W

ARG(N) = A+'G(Nl - CARG	 !
tIQ = (XF(M-*XP(N-I) W XPK--Adl K)**2 + (YP(N)+YP(N-1)-YPK-YPK}*icZ

331 DSO — l) = STREF*SCRT'(RQ)*(1.+.6666667*((XP(N)*YP(N-1)

X(I) = 1.
!	 332 ARGtI) = APG(I) — CARL;

11 RFTUFN
ff END

^	 r



y

SUSFCt)TI E CIP(XoY7A)
DI M ENSION X(3)#Y(3)pA(3)
Cl = (Y(2)—Y(1))I(X(2)—X(1) )
A(3)=( Y(3)—Y( 13—CI*(X(3)—X(1)))/((X(2)—Xil))*(X(2)-3((1)))
Ai 1)=Y{ 1.)—C1*X(I)#A(3)*X(1)*X(2)
Al2)=C1--A(3)*(X(I)+X(2) )
RETLPI\
ErD



SUBF'CUTlNE	 CIA(XTY?NP,O)
DIMEPSIEK	 U(3)tV(3)iW(3)tL(3)tA(3)*B(3.)tX(121)PY(121)
q = q .
€7.0 4	 N =2?NP .

NR = 'NP-1

Z IF (X(NR)-X(I\))3t2t2
2 N = NR - 1

GO Tr 1
3 q l t'%=Y(N)-Y(NR)-(Y(.Nk+l)-YiNR))4(XIN)-XINR))/(XINR+l)-X(NR))

IF=[CAN-C)5t4t^
4 q 	 = CAIN

-	 5 D4 b	 .I	 =	 193
N	 N+1-I
NU = NR-I+I
U(i)=x(NC)
V( I ). =Y ME)
W(I) =X(NU)

b ZtI)=V(NL)
T CAL(.	 C£P (U t VrA)

CALF	 CIP(Wt2tE)
IF (ABS(A(3)- E(3)).LT..COJL)	 GC	 TO 11

XST	 =	 (E(2)--A(2))1.5/(A(3)-E(3))
YS = A(2)+2.*A(3)*XST
I.F(AES(YS) -.CCCI)9.tEtE

R TA =	 I./SGRT(1.+YS*YS)
DC 10 I = 10

Vtl)	 = TA-^(V(I)-YSAUUM
_ U(?)	 =	 XC

XD	 = VA+(h(I)+YS*Z(i))
Z(I)	 =	 TA*(Z(I)-YS*w(I))

10 W(T)	 =	 XC
GC T7 7

9 D	 =	 A(l)-B(1)+(1(2)-r(2) +(A(:1) -E(3))*XST)*XST
11 RETUPM

END
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FUNCTIU FUNDi47E)

RUNG = (AIN1IA*B+SIGN(.5ta) ) ) /B
RETLIFI;
END

a

r

is



FUNC71EN CSLGIApe)
CSLG W ALQG IABS IS IN GL A-6); )
RETLFN
ENO

s

b


