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—	 Vm freestream velocity
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1. INTRODUCTION*

Investigations of flows over bluff bodies conducted since the

early part of this century rasulted in a slow unraveling of the

processes and mechanisms which control and establish these flows. In

the classical potential theory, the fluid is assumed to hug the body

contour and the drag coefficient so obtained from the pressure dis-

tribution on the blunt body is zero regardless of the body shape.

This is completely unrealistic since experimental observations clearly

indicate that the drag is substantial and dependent upon the body shape.

It was also recognized that this drag cannot be entirely accounted for

solely from skin friction on the surface. The inherent feature of these

flows is the occurrence of separation which drastically modifies the

pressure distribution on the body.

The first significant improvement of the classical theory was

achieved by Kirchoff [2].** He introduced a model with a free stream-

line which separates from the body and extends to infinity leaving a

wake behind the body. The pressure inside the wake region was assumed

to be the same as that of the undisturbed free stream flow. Although

this model was far superior to the classical model, the drag coefficient

was still considerably underestimated.

Riabouchinsky [3] realized that the wake was closed and introduced

a mirror image of the body to simulate downstream reattachment of the

free streamline. Obviously the drag on the two-body system is zero.

However, if it is stipulated that the cavity region is under a low

*The major part of the material discussed in this report is based on a
Ph.D. thesis by the first author [1].

i

i	 -1

**Numbers in brackets refer to entries in REFERENCES.
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pressure condition (obtained from experiments), the drag on the front

body can be evaluated.

Von Karman, et al. [4], recognized that the wake region was not

under a steady flow condition and devised a theory to account for the

effect of periodic vortex shedding. Again, empirical data was required

to obtain results. Heisenberg [S] impro/ed Von Karman's analysis and

obtained good agreement for the drag on r flat plate normal to the flow,

but his analysis yielded the same value for any other shaped cylinder.

In an attempt to improve the original Kirchoff analysis, other in-

vestigators employed inviscid models to obtain a more accurate drag co-

efficient. Kre.isel [6] and Efros [7] proposed the reentrant jet model

in which the bounding free streamline reverses its direction near the

end of the wake to form a reverse jet flow. Some investigators favored

:r

this model because of its marginal resemblance to real wake flows.

Eppler [8], Roshko [9], and Wu [ 10] employed a "dissipative wake model"

in which the near wake region, extending downstream from the separation

point to some undetermined location, follows a free streamline and the

far wake region is described by a potential flow whose pressure increases

continuously toward the original free stream value. All these methods,

however, employ the experimentally observed value of the base pressure

as a parameter in order to determine the drag coefficient. Recently,

Parkinson and Jandali [ 11] tried to reproduce experimentally observed

pressure distribution on the circular cylinder immersed in a unform

flow. They require, in addition to the base pressure, also the location

of the point of separation as input to their analysis. Since the govern-

ing equation is of the elliptic nature, the pressure distribution and

thus the drag coefficients so obtained should be in good agreement with

2



the experimental data (see discussion). The determination of the base

pressure, which is the principle contributor to the pressure drag, was

not considered by these investigators.

It is understood today that the inviscid analyses alone are in-

capable of dealing with the base pressure problem even in an approxi-

mate manner because the overall flow pattern is an ultimate result of

the interaction between the viscid and inviscid streams. The basic

flow mechanisms were pointed out by Crocco and Lees [12] in their

original study of the interaction problems within the high-speed flow

regime. It is realized that although the inviscid stream guides and

controls the viscous flow processes occurring along and within the

'E
wake region in the sense of the boundary layer concept, the configuration

and structure of the inviscid flow, as well as the value of the base pres-

sure, are influenced by the viscous flow mechanisms.

In order to establish a model for these problems, it was first neces-

sary to identify the viscous flow processes occurring along the jet

boundary and account for its interaction with the inviscid stream. for

supersonic approaching flows, this interaction study has been carried

out along two distinct avenues. One approach, which is now called the

Karst-Chapman model, delineates the individual flow components associated

with the flow and obtains solutions for the problem by integrating the

analyses for these components.

-	 Karst, in his consideration of supersonic turbulent base pressure

problems [13], divided the region into components of (1) flow expansion

around the corner, (2) turbulent mixing along the constant pressure jet

boundary, (3) recompression-reattachment of the viscous layer at the

end of the ware, and (4) redevelopment ..F flow downstream of the wake.

3



Chapman [14,15] had similar considerations for the laminar flow. He em-

ployed Korst's original "discriminating criterion" to determine the re-

sulting base pressure, namely, that the stagnation pressure of the

dividing streamline at the end of the mixing region should be equal to

the static pressure of the adjacent freestream prevailing at the end of
	

r

the wake. He also extended this consideration to incompressible flow
i

problems [15,16]. Solutions were obtained for vanishing initial
	 a

boundary layer thickness ahead of the mixing region so that the results

are the lowest possible base pressure within the respective flow regimes
	

a

(which correspond to the highest Reynolds numbers). In any actual physi-

cal situation, the flow at the end of the mixing region would not be

fully developed due to the presence of the initial boundary layer of the

flow approaching the base of the body. Carriere and Sirieix [17], Golik

[18], and Nash [19] investigated the effect of these approaching boundary

layers on the base flow phenomena.

Experimental evidence, however, has repeatedly shown that the pres-

sure at the point of reattachment is considerably less than that prevail-

ing in the adjacent freestream. Nash [19,20] later suggested the intro-

duction of a recompression coefficient to correlate these pressure levels.

It was found experimentally that this factor was also Mach and Reynolds

number dependent and it could not be established analytically.

McDonald [21,22] tried to improve the Korst-Chapman model by con-

sidering the redeveloping flow after reattachment. He stipulated that

the value of the boundary layer shape parameter at the end of the pres-

sure rise should be equal to that of a flow over a flat plate.

The second approach is based on Crocco and lees mixing theory [12].

Lees and Reeves [23,24] formulated a theory for supersonic laminar flows

4	 ,l



by considering the moment of momentum equation along with the basic con-

servation laws. The equations were integrated along the recompression

region and it was found that the system of equations possesses a criti-

cal point downstream of the point of reattachment. The solution of this

problem is obtained from the assumed base pressure which allows the cal-

culations to proceed smoothly through this critical point. Alber and
1	 --

Lees [25,26] extended the analysis to consider supersonic turbulent

separated flows, and the base pressure results were too high when com-

p ared with the experimental data. Shamroth and McDonald [27] included

the normal momentum equation in their analysis and devised a method of

'I	 solution that eliminated the saddle-point-type singularity downstream

of the reattachment point. Reviews of previous work dealing with super-

a
sonic base pressure problems were provided earlier by Korst, et al. [28],

Y Y	 P	 I]	 g C ]	 g	 Cand recently b Carpenter and fiabakoff 29 Chang 30 Berger 31]and

Page [32].

Most of the analyses mentioned previously were based exclusively on

the boundary layer concept. Experiments have shown, however, that for

supersonic flows, there is a considerable pressure difference across the

turbulent viscous layer near the reattachment point. Chow and Spring [33,

34] accounted for this effect on the recompression process. They divided

the viscous flow into two subregions along the dividing streamline and ap-

plied the conservation principles, including the normal momentum equation,

to these two subregions. In conjunction with the flow conditions prevail-

ing at the end of the constant pressure jet mixing region, the system of

equations was integrated numerically. These procedures fully illustrated

the elliptic nature of separated flow problems since the downstream flow

conditions, particularly with the regions of recompression and redevelop-

went, offer predominant influences to the solution.

5



In addition, in their study of the redevelopment after reattachment

with a supersonic external stream, they recognized that the pressure

-	 difference across the viscous layer is important and they suggested that

the process of redevelopment can be treated as a relaxation of this pres-

sure difference [35]. They further showed that the fully relaxed asymp-

totic flow condition is a saddle-point-type singularity for the system

of equations governing the flow which would also provide the closure con-

—	 dition for the problem. A method of solution was developed for this flow

field and good agreement with experimental data was obtained. Weng [36]

extended the Chow and Spring method [33,35] to supersonic axially symmetric

flow problems. Calculations for isoenergetic flow cases for three Mach

numbers with various sting radius ratios were performed; good agreement

—	 with experimental data was observed.

Separated flow problems always exhibit elliptic behavior even though

the governing equations of the external inviscid stream may be hyperbolic

in nature. For supersonic flows, this hyperbolic character of the external

stream considerably simplifies the establishment of the external inviscid

-	 flow. For incompressible flows, the elliptic nature of the problem results

from the characteristics of the inviscid external stream as well as the

viscous interaction, a feature that greatly increases the complexity of

the problem. An early attempt to study the incompressible viscid-inviscid

interaction was made by Green [37] who suggested that the thin air foal

theory be employed to determine the external inviscid flow, and the re-

quired source distribution is determined from viscous flow considerations.

No successful calculations were produced, however.

Tanner [38] conducted an extensive experimental investigation of base

pressure problems associated with incompressible flows over wedges and

6	 ^^



obtained detailed pressure measurements as well as the approximate dimen-

sions of the closed wake bubbles. He further presented a model for wedges

at an angle of attack in an incompressible flow [ 39] and conducted a series

of experiments [40] to determine the effect of Reynolds number and boundary

layer thickness on the base pressure. He observed that the base pressure

coefficient decreases with decreasing boundary layer thickness. Later he

presented a semi-empirical theory [41,42] in which he correlated the base

pressure and the base drag with a volumetric coefficient of outflow from
i

the wake and observed good agreement with experimental data for the base
i -

	

k	 pressure results. In his publication 1421, he pointed out that previous
f

-	 considerations by Chapman [15] are inadequate, even though it has been

widely quoted [15]. He also presented a relation between the spread rate

parameter for the turbulent jet mixing process as a function of wedge

angle. Schlichting [ 43] reviewed Tanner's work and presented improved

values for this spread rate parameter a.

-	 Based on the experience of studying the viscid - inviscid interaction
,i

problem with supersonic approaching flows, Chow and Spring [44] presented

a method to analyze incompressible flow over a two- dimensional backstep.

Upon employing the conformal mapping technique in conjunction with the

free streamline theory, a flow model was devised to treat this type of

problem. The basic idea of accounting for the interaction lies in the

description of the corresponding inviscid flow through certain discrete

parameters and the analysis of the viscous flow, which must be attached

and guided by the inviscid flow, serves to determine the correct values

of these parameters. Turbulent viscous processes within the recompression

region was considered and an empirical expression to estimate the eddy

diffusivity along the dividing streamline under such situations was intro-

duced. It was found that for incompressible flows, the pressure difference

	

I	
i

	

^I
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across the viscous layer is negligibly small and the boundary layer

simplifications were subsequently employed [45] for the recompression

region. The resulting base pressure showed good agreement with experi-

mental data from Tanner [41,42] and Tani [46]. The influences of the

initial boundary layer prior to mixing and the spread rate parameter

of the mixing process were also investigated.

In the present work, the same philosophy is implemented to study

the separated flow problems associated with incompressible flow past

a wedge with an arbitrary angle. Indeed, it will be seen that it is

very fruitful to examine flow problems associated with a wedge on such

a basis, and the previous investigation of the flow over a backward

facing step [45] becomes a special case of the present general analysis.

In addition, the possible effect of interference from the top bounding

wall (such as the case with a wind tunnel wasll) has also been examined.

It is also recognized that redevelopment of flow after reattachment

usually offers a unique example with a non-equilibrium turbulent struc-

ture as its special feature.

8	
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2. THEORETICAL ANALYSIS

For an incompressible flow past a wedge, it is expected that the

flow stagnates at the front tip of the wedge and accelerates along the

surface afterwards until a low pressure is reached at the base of the

i
wedge. Thereafter, the flow separates and a low pressure wake region

extends some distance downstream behind the body. For sufficiently large

Reynolds numbers, a turbulent jet mixing process occurs along the wake

boundary. Near the end of the wake, the fluid must realign itself to
a

the original flow direction initiating a recompression process. As a re-
	 f

sult of this recompression, a portion of the fluid is turned back to form

the recirculating wake flow while the rest of the fluid proceeds downstream.

After the flow reattaches to the wall, the fluid undergoes a redevelopment

process until the original freestream pressure is restored at far down-

stream locations.

As pointed out by Chow and Spring [44,45], if a suitable inviscid flow

field can be established, the viscous flow process can be attached to and

guided by the inviscid stream in the sense of the boundary layer concept.

The geometry or configuration of this corresponding inviscid flow, however,

is dependent upon the viscous flow processes. It is obvious that the vis-

cid and inviscid streams play equally important roles in the establishment

of the flow field and this type of phenomenon has been classified as

"strong interaction."

2.1 CORRESPONDING INVISCID FLOW

The basic idea of the analysis lies in the establishment of a corre-

sponding inviscid flow which adequately approximates the actual inviscid flow.

The particular model utilized in this analysis is similar to the one employed

by Chow and Spring [44,45]. It is, however, a general one in that it will

9
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accommodate a wedge of any arbitrary angle including a flat plate normal

to the flow and the limiting case of a rearward facing step. The corre-

sponding inviscid flow established i,'i the manner shown in Fig. 2.1a hope-

fully would describe the behavior of the inviscid portion of the flow

when a wedge of angle a is inserted in a uniform infinite stream. If one

assumes that the flow is symmetric about the centerline, only the upper

half plane needs to be considered. This would also imply that a splitter

plate must exist along the centerline of the wake to suppress the

unsteady-alternating-vortex shedding at the base. It is stipulated that

the fluid on the bounding streamline of this half plane decelerates as it

approaches the wedge and stagnates at point S. At this location, it changes

direction and then accelerates over the face of the wedge. At the base of

the wedge (point C), the streamline separates from the body and follows a

constant pressure boundary (a free streamline of constant velocity) until

T	
the flow has turned into an angle a with respect to the centerline at

point D. It is then assumed that the recompression process follows a straight

line path until it intersects the centerline at point E. This point, however,

should not be confused with the reattachment point of the actual flow. Sub-

sequently, the flow accelerates until it reattains the original free stream

T	 condition at far downstream locations. The corresponding hodograph for this

model is shown in Fig. 2.1b where

q=u - iv=v dz	 (2.1)
0

as it is usually defined for a potential flow. Figure 2.2a shows the graph in

—	 the ; plane which is defined as the inverse of the hodograph variable, i.e.:

;^	 = 1/ q	(2.2)

and Fig. 2.2b represents the mapping obtained by employing the transformation

'i



w = R.n	 (2.3)

The graph i.n the w plane is polygonal so that a Schwarz- Christoffe 1

transformation of the form

W - c1-((
	

1	 _dt 1	
2 + c 2 	(2.4)

1t 

+ 

k i )lt 	k21 1	
t

can be used to map the polygon ; nto the upper half of the t-plane as shown

in Fig. 2.2c. k i and k2 are unknown parameters which must be determined from

the analysis and c  and c 2 are constants to be evaluated from conditions of

w(t - 1) = -ia and w(t - -1) = H	 (2.S)

The final W-plane can be obtained from the t-plane by setting

W W 4)p t	 (2.6)

where ^P
D 

is a constant and is the value of the velocity potential at

point D (t = 1). If the transformation given by Eq. (2.4) is examined

around either thesingularity at t W 1 or t = -1, an additional relationship

of

(2.7)

can be obtained.

Upon carrying out the integration of Eq. (2.4) and determining the

constants c 1 and c2 , the conjugate velocity q is found to be given by

I
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t - 1	 t + 1
_	 k2	 k
q

r	 1 ^'
1 2 — 1} 

(t2	
1) + k — 1	 ( 2 — 1 } (t2 .. 1) + t + 1	

a	 a
k 2	2	 k1	 k1

i

(2.8) {
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The velocity ratio vo/vim can he determined by taking the limit of Eq. (2.8)

as t -► +-. The expression for the inverse of Q for this condition reduces

into

'	 COT	 6/7r

-	 _ 1	 °=	 2- 1+	 12- l+k	 (2.9)

	

q	
v	

2k 2	 k l	 l

which is directly related to the base pressure coefficient from Bernoulli's

equation according to

2

VVOD
= 

l y2

	
v

Pb
	

m	
1 - ( °	 (2,10)

Pb	 2 P Go

Since v  is the velocity along the constant pressure boundary, it is clear

that the parameters a, k 1 , and k 2 are related to the base pressure coefficient.

In view of Eq. (2.7), only two of these parameters are independent, however.

The velocity at any location in the t-plane can be determined from

Eq. (2.8). To utilize this equation, however, it is necessary to relate the

location in the t-plane to the location in the physical plane. This is ac-

complished by rewriting Eq. (2.1) as

a/rr

v Hi	
VAk2 - 1) (t 2 _ 1) + k2 - 1

o d z/H	 2
(P D dt	 t _ 1

2

A-k2 - 1) (t2 - 1) + kl + 1 
e/^

1

	

	 (2.11)

t + k 1

where relations from Eqs. (2.6) and (2.8) have been inserted and HI has been

introduced as a length of normalization.

12



To determine the scale factor v  H/OD , it is necessary to integrate

the expression on the right-hand side of Eq. (2.11) from -(1/k ) to -1
1

in the t--plane which corresponds to the distance from B to C in the physi-

cal plane and the factor vo H/(^D is such that the two sides of the above

equation agree. The correspondence of the locations in both the t-plane

and the physical plane is established through numerical integration of

Eq. (2.11). The integration must be handled carefully near the singulari-

ties of t = -(1/k I) and t = 1/k 2' Transformation of

	

1	 0/Tr	 1	 WIT

	

t + ---- 	 t -

1 =	 1	 or	 C2 =	 12	
(2.12)

	

-l+
1

k	 1	 k.,

	

1	 I.

should be employed wherever one of these singularities appears as the

limit of integration. Finally, it should be noted that the negative

branch of both of the square root functions within Eq. (2.11) must be em-

ployed when t < -1. Equation (2.11) can now be integrated from t = -1 to

t = +1 to trace the configuration of the free streamline CD and also the

inviscid rear stagnation point E. This essentially establishes the corre-

sponding inviscid flow.

It should be mentioned that the transformations presented above for

a wedge reduce to those for the backstep problem as 0 -* 0. From Eq. (2.7),

as 0 -} 0, k  must approach to zero and point B will coincide with point A.

Under this condition, Eq. (2.8) becomes

I	 a/n

1	 k2

k2(t
2 - 1) + k2 - 1

2	
1

13

(2.13)
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which is equivalent to
a/n

(2.14)

((	 ,11rr	 12k	 1tr2 + k11 1 k k / + (1+ 2k) t'+1

as presented by Chow and Spring [44,45] for the backstep configuration

shown in Fig. 2.3. This equivalence can be easily observed when ex-

pression of

t,	 1 - 1	
(2.15)

k - 1
z

and

I = (1 + 2k)	 (2.16)

2

are employed to relate the variables t' and t and the parameters k 2 and k

in the two presentations.

2.2 ANALYSIS OF THE VISCOUS FLOW

It has been pointed out in Chapter 1 that the viscous flow processes

are equally important in the establishment of the overall flow field.

Specifically, within the framework of the flow model adopted for this

present study, the viscous flow analysis serves to determine the correct

values of k  and a which are intimately related to the establishment of

the corresponding inviscid flow.

It is recognized that initially a wall boundary layerstarts to build up

from the leading edge along the wedge surface. After the flow separates

at the base, it undergoes a mixing process to energize the slowly moving

viscous layer to prepare itself for the subsequent recompression process.

Specifically, the dividing streamline experiences an increase in velocity

within the mixing region before it decreases in the recompression region

14
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and eventually stagnates at the end of the wake. The fluid above the

dividing streamline should continue to proceed downstream while the

fluid entrained below the dividing streamline is turned back along the

course of recompression. Due to the presence of the initial boundary

layer at the point of separation and the pressure gradient along the

wake region, it is obvious that this mixing process does not exhibit

similar behavior; that is, the governing partial differential equations

cannot be transformed into ordinary differential equations and meanwhi le satisfy

the initial and boundary conditions. A detailed analysis on the basis

of solving these partial differential equations would be extremely com-

plex. Furthermore, in such an analysis it would be necessary to employ

a turbulence model which would adequately describe the turbulent trans-

port processes throughout the entire flow field. Our lack of knowledge

of the turbulence structure especially within the recompression region

would extremely hamper such an analysis. Chow and Spring [44,45] sug-

gested that these interactive viscous flow effects can be adequately repre-

sented by integral properties of flow while keeping the empirical inform-

ation required to describe the turbulence transport processes at a minimum.

It is natural to expect that such an analysis is relatively simplified and

yet still retains the essential features of the flow. This is the basic

reason that an integral analysis is adopted for the study of the viscous

flow.

2.2.1 Initial Boundary Layer

It has been shown by Nash [19] and Tanner [40] that the size

of the initial boundary layer at the point of separation has an important

effect on the ensuing mixing and recompression processes. It is thus

15
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ii
	 necessary to examine the development of the boundary layer on the face

of the wedge.

It is well known that accelerated flows are considerably more stable

than decelerated flows or flows with zero pressure gradient. It should

be expected that for any reasonable wedge angle, the boundary layer will

be laminar over most of the wedge face. The velocity at any location on

the face of the wedge can be found from the inviscid analysis and the de-

velopment of the laminar boundary layer can be determined by the method

of Pohlhausen [47] incorporating the improvements of Holstein and Bohlen

[48]. The critical Reynolds number based on the displacement thickness

at which transition occurs is given by Schlichting [43] as a function of

the pressure gradient on the surface. After the flow changes into turbu-

lent flow, the method of Truckenbrodt [49] is employed to determine the

turbulent boundary layer development. To perform these calculations, it

is necessary to choose a Reynolds number, Re  (Re H = (UC* !l)/v where H is

the step height). Since Re  has a strong influence on the boundary layer

development, this is equivPlent to choosing the initial boundary layer

thickness at the point of separation.

For large wedge angles, the boundary layer over the entire face of

the wedge will be laminar. Since turbulent viscous processes usually oc-

cur in the mixing region, it is important to clarify the effect of the

initial laminar boundary layer on the flow. Chapman, et al. [15] have

shown that if transition occurs near the separation point, there is a

minimal influence on the flew field. Using their criterion (Ret = 3 x 105),

transition for most of the present calculati ons occurs less than one step height

downstream of separation. Therefore, for large wedge angles, the entire

wake flow is considered to be turbulent anti it is expected that this

lb r
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simplification would not introduce any serious error. The thickness of

the boundary layer at the separation point is determined in this manner

and is used as the initial condition for the turbulent mixing analysis.

2.2.2 Quasi-constant Pressure Turbulent Jet Mixing Region

After the flow separates at the base, a free turbulent jet mix- 	 1

ing process occurs. Since the mixing region has finite thickness, it is

obvious that the guiding inviscid flow of this mixing process would not

have a constant velocity so that the process would not be under a truly

constant pressure condition. Brink and Chow [50] have

shown that a locally similar mixing process can adequately describe the

non-similar mixing flow in the presence of a pressure gradient. Therefore, 	
I

it is assumed that this process can be described by a quasi-constant pres-

sure turbulent jet mixing, namely, the velocity profile at any section can	
3

be derived from a constant pressure mixing analysis starting from the same

origin with the same initial profile.	 1

The initial boundary layer at the point of separation is assumed to

be given by the 1/n power law profile (n = 7) expressed as

_	 /n	 (2.17)

where ^l = y l/d l ,= U/Ua
, 

6 1 is the thickness of the initial boundary

layer and U  is the velocity at the edge of the boundary layer.

Since the turbulence level within the wail boundary layer is usually

much less than that within a free turbulent jet mixing flow, it is ex-

pected that the major mixing activities will occur along the dividing

streamline while the condition within the upper part of the initial vis-

cous layer is essentially unchanged until the mixing effect reaches there.

17
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	 The analysis for the mixing region is, therefore, divided into two

parts. Initially, there is a region where the effect of the mixing has
i^

4—	 not reached the upper edge of the original viscous layer and farther

downstream the effect of the mixing has spread throughout the original

layer. Denoting ym as the upper edge of the new mixing layer with re-

spect to the inviscid flow boundary, these regions are identified as

m ym/ S 1	 i and ^T  > 1, respectively. For simplicity, a linear ve-

locity profile is selected for the mixing region and a diagrammatic sketch

of the mixing process is illustrated in Fig. 2.4.

Application of the continuity principle to the region where ^m < 1

yields

	

^d = U	
n

a
	 +n lda i d	 ^m	 (2.18)

	a 	 a	 b

where 6  
is the thickness of the viscous layer above the dividing stream-

line, 6  
is the thickness of the viscous layer below the dividing stream-

_	 line, and ^m = Um/Ua . The momentum principle for the same region yields

S1 )= n * 2	 (2.19)
da + Sb m	 3n

Combining the foregoing two equations, it is found that

^d = ^m/n 1 - 3 n + i	 ( 2.20)

1/n

	

da	
1	 - 1 

=m	
- 1	 (2.21)

	

b	 2 n+ 2	 d

	

1	 3 n + 1

and

d

	

db	 `^d m-{1/n} n +n 2 }	 (2.22)
'	 1

r

i
f .	 ?
F



For Cm ? 1, continuity and momentum principles yield, respectively,

a	
(	 1

^d = 1 ( 8 +^ $	 2 1 ^m	 n + I 1	
( 2.23)

a	 b

and

di	 1	 (2.24)
^d	 r _ 2 1
a	

b 3 ^m n+ 2

Combining these two equations, it is found that

^ _	 1

d =	 l r 3 m
	 n z 1	 (2.25)

gy m ° n+ 2

and

da = 1 = l	 (2.26)

6  Od

To relate the downstream location with the particular value of ^m

and the corresponding velocity profile, it is stipulated that the slope

of the linear profile is essentially the same as the maximum slope of

the error function profile £or a fully developed turbulent jet mixing

process, i.e.:

9^	 1 •	
(2.27)an 

11-0 
= nl/2

where Ti = Q(y/x) with o being the similarity parameter for turbulent

mixing flows. It should be stressed here that the concept of similarity

does not apply to this problem. It is expedient, however, to borrow the

spread rate parameter a for a similar flow to estimate the rate of spread

of the present nonsimilar flow problem. Unfortunately, the correct value

of o is still a matter of controversy and it must be obtained from empiri-

cal data. Although it has been «,roll accepted that o is 12 for plane

19



incompressible flow, recent evidence shows v = 11 gives a better cor-

relation with experimental data for fully developed flows. Upon intro-

ducing

2jj	 X 3^	

r

	

11 1	 (2.28)an n=Q = o 61 a (Y l  ,/
1

one obtains for	 < 1
m --

x	 o	 311	 (n-1)/n	
(2.29)

6 1 ,,IT n+2 m

and for C > 1,
R^ —

x =

30 

Cam - n2 2 	
(2.30)

The rate of change of momentum of the fluid below the dividing stream-

line is due to the shear stress at the dividing streamline and is given by

Y

p = dx f d

	
u 2 dy	 (2.31)

Yd- Sb

which can be reduced to

PrU 2 	 9 TXf(Sa	 Sb) ^d^ 	 (2.32)

a

From the given geometry, y d can also be determined from

	

Yd Y  - 6 a	 S-	 - a	
(2.33)

S 1	 Sl	 m	 d1

and the transverse velocity at the dividing streamline is determined from

dydva
	

(2.34)
dx	

u 

I 	 --

i

i
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To evaluate the eddy diffusivity in the mixing region, one may ex-

press the shear stress along the dividing streamline as

	

Td = p 5 ^Y = p e Ua as 	 ( 2.35)

Id	 b	 j

and s can be solved for and given by

i
e	

= Td 

1 
8b	

(2.36)
baUa 8a 

p U2 ^d 

	

•	 a

which can be rearranged into 	 !

	

E Ua d = Td2 
8

= 	 (2.37)
a p Um a ` d

where e = e/UCO H.

1

2.2.3 Recompression Region	
1

The recompression region as shown in Fig. 2.5 is divided into

two subregions. The upper region is the shear layer above the dividing

i
streamline which interacts directly with the external inviscid stream and

the :lower region is the viscous layer below the dividing streamline which 	 i

will eventually be turned back to form the reverse wake flow. As pointed

	

_	
out by Chow and Spring [44] and also observed from preliminary investi-

gations of the present effort, the pressure differences across the viscous
i

layer are small and can be neglected. This can also be explained by con-

sidering the normal momentum equation for a viscous flow written as

2	 ;

P vs - -	
+ aTsn	

(2.38)*
R	 an	 as
c

iz

	_	 The term assn/as is usually small and can be neglected* Upon integrat-

ing this equation across a viscous layer, one obtains:

—

*Note that if 3T/as were not negligible due to turbulence, there would
be no such terminology as "turbulent boundary layer."
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P v2 d d

pw - Pe = e  e	 R ^ 2 d	 (2.39)
C	 e

0

where R
C 
is a representative radius of curvature of the streamline and

the subscript a denotes the state at the upper edge of the viscous layer.

The integral is ordinarily of the order of unity and Eq. (2.48) ob-

viously yields

	

rpw	yMeB

	

[ pe - 1) = 0	
Rc	 (2.40)

where 0 denotes an estimation of the order of magnitude. Thus one can

see that if the external Mach number is small or the characteristics radius

of curvature is large, the pressure difference across the viscous layer is

indeed negligibly small.

i

2.2.3.1 Upper Layer
I

For the upper viscous layer, continuity principle

stipulates that

-x ay = O (2.41)

Integrating this equation from the dividing streamline to the upper edge
3

-	 of the shear layer as depicted in Fig. 2.5, one obtains
I

T
—	

v - v=	
r 3u dy
	 (2.42)

	

a	 d - J ax

Yd

which can be reduced according to Liebnitz rule to yield

	

T	 I
dy

v  - V  - 3x
	

u dy * ua dx ` ud dxd	 (2.43)

	

Yd	 i

—
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^	 ^
U`	 l

Onou employing the relationship

dy	 ^
U^ —^^ = n^	 ^^,44}

and defining C. h/ - y")/ 8a , 8q ' (2.43) becomes

UdT"° 8 -- - ------	 6a / Od^ = tan 8udx	 u	
(Z,4Sl

^~ =
o

	

where tan	 v /U 'a	 n^ ^	 /

The momentum principle applied to o differential control volume as

shown in Fig. 2,5 would yield

	

T	 T	 T

	

d2	 d	 -1--	 p u 6v ^^ - U --	 p u dy dx =	 P d - P 6y^z |	 -^ |	 u dz |	 |	 /	 u ^v	 e	 d

	

Yd	 y^	 Y^	 |

	

"	 ^	 u
!

	

T	 T
6	 i-	 pu dy + --	 pu	 d	 + p u dT - z^ dx	 (21.46)

	

- 'y,	 - y^	
-	 '

	

.	 .
^

This can be rearraogcd and written as

d
T	 T	 ^^^^ u	 a

_	
--'	 P U(Um - U) dY -	 P U 6f ---' + (T - Y,] ---=z^^ (2.47)

Yd 	 Yd

-	 Upon introducing the relationship for the free stream,

d9	 dU

dx o
	 a

	

 ---- = -^ Uu ---'	 (2.48)

	

and defining 8 =a	 ^(T - y ),	 U/U a , und^u = (y - yd	 u)18 , Eq. (2^47)

becomes

^ l	 l-	 U

	 U00 )	

U	 ^'	 d	 a	 e	 d	 dIj.-- 6oi --- |	 ^[l - ^)d^u + ^ui --- 	 (l - ^)d^u -- \	 1=

(3'4g)
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To evaluate the integrals in Eqs. ( 2.45) and (2.44), a third-order

polynomial velocity profile of the form

= A + Btu + C Cu + p Cu	 (2.50)

is assumed for this upper layer. The boundary conditions required to

evaluate the constants are

at ^u = 0:

0 = Od and D = s;
u

at ^u = 1:

(2.51)

_ l and a1=0
u

where s = (a^/5C)I d' Equation (2.50) is thus reduced into

0 = Od + s rt + [3(1 - V - 2s] ^u + [s - 2 {1 - V) ^u	 (2.52)

To assure that both Od and s vanish at the point of reattachment, it is

assumed [33,45] that

S = g 0d	 (2.53)

where g is a proportionality constant to be determined from the condition

at the end of the mixing region.

2.2.3.2 Wake Flow Region

The wake flow region as shown in Fig. 2.5 consists

of a forward flow below the dividing streamline and a backward flow above

the lower wall (splitter plate). For simplicity, the forward flow assumes

a linear velocity profile given by

0 = L = Od 
%^	 (2.54)

a

where ^I = (y - hb)/Sb and the reverse flow assumes a cosine velocity

profile given by

i

i^
^i
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2U_ = A Cos (
 2 ^b )

a

where ^b = y/hb.

The principle of conservation of mass below the dividing streamline

requires that

ab+hb	 h 

	

f

p u dy = r p u dy	 (2.56)

b	 o

By employing the assumed profiles, Eq. (2.56) can be integrated and simpli-

fied to yield

Ub = fib = cr ab

U 
	 ^d 4 h 	

(2.57)

The momentum principle for this region requires that

d
lb	

2	 d	 ab+hb2	
d 

p

dx 	
p u dy + cox
	

P u dy = 
yd dx 

a 

+ Td'	 (2.58)

b

Upon inserting the appropriate velocity profiles and utilizing Eq. (2.48)

Eq. (2.58) is reduced to

d (Ua12 ab ^2 hb ^^	 Ua d(Ua/U-)	 T
d

Tx 1 U/ { 3 +	 2 	 yd U.^ dx	 r	 2	 {2.53)
J	 UP m

It should be mentioned that this analysis is valid only for steady

flows (i.e., no vortex shedding) and this would require a lower wall or

a splitter plate inserted behind the wedge. Obviously, this would give

rise to a reverse flow boundary layer which is not accounted for by the

cosine profile. However, if it is assumed that a cosine profile can also

describe the reverse wall boundary layer, the mass and momentum flux in-

tegrals of the reverse flow with boundary Liyer would produce the same

i

}

i
y
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results as Eqs. (2.55) and (2.59) as long as h  and 
`fib 

have the same mean-

ing as the present case. The remaining difference is the small wall shear

stress which is usually neglected.

Although the slope of the velocity profile will not be continuous

at the dividing streamline and at the centerline of the wake, local smooth-

ing techniques may be used to improve this situation. This, however,

should not significantly affect the mass and momentum flux.

2.2.3.3

rewritten, respectiv

dT_Ucod
dx IF dx

a

Computational Form of the Equations

Equations (2.45), (2.49), (2.57), and (2.59) can be

ely, as

U

6a i^a F11 = tan B 	
(2.60)

d	
U  

2	 U  d (Ua/L!.)	 Td

dx ^^ 6
a F2 + 6 a (1 - F1) U

m ) dx	
= A U2	

(2.61)
(

m

6b	
(2.62)

b^4hb d

and

d	 bbUad (Ua/c,

dx
 [(LÛa

. 	3 *	 2 } - yd Um^ dx	 -	
d2	 (2.63)

P U;

Where F 1 and F 2 represent the integrals

1	
f1F1 = r	 d ^u and F2= 	 0(1 - ¢^} d ^u

0	 0
which can be expressed explicitly as

F= I _ !d } s
1	 2	 2	 12

and

(2.64)

(2.65a)

26



j'.

2
s	 17	 3s _ 13 d _ 11	 _	 1 2

	

F2 r 70 + 70 ^d + 140	 35	 105 sd	 105 
s
	 (2. 65b)

Very little information is available about the turbulence structure

in the recompression wake region and, in particular, the shear stress at

the dividing °treamline given by

Td	 U  -- 1{
U2 r U^ 

a 
da 

s	 (2.56)

cannot be confidently estimated. As suggested by Chow and Spring [44,45],

an eddy diffusivity model is adopted for this problem and a is re-

lated to its value at the end of the mixing region through

--	 U	 d	 2 Q+ x

= U
	

(2.67)

	

a da	

m 

Q 
rl

im	 am am	 mJ 

where the subscript m refers to the section of the end of the quasi-constant

pressure jet mixing region, I  is the length of this mixing region, and xr

is the length along the recompression flow process.

One final relation is needed before the system of equations can be in-

tegrated. A locally triangular geometry shown in Fig. 2.6 is assumed so

that extension of the dividing streamline and the line at zero velocity inter-

sect at the same point on the wall. This condition assures the fact that

the reverse flow height vanishes at the point of reattachment and is expressed

as

dhb y dyd h 

dx	 dx yd	 (2.68)

Equations (2.60), (2.61), and (2.63) can now be manipulated and re-

written as

J

I
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IF dO	 dy
(1 - F1} dx -(T 

yd) 
dod 

dx } F 1 dx
L-1 - tan a F 1 (T - yd)

UCO d(Ua/UC}

• Ua ) dx	 (2.69)

F 2 dx + (T - yd) d^2 dxd - F 2 dxd = e U } Ĥ--} 
s - 1 I! }d	 a/	 a//	 a

d (Ua/U.)
• dx	 [T - yd) (7r. ,+ 1 - F^}

(2.70)

and

2 ^d 6b + h
	

2 dOd +
	

6b !d'
* Ill' b dyd -3	 b Ob } dx	 ^d yd 3	 yd 2 dx

UCG H 	 (L
U^1 d(Ua/ ^)	 2	 2	 2

b}Od 	 U	 d	 s + U / dx	 (yd - 3 Sb ^d - hb^	 .
C	 a	 a	 a

(2.71)

With the initial conditions provided from the preceeding mixing analysis,

numerical integration of Eqs. (2.68), (2.69). (2.70), and (2.71) 41ong with

Eq. (2.62) establishes the appropriate values of T, 
yd' ^d , fib° 6

b , and h 

The inviscid flow condition at the edge of the viscous layer is obtained

from the corresponding inviscid flow field and depends upon the location of

the edge of the viscous layer. It is, nevertheless, found that the term

%/U d(Ua/U^)/dx is a slowly varying function. It is thus convenient to

leave this term at the right--hand side of the system of equations as a quantity

to be evaluated from the previous step of integration so that iteration can be

avoided. Furthermore, all the differential equations and algebraic relations

are homogeneous in length so that all length quantities can be considered to

be already normalized by the step height H.

r
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2.3 METHOD OF CALCULATION
l

Calculations begin with the selection of a pair of values, a and

k i p and the corresponding inviscid flow field can be established. Of im-

mediate importance is the arc length of the mixing region and the location

of point D in the physical plane. The development of the boundary layer

on the face of the wedge is calculated by employing the velocity along the

bounding streamline as determined from the inviscid flow. A Reynolds

number corresponding to the approaching flow condition must be determined

in order to calculate the boundary layer thickness at the point of sepa-

ration. The flow properties,
 da/H ' a/H ' -d/P U2 cm

J and yd at the

end of the mixing region are determined from the quasi-constant pressure

jet mixing analysis. These quantities provide the initial conditions for

the recompression analysis.

To proceed with the numerical,integration of the system of equations

for the recompression region, it is necessary to locate the outer edge of

the viscous layer at the initial stet, of recompression. The x,y coordinates

of point F as shown in Fig. 2.7 are given by

x  = X  + ( da + yd) sin a
(2.72)

x  = YD + ( $ a + yd ) cos a

where x  and y  are determined from the corresponding inviscid flow and 6 

and yd are determined from the mixing analysis. The location of point F

in the t-plane is found by numerical integration of Eq. (2.11) and the ve-

locity and flow direction at F can be determined from Eq. (2.8). Numerical

step-by-step integration of E:qs. (2,59), (2.70), and (2.71) can now be car-

ried out with the guiding inviscid stream determined in the similar manner.

As noted by Chow and Spring [44], the point of reattachment exhibits a

"saddle point-type" singularity; that is, as the point of reattachment is

R

i

i

^	 I
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approached, slight variations in values of k  result in widely different

values of 
^D• 

Figure 2.8 shows this behavior for a typical set of cal-

culations where the dimensionless dividing streamline velocity 0d is

plotted against the step of integration with k  as a parameter. For a

fixed value of a, it is observed that for smaller values of kI, 
Od 

is

reduced drastically and will reach zero or negative numerical values

(with fixed step length of integration Ax) before th a lower wall is reached.

For slightly larger values of k l , the value of 
0  

will eventually increase.

These patterns are not physically realistic and additional calculations

should be carried out with intermediate k I values so that the condition

of zero dividing streamline velocity can, hopefully, be reached on the

lower wall. In practice, an effective means must be implemented so that

the correct pair of values of a and k  can be determined. For a certain

value of a,.once the k  value has been established up to, e.g., the eighth

_	 digit after the decimal point, the point of reattachment, as well as the

corresponding free stream flow conditions are established from extrapo-

lation. For this set of values of a and k I , an unbalanced residue may be

evaluated from Eq. (2.70) at the point of reattachment. The correct values

of k  and a for the problem are such that this residue vanishes. It is the

experience of this study that this scheme produces consistent and smooth

residue curves as shown in Fig. 2.9.
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3. RESUL'T'S AND DISCUSSION OF "AlEORETICAL CALCULATIONS

Upon employing the method described in previous sections, calcu-

lations have been performed with a Reynolds number (Re 
r1

= VWH/v) of

5 x 104 and a well accepted value of 12 for o, the spread rate parame-

ter in the mixing region. The established values of a, k  and k 2 , and

the corresponding base pressure coefficient for various wedge angles

are shown in Fig. 3.1. It should be noted that the established values

of a and k 2 are nearly independent of the wedge angle. Since the free

streamline region (from 8 to C) always spans the range from -1 to +1 in

the t plane, this evidence of slight dependency upon the wedge angle sug-

gests a certain affinity between the length and angle of recompression

and the free streamline region in these corresponding inviscid flow fields.

The value of k 1 , however, varies from 0.96 for 0 = 90 degrees to 0.032 for

0 = 1 degree. As 0 approaches 0, k  also approaches 0 and the limiting

case is a rearward facing step where the front stagnation point would be

located at --. Previous results [45] (a = 7.88, k 2 = 0.23) obtained for

this flow case with a different Reynolds number are also included for the

purpose of comparison. It is probable that accurate calculations cannot be

maintained with the existing computer program as the wedge angle is reduced.

Pressure distributions on the lower wall (sputter plate) within the

wake region for different wedge angles are shown in Fig. 3.2. With the

exception of small wedge angles, the pressure at the print of reattachment

has not overshot that of the freestream flow. The pressure upstream of the

recompression region is obtained directly from the quasi-constant pressure

mixing process.
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With e = 12, the effect of the initial boundary layer momentum

thickness (S**/H) is illustrated in Fig. 3.3 for a 30-degree wedge angle

from calculations for two different momentum thicknesses. It appears

that the initial S**/H has a strong influence on the base pressure. To

demonstrate this effect, Fig. 3.4 shows the variation of cpb with re-

spect to the initial momentum thickness.

a
It can be seen that as d**/H increases, the base pressure coefficient

also increases; for small d**/H (<0.003), however, this effect is negligible.

These trends have two important implications: First, a 6**/H of 0.005 cor-

responds to a Reynolds number of 10 4 and a larger d**/H (smaller Re H) would

be characterized by laminar flow over a large portion of the waive. Since

this study is not designed to analyze laminar mixing and recompression

processes, the section of the curve corresponding to large d**/H is only

included to demonstrate the results that would be obtained if the initial

boundary layer were manipulated (e.g., tripped) in order to study the ef-

fect of large initial boundary layer on the turbulent mixing and recompres-

sion processes. Secondly, for S**/H smaller than 0.003 (Re H > 2 x 10`1),

the flow would definitely be turbulent over most of the wake region. In

this regime, however, c pb is nearly independent of 6**/H (or Re H). These

effects agree quite well with Tanner's [40] experimental results, i.e., for

turbulent flow processes, the base pressure is nearly independent of Reynolds

number but increases somewhat with increasing boundary layer thickness.

lb a parameter having a relatively strong influence on the results of

the calculations is the turbulent mixing spread rate paraemeter Q. In the

strict sense, a is a similarity parameter fir plane mixing flows which is

inversely proportional to the rate of spread of the mixing layer. Since
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some empirical information is always necessary for turbulent flow calcu-

lations, the idea of a spread rate parameter is introduced for the mixing

analysis even though the actual flow is nonsimilar. Although the value of

a has not been accurately established for similar two-dimensional incompres-

sible turbulent mixing flows, it should not be far away from 12. In order

to assess its influence to the results of the calculations, different values

of a have been employed. Figure 3.5 shows the results of calculations for

a 30-degree wedge angle at ReH = 5 x 104 for three values of a. It can be

seen that a has a relatively strong influence on the flow of the entire wake

region. If a is decreased, the base pressure is lowered and the recompres-

sion is strengthened.

Although o = 12 seems to be an appropriate value for mixing between a

uniform stream and a quiescent fluid, Tanner [42] suggested that for flow

over wedges, the angle between the wall from which the flow separates and

the wall upon which the flow reattaches has a strong influence on o. Based

on experimental data, Tanner estimated the dependency of a on the wedge

angle. Figure 3.6, which compares c pb of the present investigation with

Tanner's experimental data and one data point from Arie and Rouse's study

[51], is useful in determining the dependency of o on the wedge angle for

the present analysis. Assuming that Tanner's data is correct, the results

for a = 12 for large 6 are much too high. Since Tanner indicated that a

is a function of 0, an effort was made to determine the value of a such

that the present calculations agree with 'T'anner's results. Figures 3.7

and 3.8 illustrate the dependence of c pb upon a for two different wedge

angles and the means by which the "adjusted" value of o was determined.

These results and the results of similar calculations for other wedge angles

J



are also shown in Fig. 3.6. It can be seen in Figs. 3.7 and 3.5 that the

results are much more dependent upon a for large wedge angles than is the

--	 case for small 6. Also, the larger the value of a, the less dependent the

calculations are for a particular wedge angle. This indicates that for

very small 6, any value of a from 12 to 15 would probably be adequate

while for large 6, the precise value of a is very important.

Figure 3.9 shows the value of a that is necessary to obtain agreement

with 'Tanner's experimental data. a varies from about 9.3 for a flat plate

normal to the flow to 14 for a 5-degree wedge. It should be mentioned that

the values of a for the present results wind 'T'anner's data should not be ex-

pected to agree. a in the present analysis is a parameter that is employed

to estimate an average spread rate for the mixing analysis; the manner in

s	 which it is utilized, or the exact meaning attached to it, may be different

for each individual investigation. What is significant is that the trends

of each set of results are the same, i.e., a decreases with increasing wedge

angle.

In order to evaluate the results of this analysis, it is, of course,

-	 necessary to compare them with experimental results. The only available

detailed results of separated flows past wedges are provided by Tanner (38].

There is some question, however, about the validity of Tanner's experimental

_...	 data because of the problem of wind tunnel wall interference. For 'Tanner's

experiments, Table 3.1 shows the ratio R/H for various wedge angle 6 where

R is the wind tunnel height and H is the wedge step height. It is expected

that the effect of wind tunnel interference for a particular 6 depends en-

tirely on this ratio and only for R/H >> 1 will the interference be negli-

Bible. For large A, however, Tanner's R/H ratios are relatively smfl1 and

it is important to 4nvestigate this effect on cpb and the wake region in

general.

I

I
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Table 3.1

9, degrees	 R/H

—	 7.5	 115

	

15	 55.8
w	

30	 30

	

45	 27.2

	

60	 17.4

	

90	 No Information

To evaluate this effect, a second theoretical analysis was per-

formed that was exactly the same as the one given in Chapter 2 except

that the ecrresponding inviscid flow was modified to account for the

existence of a top wall at an arbitrary distance from the model. The

detailed analysis of this flow is given in APPENDIX A. Figure 3.10

shows the results of these calculations for a 30-degree wedge angle with

a = 12 and ReH = 5 x 104 . it illustrates the manner in which c pb is af-

fected as R/H is decreased and its comparison with the value of cpb for

an infinite R/H. For R/H less than 50, the base pressure is signifi-

cantly lowered and for R/H less than about 15, the effect becomes over-

_..	 whelming. This phenomenon, however, is certainly not out of expectation.

For a wedge in an infinite stream, streamlines are somewhat relieved

across the normal direction. If a top wall is present, streamlines are

compressed and the flow must be greatly accelerated. It should also be

expected that this effect is greater for large e. 'rhe graph shown in

_.	 Fig. 3.11 is the same as that shown in Fig. 3.6 except that it shows ad-

ditional results of calculations which correspond to R/H = 20 with a = 12.

Although values of R/H do not match Tanner's testing conditions, it appears
9
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that wind tunnel effects would account mostly for the discrepancies in

the results. This wall interference analysis, however, only considers

the effect on the corresponding inviscid flnw. Since the interference

phenomenon is probably much more complex, these results are offered

only as qualitative examples. Clearly what is needed is a thorough ex-

perimental investigation of wall interference effects in order to assess

the dependence of this analysis (and other theoretical analyses) on R/H

and a.

Figures 3.12 through 3.17 show the pressure distributions on the sur-

face of the wedge . for various 6 at Re = 5 x 10 4 using the "adjusted" a

values. Excellent agreement with Tanner's data [38] has been observed in

Figs. 3.13, 3.15, and 3,16 where the experimental data are available. By

integrating this pressure distribution over the wedge surface, the drag

coefficient can be obtained and is shown in Fig. 3.18 as a function of

wedge angle. Also included is a data point from Arie and Rouse's ex-

perimental investigation [51] for 6 = 90 degrees. It is expected that the

c  results are quite good since both the base pressure and the pressure

distributions on the surface of the wedge agree with Tanner's experimental

data [38].

it is appropriate to point out that since the governing inviscid flow

obeys the Lap lace equation, any reasonable inviscid free streamline flow

analysis incorporating the experimentally observed base pressure in the

wake would lead to theoretical results of surface pressure and drag char-

acteristics which should be in excellent agreement with experimental data.

This is indeed the case reported in man; existing inviscid flow analyses

where the wake is not closed and extends indefinitely far downstream. The

i	 -- t
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present analysis has fully illustrated the fact that while the important

role played by the viscous flow mechanisms is fully appreciated, determi-

nation of the base pressure is the most important part of the problem.

Figures 3.19 through 3.23 present pressure distributions along the

wall (splitter plate) for various wedge angles using the adjusted value

of a. Figures 3.19 through 3.22 are compared with Tanner's experimental

data [38]. For large wedge angles, the theoretical results are in excellent

agreement: with experimental data. For small wedge angles, recompression

is not as strong as the experimental data has shown. Again, the experi-

mental data has been modified by the effect of tunnel wall interference,

and the phenomenon of recompression reattachment is exemplified by these

calculations.

Figure 3.24 presents a comparison between the pressure distributions

for a 1-degree wedge angle (a = 12 and Re  = 5 x 10 4 ) and Chow and Spring's

results [45] for a backstep.

It is impossible to perform the calculations for a wedge of smaller

angle with the existing computer program because transformations of the

corresponding inviscid analysis blow up as 0 approches 0. Initial boundary

layers for both cases are nearly identical and it is expected that if 6

could be reduced further, the pressure distribution would converge toward

Chow and Spring's results [45]. As can be seen from Fig. 3.2, the largest

changes in the pressure distributions as a function of B occur at small

angles.

The dividing streamline and maximum reverse flow velocities are shown in

Figs. 3.25 thru 3.29 for various wedge angles. The dimensionless velocity of

the dividing streamline, ^d , increases in the mixing region as the slowly

moving wake flow is energized and decreases in the recompression region,
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eventually stagnating at the reattachment point. For large wedge angles,

the flow is quickly energized and ^d attains a nearly constant velocity

throughout most of the mixing region. It is interesting to note that for

large wedge angles,^d essentially attains the value (0.5774) of a fully

developed flow. Since the initial boundary layer *is thin and the mixing
t	 -

region is very long, a locally similar mixing analysis would be adequate

for large 6 and high ReH . It should also be mentioned that the disconti-

nuities in the rate of change of , and 
^b 

exhibited within these figures

are inherent results of component analyses as two different component re-

gions are joined together.

Figure 3.30 presents the geometry of the wake region for a 30-degree

wedge angle at o = 12 and Reis = 5 x 10 1 , and Fig. 3.31 shows a comparison

between the wake configurations for five different wedge angles at

Re  = 5 x 104 using the "adjusted" o values. As expected, large wedge

angles have thicker and longer wake regions; the maximum occurs for O= 90

degrees with a thickness of about 311 and a length of about 17H. Figure

3.32 compares the wake configurations of a 1-degree wedge and a backstep.

Calculations for small 6 again approach the results given by Chow and

Spring [45] for a backstep.

Figure 3.33 shows the turbulent shear stress along the dividing
3

streamline for various wedge angles. It is interesting to note that the

maximum shear stress, which occurs at the beginning of the recompression

region, is in good agreement with the maximum shear stress measured ex-

perimentally as reported by Bradshaw and Wong [51]. The maximum shear

stress varies from 0.0105 p U2 for a 5-degree wedge to 0.0188 p U2 for
OD00

a flat plate normal to the flow. Arie and Rouse (52] obtained a maximum

shear stress of about 0.02 p K for a normal flat plate and Bradshaw and
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1



ii
i

;I lI

Wong [51] reviewed a number of investigations for a backstep in which

values ranging from about 0.012 p UU to 0.016 P D; were obtained.

The shear stress along the dividing streamline is calculated through

estimations of the eddy diffusivity. Very little is known about the turbu-

lence structure within the wake region, and the validity of the adopted

?I	 model for the eddy diffusivity can only be established by comparison of

results with experimental data. Although the eddy diffusivity model ap-

pears to be adequate for this analysis, the poor agreement of pressure
a

distributions for small wedge angle may be due in part to the adopted

model.

An interesting result of these calculations is that once a solution

for a particular wedge angle has been determined, the corresponding in-

4 —	 viscid analysis can be used to determine the constant c  of an inviscid

"	 flow near the front stagnation point of a wedge with a velocity given by

u = C  X 	 (3.1)

T"	 for the Faulkner-Skan flow. The analysis necessary to determine c l and

results of cl as a function of 0 are given in APPENDIX B.

An analysis of separated incompressible turbulent flow past wedges,

however, will not be complete until the rroblem of the redevelopment of

the flow after reattachment is solved. As one may imagin g , this region

is occupied by a flow with non-equilibrium turbulent structure and an ac-

curate analysis of the flow is not yet available. Additional recompres-

sion usually occurs before the pressure drops asymptotically toward the

free stream value. The turbulent wall shear stress builds up sharply while

the maximum intensity of turbulence within the viscous layer is reduced.

Conceivably, a new wall shear layer starts to build up at the point of
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reattachment. No turbulent boundary layer model in existence today is

capable of handling these problems.

To obtain Some idea of the flow redevelopment, a streamline is

traced through the region starting at the outer edge of the viscous layer

at the point of reattachment. Figure 3.34 shows the pressure distribution

obtained for a 30--degree wedge. With the established corresponding invis-

cid flow field, this tracing is achieved by integrating

dT
dx ' tan Sa	(3.2)

toward the downstream direction. The pressure distribution overshoots

that of the freestream value and then decreases afterwards asymptotically

toward the latter. This simple calculation qualitatively illustrates

the behavior of pressure after reattachment. All effort, however, to

construct a detailed model to study flow redevelopment has been hampered

by the extremely complex nature of the flow in this region.

It should be pointed out that assumptions have been employed in the

establishment of the inviscid free streamline flow and the restriction of

a straight line path of recompression has been imposed simply for the

benefit of deriving a solution through conformal mapping. It is obvious

that with the established flow fielc: reported thus far, the corresponding

inviscid flow boundary (bounding streamline) is not truly given by the

originally assumed configuration which corresponds to the case of infinite

Reynolds number. The bounding streamline for the case of finite Reynolds

number should assume a profile which is shifted from the viscous dividing

streamline toward the freestream by approximately an amount of the "dis-

placement thickness" of the shear layer above the dividing streamline.

The results reported here are thus the first approximation to the finitt

Reynolds number problem. Additional improvement to account for the effi

j.
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of finite Reynolds number is possible by employing other techniques

a °-
	 .	 ,

(e.g., surface source-sink method) in generating the corrected corre_

y	 sponding inviscid flow field. Since the effect of Reynolds number

within the high Reynolds number regime is small, this method of suc-

cessive approximations is expected to be rapidly convergent. Moreover,

the present scheme of first approximation should yield close prediction

of, e.g. the base pressure coefficient.

Finally, it should be mentioned that under assumptions adopted for

the steady viscous flow process of recompression, the point of reattach-

-	 ment exhibits itself as a saddle point singularity for the system of

equations governing the flow and this special characteristic has been ex-

ploited to good advantage. Although the physical process does not seen

to show any sensitive characteristics, as associated with a saddle point,

the validity of this mathematical bohavior should be judged only by the

merits in its ultimate results when compared with experimental data. It

is well known that as long as one adopts the'Navier-Stokes equation to

describe the viscous fluid motion and meanwhile demanding continuous so-

lutions to this equation, saddle point singularity or singularity of other

types can inherently exist.
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4. EXPERIMENTAL INVESTIGATION

As previously discussed, the extremely complex nature of the re-

developing flow hampered the development of a theoretical analysis for

this region. It is imperative that further experimental investigations

be undertaken to sort out the various processes and mechanisms prevailing

within this region. Arie and Rouse [52], Tani, et al. [53], and Mueller and

Robertson [54] provided some data for the separated flow region, and

Bradshaw and Wong [51] presented a good discussion of the problem associ-

ated with flow redevelopment and included some of their experimental data.

Although Bradshaw and Wong suggested that the redeveloping boundary

layer is of non-equilibrium nature for at least 300 step heights down-

stream of separation, the region of critical importance is that immediately

downstream of reattachment where the flow is undergoing further recompres-

sion and the wall shear stress coefficient c  is increasing rapidly. It

is obvious that the events occurring in this region are strongly influenced

by the preceding wake flow and any experimental investigation should con-

sider the ongoing process of the entire region. For this reason, the re-

gion under investigation extends from the point of separation to 20 step

heights downstream of a backward facing step.

4.1 APPARATUS AND INSTRUMENTATION

4.1.1 Wind Tunnel Facility

The wind tunnel facility shown schematically in Fig. 4.1 is

of the induced draft type. A General Electric Corporation, 30 hp, do

motor drives a centrifugal fan. The motor is controlled by a General

Electric Corporation rheostat. Ambient air is drawn into the test sec-
.	 I

Lion through a 27:1 contraction inlet that contains a series of scre4ns

1
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and filters and a splitter plate to condition the flow. The resulting

3
velocity profile at the entrance of the test section is uniform and paral-

lel with a maximum relative turbulence intensity of 0.02 percent outside

the boundary layer on the splitter plate.

4.1.2 Test Section

Measurements are obtained in the 15-inch by 15-inch test sec-

tion shown in Fig. 4.2. It is 60 inches long and the walls are made of

3/8-Inch Plexiglas. A 3/8-inch aluminum plate, 48 inches in length, is

inserted two inches below the centerline, and a 6-inch by 2-inch rectangu-

lar aluminum step is positioned on top the plate and joined smoothly to

the upstream splitter plate. All joints are sealed with a silicone sealant

which is sufficient since the pressures above and below the dividing plate

are not too different. There are 21 step heights of working section down-

stream of the step and three step heights upstream. Since reattachment

occurs about six step heights downstream of the step for problems of this

type, this leaves about 15 step heights for measurements.in the redevelop-

ment region. The top wall of the test section has a 1-inch slot cut along

the centerline for axial positioning of the probe traversing mechanism.

Brass runners on either side of the slot allow the mechanism to traverse

the entire length of the test section. Removable plugs are used to fill

the slot at positions not in use. The traversing mechanism provides po-

sitioning over the entire vertical section accurate to about 0.01 inch.

Pipe threaded ports on the side wall allow for pitot-static probe position-

ing at several locations.
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4.1.3 Hot Wire Anemometry

Two different hot-wires were employed for the present in-

vestigation. A Thermo-Systems, Inc. (TSI), 1218-T1.5, single-wire

boundary layer probe was employed to determine mean velocity profiles
v

in regions where the normal component of velocity is negligible. As

shown in Fig. 4.3a, the probe body has a spike so that the sensor can

be positioned accurately 0.005 inch above the wall. A 0.000]5-inch

diameter tungsten wire is stretched across two gold plateed support

pins spaced 0.06 inch apart with a sensing length of 0.05 inch for an

aspect ratio of over 300.

A TSI 1243-T1.5 boundary layer x-probe, shown in Fig. 4.3b, was

used for all turbulence ((u' 2) 112 , (	 )1/2,(u'v') measurements and

for mean velocity (U,V) measurements in and around the wake region. It

also has 0.00015-inch diameter tungsten wires attached to gold plated sup-

port pins. The two wires, each 0.06 inch in length, are positioned at

right angles to each other and 0.04 inch apart.

Two DISA-type 55A01 anemometer units employed in the constant tempera-

ture mode were used for this study. The anemometer outputs were linearized

for all data, and this operation was performed by two DISA-type 55DIS

iearizers. A TSI Model 10150 correlator was used to obtain the sum and

difference of the two x-wire signals after linearization as well as the

u'v' correlation. Mean voltage outputs were measured with a Nonlinear

Systems Series X-3, Model A digital voltmeter, and fluctuating voltage 	 .

outputs were measured with a Hewlett-Packard H12-3400A rms voltmeter.
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4.2 CALIBRATION

The hot wires were calibrated essentially by employing the linearizers.

It is known that the relation between the voltage output of the anemometer

bridge and the velocity impinging on the hot-wire probe can be expressed as

E 2 = Eo + B(U) n where E denotes the aneometer bridge output; E o , the same

output at zero velocity; U, velocity normal to the probe; and B and n are

constants. Since the transfer function employed in the linearizer is

Eout r K(E
2 - E2)m , where K is the grain and the value of m for the hot

wires operating in the range of 20 ft/s to 500 ft/s is 3, the velocity is

linearized so that U = K  Eout where K  is a constant gain that is ad-

jested so that the linearizer output is full scale at the maximum velocity

encountered in order to obtain maximum resolution.

The hot wires are calibrated inside the wind tunnel, either upstream

of the step or far downstream after reattachment, midway between the lower

and upper walls where the velocity profile is uniform and parallel. The

velocity at either of these locations is determined by a pitot-static probe.

The calibration (linearization) is obtained by proper manipulation of the

linearizer at two points: U = 0 and U - 
U max .

The validity of the calibration can be checked by examining inter-

mediate velocities.

For the x-wire, each sensor must be calibrated separately.' This cali-

bration is performed by rotating the probe until one sensor is perpendicular

from the velocity measured by the pitot-static probe. The second sensor is

calibrated by rotating the probe in the opposite direction until that sensor

is normal to the flow.

.	 a
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4.3 EXPERIMENTAL TECHNIQUES

Data were obtained for a US (external velocity at the step) of

100 ft/s. Initially the single wire probe was employed to determine

the boundary layer profile at the step and to insure that the boundary

layer was turbulent. All mean velocity measurements in the upper wake

region were obtained with the x-wire probe since it is in this region

that the normal component of the mean velocity reaches its maximum.

The mean velocity profile of the raverse flow region was obtained with

the single wire. Just downstream of reattachment, the normal component

of the mean velocity is still important and the x-wire was used for all

measurements up to x/H =9 (x/H = 0 is the base of the step,and reattach-

ment occurs between y/H = 5 and x/H = b). Farther downstream, the nor-

mal component of the mean velocity is less than 3 percent of the trans-

verse component and the single wire was used for mean velocity profiles.

All turbulent fluctuations were measured with the x-wire. The total re-

gion studied was between x/H = 0 and x/H = 20 and from y/H = 0 to

y/H = 3 near the separated region and from y/H = 0 to y/li = 4 farther

downstream.
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S. RESULTS AND DISCUSSION OF THE EXPERIMENTAL INVESTIGATION

Hot wire measurements were obtained with the velocity at the step

(UQ ) at 100 ft /s which corresponds to a Reynolds number (ReH = U,,H/v,J

where H denotes step height) of about 80,004. Figures 4.4 through 4.20

57iow all the pertinent data for various locations downstream of the step.

Figure 4.4 show!; the pressure distribution on the wall upstream and down-

stream of the step. This pressure distribution has been normalized by

the reading obtained 7 inches (3.5 H) upstream of the step. It is obvious

due to the change in cross-sectional area that the static pressure at far

downstream positions would never approach the upstream free streamline.

Mean velocity profiles are quite interesting in two respects: First, the

U profile is not continuous at the point of zero velocity near the end of

the wake. This is probably due to the fact that the local flow is quite

unsteady in this region and an average over time with a hot wire cannot

discriminate between positive and negative directional flows. Secondly,

the wall boundary layer downstream of reattachment develops extremely

rapidly-giving rise to a complex U velocity profile in this region.

The magnitude of the normal component of the mean velocity, V, in-

creases as the main flow turns and the mixing layer spreads and reaches

a maximum of about 12 percent of the external flow velocity. It sub-

sequently decreases after reattachment, becoming less than 3 percent of

the external velocity for x/H > 10.

The u'	 '2)1/2/U and v 2 1/2
a	

(	 )	 /Ua turbulent velocity components in-

crease throughout the wake region and achieve a maximum value of about

20 percent of the external velocity just downstream of reattachment. In

the wake region, these components attain a maximum at the center of the
I

shear layer. Far downstream in the redevelopment region, the turbulent

components are steadily decreasing, but they have a nearly constant value

across the entire shear layer.
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The Reynolds stress component, p u' v'/p Ua, increases throughout the

i-^ wake region to a maximum value of 0.014 at about the point of reattachment

i^ and then decreases quite rapidly throughout the redevelopment region. This

is shown more clearly in Fig. 4.21 where the maximum turbulent shear

stress is plotted along with the data of Tani, et al. [53].

There have been some questions raised about why the maximum

turbulent shear sires: is so large in the wake region. For plane, two-

dimensional mixing of a uniform stream with a quiescent fluid, the

maximum p u' v' is about 0.01 p K. Bradshaw and Wong [Sl] suggest

that the shear stress is much larger because the effective velocity dif

£erence across the free shear layer is not U., but (1 + Ob) U.. They

point out, however, that the reverse flow velocity does not seem to ex-

ceed 0 . 2 1 so that this cannot entirely explain why some of the p u' v'

measurements, e.g., that of Arie and Rouse [ 52] (0.02 p K), are so large.

The maximum reversed flow for the present experiment is about 0.22 Ua

which would lead through this argument to a p u' v' value of 0.148 which

is in good agreement with the measured value. If a closer look is taken

at the previously mentioned experiments and results of this study, it ap-

pears that Bradshaw and Wong's initial argument [ S1] for p u' v'I
max

o.ol (1 +	 z	
z

fib) p Ua may be-essentially correct. First, it is important

that one employ the correct value for the free stream velocity in calcu-

lating this value. With flows over a wedge as an example, the local free

stream velocity in the wake region may be as large as 1.3 U., and the local

effective velocity difference may be much larger than one would expect

due to the large acceleration around the body. Secondly, and probably

mure important, the reverse flow velocity can exceed 0.2 U a . Figure 4.22a

shows the variation of h (the maximum reverse flow velocity) from the re-

sults of previous theoretical calculations as a function of wedge angle

compared with the experimental data points of Tani, et al. [53], and Aric
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and Rouse [52]. For a flat plate normal to the flow, 
Ob 

attains a value

of about 0.35. It is suspected that 0b is dependent upon the size of

the wakr; this relationship is shown in Fig. 4.22b where Ob is plotted

against xr/H and x  is the reattachment point. It may be just as logi-

cal to correlate 
^b 

with the height of the wake bubble, since the length-

to-height ratio of the wake appears to be almost constant with a value

of the order of 5 or 6.

Utilizing these results to determine a maximum shear stress given

2	 2
by 0.01 (1 + 0b ) p Ua , Fig. 4.23a correlates the p u' v'Imax 

versus 6

and Fig. 4.23b correlates p u' v'Imax versus xr /H. Agreement with experi-

ments is excellent except for one of Mueller and Robertson's data points

[54] which corresponds to an extremely large initial boundary layer

(6 = O.SH).

Figure 4.24 shows the displacement and momentum thickness obtained

by integrating the experimental data. This information can be used to

estimate the surface shear stress by employing the Ludwieg-Tillman formula,

cf = 0.246 x 10-0.678H x R_6
0 268, 

where H is the shape factor and Rd** is

the Reynolds number based on the momentum thickness. Figure 4.25 shows a

comparison between the shear stress calculated in this manner, Bradshaw's

experimentally measured shear stress, and the shear stress calculated with

the Ludwieg-Tillman formula using Bradshaw and Wong's data [51]. Although

the boundary layer is severely disturbed, the relationship between the

surface shear stress and the integral parameters still appears to be ap-

plicable and the results are in fairly good agreement. This behavior il-

lustrates the capability of integral methods in dealing with very complex

flow phenomena.
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5. CONCLUSIONS

It is apparent from the present investigation that the most im-

portant aspect of separated flow problems of this type is the determi-

nation of the base pressure. Such a determination cannot be accomplished

without consideration of the viscid-inviscid interaction phenomenon.

Once this has been achieved, determination of the dreg coefficient

is straightforward. The present theoretical analysis has provided

Ir
	

an effective method of determining this base pressure for separated

flows past wedges with a minimum of empirical information.

i
	 Results of the theoretical analysis have been shown to be in good

agreement with the available experimental data. It is obvious that the

major remaining question is the dependency of results upon v.

Unfortunately, this aspect of the problem cannot be resolved until an

extensive experimental study has been performed which will also include

effects of the wind tunnel interference into consideration so that re-

sults that truly represent flow over a body in an infinite stream can

be ascertained. Another aspect of the problem that requires further ex-

perimental study is the turbulence structure within, and downstream o£,

the wake. An eddy diffusivity model is employed that has proven to be

adequate but it certainly deserves further consideration and improvement.

It is also expected that the redeveloping flow after reattachment

can be described by an integral analysis which would consider the im-

portant overall properties of this region and efforts in this direction

should be continued.
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APPENDIX A

THE CORRESPONDING INVISCID FLOW WITH A TOP WALL BOUNDARY

In order to assess the effect of a top wall at a certain distance

from a wedge, an analysis has been devised which considers the effect

of this wall on the corresponding inviscid flow. The situation is ex-

actly the same as that described in Chapter 2. In addition, there ex-

ists a bounding top wall at a distance R from the centerline of the

wedge as shown in Fig. A.la.

The fluid on the bounding streamline along the wedge surface will

behave in the same way as described for the infinite corresponding in-

viscid flow; however, the bounding streamline of the top wall must also

be considered. The fluid on this streamline must accelerate from state A

to some unknown state P in the hodogra.ph which is physically located above

and near the wake region. Afterward, it must decelerate until it achieves

the downstream condition at F. The hodograph for the entire flow is shown

in Fig. A.2a where

q = u - iv.	 (A.1)

It should be mentioned that states A and F need not be the same (RF # R)

and the most noticeable effect of incorporating the top wall is the exten-

sion of the branch cut along the u axis. The corresponding and w planes

with

= 1/q	 (A.2)

and

w = !Zn	 (A.3)

are shown in Figs. A.2b and A.3a, respectively.

i
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F

The w plane is polygonal and a Schwarz-Christoffel transformation

can subsequently be employed to map the interior of the polygon into the

upper half of the t plane as shown in Fig. A.3b. This transformation is

expressed as

^t + k } dt

W -2 c l 1	+ c2

k	

(A.4)

1t+t-
k1 t2-1

3	 4

The constant :. 2 , which is the corresponding location of the upstream in-

finite state, does not enter into the transformation. The constants cl

and c2 are to be evaluated from the conditions of

w(t = 1) = -ia and w(t = -1) = i6	 (A.5)

and kl , k 2 , k 3 , and k4 are unknown parnineters which must be determined

from the analysis.

The upper half t plane can be transformed into the Q plane shown in

Fig. A . 3c by the transformation

R _ 
R log ( t + _L) 
	

(A. b)
Tr

1 	 2

The final W plane can now be written as

W=U9,	 (A.7)

where U is a constant and is the value of a uniform velocity between the

two boundaries. From mass flow considerations, it is obvious Oat

U = V-A if R has the same value for the k plane as it does for the physi-

cal plane. IV can finally be written as

W= VA R log^t + k	 (A.8)
2
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Upon integrating Eq.	 (A.4) and determining the constants c  and c2,

the conjugate velocity q is found to be given by

6/711
_	 1 t+k3

t	
k

q_	 _ 4

+ t +	 1 - 1 l	 2l	 (t	 -	 1)^k2
I+(T2k 3	 /	 k	

_	 1	
-1 	

(t 2

3	 /	 44	 J

1)

(A.9)

which is the same expression as that derived for the infinite case.	 This

is entirely reasonable since the C planes for the two cases are identical

except for the extended branch cut which only limits the region of applica-

bility.

In order to relate locations in the t plane to locations in the physi-

cal plane, it is necessary to cmiploy the usual definition of

q = 1	 =	 1	 dW	 1 dW dt
'

(A.10}
Vo dz	 Vo dt dz

Substituting Eq.	 (A.$)	 for W, Eq.	 (A.10) becomes

1	 I V.A R	 1	 dt
(A.11)

Vo n	 ^t + k ) dz

2

and by rearranging, it is found that

dz	 '-A R_
(A.12)

dt	 Vo	 zr rt +	 11.
k2

The one-to-one correspondence between the t plane and the physical plane

is determined by integrating Eq.	 (A.12) so that

!I_

1
I --
1

E

rd (z/H] - 
V°0A R 1	 dt

.!	 Vo H n 	 t +1
k2

where the expression for C is given in Eq. (A.9).

(A.13)
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For a particular problem, 6 and R/H are given and a pair of values

of a and k4 are arbitrarily selected. Constants k 1 , k2 , and k3 must then

be determined.

One criterion that must be met is

V
-1

, RF = VGA R	 (A.14)	 iir

which can be converted into	 r

R	
1	 1	 _

F 
k l +	 1	 1 }	

2k
3	 k 3	 1	 4	 k4	 1

O/n	 oc/^r

1/k 2 - 1/k 3	l/k2 + 1/k4
R	 ^.

	

k21k3 - 1 + k2 - 1! 1 k 2 _ 1)	k21k 4 + 1 }/^ 2 - 1^^ k 2 - 1^
3	 2	 4	 2

(A. 15)

This equation involves k 2 , k 3 , and k4 and cannot be solved explicitly for

any of them. To obtain a second relation, Eq. (A.13) is integrated from

8 to C in the physical plane and from -1 /k 3 to -1 in the t plane to obtain

-1

1	 V°'A	 ^ dt	 (A.16)
sin 0	 V	 (H + R- R) IT	 t+ 1/ k '

	o 	 F	 2
-1/k3 

V.A/Vo is given by the right--hand side of Eq. (A.15) and the correct

value of k 2 is determined through integration. Since C and VGA/Vo are

functions of k3 and k4 , Eqs. (A.15) and (A.16) must be solved together

through an iteration procedure. k  can be determined explicitly from

the equation



i

t

l k --

] a	
1/k

k	

4 - 1	 1
+ —

	

1	
3 9	

/ 	 k4

(A. 17)

	

k1	
1/k2 - 1

6
1/k3 - 1

which is obtained by examining the transformation around either the

singularity at t = -1/k 3 or t = 1/k4 . Once the constants have been de-

termined, the analysis is handled in exactly the same way descibred in

Chapter 2. The same transformations are employed at singularities

-1/k3 and 1/k4 and the negative branch of both square root functions

within Eq. (A.15) must be employed when t < -1.

The calculations described in Chapter 3 are performed with R  = R

and various values of R/H. The analysis must be handled carefully for

R/H < 10 since the constants k 2 and k 3 approach one.

I
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APPENDIX B

DETERMINATION OF THE POTENTIAL FLOW VELOCITY

is
NEAR THE LEADING EDGE OF A WEDGE

i,

The Faulkner-Skan equation

fill + ff ,, + a(, - f' 2) = 0	 (B.1)ii

•

	

	 is valid only for situations when the potential flow velocity can be

expressed as
4

	

U = C I xm	 (B.2)

Such situations exist near the leading edge of a wedge with an included

angle of TrB. m is defined as

Bm - Z	 (B.3)- ^

since

	

nO = 26	 (B.4)

where a is the wedge half ankle of the present analysis, m can finally be

expressed as

e	
{B.5)

m = TT- e '

It is necessary to investigate the velocity in the vicinity of the

stagnation point where t may be given by

	

t = - k  +	 (B.6)
1

with a being a small quantity.

The complex velocity is given by

	

a	 A

	

t- kl	 Tr	 t + kl	 IT

	

2	 lVo 	

1^Z-	 t2- 1 + kt - 1	 Z- 1	 1+kt+
k 	!	 2	 k	

(t2

 /	 1
2	 1

(B.7)

131



For t < -1, the negative branch of both square root functions must

be employed. Near the front stagnation point, Eq. (B.7) is reduced to

a	 6
^

1/k I + 1/k2	
1T

	
_	 c

V 	

l2 
1}t—^- 1} +1

+klk	
^
2- 1}^:Z-1} + 2- 1

Ik2	 kl	 1 z	 kl	 1	 kl

(B.8)

which can be rewritten as

V - C^ e
$/IT (B.9)

0

where

i



i

1

a	 6

z 
r ^D	 ( 1

/k2 - 
1)(1/ 0 - 1) + 1 + 1/(k 1 k2)	

1
H y V H	 1	 1	

2 
(72 

1}

k 1 + k2	 1

E

	

e i6 r 
Ede	

(B.12)
^/ 

0

After integration, Eq. (B.12) can be rewritten as

z _

	

 
C ,
	 (7r-0) /Tr	

(B.13)
+fI - 

2 E

where
a,/7i

C ^ 	 {l/k2 - 1) (1/ki - 1) 	 + 1 + I/ (k k2}	
D

2 -	 1 + kl	
V 0 H

TI	 2'

e /7r

[

2kz - 1}	
7r	

(B. 14)

1

By solving for a in Eq. (B.13) and substituting into Eq. (B.9), it is

found that

C1, 	 6/(7r-6)

	

Vo 	 (6 Tr-6)

 Iz

HI	 (B.15)
C'
2

which is precisely

191 = C 1 1 Z1
m
	 (B.16)

r

is

with

C1	 1

	

C 1 = 
V0 C} ( 6 /Tr-6) H	m	

(B.17}

2 

f
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r

4	 It is more convenient to express C 1 as
r

V Vo	 C]	 f

C 1	 IIm V,, C  ( 6/7r -0)

2	 I.
1

or

V	 I
C 1 = 2C	 iti.19}

H 
m

where

V	 C l
C = V^.

	

	
13. ?0)

C , (6/Tr- 0]
2

The constant C 1 is shown in Fig. B.1 as a function of m with a and

V 
/V. obtained from calculations for a = 12 and Re H = 5 x 10 4	ft has

a constant value of about 0.35 for 0.5 < m < 1.0 and increases Oarply

as m -} 0. The results for the adjusted v values are almost Wnt ical to	 j

those for a = 12 and are, therefore, not shown here.
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