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AEROELASTIC ANALYSIS FOR ROTORCRAFT
IN FLIGHT OR IN A WIND TUNNEL
Wayne Johnson

Ames Research Center, NASA
and
Ames Directorate, USAAMRDL

SUMMARY

An analytical model is developed for the aeroelastic behavior of a rotor-
craft in flight or in a wind tunnel. A unified development is presented for a
wide class of rotors, helicopters, and operating conditions. The equations of
motion for the rotor are derived using an integral Newtonian method, which
gives considerable physical insight into the blade inertial and aerodynamic
forces. The rotor model includes coupled flap-lag bending and blade torsion
degrees of freedom, and is applicable to articulated, hingeless, gimballed,
and teetering rotors with an arbitrary number of blades. The aerodynamic
model is valid for both high and low inflow, and for axial and nonaxial flight.
The rotor rotational speed dynamics, including engine inertia and damping, and
the perturbation inflow dynamics are included. For a rotor on a wind-tunnel
support, a normal mode representation of the test module, strut, and balance
system is used. The aeroelastic analysis for the rotorcraft in flight is
applicable to a general two-rotor aircraft, including single main-rotor and
tandem helicopter configurations, and side~by-side or tilting proprotor air-
craft configurations. An arbitrary unaccelerating flight state is considered,
with the aircraft motion represented by the six rigid body degrees of freedom
and the elastic free vibration modes of the airframe. The rotor model
includes rotor-rotor aerodynamic interference and ground effect. The aircraft
model includes rotor-fuselage-tail aerodynamic interference, a transmission
and engine dynamics model, and the pilot's controls. A constant-coefficient
approximation for nonaxial flow and a quasistatic approximation for the low-
frequency dynamics are also described. The coupled rotorcraft or rotor and
support dynamics are described by a set of linear differential equations, from
which the stability and aeroelastic response may be determined.

1.0 INTRODUCTION

The testing of rotorcraft in flight or in a wind tunnel requires g con-
sideration of the coupled aeroelastic stability of the rotor and airframe, or
the rotor and support system. Even when the primary purpose of the test is to
measure the rotor performance, experience shows that the question of dynamic
stability may be ignored only at the risk of catastrophic failure of the air-
craft. Moreover, in the development of advanced rotor systems, the measure-
ment and verification of the dynamic stability are themselves major goals of
the test. Thus it is most desirable to have an analytical model of the



rotorcraft or rotor and support dynamlcs, both for ,pretest predictions. and -
posttest cotrelations.  Such'd médél {s:d1886" appllcable 1n,1nvést1gat10ns of
igeTatéd: rotof*aerdelast1c1ty or’ Helfcoﬁte : : '
%‘ﬁalytﬁcal modél for ‘the’ rotorcfaftv'
“Eive « 1nVest1gation§’df the aerdeIastl ‘ v
system design. * 'THe ‘prinéipal’ 1{m1taﬁ10ﬂ'of "R alalysés avaiTabis ‘1" the‘h
literature is that they are not applicable to a wide class of rotorcraft.
Typically, aeroelastic stability analyses have been developed in response to a
concern with some specific dynamic problem, and thus are suitable only for a
particular type of rotor or a limited range of operating conditions. Often
the model does not include the entire aircraft or does not consider the rotor
shaft motion at all. This report presents the unified development of an
aeroelastic analysis for a wide class of rotors and rotorcraft. A thorough
documentation of the analytical model is required to interpret the results of
past and future investigations of rotorcraft dynamic behavior u51ng this
model.

The usefulness of an analysis depends on its ability to handle a large
class of problems; therefore, the scope of the aeroelastic model developed
here is kept as wide as possible. The rotor model is applicable to articu-
lated, hingeless, gimballed, and teetering rotors with an arbitrary number of
blades (including two-bladed rotors). This generality is accomplished by
using a modal representation for the blade coupled flap and lag motion, with a
gimbal or teeter hinge included in the hub from the beginning of the analysis.
Then an articulated or hingeless rotor may be modeled by dropping the gimbal
degrees of freedom and using the modes of a hinged or cantilever blade,
respectively. For a gimballed (or teetering) rotor, the gimbal degrees of
freedom are retained, with cantilever modes for the blade bending motion.

The description of the blade motion includes rigid pitch deflection due to
control-system flexibility and elastic torsion modes. The rotor model also
includes the rotational speed dynamics (with the effects of engine inertia and
damping) and perturbation inflow dynamics to account for the unsteady aero-
dynamics of the rotor. ‘

The aeroelastic analysis of the rotorcraft in flight is applicable to a
general two-rotor aircraft, including single main-rotor and tandem helicopter
configurations and side-by-side or tilting proprotor aircraft configurations.
An arbitrary, unaccelerated equilibrium flight state is considered, with the
aircraft motion represented by the six rigid body degrees of freedom and the
elastic free vibration modes of the airframe. The rotor model for the air-
craft in flight includes rotor-rotor aerodynamic interference and ground
effect. The aircraft model includes rotor-fuselage-tail aerodynamic inter-
ference, a transmission and engine dynamics model, and the pilot's controls.

In part I, the rotor model is derived and also the model for the coupled
rotor and wind-tunnel support dynamics. The equations of motion for the rotor
are developed using an integral Newtonian method rather than the more common
Lagrangian or differential Newtonian methods. The integral Newtonian approach
allows greater use of engineering experience in deriving the equations and
provides considerable physical insight into the inertial and aerodynamic
forces of the rotor blade. By introducing a vector representation of the



coupled flap/lag bending displacement, a very compact form is obtained for
the blade bending equations of motion. In part II, the aeroelastic analysis
for the rotor craft in flight is derived. The coupled rotorcraft or rotor and
support dynamics are described by a set of linear differential equations, from
which the stability and aeroelastic response may be determined.






PART I. AEROELASTIC ANALYSIS FOR A ROTOR IN A WIND TUNNEL

The development of the aeroelastic analysis for a helicopter rotor and a
wind-tunnel support (fig. 1) begins with a consideration of the rotor model in
section 2. The structural, inertial, and aerodynamic forces on the blade are
derived, followed by a consideration of the engine dynamics and the rotor
inflow model. Then the equations of motion for the rotor are presented for a
three-bladed rotor. Section 3 discusses further some details of the rotor
model; section 4 extends the analysis to an arbitrary number of blades. 1In
section 5, the support equations of motion are presented. Finally, in sec—
tion 6, the rotor and support equations are combined to construct the equa-
tions of motion for the coupled system. Note that, although the analysis
begins with dimensional quantities, in the final equations all parameters are
dimensionless, based on air density p, rotor rotational speed £, and rotor
radius R.

2. ROTOR MODEL

This section develops the aeroelastic analysis of the helicopter rotor.
The rotor motion is represented by the following degrees of freedom: coupled
flap and lag bending modes, rigid pitch motion (due to control-system flexi-
bility), blade elastic torsion modes, rotor rotational speed perturbation, and
gimball or teetering hinge motion (when required). The six components of the
rotor shaft linear and angular motion are included, as well as the rotor blade
pitch control. Three components of aerodynamic gusts are included as external
disturbances. The rotor hub and root representation includes: precone, droop,
and sweep; pitch bearing radial offset; feathering axis droop and sweep; and
gimbal undersling and torque offset. Chordwise offsets of the blade center of
gravity, aerodynamic center, and tension center are included in the blade
representation. The undeformed elastic axis of the blade is assumed to be a
straight line. The rotor aerodynamic model is gemerally valid for high and
low inflow and for axial and nonaxial flight. The effects of reverse flow,
compressibility, and static stall are included.

The linear differential equations describing the motion of the three-
bladed rotor are presented in matrix form, together with equations for the
forces and moments acting on the rotor hub. Two cases are considered: axial
flow, which is a constant coefficient system, and nonaxial flow, which is a
periodic coefficient system. Also, in section 2.7, a constant coefficient
approximation for the nonaxial flow equations, using the mean values of the
coefficients in the nonrotating frame, is derived. The development of the
rotor model begins with the analysis of the blade structural moments.

2.1 Structural Analysis

The structural analysis consists of an engineering beam theory model for
the coupled flap/lag bending and torsion of a rotor blade with large pitch and
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/
twist. A high aspect ratio (of the structural elements) is assumed, so the /
beam model is applicable. The objective is to relate:the bending moments at /
the section, and the torsion moment, to the blade deflection and elastic tor-/
sion at that section. The analysis follows the work of references 1 to 3. J

2.1.1 Geometry- The basic assumptions are that an elastic axis exists,f

and the undeformed elastic axis is a straight line; and that the blade has é
high aspect ratio (of the structural elements), so engineering beam theory
applies. Figure 2 shows the geometry of the undeformed blade. The span
variable r is measured from the center of rotation along the straight elas-
tic axis. The section coordinates x and z are the principal axes of the
section, with the origin at the elastic axis. Then, by definition,
Jéection(xz)dA = 0. Really, the integral is over the tension-carrying ele-
ments, that is, a modulus weighted integral: 'fsz dA = 0. This remark holds
for all section integrals in the structural analysis. The tension center
(modulus weighted centroid) is on the x axis, at a distance xc aft of the
elastic axis: fx dA = xcA and fé dA = 0. Again, these are modulus weighted
integrals. If E is uniform over the section, then =x; is the area cen-
troid. If the section mass distribution is the same as the E distribution,
then the tension center coincides with the section center of gravity.

The angle of the major principal axis (x axis) with respect to the hub
plane is 6. The existence of the elastic axis means that elastic twist about
the elastic axis occurs without bending. Generally, the elastic torsion
deflection will be included in 6. The blade pitch bearing is at the radial
station ryp. The blade pitch is described by root pitch 6° (rigid pitch
about the feathering axis, including that due to the elastic distortion of the
control system), built-in twist 0¢,, and elastic torsion about the elastic
axis 8. So 8 = 6° + 8, + 05, where 0°(y) dis the root pitch, 8(rpy) = 6°;
8w (r) is the built-in twist, 8.y,(rpp) = 0; and 6.(r,y) is the elastic tor-
sion, Ge(rFA,w) = 0. There is shear stress in the blade due to 6, only. It
is assumed that 6, is small, but 6° and 6, are allowed to be large.

The unit vectors in the rotating hub plane axis system are ig, ?B, and
kp (fig.+2), The unit vectors for the principal axes of the section (x,r,z)
are 1, j, and k; these vectors are for no bending, but include the elastic
torsion in the pitch angle 6. So the principal unit vectors are rotated by
6 from the hub plane:

> _ P
1 =1, cos 6 kB sin 6
+ _

J_JB

> > . -

k = lB sin 0 + kB cos ©

2.1.2 Description of bending- Now the engineering beam theory assumption
is introduced: plane sections perpendicular to the elastic axis remain
so after the blade bends. TFigure 3 shows the geometry of the deformed sec~-
tion. The deformation of the blade is described by (a) deflection of the
elastic axis, x,, r,, and z,; (b) rotation of the section due to bending, by



dx agd $,3 and (¢) twist about the elastic axis, 0os which is implicit in ;,
and k. The quantities o> Tos Zgs bxs ¢z, and ee are assumed to be small, - .

s T 7 > .
The unit vectors of the unbent cross section are 1,3, and k. ,Ihe‘unlt :
vectors of the deformed cross section are 1iyg, Jxg, and kyg, where iyg and
> . . . .
kyg are the principal axes of the section and jyg 1is tangent to the
deformed elastic axis. It follows then that

T 1447
ixgg =1+ ¢,3

7 o=7 f+ ¢k
JXS =] d) 1 ¢
> - &>

kys = Kk = 0,3

' > - -> - > > :
Now, by definitiomn, jxg = dr/ds, where r = xo1 + (r + ry)j + zpok and” s is |
the arclength along the deformed elastic axis. Hence, to first orde¥, '

-

> - >0
Jgg = 3+ (xoi + 2,00

7 ' 137 EUPTIN o
I+ (xg +2,0")1 + (2] - x,0")k
It follows that the rotation of the section is

b, x5 t zoe

i
N
1
™
@

%% = %o ~ %o

or

+ >
bl + 6,k

Il
~
N
=
I
i
o
~

The undeflected position of the blade element is ; = r? + xz + zE, and

the deflection position is

->
r

r 2 > 7 >
(r + rO)J + x,1 + zok + Xlyg + szS

-+ -+ > -+ > >
rj + xoz +rg +zk+ (x¢, ~ 20,07 + xi + zk

The first term in the deflected position is the radial station, the next three
terms are the deflection of the elastic axis, the next term is the rotation of
the section, and the final two terms are the location of the point on the
cross section. For now, the elastic extension T, . is neglected. The strain
analysis is simplified since then, to first order, s = r; roy Jjust gives a
uniform strain over the section, which may be reintroduced later.

2.1.8 Analysis of strain- The fundamental metric tensor
undistorted blade is defined by

8m ©f the
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where ds 1is the differential length in the material and X, are general

curvilinear coordinates. Similarly, the metric tensor Gpn of the deformed
blade is

[
o
=y
o
=~

(ds)?

i
N
Do
S“lw+
5
~——
N
%Iw
S
. (=N
o]
]
S

it
o
>
=
o
b

Then the strain tensor vy, is defined by the differential length increment:

(dS)? - (ds)?

zYmn dxm dxrl
or

1
Yon = 2 Cmpn = 8mp)

For engineering beam theory, only the axial components of the strain and
stress are required. (For a full exposition of the analysis of strain, see

ref. 2.)

The metric of the undeformed blade (no bending and no tors1on, S0
6' = 8{,;) is obtained from the undistorted position vector T = xi+ rj + zk
giving

>
s ap = 1+ 0paGx? + 22)

The metric of the deformed blade, 1nc1ud1ng bendlng and torsion, 1s 81m11arly

obtained from the position vector (x + Xo)l + (r + x¢, - z¢x)34-(z4-z N
giving
T 3
Grr =55 * 3 = (L X0, - 2002 + [xy +0'(z + 2,012 + [25 - 0" (x + x,)]2

Then the axial component of the strain tensor is



Y, =3 (@ )

rr rr = 8rr

='% ‘(l + x4, - z¢2)% = 1+ [x] + 8'(z + z,)]?

6%%22 + [zé - 0'(x + xo)]2 - eééle

The linear strain (for small x4, z,, 85, ¢4, and ¢,) 1is

~ = v 1 12 ' ' ' V(2 2
Yer = €pp = x¢, zdg + Gtw(xxo + zzo) + etw[zx0 xzj + ee(x + z%)]

The strain due to the blade tension, ers is a constant such that the ten-
sion is given by the integral over the blade section:

T=fEerr,dA=anEdA

Substituting for e€,, and using the results fz dA = 0, fx dA = xcA, and
f(x2 + z2)dA = Ip = kPZA (where kp is the modulus weighted radius of gyra-
tion about the elastic axis) gives

T 12

R R r 1a11,2 '
€1 T EA T dzxc + O Xo¥xc - OtwZo¥c T O eekp + 1

In this expression, the strain due to the blade extension r, has been
included. It follows that the strain may be written:

= 2 2 _ 1,2
€rr = Ep + (x - XC)(¢é - SEW¢X) - z(¢i + eéw¢z) + eéweé(x + z4 = kP)

2.1.4 Section moments- To find the moments on the section, the second
engineering beam theory assumption is introduced: all stresses except
Orr are negligible. The axial stress is given by 0,y = Eeyy. The direction
of 0., is

>
5= az/ar
|9t /0r|
. > -> > >
The moment on the deformed cross section (fig. 4) is M==MxiXS4-MrjX84-MszS,

The moment about the elastic axis due to the elemental force Orr dA on the
cross section is

Y

dM

+ > ~
(xiXS + szS) X (Grre)dA

> > 7
[—21XS + XkXS + eéw(x2 + ZZ>JXS]Orr dA



Integrating over the blade section yields the result for the total moments due
to bending and elastic torsion: o

(MX)EA =T j;ection Z0py dA
(MZ)EA = J;ection XGrr da
= ' 2 2 '
M, = GJog + section (x + z )etwcrr dA

To M, has been added the torsion moment GJeé, due to shear stresses pro-

duced by elastic torsion. These moments are about the elastic axis. For
bending, it is more convenient to work with moments about the tension center

XC:

- 'rzorr dA

o= J&-x)o,, aa

My

M

Substituting for oy, and integrating yields the foilowing moments:

] ) tnt
= EI,, (¢} + 8"¢,) - 8'8LET,p

o

=
|

t _ gt 1ot
. = EIXX(¢Z 8 ¢X) + 0 eeEIXP

=
|

2 12 ' ' 2
= (GJ + kPT + 6 EIPP) Se + ethPT

+ 8" [ET,, (o} = 8"9,) = EL (4} +8'9,)]

where
1,.,= j}z dA
Iy = !(x - x)? dA
IP = k%A = J‘(x2 + z2)dA
IXP = j(x - XP) (x2 + z2)dA .
Ip = J;(xz + z2)da
IPP = f(xz + z2 - k%)sz

10



The integrals are all over the tension-carrying elements, of course (i.e.,
modulus weighted). The tension T acts at the tension center Xcs hence the
bending moments about the elastic axis may be obtained from those about the
tension center by (MZ)EA = M, + x¢cT and (My)gp = My. The bending/torsion
structural coupling is due to EIxp and EIzp. For a symmetrical section,
EIZP = 0.
. . , . >(2)

2.1.5 Vector fbrmulatton; Define the section bending moment vector ME

and the flap/lag deflection w as:

->
(2) _ M1 + MKk
w=z1 - xk

:ﬁéz) is not_ quite the moment on the section because My and M, are really
he 1iyxg and kyg components of the moment.) The derivatives of W are

-> > > >
(zol - xok)' (zé - xoe')l - (xé + zoe')k

-
= o1 + ¢k

(2ol - x )" = (0! +0'9,)T + (8] - 0'¢,0F

(hen the result for the bending and torsion moments may be written:

#(2)

EEd —)—). _?_ >yn [ ' '*_ e
(EIzzll + EIXka) (Zol xok) + etwee(EIXPk EIZPl)

2 12 ' 1 1.2 1 T Ty . <Y1
Mr (GJ + kPT + ethIPP)ee + ethPT + etW(EIXPk EIZPl) (zoz xok)
This is the result sought here, namely, the relation between the structural
moments and the deflections of the rotor blade.

Writing the bending stiffness dyadic as EI = EIZZE? + Elxxﬁﬁ, and

neglecting (for this paragraph only) the bending/torsion coupling terms (EIzp
and EIxp) gives

_>(2) EI"I—;"

- ' 2 '
My = GJ_ .00 + k3T6]

In this form, our result appears as a simple extension of the engineering beam
theory result for uncoupled bending and torsion (for 6{, = 0). The vector

form allows a simultaneous treatment of the coupled inplane and out-of-plane

bending of the blade, with considerable simplification of the equations as a
consequence.
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This relation betwegn the moments and deflections is a linearized result.
Thus the vectors 1 and k appearing in EI and in w are based on the trim
pitch angle 6 = 6° + 0,. The perturbations of 1 and k due to the elastic
torsion give second-order moments, which have already been neglected in the
derivation. The net torsion modulus is

‘ = 2 12
GJeff GJ + kP T + etWEIPP

where T = Q2 f!’pm dp is the centrifugal tension in the blade. For the
elastic torsion stiffness characteristic of rotor blades, the GJ term
usually dominates. The kpzT term is only important near the root for blades
that are very soft torsionally. The ethIPP term is important only for very
soft, highly twisted blades.

2.2 TInertia Analysis

This section derives the inertia forces of a helicopter rotor blade. The
blade motion considered includes coupled flap/lag bending (including the rigid
modes if the blade is articulated), rigid pitch, elastic torsion, gimbal pitch
and roll (which are dropped from the model for articulated and hingeless
rotors), and the rotational speed perturbation. The geometric model of the
blade and hub includes precone, droop, and sweep; pitch bearing radial offset;
feathering axis droop and sweep; and torque offset and gimbal undersling.

2.2.1 Rotor geometry- Consider an N-bladed rotor, rotating at speed Q
(fig. 5). The mth blade is at the azimuth location:

Vo=V +my, m=1, ..., N

where Ay = 2w/N, and = Qt is a dimensionless time variable. The S
coordinate system (ig, IJgs ks) is a nonrotating, inertial reference frame.
The S system coordinates are the rotor shaft axes when there is no hub
motion. When the shaft moves, however, due to the motion of the helicopter or
the wind tunngl support, the S system remains fixed in space. The B sys-
tem (Ig, Jgs kg) is a coordinate frame rotating with the mth blade. The
acceleration, angular velocity, and angular acceleration of the hub, and the
forces and moments exerted by the rotor on the hub are defined in the non-
rotating frame (S8 system). Figure 6(a) shows the definition of the linear
and angular motion of the rotor hub; figure 6(b) shows the definition of the
rotor forces and moments action on the hub. The rotor blade equations of
motion are derived in the rotating frame.

Figure 7 shows the blade hub and root geometry considered (undistorted).

The origin of the B and S systems is the location of the gimbal. For artic-
ulated or hingeless rotors, where there is no gimbal, this is simply the point
where the shaft motion and hub forces are evaluated. The hub of the rotor is
a distance zp, below the gimbal (gimbal undersling, which is not shown in
fig. 7). The torque offset =xp, 1is positive in the -ip direction. The
azimuth Y, is measured to the feathering axis line (igs projection in the
hub plane), so the feathering axis is parallel to the jp axis and offset

12



xpp from the center of rotation. The precone angle Jpp gives the orienta-
tion of the blade elastic axis inboard of the pitch bearinig with respect to
the hub plane; GFAl is positive upward, and is assumed to be a small angle.
The pitch bearing is offset radially from the center of rotation by rpp. The
rigid pitch rotation of the blade about the feathering axis occurs at rp,.
The droop angle &p,, and the sweep angle 5FA occur at Trpp, just outboard
of the pitch bearingj GFAﬁ and GFA give the or1entat10n of the elastic axis
of the blade outboard of the pitch bearlng, with respect to the precone. Both
5FA2 and Opp, are assumed to be small angles; 5FA2 is positive downward and
6FA; 1s positive aft. Feathering axis droop Opp, and sweep dpj; define the
orientatlon of the feathering axis with respect to the precone; SFAq is posi-
tive downward SFA-. 1s positive aft, and both are small angles. If

6FA 5FA5 = (0, then the feathering axis orientation is just given by the
precone, if 6FA = 5FA and 5FA5 = dpA3, then the orientation is the same
as the outboard elastlc axis.

In summary, the blade root is underslung by zpp and offset by =xpa
relative to the gimbal. From the root to the pitch bearing, there is a shank,
of length rpp, which undistorted is a straight line at an angle &pp; to the
hub plane (small precone). The blade outboard of the pitch bearing at rp,,
undistorted, has a straight elastic axis, with small droop and sweep (GFA and
5FA3) The feathering axis also has small droop and sweep with respect to the
precone (5FA and 8pp:). The shank (inboard of the pitch bearing at rpp) and
the blade (outboard og rpp) are flexible in bending. The shank is assumed to
be rigid in torsion; the blade outboard of the pitch bearing is flexible in
torsion as well as bending. There is rigid pitch rotation of the blade about
the pitch bearing, which takes place about the local direction of the feather-
ing axis at ry,, including the bending of the shank. Incorporation of the
bending flexibility of the blade inboard of the pitch bearing means that gen-
eral rotor configurations may be considered — an articulated rotor with the
feathering axis inboard or outboard of the hinges or a cantilever blade with
or without flexibility inboard of the pitch bearing. The special case of a
rigid shank can be considered as well, of course.

Figure 8 shows the undeformed geometry of the blade. The description of
the blade for the inertial analysis parallels that for the structural analysis
(see fig. 2 and section 2.1.1). It is assumed that an elastic axis exists,
that the undeformed elastic axis is a straight line, and that the blade has a
high aspect ratio, so engineering beam theory and lifting line theory are
applicable. Here =x7 is the locus of the section center of gravity, x, is
the locus of the section aerodynamic center, and xc 1is the locus of the
section tension center. The distances xy, Xp, and x¢ are positive aft,
measured from the elastic axis; generally, they are a function of r. The
corresponding z displacements are neglected.

> -> -

The 1i,, Jos and k, coordinate system is the elastic axis/principal
axis system of the section. Subscript o refers to the undeformed frame,
that is, with no elastic torsion in 6, or gimbal or rotor gpeeg degregs of
freedom. The direction of the undeformed elastic axis is j,; i, and k, are
the directions of the local principal axes of the undeformed section. The
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spanwise variable is r, measured from the center of rotation. This variable
is dimensionless, so r = 1 at the blade tip. The section coordinates x and
z are mass principal axes, with origin at the elastic axis, It is assumed
that the directions of the mass principal axes and the modulus principal axes
are the same. The CG is at z = 0 and x = xj. The section mass, center
of gravity position, and section polar moment of inertia (about the elastic
axis) are, by definition, then as follows:

J;ection dm = m
f . zdm=.r . xz - dm = 0
section section
J;ection % dm = *m
2 4+ 22)dm = I
"'..c_;ection(x z.) m 5]

The blade pitch angle is 8 (at this stage in the analysis, the undis-
torted or mean pitch, denoted by -subscript m). The angle 6 is measured
from the hub plane to the section principal axis. It is thus the angle of
rotation of i, and k, from the hub plane axes. The undeformed pitch angle
consists of the collective pitch 6,511 Plus the builtin twist Gtw(r):

0 = Op = 0c011 + Oty. We define 6,517 as the pitch at rpp, so

84w (rFat) = 0. The root pitch is them 6° = 8.5171. The rotation by 6,411

is not present inboard of rpp, but there can be pitch of the local principal
axes with respect to the hub plane, which is included in 04y for r < rpp.
Note that etw(rfA) is not necessarily zero, hence there is a jump in 6j at
rpps of magnitude:

+ - -
8(rgy) = 8(rpp) = 8011 = O (Tra)
The trim pitch angle is then:

ecbll + etw(r) ? r > rFA

= ° = =
8 07 =0 511 » L= Tpy

etw(r) , r < r

It is assumed that 0 1is steady (constant in time), independent of Y.
Cyclic variations in 6, as may be required to trim the rotor, are included in
the perturbation to the pitch angle. We shall alow the trim pitch angle to be
large, hence 6.,11 and 6., may be large angles. i

The droop and sweep of the blade elastic axis are defined with respect to
the hub plane axes, so it follows that unless the feathering axis is parallel
to the outboard elastic axis, these angles vary with the root pitch of the
blade. Let GfAé and 6§Aq be the droop and sweep of the blade when the pitch
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angle at 75-percent radius is zero. Then the following relation can be
derived from the root geometry:

- * K :
GFAQ = SFAH + (GFA FA )cos 6. (SFAs GFAS)Sln 6.5
S0 =08, - (85, =8, )sin 8, + (8% - 8_ )dcos ©
FA, ~ FA, FA, ~ °FA, 75 T YPrA; T °RaAg 75

where 6., = 8° + B¢y (xr = 0. 75) The angles GFA and GFA are fixed geo-
metric constants, so the variation of the droop and sweep aue to blade pitch
perturbations is

FA

FA, FA

Between the B coordinate system (rotating hub plane axes) and the o
system (undistorted §ectlon axes), there are the following rotations:
" 8pa; = Spa, about ip (small precone agnd droop), 6pay about Kkp (small
sweep), an% then rotation 6 about JEA (the large pltch angle). So

go = cos esz - sin emKB + ?B[(GFAIV— FA, )sin 8 GFA3 cosvem]
ﬁo = sin Osz + cos GmKB + Eé[—(aFA FA Jcos 0 SFAs sin 6]
Jo=Tea=Tg+ 6FA3;B * Gy - 6FA2)ﬁ£

where 6FA and SFA are based on 6° 0co11> and are abseﬁt for .r < TFA-

Subscrlpts o and m will be dropped when it is obvious that the undistorted
geometry is being considered.

2.2.2 Rotor motion- The rotor blade motion is described by the following
degrees of freedom:

(a) Gimball pitch and roll motion of the rotor disk (omitted for articu-
lated and hingeless rotors)

(b) Rotor speed perturbation

(c) Then torsion about the elastiec axis, and rigid pitch motion about
the feathering axis -

(d) Followed by bending deflection of the elastic axis, including rigid
flap and lag motion if the blade is articulated. .

Figure 9(a) shows the gimbal motion and rotor speed perturbation in the non-
rotating frame. The gimbal degrees of freedom are Bgc and Bgg — respectively,
pitch and roll of the rotor disk in the nonrotating frame. The rotor rota-
tional speed perturbation is Yg. The degree of freedom Yg is a rotation
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about the shaft axis ES, so the azimuth angle of the mth blade is really
¥y + Vg. Figure 9(b) shows the gimbal motion in the rotating frame. The
degrees of freedom are B¢ and 8, given by

B B cos wm + BGS sin wm

G GC

%

-B sin wm + BGC cos wm

GC

The gimbal effects are primarily dge to Bg, the flapwise rotation about the
ig axis; 6g, the rotation about jp, only introduces a translation of the hub
due to zpp and xp,. The blade pitch 6 is defined with respect to the hub
plane, so only the blade inboard of the pitch bearing sees the pitch rotation
due to 6g.

Figure 3 showed the geometry of the deformed blade. The blade deforma-
tion is described by twist © about the elastic axis, bending deflection xg
and z, of the elastic axis, and rotations of the section ¢, and ¢, due to
bendlng The pitch angle 6, incluging perturbations, is implicit in the ,
j, and k coordinate system; 1 and k are the principal axes of the blade with
no bending, but now 1nclude the blade elastic torsion and rigid pitch motion.
The XS axes (1XS’ %8> kXS) are the section principal axes and elastic axis
of the deformed blade, 1nclud1ng both torsion and bending. The tangent to the
deformed elastic axis is JXS. From section 2.1.2, the rotation of the cross
section by ¢4 and ¢, is related to the bending as follows:

7 T ' e 1 Y - T _ Ty
¢X1 + ¢Zk = (zO - xoe )i (xo + zoe Yk = (Zol xok)

The blade position, relative to the root, is ‘then

F=(r+r)3 +x1+2zk+ xi.. + zk
r r+r )]+ x 1+ oz xigo + zkyo

fl

(r + r, + x$, - z¢X)§ + (xoz + zof) + xi + zk

The perturbation of the radial position, r, + X¢, - zdy, will be neglected
since it is much smaller than the radial position r.

The blade pitch angle 6 1is the angle of the major principal axis of the
section (x axis) measured from the hub plane. The pitch is composed of the
root pitch 6°(y) (the blade pitch at the pitch bearing, r = rpp, due to con-
trol commands, control system flexibility, and kinematic coupling); the
builtin twist 6,(r) (where etw(rFA) = (0); and torsion about the elastic
axis 0g(r,y) (where 6g(rpp,¥) = 0; only 6, produces shear stress in the
blade). The blade shank inboard of rpp does not have the root pitch 6° or
the elastic torsion 6g,. Thus the blade pitch is

0° + 0.y, + O, » r>r

e FA

= ° —
0 6 s Y rFA
Gtw N Tr < rFA
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The commanded root pitch angle is defined as 6¢ = ecbll + 6cone Here 6.4511
is the trim value of the collective pitch, which may be large but is assumed
to be steady in time; 6.,, is the perturbation control input (including
cyclic to trim the rotor), which is time dependent but is assumed to be a
small angle. The blade root pitch commanded by the control system is 6€; 6°
is the actual root pitch. The difference (8° - 6%) is the rigid pitch motion
due to control-system flexibility or kinematic coupling in the control system.
Hence the blade pitch may be written as

o c
(ecoll + etw) + (87 - 67) + econ + ee ’ > Tep
= ° = ° . ¢ =
6 =40 ecoll + (8 67) + Gcon R r rFA
etw ’ r < rFA

The pitch angle © may now be separated into trim and perturbation
contributions:

em + 6 s r > Tpa

- ° Ao -
6 =46° + 6° , r = Trp,
em ’ r < rFA

where the trim terms are (as above)

ecoll + etw > T 7 Tpp
m"Y%011 ¢ T T Tma
etw s T < Tpa
and the perturbations are
(6° - 8% + 8eon t e > r > oo,
8 =4 8° = (8° - ec).+ econ . L
0 s r < Tpa

The trim value of the pitch 8, 'is composed of Bcoll and 64y it is a large
steady angle. " The perturbation of the pitch angle 6 1is composed of the
blade motion terms (8° - 6°), 8cons and 6.3 all are small angles, so 6 is
small. For the rigid pitch degree of freedom, the notation p, is used where

= A% = o _ pC
Po = © (9 %) + econ
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(The notation P, is chosen to be consistent with that for the modal expan-
sion of the elastic torsion 60, described below.) Note that Po 1is the
total rigid pitch motion of the blade, including the control angle 6.,

2.2.3 Coordinate frames- Table 1 summarizes the coordinate frames used,
and the axis rotations between them. The unit vectors of the B system are

T . > N >
ig = sin wmls - cos wngs
T _ T . T
JB—<wsw£84-mnwﬁs
> Lo
kg = kg

Between: the B system and the blade system, there are the following rota-
tions: first, Bg + SFA - 5FA about 1B, and yYg - 6FA3 about KB’ then ©
about jgp. Hence the un1t vectors ‘are

1= COS_GYB - sin GKB + ?B[(Bq + GFAI.— SFAZ)sin 8 + (ws - SFAS)cos 8]
k = sin GTB + éos GKB + ?B[—(Bé + GFAi -8 A Jcos 6 + (ws - GFA3)sin 8]
FRE T P A GFAs)zB *(Bg* Oy T SFAZ)KB
The unit vectors of the XS are
zks =1+ ¢zg
gxs 5'3 - ¢z; + ¢x§ = ? + (Xo; + ZOE)'
KXS - K - q)xE]> |

For the undisturbed blade system, the rotations by Bg and yg are
dropped, and also the pitch perturbations in 6. Hence the unit vectors are

T

g . > e
i, = gos.emlB sin Gka + JB[(GFA1 FA )sin 6 GFA3 cos 6]
> a7 > T _ .
kp = sin GmlB + cos eka + JB[ (GFAl FA )cos 0 6FA3 sin em]
T _7 52 BN
Jo=Ip ¥ Sma st Cpa ~ Opa)p
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TABLE 1.~ SUMMARY OF COORDINATE FRAMES

Coordinate frame

/

S system Axis rotations

nonrotating, hub
plane frame

wm - 90° about KS (shaft rotation)

B system

rotating hub plane

A

frame, mth blade Ba about IB (gimbal)
G about FB (gimbal)
H system ‘\\\\\\\\\\\ ws about ﬁB (rotor speed perturbation)
hub frame 4,,1/”///r ,
2>
SFAI about iy (precone)
FA system
blade inboard 3
elastic axis I//////’///,ﬁ:sFAz about ipa (droop)
-
—SFAs about kpy (sweep)
EA system
blade outboard ,
elastic axis — > .
8 about Ipa (pitch/torsion)
-SG about ?EA (gimbal)
Blade system
principal axes,
including torsion 5
¢x about 1 (bending)
->
XS system ¢Z about k (bending)

principal axes,

/

including torsion
and bending

Now since the blade motion (8, Bas and'ws) is small, the blade system unit
vectors can be expanded in terms of those of the undisturbed frame:

]

+ - i g _ Ro - . no -
=1, -8k, + JB‘[BG §° (g, = Spa)1sin © + [ + 8°(p, = 8p lcos el

i
=¥
+
a2
ey
+

K 8° (s 8., Vlcos 8 + [, + 6°(8 8 in 6
(Opp, = Opa ) lcos b ¥ 8%(8py = Opy )sin Bf
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It follows that

> > > > o > > > - >
(21 + 2 k) = (x i, + z k) +8(z,1 ) - x k) + JB‘[wS + 0 (GFAZ - GFAk)]iB

He
¥

- [Bg - eo(‘SFA3 - GFAS)]kB ,' (x1, + 20K,)

which is an expansion of the bending/torsion deflection of the blade in terms
of the undisturbed axis system.

2.2.4 Blade position, velocity, and acceleration- The distance from the
gimbal to a point on the blade section is
ey T 7 > 7 >
FAkH - Xp FA(JFA JEA) +rj +x1+ zok + Xlgg + szS

which may be written:

> _ >

e
r = 1p(xp, = 2zpag - rFAﬁFA )+ 3p(zpBe = Epalg)
-5

+ kB( Zpa + x AeG + rFA FA, ) + rJ + (x I+ 2z k) + (x1 + zk)
=1 6 + ( Yo ]
= igl-xgy = 2p\0q - 1V N 7 T W
: >

+ kB[ Zpa + Xy GG + r(B + SFAI) - (r - rFA)aFAz]

Y 7 > T
+ JB(r + ZFABG - XFAws) + (Xol + zok) + (xi + zk)

The velocity of a point on the blade relative to the rotating frame
(B system) is

-)_i—> —-?- _ . -5 . .
Ve = (dt r)B = TpCzp,be = Thy) + TplepaBe - xpply) + Kylxp, 8, + 1B

- - .o ! - ‘?- - ‘+
(r = )0 [(‘SFA2 8pp Mg + (g = 85y Jkg]
. 4 3 5
+ [(xy + 0T + (2o + 2)KI

- where

IR
"

[ + 0T+ (2 + 2KV I+ 2k )" + b1z, + )1, - (x, + 0K,

Finally, the acceleration of a point on the blade relative to the rotat-
ing frame and neglecting the squares of velocities is
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->
a

d . . . }
r (Et— zr) = _i)B(—ZFAeG - i) + B)B(ZFAB FA"' ) +E (XFA ¢t r8g)
B

B0 T _ i
= (r -xp))8 [(GFAZ - 6FA,+)]‘B + (GFA3 SFAS)kB]
+ [(x, + 01 + (25 + 2K

[(x, + g)Z + (zo + Z)E]" = (xo?{o + zoﬁo)" + 5[(2o + z)? - (xo + x)f]

The acceleration of the blade is.required with respect to an inertial
frame, specifically, thg S system. The B system rotates at a constant
angular velocity ¢ = Qkg with respect to the S frame. The shaft motion is
composed of linear and angular displacement of the origin of the S frame
(the gimbal point at the hub center of rotation). The acceleration, angular
velocity, and angular acceleration of the S system, with respect to the
nonrotating inertial frame, are

>

. “ > “ o>
2o = H I + ¥0g + kg

—>-—n -+ o =>
Wy = uXIS + ayJS + uzks
3> . o > o >
®, = aXIS + ayJS + uzks

' > >
It is assumed that a,, wgy, and 30 are all small quantities.

The motion of the blade relative to the § frame was derived pre-
viously — the acceleration (a,) and velocity (vy) of the blade. Now the
acceleration of a blade point in inertial space is derived in terms of the
motion of the shaft, the rotation of the rotor, and the blade motion in the
B frame. From the result for the acceleration in a rotating coordinate frame
(the S frame, rotating at rate w,), it follows that

> —>+—> +2—>-+ +—> (-> —>)_’__'>
a=a a X X W _ X
o r,s WoXVyp g T WoX WX 0¥

-> -
where ar,g and vy g are the acceleration and veloC£ty relative to the S
frame. The B system rotates at angular velocity & = QkB with respect to

the S frame. Hence, with  constant and no angular or linear acceleration
of the B frame with respect to the S frame, it follows that

-> - > > >
a = a3 <+ 20Qxr + 5x(§xr)
r,s r
-> > > >
v = v_ + Qxr
t,s r

> >
where a, and v, are the acceleration and velocity relative to the B frame.
Thus,
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-> > - - > = > > > > > > -> - & 3>
=a_ + + + + X
a ot 2, 2§xvr x (§2xr) 2woxvr + Zwox(ﬂxr)v+ mo_(woxr) + o xr

To first order in the velocity and angulaf velocity, this becomes, finally,

> > > > > > > > > >
a = a_ + a. + Zvar + Ox(Qxr) + 2wox(9xr) + 3oxr

The six terms in a are, respectively, the acceleration of the origin, the
relative acceleration in the rotating frame, the relative Coriolis accelera-
tion, the centrifugal acceleration, the Coriolis acceleration due to the angu~
lar velocity of the origin, and Ehe aggular acceleration of the origin. 1In
dyadic operator form, and with & = Qkp, the acceleration is

> _ > - T _ T —>,_ 2+' > > >
a=a +a, +_2Q(JBiB 1BJB)Vr Q (iBzé + JBJB)r

+ zg(iZB’r’ - }*11‘3)30 - (¥x)$c',

To obtain then the total acceleration of the blade, the acceleration is
multiplied by the density of the blade point (dm dr) and integrated over the
volume of the blade. '

2.2.5 Force and moment equilibrium- The equations of motion for elastic
bending, torsion, and rigid pitch of the blade are obtained from equilibrium
of inertial, aerodynamic, and elastic moments on the portion of the blade
outboard of «r:

_ﬁE+ﬁA=ﬁI

where My is the structural moment on the inboard face of the deformed cross
section (so -Mp is the external force on the outboard face); My is the
total aerodynamic moment on the blade surface outboard of r; and My 1is the
total inertial moment of the blade outboard of r. The structural moment Mg
is obtained from engineering beam theory for bending and torsion (section 2.1),
from the control system flexibility for rigid pitch, or from the hub spring
for gimbal motion. Alternatively, Mgy may be viewed as the force or moment on
the hub due to the rotor (so =-Mp 1s the force on the rotor); My is the
inertial moment of the blade outboard of r, about the point ?o(r):

1
- [ [ fe -3mid e
T section

For bending of the blade, enginéering beam theory givés

EZE(Z) =i +mk= Ak OR,

Therefore, the operator (2€xs + ﬁfxs) is applied to ﬁI and ﬁA also. TFor
bending, the moments about the tension center (x = x¢) are required. Then the

desired partial differential equation for bending is obtained from _32M(2)/8r2.
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; » : > >
For elastic torsion, engineering beam theory. gives ‘MrE ?'jXS . ME' So this

same operator is applied to ﬁl and ﬁA. For torsion, moments about the sec-
tion elastic axis (x = 0) at, r are required; also, elastic torsion involves
only the blade outboard of rpa. The desired partial differential equation
for torsion is then obtained from SMr/ar. The equation of motion for the
rigid pitch degree of freedom Po is obtalned from quilibrlum of moments
about the feathering axis, Mpp = eFA . M(rFA) Here M 1is the moment about
the feathering axis (x = 0) at r = Tpp, and. epp is the direction of the
featherlng ax1s, 1nclud1ng perturbatlons due to blade bendlng

e

=+ x Tz -s, Ko+
FA FA o] 0 T, B

i
FA” FA, FA:"B
The elastic restraint from the control-system flexibility gives the restoring
moment about the feathering axis, completing the desired equation of motion.

The equations of motion for the glmbal degrees of freedom Bae and Bgs
are ogtalngd from qulllbrlum of moments about the gimbal, My = ig * M and

= jg * M, where M is the total moment ‘(from all N blades) about the
gimbal point, “in the nonrotating frame.  The equation of motion for the rotor
speed perturbation degree gf freedom Yg is obt§1ned from equilibrium of
torque moments Q = =M, = ks . M, where, again, M is the total moment about
the gimbal point. N

The" total rotor force and moment on the hub (at the gimbal point) are
obtained from a sum over the N blades of F(™ and M(m , the force and
moment due to the mth blade:

Fxj
]
M=
ey
~~
g

Since - ( ) and: M( ) are the forces on the blade, from force and moment :
equlllbrlum of the entire blade, it follows that .

SRS NS i

A I
> (m) > >
M ,+ MA f‘MI ;

The hub force and moment are required in the nonrotating hub plane frame (S
system); the components are defined -as follows (see fig. 6):
F=Hl, + Y]+ Tk

T g T g S
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> <> > >
M= MXiS + MyJS - QkS
Note that M produces the gimbal and rotor speed perturbation motion if those

degrees of freedom are used, but it is also transmitted through the gimbal to
the helicopter body or support.

The aerodynamic forces and moments on the blade are obtained from the
integral over the span of the aerodynamic forces and pitch moments on the
blade section. The forces acting on the section at the elastic -axis are F
F,, and F. (see fig. 10). These are the components of the aerodynamic lift
and drag forces in the hub plane axis system (B frame) — Fy is in the hub
plane, positive in the drag direction; F, is normal to the hub plane, posi-
tive upward; and F, is the radial force, positive outward. . There are also
radial components of Fy and F, due to the tilt of the section by blade
bending; here F, is just the radial drag force. Thus the aerodynamic force
acting on the section at the deformed elastic axis is

X

N > > > >
aero = Falp *+ F kg = Jpdyg + (Fip + F k) + Frixs
~ o T > ~
= FxlB + szB F J
where
F =F ~F[B,+68; -6, +k ¢+ (x1+2zK']

r r z" G FA1 FA

- F L0+ 8, + ?{ (Xol + zoﬁ)']

Finally, M; is the section momegt about the elastic ax1s, positive nose-up.

Thus the aerodynamic moment is My.,qo = aJXS

2.2.6 Bending equation- The equation of motion for blade bending is
obtained from

32 5(2) N 52 +(2) 32 > (2)

ar? ar2 I. ar2
where ﬁ is the moment about the tension center (x = xC) at r and
+(2) : > # _ ??_‘ 2> - - > T
= (11XS + kaS)M = [i1 + kk (xol + zok) jlM

Considering first the blade outboard of rp,, the inertia moment is

> - S -
I f f (rlpxz - rIero)x.a dm dp

M
section

]

1 | L o
J; fl(p =0T+ (x, + 0T+ (g, + DK - [(x, + 51 + zoK]lrl.xZ dm dp
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So

oM _ 7 > > o
3t [J+(X01+zok+xci) ]x.‘£
azﬁ + | > 1 | | '
3—1;2'=Jx a dm - (x1+zk+xci)'x admdp
. ;
‘ ‘ . .
- :[_f(x—‘{+ zl?—-'xcz)vx;‘dm]._
?'*—fi + 21 - (x + 0F - T} k-xk)| 1 -adnd
J,’M‘_r .[(zo z)—xo X.—(Zo-_xo—xc)r a dm dp
Finally,
2%
2. L4 9
LTI B e TS ST R AL

|
J?x’fia* dm +[_r(z;’.> - xk + XC-I-:)-_:]*‘ a dm]
PR > > ! > > '
: S x k- xR T.2
+ [Zol xok - ka) ff j+ a dm dp]
- - ! | - -
- H ' A
{(Xol + zok)= J;f[(zo + Z?l (Xo + x)k

> > > - "
- (zoi - xok - ka)lr] *a dm dp}

1
J'Z dm dp —.f(x-:l? + zk - x_C?L?)xg dm

' The last term in this result — [(XOI + ZOI{))'?]? . ﬁI]" — will be neglected since
it is order (c/R)? smaller than the first term. Including the case r < rpa,

which introduces only an effect of droop and sweep, the result is
323¢2)
_5_;21:___ = ?xfz dm + [J'(Z?L* - XK + XCT:)E). Z dm]v

1
T > >y T, '
+ [(Zol xok ka) ff_] a dm dp]
"G(r”rFA(‘SFAB %Fa, B)f,‘.i"admdp

where &(r) 'is the delta function,:‘that is,_)an impulse at r = 0. The
acceleration due to the shaft motion (with r = er) is '
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$-2, 0 wET - WD, - e
=a, + ZQr(kBt]'*B - ?B§3)$0 - r_J?th_:)*o
So
82M(2) >+ > > > e A + 7 —¥—>'-'>
T2 = mipxa = m(1B B kBlB)aO + 2S2rm(i]3jB)u>0 + mr(lBlB + kBkB)wO

The blade relative acceleration gives
M e _ . . s .
T vanis Jx.r a, dm = ‘k (ZFA G+r1p y+1 (XFA6G+rBG)+ (z 1= x.k)

r .
. > > o _ T _ >
- 8 (xo + XI)l + zok] -68°(r rFA) [GFAB GFAS)lB <6FA2 SFAL*)'I{B]’

The centrifugal acceleration is a=-02 (—{B_{B + ngB)})’ s0
-3 -—)-= 2-) _ _ 2 -
jxa=§ kB[ Xpa ZFAeG FAGFA [(x +x)?+ (z +z)k]’+§2 i r<8 +6 A1 GFA2>
Toa=-2r
Thus
>(2) r 1
§2M N o f- + > 'f ' > > T__T ~ > > P11
Frranie 9) lfzol xok) J om dp +,kakB (zol xok) [6(x01+ zok+ Xcl)]
x l aol +1¢ Yoirm]' - mk BK, + (x 1+2z k+x.1) - 6( yae.
, rpm o X, - x)0irm mkpbky + (x i+z k+x.1 L I

1 ' .
N +
N S -8 i —(6 ) ]f pmdp+6m (6 -8 );
[(FA3 FAS) B FA2 BlJ. FA; "FA. /"B
8 5. Y. |+%
“ral’ra, ” °ra, )8 5™2ra%¢ lerBG
_ 1
) e Vorml! = ) ! - i
Q t[ (xc XI)krm] [(Xck) f pm dp] §(x rFA)(6 21B + 6FA3kB>
Sl N .
xf pm dp +kBm<xFA FAGFA - x; cos % mr< FA, GFAZ)’.

Tra

¥

-> > > '
The Coriolis acceleration is a = ZQkavr, so
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[ &=}
.
[+V)
i

. > > > .
ZQ[—rws - kB . (zoi - xok) ]
> > > - > > > . >, T > e
= 29|kBJB v, + [—<<SFA1 GFAZ)lB + cSFAskB][ rlps kB (Zol xok) ]}

For the Coriolis acceleration due to the radial velocity ?- $r, it is neces-
sary to include the effect of the change in the radial position of the blade
due to bending:

r 1,
>__r 1 7 T Ty - re T
Ar = ig 3 j‘o [(Xol + zok + XIl) (q;s 6FA3>1B + (BG + 6FA1 - GFAz)kB] dp

[
X
i)

|

80
-+ > t >
J"V f(z k)' (zi-—xok—xk)'dp-—(21—xk)
o
-+ > >
[(6 2) ig = FA3 [ Zgy T igt (2,1 - x k - %K)
. > >
FAl - (r A)aFA] 1’) [ (zol - Xok - XIk)
- (r- rFA)‘SFAJ
Then

-5

2) r
32M( > > >y > > >0y > .
o2 = ‘ZISZ(kBm fo (Zol - xok) (Zol - xok - ka) do - kBmBG ~Zpa + iB

v d > > > e o>
. (zol - xok - XIk) + rcSFA - (r~-r, )6 + rBG] - kBmlJ:S[xFA + kB

1 FA FA2
' <> > > v > . >
. (zoi - xok - ka) + ZFAeG + rFABFAg] - ‘(XC- xI)km[rlps + kB

-5

! 1 . ->_ .
. (ZO_J'T - XOK)‘]} - {(zoz - xok - XCK)' f [plps + —1-<>B . (zo? - xok) ]
T

: ' +> > 1 . > -+ >
X m dp} + §(r - rFA) (5FA213 + SFABkB>j; [ptpé + kB . (zol - xok) Im dp
FA

: + > > . . >
+ m(BG + GFAl SFA2>J,><[(201 - xok) + rxpv‘SkB])
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The structural moment (from section 2.1) is
‘82+(2)

g

- v > T _ . Pyuqn
—5r— = [EL T+ B1 KOG 1 - x B
T toatn

+ [(EI K EIZPI)etWee]

Finally, the aerodynamic moment about the tension center (x = Xc) at r, due
to the blade loading acting at the elastic axis at p, is

. 1 .
> > > >
My = f (rlpoo - rIrx o)'XFaero de
r C
! >
= - -
j; (e - o)(F,I; - FKpdo
So
3231 (2)
— A =3F  =ri -1k
ar I gero = 2B x B

2.2.7 Elastic torsion equation- The equation of motion for elastic tor-
sion is obtained from

. .
where M is the moment about the elastic axis at r and

9 9 >

M > 3 M
°ar 'r ar JXS

or

=¥
w

. T e, N
+.[(x01 + zok) M]

The inertia moment is
: 1

W f

T s

1
: > - -+ >
Cm j; f[(p ~r)j + (xo + x)I+ (zo + z2)k -~ (xoi + zok)lr]x.-a> dm dp

> -> >
(x| . ~*¥|__ )xa dm dp
ection °*? - £00

So

g,

1
gl [frme - fosdata
i r
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Thus we have

M
T

_ > -»’—). -r. > 1 ‘—’.dd I+ >,
—-f(xk—zi)-adm--(zc,i-xok)'J;(p—r)famp-(x‘:> zok)
1
> > > Py, _ e
. f(xk - ZI)J *a dm - (xof+ zok) J:f[(zo-i— z)I (xo + x)k
- (zo—{ - on) lrﬁ 2 dm dp

The ordinary differential equation for the kth torsion mode of the mth
blade is obtained by operating with f 1 gk( .)dr, where &, is the elastic

torsion mode shape. It is most convenient to apply this operator at this
point in the analysis:

) :
J; Ek Y dr = f f{g (xk - zI) - J‘ k(zo-i% - xof)"(r - p)dp} 2 dm dr

FA

. .
- f Ek‘(xo—{ + zoic))'_-f(xic) - z"{ﬁ <3 dm + (XOI + zoﬁ)"
TFa

- > - > -
j;f[(zo + z)i - (xo + )k - (zoi - xok)lrﬁ' a dm dp}dr
and the following notation is adopted:

_ik = €kx1-k) = j;‘r ‘Ek(z'o_iy - xo—lz)"(r - p)dp
FA
The acceleration due to the shaft motion gives
' > > > v, > -'-rl  + :
J; 2N -5;- dr = f ka dr(1 g+ kBkB)ao' + 2Q f X rm dr kBjB-' w

FA Tra

1 v
+ f —}Ekrm dr(kBiB - Z k )75

TrA

The blade relative acceleration gives
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1 M 1 1 : :
T N v e
jr. f-;k Py dr = J; ka dr - ~Zpa GlB + XFAeGkB) + f Xkrm dr (—\UslB
FA FA Tra
+ B k) + Y. (xi+zk) md ' & ?i" 2
2KB ] X'k X zok) m dr + [Xk (zol —.xok
FA TrA ,

1 :
+ (GFA3 - GFA) ](r - rFA)e m dr - f Ekele dr

TrA

where Ig = f(xz + zz)dm is the section pitch moment of inertia about the
elastic axis. The blade centrifugal acceleration gives

1 oM 1 1
—L ar = 2L % .3 - ¥ T
j; gk ™ dr Q j; ka dr leFAeG f Xkrm dr kBBG
FA FA TFA
! 1 > > >
2 - ain2 - . . T =
+ fr ’k (cos ] sin< 6)dr j; Xk kBkB (Xol + zok
FA FA

1
s _ > > _ -+ >0
+ xll)m dr f F’k (Xol + zok) kxIm r(xol + zok)

“FA

1 1 -
. <+ - > _ > _ > . e
f (Zol xok XIk)m deldr f Xk [1B(XFA + rFAaFA3>

r e rFA

-+
+ kBr <6]A - SFA2>]m dr

In the centrifugal acceleration, we have néglected a number of terms due to
blade torsion and pitch which are of the same order as the propeller moment,
but which are normally much smaller than the structural moment.
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1
With T = szr om-dp, the structural moment (from section 2.1) is

M '
rE 1 ' pl '
_ 202 12 , Vo 202
- 6T + k20 f om dp + 01281 _Jo! | + e 1p20 J; - dp>

r

+ ' T 7Y . T _ Ty
[etw(EIXPk EIZPl) (Zol xok) 1

Finally, the aerodynamic moment about the elastic axis at r 1is

1 1
o T T e e T s &
MA = J; M Jxg dp + j; [(0 -~ v)] + (Xol + zok) - (Xol + zok)lr]x.Faero dp
So
-
oM 1
A > >
5t - Madxs T Ixs* .‘; —F>aero de
oM >
N i SR S S
ar  Ixs " or Xt T2, A
- > ! e >
- — _ . - " . - :
M&1 (zol xok) j; (o T) (FxlB + szB)dp
and
1 3MrA 1 1
- _ . T I
J; gk 5T dr = j; F’kMa dr + j; XAk (FX1B + FZkB)dr
FA FA FA
where
X, =X k
A" % ¥t

2.2.8 Rigid piteh equation- The equation of motion for rigid pitch is
obtained from M + M =M where
FAE FAI FAA’

oA o= T - >y _ > » ; -
My, = &, M [JFA + (x 1+ 2k) lrFA GFAqu + sFAST] M

5>
and M is the moment about the feathering axis at r = rp,. The inertia
moment is
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=3
[

. >
I Irxz 1' 00 xa dm dr
‘FA

=f f[ )J+(X +x)1+(z +z)k—(xz+zk)] ]demdr
FA
So
1
MFAI = f f {(_zo + 21 - () + 0k - [<6FA2 - SFAu)i + (6FA3 - GFAS)I:B]
r ;
FA | |
- > >y s
x (r - rFA) - (z01 - xok)lrFA_— (ZOI - xok) _IrFA(r - rFA)} a dm dr

) v
f{[—(xo_{ + ZOK)' Ir - SFA ;.')B + GFA KB] °[zo + z)?l’f - (Xo + x)i:
Toa FA 775 W

-

>
- (z1i-xk)|
) SIS

+ (‘SFASB - GFA B> [(z; +Z>I - (x +X)k]’3’ a dm dr

and the following notation is adopted:

> +> > > _ > _
XO = —(Zol - Xok - ka) 4 [<6FA2 FAL})I + (FA3 GFAS)R](r rFA)

> > >
+ (z 1~ x k)| + (z1~-x k)'l (r -r.)
o o rFA o o rFA FA

The acceleration due to the shaft motion gives

1
B _ -> . > &> . -

= —f i o dr(l -I kBkB)ao 2Q j; Xorm dr kBJB W,

FA - FA

1 .

> > > T > >
—J; Xorm dr (kBlB - 1BkB)wo

FA

The blade relative acceleration gives
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. 1
> v o > > . > T
M, = - J; Xom dr - (—ZFAGGJ_B + XFAeGkB) - f Xorm dr (—\pslB + BGkB)

FA TrA

1 1 .
- > > + > > .
- ' . 1 - . 1 - —~ ‘ 2
- .‘; Xo (xol + zok) m dr j; [—X)o (Zol X.Ok ka) +‘X‘I ]em dr

FA FA
1 N ,
. _ ? - > _ "O
+f X [(aFA2 ‘SFAL)IB + <6FA3 GFAS)kB](r rp,)6°m dr
r
TEA S
e
+f 616 dr
*FA

The centrifugal acceleration gives

1 5 1. 1 '
ol Fmdreta % ‘T - 5 2 g - sin?6)
M‘FA Q f Xom dr 1BZFA9G + fr Xorm dr kBBG f GIe(cos 6 sin“ 8)dr

TFA FA TFA
> > > > >
+ J; X, - [KB(XFA + rFAaFA3> + kBr<<SFA1 - aFA2>]m dr + j; X, gy
FA ) FA ‘ '
. g o >y : T _ > 7 v
(Xol + Zok‘+ in)m dr + [SFASYB GFAL_LkB + (Xol + zok) |rFA]

1 1 _
(zoz - XOK) |r f rm dr - f (.Xo;"* + zofz + xIE'T) . I(zo_i> - xoic))_ Ir
FA rFA , rFA )

-1 (zi—xk)'l o~ r [(6 -8 )i +<6 -8 )k:”mdr
FA "o o} rF A FA FA2 FA,+ B FA3 FA5 B

Next, the aerodynamic moment about the feathering axis at ryy 1is
+

1 ‘
> T _ 7 T PN T > o
MA = f MaJXS dr + f T rFA)J + (xol + zok) _ (Xol + zok) Ir XFaero dr
rFA rFA FA

FA

1

So
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where

The aerodynamic and inertial moments about the feathering axis are
reacted by moments due to the deformation of the control system, moments due
to the commanded pitch angle, and moments due to feedback (mechanical or kine-
matic) from the blade bending or gimbal motion. The restoring moment acting
on the blade about the feathering axis is -M,,,, which is given by the product
of the elastic deformation in the control system and the control system stiff-
ness Kqon. Hence : v 1

_ ~°_ N ._ - .
Mcon B Kcon{e econ + :g: KPiqi f KPGBG (els cos lPm _elcs}n”wm??s}

The variables q4 are the bending degrees of freedom (introduced below), so
Kp, 1is the kinematic pitch/bending coupling due to the control system and
i ‘

blade root geometry. Similarly, KPG is the pitch/flap coupling for the gim-

bal motion. For the rigid flap motion of the blade, this - coupling is usually-
expressed in terms of a delta-three (63) angle so that Kp = tan §3. The yg
term is the pitch change due to the rotor azimuth perturbation with a fixed
swashplate. For a rigid control system (XK + o), the rigid pitch equation
of motion reduces to ’

o KW
= 3% .= - - - :
Py T 0 ' econ ‘%d KPiqi KPGBG + (QJS cos lPm ‘ e1C sin wm)ws

con

So, in this limit, P, becomes just the control input, plus the kinematic
coupling terms. : C

Now the control-system stiffness K., is written in terms of the non-

rotating natural frequency of the rigid pitch motion of the blade,‘wo, as

1
K = ‘f I..driw 2
con 6. (o}

TEa

Then the structural pitch moment is
- 2}, _
MFA f IG dr s Vo econ + ; KPiqi + KPGBG

1g cos wm - 61C sin wm)ws
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N 2.2.9 Blade force- The net force of the mth blade on the hub is
F(m) = FA - i':I’ where T is the force due to the blade at the hub. The iner-

tial force is
1 ‘
§I=ff3dmdr

[¢}

Then the acceleration due to the shaft motion gives

1' . 1 - ..
P [ mardvon [ omardd, - 350, ¢ [ omoadl, - 1000
(s} (&} o

The relative acceleration gives
e ; N N -
_ _-r . > e I
? = f rm dr( 1Blps + kBBG) + f (x01 + zok) m dr
(s] o
The Coriolis acceleration gives

1
- 29 ffizxz dm dr
(o I8 B r

1
=200 . 1 1
= ZQJB[ f rm dr ¢S+ f

o (o]

1 .
T T i
ig (Xol + zok) m dr]

The centrifugal acceleration gives

=
I

o
2 [ @+ 13t an e
(o}

( 1 1 1
_o2d7 - - - _7
Q {1B J(: [XFA + (r rFA)GFAB,]m dr + i J(: m dr g f rm dr w»S
1

- -> -> > -
+ . 3 2
i .E 1B (Xol + zok + xIJ.)m dr}

Finally, the aerodynamic force is

| 1
¥

A f iEaero dr

(o]
1 :
R S
J; (Flp + F ey +F Jpdr

I
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2.2.10 Blade momgnt-- Thg net_ moment of the mth blade on the hub about
the gimbal point is M(m) = Mp - My. The inertial moment is

1
—ﬁ1=ff;x'a>dmdrA
(o}

The acceleration due to the shaft motion gives

1
x I I _ 2 T,
M f rm dr(1 & k 1 )ao+ 2Q J; rém dr ZBJB w,

The relative acceleration gives
1

1
2 > + e T >
| r‘m dr(kB\DS + 1BBG) + '[ (zoi xok) |

1
> e > o
M= f rm dr(ZFAeGkB + XFAeGlB) + j;

1 .
) - -+ > _ % _ T
x rm dr J; e[(xo + XI)l + zok]rm dr 6 [(6FA3 GFA5>1B

FA

1
»
-).
(SFAz - SFAu)kB] J (r - rFA)rm dr
Tra

The centrifugal acceleration gives

1 1 1
> - 2?’ _ _ _ ) g
M= Q 13‘.!: [ZFA + r<SFA:L (r rFA) GFAz]rm dr + f r’m dr BG + f kB

[¢} (o}

. 1 .
> ~o -> > -
. (xoz + sz + XIZ)rm dr + j; ekB . (Zol - xok - ka)rm dr

: 1
- ~° - —
6 <6FA3 GFAS) j; (r rFA)rm dr}
FA

u-sing the relation
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Tx[Bx(@xE)] = Px8 8 « T
- _ 2+ e . ->
Q kar kB r
& 2 _—r > . ->
= ~0cr( ip kB r)

Now the Coriolis acceleration is

Txa = 20 [GBx’r*) [rd_ + KB- (zo‘{ - :xoic’)‘] + rKBJ*B . $r}

So

1
> . >, <+ >yl _ _
M= ZQTB{.‘(: [rxpS + kB (Xol + zok) ][ Zpa + rSG + réFA (r rFA)aFAZ

1
_ >0y T, T _ Tyl - -
ka) do rm dr + Jc: iy (zoi xok) [rGFAl B, + (r rFA)GFAZ]m dr

1

1
> > > . > -+ > o
+ j; kB (201 - xok) (XFA + rFAGFAg + ZFAeG>m dr + .‘; kB (Zol - xok) 'kB

X

1
> > o
. (Zol - xok - ka)m dr - BG f [—ZFA + rBG + rGFA

- (= 1),
(o} 2

1
- > ->
+ 1 (zoI - xok - ka)] rm dr}

Finally, the aerodynamic moment is

- 1 > >
M, = f £xb dr
A aero

(o]
1
- ->
-[ (inB - kaB)r dr

R
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2.2.11 Gimbal equation~ Thg equation of motion for the gimbal degrees of
freedom are obtained from the ig and jg components of the hub moment o

IR AL
m

> ++—ﬁ>
Mgs + Mp = My
where ﬁHS is the spring and damper moment at the gimbal, reacting the rotor-

applied moments. The gimbal spring and damper are assumed to be in the non-
rotating frame. Hence

Fag = Lo (KgBgg + Cobog) = Tg(KeBge + Cghoe)

Taking the YS and ?S components of ﬁ, the gimbal equations of motion are

Mo+ CoBoe * RgBge = 0
M+ CByg + KeBgg = O

The gimbal hub spring and damper coefficients may be written:

K =

N
G 2

02 2 _
IOQ (vG 1)

CG =

Nz

.
IOQCG

where I, = jg{rzm dr, and ve 1is the rotating natural frequency of the gim-

bal flap motion.

2.2.12 Modal equaticns- Consider the equilibrium of the elastic, inertial,
and centrifugal bending moments. From the results in section 2.2.6, these
terms give the following homogeneous equation for bending of the blade:

1 '
o o7 T _ o Ty _ 02 T Ty
[(EIzzll + EIXka) (Zol xok) ] Q [J; om dp (Zol xok)]
—§m§~ (z?—x—lz) +m(zi>—x—1:)"=0
o 0 o o
This equation may be solved by the method of separation of variables. Writing

(z.1 - x ) = T(r) eVt

it becomes

1
(EIn™)" - @2 [I pom dp n'] - Pug - ﬁ) - m\)zﬁ> =0
T
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the modal equation for coupled flap/lag bending of"the+rotatingfblade."bIt is
an ordinary differential equation for the mode shape 'n(tr); this mode may be
interpreted as the free vibration of the rotating beam at natural frequeney v.

This modal equation, with the appropriate boundary conditions for a can-
tilevered or hinged blade, is a proper: Sturm-Liouville eigenvalue problem. It
follows that there exists a series of eigensolutions nk(r) of this equation,
with corresponding eigenvalues vkz. The eigensolutions or modes. are orthog-,
onal with weighting function m; if i # k, :

These modes. form a complete series, so it is possible to expand the rotor'
blade bending as a series in the modes:

8

+ > >

2ol - xF = D0 q (0@

: 1=]

Tge anding modes are normalized to unit amplitude (dimensionless) at the “tip:
n()] = 1.

Consider the homogeneous equation for the elastic torsion motion of the
nonrotating blade, that is, the balance of structural and inertial torsion
moments. The results .n section 2.2.7 give

\ 1) o
—(GJee) + Ieee =0

The equation for the torsion motion of a rotating blade, including centrifugal’
forces and some additional structural torsion moments, could be used instead.
For the torsional stiffness typical of rotor blades, these terms have little
effect, however, and the nonrotating torsion modes are an accurate representa-~
tion of the blade motion. Solving this equation by separation of variables,
we write 0, = E(r)el®t go

(GJE") " + IewZE =0

This equation is a proper Sturm-Liousville eigenvalue problem, from which
it follows that there exists a series of eigensolutions £ (r) and correspond-

ing eigenvalues wk2 (k =1, ..., »). The modes are orthogonal with weighting
function Iy, so if i # k,

1
j; Ekiile dr =0
FA
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The modes form a complete set, so the elastic torsion of the blade may be
expanded as a series in the modes:

2]

2 py(0)E, ()

These modes are the free vibration shape of the nonrotating blade in torsion,
at natural frequency wy. The torsion modes are normalized to unity at the
tip 9 gk(l) =

2.2.13 Expansion in modes- The bending and torsion motion of the blade is
now expanded as series in the normal modes. By this means, the partial dif-
ferential equations for the motion (in r and t) are converted to ordinary
differential equations (in time only) for the degrees of freedom.

For the blade bending, we write
> -
(zoi - x k) = (zoi - x k) )ﬂ 9y (t)n (r)

whege nl are the rotating, coupled bending modes defined above and

(zoi - K) im is the trim bending deflection. These modes are orthogonal
and satlsfy the modal equation given above. The variables q4 are the
degrees of freedom for the bending motion of the blade. When the substitution
for the modal expansion is made, the subscrlpt "trim" will be dropped, as that
is all that can be meant by (zO - X k) then.

For the blade elastic torsion, we write

fee]

= p, (£)E, (¥)

where £&; are the nonrotating elastic torsion modes. These modes are orthog-
onal and satisfy the modal equation given above. The variables p4 (i 2 1)
are the degrees of freedom for the elastic torsion motion of the blade. The
degree of freedom for rigid pitch motion is p, = 8° = (6° - 6¢) + 6.on- For
rigid rotation about the feathering axis, the mode shape is simply &, = 1.
Thus the total blade pitch perturbation is expanded as the series:

2 P, ()6, (D)

i=0

The total blade pitch 6 (mean and perturbation) is then
o = em 0= (6 coll %;
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Subscript m on the trim pitch angle is dropped when the substitution for the
modal expansion is made since it is no longer needed to distinguish between the
trim and perturbation quantities.

2.2.14 Fourier coordinate transformation- To this point in the analysis,
the equations of motion and the rotor hub reactions have been obtained in the
rotating frame, with degrees of freedom describing the motion of each blade
separately. In fact, however, the rotor responds as a whole to excitation
from the nonrotating frame — shaft motion, aerodynamic gusts, or control
inputs. It is desirable to work with degrees of freedom that reflect this
behavior. Such a representation of the rotor motion simplifies both the analy-
sis and the understanding of the behavior.

The appropriate transformation to obtain the degrees of freedom and equa-
tions of motion in the nonrotating frame is of the Fourier type. There are
many similarities between this coordinate change and Fourier series, discrete
Fourier transforms, and Fourier interpolation; the common factor is, of
course, the periodic nature of the system. A Fourier series representation of
the blade motion is appropriate for dealing with the steady-state solution.
Here we are considering the general dynamic behavior, including transient
motions; hence the Fourier coordinate transformation is required. This coor-
dinate transformation has been widely used in the classical literature,
although often with only a heuristic basis. TFor example, it has been used in
ground resonance analyses to represent the rotor lag motion (ref. 4) and in
helicopter stability and control analyses for the rotor flap motion (ref. 5).
More recently, there have been applications of the Fourier coordinate trans-
formation with a sounder mathematical basis (e.g., ref. 6).

Consider a rotor with N blades equally spaced around the azimuth, at
¥y = ¥ + mAy (where Ay = 2n/N and the blade index m r?n§es from 1 to N).
Here ¢ = Qt is the dimensionless time variable. Let q'‘™ be the degree of
freedom in the rotating frame for the mth blade, m = 1 to N. The Fourier
coordinate transformation is a linear transform of the degrees of freedom from
the rotating to the nonrotating frame. Thus the following new degrees of
freedom are introduced:

q (m)
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Here B, 1is a collective mode, and Bl are cyclic modea, and BN/Z is“
the reactionless mode. For example, for tge rotor flap motlon, Bo 1is the
coning degree of freedom, while B1ic and B;g are the tip- -path-plane tilt
degrees of freedom. The inverse transformation is

q(m) =B, + %;(Bnc cos my + B _ sin ny ) + B (-1)"

N/2

which gives the motion of the individual blades again. The summation over n
goes from 1 to (N~1)/2 for N odd and from 1 to (N-2)/2 for N even. The
BN/ 2 degree of freedom appears in the transformation only if N is even.
The corresponding transformation for the velocity and acceleration are

-n"

. (m) . . . ° . ‘ b
q Bo'+_§;[(6nc +mng Jcos ny + (B - nB Jsin ny ]+ Bx/2

'ci(m) = 'éo + 2;: [('énc + znéns - nZBnc)cos oy + (éns - Znénc - nans)sin oy ]

By/p G

Note that transformation to the nonrotating frame introduces Coriolis and
centrifugal terms.

The variables BO, Bnc’ an, and BN/Z are degrees of freedom, that is,
functions of time, just as the variables q(m) are. These degrees of freedom
describe the rotor motion as a whole, in the nonrotating frame, while q(nﬂ
describes the motion of an individual blade in the rotating frame. Thus we
have a linear, reversible transformation between the N degrees of freedom
q(m) in the rotating frame (m = 1, ..., N) and the N degrees of freedom
(BO, Bnes Pngs BN/Z) in the nonrotating frame. Compare this coordinate
transformation with a Fourier series representation of the steady-state solu-
tion. In that case, q(m) is a periodic function of yp, so the motions of all
the blades are identical. It follows that the motion in the rotating frame
may be represented by a Fourier series, the coefficients of which are steady
in time but infinite in number. Thus there are similarities between the
Fourier coordinate transformation and the Fourier series, but they are by no
means identical.

This coordinate transform must be accompanied by a conversion of the
equations of motion for q(m) from the rotating to the nonrotating frame.
This conversion is accomplished by operating on the equations of motion with
the following summation operations:

2| =

%. E(...)’ % 2(,,,)(:03 nl,()m, 'I%: z(...)sin nd}m, E(---)("l)m
m m

m m
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The result is equations for the B8, Bncs Bpgs and BN/Z degrees of freedom,
respectively. Note that these are the same operations as are involved in
transforming the degrees of freedom from the rotating to the nonrotating frame.
Since the operators are linear, constants may be factored out. Thus with con-
stant coefficients in the equations of motion, the operators act only on the
degrees of freedom. By making use of the definitions of the degrees of free-
dom in the nonrotating frame, and the corresponding results for the time
derivatives, the conversion of the equations of motion is then straightforward.
Complexities arise when it is necessary to consider periodic coefficients,

such as due to the aerodynamics of the rotor in nonaxial flow (see sec-

tions 2.6.3 and 4.1).

The total force and moment on the hub have been obtained by summing the
contributions from the individual blades. The result is operators exactly of
the form above, for obtaining the total hub reaction in the nonrotating frame
from the root reaction of the individual blades in the rotating frame. The
origin of the summation operation is clear, and the sin Yp ©r cos Yp
factors arise when the rotating forces are resolved into the nonrotating
frame. One may, in fact, view the equation conversion operators in general as
simply resolving the moments on the individual blades into the nonrotating
frame.

The Fourier coordinate transformation is often associated in rotor dynam-
ics with the generalized Floquet analysis. The latter is a stability analysis
for linear differential equations with periodic coefficients. Indeed, there
is a fundamental link between these topics because both are assoc1ated with
the rotation of the system. However, they are, in fact, truly separate sub-
jects — either can be required in the rotor analysis without the other. TFor
example, a rotor in axial flow on a flexible support (or with some other
relation to the nonrotating frame) requires the Fourier coordinate transforma-
tion" to represent the blade motion, but is then a constant coefficient system.
Alternatively, for the shaft-fixed dynamics of a rotor in forward flight, a
single~-blade representation in the rotating frame is appropriate, but there
are periodic coefficients due to the forward flight aerodynamlcs which require
the Floquet analysis to determine the system stability.

For the present investigation, the degrees of freedom to be transformed
to the nonrotating frame are blade bending, blade pitch, and gimbal motion.
The nomenclature for the corresponding degrees of freedom in the rotating and
nonrotating frames are as follows:

Rotating Nonrotating
Bending qim) Béi)’ Béi)’ Béi)’ é};
Pitch/torsion pim) eéi)’ eéi)’ eéi)’ é};
Gimbal BG’ OG BGC’ BGS
Rotor speed Vg Vg
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The notation 8(1) is used for the ith bending mode in the nonrotating
frame. With the modes ordered accordlng to frequency, (1) is thus usually
the fundamental lag mode, and B( ) the fundamental flap mode. Similarly,
6{1) is the ith torsion mode, with 6(0) rigid pitch and the remaining
modes elastic torsion. The collective and cyclic modes (0,1C,18) are particu~
larly important because of their fundamental role in the coupled motion of the
rotor and the nonrotating system. When the transformation of the equations
and degrees of freedom is accomplished, for axial flow there is a complete
decoupling of the variables into the following sets:

(a) the collective and cyclic (0,1C,18) rotor degrees of freedom
together with the gimbal tilt and rotor speed degrees of freedom and the rotor
shaft motion

(b) the 2C,28,...,nc,ns, and N/2 rotor degrees of freedom (as present)

Thus the rotor motion in the first set is coupled with the fixed system, while
the second set consists of purely internal rotor motion. Nonaxial flow
couples, to some extent, all the rotor degrees of freedom and the fixed system
variables, primarily due to the aerodynamic terms; still the above separatlon
of the degrees of freedom remains a dominant feature of the rotor dynamic
behavior.

In this section, only the case of a three-bladed rotor is considered;
thus the collective and cyclic rotor degrees of freedom (0,1C,1S) are the com-
plete description of the rotor motion. The equations are extended to a
general number of blades in section 4. With four or more blades, additional
degrees of freedom are introduced compared to the N = 3 case, while the
two-bladed rotor requires special consideration.

2.2.15 Equations of motion- The elements are now available to construct
the equations of motion for the blade bending and torsion modes in the rotat-
ing frame and to construct the forces and moments acting on the hub due to one
blade. The following steps are required:

(a) Substitute for the expansions of the bending and torsion motion as
series in the modes.

(b) Use the appropriate modal equation to introduce the mode natural
frequency into the bending or torsion equation, replacing the structural
stiffness terms (and for bending also some of the centrifugal stiffness terms).

(¢) For the bending equation, operate with Jg'ﬁk-(...)dr to obtain the
ordinary differential euqation for the kth mode of the mth blade (qp
equation).

(d) TFor the torsion equatlon, operate with J? Ek(...)dr to obtain the

ordinary differential equation for the kth mode of the mth blade (py
equation).
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The result is the equations of motion and hub reactions in the rotating
frame. The transformation to the nonrotating frame involves the following
steps:

(a) Operate on the hub force and moment with 5("'); that is, sum over
all N blades to obtain the total force and moment on the hub.

(b) Find the ;S’ ?s, and ES components of the force and moment in the
nonrotating frame (S system).

S S - S T 7
N (c) Write the shaft motion a,, Wy, and W, 1in terms of the ig, jg, and
kg components in the nonrotating frame (S system).

(d) Apply the Fourier coordinate transform to the equations of motion
and rotor degrees of freedom — operate on the equations for bending and tor-
sion with (l/N)%(...), (2/N)§(...)cos P> (2/N)%(...)sin yp and introduce

the nonrotating degrees of freedom.

Names are now given to all the inertial constants. The equations of

- motion, hub forces and moments, and inertia constants are also normalized at
this point. The inertia constants are divided by the rotor blade character-
istic inertia I, = Jgier dr, and we introduce the blade Lock number

Y = pacR“/Ib. This normalization of the inertia constants is denoted by
superscript *. The rotating equations of motion are divided by Iy; the hub
forces and moments are divided by (N/Z)Ib, except for the rotor thrust and
torque, which are divided by NIy. With this particular normalization, the
forces and moments are obtained in rotor coefficient form.

The resulting hub forces and moments are as follows. (The inertial
coefficients are defined in appendix Al.)

2C f2c.\

H “~ _ ez Fos* g gl

Y 5a Y(oa) 2Mb *h + Sq. kBBIS
aero 1

% _ (% X > 5 (1)
1 _r _ P _ % . .o
Y 5a \sa ZMB Ih E: Sq. kBBIC
aero i

c c
T _ [T Cw e v ok L7 oa(d)
Y oa = Y(ga M, 2 z Sq. gfo
aero 1
2C 2C
= Mx - I FG, +20) - T *(BL - 26,) - S I* NG
Y "sa oa ) .o o %x y o ‘Pgs ac g0 B C1S

B+ By 6D - 2D - 2E g 6D - oD
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2C 2C
Yy ¥ y -1 @, - 20) + I F(B..+ 28, + 2, I¥ T
ca 0a | oro o 'y X o GC GS q 0 B*"1C

¥

zég)) Esp L 1B gé) + 26(1)) + 22 I-. (3(1) + e(l))

c c
Q Q o . (1) LT
Y = Y(oa)aero + 10, + I w + ZIq . }:Sp N B .

- 221 (1)

The gimbal tilt equatlons of motion are

2C
MY % . %k % 2
Yoz T I, CeBoet I (Vg© m Do =0
2C
oy * P 3 % 2 _ -
Y3 + 1 °C7B + I "(v l)BGS 0

o G GS o G

Finally, the equations of motion for coupled flap/lag bending and for elastic
torsion/rigid pitch of the blade in the rotating frame are

1% (4, + gevdy, + v 2q) +201% . g, - p. - 2, 8"
q k  "Sk'k Tk 'k 99,1 qkp q,p,”
g% > ee * ° % . .
+ I ck UV + 1 (B + 8 ) + 21 '1!) - I, (6, -96,+ 28.)
q, % B's qka G qkw q, @ G G G
3 b ) % .e . .. % > e
+ Sq ipzy Sq kB(Xh sin ¢_ =~ ¥y, cos Y ) + Iq . kBaz
k k k M
. N q aero .
. . . A _ .- _ . - K 4
+ qua 1B[(0LX + 2ay)31n wm (ay Zax)cos wm] Y S quo
& e . . . *
I” (p, + g wp +w 2p ) + Z:I . Z:I E:i; . - S q,
Py k s kk k “k P Py Pkp qu Pyt

£ N o+ > .e .e %
+ I 1B¢ - kaa kB(BG + BG) - spk&(eG + 2BG - eG) + SPkOKPGBG

. %* &> o K3 5> e . .
+ S o(elc sin wm 613 cos wm)ws - Spk szh Spk 1B(xh sin wm - ¥, cos wm)

*

oo -‘) .. - ve . . . .
+ kaa ige, kaa kB[(aX + Zay)81n wm (ay 2ux)cos wm]
Mp aero
S SN k2
= ac + [Ipowo gk(rFA)]econ
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Note that the structural damping terms have been included in the bending and
torsion equations, modeled as equivalent viscous damping. The structural
damping parameter gg (equal to twice the equivalent damping ratio) generally
is different for each degree of freedom. The bending and torsion equations in
the nonrotating frame are presented later (section 2.6). (The inertial coeffi-
cients are defined in appendix A.)

The aerodynamic forces required are

2, 1 F_ 13 ﬁr
Sa N Z sin ll)m f e dr + cos lbm f Py dr
m (0] o

2C 1 F 1 F
Y __2 X o _r
ca = N;(COS U}m j; ac dr sin wm -!: ac dr)
S S
ca N = A ac

2C

]
Zro
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o
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M
dgere fl > (Fz+ E}sg d
ac A " *\ac B ac B/t

M
p, aero 1 M 1 [F F
_PyBere “a _f xr oLz )3
ac JZ Ek ac dr - (ac 13 + ac kB XA dr
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2.3 Aerodynamic Analysis

In this section, the aerodynamic forces and moments on the rotor blade
are derived. We shall consider the general case of high or low inflow and
axial or nonaxial flight. The aerodynamic terms in the rotor equations of
motion and the hub forces and moments are obtained for two cases: axial flow,
which involves constant coefficient equations, and nonaxial flow with periodic
coefficients.

The principal assumptions in the aerodynamic analysis are: lifting line.
theory (i.e., strip theory or blade element theory) is used to calculate the
section loading; the order c¢ (rotor chord) terms in the aerodynamic lift are
neglected; the order c3 terms in the aerodynamic moment are neglected; vir-
tual mass aerodynamic forces and moments are neglected; only first-order
velocity terms are retained; and aerodynamic interference effects between the
rotor and support are neglected. The analysis includes reverse-flow and
large-angle effects. The effects of transient inflow changes on the system
dynamics are also included, using an elementary model described in section 2.5.

2.3.1 Section aerodynamic forces- A hub plane reference frame is used for
the aerodynamic forces. All forces and velocities are then resolved in the
hub plane (i.e., in the B system). The hub plane reference frame is fixed
with respect to the shaft; hence it is tilted and displaced by the shaft
motion. TFigure 10 illustrates the forces and velocities of the blade section
aerodynamics. The velocity of the air seen by the blade, the pitch angle, and
the angle of attack are defined as: 0 is the blade pitch, measured from the
reference plane; uyp, up, and up are the components of the air velocity seen
by the blade, resolved with respect to the reference frame; U = (UT2'+ uPZ)l/z'
is the resultant air velocity in the plane of the section; ¢ = tan~! uP/uT is
the induced angle; and o = 8 - ¢ 1is the section angle of attack. The veloc-
ity uwp 1is in the hub plane, positive in the blade drag direction; up 1is in
the hub plane, positive radially outward along the blade; and wup is normal
to the hub plane, positive down through the rotor disk. The aerodynamic
forces and moment on the section, at the elastic axis, are defined as: L and
D are the aerodynamic lift and drag forces on the section, respectively,
normal and parallel to the resultant velocity U; F, and F, are the compo-
nents of the total aerodynamic force on the section resolved with respect to
the hub plane, normal to and in the plane of the rotor; F, is the radial drag
force on the blade, positive outward (same direction as positive wug); and
M, is the section aerodynamic moment about the elastic axis, positive nose-up.
The radial forces due to the tilt of F, and F, are considered separately;
hence F, consists only of the radial drag force.

The section lift and drag are

L = pUzcc

N[

L

pU2cc

T

d
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where U 1is the resultant velocity at the section, ¢ is the air density, and
¢ is the chord of the blade. The air density is dropped at this point in the
analysis while the quantities are made dimensionless by use of p, Q, and R.
The section lift and drag coefficients, cg = cg(a, M) and cgq = cq(a, M) are
functions of the section angle of attack and Mach number:

- = - -1
a = 6 ¢ 6 tan uP/uT

"MTIPU

where Mpyp 1is the tip Mach number — the rotor tip speed QR divided by the
speed of sound. The dependence of ¢y and ¢y on other quantities, such as

the local yaw angle or unsteady angle of attack changes, is neglected. The
radial drag force 1is

M

1
Fr = (uR/U)D = E—UuRccd

This radial drag force is based on the assumption that the viscous drag force

on the section has the same sweep angle as the local section velocity. The
moment about the elastic axis is

Ma —XAeL + MAC + MUS

- _ 1.0 1.2
XA 7 U CCQ +‘2 U<c Cm + MﬁS
e ac

where xp 1is the distance the aerodynamic center is behind the elastic axis,

¢p ~ 1s the section moment about the aerodynamic center (positive nose-up),
ac

and Mpyg 1is the unsteady aerodynamic moment. The effective distance between
the aerodynamic center and elastic axis is

X, Normal flow
X =1

A c
e _<%A +-§) Reverse flow

For the section aerodynamic moment, it is necessary to include the unsteady
aerodynamic terms, which, from thin airfoil theory (ref. 7), are

Mus c? er XAe . , XAe .
P - "33 VBll + 8 — + 16 . + (w + UpW W1+ 4 = sign(V)

Here w 1is the upwash velocity normal to the blade surface .
(w = ur sin 6 - up cos 6), B = dw/dx (mainly, the pitch rate 6), and

V = ur cos 6 + up sin 6. For stalled flow, the unsteady moment is set to zero
(Mys = 0).
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The aerodynamic forces with respect to the hub plane axes are then

Fz =L cos ¢ = D sin ¢ (LuT

1

- DuP)/U

FX =L sin ¢ + D cos ¢

(LuP + DuT)/U

Substituting for L and D and dividing by a, the two-dimensional section
lift-curve slope, and by cp, the mean section chord (which enter the Lock
number Y also), we obtain

Toofy 2o Sa) e
~ac T 2a Yp 2a) ¢
' . E m
RS A I A W
" ac Yp 227 Y1 2a) ¢
m
EE=UU S4 e
ac R 2a ¢
m
ce
M c m
a2 | 2 % 2 ac . _US) c
ac XA U 2a + U 2a + ac) ch

The net rotor aérodynamic forces are obtained by integrating the section
forces over the span of the blade and then summing over all N blades.

2.3.2 Perturbation forces- Each component of the velocity seen by the
blade has a trim term dué to operation of the rotor in its trim equilibrium
state and a perturbation term due to the perturbed motion of the system. The
latter results from the system degrees of freedom and is assumed to be small
when the linear differential equations that describe the dynamics are obtained.
The blade pitch and section velocities are written trim plus perturbation
terms:

6= 0 + 66

=>
Up U + 6uT

Vp T up + Sup

=
up up + GuR

It follows that the perturbations of a, U, and M are
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Sa

- — 2
86 (uT(SuP uPSuT)/U

8U = (uTauT + uPcSuP)/U

M = MTIPGU

and the perturbations of the aerodynamic coefficients are

(similarly for cp and cq). The perturbations of the section aerodynamic
forces may then be obtained by carrying out the differential operation on the
expressions for FZ, Fys Fr’ and M., using the above results to express the
perturbations in terms of &6, Suyp, Sup, and Sug. The coefficients of the
perturbation quantities are then evaluated at the trim state. The results for
the perturbation forces are?

¢ c c c c
6.EE = Uu _iﬁ — U _Eg. Ji.ae +- — EI. Za - da + E&.+ M _fg uTuP
ac T 2a Yp 22 ch v \Y%r 22 Up 2a 2a 2a U

erae + FZPGuP + Fz GuT
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2.3.3 Blade velocity- Now the air velocity seen by the blade section is
considered: the trim velocity, composed of the forward speed, rotor rotation,
and rotor-induced velocity terms; the perturbation velocities due to the rotor
degrees of freedom and the shaft motion, and ‘to the aerodynamic gust velocity.

The rotor is rotating at c¢onstant speed . The velocity of the rotor
with respect to the air is defined in figure 11. The rotor has a steady trim
velocity V in inertial axes and a trim angle of attack ayp of the rotor
hub plane with respect to V. The velocity vector is in the rotor x-z plane,
and opp 1is positive for forward tilt of the disk, producing a component of
V downward through the disk. The rotor wake-induced velocity v 1s assumed
to be uniform over the disk and normal to the hub plane (fig. 11). Following

standard helicopter practice, the rotor advance ratio u and inflow ratio A
are defined as

=
]

V cos aHP/QR

>
[

(v + V sin aHP)/QR

52



The advance and inflow ratios are the dimensionless components of the rotor
velocity in the hub plane axis system. The inflow ratio A is usually small
for helicopter operation; the analysis is applicable to large inflow as well,
however (as would be encountered, e.g., in proprotor operation). The

advance ratio u is zero for hover and axial flow, and u > 0 for helicopter
forward flight. Note that, in body axes, the trim velocity vector is fixed
with the reference frame and would therefore tilt with it. However, for the
rotor and wind-tunnel support analysis, an inertial frame is used, so that
tilt of the rotor by the shaft motion results in a small change in the direc-—
tions of A and Yy as seen in the reference frame.

The rotor-induced velocity is obtained using the momentum theory result:

€

= Uz + 2 [N 2 2
21/1 /Kh + u /Kf

where Uy = U tan ogp. Empirical correction factors «y and k¢ are included
for the effects of nonuniform inflow, tip losses, swirl, blockage, etc., in
hover and forward flight. For the vortex ring and turbulent wake states, this
momentum theory result is not applicable. Thus, if

2 2 2
ue + (211z + 3Ah) < kh

the following expression is used instead:

A= uz + Kth < A, 2

’ h
where Xy =‘VCT/2.

The shaft motion consists of small linear and angular velocity, with
components defined in the nonrotating frame:

0.373u,2 + 0.598y )
- 1.991

-)-_o—} ¢ > e >
Vo = *pls T pdg T 2k
® =43, +a .+ ak
Yo T %%ts O‘yJS‘ %253

The aerodynamic gust velocity has components ug, vgs and wg (longitudi-
nal, lateral, and vertical, respectively) defined with respect to the shaft
axes (fig. 11); these components are the velocity seen by the aircraft and are
assumed to be small compared to QR. The gust components are normalized by
dividing by QR, not by V as is often the practice for airplane analyses.
The aerodynamic gust is assumed to be uniform throughout space. Eventually,
the gust vector will be transformed to wind or tunnel axes (see section 3.1.4),
but shaft axes are used in the development of the rotor equations of motion.
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The result for the trim velocity terms is

= K3 - — ' _)' - -?— .+ L2
U, =t + u sin wm U cos wm[}FAs (z i X k)trlm] + kB (zol xok)trim
+ L ]
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trim 1 2 trim
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Here 6.y, 1s the input cyclic pitch required to trim the rotor. For trim
velocity’, the blade bending and gimbal motion is periodic.. For axial flight,
W = 0, the trim velocities are constant; for nonaxial flow, u > 0, these

velocities are periodic in Y, due to the rotation of the blade with respect
to the rotor forward velocity.

The result for the perturbations of the velocity components and the blade
pitch, due to the rotor and shaft motion and the aerodynamic gust, is then:

Su,

T = (}qx + Yy + VG)Qos wm + (Aay f Xy + uG)sin ¢m + U cos wm(az + ws)

. . s> > >
+ro, + ) + & qkyeny) +uwcos y T q;kyenl)
GuP = (zh - uay - WG) + u cos meG + r(BG + o, sin wm - ay cos wm)

S S T,
+Zq (g n;) + weos ¥ Taq (dpen))

Su

R —(Aux + ¥, + vG)sin wm + (Auy -x t uG)cos wm-ABG— W sin wm(uz f ws)

> . -> _ ,—)-' _ . —>-' _ . -)'
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Finally, the quantities required for the unsteady pitch moment are

u, cos 6 + u, sin 6

V.= up P
= A 7 . +'
. B=26 T~BG + Z q;ig° Ny . , _
= | - : .
w+ upw z piEiV + up > pigiV BGZuR cos 6 + BGU sin wm cos 6

-

+ (a + 9 )ZUR sin 8 - (u + w Ju sin w sin 6 - 2u z é en!

'
i

>, T >
+ Z qi(u sin wmi' ni - uR21- n. ')

2. 3.4 Rotor aerodynamic forces- Combining the expansions for the section
forces and moment in terms of the velocity perturbations, and the velocity in
terms of the motion of the rotor and: shaft, we may obtain the perturbations of
the aerodynamic forces on the blade. These are the blade forces expanded as
linear combinations of the degrees of freedom. Giving names to the aerody-
namic coefficients at this point in the analysis, the results for the required
aerodynamic forces on the rotating blade are as follows.. The aerodynamic
force for rotor bending is ~

> |z _ x> _ T . o - .
.£ nk (ac lB: s k%)dr Mﬁko + Mﬁkui(kax f‘yh + vG)cos wm f (Aay X

+ u )s1n b 1T+ M kc(a + w ) + M 9,z (Gz +¢S)

f Mﬁkx(zh —\pgy ”:WG) + qué(BG + a, sin wm

- oy cos wm) + Mq BG + 2T M & qy + I M 4

KB 94 994

The radial force is

1F
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F
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The aerodynamic force for blade torsion and pitch is

! Ma ! Fx > Fz > >
f gk;zdr—f ;ElB-I-—e;Ek 'XAk_dr
T rFA _

= M u[(Aax+ ¥, VG)COS wm + (Aay - x +‘uG)s1n wm] + M%k&(qé f'ws)

* Mka(az " ws) * Mfkk(zh ) uuy - wG) + Mbké(sc * dx_sln m Tlgy cos wm)

+M B +EM g +ZM q +EZM +p, +TM )
P B G pkqiql pkqiql pkpipl pkpipl

Finally, the aérodynamic hub. forces: and moments are similar to the result for

the blade bending, but with the following changes in the integrands and

notation:

Integrand Coefficient.notation
Flap moment ' rF, M
Torque rFX Q
Blade drag force X H
Thrust F T

Z

Combining the results for the:exapnsion of the aerodynamic forces, and the v
expansions of the velocities, the aerodynamic coefficients can be evaluated.
The coefficients of the degrees of freedom in the aerodynamic forces are con-
stant for axial flow, but for nonaxial flow they are periodic functions of

Ve - (The aerodynamic coefficients are defined in appendix A2.)

2.4 Rotor Speed and Engine Dynamics

The rotor rotational speed degree of freedom (&S) is frequently an impor-
tant factor in rotorcraft dynamics. With a turboshaft engine, the rotor
behaves almost as a windmill. For a powered wind-tunnel model with an elec-
tric motor, the motor inertia and damping can significantly reduce the rotor
speed perturbations. The equation of motion for g 1is given by the rotor
torque equilibrium. We shall examine the extremes of a windmilling rotor and
constant rotor speed and then derive a more general model including the engine
inertia and damping.

For windmilling or autorotation operation, the rotor is free to turn on
the shaft. No torque moments are transmitted from the rotor to the shaft and
no shaft rotational motion is trangmitted to the rotor. The equation of motion
for the rotor speed perturbation (yg) is just Q = 0, or YCQ/ca = 0. 1In
axial flow, there is no spring term in the ¢g equation, so the system is
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first order in ¥5. The rotor aZimuth‘pertﬁrbation Vg 1is defined with
respect to the shaft axes, which also have a yaw angle ®,; thus the rotor
speed perturbation with respect to space is g t 0,

For constant rotor speed, the ¢g degree of freedom and equation of
motion are dropped from the system (i.e., the appropriate row and column are
eliminated from the coefficient matrices). The solution for the rotor speed
perturbation is just ' ¢g = 0, so the rotational speed with respect to the
shaft axes is constant at Q.

Now consider a more general case, including the inertia and damping of
the engine or motor. Any.drive train flexibility.is neglected since it usually
does not have a major role in the rotor dynamics. Thus the engine model used
does not add degrees of freedom to the analysis, it simply includes the engine
inertia and damping in the rotor torque equilibrium. The engine effects are,
of course, amplified by the transmission gear ratio. The equation of motion
for yg 1is then

= - 249 - 2.
Q = ~Iyr % - Qo2

where Iy 1is the engine rotary inertia, rE is the transmission gear ratio,
and Qqp = dQg/dQp is the engine speed damping coefficient. Normalizing as
usual, the equation becomes

_9 2 2
+ rg IE ¢ + Ty QQ =0

where IE* = Ip/NI;, and QQ* = Qu/NIpR. For the windmilling case, IE* and
QQ* are set to zero. For constant rotor speed, the g degree of freedom
and equation are dropped. This model may also treat the engine-out case, for
which there is no engine damping, by settlng QQ = 0.

The engine damping may be related to the engine trim operating condition

by
Q
Q. = BQE ~ k Eo -« Protor
= = = K TTT0T
& BQE QEo rE Qrotor

where « is a constant depending on the engine type. In coefficient form,
then, ,
c
20 % Q

g QQ Y Ga
where is ﬁhé trim rotor torque or power coefficient. This expression is
appllcab%e to a wide variety of engines (refs. 8 to 10). The constant takes
the value . ¢« = 1. for a turboshaft engine (refs. 8 and 9) or for a series d. c.

electric motor,(ref. 10). It takes the value k = 1/(1 - 1) for an induction
electric motor or an armature-controlled shunt d.c. motor (ref. 10; n is the

57



motor.efficiency). For a field-controlled shunt d.c. motor, the only damping
is mechanical or the damping of the load, so 'k = 0 (ref. 10). For a synchro-
nous electric motor, there is a spring on the rotational speed due to the
motor, so the above model is not applicable (ref. 10). Generally, the inertia
of the engine or motor is more a factor in the dynamics than the damping.

A rotor speed governor may be included in the model. For example, inte-
gral plus proportional feedback of the rotor speed perturbation to collective
pitch (neglecting the governor dynamics) gives the control equation:

con _ .
Aeo = Kst + KPws

Note that the integral feedback (Ky # 0) adds a spring term to the rotor speed
dynamics. A governor would be unusual for a wind-tunnel model unless an
actual helicopter was being tested (in which case, a throttle governor would
be more likely). Moreover, the governor has little effect on the rotor
dynamics generally, because it is basically a very-low-frequency feedback
system. The rotor speed governor has a more important role in helicopter
flight dynamics. Thus a more detailed model is given in part II (sectiom 9)
for the governor, as well as for the engine and transmission dynamics.

2.5 1Inflow Dynamics

The aerodynamic forces on the rotor result in wake-induced inflow veloc-
ity at the disk, for both the trim and transient loadings. The wake-induced
velocity perturbations can be a significant factor in the rotor aeroelastic
behavior; an extreme case is the influence of the shed wake on rotor blade
flutter (ref. 11). Therefore, the rotor inflow dynamics should be incorpo-
rated into the aeroelastic analysis. However, the relationship between the
inflow perturbations and the transient loading is likely more complex even
than for the steady problem (nonuniform wake-induced inflow calculation), and
models for the perturbation inflow dynamics are still under development. In-
the present analysis, an elementary representation of the inflow dynamics is
used. The basic assumption is that the rotor forces vary slowly enough (com-
pared to the wake response) that the classical actuator disk results are
applicable to the perturbation as well as the trim inflow velocities.

A contribution to the velocity normal to the rotor disk of the following
form is considered:

GuP = A+ Axr cos wm + Ayr sin wm

Here the perturbation inflow component XA is uniform over the rotor disk,
while the inflow due to Ay, and X, varies linearly over the disk. The inflow
dynamics model must relate these inflow components to the transient aerody-
namic forces on the rotor, specifically to the thrust Cg, pitch moment CMy’
and roll moment CMX.
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2.5.1 Moment-induced velocity perturbations- For hover, the perturbation
inflow 6v(r,y) at a point on the rotor disk may be related to the perturba-
tion of the local disk loading dT/dA by

_ dr/dA

§v = vao

where v, is here the trim value of the induced velocity. This result can be
derived either by momentum theory for the disk element dA (cf. vo==T/2pAv0_
for steady state) or by vortex theory (ref. 12). It is applicable only for
harmonic changes of the blade loading, however, that is, variations occurring
~at a frequency w/Q = n/rev in the rotating frame, where n is a nonzero
integer. )

Assuming a linear variation of the loading over the disk, the pitch and
roll moments give

&M

M
-4 7@% T cos Y + 4 7@? r sin ¢

dar _
dA

It follows that &v also has a linear variation. Furthermore, the moments
involve harmonic (1/rev) loading, so the above result is applicable, and it
gives in coefficient form:
cSCMy GCMX
r cos p + 2 oy r sin ¥
o o

SA = ~2

A

where A, is the trim inflow ratio (see section 2.3.3). This result can be
extended to forward flight following the usual approach of momentum theory.
The mass flow through the differential disk area dA is determined by the
resultant velocity through the disk, so gemerally m = p(V? + v 2)!/2 da.
Then dT = 2m 8v gives

dT/dA

v =
2p VVZ + V02

Thus the inflow perturbation becomes
268¢C 26C

M M
- —_—
2 2 2 2
V ué + Ao V ue + XO

For speeds above transition (p above 0.1 or 0.15), this is approximately

SA = t cos ¥ + r sin Y

ZGCM ZGCM

SA = - ~—E~X r cos y + £ ¢ sin Y
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which may also be obtained d1rect1y from the differential form of the induced
velocity in forward flight (A; = CT/Zu)

2.5.2 Thrust—induced velocity perturbation- Now consider the inflow
changes due to rotor thrust transients. The above relation between &v and
dT/dA 1is not applicable in this case. That relationship is based on low-
frequency variations of a harmonic blade loading (ref. 12). The thrust
changes correspond to low-frequency variations of the mean blade loading, and
thus a different approach is required.

For thrust perturbations, it is possible to simply consider a perturba-
tion form of the hover momentum theory result for the trim inflow,
(CT/Z)I/2 For low-frequency thrust changes then,

BA T
A = 3, Cr =7,

Note that the harmonic loading result would give an inflow change twice as
large, 61 = §Cp/2)A,. The difference is due to the rotor shed wake. For har-
monic loading (such as 1/rev variations due to the moments), there is both
shed and trailed vorticity in the wake, with half the inflow perturbation
coming from the shed wake and half from the trailed wake. The rotor thrust
produces trailed wake vorticity only (i.e., tip vortices), and hence half the
wake influence as the rotor hub moments.

The extension to forward flight is based on the momentum theory result
for the trim inflow:

. CT
A, = u tan o + ———_——
o ,
HP 2yu2+}\02
Then
S§C
53 = 22X sc = T

9Cyp T‘z]/u2+>\2+c Ao/ (2 +;\2)

IR

6C
T
2(ho + Y HZ + 152

(The last approximation is valid for small inflow.) In summary then, the
result obtained for the inflow perturbation due to the unsteady thrust and
moment changes is

6CT ZGCM .ZGCM

§A = - J T cos ¢ 4 ——2— r sin P
2(h + YuZ + 2,2 YuZ + 22 V2 + 1,2
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2.5.3 Lift deficiercy function- Wake effects in unsteady aerodynamic
theory are often represented by a lift deficiency function. Consider the lift
deficiency function implied by the above results. The aerodynamic pitch and
roll moments on the disk may be written:

—ZCM ’ZCM
y y \
ga ga l X
B -8
2CM 2CM Xy
X X
oa/ oa [os

where QS means the quasistatic loading, that is, all moment terms except
those due to the wake. The induced velocity change due to the hub moments is

given above as
A
X
A 2+x2
Y,

Substituting for the inflow changes produces

—2CM
—
ca
2CM

X
ca

where the lift deficiency function C is

1
ga

8 Vuz + Aoz

Thus all rotor aerodynamic hub moments are reduced by the factor C due to
the rotor wake influence, which can significantly affect the dynamic behavior.
For forward flight, the 1lift deficiency function is

1+

C = _____;L__;__
1 + (oca/8u)
and, for hover,
C = 1.

“ T+ (ca/8ry)
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The hover result is, in fact, the same as the low reduced frequency, harmonic
loading limit of Loewy's lift deficiency function (see refs. 11 and 12).
Miller shows that it is a good approximation to the real part of Loewy's func-
tion to at least a reduced frequency of 0.5, although it neglects the phase
shift entirely, of course (ref. 12).

Similarly, the aerodynamic thrust changes can be written:

E?_=(El) 1,
ga ca Qs 4

and the inflow perturbation is

Hence

with the 1lift deficiency function here:

1
oa

2 2
8()\o+ Vu +>\0 ’

For forward flight, this gives the same function as for the moments, while for
hover the thrust changes give

1+

1
oa

1+ 2
16X,

Thus the wake effects reduce the aerodynamic thrust forces by the factor C;
the reduction in hover is not as large as for the moments, however, because of
the shed wake effects for moments.

Typical values of the 1ift deficiency function from the above expressions
are C = 0.8 for forward flight; C = 0.7 for thrust changes in hover; and
C = 0.5 for moment changes in hover. In practice, it is more convenient to
incorporate the inflow influence in the aeroelastic analysis using a differ-
ential equation model rather than a lift deficiency function. The lift
deficiency function is useful, however, in estimating the magnitude of the
wake effects.
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2.5.4 Inflow due to velocity perturbations- Perturbations of the rotor
velocity will also produce a wake-induced velocity change because of the change
of the mass flow through the disk. Consider again the momentum theory result
for the trim induced velocity:

i
2]/52 + (u, + Ai)Z

A

Then, for low-frequency changes of the rotor inplane and normal velocity com-
ponents (u and u,), the induced velocity perturbation is

CT(U5U + A, 0u,)

s\ = -
2 2v3/2
2(u? + A% /2 + Crho

For hover, this reduces to

and, for forward flight,

SA = - —JE-SU - L Guz

2u2 2u3

Including the thrust term, the total perturbation of the uniform induced
velocity component is then

CT
(SCT - —GZ-‘ITO‘Q")— (udu + AOSUZ)

2(x, + VUZ + 252)

The simplest means of incorporating the rotor velocity perturbation terms in
the analysis is to treat them as additional terms in the thrust perturbation.
To complete this expression, it is necessary to identify the velocity pertur-
bations. Since the velocity components are in the shaft axes, the contribu-
tions of the shaft motion and aerodynamic gusts are: Suyx = —ih + ug,

Guy = &h + vg, and Sy, = éh - wg. The shaft angular motion gives no net
induced velocity change because the mass flow through the rotor disk depends
only on the magnitude of the resultant velocity.

SA =

2.5.5 Inflow dynamics model- Considering an inflow perturbation consist-
ing of uniform and linear (1l/rev) components,

SA = A + Ayr cos Y + A,r sin ¢

y
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the analysis above has related these terms to the perturbation aerodynamic
thrust and hub moments on the rotor as:

12 = 0 0

2(2 + YuZ + 2,2)
X
. 0 2 0

U2+>\2

AY

L U2+>\02

This relationship might be generalized to
T-27

3

" where 3A/3L may be a full nine-element matrix. Here we shall consider only
the diagonal terms obtained from momentum and vortex theory. As a further
generalization, a time lag in the inflow response to loading changes can be
included by introducing a first-order time lag term:

> _ 3
A + K»— 5L f
Following reference 12, let T = k(3A/3L), where «k - is a diagonal matrix:

o 0 0

The values K, = 0.85 and Kk, = kg = 0.11 are from reference 13. Refer-
ences 13 and 14 show that these values for the time lag correlate fairly well
with experiment, and also that the lag does not, in fact, have a very important
role in the dynamics. ‘

In summary then, the inflow dynamics model consists of a set of first-

order, linear, differential equations for the inflow variables XA, Ay, and Ay:
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Expressions for the aerodynamic thrust and moment to complete these equations
may be obtained above. It is also necessary to include the aerodynamic

forces due to the inflow perturbations in the equations of motion for the
rotor degrees of freedom. This is an elementary extension of the results of
sectlon 2.3, for, by comparing terms in dup, it is seen that A corresponds
to zh, Ay , and A to ax. Thus, generally, three degrees of free-
dom and equatlons ﬁave been added to the system that describes the rotor
dynamics.

The time lag is not usually an important factor, so the quasistatic model
for the inflow dynamics is generally sufficient. Dropping the time lag terms,
the equations for X, Ay, and A reduce to linear algebraic equations. Thus,
in the quasistatic case, the in%low perturbations do not increase the order of
the system. The wake influence reduces to an algebraic substitution relation,
which, if incorporated analytically, would lead to lift deficiency functions
as derived previously (with large~order systems, it is more practical to.
accomplish the substitution numerically).

An elementary model has been presented for the rotor inflow dynamics.
Such a model has shown good correlation with experiment (refs. 13 and 14), and
it gives the correct low-frequency limit for the lift deficiency function (cf.
refs. 11 and 12). A more accurate model will probably be necessary for some
applications, and a more complex model might be constructed, but further
research in this subject is required before a model becomes available which is
uniformly more valid than that presented here. '

2.6 Rotor Equations of Motion

2.6.1 Inertia coefficients- At this point, the linear differential equa-
tions of motion for the rotor model are constructed. The equations of motion
are in the nonrotating frame, that is, the Fourier coordinate transformation
has been applied to the bending and torsion degrees of freedom of the blade.
For now, only a three-bladed rotor is considered (N = 3); the equations are
extended to an arbitrary number of blades in section 4. Matrix notation is
used for the equations. The coefficient matrices are constructed from the
results of the previous sections (primarily, sections 2.2 and 2.3). The vec-
tors of the rotor degrees of freedom (XR)i shaft motion (o), rotor blade pitch
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input (vg), aerodynamic gust input (g5> in shaft axes), and the hub forces and
moments (F) are defined as:

B(k)
o
(k)
BIC
(k)
BlS
o
F‘coﬁd ) -
NGO % e
1C
X, = v = econ =lv_ -
RO ) > R 1c | > 8 Gl
18 ‘
‘ gcon : o
BGC _IS ] 3 G~
8GS
A
A
X
1
Y 5a
2¢ Txh"
Y sa v
h
e 4
Y ca %y
F = s o =
Y Ga N
2, v
y o
Y Tsa 7]
2C
Note that, in the rotor degrees of freedom xp, the notation B(k) and e(k)

is intended to cover as many bending and torsion modes as the analysis requires.
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The equations of motion for the rotor, and the hub reactions take the
form:

AZXR + AIXR + onR + A2a + Ala = BVR + Maero

F = CZXR + ClxR + COXR + C2a + Cla +~Faer0

Here only the structural and inertial terms are included in the coefficient
matrices; Miero and Faero are the aerodynamic forcing terms. (These inertial
matrices are defined in appendix Bl.)

2.6.2 Aerodynamic coefficients — axial flow- The aerodynamic terms Fpqopq
and M,.,, ©of the rotor equations of motion and the hub reactions are required
to complete the differential equations of the rotor model. They are obtained
by summing over all N blades of the blade aerodynamic forces in the rotating
frame (section 2.3) and introducing the Fourier coordinate transformation for
the blade bending and torsion degrees of freedom as required. '

The case of a rotor operating in axial flow (u = 0) is considered first.
In axial flow, the aerodynamic coefficients for the blade, forces in the rotat-
ing frame are constants, independent of the blade azimuth angle ¢. The
coefficients are also then entirely independent of the blade index (m); hence
the summation over the N blades operates only on the system degrees of
freedom, not on the aerodynamic coefficients themselves (which factor out of
the summation). The result for the required aerodynamic forces is

Miere = Mg T Apxg T A0+ Aja - Bog,

~

X, + C.x. + C

Faero 17R 0"R 1

o +VCOu + DGgs

The coefficient matrices are constant for axial flow (see appendix B2).

2.6.3 Aerodynamic coefficients — nonaxial flow- Finally, the aerodynamic
terms for the rotor operating in nonaxial flow, u > 0, are considered. In
this case, the aerodynamic coefficients of the rotating blade forces are
periodic functions of Y, because of the periodically varying aerodynamics of
the edgewise moving rotor. It follows that the rotor in nmonaxial flight is
described by a system of differential equations with periodic coefficients.

It is possible to express the aerodynamic coefficients of the rotating
blade forces as Fourier series, and then to obtain the coefficients of the
nonrotating equations in terms of these harmonics. The result is rather com-
plicated, however, and, in the present analysis, it would even be necessary to
numerically evaluate the harmonics of the Fourier series. The simplest
‘approach for numerical work with large-order systems is to leave the coeffi-
cients of the nonrotating equations in terms of the summation over the N
blades of the rotor. The summation is easily performed numerically, and it is
found that this form is also appropriate for a constant coefficient approxima-
tion to the system. S
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The required aerodynamic forces again take the form:

M ero AIXR + AOXR + Ala + Aou - BGgs

]

aero ClxR + COXR + Clu + Cou + DGgS

For nonaxial flow, the coefficient matrices are periodic functions of the
blade azimuth angle ¢, = ¢ + mAY (&Y = 2m/N). TFor a three-bladed rotor con-
sidered here, the period of the equations in the nonrotating frame is

AY = (2/3)m (120°). (The coefficient matrices are given in appendix B3.)

2.7 Constant Coefficient Approximation

The rotor dynamics in nonaxial flow are described by a set of linear dif-
ferential equations with periodic coefficients. A constant coefficient
approximation for nonaxial flow is desirable (if it is demonstrated to be
accurate enough) because the calculation required to analyze the dynamic
behavior is reduced considerably compared to that for the periodic coefficient
equations, and because the powerful techniques for analyzing time-invariant
linear differential equations are then applicable. However, such a model is
only an approximation to the correct aeroelastic behavior. The accuracy of
the approximation must be determined by comparison with the correct periodic
coefficient solutions. The constant coefficient approximation derived here
uses the mean values of the periodic coefficients of the differential equa-
tions in the nonrotating frame.

To find the mean value of the coefficients, the operator
27
1
o7 (...)ay
o

is applied to the periodic aerodynamic coefficients (given in section 2.6.3
and appendix B3), resulting in terms of the form:

1

1 ic
cos wm cos Y 2
1.8
—l—f211' 1 sin ¢ W) dy = 1 1 fZW sin 1% o) dp, = 5 M
Mdo NG 2 cos? " NG o | 2 cos? yy e Mo+ 2 22
2 sin? Y 2 sin? Yy e - L y2C
2
sin Y, cos ¥ 2 sin Y cos ¥ 1 M2S
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Here M2C and MBS are the harmonics of a Fourier series representation of
the rotating blade aerodynamic coefficient M:

M(Y,) = M° + 2: M*¢ cos oy + M™® sin g,
n=1

In the present case, these harmonics must be evaluated numerically. The aero-
dynamic coefficient M is calculated at J points, equally spaced around the
azimuth. Then the harmonics are calculated using the Fourier interpolation
formulas:

M° =% 3 M@,)
i J
M =% ? \M(q:j)cos n\pj
s _2 ¥ .
M = 7 2 M(wj)s1n m,()j

3

where Y; = jAY = j(21/J3) (] 1, «.., J). The number of harmonics required
is n=N-1 for N odd and n = N-2 for N even (N is the number of
blades). Good accuracy from the Fourier interpolation requires at least that
J = 6n. Using these Fourier interpolation expressions, the required harmonics
are

MO
1 ¢
2 M cos wj
L 18 sin ¢,
2 1 3j )
== MY,
M° + —%— m2C| I T 9 cos? y, J
J
M° -1 M2G 2 sin? vy,
2 j
% M2S sin wj cos Y,

It follows then that the constant coefficient approximation is obtained
from the periodic coefficient expressions by the simple transformation:

13 1<
3 G uey =3 % L) Mo
m=1 j=]_ J
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The summation over N blades (m =1, ..., N; Ay = 2n/N) for a periodic coef-
ficient is replaced by a summation over the rotor azimuth (j = 1, ..., J;
Ay = 27/J) for the constant coefficient approximation. This is quite conven-
ient since the same procedure may be used to evaluate the coefficients for the
two cases, with simply a change in the azimuth increment. The periodic coef-
ficients must be evaluated throughout the period of ¢ = 0 to 2n/N, of

course; the constant coefficient approximation (mean values only) is evaluated
only once.

With the substitution (1/N) % = (1/3) ? , the results given in appen-

dix B3 for the periodic coefficient matrices are directly applicable to the
constant coefficient approximation as well. '

3. ADDITIONAL DETAILS OF ROTOR MODEL

3.1 Rotor Orientation

The rotor orientation is defined by a rotation matrix between the shaft
axes and a tunnel axis system:

1 i

S T
e =R ¥
Js §~ "otk I
> >
kg kp

The wind-tunnel axis system used has the x axis directed downstream, the

z axis positive upward, and the y axis positive to the right (looking
upstream). The wind-tunnel velocity is then Vip and the components of the
velocity in the shaft axes are

My v
....uz 0

The hub plane angle of attack and yaw angles may be obtained from the follow-
ing expressions:

= -1 2 2

Oup tan uz// Mo My
= -1

byp = tan uy/ux

As examples, we shall consider a helicopter, a propeller test rig, and a tilt-
ing proprotor aircraft in a wind tunnel. :
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3.1.1 Helicopter- For a helicopter rotor in a wind tunnel with a turn-
table, the shaft axes orientation is given by first yaw to the rlght by wT,
then pitch aft by 6. Thus the rotatlon matrix is

CeCw _Cés¢ —Se
RST = S¢ C¢ 0 )
SeC, S¢S,  Co
3.1.2 Propeller test rig- Consider a propeller test rlg that may be yawed
by ¥ (positive to the right), with axial flow for g = * Then,
-S -C 0
Y v

RST = 0 0 1
-C S 0

3.1.3 Tilting proprotor aircraft- The nacelle and rotor of a tilting
proprotor aircraft can be tilted by an angle op, where ap = 0 for axial
flow (airplane configuration) and op = 90° for edgewise flow (helicopter
configuration). It is assumed that the nacelle has a cant angle ¢p (posi-
tive outward in helicopter mode, zero for airplane mode), and that the aircraft
has a pitch angle 6 (positive nose~up). The resulting rotation matrix is

C¢SaC6 + Case -S¢Sd _C¢Sase + Cace
= _ 2 2 g : ol s
RST C¢S¢(l Ca)ce + S¢Sase C¢ + S¢ Ca. C¢S¢(l Ca)39_+:3¢§ace
- 2 2 - _ 2 2 o |
(C¢ Ca + S¢ )Ce + C¢Suse C¢S¢(l Ca) (C¢ qa + S¢‘)SG + §¢SGC9‘

3.1.4 Gust orientation- The aerodynamic gust components are defined with
respect to the tunnel axes (wind axes) for the analysis of the rotor and wind-

tunnel support dynamics. The vector of gust velocities seen by the rotor is
then

where ug 1s positive downstream, vg positive from the right, and wg posi-
tive upward. The rotor aerodynamic forces were derived considering gust com-—
ponents in the shaft axes, g5. The substitution gg = Rgrg into the equa-
tions of motion then transforms the gust components to the tunnel axes.. -
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3.2 Rotor Trim

There are two direct requirements in the dynamics analysis for the trim

solution for the rotor blade motion and rotor performance: first, the trim
>

bending deflection (x,i + zok) is required for the coefficients; second, the
evaluation of the aerodynamic coefficients requires the lift and drag loading
of the rotor blade. The result of this role of the trim solution in the
analysis is that the aeroelastic behavior depends generally on the operating
state of the rotor. The evaluation of the coefficients of the equations of
motion must therefore be preceded by a preliminary calculation of the rotor
trim. The trim solution for the blade motion is periodic in the rotating
frame for the general case of nonaxial flow; for the axial flow (u = 0), the
blade motion is steady in the rotating frame. For the trim blade motion in
the present analysis, only the bending and gimbal degrees of freedom are con-
sidered. It is assumed that there is no unsteady shaft motion, that the rotor
speed is constant, and that there is no torsion/pitch motion (except cyclic
control and any bending/torsion coupling).

In the trim solution, it is assumed that all blades have the same
periodic motion and that the gimbal deflection is constant. The equations of
motion are solved by a harmonic analysis method, which solves the rotating
equations of motion directly for the harmonics of a Fourier series expansion
of the periodic motion. The equations for the blade motion are obtained from
the above analysis, for the bending and gimbal degrees of freedom:

il

1 i3 F
F . . 2 * . * x . > ° .z_ _? -— .__X >
To, (G ¥ 8y + v ) + 23T g g quo ty .‘o. M *\ac 1B T ac Kp 97

k e

It

BGC cos q)' 1 F
IO*(\)G2 - 1) % 2 J % f —Z dr
BGS j \sin wj o

The inertia coefficients are defined in appendix Al, and the aerodynamic
forces are evaluated using the trim velocity components (section 2.3).

After the blade motion calculation converges, the rotor performance is
evaluated, including the mean aerodynamic forces and moments the rotor pro-
duces at the hub (in particular, the rotor thrust and power). In an outer
loop, there can be an iteration on the controls to trim the rotor to some
desired operating state. Possible options include adjusting the collective to
achieve a target thrust or torque, or adjusting collective and cyclic pitch to
achieve a target thrust and flapping or a target 1lift and propulsive force.

For axial flow (u = 0), the trim solution is independent of ¥ (assuming
no cyclic pitch input). The gimbal motion is zero, and the equation for the
blade bending modal deflection reduces to

1
I*vkzqk=1*0+yf n A2 1 - 2k )dr
Gy Gy o
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So, in this case, only the mean blade bending motion is nonzero, and an itera-
tive solution for the blade motion is not required. Furthermore, of the
forces and moments on the rotor hub, only the thrust and torque are nonzero.

3.3 Lateral Velocity

For the development of the aerodynamic analysis of the rotor in sec-
tion 2.3, it was assumed that the trim velocity of the rotor was in the =x-z
plane of the shaft axis system. Generally, however, it is also necessary to
consider a lateral velocity component, thgt is, vy = jg* V. An alternative
would be to rotate the shaft axes until jg -V = 5, but that would imply a
redefinition of the rotor zero azimuth position for every flight state. Such
a redefinition of ¢ 1is not desirable since it changes the values of param-
eters such as control-system phasing, and even the definition of the rotor
degrees of freedom such as tip-path-plane tilt. Hence it is preferable to
directly incorporate the effects of the lateral velocity in the analysis. The
velocity of the air seen by the rotor disk has then three components in the
shaft axes; Uy, poiitive gft; uy_,> positive from the right; and u,, positive
downward (V,i, = Ugig - “ij - uzks).

The incorporation of v into the analysis developed in section 2 is
straightforward. The only influence is on the rotor aerodynamics. In the
trim induced velocity, u2  is replaced by uxz + u.2 (section 2.3.3); this
substitution is also made in the coefficients of the equations for the inflow
perturbations (section 2.5.4). 1In the trim velocity of the blade (sec-
tion 2.3.3), the quantity u cos Y, is replaced by uyx cos Yp - Uy sin Yp,
and the quantity u sin Y by uyx sin yp + Uy cos Yps these substitutions are
also required in the ¢, B, and q; aerodynamic derivatives and in the unsteady
terms of the torsion equation aerodynamic coefficients (appendix A2). Finally,
the quantity ua is replaced by My O + w0, in the perturbation velocity
Sup (section 2.3.3). It follows that lateral velocity u terms are added to
the ay columns (fourth columns) of the aerodynamic matrices AO and CO in
the equations of motion, in a fashion similar to the Uy terms in the ay
columns (fifth columns; see appendices B2 and B3).

3.4 Clockwise Rotating Rotor

The equations of motion for the rotor have been developed assuming coun-
terclockwise rotation of the blades as viewed from above. The equations for a
clockwise rotating rotor are obtained by implementing a mirror-image transfor-
mation consisting of the following sign changes:

(a) Change the signs of the yp, oy, and o, columms of the A and C
matrices.

(b) Change the signs of the Cy, CQ, and Cy rows of the C, ¢, and D¢
matrices. X

(c) Change the sign of the v column of the B and Dg matrices.
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(d) Change the sign of the lateral velocity My o
The degrees of freedom of the rotor remain defined with respect to the actual
rotation direction; for example, blade lag motion is still positive opposing
the blade rotation, and the lateral tip-path-plane or gimbal tilt B8;g is
still positive toward the retreating side of the disk. The mirror-image trans-
formation accounts for the reversals of some components of o, F, and g (which
are defined in the nonrotating system) relative to the counterclockwise or
clockwise rotating rotors.

3.5 Blade Bending and Torsion Modes

3.6.1 Coupled bending modes of a rotating blade- Equilibrium of the
elastic, inertial, and centrifugal bending moments on the blade gives the
differential equation for the coupled flap/lag bending of the rotating blade
(see section 2.2). For free vibration — the homogeneous equation with har-
monic motion at the natural frequency ‘v — we obtain the modal equation for
bending of the blade: :

R '
(EIK")" - Qz<f om dp %‘) - m§§- % - m\)zﬁ> =90
T

Here K(r) = zoz —+§0§ is the bending deflection (mode+shap§),

EI = EI, i1 + EI ykk 1is the bending stiffness dyadic, & = Qkg 1is the rotor
rotatioga; speed ¥ is the natural frequency of the mode, and

Kg = Kpigip + Ky kgkg 1is the hinge spring dyadic. The boundary conditions are:

(a) At the tip (r = R): EIR" = (EIn™)' = 0.

(b) At the root (r = e): ﬁv= ﬁ' = 0 for a cantilever blade; K‘= 0
and EIR" = Ksﬁ' for an articulated blade.

The root boundary condition is applied at the offset r = e to allow for
hinge offset of an articulated rotor or a very stiff hub of a hingeless rotor.
The hinge springs are assumed to be oriented in the hub frame here, but could
also include a component that rotates with the blade pitch; Ky 1is the flap
spring and K;p, the lag spring constant.

This is an eigenvalue problem, a differential equation in r for the
mode shapes n and the natural frequencies v. The equation with the appro-
priate boundary conditions constitutes a proper Sturm-Liouville eigenvalue
problem. It follows that the solution exists — a series of modes ni(r) and
the corresponding natural frequencies v; — and that the modes are orthogonal
with weight m. Hence, if 1 # k, then
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The frequencies satisfy the energy balance relation:

R R
7' (e) Kgn'(e) + f l;ﬁ*"EIK" + 2 f om dp n'2 - m(% - K){l.dr

2 _ e r
R .
f lem dr

e

The modal equation is solved by a Galerkin method. The mode shape is
expanded as a finite series in the functions i(r):

=3 ci?i(r)

We require that each %i satisfy the boundary conditions on ﬁ, then the sum
automatically does. Since a finite series is required for computation, this
is an approximate calculation. For best numerical accuracy, the functions ¥i
should then be chosen so that at least the lower-frequency modes can be well
represented. Substituting this series in the differential equation and
operating with

reduces the problem (after integration by parts and an application of the
boundary conditions) to a set of algebraic equations for ¢ = [ci]:

(A - v2B)e = 0

The coefficient matrices are

e Q2R 1

K 1 1 ‘
) S ' w _EL " Y R Y S .
Aki fk(e) IRT —fi(e) + f [?k —_— —fi + j; pm dp ?k %i mfk kB?. kB] dr

> >
Bki‘.‘; mk-fidr

The eigenvalues of the matrix (B™!A) are the natural frequencies v2 of the
coupled bending vibration of the blade, and the corresponding eigenvectors 3
give the mode shape %. As a final step, the modes are normalized to unity at
the tip: [W(1)| = 1. '

A convenient set of functions for f; are the following polynomials
(ref. 7):

fn _ (o + 2)6(n + 3) Xn~i—1 B n(n;- 3) Xn+2 + n(n6+ 1) xn-i-3
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where x = (r -~ e¢)/(1 - e). For a hinged blade, £, = x is used. The poly-
nomials satisfy the required boundary conditions but are not orthogonal func-

tions. For the hinge spring term in Ap; (articulated blades only), note that
fr(e) = 0, except for the first mode where fi(e) =1/(1 - e).

3.5.2 Articulated blade modes- For an articulated rotor blade, the modal
differential equation need not be solved if the higher bending modes are not
required. Rigid lag and flap motion about the hinges gives the two lowest

frequency modes:
> (I 2);
Mag = 1-e JB

> r- ef >
n =l )1
flap 1 - eq B

Note that separate hinge offsets may be used for flap and lag motion. The
natural frequencies are obtained directly from the energy balance relation:

1
ez"; nmdr-l-KL

2 %
Vlag 1
(1L - el) f n2m dr
o)
1
ec f nm dr + KF
°f
2 =
vflap 1+

1
(1 - ef) f nm dr
°f

3.5.3 Torsion modes of a nonrotating blade- Equilibrium of the elastic
and inertial torsion moments (see section 2.2) gives the modal equation:

(GIE")' + Ieng =90

with the boundary conditions &' = 0 at the tip (r = R), and & = 0 at the
pitch bearing (r = rFA)’ The modes are orthogonal with weight Ig. Hence,

if 1 # k, then
R
f i6klg = O
r

FA
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The frequencies satisfy the relation:

R
f GJE'2 dr
r
w2 = —L
2
J: Ieg dr
FA

These are nonrotating torsion modes, so the solution is independent of
the rotor speed or collective pitch. The equation is solved by a Galerkin
method. Writing £ =2 cif;(r), where the functions £; satisfy the boundary
conditions on £, and operating with IiF f (+..)dr on the differential equa-

tion produces a set of algebraic equations for ¢ = [ci]:
(A - w2B)C = 0

The coefficient matrices are

1
_ 63 .,
Ay = .’; oZr? Tty dr
FA

1
Bki j; I 5 fkf i dr
FA

The eigenvalues of the matrix (B~ !A) give the natural frequencies of the tor-
sion vibration, and the corresponding eigenvectors for ¢ give the modes.
Finally, the torsion modes are normalized to unit at the tip, £(1) = 1.

A convenient set of functions to use for f; 1is the solution for the
torsion modes of a uniform beam:

. r-r
fn = gin ( - %)ﬂ 1—:~;Eé]
FA
These functions satisfy the boundary conditions and will usually be close tu
the actual mode shapes.
3.6 Lag Damper
For articulated rotors, the mechanical lag damper has an important role

in the dynamics. A lag damping term is added to the blade bending equation
of motion (section 2.2):
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T* (ﬁk + gsvqu + vkzqk) + 2 2? * . q

z > T .

Khere 8lag = Cc/IbQ and CC is the lag damping coefficient. The quantity
kg * nj(e) "is the slope of the kth bending mode in the lagwise direction,
just outboard of the lag hinge. The manner in which the lag damping enters
the equation of motion is obtained by a Galerkin or Rayleigh-~Ritz analysis,
The lag damper results in a bending moment at the lag hinge. Thus it is
necessary to evaluate moments at the blade root by integrating along the span,
which has, in fact, been our practice.

3.7 Pitch/Bending Coupling

The kinematic pitch/bending coupling Kp, and the pitch/giﬁbal coupling
i
KPG have a significant role in the rotor dynamic behavior. The definition of

Kp -~ is the rigid pitch motion due to a unit deflection of the ith bending
i

mode: Kp = - d8/dq;. For an articulated rotor, the first "bending' modes
i

are rigid lag and flap motion about the hinges. The pitch/flap coupling is
often defined in terms of the delta-three angle: Kp = tan §3. It is possible
to simply input the kinematic coupling parameters to the stability calcula-
tions if values are available from either measurements or some other analysis.
It is also desirable, however, to be able to calculate the coupling from a
model of the blade root geometry.

Figure 12 is a schematic of the blade root and control-system geometry
considered here, which shows the position of the feather bearing, pitch horn,
and pitch link for no bending deflection of the blade. The radial locations
of the feather bearing and pitch link are rpp and rpy, respectively; the
lengths of the pitch horn and pitch line are =xpy and xpy. The orientation of
the pitch horn and pitch link are given by the angles ¢py + 6,5 and ¢p,.
Control input produces a vertical motion of the bottom of the pitch link and
hence a feathering motion of the blade about the pitch axis. The bending
motion of the blade, with either bending flexibility or an actual hinge
inboard of the pitch bearing, produces an inplane or out-of-plane deflection
of the pitch bearing. With the bottom of the pitch link fixed in space, a
pitch change of the blade results. The vertical and inplane displacements of
the pitch horn (the end at rpy) due to bending of the blade in the ith mode
are :

T LT >y ' _
Az = qip -~ [n;(rp,) = ni(rp,) (rp, = rpy)l

Ax

—qgkp * [y (rgy) = (g (rp, = Tpp)
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The kinematic pitch/bending coupling is derived from the geometric constraint
that the lengths of the pitch horn and pitch link be fixed. The result is

> . > > >
c - (cos ¢p iy + sin Op,kp) « [n(rpy) = ny(rp,) (rpy = o)

Py ~Xpy cos(bpy + O, + ¢p;)

Similarly, for a gimballed rotor, the pitch/gimbal coupling is

= (rpy/%py)cos épp

KPG = cos (§py + 675 + Gpr)

< G)pitch horn horizontal
cos(q‘)PH + 6.5 +.¢PL)

3.8 Normalization Parameters

It has been the practice here to deal with dimensionless quantities based
on the air density, rotor speed, and rotor radius (p, 2, and R). In addition,’
the equations of motion inertia coefficients, and aerodynamic coefficients
have been normalized using the following parameters: Iy, a characteristic
moment of inertia of the blade; cj, the blade mean chord; and a, the blade
two-dimensional lift-curve slope. These parameters have no effect on the
numerical problem. It is essential, however, to be consistent in the defini-
tion of the normalization quantities and the parameters that depend on them.
In particular, the blade Lock number and rotor solidity are defined as

L
pacmR
A e
I
~ Ncm
g mR

The Lock number may be defined for standard air conditions (po), and then
yY(p/py) used in the analysis to account for the actual temperature and alti-
tude at which the aircraft or wind tunnel is operating. It is convenient to
use the rotor solidity as the primary parameter and to obtain the mean chord
from cp/R = on/N.

4. ARBITRARY NUMBER OF BLADES

4,1 TFour or More Blades

In this section, the rotor model is extended to an arbitrary number of
blades. The equations derived in section 2 are for a three-bladed rotor. We
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begin with a consideration of the case of four or more blades. Each rotating
degree of freedom of the blade (i.e., bending or torsion motion) must result
in N degrees of freedom for the rotor as a whole. Thus increasing the num-
ber of blades adds degrees of freedom and equations of motion to the rotor
description. In axial flow, these additional degrees of freedom do not couple
with the collective and cyclic (0,1C,1S) degrees of freedom of the rotor.
Hence the equations in section 2.6 remain valid for rotors with N > 3 also,
and we need be concerned here only with the equations of motion for the addi-
tional degrees of freedom. For nonaxial flow, however, all rotor degrees of
freedom are coupled.

The Fourier coordinate transformation for four or more blades adds the
following degrees of freedom to the collective and cyclic variables for N = 3:

2
82@ =N %n: q(m) cos 2y,

2 .
st N Z q(m) sin 2y

2
Bnc =N % q cos n\bm

2 .
an =N %: q(m) sin ny

Ll gy
By =§ 2 4 D
m
So
q(m) - 8, + z:(snc cos np + B__ sin nwm) + BN/2(~l)m
n

The result for the torsion/pitch modes is similar. The summation over m

goes from 1 to N; the summation over n goes from 1 to (N - 1)/2 for N
odd and to (N - 2)/2 for N even. The By/, and 8y/, degrees of freedom
are present only if N is even. Then there are a total of N nonrotating
degrees of freedom corresponding to each bending and torsion mode of the blade.

These additional degrees of freedom are not coupled inertially with the

shaft or gimbal motion. The bending and torsion equations in the rotating
frame are thus reduced to
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Mi;kaero

% o

I + + + * : . =
qk(qk 8sVcd + Vi %) Z > qup > qup ¥ e

* % .

ka( et Beuiby o) + Z I 5 E I = Spkaiqi

* P, aero X
- S = — *
IE: pkqiqi i ac + Ipowo gk(rFA)econ

The equations of motion in the nonrotating frame are obtained by application
of the following summation operators:

2 ' 2 . 1 m
ﬁ;(...)cos ny o, I\I_zm:("')SIH o, N—;(...)(-—l)

and introduction of the Fourier coordinate transformation as required.

The additional equations of motion for the rotor with four or more
blades are then:

AZXR + AIXR + AOXR = BvR + Maero

The vectors of the rotor degrees of freedom (xR) and blade pitch control
inputs (vg) are:

B N
8 (k)
nc
(k)
B1‘18 o ~
eCOI’!
(k) ne
BN/2 _
XR - @l s VR - econ
9 ns
nc
eCO]II
e(k) i N/z_
ns
(k)
N/z

(The matrices of the inertia coefficients are given in appendix B4.)

To complete the equations of motion, the aerodynamic terms must be eval-
uated. The aerodynamic forces in axial flow still do not couple the addi-
tional degrees of freedom for N > 4 with the shaft or gimbal motion. Thus
the aerodynamic forces for the bending and torsion modes in the rotating frame

reduce to
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aero EM 'Eli+ Zquqi+2M p.Pi
4y ki KPi

M . q, + E M .+ E M . D, + :E: M .

aero :E: pkqiql pkqiql Pkpipl Pkp-pl

Ay

M
Pk 1

Thus the aerodynamic terﬁs for axial flow take the form:

_Maero = AIXR + A2XR

(The matrices of the aerodynamic coefficients are given in appendix B5.)

The aerodynamic forces in nonaxial flow (u > 0) couple all degrees of
freedom of the rotor with each other and with the shaft and gimbal motion.
Then, not only are additional degrees of freedom and equations of motion
involved if N > 3, but the number of blades also influences the equations and
the hub reactions given in section 2.6. Rather than directly presenting the
aerodynamic matrices for the general case of three or more blades in nonaxial
flow, the analysis is extended by means of an observed pattern in the coeffi-
cients. In the nonaxial flow equations in appendix B3, note the repeated
occurrence of the following submatrices:

T 1 ¢, 8, 1
Pp=|2c, 20,2 20,8, =21 ¢y 8]
28, 2C,8; 28,2 28,
o S G 1
pp=lo -2¢5, 2¢,2 |=]2c |to —sl' o
0 -28,2 . 2c;8, 28,

(using the notation Shp = sin nyy; and C, = cos my) . These matrices are a
direct result of the introduction of the Fourier coordinate transformation
(columns) and the application of the summation operators to obtain the non-
rotating equations (rows). The matrix DP arises from application of the _
Fourier transformation to the time derivatives (qj or p;). In the Bg and A
matrices, only some columns of P and DP appear, while in the C matrices
only some rows appear. The extension to an arbitrary number of blades (N > 3)
is then, simply,

‘
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DP

L -7

The constant coefficient approxima

axial flow is derived for N > 4 following section 2.7.

approximation is obtained from the peri
transformation:

nC 0]

tion for the aerodynamic terms in non-
It is found that the
odic coefficient result by the

T 1 1 7
Cy Cn
S, Sn
. i C,Cy . 3 CnCy
ﬁgleM%HE;QMM%)
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So the periodic coefficient results are still applicable to the constant coef-
ficient approximation if the summation over the N blades is replaced by a
summation around the rotor azimuth.

4.2 Two-Bladed Rotor

Rotors with three or more blades may be analyzed within the same general
framework, but the two-bladed rotor is a special case. The rotor with N 2> 3
has axisymmetric inertia and structural properties and hence the nonrotating
equations have constant coefficients in axial flow. In contrast, the lack of
axisymmetry with a two-bladed rotor leads to periodic coefficient differential
equations, even in the inertial terms and in axial flow. Only in special
cases (e.g., shaft fixed, or with an isotropic support — analyzed in the
rotating frame) are the dynamics of a two-bladed rotor described by constant
coefficient equations.

The rotor degrees of freedom in the nonrotating frame are obtained as
usual from the Fourier coordinate transformation. For N = 2, the bending
degrees of freedom are coning and teetering type modes:

Bo =% 3 a™ =1+ ‘M
m

8 =% 2 a™@enm =3 10 - oy
m

The pitch/torsion degrees of freedom Eh and 6, are similarly defined. The
teetering degree of freedom B, which corresponds to the gimbal motion of the
rotor with three or more blades, is also included for the two-bladed rotor.
The teetering motion is defined in the rotating frame; hence (see fig. 9),

m
B = Bp(-D)

0% =0
The special characteristics of the two-bladed rotor dynamics are reflected in

the appearance of the teetering-type degrees of freedom (Bl’ 6,, and Br) s
which take the place of the cyclic (1C and 1S) motions for N > 3.

The bending and torsion equations in the rotating frame, derived in sec-
tion 2, remain valid for N = 2. The rotor equations of motion in the non-

rotating frame are obtained by operating on the bending and torsion equations
with the following summation operators:

3 };:(.. ) and é.};:(.. D (DT
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The equation of motion for the teetering degree of freedom is obtained from
equilibrium of moments about the teeter hinge (in the rotating frame):

“2Mp ¥ Cpby * Kyl = 0
The teetering moment Mp is given by the root flapwise bending moment:

RS DIy
m

where Cp and Ky are the damper and spring constants about the teeter hinge
in the rotating f£ame. In terms of the natural frequency and damping coeffi-
cient, Cp = 2I,0Ct and K = ZIOQZ(vT2 - 1). The hub forces and moments are
obtained by summing the root forces and moments from both blades, as for

N > 3. The equdtions are normalized and the inertia coefficients named in a
manner similar to the N = 3 case (section 2.2). Inflow dynamics and the
rotor speed dynamics are included as for N > 3 (sections 2.4 and 2.5).

The vectors of the rotor degrees of freedom (xg) and the rotor blade
pitch input (VR) are defined as follows for the two-bladed rotor:

[ (k)]
B0

g (k)

. Y

The vectors of the shaft motion (o) and the hub reactions (F) are defined as
in section 2.6. The equations of motion then take the form:

Azx + AlxR + on + Aza + Ala = BvR + Maero

R R

F = CZXR + ClxR + COXR + Cza + Cla + Faero
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(The matrices of the inertia coefficients are given in appendix B6.) Note
that there are periodic coefficients in the matrices coupling the rotor and
shaft motion (&, C, C).

The aerodynamic forces M,.,., and F,.., are required to complete the
equations. The teetering aerodynamic moment is ‘defined as

1 F

zf 2 r dr(-n)"
(o]

m

aero _
ac

2=

The aerodynamic hub forces and moments are definedvas‘for N > 3. The aero-
dynamic forces on the bending modes are

;M

A

=2 [

Mo
Boaero aero

1 o
Mﬁlaero TN :;: quaero( 1).

The definitions of the torsion aerodynamic forces

andMe-aéro ‘are
.. . 1
similar. The aerodynamic forces are then: : :

Mg . .,
eoaero

_Méero'= A x, + AOXR_+ Ao+ Ao - BGgs‘
Faero = CIXR + COXR + Cla + Coa + DGgS

The vector of aerodynamic gust components (gg) is defined as in section 2.6.
(The matrices of the aerodynamic coefficients are given in appendix B7.)

A constant coefficient approximation for the two-bladed rotor may be-
obtained in a manner similar to the N > 3 case. For the aerodynamic forces,
as usual the summation over N blades is simply replaced by an average over
J points around the azimuth:

1 1
1 cos Ym 1 cos wj
¥ | M) =3 20 | My
m sin Yy . | sin wj
-n" 0
L_ _ S, —

Note that all aerodynamic terms involving (-1)® drop in the constant coeffi-
cient approximation. TFor the inertia terms, the mean values of the periodic
coefficients are easily obtained. :

The constant coefficient approximation is not as useful — or as accu-
rate — for the two-bladed rotor as for N > 3. With three or more blades, the
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source of the periodic coefficients is nonaxial flow, hence the periodicity is-
of order u .or smaller. At low advance ratio then, the constant coefficient
approximation may be expected to be a good representation of the correct
dynamics. The two-bladed rotor has also periodic coefficients due to the
inherent lack of axisymmetry of the rotor. This periodicity is large even for
axial flow, and neglecting it in the constant coefficient approximation is -
often a poor representation of the dynamics.

4.3 Single-Bladed Rotor

A single-blade analysis is useful for problems not involving the shaft
motion or other excitation from the nonrotating frame. The only rotor blade
degrees of freedom involved are the bending and torsion motion. The shaft
motion, gimbal motion, and the rotor speed perturbation are dropped from the
system. The hub reactions need not be considered. The single-blade analysis
is, of course, in the rotating frame. The equations of motion for the bending
and torsion modes of the blade are then:

ke . 2 '* .”—‘
qu(qk + gsvqu + Vi qk) + ZZ:quaiqi qkp

_qukfl EYM EYq ;=0

i kp

" Zqp P

% .- . 2 ‘ * . * * . *
I” (p, + g wp, +w “p) + 2: I” .. p. + 2: I pP. = 2: S . q, - 2: S q
P ko TskTk Tk Tk PPy 1 PPy 1 Pyt Ppdy t

"X, g 9 gL

EYM : p -2 M =L w2 (rp )8,
34 kq pkp P, © k*"FA™ con

5. WIND-TUNNEL SUPPORT MODEL

Consider now the aeroelastic model for the wind-tunnel support system.
The rotor support is described by a set of linear constant coefficient differ-
ential equations excited by forces and moments at the rotor hub. The hub
motion produced by the support degrees of freedom completes the description.
Let xg be the vector of the support degrees of freedom and  vg, the vector
of input or control variables for the support system. As for the rotor model,
the vectors of the shaft motion at the hub (a), the aerodynamic gust components
(g), and the rotor forces and moments acting on the hub (F) are defined as:
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The gust components are here in the tunnel axis system (x - downstream, y to
the right, and 2z upward), while the components of o and F are in the shaft
axis system. The equations of motion for the wind-tunnel support then take
the following form:

a2xs + alxs + aoxs = va + ng + aF

and the rotor hub ‘motion is given by the linear transformation:

U.—CXS

The equations are dimensionless, based on p, @, and R. With F in rotor
coefficient form, it is also convenient to normalize the equatlons by dividing
by the characteristic inertia (N/Z)Ib Note that the matrix a may always be
obtained from the matrix c (reciprocity theorem).

 The sophistication required of the description of the wind-tunmel strut .
and balance system and the aircraft or rotor test module depends on the dynamic
problem being studied and also, of course, on the available data from which
the model is to be constructed. Consider, for example, a general model based
on a normal vibration mode descrlptlon of the elastic wind-tunnel support .
system. The displacement u(¥,t) and rotation B(F, t) at an arbitrary point
r are expanded in series of orthogonal vibration modes, with generalized

coordinates qsk(t):
Z (t)& @)

E 9 (t)Yk(r)

> >
u(r,t)

3(¥,t)
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The differential equations for the degrees of freedom qSk are then

e 9

q, t g q. +w?%q ) =Q
Mk( 5 ks, T % s )T e
where M, . is the modal mass and wy, the natural frequency; g5 1is here the
structural damping coefficient for the mode and Qi is the generalized force.

The hub motion is obtained from the mode shapes E and ? at the rotor
hub, o = c{qsk}, where -

> +
1S- Ek
+ >
JS.'Ek Rg
C=lo.. B o2 ...|=]... STk |
S k >
> > 7'k
> -
Jg " Yy
> >
ks.-yk

> ->
Here & and vy are in the tunnel axis system, so Rgr is the rotation matrix
to the shaft axes (see section 3.1): The generalized forces due to the rotor
hub forces and moments are {Qy} = aF, where

me
i
N
iah 4
L]

Generally, Q may also have additional contributions, including mechanical or
aerodynamic damping forces of the form 2 Cqus , support—system control

inputs of form Z bklvs ’ and aerodynamlc gust forces on.the support of the
form E ka 8i- Maklng the equations d1mens1onless and normalizing as appro-

priate produces the required model for the wind- tunnel support.
6. COUPLED ROTOR AND SUPPORT MODEL

The equations of motion have been derived for the rotor and for the wind-
tunnel support. Now these equations may be combined to construct the set of
linear differential equations which describes the dynamics of the coupled
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system. The vectors of the degrees of freedom (x), the control inputs (v),
and the aerodynamic gust components (g) are defined as:

X v u

R R
X = s V= sy g=1V
Xg Vs W

The equations of motion for the coupled rotor and wind-tunnel support model
then take the following form:

A§+A1£<+A0x=Bv+B

2 c8

To derive the coupled equations, recall the results for the rotor equa-
tions of motion and the hub forces and moments from section 2.6:

~ e

Asz + AlxR + AOxR + A2a + Alu + Aoa = BVR + BGgS

F = CZXR + ClxR + COXR + Czu + Clu + Coa + DGgs

and the results for the support equations and the hub motion (from section 5):

a.X +ax +ax

2%s 17s 0"s bvs + ng + aF

C!=CXS

The gust components in the rotor equations are transformed to the tunnel
(wind) axes by the substitution gg = Rgrg. The coupled equations of motion
are obtained by substituting the hub motion (a) into the rotor forces and
moments (F) and then substituting for F into the support equations of
motion. : The following coefficient matrices for the complete system may then
be constructed: : : .

- . -

A2 Azc

A2 = -
L?aCZ a, - aC2c

[ A, ije

A = "
- -

A0 Aoc

A0 = - ~
—aC0 a, 5C0?J
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6.1 Rigid Control System

Frequently, the rotor is modeled as having a rigid control system. This
option requires some restructuring of the equations of motion, for the rotor
equations have been derived assuming that the blade rigid pitch degrees of
freedom are present in the model and that the blade pitch control inputs enter
through these degrees of freedom. A rigid control system is the limit of
infinite control system and blade torsional stiffness. Thus the rotor blade
elastic torsion motion is zero, and the solution of the rigid pitch equation
of motion reduces to

_ ,con .
P, =0 = 2Ky 4yt KPGBG + (8,g cos ¥ = 0y sin Y)Y
1

or, in the nonrotating frame,

(] 0 0
(o] [0}
={%c | - KP], ST I 3 Bac T 1 O1s J¥s
915 B1s , GS “91c
o con 1

(the result for N # 3 is similar). The blade pitch motion in this limit
consists of the control input 6¢°®, feedback of the bending and gimbal motion
due to the kinematic coupling, and a pitch change due to the azimuth perturba-
tion with a fixed swashplate. Thus it is first necessary to account for the
pitch/bending, pitch/gimbal, and pitch/azimuth coupling, which requires only
operations on the columns of A, (as indicated by the above equations). Next
the control matrix B is reconstructed from the rigid pitch columns of A,
since the blade pitch motion becomes a control variable rather than a degree
of freedom. Finally, the equations of motion for the rigid pitch degrees of
freedom may be dropped from the system.

6.2 Quasistatic Approximation
A quasistatic approximation is often used in rotor dynamics to reduce the
order of the system. In the present analysis of the rotor in a wind tunnel,

the quasistatic option is applicable to the inflow dynamics and sometimes to
the blade pitch/torsion degrees of freedom. Let us assume that the equations
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of motion have been reordered so that the quasistatic variables (x,) appear
last in the state vector:

X
X =
X

The quasistatic approximation consists of neglecting the acceleration .and
velocity terms of the quasistatic variables. Thus the equations of motion
take the form: '

All o fx, Al o=\ |all A0l fx Bl
0 * 01 * B v
1 01 00 0
Ay 0{\x, Ay 01 \x, Ag Ag X B

Frequently, the x, acceleration and velocity terms in the X, equations
will also be neglected (Ag1 = A?l = 0). The quasistatic variables now are no
longer described by differential equations but rather by linear algebraic
equations. The solution for X, then is simply

xg = [A80171[B0v — AQ1%; - ADlx, - AQlx]

Substituting for Xy in the x; equations of motion gives then the reduced-
order equations for the quasistatic approximation:

(30 - AL0ADOYTIADT TR, + [A}! - AFOCA3DYIAYLT + % [all - Al0(aQ0)-1Al]x,
= [Bl - A%O(Ago)—lBO]V

The quasistatic approximation retains the low-frequency dynamics of the X
variables. Whether that is a satisfactory representation of the aeroelastic
behavior should always be verified by comparison with the results of the
higher order model.
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PART II. AEROELASTIC ANALYSIS FOR A ROTORCRAFT IN FLIGHT

An aeroelastic analysis for a general two-rotor aircraft in steady-state
flight is now developed (fig. 13). The rotorcraft to which the analysis is
applicable include single main-rotor and tail-rotor helicopters, tandem-rotor
helicopters, and side-by-side or tilting proprotor aircraft. Section 7
describes the rotorcraft configuration considered. 1In section 8, the equa-
tions of motion for the helicopter fuselage are derived, including both rigid
body and elastic motions of the aircraft. The aerodynamic forces of the
aircraft wing-body, horizontal tail, and vertical tail are included. A simple
model for rotor-fuselage-tail aerodynamic interference (trim and perturbation)
is developed. The rotor model used is that developed in part I; extensions
of the model required for the helicopter in flight (principally in the inflow
and transmission models) are developed in section 9. Finally, in section 10,
the rotor and aircraft body equations are combined to construct the equations
of motion for the coupled system. The analysis for the side~by-side or tilt-
ing proprotor configuration is simplified if complete lateral symmetry is
assumed in both the aircraft and the flight state. 1In that case, the longi-
tudinal and lateral motions separate, allowing the solution of two lower order
problems. '

7. ROTORCRAFT CONFIGURATION

The rotorcraft configuration features that have a major role in the
dynamic behavior are the aircraft velocity and orientation and the position
and orientation of the rotors. The aircraft flight path is usually specified,
and by a trim calculation in which zero net force and moment on the aircraft
are achieved, the contiol positions and aircraft orientation are determined.
The orientation and position of the rotors are fixed geometric parameters.

7.1 Orientation

7.1.1 Flight-path and trim Euler angles— The aircraft flight path is
specified by the velocity magnitude V and the orientation of the velocity
vector with respect to earth axes. The velocity vector has a yaw angle {pp
(positive to the right) and a pitch angle Opp (positive upward). Thus the
climb and side velocities of the aircraft are Vgiimh = V sin bpp and
Vgide = V sin yYpp cos Opp. The aircraft attitude with respect to earth axes
is specified by the trim Euler angles, first pitch Opp (positive nose-up),
then roll ¢pp (positive to the right). Airplane convention is followed here
for the coordinate systems — x positive forward, y positive to the right,
and z positive downward (see ref. 15). Between the earth axes (E system)
and the velocity axes (V system) are rotations VYpp and Opp. Between the earth
axes and the body axes (F system) are rotations Opy and ¢pp. Thus the rota-
tion matrix between the V system and the F system is
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-EGFTCGFPCwFP _CGFTstP CeFTSeFPCwFP
* SeFTSeFP i SeFTCeFP
SeFTS¢FTCeFPCwFP dSeFTS¢FTSwFP SeFTS¢FTSeFPCwFP
Rpy = v C¢FTC6FPSwFP " Copr Vpp " Copp tpp
) CeFTS¢FTSeFP i CeFTS¢FTCeFP
®opp tpp Opp Vpp _SeFTC¢FTSwFP SeFTC¢FiseFPC¢FP
" Sopp Opp Vpp " Sopy Vpp " Sbpy Oy by
" C0py g Opp ¥ CeFTC¢FiCéEg

The trim calculation determines the Euler angles 6py and ¢pp (and, perhaps,
the flight-path climb angle 6pp also). C

> >
The velocity of the aircraft is V = ViV, so the components in the body
axes are

V .
vX = VR_1
a B FV'V
v
Z

The acceleration due to gravity is. E = gﬁE or, in body axes,
. ~-sin eFT

g = ng = gl cos eFT sin ¢FT
CcoSs eFT cos ¢FT

7.1.2 Rotor position and orientation— The rotor hub position is speci-
gied in tge body axes relative to the aircraft center-of-gravity position,

Thub = (x1F + Yig + ZkF)hub' The rotor orientation is defined by a rotation

matrix between the shaft axes (S system) and the aircraft body axes (F system):
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The shaft axis components of the velocity seen by the rotor are then:

_ux v
by ) = Rerfey
M, 0

The hub plane angle-of-attack and yaw angle may then be obtained from

- -1 /2 2
HP tan uz Hx + uy

Q
I

The sign of the lateral velocity uy must be changed for a clockwise rotating
rotor (section 3.5), and if the induced velocity is included, the inflow ratio
is A=y + A,.
z i
For a helicopter main rotor, the orientation with respect to the body
axes is specified by a shaft angle of attack SR (positive for tilt forward)

and a roll angle ¢R (positive to the right). Thus,

™ -
—Ce 0 —Se
RSF = -S¢Se C¢ S¢C6
C.S ] -C C
RO 470

The orientation of a tail rotor is specified by a cant angle ¢R (positive

upward) and a shaft angle of attack SR (positive forward). The tail rotor
thrust is to the right for a counterclockwise rotating main rotor and to the
left for clockwise rotation. Thus the definition of the tail-rotor shaft axes

depends on the main rotor rotation direction. Let er be +1 for a

counterclockwise rotating main rotor -1 for clockwise rotation. Then the
rotation matrix for the tail rotor is
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—Ce erC¢SS S¢Se

RSF = 0 S¢ erC¢
L% erCq)Ce -S¢Ce

The nacelle and rotor of a tilting proprotor aircraft can be tilted by an
angle o,, where o, = 0 for axial flow (airplane configuration), and
= 90° for edgewise flow (helicopter configuration). The rotor orientation
is also described by a cant angle ¢p (positive outward in helicopter mode,
zero in airplane mode) and a pitch angle 6y (positive nose upward), which is
the angle of attack of the shaft W1th respect to the body axes when ap = : 0.
Thus the rotation matrix is

: - ) k .
F —C¢Sace - CdSe | ) —S¢$a | | C¢SuSe f CaCe
- |- Lag 2 g2 L
Rep C¢S¢(l ¢ )C, 845456 c2 + s2c, C¢S¢(l C)S, - 5454C6
o 2 2 _ _ Y, 2 _
1 (C¢Cq + 82)Cy = €8 S, C,S, (L. - | c) (C¢Cu +53)55 = C,8 . C

The rotor hub location ?hub for the tilting proprotor aircraft is

defined by the pivot location %biﬁot and the mast height -h, so that

- ’ é _ -
(C¢Ca_+ S¢)Ce C¢Sase

Ry
v

hub ~ “pivot +h _C¢S¢(l a)

_¢p2 2 _ '
i (C¢Ca + S¢)Se C,5,Cq

-

7.1.3 Gust orientation— The aerodynamic gust components are defined with
respect to the wind axes for the analysis of the rotorcraft in flight. The
vector of gust velocity seen by the aircraft is

e
g={v

where ug 1is positive downward, vg is positive from the right, and wg is
positive upward. The aircraft aerodynamic forces are derived for gust com-
ponents in the body axes, gp. Hence the transformation gp = Rpyg is
required. The rotor aerodynamic forces were derived considering gust com~
ponents in the shaft axes, gg. The substitution gg = Rgg, where

96°



into the equations of motion then transforms the gust components to the wind
axes.

7.2 Pilot Controls

The control variables included in the rotorcraft model are collective
and cyclic pitch of the two rotors, engine throttle 8¢, and the aircraft
controls (wing flaperon angle &g, wing aileron angle §,, elevator angle &,
and rudder angle §,). The control vector is thus:

T; con,con, con wncm1am
voT ‘[(eo %1c %1s )l(eo 1C 06888848 ]

The pilbt controls, however, consist of collective stick &, (positive upward),
lateral cyclic stick &, (positive to the right), longitudinal cyclic stick
8g (positive forward), pedal 8p (positive yaw right), and throttle lever &¢:

)

8

v, =§F &
s

)

)

A linear relationship between the control inputs of the pilot and the rotor
and aircraft control variables is. assumed:

v = TCFEVP + v

where v, 1is the control input with all sticks centered (vp = 0), and TCFE
is a transformation matrix defined by the control-system geometry. This
transformation is required to obtain the aircraft response to the control
input of the pilot. 1In addition, it is the pilot controls that must be
adjusted to trim the rotorcraft. (The control transformation matrices for the
single main-rotor and tail-rotor helicopter, the tandem main-rotor helicopter,
and the side-by-side or t11t1ng proprotor configurations are given in

appendix C.)

7.3 Aircraft Trim

The construction of the equations of motion for the rotdrcraftidynamics"
must be preceded by a trim calculation, which determines the aircraft control
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settings and orientation required for the specified equilibrium flight condi-
tions. Equilibrium flight requires that the net force and moment on the
aircraft be zero, which gives six equations to -solve for the six trim vari-
ables, consisting of four pilot controls and the two trim Euler angles (60,
Sos Sg» 6P, 8y, and ¢pp). This procedure is for level flight (eFP = Q) or

a specified climb velocity. If, instead, the power available is specifiéd,
such as for power-off descent, then an additional trim variable (flight-path
angle Ogp) and an additional equation (the power required equals the- power
avallable) must be included in the trim calculation.

The balance of forces and moments about the aircraft center of gravity
and the balance of power give the trim equations. The contributions to -the
forces and moments are from aircraft weight, aircraft aerodynamic forces, and
hub reactions of the two rotors. In helicopter coefficient form, the force,
moment, and power equations are :
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rotor 1 rotor power available

3 ,
() e

- \o (YNI Q3 ) O |otor 2 o}
The components of the force and moment equations are obtained in the body
axes (F system). Here W is the aircraft weight; and the hub reactions for
rotor 2 are normalized using the parameters of that rotor, hence the factors
accounting for the normalization of the coefficients. The aircraft aero-
dynamic forces are acting on the wing-body (WB), horizontal tail (HT), and
vertical tail (VT). Here L, D, and Y are, respectively, the aerodynamic
lift, drag, and side forces; M, My, and M, are the roll, pitch, and yaw
moments on the wing-body and q is the dynamic pressure. .

A consideration of the aerodynamic interference between the rotors, wing,
and tail is required to accurately calculate the trim state. A simple model
for this interference is used here. The rotor-induced velocity, together
with the aircraft velocity, is used to determine the angle of attack at the
wing and tail. For the horizontal tail, the angle-of-attack change due to the
wing wake is also included. The rotor-induced velocity Aj 1is assumed to be
directed along the rotor shaft (ks) A multiplicative factor on the induced
velocity is used to account for the fraction of the aerodynamic surface within
the wake and the fraction of the fully developed wake velocity achieved. A
further multiplicative factor accounts for the decrease in the wake-induced
velocity away from the wake boundaries (see, also, the discussion of the
perturbation aerodynamic interference model, section 8.2). The angle-of-attack
change at the horizontal tail due to the wing is calculated by

0.45 C

Lus

) 0.735 0.25
[CIER A (I

Ao =

where is the wing lift coefficient; S Lo and c are, respectively,

CLyp w o v ‘
wing area, span, and chord; and f&yp 1is the tail length (ref. 16). Alterna-
tively, all the interference effects could be included in the wing-body,
horizontal tail, and vertical tail aerodynamlc characteristics.

The -trim equations are nonlinear in the control variables, of course.
Thus an iterative solution procedure is required in which the control variables
are incremented in the direction to achieve zero net force and moment, based
on a set of local partial derivatives obtained at the beginning of the trim
calculation by making step changes in the individual control variables. The
solution is considered to have converged to the desired trim state when the
net force and moment are within 'a certain tolerance level.

8. ATIRCRAFT MODEL
The aeroelastic motion of the rotorcraft airframe is described by a set

of linear, constant coefficient‘differential equations, excited by the hub
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reactions of the two rotors. Let xg be the vector of the aircraft degrees
of freedom, vg the vector of the aircraft control variables, and gy the
vector of the aerodynamic gust components. The equations of motion for the
rotorcraft in flight are required in the following form:

a,%_ + a X + ayx_ = bv.S + ngF + aF

and the hub motion is given by

Here F and o are as usual the rotor hub reactions and hub motion in the
shaft axes (8 system):

y —=

=Y

Y Ga

b ——d

(For convenience, only the terms for one rotor are shown, but, in fact, the
interface between the aircraft and the rotor is required at both hubs. The
parameters of rotor 1 are used to make quantities dimensionless and to
normalize the aircraft equations of motion.)

In this section, the aircraft equations of motion are constructed in the
required form. The aircraft degrees of freedom (xg) consist of the six rigid-
body degrees of freedom and the elastic free-vibration modes. The input
variables (vg) consist of the aircraft aerodynamic controls — flaperon,
aileron, elevator, and rudder. An elementary model for rotor-wing~tail
aerodynamic interference is also developed.

A body axis coordinate frame with its origin at the aircraft center of
gravity (F system) is used to describe the motion. Airplane practice is fol-
lowed for these axes — x forward, y to the right, and z downward (ref. 15).
The coordinate frame used is not a principal axis system, however. Moreover,
the airplane practice of aligning the x axis with the trim velocity is not
followed since, for rotorcraft, the hover case (V = 0) must be considered.
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Lateral symmetry of the aircraft inertia and of the aerodynamic surfaces is
assumed; the location and orientation of the two rotors is entirely general,
however.

8.1 Aircraft Motion

8.1.1 Degrees of freedom— The linear and angular rigid-body motion of
the aircraft is defined in the body axes (F system). The linear degrees of
freedom are xp (positive forward), yp (positive to the right), and zy
(positive downward). These variables are dimensionless based on the rotor
radius R. Thus the velocity perturbations are normalized using the rotor
tip speed QR rather than the forward speed V as is airplane practice.
The angular degrees of freedom are the Euler angles Yy (yaw to the right),
6r (pitch nose-up), and ¢y (roll right). Then the linear and angular velocity
perturbations are

—) . LJ ? + L) —?' + ] K

Up T Xplp T YRp T AR

> _ . » —? L

Yp T Re( FIF t Ol * kaF)

where
1 0 -sin eFT
Re = 0 cos ¢FT sin ¢FT cos eFT
I 0 -sin ¢FT cos ¢FT cos eFT ;

. . s . . -
For the elastic motion of the alrcrgft in flight, the displacement u
and rotation at an arbitrary point r are expanded in series of the
orthogonal free vibration modes:

> >
u(r,t)

Y o, F @
k=1 K

§G.0 = ) q 7@
k=1 k

The first six degrees of freedom are the rigid body motions: ds, =+ -+ +» 9sq -

are, respectively, ¢y, 0, Vg, Xp, yp, and zp. The generalized coordinates
ds for k=7 to » are the elastic modes of the aircraft. Orthogonality
implies that the elastic vibration modes produce no net displacement of the
aircraft center of gravity or rotation of the principal axes.
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For the rigid-body motions, the mode shapes are simply
> - ->
£ « . . 56] [(—rX)Re|I]
> <> -
(2 %] - [relo]

. 8.1.2 Hub motion— The linear and angular motion at the rotor hub in the
shaft axes (S system) is then

- -+ > >
Xy 1 g (Tpy) ]
-> > >
Yh Ig Ek(rhub)
> > >
“n | st E ) ‘q }
.. o oo ey
Oy Ys Vi Chup? k
—>.—>(—> )
%y Js * Y% Thup
> > >
'z L ke Y (P .
or
>
57 CThup’Re | Bsr ' - Repbe = - -
o = N XS
RSFRe ‘ 0 ! . . RSFYk . .
= CcX
S

' The total veloc1ty of a point is the sum of the trim and perturbation
velocities, =V + Z: qskgk, in body axes. The rotor equations require the

velocity components at the hub in an inertial frame, however (S system), and
the Euler angle rotations between the body and inertial axes introduce
perturbations of the trim velocity V. So the perturbation velocity becomes

I « > s
d = anV + 2: 9 Ek’ where, in the S system,

k
AL = WO
y y 2
& V = -AQ - o
an ’ X ux Z
Lo +u a
Xy y X

It follows that the (xh,yh,zh) columns of the rotor matrices Al and Cl con—~
tribute to the (ax,ay,u ) columns of A and Co, which: exactly cancel the
existing terms due to the rotation of the inertial axes relative to the
velocity components u and A (see the matrices in section 2.6). The result

102



is that the net angular hub motion columns of Ko and!Eo' are zero for the
Euler angles.

. . A <
Furthermore, the acceleration is u = wpxV + E: A Eko where the second

term is the inertial acceleration due to the rotation of the trim velocity
vector by the body axes angular velocity. The components of this additional
acceleration in the shaft axes system are : ~ ' :

*h bp

> > .
A yh = waV = RSF(—VX)R BF
’h Yr

In summary, the hub motion is o = cxg (where the matrix ¢ 1is given
above), with two exceptions. First, for the Fuler angles, the net (dx,u »0 5 )
columns of the rotoE matrices Ao and C are zero because of the use of body
axes. Second, in o there are addltlonal linear acceleratlon terms due to
the Euler angle velocities, Ad = Txg (where only the upper rlghthand 3x3 sub-
matrix of <€ 1is nonzero). :

8.1.3 Equations of motion and hub forces— Following the usual steps of
airplane flight-dynamics analyses (ref. 15), the rigid-body equations of motion
are obtained by equating the angular and linear acceleratlon to Ehe net moments
and forces on the aircraft: IRy = 2: M and M(ﬁF + waV) *_23 F. 1In terms
of the body axes degre.s of freedom then, including the grav1tat10nal fore -,
the equations are

s\ /0T
RI'R | o5 ) = Q3
v, Q3
Xp by
* *
M Vg M™(VX)R OF
’F Vg
0 ‘ cos eFT 0 ¢F Qﬁ
% _ . . - *
+ M%g cos eFT cos ¢FT, sin eFT sin ¢FT 0 eF Q5
. . *
cos eFT sin ¢FT sin eFT cos ¢FT d wF | ,QG,

Here M . is the aircraft mass (including the rotors) and I, ‘the moment:¢f' o
inertia matrix: : s
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I 0 -1. ]
X XZ
I = 0 I 0
y
~-I 0 I
Xz z
(1 =1 = 0 since lateral symmetry is assumed). The equations are dimen-

SRy vz
sionless and are normalized by dividing by the characteristic inertia (N/Z)Ib
(using the parameters of rotor 1). Thus M* = M/[(1/2)NIp/R2] and

1* = I/{(1/2)NI;]. Note that the grav1tat10nal constant g is also dimen—
sionless based on the acceleration QZ2R,

For the elastic degrees of freedom, since orthogonal free-vibration modes
are used, the equations of motion are simply

M* (a + g w 4+ wlq ) = Q¥ k=17
k s ks ks k ?
k Sk k '

where Mg is the generalized mass, the normalized mass is
ME = M/ [(1/2)N1,/R2)], wy 1is the natural frequency of the mode, and 8s is
the structural damping coefficient.

There are two sources for thé generalized forces Q¥*: the rotor hub
k

reactions and the aerodynamic forces on the aircraft. The genefalized force
due tq tﬂ? rotor hub reactlon is

Q = Ek(rhub) * Fhup + Yk(rhub) * Mp,pe Normalizing Qg by dividing by
(N/2)1y glves then {Qk} = FF, where

~_lz .2 .2 .2 o L2 T > I
3= |2%kg & ig &y Jg * &y kgt vy gt Yy ig vy
- . J ’

= ¢
6o 0 0 0 0 -1
©o 0 0 0 1 0
0 0o o -2 0o 0]

The aircraft aerodynamic forces are obtained in section 8.4. !
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8.2 Aerodynamic Interference

The interference between the rotor wake and the aircraft aerodynamic sur-
faces (wing and tail) can be a factor in the dynamic behavior. As a simple
model of this aerodynamic interference, it is assumed that there is a pertur-
bation velocity at the wing, the horizontal tail, and the vertical tail, which
is a linear combination of the perturbation induced velocities from the two
rotors“(AR1 and XRz). Including a first-order time lag, the equations for

the -interference velocities are then

3 vx o IR,
TW W + AW - le W1 Rl ‘ KW Wo (QR)I Ry
A, + A.=K_C.A (R)2
W' T e T CH) H) Ry * Ky, Cu, @)1 Ry
. (QR)z

TV}\V + AV B KV1CV1 R, KV Vo (QR)I

A time lag of 1 = &/V is used, where V is the aireraft velocity and &
is the distance between the aerodynamic surface and the dominant rotor.

The first multiplicative factors (K) account for the maximum fraction of
the aerodynamic surface affected by the wake and the fraction of the fully
developed wake velocity achieved. Typical values would be K = 1.5 to 1.8
(or- 0 for no interference). The second multiplicative factors (C) account
for the cosine of the angle between the wake axis and the normal to the
aerodynamic surface, and the decrease in the wake-induced velocity away from
the wake surface. The following expression is used: C = (cosine of angle
between wake and surface)/(maximum of 1 and 1 + L), where L 1is the perpen-
dicular distance from the aerodynamic surface to the nearest wake boundary
(L< 0 if the surface is inside the rotor wake cylinder).

8.3 Aircraft Equations of Motion

The equations of motion for the aircraft in flight may now be written:

ax +a%x +ax. = +
Qrotor Qaero

2's l's 0"'s
The vector of the aircraft degrees of freedom consists of the six angular and

linear rigid-body motions, the generalized coordinates of the antisymmetric
and symmetric elastic modes, and the aerodynamic interference velocities:
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The generalized force due to one rotor is Qygtor = dF, and the hub motion
for one rotor is a = cxg. There are additional linear acceleration terms
due to the Euler angle velocities given by Ad = Txg.

The matrices c¢ and © are defined in section 8.1.2; 3 is given in
section 8.1.3 (note that a can be obtained directly from c¢). The inertia,
structural, and gravitation forces are included in the matrices of the equa-
tions coefficients (appendix D1). :

8.4 Aerodynamic Forces

To complete the aircraft equations of motion, the aerodynamic forces
acting on the wing-~body, horizontal tail, and vertical tail are required.
Helicopter airframe aerodynamics involves complex nonlinear phenomena,
particularly significant aerodynamic interference such as between the tail and
the rotor and fuselage. It is difficult to include such effects in any simple
model. For best results, therefore, experimental data should be used as much
as possible, but often such data are simply not available. Thus analytical
expressions for the aerodynamic stability derivatives are required.

The aerodynamic forces on the wing and tail are calculated by a strip
theory analysis. The generalized force is obtained by integrating the section
1lift and drag forces and the section moment along the span. Three-dimensional
effects are accounted for in the integrated aerodynamic characteristics used
for the wing and tail. A body axis system is used, but with the x axis not
aligned with the aircraft velocity vector. Otherwise, the analysis follows
the usual derivation of airplane stability derivatives (see ref. 15).
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Lateral symmetry is assumed for the aerodynamic forces. Specifically,
it is assumed that the trim velocity and the center of action of the wing
and tail are in the x-z plane. Then the symmetric and the antisymmetric modes
of the airframe are not coupled by the aerodynamic forces.

The aircraft motion consists of the rigid body and elastic degrees of
freedom. Consistent with the strip theory analysis, the wing elastic motion
is described by vertical and chordwise bending and torsion, including wing
root motion due to the fuselage flexibility. For the kth symmetric or anti-~
symmetric mode of the airframe, the wing motion is thus described by vertical
deflection 2zp(2) (positive upward), chordwise deflection x, (%) (positive
aft), and torsion or pitch 6y (2) (positive nose-up), where & is the span-
wise coordinate (£ = 0 at the root, and & = #(1/2)%, at the wing tips).
For symmetric modes, x), zyx, and 8, are nonzero at the root due to the
fuselage motion (but x;(0) = z!(0) = 0). For antisymmetric modes, Xi(O)
and zk(O) are nonzero, while .xk(O) = zk(O) = ek(O) = 0; in addition, the
fuselage motion gives a lateral reflection of the wing vk (positive to the
right).

For the tail motion, only rigid linear and angular motion due to the
fuselage flexibility is considered; bending and torsion of the tail surfaces
are neglected. Thus the horizontal tail motion for symmetric modes is
described by vertical deflection zj (positive upward), longitudinal deflec-
tion xy (positive forward), and pitch 6y (positive nose-up). The vertical
tail motion for antisymmetric modes consists of lateral deflection yj (posi=
tive to the right), roll ¢x (positive roll right), and yaw ¢y (positive yaw
right). There is no vertical tail motion in symmetric modes; the horizontal
tail motion in antisymmetric modes is just roll ¢y (positive roll right).

_ The aircraft controls considered are wing flaperon deflection 6&f and
aileron deflection ¢, (symmetric and antisymmetric motion of the wing control

surfaces), horizontal tail elevator deflection 8o, and vertical tail rudder

deflection d&y. Aerodynamic forces due to the three gust components (in the

F body axis system) are included.

The aerodynamic forces on the aircraft, required to complete the equa-
tions of motion in section 8.3, take the following form: '
Qaero = e,k - agk - oagx, + va + ngF
The vector of aircraft degrees of freedom xg 4is defined in section 8.3.

The vector of the aircraft controls vg and the components of the gust vector
gr (in the F system) are

Gf y
5 G
v, = ¢ g, =1 v
s 5 4 F G
a w
5 G/F
r
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The matrices of the aerodynamic coefficients are given in appendix D2.
Expre331ons for the aerodynamic coefficients required in these matrices are
given in appendix E.

9. ROTOR MODEL DETAILS FOR THE FLIGHT CASE

To treat the general twin-rotor helicopter, a number of extensions of the
rotor model are required, principally in the models for the inflow dynamics
and the rotor speed dynamics. Rotor-rotor aerodynamic interference is con~
sidered, in both the trim- and perturbation-induced velocities. Ground effect
is also included in the inflow dynamics model. Pitch/mast-bending coupling is
introduced. A transmission and engine model for two interconnected rotors is
derived. The drive train dynamics are described by the rotor speed, inter-
connect shaft torsion, and engine shaft torsion degrees of freedom. The
throttle control variable is introduced. Finally, a governor with collectlve
or throttle feedback of rotor speed is comnsidered.

9.1 Rotor-Rotor Aerodynamic Interference

With twin-rotor aircraft, it is necessary to account for the rotor-rotor
aerodynamic interference in both the trim- and perturbation-induced veloc-
ities. The model used expressed the induced velocity at each rotor as a
linear combination of the isolated rotor-induced velocities. Let A4y, and
i, Dbe the trim-induced velocities of the two isolated rotors (calcuiated
as described in section 2.3.3). Then the trim inflow ratios are

Ay = + A, +« (@R)2 A,
VE M T M T 12 7Ry M,

Ay = + A, + @2
2 7 My, T Ay, TR TaRYT My

Here K35 and K3 are the rotor-rotor aerodynamic interference factors.
Separate values are used for the interference factors in hover and forward
flight, with a linear variation from u = 0.05 to 0,10.

Similarly, the rotor-rotor interference is included in the uniform inflow
perturbation. Recall from section 2.5 that the differential equation for the
inflow dynamics of the isolated rotor is

C
2y T
TK + A= 5L (% EE)
_ aero
where (3A/9L)~! = (2y/oa)(A /1<2 + /&2/K4 + UZ/KZ) With two rotors, the

inflow perturbations at one is a combinatlon of the influence of both rotors,
hence the differential equations become
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. C (9R) C
; - (3 T 2 (B_A_) I
Tidg, AR, T (aL)1 (Y 0a>1 * <12 @Ry; L), <7 oa>2

C (QR) C
. 3 T 1 (3) T
T2hp, t Ag, = (BL)Z (Y 0a>2 * k21 @R, (8L>1 (Y Oa)l

The interference factors «jo and k3 are the same as for the trim-induced
velocity.

For the side-by-side or tilting proprotor aircraft configurations,
lateral symmetry gives Kjp = Kp; = K. Then the trim-induced velocity is
A=1uz; + (1 + «)rj. The differential equation for the inflow perturbation
becomes

]

) C
o A (1+K)%%<—0—§->
. aero

for symmetric dynamics and
C
s A T
™ + A (1 - x) oL ( oa)
aero

for the antisymmetric dynamics of the aircraft.

9.2 Ground Effect

To account for the effect of the ground on the rotorcraft dynamics, it
is necessary to correct the trim- and perturbation-induced velocities for
the proximity of the ground plane. Based on reference 17, an approximate
expression for the ratio of the induced velocities in and out of ground effect
is

Yo _ T _ 1
v T, 1 - (42

- -2
eff)
Here zg ¢¢ = z/cos €, where 2z is the altitude of the rotor hub above ground
level, normalized by the rotor radius, and € 1is the angle between the ground
and the rotor wake:

+ > >
yis ~ Meg) - kg
+u2 + A2

y

i, -
/:

which thus accounts for the effect of forward speed. Note that ground effect
is essentially negligible for altitudes greater than the rotor diameter, or
at forward speeds u > 2(CT/2)1/2. This expression compares well with test
results, down to an altitude of about 1/2 rotor radius (see ref. 17). The
trim-induced velocity in ground effect (before incorporating the rotor-rotor

IS b=
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interference) is thus
. ) |
COS8 €
= “+ - —————— >\
A M2 (} 1622 ) i

The effect of the ground on the inflow dynamics is to add a perturbation
due. to changes in the rotor height above the ground:

c
. 2 T A

™ot A= ('y ———ca) + 5 8z
v aero

where, again based on the results in reference 17,

A cos? g
@ _Zo 7 °
2 8z

(Actually, the ground-effect term is added to the equations for rotors 1 and
2, including the rotor-rotor interference terms, as in section 9.1.) The
rotor height perturbation &8z is due to the rigid body and elastic degrees
of freedom of the airframe. The vertical component of the displacement at
the rotor hub gives :

- T . - -+ >
¥4 = kE (xhiS + Vg + zhks)

it

(zhub cos eFT sin ¢FT = Yyup €°8 eFT cos ¢FT)¢F
+ [(zhub cos ¢FT + Yhup Si0 ¢FT)Sln eFT + xhub cos eFT]eF + (sin GFT)XF

. ) : — > >
f (-cos eFT sin ¢FT)yF + (~cos eFT cos ¢FT)zF-+ 2;;Ek . qusk

Since 3A/3z > 0, ground effect introduces a positive spring to the rotorcraft
height dynamics (zp perturbations). A decrease in the rotor height above the
ground produces a decrease in the induced velocity, hence a rotor thrust
increase that acts as a spring against the vertical height change.

For the side-by-side helicopter configuration, the antisymmetric dynamics
exhibit an unstable roll oscillation due to interaction of the rotor wake and
the ground. Such behavior can be included in the ground effect model derived
here by using a negative value for 3A/9z (a negative roll spring), which must
be obtained from experimental data.

9.3 Pitch/Mast-Bending Coupling

Flexibility between the rotor swashplate and hub will produce a blade
pitch change due to elastic motion of the airframe. This coupling between
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the rotor pitch and the mast~bending will be accounted for by introducing
kinematic feedback terms of the following form:

88.c i Kue,
= - i qs
A% s k=7 KMsi 1

9.4 Transmission and Engine Dynamics Model

The rotor rotational speed degree of freedom can be an important factor -
in the rotorcraft flight dynamics. A model is required which accounts for
the coupling of the two rotors through the flexible drive train, and for the
engine damping and inertia. The throttle control of engine torque must also
be introduced. Figure 14(a) is a schematic of the transmission-engine model
used for the single main-rotor and tail-rotor, and the tandem main-rotor
helicopter configurations. The two rotors are connected by a shaft, and the
engine is geared to one rotor (rotor 1 in fig. 14(a)). The torsional flexi-
bility of the drive train is represented by the rotor shaft springs KM1 and

KMZ’ the interconnect shaft spring Ky, and the engine shaft spring Kg. The

transmission gear ratios are rp (ratio of the engine speed to rotor 1 speed),
and ry, and ry, (ratio of the interconnect shaft speed to rotor speed). Thus
rIl/rI2 is the ratio of the trim rotational speeds of rotors 2 and 1.

The degrees of freedom are the rotational speed perturbations of the two
rotors (ws and Vs ) and the engine speed perturbation (ye). The engine shaft

azimuth perturbation Y, is defined relatlve to rotor 1 rotatlon, so the
total engine speed perturbation with respect to space is rE(ws1 + we) With

coupling of the speeds of the two rotors by the drive system, it is more
appropriate to use the degrees of freedom:

Vo=

S S1

lpsz B (rll/rlz)wsl

Here y1 1is the differential azimuth perturbation between the two rotors.
The degrees of freedom ¢ and ¥, therefore involve elastic torsion in the
drive train (in the interconnect shaft and engine shaft, respectively) and so
represent high-frequency modes. The degree of freedom Vg 1is the rotational
speed perturbation of the drive system as a whole-— both rotors, ‘the engine,
and the transmission.

V1

The engine model includes the inertia, damping, and control torques:

Tglp = Qp — Qufp + Q.0
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Here Qp 1is the engine speed and Qg  is the perturbation torque on the
engine. The engine rotary imertia is 1Ig; Qp 1is the engine speed damping
coefficient, that is, the torque per unit speed change at constant throttle
setting (see section 2.4). The variable 0+ 1is the engine throttle control
position and Q. is the torque applied due to a throttle change at constant
speed: ‘

q. = 3Q - ;E_anngine
t aet QE et

QE=const ' QE=const

Thus Q; and Qp can be obtained from data on the engine power as a function
of throttle position and engine speed.

The differential equations of motion for the rotor speed dynamics are

obtained from equilibrium of the. torques on the two rotors and the engine.
The resulting equations for ¢g, Y1, and Y, are

C (N1, 02) C
_Q, 1 b 2 _9_ 2 e 2A% = %
(% ca>1 + oy ®T, ), Y 5a A If(w + ) + g0 (w + ¢ ) = rQFe

I KMI c\ (NI, 92) o
T Y Eg' oL, 92) Y E%' + K vy =
I KMI . 1 2 2

2

rZIEGh, +G,) + T2QEG, + by + KE, v, - KE vy = rp0ke

where 2
K _rz K
Ryp. - KMz L,
e
Iz KM2'+ rIZKI
0u
K, - 5N ER M
M, 2 2
2 xEKE(RMz + flzKI) + Kyy
fzK«r r. K
EE IIKM2 I

%e1, r%KE(KMz + ;%ZKI) + Ky

Surt, + KwrhKM)

¢

A

The spring constants are normalized by dividing byv(NIbQZ)l; IE = Ip/ (NIy).
An alternative configuration for the transmission is with the engine by
rotor 2, instead of by rotor 1 as in figure 14(a). The equations of motion
for that case are obtained simply by exchanging subscripts 1 and 2 in the
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three equations above; note that the definitions of the degrees of freedom are
then: :

v, =

s So
_ lpsl B (rlz/rll)wsz

The normalized damping and throttle coefficients may be written

) ,
r20% = rEQQ o~ rotor

Qs = =K )
ETQ NIbQ NIbQ

V1

and

oP . 28
r 0¥ = rEQt _ englne/ t
EQt NIbQ NIbQ3

The approximate expression for QQ is discussed in section 2.4,

The side—by-51de or tiltlng proprotor aircraft requires a dlfferent trans-
mission and engine model due to the lateral symmetry assumed for these con-
figurations. Figure 14(b) is a schematic of the model considered. The two
rotors are connected by a cross-shaft, and there are two engines, one geared
to each rotor. The degrees of freedom are the rotor speed perturbation ws
and the engine speed perturbation we (defined relative to the rotor speed
again). The equations of motion for "Yg and Pg follow as above:

C

+ KypT'p I*(w +"’)+KMR Q (b, + b)) + Kiv KyrTrQe0,

ok ks L .
ralp (b + V) + r2Q0(b, + ¥) + Ko + KEIw r5Q. 0,

where
r2K (KM + Zr

M KM+r2KE+2r

I

22K 972
EKEerKI

- 2
EI KM + rEKE + 2rIKI
2
KMerK

KMI_ = K, + 2r2K

I'IT
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For antisymmetric motion, yg 1is the differential azimuth perturbation between-

the two rotors, involving torsion in the. interconnect shaft. For symmetric
motions,-there is no torque on the interconnect shaft, so the above equations
apply with Ky = 0 (so Kyg = 1 and Kgy = Kyp = 0).

The case of a rotorcraft in autorotation can be treated with this model
by dropping the 1y, degree of freedom and dropping the engine terms from the
Vg and Y1 equations (helicopters usually have an overrunning clutch to
disconnect the rotors from the engine at zero torque). The engine-out case
(engine and rotors still connected) can be handled by dropping the engine
damping term.  The case of constant rotor speed is modeled by simply dropping
the ws;'wI, and Y, equations and degrees of freedom from the system. Gener-~
ally, the- yy and we' degrees of freedom are only involved with high-frequency
dynamics, and so it is usually suff1c1ent to consider the yg degree of free-
dom for flight dynamics analyses. '

9.5 Rotor Speed Governor

When the rotor rotational speed perturbation is included in the flight
dynamics analysis, it is usually necessary to also include the rotor speed
governor in the model for a consistent calculation of the aeroelastic
behavior. The governor model considered is integral and proportional feed-
back of the engine speed to throttle and to the collective pitch of rotors 1
and 2. The control equations are then

A, = KPe(lPS + kbe) + KIe(Rbs + lbe)
(Aeo)rotor 1° KPl(ws + lbe) + Kll(ws + lPe)‘
(Aeo)rotor 2~ KPz(ws + ¢e) + KIz(ws + we)

Note that &S is the rotor speed error and Y4 then is the integral of the
error. Since the governor dynamics are neglected, this model does not add
degrees of freedom to the aerocelastic analysis.

10. COUPLED ROTOR AND BODY MODEL

The equations of motion have been derived for the two rotors and for the
aircraft body. Now these equations may be combined to construct the set of
linear differential equations that deséribes the dynamics of the complete
rotorcraft system. The equations.of motion for the coupled model then have -
the following form:

Azi + Al)'( + Agx = Bv + BPVP + BGg



Here x 1is the vector of the degrees of freedom for the eggiEe system, v 1is
the vector of the individual control inputs, vp 1is the vector of the pilot's
control inputs, and g is the aerodynamic gust vector (in velocity axes).

AZiR + A1}.( + Apx

R +K2&+Z1&+X00‘=BV + B

R R T “cBs

F = Co¥p + Cik, + Coxp + Cy0 + C18 + Cpa + D2,
for rotors 1 and 2 (see part I; in particular, section 2.6). Recall that the
vector of rotor degrees of freedom xR consists of the flap/lag bending,

rigid pitch/elastic torsion, gimbal tilt, rotational speed, and inflow pertur-
bation variables; the vector of the rotor controls vR consists of the blade

pitch control inputs; and the aerodynamic gust vector gg 1s in the shaft
axes for the rotor model: '

NN
o (K)

BGC
B

X = GS v = » econ] 1 - VG
R v, R s G

A : Ve

A
X
A

y

As usual, o and F are, respectively, the hub motion and hub reaction in the
shaft axes.

The equation of motion and the hub motion expressions from the aircraft
model (section 8) are

azxs +a X 4+ a,x = va + ngF + &aF

17s 0g
o = CcX
S
Aa = ¢k
S

where A4 is the linear acceleration due to the rotation of the velocity
vector in body axes by the Euler angular velocity (section 8.1.2). The air-
craft degree~of-freedom vector xg consists of the rigid-body angular and
linear variables, the antisymmetric and symmetric elastic free-vibration

modes of the airframe, and the aerodynamic interference inflow variables; the
vector of the control inputs vg consists of the aircraft aerodynamic control-
surface deflections; and the aerodynamic gust vector gp 1s in the body axes
for the aircraft model:
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The gust components for the rotorcraft model must be in velocity axes;
hence substitutions gg = R,g and gp = Rpyg are required in the rotor and
body equations (see section"7.1.3). The transmission and engine model (sec~
tion 9.4) replaces the individual rotor speed perturbations ¢51 and ¢Sz

by the coupled degrees of freedom is and ¢I: introduces the engine speed
degree of freedom ¢,, and adds the engine throttle control 04 to the model.
The pilot controls vp = (§, 8. §4 Gp 6t)T are related to the rotor-
craft input vector v by a linear transformation v = Topgpvp (see sec-

tion 7.2). Then the state vector x, control vector v, and aerodynamic gust
vector g for the complete rotorcraft model are

~ - - -
XRI VRl u
X V. ¢
R R
X = 2 . v = 2 , g = v
we et
X v WG
o S J b S - V

The coupled equations of motion are obtained by substituting the hub motion
into the rotor equations and hub reactions, and then the hub reactions into
the body equations of motion. The resulting coefficient matrices for the
coupled system are
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A A,C
A, =
-aC2 a, ECZC
- -
A1 Alc + AZE
Ay =
| 2 - e
d -y
AO Koc
Ay =
—ECO ao - EC'oC
L .
r -
B 0
B =
0 b
L L
- -
BeRg
BG =
L bGRFV + aDGRG
Bp = BTCFE

In constructing these matrices, it is necessary to skip the angular hub motion
(oy, Oy o,) columns of Zo and ﬁo for the Euler angles (¢y, O, Yp) since
body axes are used for the aircraft motion Lsee section 8.1.2). Also, the
linear hub motion (xy, yp, 2p) columns of Cp, should be skipped for the body
degrees of freedom, assuming that the rotor mass is already included in the
aircraft gross weight and free-vibration generalized masses.

The rotorcraft equations of motion are normalized based on the parameters
of rotor 1 (2, R, N, Iy, Yy, 0, etc.). The equations for rotor 2 as derived
‘are, however, based on the rotor 2 parameters. Therefore, it is necessary to
multiply the coefficient matrices for the rotor 2 equations of motion and hub
reactions by appropriate scale factors to account for the differences in nor-
malization. The degrees of freedom and control variables for rotor 2 will
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still be normalized based on rotor 2 parameters. Most are angular variables
anyway, hence inherently dimensionless. The components of the hub motion,
hub reaction, and gust are based on rotor 1 parameters, however: the linear
hub displacements ir a are based on R; not Ry; the gust velocities are
based on (QR); not (QR)Z, and the forces and moments in F are based on
(NI,02/R); and (NIpR2?);, respectively. Finally, the scale’ factors for the
rotor 2 equations must account for the time scale of the complete system,
which is based on the trim rotation speed of rotor 1. ‘

.- The equations for the rotor inflow dynamics are completed by accounting
for the rotor-rotor aerodynamic interference (section 9.1) and the effect of
the ground (section 9.2). The equations for the airframe-rotor aerodynamic
interference variables (Aw, Ag> Ay) are completed after constructing the
coupled equations of motion. Note that this aerodynamic interference is the
only coupling of the rotor and body not taking place through the rotor hub.
Pitch/mast-bending coupling is accounted for by adding terms for the elastic
airframe degrees of freedom (qsk,k 2 7) in the rotor rigid pitch equations
(section 9.3). The rotor speed governor model is added to the system as
described in section 9.5. Finally, the unused equations of motion and degrees
of freedom may be eliminated from the model by deleting the approprlate rows
and columns from the coefficient matrices.

10.1 Rigid Control System -
A rigid control system model may be used for either or both rotors. 1In

the limit of infinite control system stiffness, the equations of motion for
the rotor rigid pitch degrees of freedom reduce to the algebraic relations:

8 8 B, 0
%1¢ =1 %c]) - B lBic)] "% |8}t L8
i G
%15 %15 Bis Bas
0] con 1
* 0
- q
KMCk sk

s,

(the result for the number of blades N # 3 .is similar). On the basis of
this equation, the matrlces Ay and B are reconstructed as outlined in sec-
tion 6,.1. ' : ‘ :

10.2 Quasistatic Approximation ‘

It is frequently possible to reduce the order of the system of equations.
describing the rotorcraft dynamics by considering a quasistatic approximation
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for:Certaih of the degrees of freedom. " In the presént analysis of. the rotors :
craft in flight, the quasistatic approximation is applicable to the inflow .
dynamics of either or both rotors, to the rotor-body aerodynamic interference::
variables, to the rigid pitch/elastic torsion degrees of freedom of either.or:
both rotors, to all the degrees of freedom for rotor 1, rotor 2, or both
rotors, or even to all degrees of freedom except the: six rigid-body motioms,

of the aircraft. The reduction of the model by eliminating the qua31stat1c"
variables is described in section 6.2. : . ;

The qua81stat1c rotor model is frequently useful, and often valid, :in the
analys1s ‘of rotorcraft flight dynamics., It is usually a satisfactory repre-“
sentation for ‘the tail rotor and may also be: satisfactory for the main rotor:
dynamics for such applications as low-rate stability and control augmentation.
system 1nvest1gat10ns. Generally, whether the quasistatic model is a satisfac-
tory reprESentatlon of the aeroelastic behavior must always be verified for ‘a
particular application of the analy51s by comparison w1th the results of the
higher order model ;o » s

10.3 Side-by-Side or T11t1ng Proprotor Configuration

The aeroelastic analysis for the 31de—by—s1de or tlltlng proprotor air-
craft configuration requires special consideration. Assuming complete lateral
symmetry of both the aircraft and the flight .state, the symmetric and anti-
symmetric motions are entirely decoupled. Thus the analysis involves the
solution of two problems of half the order of the whole system. The motions
of the left and right sides of the aircraft are then given by, respectivély;
the sum and difference of the symmetric and “antisymmetric degrees of freedom.

The symmetry of the flight state requires ypp =:0 (no side veloc1ty)
and ¢FT =0 (zero trim roll angle) The crim solution has automatically
8o = = ¢yt = 0, so it is only necessary to solve three equations (vertlcal
and longltudinal force, and pitch moment) for three trim variables (60, 8g,
and 6gxm). -The construction of the coupled d1fferent1al equatlons of motion
follows basically the steps outlined above for the ‘general two-rotor: helicop-
ter. It is also necessary to obtain the equations of motion for one rotor,
however, multiplying the hub reactions by a factor of 2 to account for both
rotors of the aircraft (the renormalization for rotor 2 is not required since
the two rotors are identical in this case). '

10.4 Two-Bladed Rotor“Case

The two-bladed rotor has special dynamic characteristics compared with: :
the case of three or more blades. -Generally,; the dynamic behavior is described
by periodic coefficient differential equations, so a Floquet analysis is™
required except for special cases (such as a shaft-fixed rotor in axial flow;
see section 4.2). For helicopter flight dynamics, the main concern is with
the low-frequency impedance of the rotor hub reaction response to shaft
motion, control inputs, and gusts. ‘ :

[N
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The impedance of a linear time-invariant (constant coefficient)- dynamic
system is described by a transfer function H(w):

F = H(w)a

that relates the magnitude and phase of the input and output at frequency W
The implication of the periodic coefficients of the two-bladed.rotor is that
such a transfer function relation does not exist, for an input at frequency
w generally produces a response at all frequenc1es *nQ, n=0, . . ., »
Then the input-output relation takes the form:

z H (w)e inQt 5 eJ_uot

=00

The flap or teetering response of the two-bladed rotor is found te be primarily
at frequencies w * Q. It follows that the low-frequency flap response is at
i}, so the low-frequency motion can be written:

B =B8,.cos § + B g sin ¥

1C

It is found that the solution for the B;¢ and B;g flap motion is identical
to that for the rotor with N = 3 -at low frequency. ' Furthermore, it is found
that the average of the coefficients of the hub reactions at ‘low frequency is
the same for the two-bladed rotor as for .N 2 3. But while this 'constant
coefficient result is exact for a rotor with three or more blades in hover,
due to the rotor inertial and aerodynamic axisymmetry, for the two-bladed: ':
rotor there really are periodic coefficients in the hub reactions. 'Specifii
cally, there is a large 2/rev variation of the coefficients even 'in hover dueﬂ'
to the rotor asymmetry when N = 2. : '

Difficulties also arise with the quasistatic'approximation ‘As imple=-
mented in section 6.2, the veloc1ty and acceleration terms in an equation are
dropped, reducing that equation to™an algebraic substitution relation for the
quasistatic variable. TFor a rotor with three or more blades, the quasistatic
approximation applied to the equations in the nonrotating frame produces
exactly the low-frequency response of the rotor. Note that it is necessary
to consider both the B3¢ and Bi;g equations even when only longitudinal or-
lateral dynamics of the helicopter are involved, for the B;g "and vice versa.
For the two-bladed rotor, however, the quasistatic approximation ‘does not give
the low-frequency response because the B; equation is really in the rotating-
frame. R

In summary, the two-bladed rotor is indeed a special case. First, the
description of the dynamics is unique, involving the teetering degree of
freedom B;, which is fundamentally in the rotating frame, rather than the
cyclic degrees of freedom Bjc and Bi;g. The frequency response is not given
by the common transfer function relation because the system is not time.
invariant. The low-frequency flap response does reduce to a tip-path-plane
representation, identical to the result for N = 3; but the o = 0 limit,
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which allows the Bl = B1c cos ¥ + B;g sin ¥ representatien, is a special
case, ;

Second, the equation of motion for the helicopter flight dynamics, while
the same as for N 2 3 if the averaged coefficients are used, in fact involves
large-amplitude periodic coefficients even for the low-frequency response of
the hovering rotor. There is a 2/rev Variatiou of the coefficients due to the
lack bf'axisymmetry of the two-bladed rotor.” For v =1 (no flap hub spring),
the effect is mainly on the helicopter pitch and roll damplng and cross-
coupling

. Third, the quasistatic approximation as implemented here, when applied
to the two-bladed rotor, does not give the low-frequency response as it does
for N = 3. The source of the difficulty is the fact that the B equation
of motion is in the rotating frame still, so the B; response to low-frequency
inputs from the nonrotating frame is not at low—frequency also, but rather at
1/rev.

The special characteristics of the two-bladed rotor dynamics pose a
number of problems for the analysis of the aeroelastic behavior. Generally,
it is necessary to use the Floquet analysis of the periodic coefficient equa-
tions more often than for a rotor with three or more blades. 1In fact, it is
not possible to use directly the constant coefficient approximation (sec-
tion 3.2) for flight dynamics since that eliminates the coupling of the rotor
and the shaft motion. The quasistatic rotor model is very useful for heli-
copter flight dynamics investigations, for N = 2 as well as: N.2 3.  Some
procedure other. than that of section 6.2 is required, however, to obtain the
quasistatic representation of the two-bladed rotor. The simplest procedure
is to use an equivalent N. = 3 model for the rotor. Then the quasistatic
approximation gives the desired low-frequency, constant-coefficient response
of the actual two-bladed rotor. For the teetering rotor helicopter, a three-
bladed gimballed rotor is a good choice for the equivalent model. The funda-
mental parameters of the rotor (y, .o, etc.) must be maintained; hence the
equivalent rotor will have a chord and mass distribution sealed by a factor
2/Nequiv- A frequent use of such an equivalent model would be to represent a
two-bladed tail rotor. » -

‘The validity of these approximate analyses of the two-bladed rotor — the-
constant coefficient approximation and the equivalent rotor representation —
must always be verified for a particular application, of course.  While some
useful range of validity may always be expected, eventually the periodic =
coefficients or high-frequency dynamics become important enough to require a -
more rigorous analysis.
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11. CONCLUDING REMARKS

11.1 Applications of the Analysis

" The ‘aeroelastic analysis developed here has been applied in a number of
investigations of rotorcraft dynamics, both to check the basic features of the
analysis and to obtain information about the dynamic behavior of speciflc 2
rotors and aircraft. References 18 and 21 present some results of these
investigations. 1In reference 18, results are given for a number of classical
problems of shaft-fixed rotor dynamics. The flapping frequency response to
pitch control inputs is presented, including an examination of the influence
of the rotor inflow dynamics for articulated and hingeless rotors. A root
locus of the flapping stability of an articulated rotor in forward flight is
given, including the influence of the periodic aerodynamic coefficients at
high advance ratio. Thirdly, reference 18 presents flutter and divergence
stability boundaries for an articulated rotor in hover. The influence of the
offset between the center of gravity and the aerodynamic center, of the first
bending mode, and of forward flight on the flutter boundary is examined.

The rotor and wind-tunnel support aeroelastic analysis has been applied
to several configurations. A number of calculations have been made of the
ground resonance stability of articulated rotors on a test module, strut, and
balance frame system; reference 18 presents typical results, including a
comparison with an elementary stability criterion. Reference 19 gives the
aeroelastic stability calculations for gimballed and hingeless proprotors on
a cantilever wing. The proprotor and cantilever wing model has also been
used in an investigation of optimal control designs for gust alleviation
(ref. 20)., Finally, reference 21 presents the predicted dynamic stability for
a tilting proprotor aircraft in a wind tunnel, including the airframe, strut,
and balance dynamics.

The rotorcraft in flight aeroelastic analysis has been used in refer-
ence 18 to calculate the flight dynamics of four representative helicopters:
a small articulated rotor helicopter, a large articulated rotor helicopter,

a soft-inplane hingeless rotor helicopter, and a tandem rotor helicopter. The
results include an examination of the influence on the flight dynamics of the
quasistatic rotor model, the rotor lag motion and other degrees of freedom,
the rotor inflow dynamics, and coupled lateral and longitudinal aircraft
motion. Finally, reference 21 presents the predicted dynamic characteristics
of a tilting proprotor aircraft in flight, including trim conditions, flight
dynamics, gust response, aeroelastic stability, and wing response to control
inputs.,

11.2 Future Development
An aeroelastic analysis for a rotorcraft in flight or in a wind tunnel
has been developed, in which the dynamic behavior is described by a set of

linear differential equations. From these equations, the dynamic stability,
flight dynamics, and aeroelastic response of the system may be calculated, and
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they form the basis for more extensive investigations such as automatic
control-system design. It is not possible to anticipate all features that
will be required to model future rotor designs, so it must be expected that
new applications will often require further development of the model, some-
times by minor extensions and sometimes by major ones. Thus, in addition to
its current use in investigations of rotor dynamics, the present analysis also
provides the basis for the continuing development of models for rotorcraft
aeroelastic behavior.
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APPENDIX A. ROTOR INERTIAL AND AERODYNAMIC COEFFICIENTS
Al. ROTOR INERTIAL COEFFICIENTS

The inertial coefficients required for the rotor equations of motion
(see section 2.2) are

Mg = fol m dr/Ib
% = 17
Sqi J'o n m dr/Ib
Ig = fol r’m dr/I
I:a=f; nrmdr/I
i

% ——J' { x1+zk+xT)
* Ei(“m) [(SFA3 - GFAS)IB

-5
- (GFAZ - GFAQ) kB](r - rFA)}rm dr

->
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and for rigid pitch (k = 0)r,
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A2, ROTOR AFRODYNAMIC COEFFICIENTS

The aerodynamic coefficients required for the rotor equations of motion
(see section 2.3) are as follows. Recall that these ‘coefficients are constant
for axial flow, but are periodic functions of wm - for nonaxial flow. The
coefficients for blade bending are ‘ .
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The aerodynamic coefficients for the flap moment are

el
J. F r dr
o Zp

The aerodynamic coefficients for the other hub forces and moments follow

the pattern of the flap moment, with the following changes in the notation

and integrands:

Integrand Coefficient
Flap moment rF, M
Torque rFx Q
Blade drag force Fx H
Thrust F T

i

1
J. F r? dr
o Zr

U cos meu

1
J. F r dr
Z
o P
Al

J. F r2 dr
z .
o P

U cos meA

The radial force coefficients are
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and f‘r and f‘r are similarly defined. Finally, the aerodynamic coefficients

' 8
" for the blade pitch and torsion are
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and
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APPENDIX B. MATRICES OF ROTOR EQUATIONS OF MOTION

Bl. INERTTAL MATRICES FOR ROTOR EQUATIONS

The inertial matrices for the rotor equations of motion in the nonrotat-
ing frame (see section 2.6.1) are given below. For clarity, the superscript *
denoting the normalization of the inertial coefficients has been omitted. The
inertial coefficients are defined in appendix Al.
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B2. AERODYNAMIC MATRICES FOR ROTOR EQUATIONS IN AXIAL FLOW

The aerodynamic matrices for the rotor equations of motion in axial flow
(see section 2.6.2) are given below. The aerodynamic coefficients are defined
in appendix A2. : :
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53. AERODYNAMIC MATRICES FOR ROTOR EQUATIONS IN' NONAXTAL FLOW

The aerodynamic matrices for the rotor equations of*motion‘in nonaxial
flow (see section 2.6.3) are given below. Note that each matrix is a summa-
tion over all the blades, that is, m = 1, ..., N. The notation :C = cos Yy

and S = sin wmﬂ is used in these matrices. The aerodynamic coefficients are
defined in appendix A2. ‘ - :
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B4. . INERTIAL MATRICES FOR ROTOR WITH FOUR dR MORE BLADES

The inertial matrices for the equations of motion of a rotor with four or
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more blades (see section 4,1) are given below.
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B5, AERODYNAMIC?MATRICES FOR ROTOR WITH FOUR OR MORE BLADES IN AXTAL FLOW

The aerodynamicvmatrices for the equations of motion of a rotor with four

or more blades in axial flow (see section 4.1);are given beloy.
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B6. INERTTIAL MATRICES FOR TWO-BLADED ROTOR

The inertial matrices for the two-bladed rotor equations of motion (see
section 4.2) are given below. The notation C = cos Y and S = sin ¢y, is
used, where Yy = ¢ + mm.
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B7. AERODYNAMIC MATRICES FOR TWO-BLADED ROTOR

The aerodynamic matrices for the two-bladed rotor equations of motion (see
section 4.2) are given below. The notation C = cos Y, and S = 8in Yy is
used, where Y, = ¥ + mm.
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APPENDIX C. AIRCRAFT CONTROL TRANSFORMATION MATRICES

The transformation matrices between the pilot controls and the individual
rotor controls (T..., see section 7.2) are given below for the single main-
rotor and tail-rotor and the tandem main-rotor helicopter configurations. The
K values are gain factors in the control system, and the Ay values are
swashplate azimuth lead angles. The main rotor or the front rotor is assumed
to be rotor 1 and the tail rotor or rear rotor is rotor 2. The parameter Q
here takes the value +1 for counterclockwise rotation of the rotor and -1 for
clockwise rotation.
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For the side~-by-side or tilting propotor configurations,-the: lateral
symmetry of the aircraft allows the control transformation to be separated
into symmetric and antisymmetric matrices as follows. For a tilting
propotor aircraft, .the gain parameters (K) would generally bé’ functions of
the pylon tilt angle up. '
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_APPENDIX D. MATRICES OF AIRCRAFT EQUATIONS OF MOTION
D1. INERTIAL MATRICES FOR AIRCRAFT EQUATIONS ~—

The inertial matrices for the aircraft equations of motion are given
below (see section 8.3). These matrices also include the gravitational forces
.and the structural forces for the elastic body modes. Superscript * denoting
the normalization of the parameters has been omitted for clarity.
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D2. AERODYNAMIC MATRICES FOR AIRCRAFT EQUATIONS

The aerodynamic matricés for the dircraft equiations of motion (see sec-

tion 8.4) are given below. The aerodynamic coefficients are defined in
appendix E. : ' : '
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APPENDIX E. AIRCRAFT AERODYNAMIC COEFFICIENTS

The aerodynamic coefficients required for the symmetric and antisymmetric
alrcraft equations of motion (see section 8.4) are defined as follows.

Cog = - BI.-; Vq;{[szLA‘ + z‘ZKDUY" xz (Kp, +KLU)]WB
+ [szLA * 22Ky, - - (K;)A +E'KLU)] HT} | |
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Gy T "o Vz{[(’“’ R T Knc]vm}
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C. s = = o5 VK oyr]
e r ,

Subscripts WB; HT, and VT refer to the wing-body, horizontal tail, and
vertical tail, respectively. The. components of the aircraft angular velocity
introduce the following factors:

qy = cos.tbFT

T, = -sin eFT

ry =wsin oFi>cos’6FT
~rz = cos ¢FT coekeFTALw

The quantities x and 2z are the location of the aerodynamic surface center
of action, in body axes (F system), relative to the aircraft center of
gravity. The parameter A is the rotor area (mR2); S Syw»> ¢y and . -are,
respectively, the wing area, chord, and span; %7 and 29 are the inboard and
outboard edges of the wing control surface; Y, and ¢, are the wing sweep and
dihedral angles (assumed to be small). The horizontal tail and vertical tail
spans are !y and !y, respectively. ' B T ’ ‘

. In airplane analyses, it is conventional to use coefficients based on
the Wing area S_. A rotorcraft usually does not have a wing and, generally,
there is no good reference area for the airframe aerodynamics. Thus, here
the aerodynamic force characteristics are used in the form L/q, which have
dimensions of length-squared (q is the dynamic pressure; the moment character-
istics, M/q, have diménsions length-cubed). This form is appropriate for the
analysis of a specific vehicle, where: the scaling with velocity, but not with
size, is of concern. The aerodynamic characteristics required for the wing-
body description are the lift, drag, and pitching moment (L/q, D/q, and My/q),
and their derivatives with respect to angle of attack, flaperon deflection,
and aileron deflection; and the side force, rolling moment, and yawing moment
(Y/q, Nx/q, and N /q) and their derivatives with respect to sideslip angle.

The rolling and yaw1ng moment derivatives N, ~and N, are for the wing-body

alone (no vertical tail contributions), and without the sweep and dihedral

terms already included in C¢§ and C¢§' The vertical and horizontal tail
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aerodynamic characterlstics required are 1ift and drag and their derivatives
with respect-to angle of attack and control-surface deflection.. To account
for the velocity vector not being aligned with the x axis, the aerodynamic
characteristics are required in the following combinations for the aerodynamic
coefficients . : . : : . .-
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Here ¢V is the angle of attack of the reference axis system, so
¢V = tan -1 v, /V for the wing—body and horizontal tail and ¢V = tan~ -1 V /V .

for the vertical tail.

The wing-induced velocity at the horizontal tail is accounted for by the
derivative Se/aa. 'The following expression is used (from ref. 16):

- - 0.45 C

de Lo

LY 0,735 0.25
(zw/SW) (€2 le)

where zﬁi is the tail length and CL is the wing lift—curve slope. The

side-wash velocities at the vertical tail are given by 930/38, (V/z T)Bc/ap,
and (V/x )3c/3r for sideslip, rolling, and yawing motion, respectively.
Typical va ues are 90/08 and (V/xyp)80/3r near zero and (V/zVT)Bo/ap
approximately 1 (ref. 15)

Finally, the required integrals of the wing bending and torsion motion
for the elastic degrees of freedom are: c
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Y terms are absent for the symmetric modes; the integrals

gg are required only for antisymmetric modes.
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Figure 1l.- Typical rotor and wind-tunnel support

configuration.
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Figure 2.~ Geometry of undeformed blade.
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Figure 4.- Bending and torsion moments on blade section:
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Figure 5.- Hub frame coordinate systems;- shaft axes (nonrotating) and
: blade axes (rotating).
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.
H, M, m.

(b) Hub reactions.

Figure 6.- Notation and sign conventions for linear and angular shaft motion.
(displacements in an inertial frame) and forces and moments acting on rotor
hub (in nonrotating frame).
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(a) Side view.

Figure 7.- Schematic of the rotor hub and root geometry showing the pitch bearing radial offset (rFA),
torque offset (xFA), precone (GFAI), droop (GFAZ), sweep.(dFA3), feathering axis droop (BFAu)’ and

feathering axis sweep (6 ). Only a single undistorted blade is shown without the gimbal under-

FAg
sling (zFA); gimbal is dropped from the model for articulated and hingeless rotors.
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(b) Top view.

Figure 7.- Concluded.
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Figure 8.- Geometry of undeformed blade.
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(a) Nonrotating frame,

'(b) Rotating frame.

Figure 9.~ Notation‘and sign conventions for gimbal motion
and yrotor speed perturbation.
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: Figure 10.- Rotor blade section aerodynamics; notation and sign conventlons :

for section forces and velocities. -



YEZ

Vg
V6
Ug
Gust components
(shaft oxes)
Rotor
Disk

X

Figure 11.- Notation and sigr conventions for rotor velocity and orientation '
(V and o, ), induced velocity (Vi), and aerodynamic gust velocity compo—-71 |
nents (uG, \'rG, WG).
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Figure 12.~ Schematic of blade root- and control-system geometry for calculating
the kinematic pitch/bendlng coupling.
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(a) Single main-rotor and tail-rotor helicopter.

Figure 13.- Typical rotorcraft configurations‘considéred“by the aeroelastic
- “analysis. ' :
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(b) Tandem main-rotor helicopter.

Figure 13.- Continued.



8¢z

(e) Two-bladed main-rotor helicopfer.‘

Figure 13.~ Continued.
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(d) Tilting proprotor aircraft.

Figure 13.- Concluded.
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" (a) :Single main-rotor and tail-rotor or tandem main-rotor

helicopter configurations.

Figure 14.- Schematics of rotorcraft transmission and engine dynamics models.
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- (b) Side-by-side or tilting proprotor aircraft .configufations.

Figure 14.- Concluded.
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