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a rotor blade section two-dimensional lift-curve slope
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a acceleration of hub
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M
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y
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rotor torque coefficienc,	

P7rR S22
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422
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P	 4 2

C^ lag damping coefficient
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blade section drag coefficientca

blade section lift coefficientc Q

c blade mean chord
m

D blade section drag force

EIxx blade chordwise bending stiffness

EIzz blade flatwise.bending stiffness

F blade section radial'aerodynamic force
r

F blade section inplane aerodynamic force
X

F blade section out-of-plane aerodynamic force
z

GJ blade section torsional stiffness

v



g	 acceleration due to gravity
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io' j o' ko
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M	 blade section aerodynamic moment
a

Mk	aircraft free vibration node generalized mass
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Q
t .	 engine throttle torque coefficient.

QQ	 engine damping coefficient

q	 dynamic pressure, 
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q (m)	 blade coupled bending degree of freedom, kth mode of mth blade
k

q	 aircraft body free vibration degrees of freedom (rigid modes are
sk	 k = 1,	 ., 6 and elastic modes are k = 7,	 ^)

R	 rotor blade radius

R
e	

transformation matrix between Euler angle rates and inertial
angular  velocity

RFV	 rotation matrix between body axes and velocity axes

R 
	 rotation matrix between shaft axes (gust components) and velocity

axes

RSF	 rotation matrix between shaft axes and body axes

RST	 rotation matrix between shaft axes and tunnel axes

r	 blade radial station

rE	transmission engine/rotor gear ratio

rFA	
pitch bearing radial offset .

ri l ,r122 ri transmission rotor/interconnect-shaft gear ratio

T	 blade tension force; rotor thrust force

TCFE	
transformation matrix between pilot's controls and individual

aircraft controls

U	 blade section resultant velocity
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U	 longitudinal gust velocity

UP
	 blade section out-of-plane velocity

uR	blade section radial velocity

u 
	 blade section inplane velocity

V	 rotor or aircraft velocity

Vx ,Vy ,Vz	components of rotorcraft velocity in body.axes (F system)

vG	 lateral gust velocity

wG	vertical gust velocity

x	 blade section chordwise variable

xA	 distance aerodynamic center of blade section aft of elastic axis

x 
	 distance tension center of blade section behind elastic axis

xF	 aircraft longitudinal displacement degree of freedom

xFA	 torque offset

xh	rotor hub longitudinal displacement

xi	 distance center of gravity of blade section aft of elastic axis

xo	 blade chordwise bending displacement

yF	 aircraft lateral displacement degree of freedom

yh	 rotor hub lateral displacement

z	 blade section normal variable

z 
	 aircraft vertical displacement degree of freedom

zFA	
gimbal undersling

z 
	 rotor hub vertical displacement

zo	blade normal bending displacement

a	 blade section angle of attack

aHP
	 rotor hub plane angle of attack with respect to air

ax	rotor hub roll displacement
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ay	rotor hub pitch displacement

aZ	rotor hub yaw displacement

SG	
gimbal degree of freedom (rotating frame)

SGC	
gimbal pitch degree of freedom

SGS	
gimbal roll degree of freedom

ST	
teetering rotor blade flap degree of freedom

S (k)	 degrees of freedom of kth bending mode of rotor in nonrotating
o,nc,ns,N/2

frame
pacmR4

Y	 blade Lock number,	
I
b

yk (r) aircraft free vibration rotation mode shape

6FA
hub precone angle

1
SFA blade droop angle, outboard of pitch bearing

2

SFA blade sweep angle, outboard of pitch bearing
3

6 feathering axis droop angle
FA4

aFA
feathering axis sweep angle

5

d aircraft aileron deflection
a

ac lateral cyclic stick position

a aircraft elevator deflection
e

o f aircraft flaperon deflection

ap pedal position

ar aircraft rudder deflection

6 longitudinal cyclic stick position

a t throttle position

8o collective stick position

n k kth blade bending mode shape

A blade section pitch angle
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8	 perturbation of blade pitch
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8^	 blade root pitch

0Coll
collective pitch angle

6con
pitch control input

A blade elastic pitch deflection
e
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aircraft pitch angle degree of freedom

6 F
aircraft flight path pitch angle
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et
engine throttle control variable

8tw
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frame

forward flight-induced flow empirical factor
K
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hover-induced inflow empirical factor 	 -

X rotor inflow ratio

X,Xx yly rotor inflow perturbation variables

Xw'XH'Xv
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AEROELASTIC ANALYSIS FOR ROTORCRAFT

IN FLIGHT OR IN A WIND TUNNEL

Wayne Johnson

Ames Research Center, NASA
and

Ames Directorate, USAAMRDL

SUMMARY

An analytical model is developed for the aeroelastic behavior of a rotor-
craft in flight or in a wind tunnel. A unified development is presented for a
wide class of rotors, helicopters, and operating conditions. The equations of
motion for the rotor are derived using an integral Newtonian method, which
gives considerable physical insight into the blade inertial and aerodynamic
forces. The rotor model includes coupled flap-lag bending and blade torsion
degrees of freedom, and is applicable to articulated, hingeless, gimballed,
and teetering rotors with an arbitrary number of blades. The aerodynamic
model is valid for both high and low inflow, and for axial and nonaxial flight.
The rotor rotational speed dynamics, including engine inertia and damping, and
the perturbation inflow dynamics are included. For a rotor on a wind-tunnel
support, a normal mode representation of the test module, , strut, and balance
system is used. The aeroelastic analysis for the rotorcraft in flight is
applicable to a general two-rotor aircraft, including single main-rotor and
tandem helicopter configurations, and side-by-side or tilting proprotor air-
craft configurations. An arbitrary unaccelerating flight state is considered,
with the aircraft motion represented by the six rigid body degrees of freedom
and the elastic free vibration modes of the airframe. The rotor model
includes rotor-rotor aerodynamic interference and ground effect: The aircraft
model includes rotor-fuselage-tail aerodynamic interference, a transmission
and engine dynamics model, and the pilot's controls. A constant-coefficient
approximation for nonaxial flow and a quasistatic approximation for the low-
frequency dynamics are also described. The coupled rotorcraft or rotor and
support dynamics are described by a set of linear differential equations, from
which the stability and aeroelastic response may be determined.

1.0 INTRODUCTION

The testing of rotorcraft in flight or in a wind tunnel requires a con-
sideration of the coupled aeroelastic stability of the rotor and airframe, or
the rotor and support system. Even when the primary purpose of the test is to
measure the rotor performance, experience shows that the question of dynamic
stability may be ignored only at the risk of catastrophic failure of the air-
craft. Moreover, in the development of advanced rotor systems, the measure-
ment and verification of the dynamic stability are themselves major goals of
the test. Thus it is most desirable to have an analytical model of the



rotorcraft or rotor and support dynamics, both for pretest predictions,and
posfit'est` `torte' a ions: Such :a model i`salso applicable ,"in investigations of
iSofi. tad"ro'tof a`aeroelas't^icity or r efico^5t'er `flight. ` dynam cs'	 ^'urt ermo`re,"an
afialyti'calmodel fdz` the' rotorcr`aftis required as"'the ^iasis'for more exten-'
xv^e °investlgatioris 'of the a eroAlsSti lC be'havio`r , 5Lch as automatic control'

system design. { ' Tile prinCip`al ` l^imigaEi6a 'of 'th analyse's" avdilabi6 'iii `the
literature is that they are not applicable to a wide class of rotorcraft.
Typically, aeroelastic stability analyses have been developed in response to a
concern with some specific dynamic problem, and thus are suitable only for a
particular type of rotor or a limited range of operating conditions. Often
the model does not include the entire aircraft or does not consider the rotor
shaft motion at all. This report presents the unified development of an
aeroelastic analysis for a wide class of rotors and rotorcraft. A thorough
documentation of the analytical model is required to interpret the results of
past and future investigations of rotorcraft dynamic behavior using this
model.

The usefulness of an analysis depends on its ability to handle a large
class of problems; therefore, the scope of the aeroelastic model developed
here is kept as wide as possible. The rotor model is applicable to articu-
lated, hingeless, gimballed, and teetering rotors with an arbitrary number of
blades (including two-bladed rotors). This generality is accomplished by
using a modal representation for the blade coupled flap and lag motion, with a
gimbal or teeter hinge included in the hub from the beginning of the analysis.
Then an articulated or hingeless rotor may be modeled by dropping the gimbal
degrees of freedom and using the modes of a hinged or cantilever blade,
respectively. For a gimballed (or teetering) rotor, the gimbal degrees of
freedom are retained, with cantilever modes for the blade bending motion.
The description of the blade motion includes rigid pitch deflection due to
control-system flexibility and elastic torsion modes. The rotor model also
includes the rotational speed dynamics (with the effects of engine inertia and
damping) and perturbation inflow dynamics to account for the unsteady aero-
dynamics of the rotor.

The aeroelastic analysis of the rotorcraft in flight is applicable to a
general two-rotor aircraft, including single main -rotor and tandem helicopter
configurations and side-by-side or tilting proprotor aircraft configurations.
An arbitrary, unaccelerated equilibrium flight state is considered, with the
aircraft motion represented by the six rigid body degrees of freedom and the
elastic free vibration modes of the airframe. The rotor model for the air-
craft in flight includes rotor-rotor aerodynamic interference and ground
effect. The aircraft model includes rotor-fuselage-tail aerodynamic inter-
ference, a transmission and engine dynamics model, and the pilot's controls.

In part I, the rotor model is derived and also the model for the coupled
rotor and wind-tunnel support dynamics. The equations of motion for the rotor
are developed using an integral Newtonian method rather than the more common
Lagrangian or differential Newtonian methods. The integral Newtonian approach
allows greater use of engineering experience in deriving the equations and
provides considerable physical insight into the inertial and aerodynamic
forces of the rotor blade. By introducing.a vector representation of the

2



coupled flap/lag bending displacement, a very compact form is obtained for,
the blade bending equations of motion. In part II, the aeroelastic analysis
for the rotor craft in flight is derived. The coupled rotorcraft or rotor and
support dynamics are described by a set of linear differential equations, from
which the stability and aeroelastic response may be determined.
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PART I. AEROELASTIC ANALYSIS FOR A ROTOR IN A WIND TUNNEL

The development of the aeroelastic analysis for a helicopter rotor and a
wind-tunnel support (fig. 1) begins with a consideration of the rotor model in
section 2. The structural, inertial, and aerodynamic forces on the blade are
derived, followed by a consideration of the engine dynamics and the rotor
inflow model. Then the equations of motion for the rotor are presented for a
three-bladed rotor. Section 3 discusses further some details of the rotor
model; section 4 extends the analysis to an arbitrary number of blades. In
section 5, the support equations of motion are presented. Finally, in sec-
tion 6, the rotor and support equations are combined to construct the equa-
tions of motion for the coupled system. Note that, although the analysis
begins with dimensional quantities, in the final equations all parameters are
dimensionless, based on air density p, rotor rotational speed Q, and rotor
radius R.

2. ROTOR MODEL

This section develops the aeroelastic analysis of the helicopter rotor.
The rotor motion is represented by the following degrees of freedom: coupled
flap and lag bending modes, rigid pitch motion (due to control-system flexi-
bility), blade elastic torsion modes, rotor rotational speed perturbation, and
gimball or teetering hinge motion (when required). The six components of the
rotor shaft linear and angular motion are included, as well as the rotor blade
pitch control. Three components of aerodynamic gusts are included as external
disturbances. The rotor hub and root representation includes: precone, droop,
and sweep; pitch bearing radial offset;.feathering axis droop and sweep; and
gimbal undersling and torque offset. Chordwise offsets of the blade center of
gravity, aerodynamic center, and tension center are included in the blade
representation. The undeformed elastic axis of the blade is assumed to be a
straight line. The rotor aerodynamic model is generally valid for high and
low inflow and for. axial and nonaxial flight. The effects of reverse flow,
compressibility, and static stall are included.

The linear differential equations describing the motion of the three-
bladed rotor are presented in matrix form, together with equations for the
forces and moments acting on the rotor hub. Two cases are considered: axial
flow, which is a constant coefficient system, and nonaxial flow, which is a
periodic coefficient system. Also, in section 2.7, a constant coefficient
approximation for the nonaxial flow equations, using the mean values of the
coefficients in the nonrotating frame, is derived. The development of the
rotor model begins with the analysis of the blade structural moments.

2.1 Structural Analysis

The structural analysis consists of an engineering beam theory model for
the coupled flap/lag bending and torsion of a rotor blade with large pitch and

5



twist. A high aspect ratio (of the structural elements) is assumed, so the
beam model is applicable. The objective is to relate)the bending moments at
the section, and the torsion moment, to the blade deflection and elastic for
sion at that section. The analysis follows the work of references 1 to 3.

2.1.1 Geometry- The basic assumptions are that an elastic axis exists„`
and the undeformed elastic axis is a straight line; and that the blade has a
high aspect ratio (of the structural elements), so engineering beam theory
applies. Figure 2 shows the geometry of the undeformed blade. The span
variable r is measured from the center of rotation along the straight elas-
tic axis. The section coordinates x.and z are the principal axes of the
section, with the origin at the elastic axis. Then, by definition,

lsection (xz)dA = 0. Really, the integral is over the tension-carrying ele-
ments, that is, a modulus weighted integral: f xzE dA = 0. This remark holds
for all section integrals in the structural analysis. The tension center
(modulus weighted centroid) is on the x axis, at a distance x C aft of the
elastic axis: fx dA = x 0A and fz dA = 0. Again, these are modulus weighted
integrals. If E is uniform over the section, then x C is the area cen-
troid. If the section mass distribution is the same as the E distribution,
then the tension center coincides with the section center of gravity.

The angle of the major principal axis (x axis) with respect to the hub
plane is e. The existence of the elastic axis means that elastic twist about
the elastic axis occurs without bending. Generally, the elastic torsion
deflection will be included in e. The blade pitch bearing is at the radial
station rFA . The blade pitch is described by root pitch e° (rigid pitch
about the feathering axis, including that due to the elastic distortion of the
control system), built-in twist e tw , and elastic torsion about the elastic
axis e e . So e = 6° + e tw + ee, where 6°(^) is the root pitch, 6(rFA) = 6°;
6 tw(r) is the built-in twist, e tw (rFA) = 0; and e e (r,^) is the elastic tor-
sion, e e (rFA M = 0. There is shear stress in the blade due to 6 e only. It
is assumed that ee is small, but e° and e tw are allowed to be large.

t-t
The unit vectors in the rotating hub plane axis system are i B , J B , and

kB (fig. }2). The unit vectors for the principal axes of the section (x,t,z)
are i, j, and k; these vectors are for no bending, but include the elastic
torsion in the pitch angle e. So the principal unit vectors are rotated by
e from the hub plane:

i = I  cos e - k  sin e

} t
J = JB

k=IB sin 6+kB Cos 6

2.1.2 Description of bending- Now the engineering beam theory assumption
is introduced: plane sections perpendicular to the elastic axis remain
so after the blade bends. Figure 3 shows the geometry of the deformed sec-
tion. The deformation of the blade is described by (a) deflection of the
elastic axis, xo , ro , and zo ; (b) rotation of the section due to bending, by
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^x and c z ; and (c) twist about the elastic axis, eel which is implicit in i,
and k. The quantities xo , ro, z oo fix , ^z, and A e are assumed to be small,

The unit vectors of the unbent cross section are i, }j, and k. .The unit
vectors of the deformed cross section are 1XS^XS^ and kXS , where iXS and
kXS are the principal axes of the section and J XS is tangent to the
deformed elastic axis. It follows then that

1
XS - i + ^zj

J XS	 i	 ^z	 ^x

kXS = k
	 xi

Now, by definition, jXS = dr/ds, where r = xoi + (r + ro) + zok and` s."is
the arclength along the deformed elastic axis. Hence, to first order,

JXS -J + (xoi + zok)'
- 

J + ( xo + zoe' > ^ + 
( Z ' -

 xoe ^ )k

It follows that the rotation of the section is

-^z = xo + Zoe,

^x = zo - x 0 o6'

or

xi+ ^zk ( zo 4)i-'

The undeflected position of the blade element is r = rj + xi + zk, and
the deflection position is

r = (r + ro)1 + xoi + Z 0 + xiXS + zkXS

= rj + x 0 + r oi + z ok + (x^z - OX) j + xi + zk

The first term in the deflected position is the radial station, the next three
terms are the deflection of the elastic axis, the next term is the rotation of
the section, and the final two terms are the location of the point on the
cross section. For now, the elastic extension r o is neglected. The strain
analysis is simplified since then, to first order, s = r; r o just gives a
uniform strain over the section, which may be reintroduced later.

2.1.3 AnaZysis of strain- The fundamental metric tensor gmn of the
undistorted blade is defined by
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(ds) 2 = dr • dr

3r d
	 (,',r, dxmxm
	 n

gmn dxm dxn

where ds is the differential length in the material and x m are general
curvilinear coordinates. Similarly, the metric tensor Gmn of the deformed
blade is

(dS)2 = dR • dR

DR
 
R dxm
	

dx
xm 	n n

= Gmn dxm dxn

Then the strain tensor ymn is defined by the differential length increment:

2ymn dxm dxn = (dS) 2 - (ds)2

or

I- 2 (G.- gmn)

For engineering beam theory, only the axial components of the strain and
stress are required. (For a full exposition of the analysis of strain, see
ref. 2.)

The metric of the undeformed blade (no bending and no torsion, sow 	 }
6' = e' ) is obtained from the undistorted position vector r = xi + rj + zk,
giving

__ Dr 	
Dr = 1 + 81 2 (x2 + z2)grr	 ar	 8r

The metric of the deformed blade, including bending andtorsion, is similarly
obtained from the position vector r = (x + x o)i + (r + x^z - z^x)j + (z + zo)k,
giving

-}	 4.
Dr

Grr	 ar • 8r = (1 + X^' - z^X )2 + [xo + 8'(z + z o )] 2 + [zo - 6'(x + xo)]2

Then the axial component of the strain tensor is
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__ 1	 _

yrr	 2 (Grr	 grr)

= 
2 

^(1 + x^z - z^X)2 - 1 + [xo + e, (z + zo)]2

- 012Z2 + [z o — e'(x + xo)l2 — et2X2Itw

The linear strain (for small xo , zo , e e , fix , and ^ z ) is

yrr = err = x^z — z^X + et 2T (xxo + zzo) + o f [zxo - xzo + ee(x2 + z2)]

The strain due to the blade tension, E T , is a constant such that the ten-
sion is given by the integral over the blade section:

T = f Ee rr .dA = c  f E dA

Substituting for er r and using the results fz dA = 0, fx dA = xCA, and
f(x2 + z 2 )dA = Ip = kp 2A (where kp is the modulus weighted radius of gyra-
tion about the elastic axis) gives

T
eT = EA = 

c^zx0 + 6 ,2Xox O - 8twzox0 + e'eekp + ro

In this expression, the strain due to the blade extension ro has been
included. It follows that the strain may be written:

err = CT + (x — X0 	— e' w ) — ZO , + 0'	 ) + e l ee(x2 + z 2 - kp)

2.1.4 Section moments- To find the moments on the section, the second
engineering beam theory assumption is introduced: all stresses except
orr are negligible. The axial stress is given by orr = Ee rr . The direction
of orr is

e =
ar/ar

1ar/ar

The moment on the deformed cross section (fig. 4) is M= Mx'XS + Mrj XS + MzkXS'.
The moment about the elastic axis due to the elemental force o rr dA on the
cross section is

dM = (xi XS + zkXS ) x (arre)dA

_ [-ziXS + xkXS + 8tw( x2
 + z2)JXSlorr dA

9



Integrating over the blade
to bending and elastic for

(MX)EA

(Mz ) EA

Mr =

section yields the result for the total moments due

lion:

- (section zo rr dA

!section 
xo 

rr 
dA

GJee + (section 
(x2 

+ z2)etworr dA

To Mr has been added the torsion moment Glee, due to shear stresses pro-
duced by elastic torsion. These moments are about the elastic axis. For
bending, it is more convenient to work with moments about the tension center

xC:

Mx = - f z(Trr dA

Mz = f (x - xG ) orr dA

Substituting for orr and integrating yields the following moments:

Mx = EI ZZ0 1 + e'^ Z ) - e'e'EIZP

Mz = Elxx W - e , ^x) + e'eeEIXp

Mr = (GJ + k2T + V 2 EIPP ) 6e + e' k2T

+ V [EIXp o z, - e'^x) - EIZp W + e'^Z)].

where

IZZ = f z2 dA

Ixx = f(x - xC) 2 dA

Ip = k2A = f(x2 + z2)dA

IXP = f(x - xp)(x2 + z2)dA

IZP = fz(x2 + z2)dA

IPp = f(x2 + z 2 - k2)2dA
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The integrals are all over the tension-carrying elements, of course (i.e.,
modulus weighted). The tension T acts at the tension center x C ; hence the
bending moments about the elastic axis may be obtained from those about the
tension center by (Mz)EA = Mz + xCT and (Mx ) EA = Mx . The bending/torsion
structural coupling is due to EI Xp and EIZp. For a symmetrical section,
EIZp = 0.

2.1.5 Vector formulation- Define the section bending moment vector 
_Z(2)

Miand the flap/lag deflection w as:

',>,,(2) 
= Mxi + Mzk

w = Z0i - xok

:ME 2 >^ is not quitethe moment on the section because Mx and Mz are really
he 1XS and kXS components of the moment.) The derivatives of w are

(z oi - xok)' _ (zo - xoe')i - (xo + zo6')k

^xi + ^zk

(z oi - xok)" _ 0 1 + 6 1 ^d i + w - 6'^x)k

Chen the result for the bending and torsion moments may be written:

-*(2)	
=

-a-t
(EI zZ ii +

->-+
EIXYkk)	 (zoi - xok) 1 1	 ► 	 3+ 8 twe e (EIXpk - EIXP

Mr = (GJ + k2TP
+ 6 i2EI	 )6' +tw	 pp	 e 6'	 1c 2Ttw + e'	 (EI	 k - EI	 i)	 (z i - x k)"tw	 XP	 ZP	 o	 0

This is the result sought here, namely, the relation between the structural
moments and the deflections of the rotor blade.

Writing the bending stiffness dyadic as EI = EI zZ ii + EIxxkk, and
neglecting (for this paragraph only) the bending/torsion coupling terms (EIZp
and EIXp) gives

3(2) 
= EIw"

Mr = GJeff8' + k2T6'

In this form, our result appears as a simple extension of the engineering beam
theory result for uncoupled bending and torsion (for e' = 0). The vector
form allows a simultaneous treatment of the coupled inplane and out-of-plane
bending of the blade, with considerable simplification of the equations as a
consequence.
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This relation between the moments and deflections is a linearized result.
Thus the vectors 1 and k appearing in EI and in w are based on the trim
pitch angle 	 = e° + e tw . The perturbations of ie 	and k due to the elastic
torsion give second-order moments, which have already been neglected in the
derivation. The net torsion modulus is

GJeff - GJ + kp2T + etwElpp

where T = 52 2 jr'pm dp is the centrifugal tension in the blade. For the
elastic torsion stiffness characteristic of rotor blades, the GJ term
usually dominates. The kp 2T term is only important near the root for blades
that are very soft torsionally. The e' 2,EIpp term is important only for very
soft, highly twisted blades.

2.2 Inertia Analysis

This section derives the inertia forces of a helicopter rotor blade. The
blade motion considered includes coupled flap/lag bending (including the rigid
modes if the blade is articulated), rigid pitch, elastic torsion, gimbal pitch
and roll (which are dropped from the model for articulated and hingeless
rotors), and the rotational speed perturbation. The geometric model of the
blade and hub includes precone, droop, and sweep; pitch bearing radial offset;
feathering axis droop and sweep; and torque offset and gimbal undersling.

2.2.1 Rotor geometry- Consider an N-bladed rotor, rotating at speed 0
(fig. 5). The mth blade is at the azimuth location:

*m = ^ +MA1 ,	 m= 1, ..., N

where A* = 2Tr/N, and	 Ot is a dimensionless time variable. The S
coordinate system (I S , J S , kS ) is a nonrotating, inertial reference frame.
The S system coordinates are the rotor shaft axes when there is no hub
motion. When the shaft moves, however, due to the motion of the helicopter or
the wind tunnel support, the S system remains fixed in space. The B sys-
tem UB , J B , kB) is a coordinate frame rotating with the mth blade. The
acceleration, angular velocity, and angular acceleration of the hub, and the
forces and moments exerted by the rotor on the hub are defined in the non-
rotating frame (S system). Figure 6 (a) shows the definition of the linear
and angular motion of the rotor hub; figure 6(b) shows the definition of the
rotor forces and moments action on the hub. The rotor blade equations of
motion are derived in the rotating frame.

Figure 7 shows the blade hub and root geometry considered (undistorted).
The origin of the B and S systems is the location of the gimbal. For artic-
ulated or hingeless rotors, where there is no gimbal, this is simply the point
where the shaft motion and hub forces are evaluated. The hub of the rotor is
a distance zFA below the gimbal (gimbal undersling, which is not shown in
fig. 7). The torque offset xFA is positive in the -tB direction. The
azimuth ^m is measured to the feathering axis line (items projection in the
hub plane), so the feathering axis is parallel to the J B axis and offset
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xFA from the center of rotation. The precone angle 6 FA1 gives the orienta-
tion of the blade elastic axis inboard of the pitch bearing with respect to
the hub plane; 6FA1 is positive upward, and is assumed to be a small angle.

The pitch bearing is offset radially from the center of rotation by r FA . The
rigid pitch rotation of the blade about the feathering axis occurs at rFA-
The droop angle 6FA2 and the sweep angle 6 FA3 occur at rFA , just outboard
of the pitch bearing; S FA2 and 6FA3 give the orientation of the elastic axis
of the blade outboard of the pitch bearing, with respect to the precone. Both

6FA2 and SFA, are assumed to be small angles; 6 FA2 is positive downward and
6FA3 is positive aft. Feathering axis droop 6FA4 and sweep SFA S define, the
orientation of the feathering axis with respect to the precone; 6FA4 is posi-
tive downward, SFA is positive aft, and both are small angles. If

6FA4 = SFAS = 0, ten the feathering axis orientation is just given by the
precone; if 6FA4 = 6 FA2 and 6FA5 = 6FA31 then the orientation is the same
as the outboard elastic axis.

In summary, the blade root is underslung by zFA and offset by xFA
relative to the gimbal. From the root to the pitch bearing, there is a shank,
of length rFA , which undistorted is a straight line at an angle 6FA1 to the
hub plane (small precone). The blade outboard of the pitch bearing at rFA,
undistorted, has a straight elastic axis, with small droop and sweep (SFA2 and
SFA3 ). The feathering axis also has small droop and sweep with respect to the
precone (S FA4 and SFA ). The shank (inboard of the pitch bearing at rFA) and
the blade (outboard oP rFA ) are flexible in bending. The shank is assumed to
be rigid in torsion; the blade outboard of the pitch bearing is flexible in
torsion as well as bending. There is rigid pitch rotation of the blade about
the pitch bearing, which takes place about the local direction of the feather-
ing axis at rFA , including the bending of the shank. Incorporation of the
bending flexibility of the blade inboard of the pitch bearing means that gen-
eral rotor configurations may be considered — an articulated rotor with the
feathering axis inboard or outboard of the hinges or a cantilever blade with
or without flexibility inboard of the pitch bearing. The special case of a
rigid shank can be considered as well, of course.

Figure 8 shows the undeformed geometry of the blade. The description of
the blade for the inertial analysis parallels that for the structural analysis
(see fig. 2 and section 2.1.1). It is assumed that an elastic axis exists,
that the undeformed elastic axis is a straight line, and that the blade has a
high aspect ratio, so engineering beam theory and lifting line theory are
applicable. Here xI is the locus of the section center of gravity, xA is
the locus of the section aerodynamic center, and xC is the locus of the
section tension center. The distances x I , xA, and xC are positive aft,
measured from the elastic axis; generally, they are a function of r. The
corresponding z displacements are neglected.

The io , jo , and to coordinate system is th
axis system of the section. Subscript o refers
that is, with no elastic torsion in e, or gimbal
freedom. The direction of the undeformed elastic
the directions of the local principal axes of the

elastic axis/principal
to the undeformed frame,
or rotor qpeed degrees of
axis is J o ; io and ko are
undeformed section. The

13



spanwise variable is r, measured from the center of rotation. This variable
is dimensionless, so r = 1 at the blade tip. The section coordinates x and.,
z are mass principal axes, with origin at the elastic axis. It is assumed
that the directions of the mass principal axes and the modulus principal axes
are the same. The CG is at z = 0 and x = x I . The section mass, center
of gravity position, and section polar moment of inertia (about the elastic
axis) are, by definition, then as follows:

section dm = m

f z dm = J	 xz dm = 0section	 section

section xdm=xmI

2	 2
section

(x + z )dm = Ie

The blade pitch angle is e (at this stage in the analysis, the undis-
torted or mean pitch, denoted by subscript m). The angle a is measured
from the hub plane to the section principal axis. It is thus the angle of
rotation of i o and to from the hub plane axes. The undeformed pitch angle .
consists of the collective pitch ecoll plus the builtin twist etw(r):
6 = em = 6 coll + e tw. We define ecoll as the pitch at r FA , so
e tw (rFA+) = 0. The root pitch is then 6° = ecoll. The rotation.by ecoll
is not present inboard of rFA, but there can be pitch of the local principal
axes with respect to the hub plane, which is included in e tw for r < rFA-
Note that e tw(rFA) is not necessarily zero, hence there is a jump in em at
rFA , of magnitude:

6(rFA) - 6(rFA) -
 ecoll
	 etw(rFA)

The trim pitch angle is then:

ecoll + 
e
tw(r) '	 r > rFA

em =	 e 0

 = ecoll	 9 r = rFA

e tw (r)	 r < rFA

It is assumed that em is steady (constant in time), independent of
Cyclic variations in 6, as may be required to trim the rotor, are included in
the perturbation to the pitch angle. We shall alow the trim pitch angle to be
large, hence ecoll and e tw may be large angles.

The droop and sweep of the blade elastic axis are defined with respect to
the hub plane axes, so it follows that unless the feathering axis is parallel
to the outboard elastic axis, these angles vary with the root 'pitch of the
blade. Let 6FA2 and 6FA4 be the droop and sweep of the blade when the pitch
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angle at 75-percent radius is zero. Then the following relation can be
derived from the root geometry:

	

S FA2	 S FA4 + 
(6 *
FA2

	SFA4)Cos 6 75 + (SFA3 - SFA5)sin 675

	

S FA	 SFA	 (SFA	 SFA )sin 6
75 + ( SFA - SFA )cos 675

	

3	 5	 2	 4	 3	 5

where 6 75 = e° + etw (r = 0.75). The angles 6FA2 and SFA3 are fixed geo-
metric constants, so the variation of the droop and sweep due to blade pitch
perturbations is

SFA2	 6°( SFA3 - 6FA5)

SFA3 = -6°(SFA2 - 6FA4)

Between the B coordinate system (rotating hub plane axes) and the o
system (undistorted _ection axes), there are the following rotations:
SFA , - SFA22 about iB (small precone and droop), 6FA3 about kB (small
sweep), and then rotation e m about 3EA (the large pitch angle). So

io = cos emiB - sin emkB 
+ jB[(SFA1 - 6F

A2 )sin em - 6FA3 cos 6.m]

ko = sin emiB + cos emkB + jB [-(SFA1 - SFA2 )Cos em - 6FA3 sin 6m]

Jo = S EA = JB + 6FA3 1B + (6FA1	6FA2AB

where 6FA2 and SFA3 are based on 6m = ecoll, and are absent for r < rFA-
Subscripts o and m will be dropped when it is obvious that the undistorted
geometry is being considered.

2.2.2 Rotor motion- The rotor blade motion is described by the following
degrees of freedom:

(a) Gimball pitch and roll motion of the rotor disk (omitted for articu-
lated and hingeless rotors)

(b) Rotor speed perturbation
(c) Then torsion about the elastic axis, and rigid pitch motion about

the feathering axis
(d) Followed by bending deflection of the elastic axis, including rigid

flap and lag motion if the blade is articulated.

Figure 9(a) shows the gimbal motion and rotor speed perturbation in the non-
rotating frame. The gimbal degrees of freedom are S GT and kS — respectively,
pitch and roll of the rotor disk in the nonrotating frame. The rotor rota-
tional speed perturbation is ^ s . The degree of freedom ^s is a rotation

15



about the shaft axis k S , so the azimuth angle of the mth blade is really
V'm + * s. Figure 9(b) shows the gimbal motion in the rotating frame. The
degrees of freedom are SG and e G, given by

SG = SGC cos ^m + SGS sin Vim

e  = -RGG sin ^m + SGC cos ^m

T
he gimbal effects are primarily

zB axis; e G, the rotation about
due to zFA and xFA . The blade
plane, so only the blade inboard
due to eG*

die to k, the flapwise rotation about the
J B , only introduces a translation of the hub

pitch e is defined with respect to the hub
of the pitch bearing sees the pitch rotation

Figure 3 showed the geometry of the deformed blade. The blade deforma-
tion is described by twist e about the elastic axis, bending deflection xo
and z o of the elastic axis, and rotations of the section ^x and ^z due to
bending The pitch angle 0, including perturbations, is implicit in the r,
J, and, coordinate system; i and k are the principal axes of the blade with
no bending, but now include the blade elastic torsion and rigid pitch motion.
The XS axes ( XS , J XS , kXS) are the section principal axes and elastic axis
of the deformed blade, including both torsion and bending. The tangent to the
deformed elastic axis is jXS . From section 2.1.2, the rotation of the cross
section by ^x and ^z is related to the bending as follows:

^ I + ^ zk = (zo - xoo')i - (xo + z o0')k = (z oi - xok)'

The blade position, relative to the root, is then

r = (r + ro)j + xoi + z ok + XT XS + zkXS

(r + r  + x^ z - z^x)i
t + (xoi + z ok) + xi + zk

The perturbation of the radial position, ro + x^z - z^x , will be neglected
since it is much smaller than the radial position r.

The blade pitch angle e is the angle of the major principal axis of the
section (x axis) measured from the hub plane. The pitch is composed of the
root pitch 6°(^) (the blade pitch at the pitch bearing, r = r FA , due to con-
trol commands, control system flexibility, and kinematic coupling); the
builtin twist e tw (r) (where 0 tw (rFA) = 0); and torsion about the elastic
axis e e (r,^) (where 0 e ( rFA M = 0; only e e produces shear stress in the
blade). The blade shank inboard of r FA does not have the root pitch e° or
the elastic torsion ee . Thus the blade pitch is

e=l et

e° +etw +ee , r> rFA

w

0 ° r = rFA

	

 ,	 r < rFA
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The commanded root pitch angle is defined as ec = ' e coll + 6con• Here ecoll
is the trim value of the collective pitch, which may be large but is assumed
to be steady in time; econ is the perturbation control input (including
cyclic to trim the rotor), which is time dependent but is assumed to be a
small angle. The blade root pitch commanded by the control system is e c ; 6°
is the actual root pitch. The difference (e° - 69 is the rigid pitch motion
due to control-system flexibility or kinematic coupling in the control system.
Hence the blade pitch may be written as

(6 
Coll+ 

0 tw) + (6 0 - 6c) + 
6 con + 0 	 r > rFA

e	 eo	 6coll + (6° - e c) + econ
	

r = rFA

8 t	 ' r rFA

The pitch angle 6 may now be separated into trim and perturbation
contributions:

6m + e '	 r > rFA

6 = em+e	 r=rFA

em	 r < rFA

where the trim terms are (as above)

8m =1

ecoll + 8 t	 r > rFA
6coll
	 r - rFA

0 t	 r < rFA

and the perturbations are

(e°	 e c) + e con + 6
e	r > rFA

e = e° _ (e — e C) + e con	 r = rFA

0	 ,	 r < rFA

The trim value of the pitch e m is composed of ecoll and etw ; it is a large
steady angle. The perturbation of the pitch angle 6 is composed of the
blade motion terms (e° - ec), econ3 and ee ; all are small angles, so 6 is
small. For the rigid pitch degree of freedom, the notation p o is used where

Po = 6° = (e° - ec ) + econ
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(The notation P o is chosen to be consistent with that for the modal expan-
sion of the elastic torsion 0 e described below.) Note that po is the
total rigid pitch motion of the blade, including the control angle 6con•

2.2.3 Coordinate frames- Table 1 summarizes the coordinate frames used,
and the axis rotations between them. The unit vectors of the B system are

1  = sin V m i S - cos ^mjS
jB = cos MIS + sin ^MiS

k 
	

k 

Between the B system and the blade system, there are the following rota
tions: first, ^G + 6 FA1 - 6FA2 about iB , and 	 - SFA3 about k'B ; then 0
about j EA . Hence the unit vectors are

i = cos 0i - sin 0k + j [(6 + S 	 - d	 )sin 0 + (	 - S	 )cos 01B	 B	 B G	 FA1.	 FA2	 s 	 FA )Cos

k = sin 01B + cos 0kB + jB [- OG + 6FA1 - 6FA2 )Cos 0 + (* s - 6FA3 )sin 01

j EA = JB - ( s - SFA3)IB + (S G
 + 6FA1 - 

dFA2 AB

The unit vectors of the'XS are

XS = i + ^zj

JXS 

=.j - U
zi + ^xk j + (xoi + zok)'

kXS = k - $xj

For the undisturbed blade system, the rotations by	 k and ^s	 are
dropped, and also the pitch perturbations in 	 0.	 Hence the unit vectors are

i	 =o cos 0 i	 - sin 0 k	 + j [(Sm B	 m B	 B	 FA
- S	 )sin 0m - FA 

d	 cos 0m]FA3

ko = sin OmIB + cos OmkB + JB[-(8FA1 - 6FA2 )Cos 0m - 6FA3 sin 0m]

jo = jB + S FA3iB + (SFA1 - SFA2)kB
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TABLE l.- SUMMARY OF COORDINATE FRAMES

Coordinate frame

S system Axis rotations

nonrotating, hub
plane frame

- 90 0	about	 kS (shaft rotation)m

B system
rotating hub plane
frame, mth blade

i
SG	

about	 iB (gimbal)

0 G	 about	 j 	 (gimbal)

H system
}

^5	 about	 kB (rotor speed perturbation)
hub frame

6 F
	 about	 iH (precone)---
1

FA system
blade inboard
elastic axis -6FA2	

about 'FA 	 (droop)

-6FA3	 about	 kFA (sweep)

EA system
blade outboard
elastic axis ->

0	 about	 j EA (pitch/torsion)

-0 G	about	 jEA (gimbal)
Blade system

principal axes,
including torsion

^x	 about	 i (bending)

about	 k (bending)
X5 system z

principal axes,
including torsion
and bending

Now since the blade motion (6, sG , and'^ s) is small, the blade system unit
vectors can be expanded in terms of those of the undisturbed frame:

i = 10 - 6k0 + jB I N - 60(6FA
- 6 F )]sin 0 + [CV s + 0°(6FA- SFA )]cos s1

3 5	 2	 4

k = t  + io + j
BI -[ 'G - 6°(SFA

- 6FAS)]Cos 0 + [V s + 60(6 FA
	 SFA )]sin 0

}
3 2	 4	 111
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It follows that

(xo + z ok) _ (xoio + z ok o ) + 0(zo o - xoko) + jB hs + e°(SFA2 - 6FA4)]iB

[aG - 60(6FA3 - 6FA5 )]kB } ' (xo o + zo o)

which is an expansion of the bending/torsion deflection of the blade in terms
of the undisturbed axis system.

2.2.4 BZade position, veZoeity, and aeeeZeration- The distance from the
gimbal to a point on the blade section is

r = -zFAkH - xFA1H + rFA Q FA - jgA) + rj + xoi + zok + xi + zkXS

which may be written:

r = iB( -xFA - zFAO G - rFA6FA3 ) + 3 B (zFASG - xFA^s)

+ kB (-zFA + xFAB G + rFA6FA2) + rj + (x oi + z ok) + (xi + zk)

i [-x - z 0 - r^ + (r - r ) 6	 ]
B FA	 FA G	 s	 FA FA3

+ kB [- zFA + xFAaG + r(S G + 6FA1 ) - (r - rFA)6FA2]

+ JB (r + zFAsG xFA*s) + (xoi + zok) + (xi + zk)

The velocity of a point on the blade relative to the rotating frame
(B system) is

}
yr - (d r B - 1B(-zFAOG riys) + t B (zFASG - xFA$s) + kB (xFAe G + rSG)

-(r - r	 +FA	 FA	 sFA )1B (SFA 	 sFA A I

	

2	 4	 3	 5

+ [(xo + x)i + ( zo + z)k]*

where

[(xo + x)i + (zo + z)k]^ = (xoio + 
zo o). 

+ 0 [( zo + Z) 10 - (xo + x)kol

Finally, the acceleration of a point on the blade relative to the rotat-
ing frame and neglecting the squares of velocities is
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ar - (dt vr) B = 1B (-zFAUG r' d + ^B (zFAsG xFA^s) + kB(xFAeG + rSG)

- (r - r FA) e0[(SFA
2	

6FA4 )1B 
+ (SFA 

3 - 6FA5
 )k B )

+ [(xo + x)i + ( z 0 + z)k]

IN + x)i + ( zo + z)tr = (x01 0 + zo o).. + 6[(z o + z)i - (xo + x)k]

The acceleration of the blade is,required with respect to an inertial
frame, specifically, the S system. The B system rotates at a constant
angular velocity S = QkB with respect to the S frame. The shaft motion is
composed of linear and angular displacement of the origin of the S frame
(the gimbal point at the hub center of rotation). The acceleration, angular
velocity, and angular acceleration of the S system, with respect to the
nonrotating inertial frame, are

ao = VS + yhiS + zhkS

w0 = axis + ayis + azkS

w0 = axis + ayiS + azkS

It is assumed that ao , Wo , and wo are all small quantities.

The motion of the blade relative to.the B frame was derived pre
viously — the acceleration (ar ) and velocity (vr) of the blade. Now the
acceleration of a blade point in inertial space is derived in terms of the
motion of the shaft, the rotation of the rotor, and the blade motion in the
B frame. From the result for the acceleration in a rotating coordinate frame
(the S frame, rotating at rate w 0 ), it follows that

4.
a = ao + ar s + 2woxvr s + wox(woxr) + woxr

where ar c s and vr , s are the acceleration and velocity relative to the S
frame. The B system rotates at angular velocity Q = S2kB with respect to
the S frame. Hence, with Q constant and no angular or linear acceleration
of the B frame with respect to the S frame, it follows that

ar 
s 

ar + 2SZxr + Sx(2xr)

v	 =v +Qxr
r,s	 r

where ar and yr are the acceleration and velocity relative to the B frame.
Thus,
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a = ao + ar + 2&vr + Qx Oxr) + 2woxvr + 2w
0
x(Q xr) + wox(woxr) + 1 0x

To first order in the velocity and angular velocity, this becomes, finally,

a = a  + a  + 2Q.xvr + QX(Qxr) + 2w0x(Qxr) + wo.xr

The six terms in a are, respectively, the acceleration of the origin, the
relative acceleration in the rotating frame, the relative Coriolis accelera-
tion, the centrifugal acceleration, the Coriolis.acceleration due to the angu-
lar velocity of the origin, and t;he angular acceleration of the origin. In
dyadic operator form, and with 0 = QkB , the acceleration is

a ao + ar + 20(jBiB - 1 )vr - Q2 (iBIB + JBiB)r

+ 20(kBr - rkB)wo - (rx)wo

To obtain then the total acceleration of the blade, the acceleration is
multiplied by the density of the blade point (dm dr) and integrated over the
volume of the blade.

2.2.5 Force and moment equilibrium- The equations of motion for elastic
bending, torsion, and rigid pitch of the blade are obtained from equilibrium
of inertial, aerodynamic, and elastic moments on the portion of the blade
outboard of r:

}}
-ME + MA = MI

where ME is the structural moment on the inboard face of the deformed cross
section (so -ME is the external force on the outboard face); MA is the
total aerodynamic moment on the blade surface outboard of r; and M I is the
total inertial moment of the blade .outboard of r. The structural moment ME
is obtained from engineering beam theory for bending and torsion (section 2.1),
from the control system flexibility for rigid pitch, or from the hub spring
for gimbal motion. Alternatively, ME may be viewed as the force or moment on
the hub due to the rotor (so -ME is the force on the rotor); MI is the
inertial moment of the blade outboard of r, about the point ro(r):

1
MI = 

3 J	
[r(p) - ro (r)]xa dm dp

r section

For bending of the blade, engineering beam theory gives

ME(2) = M I + MZk = (riXS + kkXS)riE

Therefore, the operator (i1XS + kkgS ) is applied to MI and MA also. For
bending, the moments about the tension center (x = xC) are . required. Then the
desired partial differential equation for bending . is obtained from .82M(2)/8r2.
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For elastic_ torsion, engineering beam theory- ; gives ; MrF = jXS ME . So this

same operator is applied to MI and MA. For torsion, moments about the sec-
tion elastic axis (x = 0) at , r are required; also, elastic torsion involves
only the blade outboard of rFA . The desired partial differential equation
for torsion is then obtained from Mr/Dr. The equation of motion for the
rigid pitch degree of freedom p o is obtained from equilibrium of moments
about the feathering axis, MFA = eFA M(rFA). Here M is the moment about
the feathering axis (x = 0) at r rFA,.and . eFA is the direction of the
feathering axis; including perturbations due-to blade bending:

eFA CFA + (x
oi + z0k)IIr6FA kB ± . a FA iB

	

FA..
	 4	 5

The elastic restraint from the control-system flexibility gives the restoring
moment about the feathering axis, completing the desired equation of motion.

The equations of motion for the gimbal degrees of freedom !GC and SGS
are obtained from equilibrium of moments about the.gimbal, Mx = 1 S • M and

= jg • M, where M is the total moment (from all N blades) about the
MY 	 point, `̀ in the nonrotating frame.' The equation of motion for the rotor
speed perturbation degree of freedom ^s is obtained from equilibrium`of
torque moments Q = -Mz = k S • M, where, again, M is the total moment about
the gimbal point.

The total' rotor force' and moment on the hub (at the gimbal point) are
obtained from a sum over the N blades of F(m) and M (m) , the force and
moment due to the mth blade:

F = N F(m).
M-1

M -	 M(m)
M=1

Since -F (m^ and -M^m) are the forces on the blade, from force and moment
equilibrium of the entire ,blade, it follows that

-M(m) + MA = MI

The hub force and moment are required in the nonrotating hub plane frame (S
system); the components are defined as follows (see fig., 6):

F = Hi S + Yj S, + TkS
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M = Xis + MyjS - QkS

Note that M produces the gimbal and .rotor-speed.perturbation motion if'those
degrees of freedom are used, but it is also transmitted through the gimbal to
the helicopter body or support.

The aerodynamic forces and moment's on the blade are obtained from the
integral over the span of the aerodynamic forces and pitch moments on the
blade section. The forces acting on the section at the elastic axis are Fx,
Fz , and Fr (see fig. 10). These are the components of the aerodynamic lift
and drag forces in the hub plane axis system (B frame) — F x is in the hub
plane, positive in the drag direction; Fz is normal to the hub plane, posi-
tive upward; and Fr is the radial force, positive outward.. There .are also
radial components of Fx and Fz due to the tilt of the section by blade
bending; here Fr is just the radial drag force. Thus the aerodynamic force
acting on the section at the deformed elastic axis is

aero FxiB .+ F z 
k B - jBJXS • (FxiB + FzkB) + FrJXS

F x i B + F z k B + FrjB

where

Fr = Fr - FZ[sG + 6FA1 - 8FA2 + kB (xoi + zok)

Fx [-^ s 
+ 6FA 3

 + I  (xoi + zok)']

Finally, Ma is the section moment about the elastic axis, positive nose-up.
4.

Thus the aerodynamic moment is Maero = MajXS•

2.2.6 Bending equation- The equation of motion for blade bending is
obtained from

a }(2) + -
3 2 	 32

arr M
I.	 a
(2) 	r7 

M(2 )A

where M is the moment about the tension center (x = x C) at r and

A(2)4+
 XS + kkXS)M = [ii + kk - (xoi + zok)'j]M

Considering first the blade outboard of rFA , the inertia moment is

MI	 fl f	 (rlpxz rlrx 
o)xa dm dp

r section	 C

1

J f l
(p - r)j+ (xo + x)i+ (zo+ z)k - [(xo + xC)i+ zokII rlxa

r
	dm dp
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So

ar + (xoi + z ok + x i)']x J f 
a dm dp - f xi + zk - x Ci)xa dm

r

2 .^.	 1	 l
arT = J x f a dm - r(xoi +zok + c6i)' x f f a dm dpJL	 r

f(
xi + zk - x^i)xa dm

1

• M f f [(z o + z)i (xo. + x)k (z 1 7 xok xCk)I r] a dm dp
r

Finally,

a2

a
2 

MI , = (ii + k) ate- [(xoi + z  j • MI]"

= jx1adm+[j(zi-xk+xCk)jadml

1	 J
+ r(zoi = x k - xCk)' .: f f t,  a dm dp

JL	 r

(
	 f{(xoi + zo)' 
	
f [(zo+ z)i(xo + x)k

(zi-x o t 	 aC	 rk)^ J	 dmdp0	 }

The last term in this result — [(xoi + zok)'j • M I ]" — will be neglected since,
it is order (c/R) 2 smaller than the first term. Including the case r < rFA,
which introduces only an effect of droop and sweep, the result is

a 2M(2)	 p+
ar= jx fa  dm+ rJ (zi - xk+ xCk)j a dm

J
'

L
/' 1	 I

+ I( zo - xo - xCk)' J f j a dm dp1
r	 J

f 
r- d(r - rFA) (FA

iB + 6FA kB

1

 3 
j a dm dp

 2	 3 / r
FA

where S(r) is the delta function,'that is, an impulse at r = 0. The
acceleration due to the shaft motion '(with r = rjB) is
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a = ao + 2Q(kBr - rkB)wo - rxwo

ao + 2S2r (kBj B - j BkB ) w0 - r jBxwo

So

	

82M (
2 )	

3	 >	 t

a	 = m^
B:xa = m(iBkB - kBiB ) ao + 252rm(iBj B)wo + mr(IBIB + kBkB)w0

The blade relative acceleration gives

2}'(2)
a r2 = jx J 

a  dm = m{kB(zFAeG+ riff
s
 ) + IB(xFAUG+r^G) + (z o

i - xok)-

- 6 [ (xo + x I )1 + zok] - 8 ° (r -rFA) [(FA3 - 8FA5} I  (FA2 - SFA4YBll

The centrifugal acceleration is a = -522 (iBiB + JBJB)r, 1so

jxa= 02kB $-xFA
-zFAe G -rFASFA3 +I(xo + x)li + (zo + z)k]+ 522iBr SG+SFAl-SFA2
t 

j • a = -02r

Thus

2	

f
8a — _ -522 (zi - xo )' 	pm dpl + mkBkB • .(z oi - xok) - [6 (xoi+ z ok+ x C1) ]'

L	 r J,

	x	 pm dp + [ (x C - x I ) 6 irm] - mkB6kB • (xoi + zo + x1 ) - S (r - rFA) A
r

1

x 	 -S	 i- S	 -S	 k f pmdp+8°m r(FASi
1(6 FA3FA5) B (FA2 FA4) B r FA
	

3 FA5) B
 

ll
- rFA SFA2 - 6 FA4)k

BJ
+ kBmzFA' G - iBmr^G

(' 1	 ^

- Q2[ (x C - xI )krm]' - ((xCk.)' J pm dp^ - S (r -rFA) ('FA2iB + 6FA3kB)
L	 /

1

xr
FA

B (
pm dp+k m x 

FA FA FA 	 I
+r S	 -x cos 8-i

B 	 FAl
mr S	 -S

J	 }	 ) ^ (	 FA2)
r 

The Coriolis acceleration is a = 252kBxvr1 so
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j • a = 20[-r^ s - kB • (zoi - x 0 k)*]

jxa = 2S2 kBj B yr + r- ( FA, - SFA2 `'B + S FA3kB I [-r s - kB • (z oi - xo ) ]
L\	 /	 J

Fo y- the Coriolis acceleration due to the radial velocity j • vr, it is neces-
sary to include the effect of the change in the radial position of the blade
due to bending:

} -r -r	 -r.;2
Ar - 

-J B 2

fr[

xoi + zo + xII)' - ^'s - SFA3kB + (gG + SFA1 - 
SFAJ

dp

0 	 f

so

3	
r	

3•	 3	 3
j V  = - J (z oi - x  )'	 (zoi - xok - xIk)' dp - (z oi - x  )

0

• \dFAl -
 6FA2 Ji B - 6FA3kB] ^G[zFA + I  • (z oi - xo -xIk)

+ rSFAI - (r - rFA)SFA2, - ^S[xFA + kB • (z oi - xok - xik)

(r - rFA)SFA3]

Then

-> 2
a2M( )	

r
2S2 k m 	-*	 >	 -r

8^ rte-	 B f (zoi - xok)' • (zoi - xok - xIk)'dp - kBmSGr zFA + iB

•	 (z oi - xo - xIk) + rSFAl - (r - rFA)SFA2 + r^G - kBm^ xFA + k 

•	 (z i -xk0 -o  xk) +z	 A	 +r	 SI	 FA G	 FA FA3 (x-x{	 C )km[r	 +I	 s	 k B

•	 (zoi - xok) ]	 -	 (z oi - x 	 - xCk)' f Ws + kB • (z	 - xok)	 ]
r

x m dp^ + S(r IB+SFA3kBl
 fr 	[PV^s

- rFA)
(FA2t

+ kB • (z oi - xo) ] m dP/ FA

+ m ( G + 6 F - 6 F )"r (zoi - xo )• +r^skB]
1 2
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The structural moment (from section 2.1) is

3 2 -*( 2 )i
- E	

[(EIzZ11 + , Elxxkk) ( zo - xo )11]"
+ [(EIXP

k - EIZPi)etwee]n

]Finally, the aerodynamic moment about the tension center (x xC ) at r, due
to the blade loading acting at the elastic axis at p, is

1

MAf (rl poo - rl rx o).xFaero dp
C

1

ar (p _ r) (FZ B FxkB)dpr
;30

a2M(2)
z	 aero Fz iB FxkB

2.2.7 Elastic torsion equation- The equation of motion for elastic tor-
sion'is obtained from

_ a m _ a Mr -_ 8 r MrI	 A

where M is the moment about the elastic axis at r and

8 Mr - al.^X3 M = j ar + [(xo + zok), M]^

The inertia moment is

4.

MI fl f (rl 
pxz - rIroo)xa dm dp

r section

1

a f f [(p - r)j + (xo + x)i + ( zo + z)k - (xoi + zo) l r ]xa dm dp
r

5o

ar - j + (xoi. + z  )' :x f f a dm dp - f (xi + zk)xa dm
r

28



Thus we have

amr
	
f

arI- f (xk - A) • a dm - (zoi - xo)" • 	 (p r)fa dm dp (xoi + zok)'
r

• f(xt - A) j • a dm - (x 1 + z )" • f f [(Z 0  + z)i - (xo + x)k
r

(z1- x  )Ir]J•admdp

The ordinary differential equation for the kth torsion mode of the mth
blade is obtained by operating with fr l Ek(...)dr, where Ek is the elasticFA
torsion mode shape. It is most convenient to apply this operator at this
point in the analysis:

(r
I

r	

aM

„I 1 k 8r dr = fi
 

fl

	 r^k (xk - zi)	 J	 k(z	 xo - o )" - p ) dp • a dm dr

	

rFA	 rFA	 rFA

1

fCk (xo + z ok)' f (xk - zi)-J • a dm + (x + zok)"

rFA

1

• ff  [ (zo + z)i - (xo + x)k - (z oi - x0Q 1 r ]J • a dm dpdr
r

and the following notation is adopted:

Xk	 kxlk ir^k(zoi_xok)"(r - p)dp

FA

The acceleration due to the shaft motion gives

1 am	 1	 1

Jr	 k ar dr = 
r 'km dr ( iBiB + kBkB) ao + 2QXkrm dr • 4k +J B • wo

	FA	 FA	 FA

1	 •

+ f Xkrm dr(kB1B - iBkB)wo

rFA

The blade relative acceleration gives
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1	 am	 1

	

r dr	 ^ a m dr - (-z A i+ x 6 k)+	 X rm dr • (- 3.
r	

k Dr	 3r	 FA GB	 FAGB	 fr
k	 sB

FA	 FA	 FA

f
Xk+ B BkB + 	• (xoi + zo ) m dr 	+ f [Xk •	

00
(z i x k

rFA	 rFA

1

- 2]xIk) + kxl 6m dr - f 
Xk • [(FA2'FA IBrFA 	 4

+ (
FA-SFAYBI(r - rFA)Pin dr - f l Ek6I 6 dr
 3 

rFA

where Ie = J(x2 + z 2 )dm is the section pitch moment of inertia about the
elastic axis. The blade centrifugal acceleration gives

1	 aM'.	 1

	

f	 rdr=-Q2 -f Xmdr • iz 6 - f Xrmdr k^

	

k ar	 k	 BFAG	 k	 BG
rFA	 rFA	 rFA

f+ 	
i, Ol e (cos t 6 - sin2 6)dr - f Xk • kBkB • (xoi + z 

rFA	 rFA

f

4-
+ xli)m dr	 Ek (xoi + zok) • xlm - r(xoi + zok)"

rFA

f

1 	 1

• r 

(zol xok - xIk)m dp dr - f	
k• ['B(xFA + rFASFA3/l

FA

+ k B r ( FAI
 

- SFA 
2) 

in

In the centrifugal acceleration, we have neglected a number of terms due to
blade torsion and pitch which are of the same order as the propeller moment,
but which are normally much smaller than the structural moment.

30



With T = ^22fr 
1 
pm dp, the structural moment (from section 2.1) is

am 1	 (' 1

	

E	 [(GJ + k 2 522 	pm dp + 6' 2EI	 8'	 + 8' k 2522 J pm dp
ar	 P	 tw PP e	 tw P

r	 r

+ [0 1 (EI k - EI ZPT) • (zo - xok)"]'

Finally, the aerodynamic moment about the elastic axis at r is

1	 1
	MA =	 MajXS dp + 

J [ (p - r)j + (xoi + zo ) - (xoi + z ok)I r IX:F
aero dpr 

So

am 	 -^
Dr	 -MajXS 

_ 
I XSX f Faero dp

r

am A	 aMA 	r	 3

ar - JXS • Dr + (xoi + z  )" MA

1
_ -Ma - (zo1 - xo 	 f (p - r)(FxiB + FzkB)dp

r

and

am

Ck Dr	
f 

EkMa dr + J 	
>_x B

1	
A dr. _ -	 1	 XA^ • (F i + F zkB) dr

rrFA	 rFA	 rFA
k

where

XAk = X  - ^kxIk

2.2.8 Rigid pitch equation- The equation of motion for rigid pitch is
obtained from MFAE + MFA I - MFAA

 ' where

MFA - e
FA • M = [jFA + (xoi + zok)'I r - 6FA4kB + SFA5B • M

FA

and M is the moment about the feathering axis at r = r FA . The inertia

moment is
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i

MI f f rl rxz - rIYFA°O xa dm dr
FA

r1
f	 (r - rFA)j + (xo + x)1 + (zo + z)k - ( xoI + zok) rFA xa dm dr

FA

So

1
(-z + z)i - (x(x + x)k	 8	 - S	 i	 - 8	 kMFAI f f{ o	 o	 C FA 	 FA 4) B + (FA3	 FA5) B]rFA

x (r - rFA)	 (zoi. - xok)I r 	 (z	 - x 	 r (r - rFA)} • a dm dr
FA	 FA	 )))

+ f 1 f IF (x o i+z	 i	 FA4+d kB	 o	 0
z + z)i(x +x)k

	FA
r	 o	 rFA	 FA5B 

(z i - x k) J +CS k(z+z)l-(x +x)k] l a dm dr0	 o rF 	FA3 B	 FA2 B)	 0	 0

and the following notation is adopted:

X 
0	 0

= - ( z i-x	 -I
o	 I	 [(FA2
k-x k) 	 d	

6FA4) 'B + (FA3 - 6FA5 k B]	 FA
(r - r )

	

+ (zoi - x  )IrFA + (z oi - x 	 Ir FA (r - rFA)

The acceleration due to the shaft motion gives

	

1	 1
MFA - J	 m dr (iBiB A- kBkB) ao - 2Q J	 Xorm dr • kB3 B • W 

	

FA	 FA

	

1	 •
-f Xorm dr(kBIB -i BkB)wo

rFA
The blade relative acceleration gives
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1	 1
M=	 r X m dr - (-z 8 i+ x 8 k)	 X rm dr • (4 i+ S k)
FA	 3 	 o	 FAGB	 FAGB	 J	 o	 s 	 GBr

FA	 FA

1	 1

f
Xo • (xoi + z ok) m dr - 

J [X
o • (z oi - xok - xIk) + xI 2 ]6m dr

rFA	 rFA

1
+(r - S	 + (FA,S k (r - r ) 8 °m dr

r o (FA 	 FA4)iB 	 FA5) B	 FA
FA

1
+ r 9Ie dr

rFA

The centrifugal acceleration gives

1
MFAom dr • iB zFAO G + fl Xorm dr kBBG - f 8I e (cost B" - sin 2 0)dr

FA	 FA	 FA

fr,+ Xo • B xFA + rFASFA3) +kBr S FA1 - SFA2 ll m dr + f Xo • kBkB
 /	 (	 )J	 r L.FA	 FA

• (xoi + z ok:+ xii)m dr + IFA5 B	 6FA<<kB + (xo
i + z  ),IrFAJ

1	 1	 r
• (zo - xok)I r f rm dr - f (xo + z ok + xIi) j(z 01 - xok)Ir

FA rFA	 rFA	 l	 FA

	

r (z i- x k)' I	 r	 (FA2 - S	 i+ S	 - S	 kFA o	 o	 r	 FA 	 FA4) B C FA3	 FA5 B] m dr

	

F	 LA

Next, the aerodynamic moment about the feathering axis at rF A is

1	 1
M =

frFA

M j dr + f r - r )j + (x + z k) - (x i + z k)I	 xF	 dr
A	 a XS	 FA	 o	 0	 0	 o r	 aero

	

 rFA	 FA

So
1	 1

-FA = f Ma dr - f (FxiB + FA XA dr

	

A	
M

r 	 rFA
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where

	

XA	 X0 - xik
0

The aerodynamic and inertial moments about the feathering axis are
reacted by moments due to the deformation ` of the control system, moments due
to the commanded pitch angle, and moments due to feedback (mechanical or kine-
matic) from the blade bending or gimbal motion. The restoring moment acting
on the blade about the feathering axis is -Mcon, which is given by the product
of the elastic deformation in the control system and the control system stiff-
ness Kcon, Hence

M	 = K (8 0 - e	 + r K q +	 S - ( 6 1S 	 - 6 sin )^
con	 conll	 con u - Y ii	 YG G	 1S	 m	 1C	 m, s)

The variables qi are the bending degrees of freedom (introduced below), so
Kp is the kinematic pitch/bending coupling due to the control system and

i

blade root geometry. Similarly, Kp G is the pitch/flap coupling for the gim-

bal motion. For the rigid flap motion of the blade, this coupling is usually
expressed in terms of a delta-three (8 3 ) angle so that Kp = tan 6 3 . The ^S
term is the pitch change due to the rotor azimuth perturbation with a fixed
swashplate. For a rigid control system (Kcon -' )^ the rigid pitch equation
of motion reduces to

p. = 60, e	 -	 K^ q.	 s + (6	 cos ^ r e	 sin ^ )^o	 con ^..i - Yl 	
^G G
is	 m	 1C	 m s

So, in this limit, po becomes just the control input, plus the kinematic
coupling terms.

Now the control-system stiffness Kcon is written in terms of the non-
rotating natural frequency of the rigid pitch motion of the blade, wo) as

1

	Kcon =
	 Ie dr w0 2

rFA

Then the structural pitch moment is

f
rFA

MFAI6dr w
oe po 6con +

I
 Yqi+Y^G

E 
	 1	 l	

G

(6 is cos ^m - e 1C sin ^M)*s
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}(m) 2.2.9 Blade force- The net force of the mth blade on the hub is
F	 = FA - PI, where F is the force due to the blade at the hub. The iner-
tial force is

1

FI = f f a dm dr0

Then the acceleration due to the shaft motion gives

1	 ],	 1
F =	 m dr ao + 20 

f
rm dr (-k>.	 - jBkB)wo + I rm dr (k- i kB)wo

The relative acceleration gives

1	 1
F = f rm dr(-i

B s + kBSG) + f (xo + z  ) **m dr

The Coriolis acceleration gives

1 /'
F = 20 f J kBxvr dm dr

0

	

r f

1 	 1
= 2QJ B [ 	 rm dr ^ s +	 iB • (xoi + zok)•m 

dr]

	

0	 0 J

The centrifugal acceleration gives

1

F = -St2 f J (IBIB + j Bj B ) r dm dr
0

1	 1	 1
_ -322iB J

O [ 
XFA + (r - rFA)6F

A31 
m dr + JB J rm dr - iB f rm dr ^s

0	 0

1
+ 1
	 1	

i	 ^
B	 B • (x

01 + zo +	x1i)m dr
0

Finally, the aerodynamic force is

l

FA 
e 
f Faero dr
0

1

f(FxIB + FzkB + FrjB)dr
0
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2.2.10 Blade moment- The-* net moment of the mth blade on the hub about
the gimbal point is M (m) = Mpg - MI . The inertial moment is

1

MI 
= ff rxa dm dr

0

The acceleration due to -the shaft motion gives

/'1	 1
M = J rm dr(iBkB - kBiB )a0 + 20f r 2m dr 1B 3 B + w0

0	 0

1
+ f r 2m dr(iBiB + kBkB)wo

0

The relative acceleration gives

1	 1	 1
M = f rm dr(zFA0 GkB + xFA6 GiB ) + J r2m dr(kBi s + iBS G) + f (z 0i - x0k)

- 

f 1

	

X rm dr	 6[(x0 + xI )i + z 0k]rm dr - 6° ISFA - 6 F )iBC	 3	 5
rFA

^	 r
(FA2SFA4 kB]

z

 (r - rFA)rm dr
J/	 . FA

The centrifugal acceleration gives

-^	 21'	
1	 1

M = SZ 1B f [zFA + r6FA .I - (r - rFA) SFA2]rm dr + f r 2m dr SG + f
1 

kB0

f(x0t+ z0k+ xJ)rm dr + 
	

6kB • (z0i - x 0 k - xIk)rm dr
0

1	 1

e° (6 FA - SFA ) f (r - r FA) rm dr
3	 5 rFA

using the relation
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r [ x(^xr) ] = rxR* Q r

_S22kBxr k  • r

- -S22r( B k  • r)

Now the Coriolis acceleration is

rxa= 201(t J Bxr) [r s + kB • (zo i - xok) J + rkBj B • vA

where

	
I
X 11jBxr =-kB FA + (r - rFA)SFA] + rB 

I 
zFA + r8FA1 - (r - rFA)6FA21

+ (zoi - x0k - xIk)

So

1

M = 2SZTB If [r^ s + kB 
- (x 

0
-I+ zok) • ]r-zFA + rS + rSFAl - (r - rFA)SFA2
 L

1 r
+ iB • (zoi - xok - xIk) m dr^ + MkB - f J (zor - xok)'' (zoi - xok

J 0 0

1

xIk)'dp rm dr + J IB • (z01 - x0k)' r6 FA - r^G + (r - rFA)SFA2'm dr
0 C

1	 1
r	 • (zi-xk)' x +r d	 +z 8 mdr+	 k • (z1 x0Q

+ J 
kB	

o	 o	 FA	 FA FA 	 FA G)	 B	 o	 o) B

1

• (zo - x0k - xIk)m dr - SG 3 	
zFA + r^G + r8FA1 - (r - rFA)SFA

0	 2

+ iB • (z 1 - xok - xIt] rm dr

Finally, the aerodynamic moment is

1

MA 
3 

rxFaero dr
0

/'1
J (FziB - FxkB)r dr
0
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2.2.11 GimbaZ equation- The equation of motion for the gimbal. degrees of
freedom are obtained from the is and j S components of the hub moment

M =	 M(m)
m

MHS + M
I = MA

where}NITS is the spring and damper moment at the gimbal, reacting the rotor-
applied moments. The gimbal spring and damper are assumed to be in the non-
rotating frame. Hence

MHS	 'S(K0 GS + CGSGS) i S (KGSGC + CGSGC)

Taking the is and J S components of M, the gimbal equations of motion are

Y + 
C

GS GC + KAC = 0

-Mx + CG;GS + KOGS = 0

The gimbal hub spring and damper coefficients may be written:

KG = 2 I. 	 (V 2 - 1)

CG = 2 I0S2 CG.

where Io = to r im dr, and VG is the rotating natural frequency of the gim-

bal flap motion.

2.2.12 ModaZ equations- Consider the equilibrium of the elastic, inertial,
and centrifugal bending moments. From the results in section 2.2.6, these
terms give the following homogeneous equation for bending of the blade:

1	 ^

[(EIzz^ + Elxxkk)(zo - xok)"]" - S22 
[f 

pm dp(zo - xok)'
r

- W . (z i - x 
0	 0
k) + m(z 1 	

0
- x k) =0

0 

This equation may be solved by the method of separation of variables. Writing

(z	 - xok) = rj(r)eivt

it becomes

1	 ^

(Elrj" )" - S22 Cf pm dp fl	 - QMD • Tjj - mv 2rj = 0
r
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the modal equation for coupled flap/lag bending of the rotating blade. It is
an ordinary differential equation for the mode shape (r);" this 'mode may be'
interpreted as the free vibration of the rotating beam at natural frequency v.

This modal equation, with the appropriate boundary conditions for a can-
tilevered or hinged blade, is a proper 'Sturm-Liouville eigenvalue problem. It
follows that there exists a series of eigensolutions fl k (r) of this equation,
with corresponding eigenvalues vk2 . The eigensolutions or modes are orthog
onal with weighting function m; if i k,

1

J 
q i • Tlkm dr	 0

0

These modes form a complete series, so it is possible to expand the rotor'`
blade bending as a series in the modes:

z 01 - xok =
CO

 gi(t.)ni(r)
i=1

Tie bending modes are normalized to unit amplitude (dimensionless) -at the `tip':
In(1) I = 1.

Consider the homogeneous equation for the elastic torsion motion of the
nonrotating blade, that is, the balance of structural and inertial torsion
moments. The results _n section 2.2.7 give

-(GJee)' + I e e e = 0

The equation for the torsion motion of a rotating blade, including centrifugal'
forces and some additional structural torsion moments, could be used instead.
For the torsional stiffness typical of rotor blades, these terms have little
effect, however, and the nonrotating torsion modes are an accurate representa
tion of the blade motion. Solving this equation by separation of variables,'`'
we write 6 e = E(r)e iwt , so

(GJE')' + I ew2E = 0

This equation is a proper Sturm-Liousville eigenvalue problem, from which
it follows that there exists a series of eigensolutions E k (r) and correspond-
ing eigenvalues Wk  (k = 1, ..., ^). The modes are orthogonal with weighting
function Ie, so if i	 k,

f1
EkEile dr = 0
rFA 
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The modes form a complete set, so the elastic torsion of the blade may be
expanded as a series in the modes:

0

0 e =	 pi( t)^i(r)
i=1

These modes are the free vibration shape of the nonrotating blade in torsion,
at natural frequency wk „ The torsion modes are normalized to unity at"the
tip, ^k (1) = 1.

2.2.13 Expansion in modes- The bending and torsion motion of the blade is
now expanded as series in the normal modes. By this means, the partial dif-
ferential equations for the motion (in r and t) are converted to ordinary
differential equations (in time only) for the degrees of freedom.

For the blade bending, we write

X00(zoi - xCk) _ (z oi - 
xok) trim + ^-^ gi(t)ni(r)

i=1

where ni are the rotating, coupled bending modes defined above and
(zoi - xok)trim is the trim bending deflection. These modes are orthogonal
and satisfy the modal equation given above. The variables q i are the
degrees of freedom for the bending motion of the blade. When the substitution
for the modal expansion is made the subscript "trim" will be dropped, as that
is all that can be meant by (z oi - xok) then.

For the blade elastic torsion, we write

00

6 e =	 pi(t)Ei(r)
i=1

where F i are the nonrotating elastic torsion modes. These modes are orthog-
onal and satisfy the modal equation given above. The variables p i (i > 1)
are the degrees of freedom for the elastic torsion motion of the blade. The
degree of freedom for rigid pitch motion is p o = 0 0 _ (0 0 - 0 c) + Aeon* For
rigid rotation about the feathering axis, the mode shape is simply Co = 1.
Thus the total blade pitch perturbation is expanded as the series:

CO0 = F, p
i 
(0 i(r)

i= 0

The total blade pitch 0 (mean and perturbation) is then

00

0 = 13m + A = 
(0 coll + 0 tw) + 

E 
pi^i

i=0
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Subscript m on the trim pitch angle is dropped when the substitution for the
modal expansion is made since it is no longer needed to distinguish between the
trim and perturbation quantities.

2.2.14 Fourier coordinate transformation- To this point in the analysis,
the equations of motion and the rotor hub reactions have been obtained in the
rotating frame, with degrees of freedom describing the motion of each blade
separately. In fact, however, the rotor responds as a whole to excitation
from the nonrotating frame — shaft motion, aerodynamic gusts, or control
inputs. It is desirable to work with degrees of freedom that reflect this
behavior. Such a representation of the rotor motion simplifies both the analy-
sis and the understanding of the behavior.

The appropriate transformation to obtain the degrees of freedom and equa-
tions of motion in the nonrotating frame is of the Fourier type. There are
many similarities between this coordinate change and Fourier series, discrete
Fourier transforms, and Fourier interpolation; the common factor is, of
course, the periodic nature of the system. A Fourier series representation of
the blade motion is appropriate for dealing with the steady-state solution.
Here we are considering the general dynamic behavior, including transient
motions; hence the Fourier coordinate transformation is required. This coor-
dinate transformation has been widely used in the classical literature,
although often with only a heuristic basis. For example, it has been used in
ground resonance analyses to represent the rotor lag motion (ref. 4) and in
helicopter stability and control analyses for the rotor flap motion (ref. 5).
More recently, there have been applications of the Fourier coordinate trans-
formation with a sounder mathematical basis (e.g., ref. 6).

Consider a rotor with N blades equally spaced around the azimuth, at
m = ^ + mA^ (where A^ = 2u/N and the blade index m rmes from 1 to N).
Here ^ = Sgt is the dimensionless time variable. Let q m be the degree of
freedom in the rotating frame for the mth blade, m = 1 to N. The Fourier
coordinate transformation is a linear transform of the degrees of freedom from
the rotating to the nonrotating frame. Thus the following new degrees of
freedom are introduced:

1_	 N	 (m)
%N T q

m=1

__ 2 N

Snc N F
m=1

__ 2 N

ans N

q (m) cos n'

q (m) sin no

=I N
SN/2 N E

q (m) (-1)m
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Here So is a collective mode, ^,, and S 	 are cyclic modes, and SN/2 is
the reactionless mode. For example, for the rotor flap motion, So is the
coning degree of freedom., while S,C and S,S are the tip-path-plane tilt
degrees of freedom. The inverse transformation is

q (m) = So + F one cos nom + Sns sin nom) + sN/2(-1)m
n

which gives the motion of the individual blades again. The summation over n
goes from l to (N-1)/2 for N odd and from 1 to (N-2)/2 for N even. The
^N/2 degree of freedom appears in the transformation only if N is even.
The corresponding transformation for the velocity and acceleration are

q(m) = So + F [(snc + nsns )cos nom + 6 n - nsnc)sin no
m] + SN/2(-1)m

n

q(m) - So + F,[(Snc + 2n;ns - n2 sns)cos nom + 6ns - 2n;nc - n2 6ns )sin nom]
n

+ SN/2(-1)m

Note that transformation to the nonrotating frame introduces Coriolis and
centrifugal terms.

The variables So° 13nc' Sns' and SN/2 are degrees of freedom, that is,
functions of time, just as the variables q (m) are. These degrees of freedom
describe the rotor motion as a whole, in the nonrotating frame, while q(m)
describes the motion of an individual blade in the rotating frame. Thus we
have a linear, reversible transformation between the N degrees of freedom
q (m) in the rotating frame (m = 1, ..., N) and the N degrees of freedom

(S o y Snc 9 Snv ^N/2) in the nonrotating frame. Compare this coordinate
transformation with a Fourier series representation of the steady-state solu-
tion. In that case, q(m) is a periodic function of gy m , so the motions of all
the blades are identical„ It follows that the motion in the rotating frame
may be represented by a Fourier series, the coefficients of which are steady
in time but infinite in number. Thus there are similarities between the
Fourier coordinate transformation and the Fourier series, but they are by no
means identical.

This coordinate transform must be accompanied by a conversion of the
equations of motion for q (m) from the rotating to the nonrotating frame.
This conversion is accomplished by operating on the equations of motion with
the following summation operations:

N(...), 
N	

(...)cos nom, 
N	

(...)sin nom, 
N	

(...)(_ 1 )m

m	 m	 m	 m
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The result is equations for the ^o, anc , Sns, and SN/2 degrees of freedom,
respectively. Note that these are the same operations as are involved in
transforming the degrees of freedom from the rotating to the nonrotating frame.
Since the operators are linear, constants may be factored out. Thus with con-
stant coefficients in the equations of motion, the operators act only on the
degrees of freedom. By making use of the definitions of the degrees of free-
dom in the nonrotating frame, and the corresponding results for the time
derivatives, the conversion of the equations of motion is then straightforward.
Complexities arise when it is necessary to consider periodic coefficients,
such as due to the aerodynamics of the rotor in nonaxial flow (see sec-
tions.2.6.3 and 4.1).

The total force and moment on the hub have been obtained by summing the
contributions from the individual blades. The result is operators exactly of
the form above, for obtaining the total hub reaction in the nonrotating frame
from the root reaction of the individual blades in the rotating frame. The
origin of the summation operation is clear, and the sin *m or cos ^m
factors arise when the rotating forces are resolved into the nonrotating
frame. One may, in fact, view the equation conversion operators in general as
simply resolving the moments on the individual blades into the nonrotating
frame.

The Fourier coordinate transformation is often associated in rotor dynam-
ics with the generalized Floquet analysis. The latter is a stability analysis
for linear differential equations with periodic coefficients. Indeed, there
is a fundamental link between these topics because both are associated with
the rotation of the system. However, they are, in fact, truly separate sub-
jects - either can be required in the rotor analysis without the other. For
example, a rotor in axial flow on a flexible support (or with some other
relation to the nonrotating frame) requires the Fourier coordinate transforma-
tion to represent the blade motion, but is then a constant coefficient system.
Alternatively, for the shaft-fixed dynamics of a rotor in forward flight, a
single-blade representation in the rotating frame is appropriate, but there
are periodic coefficients due to the forward flight aerodynamics which require
the Floquet analysis to determine the system stability.

For the present investigation, the degrees of freedom to be transformed
to the nonrotating frame are blade bending, blade pitch, and gimbal motion.
The nomenclature for the corresponding degrees of freedom in the rotating and
nonrotating frames are as follows:

Rotating	 Nonrotating

Bending	 q(m)	 S(i)p ^ (i) , a(i)' 
s(i)

i	 o	 nc	 ns	 N/2

Pitch/torsion	 (m)	 M M M M
pi	

eo	
enc ' ens ' eN/2

Gimbal	
aG' 0 	 SGC' SGS

Rotor speed	 ^s	 ^s

43



The notation S M is used for the ith bending mode in the nonrotating
frame. With the modes ordered according to frequency, s( 1 ) is thus usually
the fundamental lag mode, and 0( 2 ) the fundamental flap mode. Similarly,
e (1) is the ith torsion mode, with 6 (0) rigid pitch and the remaining
modes elastic torsion. The collective and cyclic modes (O,1C,1S) are particu-
larly important because of their fundamental role in the coupled motion of the
rotor and the nonrotating system. When the transformation of the equations
and degrees of freedom is accomplished, for axial flow there is a complete
decoupling of the variables into the following sets:

(a) the collective and cyclic (O,1C,1S) rotor degrees of freedom
together with the gimbal tilt and rotor speed degrees of freedom and the rotor
shaft motion

(b) the 2C,2S,...,,nc,ns, and N/2 rotor degrees of freedom (as present)

Thus the rotor motion in the first set is coupled with the fixed system, while
the second set consists of purely internal rotor motion. Nonaxial flow
couples, to some extent, all the rotor degrees of freedom and the fixed system
variables, primarily due! to the aerodynamic terms; still the above separation
of the degrees of freedom remains a dominant feature of the rotor dynamic
behavior.

In this section, only the case of a three-bladed rotor is considered;
thus the collective and cyclic rotor degrees of freedom (O,1C,1S) are the com-
plete description of the rotor motion. The equations are extended to a
general number of blades in section 4. With four or more blades, additional
degrees of freedom are introduced compared to the N = 3 case, while the
two-bladed rotor requires special consideration.

2.2.15 Equations of motion- The elements are now available to construct
the equations of motion for the blade bending and torsion modes in the rotat-
ing frame and to construct the forces and moments acting on the hub due to one
blade. The following steps are required:

(a) Substitute for the expansions of the bending and torsion motion as
series in the modes.

,(b) Use the appropriate modal equation to introduce the mode natural
frequency into the bending or torsion equation, replacing the structural
stiffness terms (and for bending also some of the centrifugal stiffness terms).

(c) For the bending equation, operate with fl nk • ( ... )dr to obtain the
ordinary differential eLLgation for the kth mode of the mth blade (qk
equation).

(d) For the torsion equation, operate withJrFAk( ... )dr to obtain the

ordinary differential equation for the kth mode of the mth blade (Pk
equation).
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The result is the equations of motion and hub reactions in the rotating
frame. The transformation to the nonrotating frame involves the following
steps:

(a) Operate on the hub force and moment with Z(...); that is, sum over
all N blades to obtain the total force and moment on the hub.

(b) Find the is, j S , and kS domponents of the force and moment in the
nonrotating frame (S system).

(c) Write the shaft motion ao , wo , and wo in terms of the iS, jS , and
kS components in the nonrotating frame (S system).

(d) Apply the Fourier coordinate transform to the equations of motion
and rotor degrees of freedom - operate on the equations for bending and tor-
sion with (1/N)E(...), (2/N)E(...)cos gym , (2/N)E(. ... )sin ^m and introduce

the nonrotating degrees of freedom.

Names are now given to all the inertial constants. The equations of
motion, hub forces and moments, and inertia constants are also normalized at
this point. The inertia constants are divided by the rotor blade character-
istic inertia Ib = ffo r 2m dr, and we introduce the blade Lock number
y = pacR4 /Ib . This normalization of the inertia constants is denoted by
superscript *. The rotating equations of motion are divided by I b ; the hub
forces and moments are divided by (N/2)Ib , except for the rotor thrust and
torque, which are divided by NI b . With this particular normalization, the
forces and moments are obtained in rotor coefficient form.

The resulting hub forces and moments are as follows. (The inertial
coefficients are defined in appendix Al.)

2C  12C 
y oa - y oa

aero

2CY2CY

y oa - Y oa ) 
aero

CT	 CT

y ou -yoa
aero

2Mb*xh + E S* kBs M
qi

*•• _	 *	 (i)2Mb yh	 Sqi • kBS1C

M *Z _	 S* i (i)
Mb n	 qi B o

2C	
t. 2C_	 x

Y ca	 oa
)aero

- 2AM) +

Io* (ax + 2ay) - Io* 0GS	 2; GC ) 	F Igia • 1B (R IS)

E S* . i (0(i) - 26 (i) ) - 2 ,E I* (R (i) - R(1))p ia	 B 1S	 1C	 q i a 1S	 1C
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Y 2C MY= Y 2CMy
	

rrI(a - 2a ) + I * (R	 + 2R ) + L.^ I*	 i (R(1>a s	
6a aero	 ° y	 x	 o GC	 GS	 qia B 1C

+ 2R (1) ) -	 S*	 • i ( 6 (1) + 26 (1) ) + 2E, I^ ( R (1) + R(1))
iS	 p.ia	 B 1C	 1S	 qia 1C	 is

Y C  = Y -	 + I *a + I '^ + Z I* 	 k R (1) - 	 S*	 k 6 M
oa	

oa aero	
o z	 o s	 qia B o	 pia B o

2 E;	 R 
q ia o

The gimbal tilt equations of motion are

2C 

Y bay + I0*CG*aGC + 
I0 ^^ (v G2 - 1)R GC = 0

2C 
MX

_Y 6a 
+ I o*CG* R GS + I o* (vG2 - 1)R GS = 0

Finally, the equations of motion for coupled flap/lag bending and for elastic
torsion/rigid pitch of the blade in the rotating frame are

Igk(gk + 
9S vk4k + vk2gk) 

+2^
 Igk4 lgi -	 Sgkplpi-	 Sgkplpi

+I * •kid +I" •i (S +R )+2I"	 - I.' (6 - 6 +2; )qka B s	 qka B G	 G	 qk^V s	 qka G	 G	 G

• Sqk • I zh - Sqk • kB (xh sin m - yh cos gym) + Igka • kBaz

Mq aero
+ Igka • 1B (a + 2c y)sin m - (ay - 2ax ) Cos ^ M I = Y	 ac	 + Igko

I* G + g w p + m 2P ) + L, I*	+	 I*	 S* 4 . -	 S* q.
Pk k
	 s k k	 k	 pi 

P.•1	 pkpi 1	 pkgi 1	 pkgi 1

• Ipka• iBs - Ipka
 • kB(RG + R

G) - Spka(6G + 2RG - 6 G) + S*pko PGRG

• Spk0 ( 6
1C 

sin m - 6 
iS 

cos 
^M) ^ s - SPk ' 

kBzh - 
SPk * 

iB (xh sin m - yh cos gym)

+ Ipka • iBa z - Ipka • kB [(ax + 2ay)sin ^m - (ay - 2ax)Cos gym]

M
Pk
 aero

Y	 + [Iac	
p w e (ro kFA) ^ 6 con
0
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Note that the structural damping terms have been included
torsion equations, modeled as equivalent viscous damping.
damping parameter gs (equal to twice the equivalent damp
is different for each degree of freedom. The bending and
the nonrotating frame are presented later (section 2.6).
cients are defined in appendix A.)

in the bending and
The structural

ing ratio) generally
torsion equations in
(The inertial coeffi-

The aerodynamic forces required are

2CH	
2

1 Fx	 1 Fr

oa N	
sin ^m f ac dr + cos ^'m f ac dr

m	 o	 0

2C 	 2	 1 Fx	 1 Fr
as	 N L^ cos Vim f ac dr - sin m f ac dr

m	 o	 0

CT 
1z

FZ

oa N LLL,...^^^^	 ac dr
m o

2C 
Mx

2 	
r1 FZ

as-- = N E sin m ,1 ac r drm	 o
2C 
	 1 F

oay	 N E cos m f ac r dr
m	 0

C1 F
Q = 1 r x
oa N !^	 ac r dr

m o

Mqkaero	 1 -+ (Fz }	 F  }

ac
	
f T'k ac 1B ac t) dr

Mpkaero	 1	 Ma	 1 (Fx }	 F  >	 ;
ack ac dr - f ac 1B + ac k

B XAk dr

FA	 FA

where

XAk = X  - Ekxik
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2.3 Aerodynamic Analysis

In this section, the aerodynamic forces and moments on the rotor blade
are derived. We shall consider the general case of high or low inflow and
axial or nonaxial flight. The aerodynamic terms in the rotor equations of
motion and the hub force; and moments are obtained for two cases: axial flow,
which involves constant coefficient equations, and nonaxial flow with periodic
coefficients.

The principal assumptions in the aerodynamic analysis are lifting line
theory (i.e., strip theory or blade element theory) is used to calculate the
section loading; the order c (rotor chord) terms in the aerodynamic lift are
neglected; the order c 3 terms in the aerodynamic moment are neglected; vir-
tual mass aerodynamic forces and moments are neglected; only first-order
velocity terms are retained; and aerodynamic interference effects between the
rotor and support are neglected. The analysis includes reverse-flow and
large-angle effects. The effects of transient inflow changes on the system
dynamics are also included, using an elementary model described in section 2.5.

2.3.1 Section aerodynamic forces- A hub plane reference frame is used for
the aerodynamic forces. All forces and velocities are then resolved in the
hub plane (i.e., in the B system). The hub plane reference frame is fixed
with respect to the shaft; hence it is tilted and displaced by the shaft
motion. Figure 10 illustrates the forces and velocities of the blade section
aerodynamics. The velocity of the air seen by the blade, the pitch angle, and
the angle of attack are defined as: 6 is the blade pitch, measured from the
reference plane; uT , up, and uR are the components of the air velocity seen
by the blade, resolved with respect to the reference frame; U = (uT2 + up2 ) 1/ 2

is the resultant air velocity in the plane of the section; ^ = tan-1 up/uT is
the induced angle; and u = 0 - 	 is the section angle of attack. The veloc-
ity uT is in the hub plane, positive in the blade drag direction; uR is in
the hub plane, positive radially outward along the blade; and up is normal
to the hub plane, positive down through the rotor disk. The aerodynamic
forces and moment on the section, at the elastic axis, are defined as: L and
D are the aerodynamic lift and drag forces on the section, respectively,
normal and parallel to the resultant velocity U; F z and Fx are the compo-
nents of the total aerodynamic force on the section resolved with respect to
the hub plane, normal to and in the plane of the rotor; Fr is the radial drag
force on the blade, positive outward (same direction as positive u R); and
Ma is the section aerodynamic moment about the elastic axis, positive nose-up.
The radial forces due to the tilt of F z and Fx are considered separately;
hence Fr consists only of the radial drag force.

The section lift and drag are

L = 2 pU2ccQ

D =
2
pU2ccd
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where U is the resultant velocity at the section, p` is the air density, and
c is the chord of the blade. The air density is dropped at this point in the
analysis while the quantities are made dimensionless by use of p, Q, and R.
The section lift and drag coefficients, c Q = ck (a, M) and c d = cd(a, M) are
functions of the section angle of attack and Mach number:

a = 6 - ^ = 6 - tari 1 up/uT

M = TIPU

where MTIp is the tip Mach number — the rotor tip speed QR divided by the
speed of sound. The dependence of c Q and cd on other quantities, such as
the local yaw angle or unsteady angle of attack changes, is neglected. The
radial drag force is

Fr = (uR/U)D = 1 UuRccd

This radial drag force is based on the assumption that the viscous drag force
on the section has the same sweep angle as the local section velocity. The
moment about the elastic axis is

Ma =-xAL+ 
MAC +MUS

e

_ -xA 2 U2ccQ + 2 U2c2cm + US
e	 ac

where xA is the distance the aerodynamic center is behind the elastic axis,
cm	is the section moment about the aerodynamic center (positive nose-up),

ac
and MUS is the unsteady aerodynamic moment. The effective distance between
the aerodynamic center and elastic axis is

JxA	Normal flow

xAe-(A + 2)	 Reverse flow

For the section aerodynamic moment, it is necessary to include the unsteady
aerodynamic terms, which, from thin airfoil theory (ref. 7), are

x
A	 A

x 2	 ^	 x
2	 A

a
S = - 32 VB 1 + 8 ce + 16 ce	 + (w + uRw') 1 + 4 ce	 sign(V)

Here w is the upwash velocity normal to the blade surface
(w = uT sin 0 - up cos 0), B = dw/dx (mainly, the pitch rate 0), and
V = uT cos 0 + up sin 0. For stalled flow, the unsteady moment is set to zero
(MUs = 0).
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The aerodynamic forces with respect to the hub plane axes are then

F  = L cos ^ _ D sin ^ = (LuT - Dup ) /U

F  = L sin ^ + D cos ^ = (Lup + DuT ) /U

Substituting for L and I) and dividing by a, the two-dimensional section
lift-curve slope, and by cm, the mean section chord (which enter the Lock
number y also), we obtain

FZ	cQ	 cd c
ac == U^uT 2a uP 2a) c\	 m

F 
	

C 
	 cd c

ac U (uP 2a + uT 2a^ c
m

F cr	 d c
ac UUR 2a c

m.

	

cc	 M
2	 2	 US c

ac (XA U 2a + U 2a c + ac ce	 m

The net rotor aerodynamic forces are obtained by integrating the section
forces over the span of 'the blade and then summing over all N blades.

2.3.2 Perturbation ,forces- Each component of the velocity seen by the
blade has a trim term due to operation of the rotor in its trim equilibrium
state and a perturbation term due to the perturbed motion of the system. The
latter results from the system degrees of freedom and is assumed to be small
when the linear differential equations that describe the dynamics are obtained.
The blade pitch and section velocities are written trim plus perturbation
terms:

e+de

U  =* U  + 6u 

, up =>up+ Iup

u  => u  + 6U 

It follows that the perturbations of a, U, and M are
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Sa = SA - (uTSuP - uPSuT)/U?

SU = (uT SuT + uPSuP)/U

SM = MTipSU

and the perturbations of the aerodynamic coefficients are

ac	 ac
ScQ = as Sa + aM SM = cQ 60t+ cQ SM

	a 	 M

(similarly for cm and cd). The perturbations of the section aerodynamic
forces may then be obtained by carrying out the differential operation on the
expressions for F z , Fx , Fr , and Ma , using the above results to express the
perturbations in terms of SA, SuT , Sup, and SuR . The coefficients of the
perturbation quantities are then evaluated at the trim state. The results for
the perturbation forces are.,

c	 c	 c	 c	 cFz	Qa	 da c	 uT	 Qa	 da
	 (c.
	 !CM uTuP

	

S ac - UuT 2a - UuP 2a c SA + - U uT 2a	 UP 2a + 2a + M 2a	 U
m

c	 2	 c	 c(cd	
dM uP	

cd	
c	 [up
	

^a _	 da- 
2a + M 2a	 U - 2a 

U 
c SuP + U uT 2a
	

UP 2a
m

c

QM	

p	 c
	CQ	uT	

CR

	

(cd
	 dM 

uTuP c
+ (-^-a + M 2a	 U + 2a U - 2a 

M 
2a	 U	

c SuT
m

= F  SA + F  Sup + Fz 6u 
A	 P	 T

c	 c	 c	 c	 c	 2
S ac = U	

Qa 
+ Uu da c SA + - uT u 

Qa 
+ u 

da + cQ + M kM uP
uP 2a	 T 2a c	 U	 P 2a	 T 2a	 2a	 2a	 U

m

c	 Cdu u	

c,'Cd+2a U + 
(,cd

 + M 2a	 U 
P 

c SuP + 
U 

uP 2a + uT 2a
m

c	 c	 2

+
(
-^cQ + M Q

M
 upuT + (cd + M d

M uT + cd U
	 Su

	

a	 2a	 U	 2a	 2a	 U	 2a	 c	 T
m

= Fx6 S A + Fxp Sup + FxTSuT
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S Fr
	

C

= U	
da	

Se + - uTUR 

C 
da + 

Cd + M 

C 
dM uRu.. C S

	

ac	 uR 2a cm 	U 2a	 2a	 2a	 U	 cm UP

 cdc	 cdu u	 c

+ [!^R 2a + 2a + 
M 

2a	 LI T C SuT + U 
2a c SuR

	

m	 m

	

= F
r 8
	 rP
 68 + F SuP + Fr SuT + Fr SuR

	

T	 R

	

M	
cQ	 cm	 cQ	 cm

	

S ac = [U2 
-xA 2a + c 2a	

c S8 + uP - xA 2a + c 2a
e	 m	 e

c	 Q	 c	
c	 ck

xA uT 2 2a + M -2a + cuT 2 
ca + M 2a c SuT + -uT -xA 2a

MM

1)]e	 m	 e

01)
+ C 

2a	 xA uP `' 2a + M 2a + cuP 2 
2m + M MM cc SuP + -ZJS c
a	 a	 c

e	 m	 m

= Ma 68 +M Sup +11 SuT + -aS c

8	 aP	 T	 m

2.3.3 Blade veZocity- Now the air velocity seen by the blade section is
considered: the trim velocity, composed of the forward speed, rotor rotation,
and rotor-induced velocity terms; the perturbation velocities due to the rotor
degrees of freedom and the shaft motion, and ,to the aerodynamic gust velocity.

The rotor is rotating at constant speed 0. The velocity of the rotor
with respect to the air is defined in figure 11. The rotor has a steady trim
velocity V in inertial axes and a trim angle of attack aHP of the rotor
hub plane with respect to V. The velocity vector is in the rotor x-z plane,
and aHP is positive for forward tilt of the disk, producing a component of
V downward through the disk. The rotor wake-induced velocity v is assumed
to be uniform over the disk and normal to the hub plane (fig. 11). Following
standard helicopter practice, the rotor advance ratio p and inflow ratio X
are defined as

P = V cos aHP/OR

X = (v + V sin aH.P ) /OR
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The advance and inflow ratios are the dimensionless components of the rotor
velocity in the hub plane axis system. The inflow ratio A is usually small
for helicopter operation; the analysis is applicable to large inflow as 'Well,
however (as would be encountered, e.g., in proprotor operation). The
advance ratio u is zero for hover and axial flow, and u > 0 for helicopter
forward flight. Note that, in body axes, the trim velocity vector is fixed
with the reference frame and would therefore tilt with it. However, for the
rotor and wind-tunnel support analysis, an inertial frame is used, so that
tilt of the rotor by the shaft motion results in a small change in the direc-
tions of a and u as seen in the reference frame.

The rotor induced velocity is obtained using the momentum theory result:

CT
a=uz+.

2 a 2 /Kh4 + u2/Kf2

where u z = u tan aHp. Empirical correction factors Kh and K f are included
for the effects of nonuniform inflow, tip losses, swirl, blockage, etc., in
hover and forward flight. For the vortex ring and turbulent wake states, this
momentum theory result is not applicable. Thus, if

112 + ( 211 z + Rh) 2 < X 
h 
2

the following expression is used instead:

0.373pz2 + 0.598p2
a=u z + Khuz	 Xh2
	 - 1.991

where ah = CT/2.

The shaft motion consists of small linear and angular velocity, with
components defined in the nonrotating frame:

v  = 'his + yh
j 
S + z h k 

s

wo = axis + ay
 i
s + azkS

The aerodynamic gust velocity has components uG , vG, and wG (longitudi-
nal, lateral, and vertical, respectively) defined with respect to the shaft
axes (fig. 11); these components are the velocity seen by the aircraft and are
assumed to be small compared to QR. The gust components are normalized by
dividing by QR, not by V as is often the practice for airplane analyses.
The aerodynamic gust is assumed to be uniform throughout space. Eventually,
the gust vector will be transformed to wind or tunnel axes (see section 3.1.4),
but shaft axes are used in the development of the rotor equations of motion.
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The result for the trim velocity terms is

u  = r + p sin ^m - u cos ^m[FA3 - k  (zoi - ok)trim] + kB • (z 0i- xo )trim

up = a + B (zoi - xok) ;rim + rSG
trim + u cos ^II1l'FAl SFA2 + SG

trim

+ iB (zo 	 o'	 Xk)trim

uR = u cos ^ + CXFA + rF'AS FA 3) + kB° [(z oi - ok)trim - r(zo -.xok)trim]

- a SFA1 - SFA2 + S 0 	+ i.B (z 01- 
xok)trimtrim

+ u sink
 kB (zol xok) trim]

and for the trim pitch angle:

'
6 - 6 co11 + 6tw + 6cY c - ^GSGtrim	 ^i q ltrim

Here 6cyc is the input cyclic pitch required to trim the rotor. For trim
velocity, the blade bending and gimbal motion is periodic.. For axial flight,
U = 0, the trim velocities are constant; for nonaxial flow, u > 0, these
velocities are periodic in ^m due to the rotation of the blade with respect
to the rotor forward velocity.

The result for the perturbations of the velocity components and the blade
pitch, due to the rotor and shaft motion and the aerodynamic gust, is then:

8uT = (aax + yh + vG)cos ^m + (aay - x1i + uG)sin ^m + u cos ^,m(az + ^s)

+ r(& z + ^ s ) + gi (kB • ni ) + P cos *m E gi (kB • TI i)

SUP = (zh - pay - w G ) + u cos ^MaG + r(B G + ax sin ^m - ay cos gym)

+ Eg i(i • TI +P cos lUm E gi(1B•TI

6u  = -(aax + yh + vG)sin ^m + (aay - xh + uG)Cos *m- XS G -p sin ^ m ( az + ^s)

+ E gi[kB • (rji - 'rni - u sin ^mrii) - XT • rji]

66 = 6 = E p i E i
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Finally, the quantities required for the unsteady pitch moment are

V 
U  

cos 6 + u  sin A

B = 6 
+S G 

+ E g iiB • ni

w + uRw E p i iV + uR E P J IV S G2uR cos 6'+ QGU sin 
^'m 

cos 8

+ ( &z + ^ s ) 2uR sin 6 - (a z + s ) p sin 
^m 

sin 6 - 2 
u 

q ii • n

+ E qi (p sin ^mi nl - uR2i
• 
ni„)

2.3.4 Rotor aerodynamic forces- Combining the expansions for the section
forces and moment in terms of the velocity perturbations, and the velocity in
terms of the motion of the rotor and shaft, we may obtain the perturbations of
the aerodynamic forces on the blade. These 'are the blade forces expanded as
linear combinations of the degrees of freedom. Giving names to the aerody-
namic coefficients at this point in the analysis, the results for the required
aerodynamic forces on the rotating blade are as follows. The aerodynamic
force for rotor bending is

1
3

F
nk• ac lB. ac k

B dr Mgko + Mgku[(aaX + yh + vG)cos m + (aay - xh

+ u )sin gym] + Mgk^(a 2 + ^S) + Mgkc (az +^s)'

+ M.gk^( Zh Pay .. w G ) + Mgks(SG + aX sin ^m

a cos ^ ) + M ^
S + E Mq qi.• q • + 

I Mq 
q 

qy

	

m	
q k

	 kl	 k ii 

gkPi Pi

The radial force is

	

^
1 Fr

	

	 {dr =^ J 1 Fr -
 

F. LS + 6	 d	 + k • (x i + z k)' I

	

ac	 ac ac L G	 FA 1	 FA2	 B	 o	 o JJ

F r	 l_
 ac s + d FA + iB (xoi + zo )' }dr

L	 3

Ru [-(lax + yh + V )sin.y + (lay - xh + uG)cos Vim ] + Rr[(lax + yh

+ VG)Cos ^m + (lay - xh + ud sin gym ] + R^(a z + ^s ) + R^(az + ts)

+ Rl(zh- uay - wG) + RR (A G + ax sin ^m - ay cos gym) + RSSG

+ E Rglgi + E Rgiq i 
+ E RPiPi
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The aerodynamic force for blade torsion and pitch is

f

1	 M	 1 F	
F

k ac dr - f ac 1B + ac k
B X  dr

FA	 FA

= Pku [(aax+ yh + vG)cos ^m + (aay - 
h 
+u 

G 
)sin gym] + M

P 
 (aZ + s)

+ Mpk^(aZ + Vas
) + Pka(Zh - uay - 

wG) + Mpks(SG + ax sin m - a cos
,

	gym)
y

+ . M R + I M	 q, +EM	 q. + E M	 p. +EM	 p,
PO G	 Pkgi i	 Pkgi i	 PkPi 1	 Pkpi i

Finally, the aerodynamic hub forces and moments are similar to the result for
the blade bending, but with the following changes in the integrands and
notation:

Integrand	 Coefficient notation

Flap moment	 rFz	 M

Torque	 rF	 Q
x

Blade drag force	 F	 H
x

Thrust	 F	 T
z

Combining, the results for the exapnsion of the aerodynamic forces, and the
expansions of the velocities, the aerodynamic coefficients can be evaluated.
The coefficients of the degrees of freedom in the aerodynamic forces are con-
stant for axial flow, but for nonaxial flow they are periodic functions of
gym. (The aerodynamic coefficients are defined in appendix A2.)

2.4 Rotor Speed and Engine Dynamics

The rotor rotational speed degree of freedom (^ s ) is frequently an impor-
tant factor in rotorcraft dynamics. With a turboshaft engine, the rotor
behaves almost as a windmill. For a powered wind-tunnel model with an elec-
tric motor, the motor inertia and damping can significantly reduce the rotor
speed perturbations. The equation of motion for ^s is given by the rotor
torque equilibrium. We shall examine the extremes of a windmilling rotor and
constant rotor speed and then derive a more general model including the engine
inertia and damping.

For windmilling or autorotation operation, the rotor is free to turn on
the shaft. No torque moments are transmitted from the rotor to the shaft and
no shaft rotational motion is transmitted to the rotor. The equation of motion
for the rotor speed perturbation (^s) is just Q = 0, or yCo /oa = 0. In
axial flow, there is no spring term in the ^s equation, so the system is
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first order in ^ s . The rotor azimuth perturbation ^s is defined with
respect to the shaft axes, which also have a yaw angle a z ; thus the rotor
speed perturbation with respect to space is $s + &z-

For constant rotor speed, the *s degree of freedom and equation of
motion are dropped from the system (i.e., the appropriate row and column are
eliminated from the coefficient matrices). The solution for the rotor speed
perturbation is just ^s = 0, so the rotational speed with respect to the
shaft axes is constant at 0.

Now consider a more general case, including the inertia and damping of
the engine or motor. Any ..drive train flexibility is neglected since it usually
does not have a major role in the rotor dynamics. Thus the engine model used
does not add degrees of freedom to the analysis, it simply includes the engine
inertia and damping in the rotor torque equilibrium. The engine effects are,
of course, amplified by the transmission gear ratio. The equation of motion
for ^s is then

-I r 2..
	

2 •.
Q	 EEC's-Q,rE^s

where IE is the engine rotary inertia, rE is the transmission gear ratio,
and QQ = dQE/dQE is the engine speed damping coefficient. Normalizing as
usual, the equation becomes

C

Y —g + r 2I *^ + r 2Q *$ = 0oa	 E E s	 E 52 s

where IE* = IE/NIb and QQ* = QSj/NIbQ-
Q2* are set to zero. For constant rotor
and equation are dropped. This model may
which there is no engine damping, by sett

The engine damping may be related to
by

For the windmilling case, I E* and
speed, the ^s degree of freedom
also treat the engine-out case, for

ing %* = 0.

the engine trim operating condition

Q	
aQE 

= ^ 
QEo = K Protor`^`

S2	 8S2E	
S2Eo	 rE rotor

where K is a constant depending on the engine type. In coefficient form,
then,

*
r  

2Q 
Q - K'Y oa

where CQ is the trim rotor torque or power coefficient. This expression is
applicable to a wide variety of engines (refs. 8 to 10). The constant takes
the value , K.= 1 . for a.turboshaft engine (refs. 8 and 9) or for a series d.c.
electric motor.(ref. 10). It,takes the value K = 1/(1 - TI) 'for an induction
electric motor or an armature-controlled shunt d.c. motor (ref. 10; n is the
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motor efficiency). For a field-controlled shunt d.c. motor, the only damping
is mechanical or the damping of the load, so K = 0 (ref. 10). For a synchro-
nous electric motor, there is a spring on the rotational speed due to the
motor, so the above model is not applicable (ref. 10). Generally, the inertia
of the engine or motor is more a factor in the dynamics than the damping.

A rotor speed governor may be included in the model. For example, inte-
gral'plus proportional feedback of the rotor speed perturbation to collective
pitch (neglecting the governor dynamics) gives the control equation:

con
080 = KI s + KP s

Note that the integral feedback (K I ^ 0) adds a spring term to the rotor speed
dynamics. A governor would be unusual for a wind-tunnel model unless an
actual helicopter was being tested (in which case, a throttle governor would
be more likely). Moreover, the governor has little effect on the rotor
dynamics generally, because it is basically a very-low-frequency feedback
system. The rotor speed governor has a more important role in helicopter
flight dynamics. Thus a more detailed model is given in part II (section 9)
for the governor, as well as for the engine and transmission dynamics.

2.5 Inflow Dynamics

The aerodynamic forces on the rotor result in wake-induced inflow veloc-
ity at the disk, for both the trim and transient loadings. The wake-induced
velocity perturbations can be a significant factor in the rotor aeroelastic
behavior; an extreme case is the influence of the shed wake on rotor blade
flutter (ref. 11). Therefore, the rotor inflow dynamics should be incorpo-
rated into the aeroelastic analysis. However, the relationship between the
inflow perturbations and the transient loading is likely more complex even
than for the steady problem (nonuniform wake-induced inflow calculation), and
models for the perturbation inflow dynamics are still under development. In
the present analysis, an elementary representation of the inflow dynamics is
used. The basic assumption is that the rotor forces vary slowly enough (com-
pared to the wake response) that the classical actuator disk results are
applicable to the perturbation as well as the trim inflow velocities.

A contribution to the velocity normal to the rotor disk of the following
form is considered:

Sup = X + Xxr cos ^m + l 
Y 
r sin ^m

Here the perturbation inflow component a is uniform over the rotor disk,
while the inflow due to ax and ay varies linearly over the disk. The inflow
dynamics model must relate these inflow components to the transient aerody-
namic forces on the rotor, specifically to the thrust C T , pitch moment CM ,
and roll moment 

CMX
.	 Y

5.8



2.5.1 Moment-induced velocity perturbations- For hover, the perturbation
inflow Sv(r,^) at a point on the rotor disk may be related to the perturba-
tion of the local disk loading dT/dA by

Sv = dT/dA
2pvo

where vo is here the trim value of the induced velocity. This result can be
derived either by momentum theory for the disk element dA (cf. v o = T/2pAvo
for steady state) or by vortex theory (ref. 12). It is applicable only for
harmonic changes of the blade loading, however, that is, variations occurring
at a frequency w/0 = n/rev in the rotating frame, where n is a nonzero
integer.

Assuming a linear variation of the loading over the disk, the pitch and
roll moments give

dT	
SM	

6M dA = -4 RSA r cos * + 4	 r sin
RA

It follows that Sv also has a linear variation. Furthermore, the moments
involve harmonic (1/rev) loading, so the above result is applicable, and it
gives in coefficient form:

	

6C 
	

6C 
6a=-2 

X y r cos ^+2 ^ x r sink

	

0	 0

where Ao is the trim inflow ratio (see section 2.3.3). This result can be
extended to forward flight following the usual approach of momentum theory.
The mass flow through the differential disk area dA is determined by the
resultant velocity through the disk, so generally m = p(V 2 + vo2)1/2 dA.
Then dT = 21 Sv gives

Sv =	
dT/dA

2p V2 + v02

Thus the inflow perturbation becomes

2
6C 
	

26C 
Sa= -	 y	 r cos ^ +	 x	 r sin

u2 + X0	
22

	
u 

+ X02

For speeds above transition (p above 0.1 or 0.15), this is approximately

	

26C 	 26C 
Sa= - u-X r cos h+ u x r sin k
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which may also be obtained directly from the differential form of the induced
velocity in forward flight (X i = CT/21i).

2.5.2 Thrust-induced velocity perturbation- Now consider the inflow
changes due to rotor thrust transients. The above relation between Sv and
dT/dA is not applicable in this case. That relationship is based on low-
frequency variations of a harmonic blade loading (ref. 12). The thrust
changes correspond to low-frequency variations of the mean blade loading, and
thus a different approach is required.

For thrust perturbations, it is possible to simply consider a perturba-
tion form of the hover momentum theory result for the trim inflow,
a0 = (CT/2)1/2. For low-frequency thrust changes then,

SC
8a	 T

Sa = 3CT SCT = Oo

Note that the harmonic loading result would
large, Sa = 6CT/2X0 . The difference is due
monic loading (such as 1/rev variations due
shed and trailed vorticity in the wake, wit]
coming from the shed wake and half from the
produces trailed wake vorticity only (i.e.,
wake influence as the rotor hub moments.

give an inflow change twice as
to the rotor shed wake. For har-
to the moments),. there is both
i half the inflow perturbation
trailed wake. The rotor thrust
tip vortices), and hence half the

The extension to forward flight is based on the momentum theory result
for the trim inflow:

CT

X0 = u tan aHP +

2 u2 + X02

Then

Sa = aC SCT =
T

6C 

2f1 2 + x`02 + CT X0 /(u 2 + X02)

6C 

2(X0 + u2 + X02)

(The last approximation is valid for small inflow.) In summary then, the
:result obtained for the inflow perturbation due to the unsteady thrust and
moment changes is

SC	 26C 
	

26C 
Sa =	

T	 -	 y	 r cos ^ +r sin
2(a0 + u2 + X02,	 u2 + ao 2	 u2 + a02
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2.5.3 Lift deficiency function- Wake effects in unsteady aerodynamic
theory are often represented by a lift deficiency function. Consider the lift
deficiency function implied by the above results. The aerodynamic pitch and
roll moments on the disk may be written:

	

-2CM	2CM

x

	

oa	 as	 1

	

2CM	2CM	 8 Ay

	

X	 X

	oa	 6a QS

where QS means the quasistatic loading, that is, all moment terms except
those due to the wake. The induced velocity change due to the hub moments is
given above as

ax 2 	 -C My

Ay	 u2 + A02	
CM

X

Substituting for the inflow changes produces

	

-2CM	2C 

-Y -

)QS

	

oa	 ca
= C

2C 	 2C 
x 

	oa	 oa

where the lift deficiency function C is

	

C =	 1
1 4

8 Yuz + Xoz

Thus all rotor aerodynamic hub moments are reduced by.the factor C due to
the rotor wake influence, which can significantly affect the dynamic behavior.
For forward flight, the lift deficiency function is

	

__	 1

	

C	 1 + (oa /8u)

and, for hover,

	

C -	
11

1 + (cja /8ao)
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The hover result is, in fact, the same as the low reduced frequency, harmonic
loading limit of Loewy's lift deficiency function (see refs. 11 and 12).
Miller shows that it is a good approximation to the real part of Loewy's func-
tion to at least a reduced frequency of 0.5, although it neglects the phase
shift entirely, of course (ref. 12).

Similarly, the aerodynamic thrust changes can be written:

ca ^)T	 4
QS

and the inflow perturbation is

X =

	 CT

2 (ao + u2 + ao2

Hence

oa - C (aa)
QS

with the lift deficiency function here:

C =	 1
6a

8(X0 + u2 + a02

For forward flight, this gives the same function as for the moments, while for
hover the thrust changes give

C =	 1
oa

1 + 16XO

Thus the wake effects reduce the aerodynamic thrust forces by the factor C;
the reduction in hover is not as large as for the moments, however, because of
the shed wake effects for moments.

Typical values of the lift deficiency function from the above expressions
are C = 0.8 for forward flight; C = 0.7 for thrust changes in hover; and
C = 0.5 for moment changes in hover. In practice, it is more convenient to
incorporate the inflow influence in the aeroelastic analysis using a differ-
ential equation model rather than a lift deficiency function. The lift
deficiency function is useful, however, in estimating the magnitude of the
wake effects.

1 4
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2.5.4 InfZow due to velocity perturbations- Perturbations of the rotor
velocity will also produce a wake-induced velocity change because of the change
of the mass flow through the disk. Consider again the momentum theory result
for the trim induced velocity:

CT

^i =
2 112 + (11 z + ai)2

Then, for low-frequency changes of the rotor inplane and normal velocity com-

ponents (p and p z ), the induced velocity perturbation is

CT (11S 11 + A06pz)

2 (112 + ao 2 ) 3/2 + CT to

For hover, this reduces to

Sa = - 1 s11z

and, for forward flight,

C	 C a

Sa = - T 611 - T 611z211 2 	 2113

Including the thrust term, the total perturbation of the uniform induced
velocity component is then

C

SCT - (11 +Ta ) (11511 + X 0 6P
0

Sl =
2(a0 + 11 2 + ao2)

The simplest means of incorporating the rotor velocity perturbation terms in
the analysis is to treat them as additional terms in the thrust perturbation.
To complete this expression, it is necessary to identify the velocity pertur-
bations. Since the velocity components are in the shaft axes, the contribu-
tions of the shaft motion and aerodynamic gusts are: 611x = -xh + uG,
Spy = yh + vG, and 611z = zh - wG . The shaft angular motion gives no net
induced velocity change because the mass flow through the rotor disk depends
only on the magnitude of the resultant velocity.

2.5.5 InfZow dynamics modeZ- Considering an inflow perturbation consist-
ing of uniform and linear (1/rev) components,

Sa = a + axr cos ^ + X 
y 
r sin
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the analysis above has related these terms to the perturbation aerodynamic
thrust and hub moments on the rotor as:

1	 0	 0

X	 2(Xo + 
u2 + a02)	

T
C

lx =	 0	 2	 0	 -C
u2 + X02	 My

ay

C

0	 0	 2	 Mx

u2 + X02

This relationship might be generalized to

DL L

where 8X/8L may be a full nine-element matrix. Here we shall consider only
the diagonal terms obtained from momentum and vortex theory. As a further
generalization, a time lag in the inflow response to loading changes can be
included by introducing a first-order time lag term:

T+ aL

Following reference 12, let T = K(DJ U), where K is a diagonal matrix:

K0 0

K = 0 0

0 0 KS

The values K0 = 0.85 and K c = KS = 0.11 are from reference 13. Refer-
ences 13 and 14 show that these values for the time lag correlate fairly well
with experiment, and also that the lag does not, in fact, have a very important
role in the dynamics.

In summary then, the inflow dynamics model consists of a set of first-
order, linear, differential equations for the inflow variables a, a x , and ay:

0

K C

a=
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2	 2
u

	

^oa^ + ^a ^+ +^ ^= y6a
aero

	

J	 f	 h 

2K2	
2	 2CM

C	 Y u	 ° 	 m
oa x + oaf Kh+	

Ax	
Y 6a aero

2k	 2	
o 
2	 2C

S	
M
x

	

Y	 u	 _

	

Y oa ^y + oa K + 
K  ^y	 oa aero

Expressions for the aerodynamic thrust and moment to complete these equations
may be obtained above. It is also necessary to include the aerodynamic
forces due to the inflow perturbations in the equations of motion for the
rotor degrees of freedom. This is an elementary extension of the results of
section 2.3, for, by comparing terms in Sup, it is seen that a corresponds
to zh , ax to -a, and ay to ax . Thus, generally, three degrees of free-
dom and equations have been added to the system that describes the rotor
dynamics.

The time lag is not usually an important factor, so the quasistatic model
for the inflow dynamics is generally sufficient. Dropping the time lag terms,
the equations for a, l x , and a reduce to linear algebraic equations. Thus,
in the quasistatic case, the inhow perturbations do not increase the order of
the system. The wake influence reduces to an algebraic substitution relation,
which, if incorporated analytically, would lead to lift deficiency functions
as derived previously (with large-order systems, it is more practical to
accomplish the substitution numerically).

An elementary model has been presented for the rotor inflow dynamics.
Such a model has shown good correlation with experiment (refs.,13 and 14), and
it gives the correct low-frequency limit for the lift deficiency function (cf.
refs. 11 and 12). A more accurate model will probably be necessary for some
applications, and a more complex model might be constructed, but further
research in this subject is required before a model becomes available which is
uniformly more valid than that presented here.

2.6 Rotor Equations of Motion

2.6.1 Inertia coefficients- At this point, the linear differential equa-
tions of motion for the rotor model are constructed. The equations of motion
are in the nonrotating frame, that is, the Fourier coordinate transformation
has been applied to the bending and torsion degrees of freedom of the blade.
For now, only a three-bladed rotor is considered (N = 3); the equations are
extended to an arbitrary number of blades in section 4. Matrix notation is
used for the equations. The coefficient matrices are constructed from the
results of the previous sections (primarily, sections 2.2 and 2.3). The vec-
tors of the rotor degrees of freedom (x R), shaft motion (a), rotor blade pitch
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input (vR), aerodynamic gust input (g s , in shaft axes), and the hub.forces and
moments (F) are defined as:

Q(k)
0

(k).
^iC

R (k)
is

A (k)0
con

e (k)	 e°	 u 
iC

con
x 	 6(k)	 v 	 eiC	

gs = v 

is
con

RGC	
e1S	 wG

GS

^s

a

x

aY

CT

Y oa

	

2C 	
x 

Y oa

	

2C 	
Yh

	

_y oa
	 Zh

F =	 C	
a = a

x
a' a

ay
2CM

Y oa Y
	 aZ

2CMX

-^ oa

Note that, in the rotor degrees of freedom xR, the notation B (k) and e(k)
is intended to cover as many bending and torsion modes as the analysis requires.
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The equations of motion for the rotor, and the hub reactions take the
form:

A2xR + A1XR + AO xR + A2 o + A l a = BvR 
+ Maero

F = C2xR + 
C I R 

+ C0 R + C 2a + C l a
 + Faero

Here only the structural and inertial terms are included in the coefficient
matrices; Maero and Faero are the aerodynamic forcing terms. (These inertial
matrices are defined in appendix B1.)

2.6.2 Aerodynamic coefficients — axial fZow- The aerodynamic terms Faero
and Maero of the rotor equations of motion and the hub reactions are required
to complete the differential equations of the rotor model. They are obtained
by summing over all N blades of the blade aerodynamic forces in the rotating
frame (section 2.3) and introducing the Fourier coordinate transformation for
the blade bending and torsion degrees of freedom as required.

The case of a rotor operating in axial flow (p = 0) is considered first.
In axial flow, the aerodynamic coefficients for the blade,forces in the rotat-
ing frame are constants, independent of the blade azimuth angle gy m . The
coefficients are also then entirely independent of the blade index (m); hence
the summation over the N blades operates only on the system degrees of
freedom, not on the aerodynamic coefficients themselves (which factor out of
the summation). The result for the required aerodynamic forces is

Maero = A 1 
k R + AOxR + Al a + A 

0 a - BGgs

Faero = C
1 xR + C 0 x R + C 1 a + C pa + DGgs

The coefficient matrices are constant for axial flow (see appendix B2).

2.6.3 Aerodynamic coefficients — nonaxiaZ flow- Finally, the aerodynamic
terms for the rotor operating in nonaxial flow, u > 0, are considered. In
this case, the aerodynamic coefficients of the rotating blade forces are
periodic functions of *m because of the periodically varying aerodynamics of
the edgewise moving rotor. It follows that the rotor in nonaxial flight is
described by a system of differential equations with periodic coefficients.

It is possible to express the aerodynamic coefficients of the rotating
blade forces as Fourier series, and then to obtain the coefficients of the
nonrotating equations in terms of these harmonics. The result is rather com-
plicated, however, and, in the present analysis, it would even be necessary to
numerically evaluate the harmonics of the Fourier series. The simplest
approach for numerical work with large-order systems is to leave the coeffi-
cients of the nonrotating equations in terms of the summation over the N
blades of the rotor. The summation is easily performed numerically, and it is
found that this form is also appropriate for a constant coefficient approxima-
tion to the system.
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The required aerodynamic forces again take the form:

-Maero - A
l xR + A OxR + A l a + AOa - BGgs

Faero = C
1xR + C 

0 
x R + 6 1a + C 

0 
a + DGgs

For nonaxial flow, the coefficient matrices are periodic functions of the
blade azimuth .angle ^m = ^ + mA^ (A^ = 2Tr/N). For a three-bladed rotor con-
sidered here, the period of the equations in the nonrotating frame is
0* = (2/3)Tr (120°). (The coefficient matrices are given in appendix B3.)

2.7 Constant Coefficient Approximation

The rotor dynamics in nonaxial flow are described by a set of linear dif-
ferential equations with periodic coefficients. A constant coefficient
approximation for nonaxial flow is desirable (if it is demonstrated to be
accurate enough) because the calculation required to analyze the dynamic
behavior is reduced considerably compared to that for the periodic coefficient
equations, and because the powerful techniques for analyzing time-invariant
linear differential equations are then applicable. However, such a model is
only an approximation to the correct aeroelastic behavior. The accuracy of
the approximation must be determined by comparison with the correct periodic
coefficient solutions. The constant coefficient approximation derived here
uses the mean values of the periodic coefficients of the differential equa-
tions in the nonrotating frame.

To find the mean value of the coefficients, the operator

1	 2Tr

2 Tr J	

( ... ) d>

0

is applied to the periodic aerodynamic coefficients (given in section 2.6.3
and appendix B3), resulting in terms of the form:

1

cos ^m

2^r	 sin *m	 21	 1 	
M(^y ) dV^ = 1	

1
2rrfo N m 2 cos t ^	

m	 N M 2^r
m

2 sin2 ^m

sin ^m cos

1 M1C
cos ^nj	 2

sin*	 1 MIS
m	

M(Vm)d^m =	 2
2 cos 2 ^m	 M' + 2 M2C

2 sin2 *m	 M- _ 
1 M2C
2

2 sin 'gym cos	 M2S
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Here Mnc and Mns are the harmonics of a Fourier series representation of
the rotating blade aerodynamic coefficient M:

CO

M(^m) = M° + E Mnc cos nom + Mns sin n*m
n=1

In the present case, these harmonics must be evaluated numerically. The aero-
dynamic coefficient M is calculated at J points, equally spaced around the
azimuth. Then the harmonics are calculated using the Fourier interpolation
formulas:

	

M. = J	
M(y

J

	

Mnc = J
	

M(i^j ) cos n^

J

Mns = J ,r M(^ )sin n^

j

where ^• = jA^ = j(2fr/J) (j	 1, ..., J). The number of harmonics required
is n = -1 for N odd and n = N-2 for N even (N is the number of
blades). Good accuracy from the Fourier interpolation requires at least that
J = 6n. Using these Fourier interpolation expressions, the required harmonics
are

M°

2 
M1C	 cos ^ j

MIS	 sinj
l

M° +_!M 2C	 J j 2 cost

M° - 2 M2C	 2 sing ^j

2 
M2S	 sinj cos

It follows then that the constant coefficient approximation is obtained
from the periodic coefficient expressions by the simple transformation:

N^...) M(^m) ^* J	 ^...) M(^
m= 1 	 =1

(Vj)

69



The summation over N blades (m = 1, ..., N; B^ = 2fr/N) for a periodic coef-
ficient is replaced by a summation over the rotor azimuth (j = 1, 	 J;
0^ = 27/J) for the constant coefficient approximation. This is quite conven-
ient since the same procedure may be used to evaluate the coefficients for the
two cases, with simply a change in the azimuth increment. The periodic coef-
ficients must be evaluated throughout the period of ^ = 0 to 2fr/N, of
course; the constant coefficient approximation (mean values only) is evaluated
only once.

With the substitution (11N) m -} (1/J) the results given in appen-

dix B3 for the periodic coefficient matrices are directly applicable to the
constant coefficient approximation as well.

3. ADDITIONAL DETAILS OF ROTOR MODEL

3.1 Rotor Orientation

The rotor orientation is defined by a rotation matrix between the shaft
axes and a tunnel axis system:

iS	

(kT

T

^S = RSTT

kS 

The wind-tunnel axis system used has the x axis directed downstream, the
z axis positive upward, and the y axis positive to the right (looking
upstream). The wind-tunnel velocity is then ViT and the components of the

velocity in the shaft axes are

	

P 
	 V

_uy = RST 0

	

_uz	 0

The hub plane angle of attack and yaw angles may be obtained from the follow-
ing expressions:

aHP = tan 1 uz /f-px2 + uy2

'BHP = tan-' 11 /ux

As examples, we shall consider a helicopter, a propeller test rig, and a tilt-
ing proprotor aircraft in a wind tunnel.
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3.1.1 Helicopter- For a helicopter rotor
table, the shaft axes orientation is given by
then pitch aft by e T . Thus the rotation mat

C ec^	 —Ces

RST - S^	 C

S e ct	 -S6S

in a wind tunnel with' a turn-
first yaw to the right by OT,
rix is

_se

0

Ce

3.1.2 Propeller test rig- Consider a propeller test rig that may be-yawed
by h (positive to the right), with axial `flow for T _ 0 Theri,

-S	 -C	 0

RST = 0	 0	 1

-C	 S	 0.

3.1.3 Tilting proprotor aircraft- The nacelle and rotor of a tilting,
proprotor aircraft can be tilted by an angle up, where up = 0 for axial
flow (airplane configuration) and up = 90° for edgewise flow (helicopter
configuration). It is assumed that the nacelle has a cant angle ^R (posi-
tive outward in helicopter mode, zero for airplane mode), and that the aircraft
has a pitch angle O T (positive nose-up). The resulting rotation matrix is

C^SaC a + CaS e	 -S^Sa	 C^SaSa + CaCe

RST = CAS (1 - Ca)Ce + S^SaSe	 C^2 + S ,2 Ca	 C S^(1 - ca)S e + S SaCe'

_(c 2C +S 2)c + C S S	 — c S (1-c)	 (C 2 C +S 2 )S + CIS C
$ a	 $	 e	 t a e	 ^^	 a	 ^ a	 ^.. 6	 ^ a ^.

3.1.4 Gust orientation- The aerodynamic gust components are defined with
respect to the tunnel axes (wind axes) for the analysis of the rotor and wind-
tunnel support dynamics. The vector of gust velocities seen by the rotor is
then

where uG is positive downstream, vG positive from the right, and w G posi-
tive upward. The rotor aerodynamic forces were derived considering gust com-
ponents in the shaft axes, g s . The substitution g s = RSTg into the equa-
tions of motion then transforms the gust components to the tunnel axes.,
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3.2 Rotor Trim

There are two direct requirements in the dynamics analysis for the trim
solution for the rotoriblade}motion and rotor performance: first, the trim
bending deflection (xoi + zok) is required for the coefficients; second, the
evaluation of the aerodynamic coefficients requires the lift and drag loading
of the rotor blade. The result of this role of the trim solution in the
analysis is that the aeroelastic behavior depends generally on the operating
state of the rotor. The evaluation of the coefficients of the equations of
motion must therefore be preceded by a preliminary calculation of the rotor
trim. The trim solution for the blade motion is periodic in the rotating
frame for the general case of nonaxial flow; for the axial flow (u = 0), the
blade motion is steady in the rotating frame. For the trim blade motion in
the present analysis, only the bending and gimbal degrees of freedom are con-
sidered. It is assumed that there is no unsteady shaft motion, that the rotor
speed is constant, and that there is no torsion/pitch motion (except cyclic
control and any bending/torsion coupling).

In the trim solution, it is assumed that all blades have the same
periodic motion and that the gimbal deflection is constant. The equations of
motion are solved by a harmonic analysis method, which solves the rotating
equations of motion directly for the harmonics of a Fourier series expansion
of the periodic motion. The equations for the blade motion are obtained from
the above analysis, for the bending and gimbal degrees of freedom:

1	 F	 F

	

Igk (gk + gsvkgk + vk2gk) + 2 ^' Igkglgl - 
Igko + y	 nk^ ac 1B ac kB dr

I (v 2 - 1) UGC = 
2	 cosj	

J 1 F

z dr

o	 Y
G	 SGS	

J j sinj	 o ac

The inertia coefficients are defined in appendix Al, and the aerodynamic
forces are evaluated using the trim velocity components (section 2.3).

After the blade motion calculation converges, the rotor performance is
evaluated, including the mean aerodynamic forces and moments the rotor pro-
duces at the hub (in particular, the rotor thrust and power). In an outer
loop, there can be an iteration on the controls to trim the rotor to some
desired operating state. Possible options include adjusting the collective to
achieve a target thrust or torque, or adjusting collective and cyclic pitch to
achieve a target thrust and flapping or a target lift and propulsive force.

For axial flow ,G = 0), the trim solution is independent of ^ (assuming
no cyclic pitch input). The gimbal motion is zero, and the equation for the
blade bending modal deflection reduces to

1	 F	 F
i	 z t 

I gk"k2gk - Igk	 oo + Y	'1k.	 acac 1B 	
kB dr
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So, in this case, only the mean blade bending motion is nonzero, and an itera-
tive solution for the blade motion is not required. Furthermore, of the
forces and moments on the rotor hub, only the thrust and torque are nonzero.

3.3 Lateral Velocity

For the development of the aerodynamic analysis of the rotor in sec-
tion 2.3, it was assumed that the trim velocity of the rotor was in the x-z
plane of the shaft axis system. Generally, however, it is also necessary to
consider a lateral velocity component, that is, p y = j S • ^. An alternative

would be to rotate the shaft axes until j S •	but that would imply a

redefinition of the rotor zero azimuth position for every flight state. Such
a redefinition of ^ is not desirable since it changes the values of param-
eters such as control-system phasing, and even the definition of the rotor
degrees of freedom such as tip-path-plane tilt. Hence it is preferable to
directly incorporate the effects of the lateral velocity in the analysis. The
velocity of the air seen by the rotor disk has then three components in the
shaft axes px , positive aft; py , positive from the right; and pz, positive

downward (Vair - px1S - pyJ S - pzkS)•

The incorporation of py into the analysis developed in section 2 is
straightforward. The only influence is . on the rotor aerodynamics. In the
trim induced velocity, p 2 is replaced by px2 + p 2 (section 2.3.3); this

substitution is also made in the coefficients of the equations for the inflow
perturbations (section 2.5.4). In the trim velocity of the blade (sec-
tion 2.3.3), the quantity p cos ^m is replaced by px cos ^m - V  sin gym,

and the quantity p sin ^ m by px sin ^m + p  cos gym; these substitutions are

also required in the C, B, and q i aerodynamic derivatives and in the unsteady
terms of the torsion equation aerodynamic coefficients (appendix A2). Finally,

the quantity pay is replaced by p xay + P.U. in the perturbation velocity
Sup (section 2.3.3). It follows that lateral velocity p	 terms are added to

the ax columns (fourth columns) of the aerodynamic matrices Ao and Co in
the equations of motion, in a fashion similar to the p x terms in the ay

columns (fifth columns; see appendices B2 and B3).

3.4 Clockwise Rotating Rotor

The equations of motion for the rotor have been developed assuming coun-
terclockwise rotation of the blades as viewed from above. The equations for a
clockwise rotating rotor are obtained by implementing a mirror-image transfor-
mation consisting of the following sign changes:

(a) Change the signs of the yh , ax , and a z columns of the A and C

matrices.

(b) Change the signs of the Cy, C Q , and CM rows of the C, C, and DG

matrices.	 x

(c) Change the sign of the vG column of the B G and DG matrices.
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(d) Change the sign of the lateral velocity pY*

The degrees of freedom of the rotor remain defined with respect to the actual
rotation direction; for example, blade lag motion is still positive opposing
the blade rotation, and the lateral tip-path-plane or gimbal tilt RCS is
still positive toward the retreating side of the disk. The mirror-image trans-
formation accounts for the reversals of some components of a, F, and g (which
are defined in the nonrotating system) relative to the counterclockwise or
clockwise rotating rotors.

3.5 Blade Bending and Torsion Modes

3.5.1 Coup Zed bending modes of a rotating bZade- Equilibrium of the
elastic, inertial, and centrifugal bending moments on the blade gives the
differential equation for the coupled flap/lag bending of the rotating blade
(see section 2.2). For free vibration — the homogeneous equation with har-
monic motion at the natural frequency v — we obtain the modal equation for
bending of the blade:

/' R	 ,

(Elrjn )" - 52 2 J pm dp rj'	 - MQQ • rj - mv 2 rj = 0

r

Here n(r= zoi -^xok is the bending deflection (mode shape),
EI = EI ZZii + EIxxkk is the bending stiffness dyadic, 0 = 52kB is the rotor
rotational speed vis the natural frequency of the mode, and
Ks = KFiBiB + KLkBkB is the hinge spring dyadic. The boundary conditions are:

(a) At the tip (r = R): EITI = (EIp")' = 0.

(b) At the root (r = e): rj = rj' = 0 for a cantilever blade; n 	 0
and EIn = Ks rrl	 for an articulated blade.

The root boundary condition is applied at the offset r = e to allow for
hinge offset of an articulated rotor or a very stiff hub of a hingeless rotor.
The hinge springs are assumed to be oriented in the hub frame here, but could
also include a component that rotates with the blade pitch; KF is the flap
spring and KL , the lag spring constant.

Cal equation in r for the
The equation with the appro-
Sturm-Liouville eigenvalue
a series of modes n i (r) and
that the modes are orthogonal

This is an eigenvalue problem, a different
mode shapes n and the natural frequencies v.
priate boundary conditions constitutes a proper
problem. It follows that the solution exists —
the corresponding natural frequencies v i — and
with weight m. Hence, if i ^ k, then

f

R
rji *T1 kmdr= 0

0
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The frequencies satisfy the energy balance relation:

 f R	 R
( e ) Ksn' (e) +
	 TI"E1n^^ + S22 

fr
pm dp n^ 2 -m(S • n) 2 dr

e
fR

n 2m dr
e

The modal equation is solved by a Galerkin method. The mode shape is
expanded as a finite series in the functions fi(r):

TI c (r)

We require that each fi satisfy the boundary conditions on n, then the sum
automatically does. Since a finite series is required for computation, this
is an approximate calculation. For best numerical accuracy, the functions i
should then be chosen so that at least the lower-frequency modes can be well
represented. Substituting this series in the differential equation and
operating with

1 f 
	 (.	 .)dr

e

reduces the problem (after integration by parts and an application of the
boundary conditions) to a set of algebraic equations for c = [ci]:

(A - v 2B)c = 0

The coefficient matrices are

"Aki fk (e) —Z-s fi(e) + f 1 fk 21 4 fl + f1 pm dp fk • fi - mfk • kBfi • kB dr
e	 S2 R	 r

1
Bki = f mfk •	 dr

e

The eigenvalues of the matrix (B_ 1A) are the natural frequencies v 2 of the
coupled bending vibration of the blade, and the corresponding eigenvectors c
give the mode shape n. As a final step, the modes are normalized to unity at
the tip:	 I r}j (1) I = 1.

A convenient set of functions for f i are the following polynomials
(ref. 7) :

f = (n + 2)(n + 3) xn+1 _ n(n + 3) xn+2 + n(n + 1) xn+3
n	 6	 3	 6

V2 =
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where x = (r - e)/(1 - e). For a hinged blade, f l = x is used. The poly-
nomials satisfy the required boundary conditions but are not orthogonal func-
tions. For the hinge spring term in A ki (articulated blades only), note that
fn(e) = 0, except for the first mode where fi(e) = 1/(1 - e).

3.5.2 Articulated blade modes- For an articulated rotor blade, the modal
differential equation need not be solved if the higher bending modes are not
required. Rigid lag and flap motion about the hinges gives the two lowest
frequency modes:

}	 r - e  _*

nlag - - 1 - eQ kB

TI lap	 1 - eF iB

Note that separate hinge offsets may be used for flap and lag motion. The
natural frequencies are obtained directly from the energy balance relation:

1

e^ 
J 

nm dr + KL
eQ

2

vlag

fe 	
TI 2m dr

e 

1

ef	 nm dr + KF
of

2

vflap = 1 +

	
f

TIef)	 2m dr
of

3.5.3 Torsion modes of a nonrotating blade- Equilibrium of the elastic
and inertial torsion moments (see section 2.2) gives the modal equation:

(G3E')' + I ew2 E = 0

with the boundary conditions E' = 0 at the tip (r = R), and 	 = 0 at the
pitch bearing (r = r FA). The modes are orthogonal with weight Ie. Hence,
if i # k, then

fR
^iEkl e = o

rFA
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The frequencies satisfy the relation:

J R
GJ^ i2 dr

2	 rFAW =

J 

R
I0^2 dr

rFA

These are nonrotating torsion modes, so the solution is independent of
the rotor speed or collective pitch. The equation is solved by a Galerkin
method. Writing C = E c ifi (r), where the functions f i satisfy the boundary
conditions on, and operating with 11FAfk (...)dr on the differential equa-

tion produces a set of algebraic equations for c = [ci]:

(A - w2B)c = 0

The coefficient matrices are

1

Aki = ^T^ fkfi dr

FA

1

Bki = f Ie fkf i dr

rFA

The eigenvalues of the matrix (B-1A) give the natural frequencies of the tor-
sion vibration, and the corresponding eigenvectors for c give the modes.
Finally, the torsion modes are normalized to unit at the tip, E(1) = 1.

A convenient set of functions to use for fi is the solution for the
torsion modes of a uniform beam:

r - r
fn = sin[(n - 2)7T 1 - 

rFA

FA

These functions satisfy the boundary conditions and will usually be close to
the actual mode shapes.

3.6 Lag Damper

For articulated rotors, the mechanical lag damper has an important role
in the dynamics. A lag damping term is added to the blade bending equation
of motion ( section 2.2):
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(q + g v q + v 2q ) + 2 	 I*	 q +	 g	 k	 rj' (e)k • rj! (e)q. + .
qk k	 s k k	 gkgi i	 i lag B k	 B

M
q aero

- Y 
ac + Igko

where glag = C C /IbQ and C^ is the lag damping coefficient. The quantity
kB_ n e) is the slope of the kth bending mode in the lagwise direction,
just outboard of the lag hinge. The manner in which the lag damping enters
the equation of motion is obtained by a Galerkin or Rayleigh-Ritz analysis.
The lag damper results in a bending moment at the lag hinge. Thus it is
necessary to evaluate moments at the blade root by integrating along the span,
which has, in fact, been our practice.

3.7 Pitch/Bending Coupling

The kinematic pitch/bending coupling Kp and the pitch/gimbal couplingi
KpG have a significant role in the rotor dynamic behavior. The definition of

Kp
i 

is the rigid pitch motion due to a unit deflection of the ith bending

mode: Kp = - d8/dq i . For an articulated rotor, the first "bending" modesi
are rigid lag and flap motion about the hinges. The pitch/flap coupling is
often defined in terms of the delta-three angle: Kp = tan S 3 . It is possible
to simply input the kinematic coupling parameters to the stability calcula-
tions if values are available from either measurements or some other analysis.
It is also desirable, however, to be able to calculate the coupling from a
model of the blade root geometry.

Figure 12 is a schematic of the blade root and control-system geometry
considered here, which shows the position of the feather bearing, pitch horn,
and pitch link for no bending deflection of the blade. The radial locations
of the feather bearing and pitch link are rFA and rpH , respectively; the
lengths of the pitch horn and pitch line are xp H and xpL . The orientation of
the pitch horn and pitch link are given by the angles KPH + 0 75 and APL.
Control input produces a vertical motion of the bottom of the pitch link and
hence a feathering motion of the blade about the pitch axis. The bending
motion of the blade, with either bending flexibility or an actual hinge
inboard of the pitch bearing, produces an inplane or out-of-plane deflection
of the pitch bearing. With the bottom of the pitch link fixed in space, a
pitch change of the blade results. The vertical and inplane displacements of
the pitch horn (the end at rp H) due to bending of the blade in the ith mode
are

Az = giiB • ITIi (rFA) - ni (r FA
) (rFA rPH)^

Ax = -q	 (r
Uni(rFA) - ni(rFA)(rFA rPH)I
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The kinematic pitch/bending coupling is derived from the geometric constraint
that the lengths of the pitch horn and pitch link be fixed. The result is

	

KP,	

(cos ^PL1B + sin 6
PLkB) • In i (rFA) - n i (rFA)(rFA	 rPH)]

	

i	
-xPH cos(^

PH
 + 8 75 + APL)

Similarly, for a gimballed rotor, the pitch/gimbal coupling is

-(rPH/xPH)Cos APL

KPG cos(^PH + 8 75 + APL)

(K
P
 G) itch horn horizontal
cos(^

PH
 + 875 +•,APL)

3.8 Normalization Parameters

It has been the practice here to deal with dimensionless quantities based
on the air density, rotor speed, and rotor radius (p, 0, and R). In addition,
the equations of motion inertia coefficients, and aerodynamic coefficients
have been normalized using the following parameters: Ib, a characteristic
moment of inertia of the blade; cm , the blade mean chord; and a, the blade
two-dimensional lift-curve slope. These parameters have no effect on the
numerical problem. It is essential, however, to be consistent in the defini-
tion of the normalization quantities and the parameters that depend on them.
In particular, the blade Lock number and rotor solidity are defined as

pacmR4
Y = I

b

Ncm
o 

= 7rR

The Lock number may be defined for standard air conditions (p o), and then

y(p/p o) used in the analysis to account for the actual temperature and alti-
tude at which the aircraft or wind tunnel is operating. It is convenient to
use the rotor solidity as the primary parameter and to obtain the mean chord
from cm/R = off/N.

4. ARBITRARY NUMBER OF BLADES

4.1 Four or More Blades

In this section, the rotor model is extended to an arbitrary number of
blades. The equations derived in section 2 are for a three-bladed rotor. We

_

79



begin with a consideration of the case of four or more blades. Each rotating
degree of freedom of the blade (i.e., bending or torsion motion) must result
in N degrees of freedom for the rotor as a whole. Thus increasing the num-
ber of blades adds degrees of freedom and equations of motion to the rotor
description. In axial flow, these additional degrees of freedom do not couple
with the collective and cyclic (O,1C,1S) degrees of freedom of the rotor.
Hence the equations in section 2.6 remain valid for rotors with N > 3 also,
and we need be concerned here only with the equations of motion for the addi-
tional degrees of freedom. For nonaxial flow, however, all rotor degrees of
freedom are coupled.

The Fourier coordinate transformation for four or more blades adds the
following degrees of freedom to the collective and cyclic variables for N = 3:

	

2	 (m)
	S2G = N	 q	 cos 2^m

m

R2S = N E
 q(m) sin 2'

m

	

Snc = N	
q(m) cos no

m

Sns N E q(m) sin no
m

	

1	 (m)	 m

	

RN/2 = N	 q	 (-1)
m

So

q(m) = R o + 
E 

one cos nom + sns sin nom) + aN/2(-1)m
n

The result for the torsion/pitch modes is similar. The summation over m
goes from 1 to N; the summation over n goes from 1 to (N - 1)/2 for N
odd and to (N - 2)/2 for N even. The SN/ 2 and 6N / 2 degrees of freedom
are present only if N is even. Then there are a total of N nonrotating
degrees of freedom corresponding to each bending and torsion mode of the blade.

These additional degrees of freedom are not coupled inertially with the
shaft or gimbal motion. The bending and torsion equations in the rotating
frame are thus reduced to

80



I" (q + g v 4 + v 2g ) +	 I 	 4. -	 S 	 P _	 S'^	 _
q  k	 s k k	 k k	 gk4i 1	 gkpi 1	 gkpipi - Y

Mqkaero

ac

I'ti (p + g w p + w 2p ) +	 I" •• p +	 I 	 . -	 S* .. q .
Pk k	 s k k	 k k	 gkp ii	 pkpi l	 pkgi 1

M
^	 pkaero

Spkg igi -	 ac	 + Ipowo 2 k(rFA)econ

The equations of motion in the nonrotating frame are obtained by application
of the following summation operators:

N E(. 
.)cos nom , N E(.. .)sin no 	 Nm	 m	 m

and introduction of the Fourier coordinate transformation as required.

The additional equations of motion for the rotor with four or more
blades are then:

A2xR + A l kR + A 0 x R = BvR
 + Maero

The vectors of the rotor degrees of freedom (xR) and blade pitch control
inputs (vR) are:

xR

S(k)

nc

(k)
Sns

(k)
^N/2

6(k)	
9

nc

e (k)
ns

(k)
eN/2

econ
nc

_ con
vR - ens

con
eN/2

(The matrices of the inertia coefficients are given in appendix B4.)

To complete the equations of motion, the aerodynamic terms must be eval-
uated. The aerodynamic forces in axial flow still do not couple the addi-
tional degrees of freedom for N 2: 4 with the shaft or gimbal motion. Thus
the aerodynamic forces for the bending and torsion modes in the rotating frame
reduce to
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Mqkaero ` Mgkq iq i + E Mgkqiqi + E MgkpiPi

M	 = EM q. + L M q. + EM p. + EM pi
pkaero	

pkgi 1	 pkgi 1	 pkpi 1	 pkpi 1

Thus the aerodynamic terms for axial flow take the form:

-M
aero - A

1 xR + A2xR

(The matrices of the aerodynamic coefficients are given in appendix B5.)

The aerodynamic forces in nonaxial flow (p > 0) couple all degrees of
freedom of the rotor with each other and with the shaft and gimbal motion.
Then, not only are additional degrees of freedom and equations of motion
involved if N > 3, but the number of blades also influences the equations and
the hub reactions given in section 2.6. Rather than directly presenting the
aerodynamic matrices for the general case of three or more blades in nonaxial
flow, the analysis is extended by means of an observed pattern in the coeffi-
cients. In the nonaxial flow equations in appendix B3, note the repeated
occurrence of the following submatrices:

1

P = 2CI

2SI

0

DP = 0

0

	

C1	 S1	 1

	

2C 1 2	2C1S1 = 2C 1 [l

2C I S 1	2SI2 j	 2SI

-S 1	 CI	 1

-2C I S 1	2C12	 = 2C I [0

	

-2S I 2	2CISI	 2Si

C1 SO

-S I	C1]

(using the notation Sn = sin nom and C n = cos nom). These matrices are a
direct result of the introduction of the Fourier coordinate transformation
(columns) and the application of the summation operators to obtain the non-
rotating equations (rows). The matrix DP arises from application of the
Fourier transformation to the time derivatives (q i or pi). In the BG and A
matrices, only some columns of P and DP appear, while in the C matrices
only some rows appear. The extension to an arbitrary number of blades (N > 3)
is then, simply, ,
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P=

1

2C1

2S1

2Cn

2Sn

(_1)m

[1	 C 1	S 1	. . .	 Cn	Sn	(-1)m]

1

2C1

2S1

DP =	 [0	 -S 1 	C1	 < .	 -nSn 	nCn 	 01

2Cn

2Sn

(_1)m

The constant coefficient approximation for the aerodynamic terms in non-
axial flow is derived for N _> 4 following section 2.7. It is found that the
approximation is obtained from the periodic coefficient result by the
transformation:

	

1	 1

	

Cn 	Cn

	

Sn	
Sn

	

1 N 

CnCQ	 1 J CnCQ,

N	 CnSQ M(V^m) } J	 CnSQ
J=

SnSQ
S nS Q

	

(-1) m	 0

	

Cn(-1)	 0

	

Sn(-1)	 0

M(^i )
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So the periodic coefficient results are still applicable to the constant coef-
ficient approximation if the summation over the N blades is replaced by a
summation around the rotor azimuth.

0
4.2 Two-Bladed Rotor

Rotors with three or more blades may be analyzed within the same general
framework, but the two-bladed rotor is a special case. The rotor with N -> 3
has axisymmetric inertia and structural properties and hence the nonrotating
equations have constant coefficients in axial flow. In contrast, the lack of
axisymmetry with a two-bladed rotor leads to periodic coefficient differential
equations, even in the inertial terms and in axial flow. Only in special
cases (e.g., shaft fixed, or with an isotropic support — analyzed in the
rotating frame) are the dynamics of a two-bladed rotor described by constant
coefficient equations.

The rotor degrees of freedom in the nonrotating frame are obtained as
usual from the Fourier coordinate transformation. For N = 2, the bending
degrees of freedom are coning and teetering type modes:

B 0	1 E q (m) = 1 [ q(2) + q0) IN	 2
m

B 1 = 1 E q (m) (-1) m = 1 [q (2) - q(1) lN

	

	 2
M

The pitch/torsion degrees of freedom 6 0 and e l are similarly defined. The
teetering degree of freedom ST , which corresponds to the gimbal motion of the
rotor with three or more blades, is also included for the two-bladed rotor.
The teetering motion is defined in the rotating frame; hence (see fig. 9),

SG = Y-1)m

6G =0

The special characteristics of the two-bladed rotor dynamics are reflected in
the appearance of the teetering-type degrees of freedom (S l , 0 1 , and RT),
which take the place of the cyclic (1C and 1S) motions for N >- 3.

The bending and torsion equations in the rotating frame, derived in sec-
tion 2, remain valid for N = 2. The rotor equations of motion in the non-
rotating frame are obtained by operating on the bending and torsion equations
with the following summation operators:

N E(. . .) and N E(. .)(-1)m
m	 m
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S(k)
0

(k)
1

6(k)
0

e(k)

ST

^s

x

Ax

ay

x  =

The equation of motion for the teetering degree of freedom is obtained from
equilibrium of moments about the teeter hinge (in the rotating frame):

-2MT
 + CT ;T + KTsT = 0

The teetering moment MT is given by the root flapwise bending moment:

MT ^ N L^ 1
B• M(m) (-1)m

m

where CT and KT are the damper and spring constants about the teeter hinge
in the rotating frame. In terms of the natural frequency and damping coeffi-
cient, CT = 2I 0OCT and KT = 210Q2 OT2 - 1). The hub forces and moments are
obtained by summing the root forces and moments from both blades, as for
N > 3. The equations are normalized and the inertia coefficients.named in a
manner similar to the N = 3 case (section 2.2). Inflow dynamics and the
rotor speed dynamics are included as for N -> 3 (sections 2.4 and 2.5).

The vectors of the rotor degrees of freedom (xR) and the rotor blade
pitch input (vR) are defined as follows for the two-bladed rotor:

econ
_	 0

'	 vR	 econ
1

The vectors of the shaft motion (a) and the hub reactions (F) are defined as
in section 2.6. The equations of motion then take the form:

A2xR + A1 xR + A 
0 
x R + A 

2 
o + A l a = BvR

 + Maero

F = C2xR + C 1xR + COxR 
+ 6

2a + C l a + Faero
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(The matrices of the inertia coefficients are given in appendix B6.) Note
that there are periodic coefficients in the matrices coupling the rotor and
shaft motion (A, C, ^).

The aerodynamic forces 
Maero 

and 
Faero are required to complete the

equations. The teetering aerodynamic moment is defined as

MT 	 1

Ef Fro -	
ac r dr(-1)mac	 N 

m o

The aerodynamic hub forces and moments are defined as,for N > 3. The _aero-
dynamic forces on the bending modes are

1
Ms

0
aero N E Mgkaero

MS 
1 aero N L.r Mgkaero'( l) m

The definitions of the torsion aerodynamic forces Me 0aero and-MOlaero are
similar. The aerodynamic forces are then:

aero A1xR + A O xR + A l a_+ AOa - BGgs

Faero - C 1XR + C 
0 
X 
R 
+ C la + 60a + DGgs

The vector of aerodynamic gust components (g s) is defined as in section 2.6.
(The matrices of the aerodynamic coefficients are given in appendix B7.)

A constant coefficient approximation for the two-bladed rotor may be'
obtained in a manner similar to the N -> 3 case. For the aerodynamic forces,
as usual the summation over N blades is simply replaced by an average over
J points around the azimuth:

1	 1
1	 cos m	 1	 cos ^j

N 	 J ^-+	 M(V^j)
m sinm	 j sin

(-1)m 	0

Note that all aerodynamic terms involving (-1) m drop in the constant coeffi-
cient approximation. For the inertia terms, the mean values of the periodic
coefficients are easily obtained.

The constant coefficient approximation is not as useful — or as accu-
rate — for the two-bladed rotor as for N _> 3. With three or more blades, the
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source of the periodic coefficients is.nonaxial flow, hence the periodicity is
of order p or smaller. At low advance ratio then, the constant coefficient
approximation may be expected to be a good representation of the correct
dynamics. The two-bladed rotor has also periodic coefficients due to the
inherent lack.o.f axisymmetry of the rotor. This periodicity is large even for
axial flow, and neglecting it in the constant , coefficient approximation is
often a poor representation of the dynamics.

4.3 Single-Bladed Rotor

A single-blade analysis is useful for problems not involving the shaft
motion or other excitation from the nonrotating frame. The only rotor blade
degrees of freedom involved are the bending and torsion motion. The shaft
motion, gimbal motion, and the rotor speed perturbation are dropped from the
system. The hub reactions need not be considered. The single-blade analysis
is, of course, in the rotating frame. The equations of motion for the bending
and torsion modes of the blade are then:

Igk (gk + gsvkgk + 'k k)+ 2 I'gkg ig i -	 SgkPi -	 Sgkplpi

-	

YMgkglqi -	 YMgkglqi F yMgkplp i = 0

Ip (Pk + gswkpk + wk2pk) + L, IP P• Pi + F IP P• Pi	 SP q•qi `, SP q • qi
Pk	 k i	 k i	 k i	 k i

yM	 q _
	

yM	 q - 
F 

yM 	
P • 

r yM	 p _ I w 2E (r_  e

	pkgi i .
	 Pkqi i	 pkpi i	 pkpi i	 Po o k FA con

5. WIND-TUNNEL SUPPORT MODEL

Consider now the aeroelastic model for the wind-tunnel support system.
The rotor support is described by a set of linear constant coefficient differ-
ential equations excited by forces and moments at the rotor hub. The hub
motion produced by the support degrees of freedom completes the description.
Let xs be the vector of the support'degrees of freedom and v s , the vector

of input or control variables for the support system. As for the rotor model,
the vectors of the shaft motion at the hub (a), the aerodynamic gust components
(g), and the rotor forces and moments acting on the hub (F) are defined as:
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Xh

yh

zh
a =	 ,

a
x

ay
a
z

CT

Y as

2C 

Y Ga

2C 

-^ oa
F =

Y oa

2C 

Y 6a
2C 

x-Y oa

u 

g = V 

w 

The gust components are here in the tunnel axis system (x downstream, y to
the right, and z upward), while the components of a and F are in the shaft
axis system. The equations of motion for the wind-tunnel support then take
the following form:

a2xs+alas+a0xs =bvs+ bGg +aF

and the rotor hub°motion is given by the linear transformation:

a = cxs

The equations are dimensionless, based on p, Q, and R. With F in rotor
coefficient form, it is also convenient to normalize the equations by dividing
by the characteristic inertia (N/2)Ib . Note that the matrix a may always be
obtained from the matrix c (reciprocity theorem).

The sophistication required of the description of the wind-tunnel strut
and balance system and the aircraft or rotor test module depends on the dynamic
problem being studied and also, of course, on the available data from which
the model is to be constructed. Consider, for example, a general model based
on a normal vibration mode description of the elastic.wind-tunnel support
}ystem. The displacement u(r,t) and rotation u(r,t) at an arbitrary point
r are expanded in series of orthogonal vibration modes, with generalized
coordinates gsk(t):

u(r,t) _	 gsk(t)' r)

^(r,0	 qsk wyk(r)
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The differential, , equations for the degrees of freedom qsk are then

Mk
(
qsk + g 

A's k + Wk' q
sk ) - Qk

where Mk . is the modal mass and wk, the natural frequency; g s is here the
structural damping coefficient for the mode and Qk is the generalized force.

The hub motion is obtained from the mode shapes 	 and y at the rotor
hub, a	 c{gsk1, where

} }
iS • Ek

J S •k	
}

} }	 RST k
C -	 ks tk

t	 RSTYk
is Yk

is 
Yk

ks • Yk	 -

Here and y are in the tunnel axis system, so RST is the rotation matrix
to the shaft axes (see section 3.1). The generalized forces due to the rotor
hub forces and moments are fQk) = aF, where

a = 2k  • Ck
	

i s • k
	

- i s 
• ^k	

-_2ks • Yk	 is . Yk
	

is Yk

Generally, Qk may also have additional contributions, including mechanical or
aerodynamic damping forces of the form E Ckiqs, support-system control

i
inputs of form _E bk ivs i , and aerodynamic gust forces on the support of the

i
form E 

bGkigi. Making the equations dimensionless and normalizing as appro

priate produces the required model for the wind-tunnel support.

6. COUPLED ROTOR AND SUPPORT MODEL

The equations of motion have been derived for the rotor and for the wind-
tunnel support. Now these equations may be combined to construct the set of
linear differential equations which describes the dynamics of the coupled
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system. The vectors of the degrees of freedom (x), the control inputs (v),
and the aerodynamic gust components (g) are defined as:

x 
	

v 
	 u 

X =	 , v=	
g=. V 

x 	 v 	
w 

The equations of motion for the coupled rotor and wind-tunnel support model
then take the following form:

A2x + A ix + Aox = By + BGg

To derive the coupled equations, recall the results for the rotor equa-
tions of motion and the hub forces and moments from section 2.6:

A2xR + A l xR + A 0 
x R + A 

2 
a + Al a + A 0a = BvR + BGgs

F = C 2xR + C ixR + C 
0 
X R + C 2 

a + C l & + C 
0 a + DGgs

and the results for the support equations and the hub motion (from section 5):

a2
 -2+ a i xs + a0xs = bvs + b 

G 
g + aF

a = cxs

The gust components in the rotor equations are transformed to the tunnel
(wind) axes by the substitution gs = RSTg. The coupled equations of motion
are obtained by substituting the hub motion (a) into the rotor forces and
moments (F) and then substituting for F into the support equations of
motion. :the following coefficient matrices for the complete system may then
be constructed:

A2	 A2c
A2 =

-aC2 a2 - acme

Ai	 Aic
Al =

	

-aC l	 al - aCic

A^	 Arc

AO = koc
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[+Ob]

B =

B =	 BGRST
G	

b  + aDGRST

6.1 Rigid Control System

Frequently, the rotor is modeled as having a rigid control system. This
option requires some restructuring of the equations of motion, for the rotor
equations have been derived assuming that the blade rigid pitch degrees of
freedom are present in the model and that the blade pitch control inputs enter
through these degrees of freedom. A rigid control system is the limit of
infinite control system and blade torsional stiffness. Thus the rotor blade
elastic torsion motion is zero, and the solution of the rigid pitch equation
of motion reduces to

Po = e con , r K,igi + KPGgG + (0 1S cos Om - e1C 
sin 

Om)OS

or, in the nonrotating frame,

(the result for N # 3 is similar). The blade pitch motion in this limit
consists of the control input ocon, feedback of the bending and gimbal motion
due to the kinematic coupling, and a pitch change due to the azimuth perturba-
tion with a fixed swashplate. Thus it is first necessary to account for the
pitch/bending, pitch/gimbal, and pitch/azimuth coupling, which requires only
operations on the columns of A O (as indicated by the above equations). Next
the control matrix B is reconstructed from the rigid pitch columns of AO
since the blade pitch motion becomes a control variable rather than a degree
of freedom. Finally, the equations of motion for the rigid pitch degrees of
freedom may be dropped from the system.

6.2 Quasistatic Approximation

A quasistatic approximation is often used in rotor dynamics to reduce the
order of the system. In the present analysis of the rotor in a wind tunnel,
the quasistatic option is applicable to the inflow dynamics and sometimes to
the blade pitch/torsion degrees of freedom. Let us assume that the equations
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of motion have been reordered so that the quasistatic variables (x 0 ) appear
last in the state vector:

x1
X =

x0

The quasistatic approximation consists of neglecting the acceleration and
velocity terms of the quasistatic variables. Thus the equations of motion
take the form:

All	 0 x l	 All	 0( 1

0

AllAlO x l 	B1
+	 +	 v

Al l 	0 x0	 A010 	 AO1	 AOO	 x0	 BO

Frequently, the x l acceleration and velocity terms in the x 0 equations
will also be neglected (AO1 = A01 = 0). The quasistatic variables now are no
longer described by differential equations but rather by linear algebraic
equations. The solution for x O then is simply

xO = [AOOI-1[B0v - A21^ - A Ol x l - AOlxl]

Substituting for xO in the x1 equations of motion gives then the reduced-
order equations for the quasistatic approximation:

[All - Ao0(AOO)-1A21]x l + [Ail - A'O(AOO)-1A01l + X 1 [All - A'O(AOO)-1A01]xl

[B 1 - A'O(AOO)- 1BO]v

The quasistatic approximation retains the low-frequency dynamics of the x0
variables. Whether that is a satisfactory representation of the aeroelastic
behavior should always be verified by comparison with the results of the
higher order model.
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PART II. AEROELASTIC ANALYSIS FOR A ROTORCRAFT IN FLIGHT

An aeroelastic analysis for a general two-rotor aircraft in steady-state
flight is now developed (fig. 13). The rotorcraft to which the analysis is
applicable include single main-rotor and tail-rotor helicopters, tandem-rotor
helicopters, and side-by-side or tilting proprotor aircraft. Section 7
describes the rotorcraft configuration considered. In section 8, the equa-
tions of motion for the helicopter fuselage are derived, including both rigid
body and elastic motions of the aircraft. The aerodynamic forces of the
aircraft wing-body, horizontal tail, and vertical tail are included. A simple
model for rotor-fuselage-tail aerodynamic interference (trim and perturbation)
is developed. The rotor model used is that developed in part I; extensions
of the model required for the helicopter in flight (principally in the inflow
and transmission models) are developed in section 9. Finally, in section 10,
the rotor and aircraft body equations are combined to construct the equations
of motion for the coupled system. The analysis for the side-by-side or tilt-
ing proprotor configuration is simplified if complete lateral_ symmetry is
assumed in both the aircraft and the flight state. In that case, the longi-
tudinal and lateral motions separate, allowing the solution of two lower order
problems.

7. ROTORCRAFT CONFIGURATION

The rotorcraft configuration features that have a major role in the
dynamic behavior are the aircraft velocity and orientation and the position
and orientation of the rotors. The aircraft flight path is usually specified,
and by a trim calculation in which zero net force and moment on the aircraft
are achieved, the control positions and aircraft orientation are determined.
The orientation and position of the rotors are fixed geometric parameters.

7.1 Orientation

7.1.1 FZight-path and trim EuZer angZes— The aircraft flight path is
specified by the velocity magnitude V and the orientation of the velocity
vector with respect to earth axes. The velocity vector has a yaw angle ^Fp
(positive to the right) and a pitch angle O Fp (positive upward). Thus the
climb and side velocities of the aircraft are Vclimb = V sin 6 Fp and

Vside = V sin ^ Fp cos. 6 Fp. The aircraft attitude with respect to earth axes
is specified by the trim Euler angles, first pitch O FT (positive nose-up),
then roll AFT (positive to the right). Airplane convention is followed here
for the coordinate systems — x positive forward, y positive to the right,
and z positive downward (see ref. 15). Between the earth axes (E system)
and the velocity axes (V system) are rotations * Fp and 6Fp. Between the earth
axes and the body axes (F system) are rotations O FT and AFT . Thus the rota-
tion matrix between the V system and the F system is
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C6FTCeFPC*FP 	 -C6FTS^FP	 C8FTS8FPC*FP

+ S S	 - S C
8 F 8FP	 6 F 0 F

s e SO C 	 C	 _Se S O S	 se s	 S8 C^
FP

+ C C S	 + C C	 + C S S
AFT 8FP 'FP	 OFT ^FP	 OFT eFP ^FP

- C  s s e	 + C  sO 
C 

FT OFT FP	 FT FT FP

Se CO c6 C^	 -S6 CO S	 se cO Se C^
FP

S O
FT C0FPS^FP	 S 

O
FT CIPFP	 S 

O
FT SeFPS*FP

- ce c s	 +c c c
FT OFT 8FP	 8FT OFT 0 F

The trim calculation determines the Euler angles e FT and OFT (and, perhaps,
the flight-path climb angle 6 Fp also).

The velocity of the aircraft is V = ViV , so the components in the body
axes are

v
x

Vy = VRFV1V
V
z

The acceleration due to gravity is. g = gkE or, in body axes,

- sin 0 F
g = gkE = Azos  0 F sin OFT

cos 0 F cos 0FT

7.1.2 Rotor position and orientation— The rotor hub position is speci-
fied in the body axes relative to the aircraft center-of-gravity position,

rhub	
(xiF + yj F + zkF)hub* The rotor orientation is defined by a rotation

matrix between the shaft axes (S system) and the aircraft body axes (F system):

-FV
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^S	 }F

}S - RSF ^F
kS	k 

The shaft axis components of the velocity seen by the rotor are then:

-u	 v
x

uy - RSFRFV0

u 2 	 (0)

The hub plane angle-of-attack and yaw angle may then be obtained from

aHP = tan-1  u ZI uX + uy

BHP = tan 1 uy/ux

The sign of the lateral velocity u
Y 

must be changed for a clockwise rotating

rotor (section 3.5), and if the induced velocity is included, the inflow ratio
is a = u Z + ai.

For a helicopter main rotor, the orientation with respect to the body,
axes is specified by a shaft angle of attack A R (positive for tilt forward)

and a roll angle R (positive to the right). Thus,

—c e	 o	 —se

RSF =	 -S^S 0 	C	 S^C8

C^S 0 	S^	 -C^Ca

The orientation of a tail rotor is specified by a cant angle ^R (positive

upward) and a shaft angle of attack 
8  

(positive forward). The tail rotor

rotating main rotor and to the
tion of the tail-rotor shaft axes
Let Q	 be +1 for a

mr
clockwise rotation. Then the

thrust is to the right for a counterclockwise
left for clockwise rotation. Thus the defini
depends on the main rotor rotation direction.

counterclockwise rotating main rotor -1 for
rotation matrix for the tail rotor is
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-Ce QmrYe -Ye

	

RSF	 0	
S^	

QmrC^

	

Se	
%Jr Ce	 -S Ce

The nacelle and rotor of a tilting proprotor aircraft can be tilted by an
angle ap , where a^ = 0 for axial flow (airplane configuration), and
p = 90a	 for edgewise flow (helicopter configuration). The rotor orientation
is also described by a cant angle ^R (positive outward in helicopter mode,
zero in airplane mode) and a pitch angle OR (positive nose upward), which is
the angle of attack of the shaft with respect to the body axes when 'ap 0.
Thus the rotation matrix is

-C^SaC e - CaS e 	-S Sa	
^^SaS6	 ^aCB

	

RSF = -C S (1 - C) C - S S S	 C2 + S 2 C	 C S (l - C ) S - S S C
a6	 a e	 a	 a e	 a&

	(C2Ca + S 2 )C e - c^SaS e	C S^(1.- Ca)	 -(C2Ca + S 2 )Se - C^SaCe

The rotor hub location chub for the tilting proprotor aircraft is

defined by the pivot location rpivot and the mast height h, so that

(C 2 Ca + S 2 )C e - C^Sase

	

chub	 rpivot + h
	 -C^S^(1 - Ca)

(C2Ca + S 2 )Se - C^SaCe

7.1.3 Gust orientation— The aerodynamic gust components are defined with
respect to the wind axes for the analysis of the rotorcraft in flight. The
vector of gust velocity seen by the aircraft is

uG

g = ^Vj
W

where uG is positive downward, vG is positive from the right, and wG is
positive upward. The aircraft aerodynamic forces are derived for gust com-
ponents in the body axes, gF . Hence the transformation gF = RFVg is
required. The rotor aerodynamic forces were derived considering gust com-
ponents in the shaft axes, gs. The substitution g s = RGg, where
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-1 0	 0
R	 0	 1	 0 

R RSF
G	

FV

0	 0 -1

into the equations of motion then transforms the gust components to the wind
axes.

7.2 Pilot Controls

The control.variables included in the rotorcraft model are collective
and cyclic pitch of the two rotors, engine throttle 6 t , and the aircraft
controls (wing flaperon angle S f , wing aileron angle S a , elevator angle Se,
and rudder angle S r ). The control vector is thus:

vT =	 acon)SS 
SSJ

[(concon,con),(con,con
0	 1C 1S	 0	 1C 1S 2 t f e a r

The pilot controls, however, consist of collective stick S o (positive upward),
lateral cyclic stick Sc (positive to the right), longitudinal cyclic stick
Ss (positive forward), pedal Sp (positive yaw right), and throttle lever St:

S
0

S
c

v  = Ss

s
p

S
t

A linear relationship between the control inputs of the pilot and the rotor
and aircraft control variables is.assumed:

v 
TCFEvP + vo

where vo is the control input with all sticks centered (vp = 0), and TCFE
is a transformation matrix defined by the control-system geometry. This
transformation is required to obtain the aircraft response to the control
input of the pilot. In addition, it is the pilot controls that must be
adjusted to trim the rotorcraft. (The control transformation matrices for the
single main-rotor and tail-rotor helicopter, the tandem main-rotor helicopter,
and the side-by-side or tilting proprotor configurations are given in
appendix C.)

7.3 Aircraft Trim

The construction of the equations of motion for the rotorcraft dynamics
must be preceded by a trim calculation, which determines the aircraft control
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settings and orientation required for the specified equilibrium flight condi-
tions. Equilibrium flight requires that the net force and moment on the
aircraft be zero, which gives six equations to solve for the six trim vari-
ables, consisting of four pilot controls and the two trim Euler angles (So,
S c , S s , dp , e FT , and AFT). This procedure is for level flight ( e FP = 0) or
a specified climb velocity. If, instead, the power available is specified,
such as for power-off descent, then an additional trim variable (flight-path
angle eFP ),and an additional equation (the power required equals the power
available) must be included in the trim calculation.

The balance of forces and moments about the aircraft center of gravity
and the balance of power give the trim equations. The contributions to the
forces and moments are from aircraft weight, aircraft aerodynamic forces`, and
hub reactions of the two rotors. In helicopter coefficient form, the force,
moment, and power equations are
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Y (NI Q 2 /R)i kE + ( a is 
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bQ )1 o rotor 2 (7)rotor  power available

The components of the force and moment equations are obtained in the body
axes (F system). Here W is the aircraft weight; and the hub reactions for
rotor 2 are normalized using the parameters of.that rotor, hence the factors
accounting for the normalization of the coefficients. The aircraft aero
dynamic forces are acting on the wing-body (WB), horizontal tail (HT), and
vertical tail (VT). Here L, D, and Y are, respectively, the aerodynamic
lift, drag, and side forces; Mx , My , and Mz are the roll, pitch, and yaw
moments on the wing-body and q is the dynamic pressure.

A consideration of the aerodynamic interference between the rotors, wing,
and tail is required to accurately calculate the trim state. A simple model
for this interference ,is used here. The rotor-induced velocity, together
with the aircraft velocity, is used to determine the angle of attack at the
wing and tail. For the horizontal tail, the angle-of-attack change due to the
wing wake is also included. The rotor-induced velocity X i is assumed to be
directed along the rotor shaft (kS ). A multiplicative factor on the induced
velocity is used to account for the fraction of the aerodynamic surface within
the wake and the fraction of the fully developed wake velocity achieved. A
further multiplicative factor accounts for the decrease in the wake-induced
velocity away from the wake boundaries (see, also, the discussion of the
perturbation aerodynamic interference model, section 8.2). The angle-of-attack
change at the horizontal tail due to the wing is calculated by

0.45 C

Qa =	
LWB

(k2 1S ) 01735 (k 
/
c 0.25

w w	 HT w

whereCLWB is the wing lift coefficient; S w , kW, and cw are, respectively,

wing area, span, and chord; and kHT is the tail length (ref. 16). Alterna-
tively, all the interference effects could be included in the wing-body,
horizontal tail, and vertical tail aerodynamic characteristics.

The-trim equations are nonlinear in the control variables, of course.
Thus an iterative solution procedure is required in which the control variables
are incremented in the direction to achieve zero net force and moment, based
on a set of local partial derivatives obtained at the beginning of the trim
calculation by making step changes in the individual control variables. The
solution is considered to have converged to the desired trim state when the.
net force and moment are within 'a certain tolerance level.

8. AIRCRAFT MODEL

The aeroelastic motion of the rotorcraft airframe is described by a set
of linear, constant coefficient differential equations, excited by the hub
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reactions of the two rotors. Let x s be the vector of the aircraft degrees
of freedom, vs the vector of the aircraft control variables, and gF the
vector of the aerodynamic gust components. The equations of motion for the
rotorcraft in flight are required in the following form:

a2xs + a l xs + a O xs = bvs + bGgF + aF

and the hub motion is given by

a = cx
s

Here F and a are as usual the rotor hub reactions and hub motion in the
shaft axes (S system):

(For convenience, only the terms for one rotor are shown, but, in fact, the
interface between the aircraft and the rotor is required at both hubs. The
parameters of rotor 1 are used to make quantities dimensionless and to
normalize the aircraft equations of motion.)

In this section, the aircraft equations of motion are constructed in the
required form. The aircraft degrees o f freedom (xs ) consist of the six rigid-
body degrees of freedom and the elastic free-vibration modes. The input
variables (vs ) consist of the aircraft aerodynamic controls — flaperon,
aileron, elevator, and rudder. An elementary model for rotor-wing-tail
aerodynamic interference is also developed.

A body axis coordinate frame with its origin at the aircraft center of
gravity (F system) is used to describe the motion. Airplane practice is fol-
lowed for these axes — x forward, y to the right, and z downward (ref. 15).
The coordinate frame used is not a principal axis system, however. Moreover,
the airplane practice of aligning the x axis with the trim velocity is not
followed since, for rotorcraft, the hover case (V = 0) must be considered.
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Lateral symmetry of the aircraft inertia and of the aerodynamic surfaces is
assumed; the location and orientation of the two rotors is entirely general,

however.

8.1 Aircraft Motion

8.1.1 Degrees of freedom- The linear and angular rigid-body motion of
the aircraft is defined in the body axes (F system). The linear degrees of

freedom are xF (positive forward), yF (positive to the right), and zF
(positive downward). These variables are dimensionless based on the rotor
radius R. Thus the velocity perturbations are normalized using the rotor
tip speed OR rather than the forward speed V as is airplane practice.
The angular degrees of freedom are the Euler angles ^F (yaw to the right),

eF (pitch nose-up), and $F (roll right). Then the linear and angular velocity

perturbations are

u  = x i F + YO F + z F 
k 

F

W = Re ($FIF + 6 Fj F 
+ ^FkF)

where

	

1	 0	 -sin 8 F

	

Re = 0	 cos AFT	 sin AFT 
cos 

8 F

	

0	 -sin AFT	
cos 

AFT 
cos 

0 F

For the elastic motion of the aircraft in flight, the displacement u
and rotation ^ at an arbitrary point x are expanded in series of the
orthogonal free vibration modes:

00

u(r,t) _	 gs (t)'k
k=1

(r)
k

00

e(r,t) _	 q  (t)Yk(r)

	

k= 1	 k

The first six degrees of freedom are the rigid body motions: qs l . . ., qs6

are, respectively, ^ F , O F , ^F , xF , yF , and zF . The generalized coordinates

qsk for k = 7 to - are the elastic modes of the aircraft. Orthogonality
implies that the elastic vibration modes produce no net displacement of the
aircraft center of gravity or rotation of the principal axes.
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For the rigid-body motions, the mode shapes are simply

[ 
1 . . . Ej = [(-rx) Re I I]

ry	 * I = [
Re 101

8.1.2 Hub motion— The.linear and angular motion at the rotor hub in the
shaft axes (S system) is then

or

xh
1S	 . Yrhub)

yh ^S	 .

_*

Ek(rhub)

4

z kS . Ek(rhub) l
a	

=

x
is Yk

(r 

hub)

) gsk

a
y is	 . yk(rhub)

az kS * yk (rhub )

RSF ( r hub x )
Re RSF

RSFEk
a =

.	
RSFyk

x
S

RSFRe 0

= cx
s

The total velocity of }a point is the sum of the trim and perturbation
velocities, u = V + E gskEk , in body axes. The rotor equations require the

velocity components at the hub in an inertial frame, however (S system), and
the Euler angle rotations between th_e body and inertial axes introduce
perturbations of the trim velocity V. So the perturbation velocity becomes

U = aFxV +	 q  ^k , where, in the S system,
k

Aa -pa
y	 y z

aFXV	 -aax uxaz

uxay + uyax

It follows that the (xh ,yh,zh) columns of the rotor matrices A l and C 1 con-
tribute to the (ax ,ay ,a z ) columns of Ao and Co , which exactly cancel the
existing terms due to the rotation of the inertial axes relative to the
velocity components p and a (see the matrices in section 2.6). The result
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is that the net angular hub motion columns
Euler angles.

Furthermore, the acceleration is u =

term is the inertial acceleration due to t
vector by the body axes angular velocity.
acceleration in the shaft axes system are

of Ao and Co are zero for the

wFxV + F gskEk, where the second

he rotation of the trim velocity
The components of this additional

x 
	 ^F

0 yh = W xV = RSF (-Vx)Re eF

zh	 ^F

In summary, the hub motion is a = cxs'(where the matrix c, is given
above), with two exceptions. First, for the Euler angles, the net (ax,ay,az)
columns of the rotor matrices Ao and d are zero because of the use of body
axes. Second, in a there are additional linear acceleration terms due to
the Euler angle velocities, Da = cxs (where only the upper righthand 3 x 3 sub-
matrix of c is nonzero).

8.1.3 Equations of motion and hub forces— Following the usual steps of
airplane flight-dynamics analyses (ref. 15),.the rigid-body equations of motion
are obtained by equating the angular and linear acceleration .to }he net moments
and forces on the aircraft: Ia} =	 M and WAF + ZFxv) =Z F. In terms
of the body axes degrees of freedom then, including the gravitational fora,,
the equations are

x 

	

	 ^F

-i
M'^ yF - M*(vx)Re

(' F)

0 

zF 

0
+ M*g -cos eFT cos AFT

cos 6 F sin 
AFT

cos 0 F

sin 8 F sin 
AFT

sin 0 F cos 
AFT

0 F 4

0 F
(F)

=5
(.6)0

Here M. is the aircraft mass (including the rotors) and I, the moment.of
inertia matrix:
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I	 0	 -I

	

X	 Xz

I =	 0	 I	 0
y

	

_IXZ 	0	 Iz

( IXy = Iyz = 0 since lateral symmetry is assumed). The equations are dimen-

sionless and are normalized by dividing by the characteristic inertia (N/2)Ib
(using the parameters of rotor 1). Thus M* = M/[(1/2)NIb/R2] and
I* = I/[(1/2)NIb]. Note that the gravitational constant g is also dimen-
sionless based on the acceleration 22R.

For the elastic degrees of freedom, since orthogonal free-vibration modes
are used, the equations of motion are simply

	

Mk

//	
2Igsk + g swkgsk + wkgskl = Qk 	k 7

where Mk is the generalized mass, the normalized mass is
Mk = Mk/[(1/2)NIb/R2)], wk, is the natural frequency of the mode, and gs is
the structural damping coefficient.

There are two sources for the generalized forces Q.*k : the rotor hub

reactions and the aerodynamic forces on the aircraft. The generalized force
due to the rotor hub reaction is }

Qk = Wrhub ) Fhub + Yk(rhub) ' Mhub' Formalizing Qk by dividing by
(N/2)Ib gives then {Qk} = aF, where

	

a = 2ks Ek
	 is &k	 —is ^k	 -2ks rk	

i s yk	 -is yk

	

0	 1	 0	 0	 0	 0

	

0	 0	 -1	 0	 0	 0

	

T 2	 0	 0	 0	 0	 0
= c

	

0	 0	 0	 0	 0	 -1

	

0	 0	 0	 0	 1	 0

	

0	 0	 0	 -2	 0	 0

The aircraft aerodynamic forces are obtained in section 8.4.
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8.2 Aerodynamic Interference

The interference between the rotor wake and the aircraft aerodynamic sur-
faces (wing and tail) can be a factor in the dynamic behavior. As a simple
model of this aerodynamic interference, it is assumed, that there is a pertur-
bation velocity at the wing, the horizontal tail, and the vertical tail, which
is a linear combination of the perturbation induced velocities from the two
rotors OR, and XR2). Including a first-order time lag, the equations for

the interference velocities are then

(S2R) 2

Twlw + aw KW1 CW1 aR1 + KW2CW2 QR) I
 AR2

T a+ a	 K C X +	 C	
(OR) 2 X

H H	 H	 H1 H 1 R I	 I2 H2 ( OR)1 R2

(OR) 2

Tv^v + ^v - V1 V I
KK

^R I + °2CV2 (OR) I aR2

A time lag of T = Q/V is used, where V is the aircraft velocity, and Q
is the distance between the aerodynamic surface and the dominant rotor.

The first multiplicative factors (K) account for the maximum fraction of
the aerodynamic surface affected by the wake and the fraction of the fully
developed wake velocity achieved. Typical values would be K = 1.5 to 1.8
(or 0 for no interference). The second multiplicative factors (C) account
for the cosine of the angle between the wake axis and the normal to the
aerodynamic surface, and the decrease in the wake-induced velocity away from
the wake surface. The following expression is used: C = (cosine of angle
between wake and surface)/(maximum of 1 and 1 + L), where L is the perpen-
dicular distance from the aerodynamic surface to the nearest wake boundary
(L < 0 if the surface is inside the rotor wake cylinder).

8.3 Aircraft Equations of Motion

The equations of motion for the aircraft in flight may now be written:

a2xs + a1xs + 
a 0xs - 4rotor + Qaero

The vector of the aircraft degrees of freedom consists of the six angular and
linear rigid-body motions, the generalized coordinates of the antisymmetric
and symmetric elastic modes, and the aerodynamic interference velocities:
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The generalized force due to one rotor is 4rotor = AF, and the hub motion
for one rotor is a = cxs . There are additional linear acceleration terms
due to the Euler angle velocities given by Aa _ Zxs.

The matrices c and c are defined in section 8.1.2; a is given in
section 8.1.3 (note that a can be obtained directly from c). The inertia,
structural, and gravitation forces are included in the matrices of the equa-
tions coefficients (appendix D1).

8.4 Aerodynamic Forces

To complete the aircraft equations of motion, the aerodynamic forces
acting on the wing-body, horizontal tail, and vertical tail are required.
Helicopter airframe aerodynamics involves complex nonlinear phenomena,
particularly significant aerodynamic interference such as between the tail and
the rotor and fuselage. It is difficult to include such effects in any simple
model. For best results, therefore, experimental data should be used as much
as possible, but often such data are. simply not available. Thus analytical
expressions for the aerodynamic stability derivatives are required.

The aerodynamic forces on the wing and tail are calculated by a strip
theory analysis. The generalized force is obtained by integrating the section
lift and drag forces and the section moment along the span. Three-dimensional
effects are accounted for in the integrated aerodynamic characteristics used
for the wing and tail. A body axis system is used, but with the x axis not
aligned with the aircraft velocity vector. Otherwise, the analysis follows
the usual derivation of airplane stability derivatives (see ref. 15).
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Lateral symmetry is assumed for the aerodynamic forces. Specifically,
it is assumed that the trim velocity and the center of action of the wing
and tail are in the x-z plane. Then the symmetric and the antisymmetric modes
of the airframe are not coupled by the aerodynamic forces.

The aircraft motion consists of the rigid body and elastic degrees of
freedom. Consistent with the strip theory analysis, the wing elastic motion
is described by vertical and chordwise bending and torsion, including wing
root motion due to the fuselage flexibility. For the kth symmetric or anti-
symmetric mode of the airframe, the wing motion is thus described by vertical
deflection zk (k) (positive upward), chordwise deflection xk (k) (positive
aft), and torsion or pitch 8k(k) (positive nose-up), where k is the span-
wise coordinate (k = 0 at the root, and k = ±(1 /2)kw at the wing tips).
For symmetric modes, xk , zk , and 8 k are nonzero at the root due to the

	

fuselage motion (but xk(0) =k 	 = 0). For antisymmetric modes, xk(0)
and zk (0) are nonzero, while x k (0) = zk (0) = ek (0) = 0; in addition, the
fuselage motion gives a lateral reflection of the wing Yk (positive to the
right).

For the tail motion, only rigid linear and angular motion due to the
fuselage flexibility is considered; bending and torsion of the tail surfaces
are neglected. Thus the horizontal tail motion for symmetric modes is
described by vertical deflection z k (positive upward), longitudinal deflec-
tion xk (positive forward), and pitch 8k (positive nose-up). The vertical
tail motion for antisymmetric modes consists of lateral deflection yk (posi
tive to the right), roll ^k (positive roll right), and yaw *k (positive yaw
right). There is no vertical tail motion in symmetric modes; the horizontal
tail motion in antisymmetric modes is just roll ^k (positive roll right).

The aircraft controls considered are wing flaperon deflection Sf and
aileron deflection Sa (symmetric and antisymmetric motion of the wing control
surfaces), horizontal tail elevator deflection Se, and vertical tail rudder
deflection Sr. Aerodynamic forces due to the three gust components (in the
F body axis system) are included.

The aerodynamic forces on the aircraft, required to complete the equa-
tions of motion in section 8.3, take the following form:

4aero r -a2Xs - a l xs - a 8xs + bvs + b G 9 F

The vector of aircraft degrees of freedom xs is defined in section 8.3.
The vector of the aircraft controls v s and the components of the gust vector.
gF (in the F system) are

Sf

uG
d
e

	

vs = S
	

gF	 vG

a
wG F

S
r
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The matrices of the aerodynamic coefficients are given in appendix D2.
Expressions for the aerodynamic coefficients required in these matrices are
given in appendix E.

9. ROTOR MODEL DETAILS FOR THE FLIGHT CASE

To treat the general twin-rotor helicopter, a number of extensions of the
rotor model are required, principally in the models for the inflow dynamics
and the rotor speed dynamics. Rotor-rotor aerodynamic interference is con-
sidered, in both the trim- and perturbation-induced velocities. Ground effect
is also included in the inflow dynamics model. Pitch/mast-bending coupling is
introduced. A transmission and engine model for two interconnected rotors is
derived. The drive train dynamics are described by the rotor speed, inter-
connect shaft torsion, and engine shaft torsion degrees of freedom. The
throttle control variable is introduced. Finally, a governor with collective
or throttle feedback of rotor speed is considered.

9.1 Rotor-Rotor Aerodynamic Interference

With twin-rotor aircraft, it is necessary to account for the rotor-rotor
aerodynamic interference in both the trim- and perturbation-induced veloc-
ities. The model used expressed the induced velocity at each rotor as a
linear combination of the isolated rotor-induced velocities. Let a il and
hit be the trim-induced velocities of the two isolated rotors (calculated
as described in section 2.3.3). Then the trim inflow ratios are

(^R) 2
a l = p	 + X. + K12	 X.

	

7. 1 	 11	 (S2R)1	 12

(QR)2
X2 = p Z + X.+ 	 K21 OR) 

ai

	

2	 2	 (	 i	 1

Here K12 and K21 are the rotor-rotor aerodynamic interference factors.
Separate values are used for the interference factors in hover and forward
flight, with a linear variation from u = 0.05 to 0.10.

Similarly, the rotor-rotor interference is included in the uniform inflow
perturbation. Recall from section 2.5 that the differential equation for the
inflow dynamics of the isolated rotor is

Ta+a =" 1 CTY8L	 oa 
)aero

where W/W -1 = (2y/oa) (a o /K 2 + /X2/K4 + p 2 /Kf). With two rotors,. the

inflow perturbations at one is a combination of the influence of both rotors;
hence the differential equations become
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(as	 CT	 (OR)2 a^l	 CT

T1XR 1 + XR1	 \aL^l 
(y 

oa)1 + K12 (QR)1 \8L/2 (Y oa)2

(8a1	 C	 (QR)T	 1 8A	 ( CT

T2^R2+ ^`R2 	\aL/2 (Y 6a)2 + K21 (S2R) 2 \^L/ 1 1\̂  csa)1

The .interference factors K12 and K21 are the same as for the trim-induced
velocity.

For the side-by-side or tilting proprotor aircraft configurations,
lateral symmetry gives K12 = K21 = K. Then the trim-induced velocity is
X = uz + (1 +.K)a i . The differential equation for the inflow perturbation
becomes

C
Ta + a = (1 + K) DX (y 

csa)
aero

for symmetric dynamics and
C

3L	 (Ya
C	 )aero

for the antisymmetric dynamics of the aircraft.

9.2 Ground Effect

To account for the effect of the ground on the rotorcraft dynamics, it
is necessary to correct the trim- and perturbation-induced velocities for
the proximity of the ground plane. Based on reference 17, an approximate
expression for the ratio of the induced velocities in and out of ground effect
is

vCO_ T _	 1
v	 TCO 1 - Ozeff)

Here zeff = z/cos e, where z is the altitude of the rotor hub above ground
level, normalized by the rotor radius, and e is the angle between the ground
and the rotor wake:

(ux1S - uyjS - akS ) k 
cos e =

uX+uy +X2

which thus accounts for the effect of forward speed. Note that ground effect
is essentially negligible for altitudes greater than the rotor diameter, or
at forward speeds u > 2(CT/2) 1 / 2 . This expression compares well with test
results, down to an altitude of about 1/2 rotor radius (see ref. 17). The
trim-induced velocity in ground effect (before incorporating the rotor-rotor
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interference) is thus

cost e
X = uz + Cl - 16z2  Xi

The effect of the ground on the inflow dynamics is to add a perturbation
due-to changes in the rotor height above the ground:

C
Tl + X = aL (

y oa)	
+ az 6z

aero

where, again based on the results in reference 17,

as	 ao cos
t e

az 8z3

(Actually, the ground-effect term is added to the equations for rotors 1 and
2, including the rotor-rotor interference terms, as in section 9.1:) The
rotor height perturbation dz is due to the rigid body and elastic degrees
of freedom of the airframe. The vertical component of the displacement at
the rotor hub gives

6z, = kE • (xhiS + yhis + zhkS)

= (Z 
hub 

cos 
6FT sin AFT yhub 

cos 
0 F 

cos 
^FTJ^F

+ [('hub 
cos A

FT + yhub sin A FT) 
sin 

0 F + 
xhub cos 6 FT

]6
F + (sin 6FT)xF

00

+ (-cos 6	 sin	 )y + (—cos 6	 cos	 )z +	 • k
FT	 FT F	 FT	 FTF ^ k	 Eqsk

Since as/@z > 0, ground effect introduces a positive spring to the rotorcraft
height dynamics (zF perturbations). A decrease in the rotor height above the
ground produces a decrease in the induced velocity, hence a rotor thrust
increase that acts as a spring against the vertical height change.

For the side-by-side helicopter configuration, the antisymmetric dynamics
exhibit an unstable roll oscillation due to interaction of the rotor wake and
the ground. Such behavior can be included in the ground effect model derived
here by using a negative value for DX /9z (a negative roll spring), which must
be obtained from experimental data.

9.3 Pitch/Mast-Bending Coupling

Flexibility between the rotor swashplate and hub will produce a blade
pitch change due to elastic motion of the airframe. This coupling between
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the rotor pitch and the mast-bending will be accounted for by introducing
kinematic feedback terms of the following form:

	

1C	 - -	
MCi

KK	 qs.

	

( '̂Ie' is	 k=7 -Ms.	
1

1

9.4 Transmission and Engine Dynamics Model

The rotor rotational speed degree of freedom can be an important factor'
in the rotorcraft flight dynamics. A model is required which accounts for
the coupling of the two rotors through the flexible drive train, and for the
engine damping and inertia. The throttle control of engine torque must also
be introduced. Figure 14(a) is a schematic of the transmission-engine model
used for the single main-rotor and tail-rotor, and the tandem main-rotor
helicopter configurations. The two rotors are connected by a shaft, ,and the
engine is geared to one rotor (rotor 1 in fig. 14(a)). The torsional flexi-
bility of the drive train is represented by the rotor shaft springs KM  and

KM2 , the interconnect shaft spring KI , and the engine shaft spring KE. The

transmission gear ratios are r K (ratio of the engine speed to rotor 1 speed),
and ril and r12 (ratio of the interconnect shaft speed to rotor speed). Thus
rIl/rI2 is the ratio of the trim rotational speeds of rotors 2 and 1.

The degrees of freedom are the rotational speed perturbations of the two
rotors (Vs l 

and Vs2) and the engine speed perturbation (ire). The engine shaft

azimuth perturbation ^e is defined relative to rotor 1 rotation, so the
total engine speed perturbation with respect to space is rE 6 sl + $e). With

coupling of the speeds of the two rotors by the drive system, it is more
appropriate to use the degrees of freedom:

S = ^sl

^U1	
s2 - (rI l /r1 2)^s l

Here VII is the differential azimuth perturbation between the two rotors.
The degrees of freedom ^1 and ^e therefore involve elastic torsion in the
drive train (in the interconnect shaft and engine shaft, respectively) and so
represent high-frequency modes. The degree of freedom ^s is the rotational
speed perturbation of the drive system as a whole — both rotors, the engine,
and the transmission.

The engine model includes the inertia, damping, and control torques:

IES = QE - Q^Q + Qt0t
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Here QE is the engine speed and QE, is the perturbation torque on the
engine. The engine rotary inertia is IE ; QO is the engine speed damping
coefficient, that is, the torque per unit speed change at constant throttle
setting (see section 2.4). The variable 8 t is the engine throttle control
position and Q t is the torque applied due to a throttle change at constant
speed:

_ QDPengine
Qt	 ae t	 5E	 Dot

0E=const	 IE const

Thus Qt and QQ can be obtained from data on the engine power as a function
of throttle position and engine speed.

The differential equations of motion for the rotor speed dynamics are
obtained from equilibrium of the,torques on the two rotors and the engine.
The resulting equations for ^s , ^I , and *e are

C	 rI (NI St2) 2	 C
I

	

Cy 

all 
+ rI 1 (NIb02),	 ^ 2 + rEE(i^ +	 + r Q(

	

s	 ire )	 EE^U +	 r QeS	 ^Ve) = Et t
`	 C2

rI MI z	 C	 (NI p2) 2

^)2YI1KM	
y+ (NIbS22) 	^'	 + KMI2

2 	 1	 1	 1

rEIE(V^e + s ) + rEQ92 e + s ) + KEM2 e - 
KEI 2 I rEQtet

where
KM2rI2KI

KMI2 KMM ++ rI KI

2	 2

rEKEKMM

	

KEM2 rEKE.KM2 + rI 2i	 K

rEKErI1KM2rI2KI

KEI2 rEKE KM + r2 KI + KMM
2	 2

	

KMM	 1"11 M2 + KI (r12KM1 + ri l M2/

The spring constants are normalized by dividing by (NIbn2 ) 1 ; IE = IEJ(NKb).
An alternative configuration for the transmission is with the engine by
rotor 2, instead of by rotor 1 as in figure 14(a). The equations of motion
for that case are obtained simply by exchanging subscripts 1 and 2 in the
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three equations above; note that the definitions of the degrees of freedom are
then:

*s	 S2

^'I =

	

*
S 1 	 (rI /rI >*s

	

1	 2	 1	 2

The normalized damping and throttle coefficients may be written
2

2 * = rEQS2 - 

^ 
Profor

rEQ0 NIb0 -
	

NIbSTS_

and

*

	

r 
E 
Q 
t	 3P engine /Do t

rEQt 
__ 

NIb0 - ' NIb03

The approximate expression for Q* is discussed in section 2.4.

The side-by-side or tilting proprotor aircraft requires a different trans-
mission and engine model due to the lateral symmetry assumed for these con-
figurations. Figure 14(b) is a schematic of the model considered. The two
rotors are connected by a cross-shaft, and there are two engines, one geared
to each rotor. The degrees of freedom are the,rotor speed perturbation ^s
and the engine speed perturbation ^e (define& relative to the rotor speed
again). The equations of motion for ^s and ^6 follow as above:

Y ova + MRrEIE	
2Q

(^s + ) + K gr (^ + ^
e) + K 	 = g r Qte

e	 1^i E 0 s	 - MI s	 -MR E t t

rEIE (^e + s ) + rEQQ e + ^s ) + K
EM^'e 

+ 
KEI s rEQtet

where
rEKE(KM + 2rIKI)

KEM KM + rEKE + 2rIKI

rEKE2r2KI

KEI KM + rEKE + 2rIKI

KM2rIKI

MI KM + 2rIKI

MR KM + 2rIKI
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For,! antisymmetric motion, ^s is the differential azimuth perturbation between
the two rotors, involving torsion in the interconnect shaft. For symmetric
motions, there is no torque on the interconnect shaft, so the above equations
apply with KI = 0 (so KMR = 1 and KEI = KMI = 0)

The case of a'rotorcraft in autorotation can be treated with this model
by dropping the ^e degree of freedom and dropping the engine terms from the
^s and *I equations (helicopters usually have an overrunning clutch to
disconnect the rotors from the engine at zero torque). The engine-out case
(engine and rotors still connected) can be handled by dropping the engine
damping term. - The case of constant rotor speed is modeled by simply dropping
the ^s;'^I, and ^ e equations and degrees of freedom from the system. Gener-
ally, the . ^I and ^ e degrees of freedom are only involved with high-frequency
dynamics, and so it is usually sufficient to consider the ^s degree of free-
dom for flight dynamics analyses.

9.5 Rotor Speed Governor

When the rotor rotational speed perturbation is included in the flight
dynamics analysis, it is usually necessary to also include the rotor speed
governor in the model for a consistent calculation of the aeroelastic
behavior. The governor model considered is integral and proportional feed-
back of the engine speed to throttle and to the collective pitch of rotors 1
and 2. The control equations are then

06 t = KP (V s + fie ) + KI (V s + fie)
e	 e

(A6 o )
rotor 1 KP	 s 

+ ;e) + KIl (^ s + fie)

(08o)rotor 2 = K
P2 (^s + fi e ) + K12 (^ s + fie)

Note that ^, is the rotor speed error and i, then is the integral of the
error. Since the governor dynamics are neglected, this model does not add
degrees of freedom to the aeroelastic analysis.

10. COUPLED ROTOR AND BODY MODEL

Theequations of motion have been derived for the two rotors and for the
aircraft body. Now these equations may be combined to construct the set of
linear differential equations that describes the dynamics of the complete
rotorcraft system. The equations.of motion for the coupled model then have
the following form:

A2K + A l x + Aox = By + B 
P 
v P + BGg
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Mere x is the vector of the degrees of freedom for the enMwe system, v is
the vector of the individual control inputs, vp is the vector of the pilot's
control inputs, and g is the aerodynamic gust vector (in velocity axes).

A2XR + A l xR + ApxR + A26 + A l a + A Oa = BV  + BGgs

F = C2iiR + CIxR + C OXR + C2a + C l & + Cpa + DGgs

for rotors I and 2 (see part I; in particular, section 2.6). Recall that the
vector of rotor degrees of freedom xR consists of the flap/lag bending,
rigid pitch/elastic torsion, gimbal tilt, rotational speed, and inflow pertur-
bation variables; the vector of the rotor controls vR consists of the blade
pitch control inputs; and the aerodynamic gust vector gs is in the shaft
axes for the rotor model:

u 
gs

v 
wG

Js

(k)

e (k)

SGC

SGS
x  =	

^s
A

v
R	

^Bcon]-

A.
x

A
y

As usual, a and F are, respectively, the hub motion and hub reaction in the
shaft axes.

The equation of motion and the hub motion expressions from the aircraft
model (section 8) are

a2xs + a l xs + a 0xs = bvs + bGgF + aF

a = cxs

Aa = cx
s

where A& is the linear acceleration due to the rotation of the velocity
vector in body axes by the Euler angular velocity (section 8.1.2). The air-
craft degree-of-freedom vector xs consists of the rigid-body angular and
linear variables, the antisymmetric and symmetric elastic free-vibration
modes of the airframe, and the aerodynamic interference inflow variables; the
vector of the control inputs v s consists of the aircraft aerodynamic control-
surface deflections; and the aerodynamic gust vector g F is in the body axes
for the aircraft model:

115



^F

OF

*F

x 

yF

z 
x =
s

gskanti

gsksym

a
w

^H

a
v

df

a
e

vs =
S
a

Sr

uG

gF = v 

wG F

The gust components for the rotorcraft model must be in velocity axes;
hence substitutions gs = R g and gF = RFVg are required in the rotor and
body equations (see section 7.1.3). The transmission and engine model (sec-
tion 9.4) replaces the individual rotor speed perturbations %, and $S2
by the coupled degrees of freedom ^s and ^ I , introduces the engine speed
degree of freedom eye, and adds the engine throttle control Ot to the model.
The pilot controls vp = ( a o	 Sc d S	 Sp	 d t ) T are related to the rotor-
craft input vector v by a linear transformation v = TCFEvp (see sec-
tion 7.2). Then the state vector x, control vector v, and aerodynamic gust
vector g for the complete rotorcraft model are

xRl	 vRl	
u
G

X = xR2	 v = vR2
	

g = VG
^e	 et

wG

x 
	 vs	 'V

The coupled equations of motion are obtained by substituting the hub motion
into the rotor equations and hub reactions, and then the hub reactions into
the body equations of motion. The resulting coefficient matrices for the
coupled system are

116



A2 	A2C

A2 =
-aC2	 a2 - aC2c

Al 11  + 12c

A l =	 al - Cic
-aCl	 _ aC2c

AO	 Apc

A O =
-aCo	 ap - aGpc

B	 0

B =

0	 b

B G R G
BG

bGRFV + aDGRG

Bp BTCFE

In constructing these matrices, it is necessary to skip the angular, hub motion
(ax , ay , az ) columns of AD and CO for the Euler angles OF , 6F , W since
body axes are used for the aircraft motion (see section 8.1.2). Also, the
linear hub motion (xh , yh , zh) columns of C2 should be skipped for the body
degrees of freedom, assuming that the rotor mass is already included in the
aircraft gross weight and free-vibration generalized masses.

The rotorcraft equations of motion are normalized based on the parameters
of rotor 1 (0, R, N, Ib, Y, a, etc.). The equations for rotor 2 as derived
are, however, based on the rotor 2 parameters. Therefore, it is necessary to
multiply the coefficient matrices for the rotor 2 equations of motion and hub
reactions by appropriate scale factors to account for the differences in nor-
malization. The degrees of freedom and control variables for rotor 2 will
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s 

still be normalized based on rotor 2 parameters. Most are angular variables
anyway, hence inherently dimensionless: The components of the hub motion,
hub reaction, and gust are based on rotor 1 parameters, however: the linear
hub displacements in a are based on R 1 not R2 ; the gust velocities are
based on (OR) 1 not (QR) 2 ; and the forces and moments in F are based on
(NIbQ2 /R) 1 and (NIb02 ) 1, respectively. Finally, the scale factors for the
rotor 2 equations must account for the time scale of the complete system,
which is based on the trim rotation speed of rotor 1.

The equations for the rotor inflow dynamics are completed by accounting
for the rotor-rotor aerodynamic interference_(section 9 . l) and the effect of
the ground (section 9 . 2). The equations for the airframe -rotor aerodynamic
interference variables (aw, XH , av) are completed after constructing the
coupled equations of motion. Note that this aerodynamic interference is the
only coupling of the rotor and body not taking place through the rotor.hub.
Pitch/mast-bending coupling is accounted for by adding terms for the elastic
airframe degrees of freedom ( qs ,k > 7) in the rotor rigid pitch equations
(section 9.3). The rotor speed kgovernor model is added to the system as
described in section 9.5. Finally, the unused equations of motion and degrees
of freedom may be eliminated from the model by deleting the appropriate rows
and columns from the coefficient matrices.

10.1 Rigid Control System

A rigid control system model may be used for either or both rotors. In
the limit of infinite control system stiffness, the . equations of motion for
the rotor rigid pitch degrees of freedom reduce to the algebraic relations:

QO	
0 
	 So	 0	 0

e 1C	 -	 e ic	 'Pi S ic	 KpG SGC	
+	 e is ^s

e 1S o	 e 1S con	
S 
i s i	 SGS	

_e iC

(the result for the number of blades N # 3 is similar). On the basis of
this equation, the matrices Ao and B are reconstructed as outlined in sec-
tion 6.1.

10.2 Quasistatic Approximation

It is frequently possible to reduce the order of the system of equations.
describing the rotorcraft dynamics by considering a quasistatic approximation
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for `certain of the degrees of freedom. In the present analysis of the rotor,
craft "in flight, the quasistatic approximation is applicable to the inflow:
dynamic's'of " either 'or both rotors, to the rotor-body aerodynamic interference'
variables, to the rigid pitch/elastic torsion degrees of freedom of either,or
both rotors, to`' all the degrees of freedom for rotor '1, rotor 2, or both
rotors, or even to all degrees of freedom except the-six rigid-body motions
of the aircraft. The reduction of the model by eliminating the quasistatic
variables is described in section 6.2.

The'quasistatic'rotor model is frequently useful, and often valid, in the
analysis of'rotorcraft flight dynamics. It is usually a satisfactory repre-
sentation'for ` the `tail "rotor and may also be"satisfactory for the main rotor,
dynamics 'for such` applic' tions'as low-rate stability and control augmentation.-
system investigations. Generally, whether the quasistatic model is a satisfac-
tory representation of the a.eroelastic behavior must always be veri:fie& for a
particular application of the analysis by comparison with the,results of the
higher order model.

10.3 Side-by-Side or Tilting Proprotor Configuration

The aeroelastic analysis for the side-by-side or tilting proprotor air-
craft configuration requires special consideration. Assuming complete lateral
symmetry of both the aircraft and the flight state, the symmetric and anti-
symmetric motions are entirely decoupled. Thus the analysis involves the
solution of two problems of half the order of the whole system. The motions
of the left and right 'sides of the aircraft are 'then given'by, respectively; -
the sum and 'difference of the symmetric and'"antfsymmetric degrees of freedom.':

The symmetry of the flight state, requires *FP = 0 (no side velocity)
and AFT =0 (zero trim roll angle). The grim solution has automatically

a so it is only necessary to solve three equations (verticalSc = Sp =,AFT
and longitudinal=force, and pitch moment) for three trim variables (60, Ss,
and OFT ). The construction of the coupled differential equations of motion
follows basically the steps outlined above for the general two-rotor'helicop-
ter. It is also necessary to obtain the equations of motion for one rotor,
however, multiplying the hub reactions by a factor'of 2 to account for both
rotors of the aircraft (the renormalization for rotor -2 is not required since
the two rotors are identical in this case).

10.4 Two-Bladed Rotor Case

The two-bladed rotor has special dynamic characteristics compared with."
the case of three or more blades. Generally; the dynamic behavior is'described
by periodic coefficient differential equations, so a Floquet analysis"is'
required except for special cases (such as a shaft-fixed rotor in axial flow;
see section 4.2). For helicopter flight dynamics, the main concern is with
the low-frequency impedance of the rotor hub reaction response to shaft
motion, control inputs, and gusts.
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The impedance of a linear time-invariant (constant coefficient)-dynamic
system is described by a transfer function H(w):

F = H(w)a

that relates the magnitude and phase of the input and output at frequency ;w.
The implication of the periodic coefficients of the two-bladed..rotor is that
such a transfer function relation does not exist, for an input at frequency
w generally produces a response at all frequencies w ± nQ, n = 0,
Then the input-output relation takes the form:

F =	 Hn^w)einSZt a eiwt

n=-co

The flap or teetering response of the two-bladed rotor is found to be primarily
at frequencies w ± 0. It follows that the low-frequency flap response is at
±Q, so the low-frequency motion can be written:

B = 510 cos ^ + g 1S sin

It is found that the solution for the $1C and S1S flap motion is identical
to that for the rotor with N > 3 at low frequency. 'Furthermore, it is found
that the average of the coefficients of the hub reactions at`low frequency"is
the same for the two-bladed rotor as for N > 3. But while this'constant
coefficient result is exact for a rotor with three or more blades in hover;
due to the rotor inertial and aerodynamic axisymmetry, for the two-bladed`
rotor there really are periodic coefficients in the hub reactions. 'Specifi-
cally, there is a large 2/rev variation of the coefficients even in hover due-
to the rotor asymmetry when N 2.

Difficulties also arise with the quasistatic"approximation. As imple_
mented in section-6.2, the velocity and acceleration terms in an equation are
dropped, reducing that equation to"-an algebraic substitution relation for the
quasistatic variable. For a rotor with three or more blades, the quasistatic
approximation applied to the equations in the nonrotating frame produces
exactly the low-frequency response of the rotor. Note that it is necessary
to consider both the S1C and S 1 S equations even when only longitudinal or
lateral dynamics of the helicopter are involved, for the S,S and vice versa.
For the two-bladed rotor, however, the quasistatic approximation does not give
the low-frequency response because the S1 equation is really in the rotating
frame.

In summary, the two-bladed rotor is indeed a special case. First, the
description of the dynamics is unique, involving the teetering degree of
freedom S 1 , which is fundamentally in the rotating frame, rather than the
cyclic degrees of freedom S,C and 0 1S. The frequency response is not given
by the common transfer function relation because the system is not time
invariant. The low-frequency flap response does reduce to a tip-path-plane
representation, identical to the result for N > 3; but the w = 0 limit,
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which,allow.s the 0 1 = S1C cos	 + SlS sin	 representation, is a special
case.

Second, the equation of motion for the helicopter flight dynamics, while
the same as for N > 3 if the averaged coefficients are used, in fact involves
large-amplitude periodic coefficients even for the low-frequency response of
the hovering rotor. There is a 2/rev variation of the coefficients due to the
lack of axisymmetry of the two-bladed rotor. For v = 1 (no flap hub spring),
the effect is mainly on the helicopter pitch and roll damping and cross-
coupling.

Third, the quasistatic approximation as implemented here, when applied
to the two-bladed rotor, does not give the low-frequency response as it does
for N > 3. The source of the difficulty is the fact that the S1 equation
of motion is in the rotating frame still, so the S1 response to low-frequency
inputs from the nonrotating frame is not at low-frequency also, but rather at
1/rev.

The special characteristics of the two-bladed rotor dynamics pose a
number of problems for the analysis of the aeroelastic behavior. Generally,
it is necessary to use the Floquet analysis of the periodic coefficient equa-
tions more often than for a rotor with three or more blades. In fact, it is
not possible to use directly the constant coefficient approximation (sec-
tion 3.2) for flight dynamics since that eliminates the coupling of the rotor
and the shaft motion. The quasistatic rotor:model'is very useful for heli-
copter flight dynamics investigations, for N = 2 as well as R> 3: Some
procedure other: than that of section 6.2 is required, however, to obtain the
quasistatic representation of the two-bladed rotor. The simplest procedure
is to use an equivalent N.> 3 model for the rotor. Then the:quasistatic
approximation gives the desired low-frequency, constant-coefficient response
of the actual two-bladed rotor. For the teetering rotor helicopter, a three-
bladedcgimballed rotor is a good choice for the equivalent model. The funda-
mental parameters of the rotor (y,.a;,etc.) must be maintained; hence the
equivalent,rotor will have a chord and mass distribution sealed by a factor
2/Nequiv• ,A.frequent use of such an.equivalent model would be to represent a
two-bladed tail rotor.

The validity of these approximate analyses of the two-bladed rotor —,the
constant coefficient approximation and the equivalent rotor representation -
must always be verified for a particular application, of course. While some
useful range of validity may always be expected, eventually the periodic
coefficients or high-frequency dynamics become important enough to require a
more rigorous analysis.
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11. CONCLUDING REMARKS

11.1 Applications of the Analysis

The aeroelastic analysis developed here has been applied in 'a number of
investigations of rotorcraft dynamics, both to check the basic features of the
analysis and to obtain information about the dynamic behavior of 'specific
rotors and aircraft. References 18 and 21 present some results of these
investigations. In reference 18, results are given for a number of classical
problems of shaft-fixed rotor dynamics. The flapping frequency response to
pitch control inputs is presented, including an examination of the influence
of the rotor inflow dynamics for articulated and hingeless rotors. A root
locus of the flapping stability of an articulated rotor in forward flight is
given, including the influence of the periodic aerodynamic coefficients at
high advance ratio. Thirdly, reference 18 presents flutter and divergence
stability boundaries for an articulated rotor in hover. The influence of the
offset between the center of gravity and the aerodynamic center, of the first
bending mode, and of forward flight on the flutter boundary is examined.

The rotor and wind-tunnel support aeroelastic analysis has been applied
to several configurations. A number of calculations have been made of the
ground resonance stability of articulated rotors on a test module, strut, and
balance frame system; reference 18 presents typical results, including a
comparison with an elementary stability criterion. Reference 19 gives the
aeroelastic stability calculations for gimballed and hingeless proprotors on
a cantilever wing. The proprotor and cantilever wing model has also been
used in an investigation of optimal control designs for gust alleviation
(ref. 20). Finally, reference 21 presents the predicted dynamic stability for
a tilting proprotor aircraft in a wind tunnel, including the airframe, strut,
and balance dynamics.

The rotorcraft in flight aeroelastic analysis has been used in refer-
ence 18 to calculate the flight dynamics of four representative helicopters:
• small articulated rotor helicopter, a large articulated rotor helicopter,
• soft-inplane hingeless rotor helicopter, and a tandem rotor helicopter. The
results include an examination of the influence on the flight dynamics' of the
quasistatic rotor model, the rotor lag motion and other degrees of freedom,
the rotor inflow dynamics, and coupled lateral and longitudinal aircraft
motion. Finally, reference 21 presents the predicted dynamic characteristics
of a tilting proprotor aircraft in flight, including trim conditions, flight
dynamics, gust response, aeroelastic stability, and wing response to control
inputs.

11.2 Future Development

An aeroelastic analysis for a rotorcraft in flight or in a wind tunnel
has been developed, in which the dynamic behavior is described by a set of
linear differential equations. From these equations, the dynamic stability,
flight dynamics, and aeroelastic response of the system may be calculated, and
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they form the basis for more extensive investigations such as automatic
control-system design. It is not possible to anticipate all features that
will be required to model future rotor designs, so it must be expected that
new applications will often require further development of the model, some-
times by minor extensions and sometimes by major ones. Thus, in addition to
its current use in investigations of rotor dynamics, the present analysis also
provides the basis for the continuing development of models for rotorcraft
aeroelastic behavior.
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APPENDIX A. ROTOR INERTIAL AND AERODYNAMIC COEFFICIENTS

Al. ROTOR INERTIAL COEFFICIENTS

The inertial coefficients required for the rotor equations of motion
(see section 2.2) are

It = f l m dr/ Ib
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Z
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{fr EkE il e (cos2 8 - sin2 6)dr
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f1 C k - k (rFA Rk2 f pmdp
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FA

+
e12
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SPko Ipowo k(rFA)

S*= I ff XkBB nim dr + f
r

ckxim,rjr pi)dr

	

pkgi
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+ S G )
J
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*	 1	 41}
	 nmdr

SPo4i Ib J r Xo kBIB	 i
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+
J

TI 	 rni(rFA)] { kBkB ' (xo + zok + xI)
rFA

+ (xo1 + zok)Ir - rFA ( o + zok) I
F 	 rFA

-	 (x +r S	 +z 8 ) -kr(S	 - S	 +B )
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FA	 5	 4
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B) J	
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- KP W21 )
i o Po

where, for elastic torsion (k > 1),

r
X.k = YI - f A(z. - x k)"(r - p)dp

rFA
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and for rigid pitch (k = 0)r,

Xo = -(z - xok - xIk)

+ R 6 FA2 	 4dFA ) 1B + \aFA 
3 - 

6 FA5 )kj - rFA)

+ (zoi - X  )Ir + (z 0 - xo )'I( r ' r FA)
FA	 rFA

A2. ROTOR AERODYNAMIC COEFFICIENTS

The aerodynamic coefficients required for the rotor equations of motion
(see section 2.3) are as follows. Recall that these coefficients are constant
for axial flow, but are periodic functions of *m 

for nonaxial:flow. The
coefficients for blade bending are

k

1 } 
	 i - Fx k dr

Mq o-Jk

 (Fz

ac B ac B
o

M= f 1 nk (Fz iB - Fx kB)dr
qk	 30	 T	 T

M	
=f

1 nk • (Fz iB - Fx kB) r dr
qkq 	o 	 T	 T /

Mq = u cos Mqu
k	

m k

Mq ,^f k
(FZ iB - FXkB)dr

k	 o	 p	 p
1 }	 ^

M  S	
'"k 

•. I FZ . I  - F  kB) r dr
k - f	 \o	 p	 P //

Mgks = u cos mMgka

M	 =1 nk Fz iB - Fx kB kB ni dr
qkq i 

f
o 	 T	 T

+ J 1 rr)jk (Fz iB _ FX kB) iB • r}i i dr
o	 p	 p

M	 = u cos gym f
o1nk(Fz iB 

- FxB)Bdr
qkq 	 T	 Ti
	 f+  1 nk (Fz t  - Fx kB iB n i ' dr

o	 \ P	 P

M p = 1 nk • (Fz iB - F  k  i.dr
qk i •^ 

f
o	 e	 e
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The aerodynamic coefficients for the flap moment are
1

M =	 F r dr
I fo z 

Tfl
M^ = 	 Fz r2 dr

o T

MC = u cos ^ M11

1

Mx 
=f 

F  r dr
o	 p
1

MS = f F  r2 dr

o	 P

N
= u Cos *M^

('1
Mqi = J (FzTkB ni + Fz 1B ni)r dr

o \	 P
(' 1

Mqi = u cos Vim 
J 
o (FzTkB rji+ 	 FzB rji)r dr

P

f

F
1

M = 	 . r dr
Pi	 o 

z6 
1

The aerodynamic coefficients for the other hub forces and moments follow
the pattern of the flap moment, with the following changes in the notation
and integrands:

Integrand Coefficient

Flap moment	 rFz	 M

Torque	 rFX	 Q

Blade drag force	 F 
	 H

Thrust	 Fz	 T

The radial force coefficients are

1

R =	 F dr
11
	 r 

1

R = fol F 
dr

rr 
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1

F r drR^ = o rT

1 F

RC = u cos V Rr - u sin mRu -	 ' dr
fo

1

R  =	 Fr dr
o P

1
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f
Fr r dr

o	 P
L F
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where

FrT = Fr T - F  T ["G  + 'FA 1 - 6 F 2 + t  • (x 0 t  + zok) I

F
T	 3

16FA + I  • . ( oI + z0 k) I
and Fr

F	 r6
and F 	are similarly defined. Finally, the aerodynamic coefficients

for the blade pitch and torsion are

1
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kB) •XA
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APPENDIX B. MATRICES OF ROTOR EQUATIONS OF MOTION

B1. INERTIAL MATRICES FOR ROTOR EQUATIONS

The inertial matrices for the rotor equations of motion in the nonrotat-
ing frame (see section 2.6.1) are given below. For clarity, the superscript
denoting the normalization of the inertial coefficients has been omitted. The
inertial coefficients are defined in appendix Al.
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B2. AERODYNAMIC MATRICES FOR ROTOR EQUATIONS IN AXIAL FLOW

The aerodynamic matrices for the rotor equations of motion in axial flow
(see section 2.6.2) are given below. The aerodynamic coefficients are defined
in appendix A2.
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.63.	 AERODYNAMIC MATRICES FOR ROTOR EQUATIONS IN;NONAXIAL FLOW

The aerodynamic matrices for the rotor equations of motion in nonaxial
flow (see section 2.6.3) are given below. Note that each matrix-is a summa-
tion over all the blades, that is, m = 1,	 ..., N.	 The notation :C = cos *m
and S = sin *m	 is used in these matrices. The aerodynamic coefficients are
defined in appendix A2.
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^ŝI

N
Mx

gyp'
^

N
Mxa

^

UMI

^I

El
UI

En
N

MI

V
).m

x°

nUNq1c

NV]
N.m-14

V]mxs

NUN
mai

N
NN.mx°

coUN
NtoN

toa
y

m
F

.

U
.

N
m

NyN
m

.mx

NN.m

v]

N
m

m• x

NN
m

hN.cII

NN
m

UN
m

U'm
UN

MUm
.

V]
H

'nUN
NyN^
a

..

UI

NUN '^a^

mUNI

U
^

xaI

N

^aÎ
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B4. INERTIAL MATRICES FOR ROTOR WITH FOUR OR MORE BLADES

The inertial matrices for the equations of motion of a rotor with four or
more blades (see section 4.1) are given below.
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B5. AERODYNAMICMATRICES FOR ROTOR WITH FOUR OR MORE BLADES IN AXIAL FLOW

The aerodynamic matrices for the equations of motion of a rotor with four
or more blades in axial flow (see section 4.1) are given below.
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B6. INERTIAL MATRICES FOR TWO.-BLADED ROTOR

The inertial matrices for the two-bladed rotor equations of motion (see
section 4.2) are given below. The notation C = cos m and S = sin Vm is
used, where in = + mgr.
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B7. AERODYNAMIC MATRICES FOR TWO-BLADED ROTOR

The aerodynamic matrices for the two -bladed rotor equations of motion (see
section 4.2) are given below. The notation C = cos ^m and S = sin *m is
used, where ^m = * + m7T.
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APPENDIX C. AIRCRAFT CONTROL TRANSFORMATION MATRICES

The transformation matrices between the pilot controls and the individual
rotor controls 

(TCFE' 
see section 7.2) are given below for the single main-

rotor and tail-rotor and the tandem main-rotor helicopter configurations. The
K values are gain factors in the control system, and the A^ values are
swashplate azimuth lead angles. The main rotor or the front rotor is assumed
to be rotor 1 and the tail rotor or rear rotor is rotor 2. The parameter 0
here takes the value +1 for counterclockwise rotation of the rotor and -1 for
clockwise rotation.
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For the side-by-side or tilting propotor configurations..tte`lateral
symmetry of the aircraft allows the control transformation to be separated
into symmetric and antisymmetric matrices as follows. For a tilting
propotor aircraft :-; th,o . gain parameters (K) would generally be'"functions of
the pylon tilt angle a .
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.APPENDIX D. MATRICES OF AIRCRAFT EQUATIONS OF MOTION

Dl. INERTIAL MATRICES FOR. AIRCRAFT EQUATIONS

The inertial matrices for the aircraft equations-of motion are given
below (see section 8.3). These matrices also include;the gravitational forces
and the structural forces for the-elastic body modes. Superscript . * denoting
the normalization of the parameters has been omitted for clarity.
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a2 =1

D2. AERODYNAMIC MATRICES FOR AIRCRAFT EQUATIONS

The aerodynamic'inatrices for the a rcraff` "equations ofmotion (see sec-
tion 8.4) are given below. The aerodynamic coefficients are defined in
appendix E.
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APPENDIX E. AIRCRAFT AERODYNAMIC COEFFICIENTS

The aerodynamic coefficients required for the symmetric and antisymtnetric
aircraft equations of.motion (see section 8.4) are defined as follows.
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LA + z2KDTJ _ xz(KDA

 + I.U^ wsL
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CAS = - a V2 (xrZ - zr: KLC 
+ zry_,DC]VT

r

Cyd	
a V2 [(KLC)VTr

CgkSr = va V2 UYk LC)VT1

Subscripts WB, HT, and VT refer to the wing-body, horizontal tail, and
vertical tail, respectively. The components of the aircraft angular velocity
introduce the following factors:

q
Y 

= cos `AFT

rx -sin eFT

ry = sin 
AFT 

cos 6 F

rz = cos 
AFT 

cos 6 F

The quantities .x and z are the location of the aerodynamic surface center
of action, in body axes (F system), relative to the aircraft center of
gravity. The parameter A is the rotor area (TrR. 	 SW , cw , 'and QW are,
respectively, the wing area, chord, and span; QI and 20 are the inboard and
outboard edges of the wing control surface; ^ w and ^w are the wing sweep and
dihedral angles (assumed to be small). The horizontal tail and vertical tail
spans are QH and kV, respectively,

.In airplane analyses, it is conventional to use coefficients based on
the wing area Sw . 'A rotorcraft usually does not have a wing and, , generally,
there is no good reference area for the airframe aerodynamics. Thus, here
the aerodynamic force characteristics are used in the form L/q, which have
dimensions of length-squared (q is the dynamic pressure; the moment character-
istics, M/q, have dimensions length-cubed). This form is appropriate for the
analysis of a specific vehicle, where;the scaling with velocity, but not with
size, is of concern. The aerodynamic characteristics required for the wing-
body description are the lift, drag, and pitching moment (L/q, D/q, and My/q),
and their derivatives with respect to angle o f attack, flaperon deflection,
and aileron deflection; and the side force, rolling moment, and yawing moment
(Y/q, Nx/q, and N,/q) and their derivatives with respect to sideslip angle.
The rolling and yawing moment derivatives N and N 	 are for the wing-body

alone (no vertical tail contributions) and	 the
xS	

pwithout the swee and dihedral
terms already included in C,y and C ,,y. The' vertical and horizontal tail
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aerodynamic characteristics required are lift and drag and their,derivatives
with respect, -- to angle of attack and ' control-surface deflection. 'To account'
for the velocity vector not being aligned with the x axis,,the aerodynamo;
characteristics are required in the following combinations for the aerodynamic
coefficients

I^	
L	 1	 D	 1	

..
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C C
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.
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K
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K	
L	 D`
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K	 _L 6
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(D6	
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[(L
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D	 lL
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Here ^V is the angle of attack of the reference axis system, so

^V tan-1 Vz/Vx for the wing-body and.horizontal ' tail and ^V tan-1  Vy/VX;

for the vertical tail.

The wing-induced velocity at the horizontal tail is accounted for by the
derivative 3e/3a. 'The following expression is used (from ref. 16):

0.45 CL

	

aE	 a
	8a	

( Q 2w/S
w) 0.735 (t /C w)0.25

where RHT is the tail length and CL is the wing lift-curve slope. The
a

side-wash velocities.at the vertical tail are given by as/as,'(V/zVT),aa/ap,
and (V/xVT)act/ar for sideslip, rolling, and yawing motion, respectively.
Typical values are as/as and (V/xVT)aa/ar near zero and (V/zVT)aq/ap
approximately 1 (ref. 15).

Finally, the required integrals of the wing bending and torsion motion
for the elastic degrees of freedom are:

1

dR

	

ezz	 Zkzi- R . 
/2 - (

ykez '^ ezyi ) $w

	fo	 w

1

	__	 dR
	ezx	 zkxi k J 2 " ykex^w ezyi w

	

0f	 w

i

dk

	

exz	 xkzi Q 72 
y 
k 

e 
z *w 6xyiow

	

fo	 w

	

P.

exx	 xkxi Q /2 - (Ykex + exyi)'^w	fol

	
d

w

d9
	e z =	 zk k /2

fol
 W

1

dk

	

ex =	
xk P. 2

0
1

dQ

	

eA =	 ei R /2
o	 w



1
_	 dk _	 Qw

ezR,	 zkQ R /2	 yk 4 ^w
o	 w

1

_	 dR,	 Qw
eX9, -	 xkR Q /2 yk 4 *w

o	 w

1

dR,

e8R -	 eiQ Rw/2
0

1
__

ez8	 zkei Q1 2
dR _ 

ykee^w

0
w

1

__	 dk
exe	 zkei R /2 ykee w

o	 w _

1

dk
e86 =	 6k8i 2w/2

0

_ to	 dk	 9'0 - k 
ezS	 z  Rw/2 - y0w kw/2

911

to
	 R_ y to - z 

exS 
	

xk Q	 kw/2	 w R,w/2

The yk terms are absent for the symmetric modes; the integrals ezQ,

exQ , and eez are required only for antisymmetric modes.
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Xh, ax

yh' ay

H, Mx.

Y, My

T,- Q

(b) Hub reactions.

z h , a2

(a) Shaft motion.

Figure 6.- Notation and sign conventions for linear and angular shaft motion,
(displacements in an inertial frame) and forces and moments acting on rotor
hub (in nonrotating frame).
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Figure .9.- Notation and sign conventions for gimbal motion
and rotor speed perturbation.
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