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I. SUMMARY
 

The plasmatron is a triode thermionic converter, a modification of the 

more familiar ignited cesium diode bhermiofiic converter. The third electrode
 

is added to the device so that an auxiliary discharge can be used to produce 

ions for space charge neutralization. In the ignited mode diode, ions are 

produced by operating a low voltage arc between the main electrodes. The re

sulting are drop voltage, however, represents a much greater power loss than
 

is actually required to produce the necessary ions. In the plasmatron, ions 

for neutralization are produced more efficiently, and therefore, the overall 

performance of the plasmatron is expected to be better than the ignited diode. 

The plasmatron was studied briefly in the early 1960's. The purpose of
 

the present work is to reevaluate the plasmatron as a thermionic converter, that
 

is, to identify the controlling phenomena of the device, to better define those
 

features important for optimum performance, and to determine its practical poten

tial and limitations. To accomplish this a theory of the plasmatron has been
 

developed. Also, a wide range of measurements have been obtained with two versa

tile, research devices. To gain insight into plasmatron performnace, the experi

mental results are compared with calculations based onthe theoretical model of 

plasmatron operation.
 

Results are presented which show that the plasma arc drop of the conven

tional ignited mode converter can be suppressed by use of an auxiliary ion source. 

The improved performance, however, is presently limited to low current densities 

(< 2 amps/cm2at practical spacings) because of voltage losses due to plasma 

resistance, This resistance loss could be suppressed by an increase in the plasma 

electron temperature or a decrease in spacing. These possibilities are presently 

being studied. 

Plasmatron performance characteristics for both argon and cesium are reported. 

The argon plasmatron has superior performance. The cesium plasma has been found 

to have an undesirable property (i.e., a small ionizati6n/elastic-scattering cross 

section ratio) which causes an unacceptable limitation of output current. The 

extent to which a partial pressure of cesium can be permitted in the device, to 

produce the appropriate electrode work functions without degrading the performance, 

has been explored but is not yet clearly determined. 



Results are also presented for magnetic cutoff effects and for current dis

tributing effects. These are shown to be important factors for the design of 

practical devices. 



II. INTRODUCTION
 

One of the primary aims of the current US program in thermionic energy 

conversion is the improvement of converter performance through the reduction
 

of plasma voltage losses. This reduction in voltage loss results directly in
 

greater converter output voltage. The corresponding increase in converter per

formance could greatly expand the usefulness of thermionic energy conversion 

both for space and terrestrial applications. For some applications, the dif

ference between thermionic energy conversion being of minor importance or of
 

major importance is a matter of only a few tenths of a volt output. 

Several modificiations of the conventional (cesium diode) thermionic con

verter have been proposed as a means of achieving advanced performance. These
 

include the hybrid converter, the surface ionization triode, pulsed devices, 

the ignited triode, etc. (1,2) The plasmatron, the subject of this report, is
 

one form of the ignited triode. An essential feature of the plasmatron is an
 

auxiliary discharge maintained in the space between the main electrodes by an 

auxiliary electron emitting electrode and an external power supply. This dis

charge supplies ions for space charge neutralization and therefore is the means 

for allowing current to pass from the main converter emitter to the collector. 

In the ignited cesium diode thermionic converter -these ions are generated by a
 

low voltage arc between the main electrodes sustained by a small voltage drop 

(Vd z 0.5 volts). As small as this voltage drop is, the full converter current 

passes through it, and therefore, the drop represents a much greater loss than 

is actually needed to produce the required ions. An auxiliary discharge inde

pendent of the main converter current opens the possibility of more efficient
 

ion production, and therefore, of increased power output. 

The motive diagram in Fig. 1 illustrates the general operation of the plasma

tron. The auxiliary electrode is biased negative with respect to the emitter.
 

Therefore, electrons from the auxiliary electrode accelerate into the interelec

trode space, ionize the gas,and generate a plasma which fills the interelectrode
 

space. The interelectrode space then has sufficient conductivity for a large 

current to pass from the main emitter to the collector. The plasmatron is only 

a special case of the ignited triode. Another version, the Gabor triode, uses 

an auxiliary electron-collecting electrode rather than an auxiliary electron

emitting electrode. 
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The plasmatron as a thermionic converter was studied brieftly by several
 

workers in the early 1960's (3-6) These early investigations outlined the
 

basic features of the plasmatron, but many questions important to possible 

application of the device were left unanswered. It is the purpose of this report
 

to reevaluate the plasmatron as a thermionic converter and to better define those
 

features important to optimum performance.
 

-- AUXI UARY_ 
0 ELECTRODE 

0E TCOLLECTOR
 

V 

EMITTER
 

Fig. 1 Motive Diagram and Nomenclatures for the
 
O
Plasmatron (0 c, and 0Aare the emitter, 

collector, an auxiliary eectrode work
 

functions, VA and V are the auxiliary
 
electrode bias and output voltages). 
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III. EXPERIMENTAL APPARATUS 

A variety of questions need to be answered in order to evaluate the plasma

tron as an energy converter. There are questions about the effects of geometry,.
 

pressure, spacing, gas species, enhancement spreading, magnetic fields, etc. 

These effects need to be understood in order to define the limitations and posSi

bilities of the device. Corresponding to this variety of required measurements 

there is a need for versatility in the experimental apparatus. To provide this 

versatility the present study has used a multipurpose converter test stand in 

which various converter electrode configurations can be introduced as demountable 

assemblies mounted on standard 4 inch vacuum flanges. This arrangement allows 

easy access to converter assemblies for quick repair and configuration changes. 

Two demountable converters have been built for the present program; one a 

plane-parallel device, the other a cylindrical devic&. The essentials of the 

demountable, plane-parallel converter are shown in Fig. 2, the cylindrical con

verter in Fig. 3. 

As can be seen in Fig. 2, the plane parallel device uses a straight wire 

through the interelectrode space for the auxiliary electrode. The wire is of 

tungsten. Its temperature can be raised by passing a current through it. This 

plasmatron configuration has the advantage of simplicity, but lacks symmetry 

about the aiixiliary electrode. The main emitter is a molybdenum structure with 

an impregnated-dispenser, planar emitting surface. The emitter is heated by 

radiation from a heater filament. The spacing from emitter to nickel collector is 

maintained by alumina spacers. Three probes (auxiliary collectors) mounted 

flush with the collector surface are used to measure the output current distri

bution about the auxiliary electrode. The whole assembly of Fig. 2 is mounted 

on a 4 inch vacuum-flange or base plate. A variety of metal-to-ceramic feed

throughs provide electrical and thermocouple connections through the baseplate. 

The cylindrical converter is shown in Fig. 3. As the figure shows, this 

converter also is mounted on a standard vacuum flange. The emitter again is 

a mblybdenum structure *ith a dispenser emitting surface. However, it is heated 

by electron bombardment which allows a wider range of temperatures to be obtained. 

The collector material is stainless steel. The auxiliary electrode is formed 

from two directly-heated tungsten wires which, together, loop the emitter in 
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HEATER FILAMENT 
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RADIATIONSELDS .. 

X j EMITTER 

0 
AUXILIARY 
ELECTRODE 

SPACER 

H COLLECTOR 

"PROBES/ 

AUXILIARY COLLECTORS 

Fig. 2 Demountable Plasmatron Converter With Plane Parallel 
Electrodes 
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Fig. 3Demountable Plasmatron Converter With Cylindrical
Electrodes
 



its center plane (a cross sectional is shown in Fig. 3b). The wires have been 

annealed in the appropriate shape to prevent relaxations which might short the
 

auxiliary electrode to the main electrodes. Seven probes or auxiliary collectors 

are mounted flush with the collector surface to measure output current distri

bution. The central probe is directly under the auxiliary electrode. Three 

additional probes are mounted in each axial direction from the auxiliary electrode 

(see Fig. 3c). Because of the symmetry of this device, edge effects are minimized 

in the enhanced-current region. The use of long leads on the auxiliary electrode 

helps to achieve a uniform temperature for that part of the electrode circling 

the emitter. For most of the data presented here, ambient temperature (i.e. , 

zero auxiliary electrode heating current) was sufficient to give the emission 

needed.
 

A unique feature of this device is the double-ended emitter lead. Current 

can be passed lengthwise along the emitter, generating an azimuthal magnetic field
 

in the interelectrode space. This allows evaluation of the effect of magnetic 

field on the magnitude and the distribution of the output current. These effects 

can be significant in large-current, practical devices. 

The use of dispenser emitters in both experimental converters has the advan

tage that their work function is independent of cesium pressure. Therefore, the 

plasma properties of the plasmatron can be studied independent of electrode phen

omena. Whatever is found concerning these Plasma properties, the electrodes 

needed for a practical device can be identified and chosen accordingly. 

The converter test chamber is shown in Fig. 4. The complete converter test
 

stand is shown in Fig. 5. The converter is mounted on the top vacuum flange. 

The chamber has a sapphire window for observation of the discharge. An all-metal 

valve permits fast bake-out of in-place devices. The cesium reservoir can be 

continuously pumped for removal of background gases. Cesium as well as other 

gases can be introduced through a gas-handling system (shown in Fig, 6). What

ever the gas or gas mixture, the pressure can be measured with a capacitance 

manometer in the external gas-handling system. A hot-titanium purifier is used to 

clean-up noble gases before injecting them into the test chamber. 
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IV. ANALYSIS OF PLASMATRON PERFORMANCE 

Introduction
 

The evaluation of the plasmatron as a practical device requires not only 

adequate experimental data, but also a tractable theory of plasmatron operation. 

With such a theory, calculated performance characteristics can be compared with 

the experimental data. From these comparisons, the basic dominant phenomena of 

the plasmatron can be identified and the magnitude of various effects estimated. 

Also, if there is good agreement between calculated and experimental character

istics, it becomes a simple matter, with a calculator or computer, to broadly 

survey the effect of various operating conditions on plasmatron performance. Such 

a theory and such a calculational program is described in the present chapter. 

The plasmatron is inherently more complicated than the usual unignited or 

ignited mode diode converters. There is additional complexity in the geometry 

because of the third electrode. The tnterelectrode plasma is also more complex. In 

addition to the usual low-energy conduction electrons, there is a high-energy beam of 

ionizing electrons. These two electron groups interact simultaneously with the 

plasma and with each other. Another complexity arises because the plasmatron 

is usually operated atlow pressure, that is, where the spacing is the same 

order of magnitude as electron and ion mean free paths. The device is operated 

in this condition because, at lower pressures, the ionization in the auxiliary
 

discharge becomes inefficient, and at higher pressures, the converter current
 

drops because of electron backscatter to the emitter. Analysis is difficult 

for this low pressure operationa,because there are too many collisions for a
 

simplifying, collisionless approximation -to be valid, yet insufficient electron

neutral collisions to justify the usual continuum transport equations for a 

weakly ionized gas. In spite of these complications, a few observations lead 

to some important simplying assumptions, and a relatively simple theory can be 

developed to describe the essential features of the plasmatron. 

Transport Equations 

The plasmatron is characterized by low plasma electron temperatures. The 

main plasma electron population is not heated by acceleration through a sheath 

into the plasma as in the usual arc mode (ignited mode) converter. It enters the 
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plasma through a small retarding sheath, and has a temperature about equal to
 

the emitter (1400-1600K). Because of this relatively low electron temperature,
 

account of both electron-ion and electron-neutral collisions must be included
 

in the interelectrode plasma description. It is assumed that electron-electron
 

and electron-ion scattering randomize the direction of the electrons from the
 

emitter, even when this is not accomlished by electron-neutral scattering. 

A convenient form of the plasma transport equations which includes electron 

scattering by both ions and neutrals has been derived by G. Ecker( 7 ) using a 

constant-collision-frequency approximation. If electron and ion temperatures
 

are assumed to be uniform and the geometry assumed to be one dimensional, these 

take the form
 

+ en( kT e d
r 
- r = n dV k (1) 

e i e p dx e dx' 

SdV 

Rien( e r = kTp .(2)F) -n dd 


- p dx e dx
 

where r and rp are the electron and ion fluxes, pe and 1p the electron and ion 

moilities, n the plasma density, V the plasma potential, and T and T the elece p 
tron and ion temperatures. The quantity pi is the plasma resistivity due to 

electron-ion interactions (8)
 

Pi = 6.53 x 103 mA Qcm, (3) 
T3/2

e 

where T is given in degrees Kelvin. The quantity lnA is related to the numbere 
of particles in a Debye sphere. It is a slow function of plasma density and
 

.
temperature. Some representative values are shown in Table 1(9 )


The addition of equations (1) and (2) eliminates the potential gradient
 

and gives a differential equation for the plasma density distribution:
 

dn e (,e+(4) 
- - k(Te + T 

Ionization in the plasmatron is produced by injected high energy electrons.
 

If it is assumed that this ionization is produced uniformly in the interelectrode 

scace, then, because of current continuity, 
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Electron Temprature, 'K 
dcns~ty, 

cm 50 i0 Z 5x10 ) 10 , 10 5x 10 4 
5 

105 5x 105 106 

104 10.69 11.73 14.14 15.18 17.60 18.63 21.05 Z2.09 Z4.42 25.11 

105 9.54 10.58 1Z.99 14.03 16.44 17.48 19.88 20.94 23.26 23.96 

106 8.39 9.4Z 11.84 12.88 15.29 16.33 18.75 19.79 2Z2.11 22. 81 

107 7.23 8.Z7 10.69 11.73 14.14 15.18 17.60 18.63 20.96 Z1.65 

108 6.08 7.12 9.54 10.58 12.99 14.03 16.44 17.48 19.81 Z0.50 

109 4.93 5.97 8.39 9.42 11.84 12.88 15.29 16.33 18.66 19.35 

1010 4.82 7.23 8.27 10.69 11.73 14.14 15.18 17.51 18.20 

1011 6.08 7.12 9.54 10.58 12.99 14.03 16.36 17.05 

1012 4.93 5.97 8.39 9.42 11.84 12.88 15.21 15.90 

1013 4.8Z 7.Z3 8.27 10.69 11.73 14.06 14.75 

1014 6.08 7.12 9.54 10.58 12.90 13.60 

1015 4.93 5.97 8.39 9.4Z 11.75 12.45 

1016 4.82 7.23 8.27 10.60 11.30 

1017 6.08 7.12 9.45 10.14 

1018 4.93 5.97 8.30 8.99 

Table I - Values of inA 
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dre = 
dx 

S. (5)
dx 


It is assumed for the present that ion loss by recombination is negligible com

pared to ion loss by flow to the electrodes Using equations (5), equation (h) 

can be written without the particle fluxes 

d2n
 
+ = 0, (6)

d2 Da 

where Da' the ambipolar diffusion coefficient, is given by
 

1- k(T + ) (7)
Da 

le lpkTe Tp 

The density distribution in the converter is-therefore a quadratic in x where .... 

x is the distance from the emitter:
 

n = +a + x (8)o 1 2 

The coefficients are given by
 

a 0= n, (9)
 

ST T 
ae + P •(0) 

S dx T + T (D T (0 
Te p e 

S _ d2 n S (11) 
2 x2 Da 

The parameters D and D are the electron and ion diffusion coefficients and
e p 

are related to the corresponding mobilities by the Einstein relations
 

D kT D kT 
e = e and -p- = D (12) 

le e 1p e 
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and reE and rPE are the electron and ion fluxes in the plasma, near the emitter. 

From equation (5) 

re(x) = .Ire -+Sx , (13) 

P(x) = rpE+ Sx, (14) 

and rec- reE = rPC- rpE = S (15) 

where reG and PC are the electron and ion fluxes in the plasma near the col

lector. The plasma density distributiori and-dgnsity difference across the plasma 

are therefore given by
 

+T(D e S (16)" nE - e e P_ +e '2 E X a 

and 

e+ T-R PE + S(J1U) 
nEe c Tee e a 

F2E - TC +T D T2D 

By taking the difference of the transport equations, equations (1) and (2), 

the density gradient is eliminated and an expression is obtained for the electric 

field in the interelectrode space: 
av (re r 

dV : pe(re - rp) + 2n • (18) 
e Ppp 

The potential drop across the plasma V is therefore given by
 

iV' -' PC)-- -, P / ";n~ (Le'+ , n~ (19)ierec 
 (dx + +xdx
-V ped(+ 

which is evaluated using the indefinite integrals
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2a X + al - Ati2 - 4ao 2 

. o in 2 1 a1 k o 2 (20a)
 
n X12 _aoa2 ' 2a2X + 
 - - 4ao2?1 


Jtd = ln(a + a x + c1 dx (20b)
2c+tI +a 2 x2) Lf n 2a 2 0- 2a2 -• 2b 

It can be shown that the alternate forms of the integration are not valid in this 

case. 

Boundary Conditions
 

Calculation of plasmatron performance characteristics requires that some 

means be developed to relate interelectrode plasma parameters to electrode param

eters, that is to relate plasma densities, temperatures, and particle fluxes to 

electrode or terminal vbl-tages and currents. An exact analysis relating these 

parameters is very difficult. The electrode-sheath-plasma transition region 

involves non-equilibrium phenomena and severe anisotropies in the particle dis

tribution functions -- even the actual thickness of this region is not known 

before hand. Fortunately, a detailed analysis of this transition region is not
 

necessary. The thickness of the region is the order of a Debyelength, very
 

small compared to the interelectrode space. Therefore, to a first approximation,
 

it can be assumed that the sheaths have zero thickness. The first order effect
 

of the-sheaths is to control the particle fluxes at the plasma-electrodeboundary.
 

A simple statement of particle conservation describes this role of the sheaths
 

and thus provides approximate boundary conditions for a solution of the plasma
 

problem. The particles near the boundaries have nearly a Maxwellian distribution
 

'in energy. -There-are some anisotropies in these distributions, but these can be
 

corrected with a simple P1 approximation. That is, the forward and backward
 

random fluxes for the electrons can be approximated by
 

nv e r e (21)
r+ --2' 

= 4e a2 (22) 
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so that the total net electron flux is given by 

(23)r+- r_ = re.
 

The ion fluxes can be described in a similar way. This approximation is used 

here to generate the desired boundary conditions.
 

In the plasmatron we-are not ordinarily interested in the inefficient case 

of excess ion generation, that is, of space charge.overcompensation. Thus, the 

emitter is assumed to have a negative-sheath as shown in Fig. 7, 

0V<0
 

I/
 

Fig. 7 Motive Diagram at the Emitter 

where VE is the emitter sheath potential and 0E the emitter work function. 

The boundary conditions at the emitter for this case are given b/1
f 0) 

/eY v \/ rE 

V eVE ' 11E VeE-' reE -r (24) 

ye k - teeE' 

(n~vD EY \ evE 
-\ ) i T- +Vgp r PE' (25)
4 2
 

where V and V are the saturation electron and ion emission from the emitter,
e p 
TeE and TE the electron and ion temperature near the emitter, nE the plasma 

density near the emitter, veE and VpE the mean electron and ion velocities near 
the emitter, and rCE and rpE the plasma electron and ion fluxes near the emitter. 

-17



A reasonable assumption here is that both electrons and ions near the 

emitter are at the emitter temperature 

TeE = TeC = TE (26) 

A more severe assumption, one nevertheless made for this analysis, is that the
 

electron temperature in the converter (except for the fast electrons from the 

auxiliary electrode) is uniform.
 

Te z TE (27) 

Actually there should be some heating of the main conduction electrons because 

of the plasma drop and because of interaction with the fast, ionizing electrons. 

Also, there should be some cooling of these electrons because of radiation, and
 

particularly at the collector, because of the transport of electron kinetic energy 

out of the plasma to the collector. For this preliminary analysis, these latter 

effects are ignored, but they deserve further investigation in view of their 

potential importance. The ion temperature is another matter. For higher pres

sures, where the ratio of spacing to electron-mean free path is large, one would 

expect the ion temperature to be in local equilibrium with the neutral gas and 

to vary linearly from the emitter to the collector. For the case of most interest, 

where the spacing is about equal to the mean free path, the ions will be generated 

from two atom streams, one coming from the emitter, the other from the collector.
 

Those reaching the collector will come mainly from the emitter. Therefore, in 

this preliminary study it is assumed that the ions also have a uniform temper

ature equal to the emitter temperature 

Tp TE 
 (28)
 

Whatever the uniform temperatures, the electron and ion velocities are given by 

ve = e_e (29)
e WrIn 

FBk T_ 
= I 2 (30) 

where m and N are the electron and- ion masses. 
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To obtain the full volt-ampere characteristic, boundary conditions for two
 

cases are needed for the collector. The collector sheath may be positive or
 

negative depending on the voltage output of the converter. For a positive sheath

(nave + F ex( eeV 

C4 + 2 eel 

n C"PC(32)
 

and for a negative sheath( 10), 

VC< 0 n C Ve F eC (33) 
4 2 

v +e 1C /eVe, 

AP)/77777'__ i% 

/ /


where nC is the plasma density near the collector and FeC and FPC are the elec

tron and ion fluxes near the collector. These boundary conditions can be put 

into more useful form -if We define the variables R and Q. 

D r
 
R = .A. (35)


Dp reE
 

This is equivalent to the R variable used in the theory of the imignited mode 

to which the plasmatron reduces if the fluxes to and from the auxiliary electrode 

become zero. The variable Q is dependent on the ion generation rate 

reC rpE SdE /11+ Sd (36)
FeE r'PC + FeEl\ pE 

We also introduce the variable
 

-19



IV v V 
= R -P M (37) 

V vv V 1n 
e p e 

the ion-richness emission ratio for the emitter. The collector boundary con

ditions can now be simplified. Equations (33) and (34) combine to give 

ex(/ CI)+ Vo<_0 (38) 

and equations (32) and (32) combine to give 

e -e = XeR + VC 'a 0 (39)(i e
e) 


Note that the full volt-ampere characteristic (-- < VC < -) corresponds to the 

variabl& R/Q moving through the range 0 to . 

Plasmatron Solution 

The emitter electron boundary condition, equation (2h), can be written 

2Ce + F'eEexpr(--E) - 2V9 

Substituting equations (15), (17), and (33), this becomes 

(eVE 1eC {i + A} , vC 0 (a)
 

where
 

A Te+ T + TTeR 3d(4

e pe
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FT IT 2 )Sd + 	 + - 3- _- _ L l]Vi (43) 
e e p 
 e a
 

3D 
where A = a (44) 

a v 
p 

The latter is an equivalent ion mean free path corresponding to the ambipolar 

diffusion coefficient D.
 
a 

If equation (41) is now substituted into equation (25), and the approximation 

p= TE accepted, the emitter sheath potential can be eliminated, gviing a qua

dratic in the electron flux at the collector 

Aw2 + Bw + C 0, 	 (45) 

where w = 	 e (46) 

e 

A = K 2R 1 ( + + (A)
Sd + A)(I + (R x),~ 	 (48)
 

B l (l+A) e+ -- ( 1 +K) -	 c(1 +A) + (I + A)(4
2V v Qx 2 2 

e p e 

E L (+ _ Sd _ 	 (49)
 
e p
 

This result has been derived using equation (33), and therefore, equation (41) 

and the subsequent equations (45-49) apply only to the case VC 0.0 Using
 

equation (32) instead of (33), equation (41) becomes
 

e -e- (i + , ,V 	 > 0 (50)
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where A' = A - (-e 	 (51) 

The solution written as equations (45-49) is still valid, therefore, if A is 

reinterpreted according to equation (51). 

Calculation Procedure
 

A volt- mp!re characteristic for the plasmatron can be calculated if values 

are 	specified for the following variables:
 

TE = emitter temperature 

TC = collector temperature 

0Eor JR(E) = emitter work function or Richardson emission at the emitter 

TR = reservoir temperature (for cesium) 

P = gas pressure (for argon) 

I(A) = auxiliary electrode current 

VB = auxiliary electrode bias 

0 C = collector work function
 

d = spacing
 

V. = ionization potential
 

= root of the atom to electron mass ratio 

PC = electron-atom elastic collision probability
 

I-0= ion mobility coefficient
 

A particular position on the volt-ampere curve is characterized by a value 

for the variable R/Q. -To plot out a complete volt-ampere curve in the present 

calculation program R/Q was first given the value l0 - 5 and thentincreased by 

repetitive factors of two until the value 103was exceeded. For a given 

value of fl/Q, the following calculational sequence was followed: 

1. 	Whichever variable 0E or JR(E) is not given is calculated from the
 

Richardson equation
 

JR(E) = 120 TE2 exp(-E/kTE), (52)
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0E = -kT. in (53) 
120 TE 

2. 	 The ionization probability -for the emitter surface is calculated. 

" + 2 exp(i4T )J .i (54) 

3. The emitter ion emission rate is calculated. 

vp = Ia B*. (55) 

where pa is the heavy particle arrival rate. For cesium, 

1a Z 1027 exp(T5) .	 (56) 

4. 	The electron and ion velocities are calculated.
 
l07 T T
 

Ve = 1.96 x 	 (57)
 

v.= Ve 	 (58)
 

5. The emitter ion emission richness ratio is calculated. 

V v 
BE V L (59) 

e p
 

6. The mean free oath is calculated.
 

_1 

(
 
e PC 273 1 


21 TE 1C6) 

where PC is the collision frequency
( l!)
 

1006PC (cesium) 1 


PC (argon) 6
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and 	P is the gas pressure. For cesium 

O 8
P= 2-45x , ex( e891) (61) 

Xe Ve. 

7. The diffusion coefficient D 	 - is calculated.
 

8. Atom density, using the ideal gas 	 law is calculated, 

N 	 = P • 1333/kT . (62) 

-16 erg C-1 
= 1.38 x 10
where here k 


) 
9. 	The ion mobility is calculated. 1I

= 2.69 x lO1 9 60 ( 
Sa 	 TE 

For cesium 1.1 .07,0 

for argon P = 1.6 

10. 	 The ion mean free path is calculated. 

310 kT
 
--- -- (64)


p v e 

11. 	 Using the relative bias x = VB/V, the ionization cross section is calcu

lated according to the classical formula of Gryzinski'' 

a 	 - 6.56xc10 - (x-lY).3 . (65) 

12. 	 Using this cross section the strength of the ion source is calculated. 

I(A) N . . 
s2 a. (66)

2e 



13. 	 The equivalent ambipolar mean free path is calculated. 

3D 
= ~a 

a v P 

where D Is given by equation (7)a 

1 e I_ +_ 

- = k(Te + T) (Pe 


and
 

1 - kTE 1 
Pe e De 

14. is calculated using equation (43). 

15. A,A is calculated using equations (42) or (51). 

16. A, B, and C are calculated using 	equations (47-49).
 

17. w (equation 45) is solved with the quadratic formula. 

18. rP is solved for
pC
 

P 1'D 
pc _ ec . ---


-(70)
V Q D 
e e e 

19. The output current is obtained 

S FeE -pE 

eV N 
e e 

20. The collector sheath potential VC is calculated using equations 

21. The plasma drop VP is calculated 	using equation (20). 

22. The emitter sheath potential is calculated using equation (41). 

23. The converter voltage drop is calculated. 

Vd vE - V - V C. 
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(67) 

(68) 

6p8 

(69)
 

(70) 

(71) 

(38 or 39). 

(72)
 



24. 	 The converter output voltage is calculated. 

V0 = 0E - 0C - Vd' (73) 

25. 	The pair J - V0 is plotted, and the computation is repeated with R/Q multi

plied by a factor of two. 
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Computer Program
 

Theoretical currenb-voltage characteristics were calculated and plotted
 

on a Hewlett-Packard 9820A Calculator and 9862A plotter. The register definitions
 

and computer program are as follows. 

A = A R(18) = aE R(42) = part of R(26) 

B = B R(19) = P R(43) = c 

C = C R(20) = Xe R(4h) = Tp 

X = V o R(21) = D e R(45) - part of R(39) 

Y = J/ee R(22) = Na R(46) eV /kTE 

R(1) = OE R(23) = V R(47) eVd/kTE 

R(2) = TE R(24) = X R(48) = a 
po 

R(3) = JR(E) R(25) = x R(49) = 01 

R(4) = I(A) R(26) = RR(50) = a 

R(5) = VB R(27) = Sd R(51) = A, A' 

R(6) = TR_ R(28) = Da R(52) = Pi 

R(7) = C R(31) = Xa Rl53) = f x 

E(8) = d R(32) = 

R(9) = zR(33) = rec/Ve R(5) = J2n 
R(10) = V. 

2. 
R(34) = eE2eB nR(55)= aC 

R(ll) = go R(35) = vC/ve 1 o 2 

R(12) = .-R/Q R(36) = FpE 

R(13) = e R(37) = ApR/DeQ 

R(14) = * (38) = eVC/kTE 

- R(15) v p R(39) = eVE/kT. 

M16) v-e, p-p 
R(40) = D 

R(17) = vp
p 

R(41) = P 
e 
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I 

V. EXPERI~MENTAL AND ANALYTICAL RESULTS 

Examples of typical experimental I-V characteristics for the plasmatron 

are shown in Fig. 8. Also shown are some corresponding theoretical character

istics obtained using the computer program of the previous chapter. As the 

figure shows, the theory follows the experimental trends fairly well. The theory 

is useful, therefore, to assist in the interpretation of the experimental data. 

Current Amplification 

One means of judging plasmatron performance is the effectiveness df output 

current enhancement by the auxiliary discharge current. This can be expressed 

in terms of a current amplification factor A which is the ratio of converter 

current to auxiliary electrode current 

A -1 (74)
I
A
 

The significance of this factor is most evident if an equivalent arc drop Vd* is
 

also defined. The latter is convenient for performance comparison to the arc 

mode (ignited mode) diode converter. The equivalent arc drop VS is defined for 

the plasmatron as the auxiliary power consumed to produce a given output current 

divided by that current itself 

IA VBr auxiliary power _B 

A-A
Va-= output current I 

The auxiliary electrode bias potential VB is somewhat larger than the ionization
 

potential of the gas. It is evident from equation (75) that, for best performance, 

the plasmatron should use a gas with a low ionization potential (to be able to 

use a low bias) and with a large amplification factor. Unless the resulting 

equivalent arc drop V* is much less than the ignited mode arc drop (: 0.5 volts)
d
 

there is little motivation to add the complication of the auxiliary electrode. 

Actual internal voltage drops in the device which tend to wove the I-V 

characteristic out of the power quadrant, are also important and should be 

evaluated. It can be seen in Fig. 8, for example, that the saturation (maximum 

current) region occurs out of the power quadrant. The reason for this needs to 

be-determined so -it can be decided if this is an inherent limitation of the plas

matron.
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The saturation output current I S versus auxiliary current for the cesium 
and argon plasmatrons are shown in Figs. 9 and 10. Constant values of amplifi

cation factor A appear as converging straight lines in those figures, which also 

correspond to constant values of equivalent arc drop Vdl . For the biases givena 
in the figure, the corresponding arc drops are listed for each of the convergifig 

lines. As these results show, the converter saturation current versus auxiliary 

current is represented reasonably well by the computer program. The experimental 

data however show a drop-off in amplification at high converter currents greater 

than that found in the calculations. This, for example, could be due to energy 

relaxation in the ionizing electron beam from the auxiliary electrode. As the 

converter current increases, the plasma density increases, and accordingly, the 

relaxation rate for this beam also increases. The beam therefore becomes less 

efficient in ionizing the argon. Such an effect is not included in the calcu

lations. The effect might also be due to plasma recombination, which also is
 

neglected in the calculations. The cesium plasmatron might be expected, a priori,
 

to have greater amplification factors and lower equivalent arc drops because of 

the lower mobility of the heavier cesium ions and because of the lower ionization 

potential for cesium. In practice, however, argon gives significantly better per

formance. The equivalent arc drop for the cesium plasmatron is no better than 

the arc drop (Vd - 0.5 volts) typical for the arc mode diode converter. 

Scattering Effects
 

The superior performance of the argon- plasmatron is related to the optimum

pressure observed in these devices. Fig. 11 shows an example of this for argon. 

For a given bias VA, the amplification A first increases with pressure-due to 

the increase in the density of ionization target atoms. For best performance, 

at least one ion pair should be produced for each injected electron. TInforz 

tunately, these target atoms can also scatter the low energy 6lelectrons from 

the main emitter back to the emitter causing a loss in converter current as 

pressure increases. This is 'hown in Fig. 11 by the drop in amplification as 

presstit ontinues to increase. The optimum pressure occurs when the low energy 

electron mean free path is the order of the interelectrode spacing. 

With argon this back-scatter limitation does not become serious as ion gen

eration is optimized, because the ionization cross section for argon at the 

high electron injection energy is -greater than the electron-neutral cross section 
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at the lower, plasma-conduction electron energy. These cross sections are shown
 

in Fig. 12 as a function of electron velocity. It should be noted that this
 

advantageous cross section ratio does not occur with cesium. As the cross sections
 

in Fig. 12 show, backscatter becomes important for cesium before the pressure is 

high enough to optimize ion generation.
 

A further scattering effect becomes important to plasmatron performance 

which is not usually important in the arc-mode (ignited-mode) diode., that is, 

the component of plasma resistivity~pi arising from electron-ion scattering.
 

This is given by
 

p1 = 
Pi

6.5 x 10 3 li/ ohm-cm, (76)
T 3/2 

e 

where Te is the plasma electron temperature and lnA is the order of 3-5. In 

the optimum ignited-mode diode, plasma electron temperatures can be as high as 

3000-4OOO 0 K, while in the plasmatron the plasma electron temperatures are rela

tively low, approximately equal to the emitter temperature (1400-16006K). Be

cause of the reciprocal dependence of pi on Te3/2 this resistance becomes parti

cularly important in the plasmatron. The effect of this on the current-voltage
 

characteristic can be seen in Fig. 13 where two sets of calculated characteristics 

are shown, one including the effects of electron-ion collisions (p. # 0), a 

second excluding them (P. = 0).' For large current densities and for the very
 

wide electrode spacing of Fig. 13 (voltage loss due to this resistivity is pro

portional to both) the voltage loss is serious, actually moving the saturation
 

current well out of the power quadrant. At relatively low current densities and 

close spacings, however, this loss is reduced and becomes tolerable.
 

Distiibution of Enhanced Output Current 

The output current distribution for the plasmatron was measured using the 

probes mounted in the collectors. A series of I-V curves for these probes in
 

the cylindrical device are shown in Fig. 14. The upper I-V curve in each photo
 

is the total converter output current; the lower (at a different scale factor) 

is the probe current. The position of the probes for this sequence of I-V
 

characteristics is shown in Fig. 15. Probe 4 is in the plane of the auxiliary 

electrode. The enhanced current distribution is a function of many effects: 

the width of the ion generation region, the extent of spreading of the ions along
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the interelectrode gap, ion recombination, and the effect of these ions on the
 

converter current density. An example of the net effect is shown in Fig. 16.
 

The positions for the probe current measurements are shown in this figure by
 

the scaled sectional view of the interelectrode space. In this case, no current 

was observed at the central probe (directly under the auxiliary electrode), but 

current density in that region was estimated from the total integrated current of 

the device. Except for the inferred rapid drop-off close to the auxiliary elec

trode, the current density falls about a factor of 2 for every 2 electrode spacings 

away from the auxiliary electrode. The ion mean free path in this case is also 

the same order of magnitude as the interelectrode spacing. It is not known yet 

whether it is the spacing or the mean free path which most affects the current 

drop-off. The relative narrowness of the enhancement region indicates that , ," 

auxiliary electrodes must be closely spaced in a practical device. A similar 

( 5 ) distribution was obtained earlier by Mayer, et.al. , but their results were 

suspect because of their very narrow emitter. It was not clear whether they 

were detecting an enhanced current distribution or merely a separation of emitter 

and auxiliary electrode. 

Magnetic Effects
 

Because the plasmatron is inherently a low pressure device, it is more sen

sitive to magnetic cut-bff than the usual arc-mode converter. This magnetic cut

off for the plasmatron was measured with the cylindrical converter. As mentioned 

in Chapter III, because of the double ended emitter, current can be passed length

wisa along the emitter to generate an azimuthal magnetic field in the interelectrode 

space. The observed effect is shown in Fig. 17 where total converter current is 

plotted versus magnetic flux density. Reduction to 20% of full current occurs at 

70 gauss, which corresponds to about 200 amps of axial current. The circular 

path of an electron with average thermal velocity in a magnetic field would have 

a diameter equal to the spacing at only 10-20 gauss. That the cut-off is more 

sluggish than this is probably due to a small amount of interelectrode scattering. 

Even so, for large advanced mode devices with large currents, this magnetic cut

off could be a serious problem. The problem can probably be removed, however, by 

appropriate geometric design.
 

Another magnetic effect, less important for design optimization, is the dis

tortion of the enhanced current distribution due to J x B pumping of the plasma. 

This is shown by the normalized distributions in Fig. 18. It is interesting to 

note that the distortion also allows current into the central probe. It would be 
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desirable for the J x B pumping to spread the current enhancement down the length 

of the emitter, since this would reduce the number of auxiliary electrodes needed. 

Unfortunately, as Fig. 18 shows, the pumping effect is too small to accomplish 

that. 
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VI. SOME PRACTICAL IMPLICATIONS 

Various thermionic converters and converter modes can be compared using a
 

general performance index Z defined as
 

E = kTE In(ATE/) - V (77) 

where J and V are the converter current density and output voltage. Z is directly 

related to the total of the electron energy losses in the converter, i.e.
 

0 + S + Vd + (78) 

where 0C is the collector work function, and S an equivalent voltage loss due to 
current attenuation (electron backscatter" surface reflection, non-uniformity, 

etc.)
 

s = TE ln(Js/j) (79) 

V the converter arc voltage drop, and V* the equivalent arc drop for external 
d d 

ion production. These vbltage losses to the ignited mode converter output, for 

example, are shown on the motive diagram of Fig. 19. Since S is only an equi

valent drop due to current teduction, it appears in Fig. .19 only in terms of the 

current vectors. But the quantity S appears directly in the current voltage 

characteristic. This is shown in Fig. 20 where the actual ignited mode charac
=teristic is compared to the idealized characteristic formed by J JS (for V < 0E) 

2E 
and J = ATE exp(-V/kT ), (for V > 0E). The actual output voltage of the device is 

reduced from this ideal due to the collector work function 0C and the maintenance 

voltage (arc drop) for the plasma Vd . The significant reduction of any of these 

voltage losses leads to advanced performance converters. Part of the output V 

must be used to supply the equivalent arc drop V* with auxiliary ion source de

vices, however.
 

The performance of the elementary (arc-mode) cesium diode converter is char

acterized by E z 2.0 ev. Therefore, the extent to whi&h the performance of any 

advanced-mode converter is an improvement over the elementary diode is judged by 

the extent to which the E it exhibits is less than 2.0 ev and approaches Z 0C 

(i.e. the value for which all plasma-related losses are zero).
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The curves corresponding to Z = 2.0 and E = 0C = 1.5 ev are plotted in 
Figs. 21 and 22, superposed on some performance characteristics for the argon 

plasmatron. It can be seen that the output of the present argon plasmatron
 

converter (solid curves) is superior to that of the elementary cesium diode 

converter (i.e. E < 2.0 ev) only at relatively small current densities at the 
(L 1 watt/cm2given spacing and temperatures. The corresponding power densities 

in this case) are too small to be attractive for most practical applications. 

It is worthwhile, therefore, using the insight provided by the analytical de

scription, to estimate the extent to which undesirable effects encountered in
 

the plasmatron can be suppressed and by what means. 

Scattering Reduction
 

The most beneficial reduction of scattering in the plasmatron would be the
 

reduction of electron-ion scattering. The performance obtained by eliminating
 

this scattering is shown by the dashed curves in Figs. 21 and 22. This could
 

be accomplished by elevating the electron temperature. The gains due to lower
 

plasma resistance will have to be compared with losses due to hot electrons
 

leaving the plasma if the electron temperatures near the electrodes are higher
 

than that of the electrodes. The implications of this approach are presently 

being studied. -

Improvement through reduction of electron-atom scattering is less promising.
 

If the effective ratio of cross sections, of ion production relative to scattering,
 

could be substantially increased beyond even the very favorable ratio for the 

inert gases, the pressure could be reduced to the point that electron-atom scat

tering would be negligible. The equivalent of Fig. 21, with electron-atom scat

tering removed, is given in Fig. 22. As can be seen by comparing the solid curves 

in Fig. 21 and 22, even complete elimination of electron-atom scattering does 

not substantially increase plasmatron performance in the practical region Z < 2; 

i.e. electron-atom scattering with argon already is quite small compared with the
 

electron-ion scattering.
 

In Fig. 22 the dashed curves correspond to the complete absence of scattering
 

effects per se. The remaining voltage difference between these curves and Z = C 

occurs because of randomization of electron velocities in the plasma which increases 

the probability of their returning to the emitter. It is possible that this pro
(10)

bability can be modified by structuring the emitter surface 1 . This appraoch to 

improved performance is also being studied. 
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Spacing Reduction
 

The ohmic potential drop arising from electron-ion scattering (i.e. the
 

voltage difference between the solid and dashed curves in Fig. 21 and 22) is 

proportional to the electrode spacing d. It can be seen, therefore that at 

electrode spacings less than 0.5 mm, output power densities would be obtained 

which approach the threshold of practical interest (> 2 watt/cm2). Elementary 

cesium diode converters operating with such spacings for many thousand of hours 

at even higher temperatures already have been reduced to engineering practice. 

Since the distance between auxiliary emitters cannot greatly exceed the electrode 

spacing, however, the higher degree of complexity of the plasmatron may make 

its practical development much more difficult than the diode at small spacings.
 

Optimum Electrodes
 

The fact that cesium causes intolerable electron scattering in the plasma

tron is unfortunate. These effects can be avoided by using argon for efficient
 

space charge neutralization, but cesium is also very convenient for providing
 

the appropriate emitter and collector work functions. The emitter work function 

for an advanced performance converter should be low enough ( 2 ev) to give ample 

electron emission ( 5 amp/cm 2 ) at the desired emitter temperatures (1400 - 16000K). 

Also, the collector work functioA should be as low as possible (! 1.6 ev). 

In past thermionic converters, this appropriate combination of work functions 

was obtained by cesium adsorption on elementary metal electrodes (tungsten, molyb

denum, nickel, etc. )., Cesium can still provide these appropriate work functions 

in an argon plasmatron if the cesium partial pressure can be high enough to give 

the necessary cesium adsorption, but low enough not to introduce significant 

undesirable scattering. Whether there is such a compromise partial pressure
 

has not yet been clearly determined. It is known that the cesium pressure re

quired to give an acceptable emitter work function can be greatly decreased by 

use of an electrode surface which has a high bare work function (e.g. , platinum 

or other platinide metals), or by the use of electronegative gas additives (e.g., 

oxygen or other chalcogens). Whether this decreased pressure is low enough to
 

avoid the undesirable scattering effects of cesium in an argon plasmatron is being 

investigated.
 

If a small partial pressure of cesium cannot be used to obtain appropriate 

work functions thbre are other candidate materials which have work functions in 
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the range of interest. The hexaborides, for example, (particularly of lanthanum) 

are presently being studied for this purpose. Dispenser emitters like the one 

used in this study are already available. Unfortunately, the material they dis

pense poisons the collector and raises its work function to an intolerable 1.8 

2.1 ev. It is possible, however, that a collector clean-up effect can be intro

duced (dispensing collector, chemical cycles, collector sputtering, etc.). These 

possibilities also should be investigated. 
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VII. CONCLUSIONS
 

The plasmatron has been evaluated in detail as an advanced performance 

thermionic converter. Extensive data have been obtained with two experimental 

devices and detailed calculations have been made using a theory of plasmatron 

operation developed for this report.
 

These measurements and calculations show that: 

1. 	 The are drop of the conventional diode thermionic converter can be 

suppressed by operating the converter as a noble gas plasmatron. 

2. 	This reduction in voltage loss, however, is only effective at low 

current densities (< 2 amp/cm2 at practical spacings) because of 

plasma resistance arising primarily from electron-ion collisions. 

3. 	 This plasma resistance loss can be suppressed if the plasma electron 

temperature is increased or the spacing is reduced. These possibilities 

are receiving further study. 

h. 	 The performance of the argon plasmatron is greatly superior to the 

cesium plasmatron because electron scattering is intolerably large 

in cesium at pressures required for efficient ion production in the 

plasmatron. 

5. 	At present there is no compatible emitter-collector pair of electrodes 

for use in an argon plasmatron, except for the possibility of using 

a sufficiently low (negligible scattering) pressure of cesium for 

adsorption on the electrodes. Electrodes which can operate at such 

low cesium pressure, or a compatible pair of electrodes which can operate 

without cesium vapor, should be sbught. 

6. 	 Magnetic cutoff must be considered in the design of plasmatron converters 

with high output currents. 

7. 	 A sufficiently dense plasma for practical output current is maintained 

only about one to two gap widths from the auxiliary emitter in the 

plasmatron. This implies that in practical converters the spacing be

tween auxiliary emitters cannot be much greater than a few gap widths 

The practical implications of the observed zero-current !'§hadowt of the 

auxiliary electrode on the collector should be investigated. 



Better understanding of the plasmatron thermionic converter -- and im

proved performance -- are objectives of the continuing project. This will be 

approached by obtaining further experimental data required to improva the 

theory and to evaluate the plasmatron innovations suggested by the theory. The 

theory will be used also to define the optimum operating conditions for maximum 

plasmatron performance. 
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SYMBOLS 

A = current amplification factor [Eq.(74), p. -31] 

ABC, = coefficients in equation for plasmatron current [Eq.(h5), p. 21] 

Da = ambipolar diffusion coefficient [Eq. (7), P. 14] 

D = electron diffusion coefficient e 

D = ion diffusion coefficient 
p 

d = interelectrode spacing 

e = fundamental charge 

I(A) = auxiliary electrode current 

I A = auxiliary electrode current 

IS = saturation current 

J = current density of a converter 

JR(E) = Richardson electron emission flux from the emitter 

J S = saturation current density from an emitter 

k = Boltzmann constant 

M = ion mass 

m = electron mass 

N a = atom density 

n = plasma density 

nE = plasma density near the emitter 

P = gas pressure 

PC = elastic collision probability 

Q -- = flux ratio [Eq. (36), p. 19] 

R = flux ratio [Eq. (35), p. 151 

S = equivalent voltage loss due to current attenuation 
[Eq.(79), p. 47] 
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S = ionization coefficient [Eq. (5), p. 14]
 

T C collector temperature
 

TE = emitter temperature
 

Te = electron temperature in the plasma
e 

Te = electron temperature in the plasma near the emitter
 
eEI
 

Tp = ion temperature in the plasma
 

TpE = ion temperature in the plasma near the emitter
 

TR = cesium reservoir
 

V = output voltage
 

V = plasma potential
 

VA = applied voltage bias to auxiliary electrode
 

VB = auxiliary electrode bias
 

VC = collector sheath potential drop
 

V = interelectrode voltage drop
 

V* = equivalent voltage drop [Eq. (75), P. 31]
 
a 

VE = emitter sheath potential drop
 

V = plasmatron output-voltage
 

V = potential drop across the plasma
P 

V. = ionization potential
 

v = mean velocity of electrons
 
e
 

VeE = mean electron velocity in the plasma near the emitter
 

v = mean velocity of ions 

PE 

v = normalized collector flux [Eq. (46), p. 21] 

x = distance from the emitter 

ao,1,a 2 = coefficients for density distribution [Eq. (8), p. 14] 

= ionization probability-for an atom or ion incident to a surface 
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= emitter ion-richness emission ratio 

+ electron random flux in the positive direction 

F = electron random flux in the negative direction 

F e = electron flux in the plasma 

FeC = electron flux in the plasma near the collector 

Fe = electron flux in the plasma near the emitter 

Fp = ion flux in the plasma 

FpE = ion flux in the plasma near the emitter 

FPC = ion flux in the plasma near the collector 

A = parameter in plasmatron solution [Eq. (42), p. 20] 

At = parameter in plasmatron solution [-Eq. (51), P. 22] 

A = parameter in plasma resistivity expression (see pp. 12 and 13) 

X = equivalent ion mean free path corresponding to ambipolar diffusion 
a coefficient Da [Eq. (44), p. 21] 

ee = electron mean free path 

X = ion mean free path 

Ila = atom arrival rate for cesium [Eq. (56), p. 23] 

lie = electron mobility 

110 = ion mobility coefficient 

1 p = ion mobility 

v = Richardson electron emission flux from the emitter 
e 

= ion emission flux from the emitter 
P 

= parameter in plasmatron solution [Eq. (43), p. 2J] 

Pa' = plasma resistivity due to electron-atom collisions 

Pi = plasma resistivity due to electron-ion collisions 

Z = performance index [Eqs. (77) and (78), p. 47] 

a. = ionization cross section 
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0A = auxiliary electrode work function 

0C = collector work function 

OE = emitter work function 
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