NBEA
CP

NASA CP-2012 2012

e = §
— KIRTLAND AFB, %% gl
Proceedings of the 1977 =
MACSY MA Users’ Conference
Held at
University of California
Berkeley, California
July 27-29, 1977
NASA

TECH LIBRARY KAFB, NM

NASA CP-2012 -~ IUMRmAmN

006?3ud

Proceedings of the 1977
MACSYMA Users’ Conference

Sponsored by

Massachusetts Institute of Technology,
University of California at Berkeley,
NASA Langley Research Center

and held at Berkeley, California
July 27-29, 1977

Scientific and Technical Information Office 1977

N ,\S’\ NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C.

FOREWORD

The technical program of the 1977 MACSYMA Users' Conference, held at
Berkeley, California, from July 27 to July 29, 1977, consisted of the 45
contributed papers reported in this publication and of a workshop. The work-
shop was designed to promote an exchange of information between implementers
and users of the MACSYMA computer system and to help guide future developments.

The response to the call for papers has well exceeded the early estimates
of the conference organizers; and the high quality and broad range of topics
of the papers submitted has been most satisfying. A bibliography of papers
concerned with the MACSYMA system is included at the end of this publication.

We would like to thank the members of the program committee, the many
referees, and the secretarial and technical staffs at the University of
California at Berkeley and at the Laboratory for Computer Science, Massachusetts
Institute of Technology, for shepherding the many papers through the submission-
to-publication process. We are especially appreciative of the burden carried
by V. Ellen Lewis of M.I.T. for serving as expert in document preparation from
computer~readable to camera-ready copy for several papers.

This conference originated as the result of an organizing session called by
Joel Moses of M.I.T. at the 1976 ACM Symposium on Symbolic and Algebraic Comput-
ation, at Yorktown Heights, New York, in August 1976. It owes its success to his
continuing encouragements and efforts, not to mention his intellectual and
practical skills in keeping the MACSYMA project thriving.

We wish to acknowledge the kind cooperation of ACM, ACM-SIGSAM, the Elec—
tronics Research Laboratory and the Department of Electrical Engineering and
Computer Sciences of the University of California, the Laboratory for Computer
Science of M.I.T., NASA Langley Research Center, and the U.S. Energy Research
and Development Administration.

We wish to extend oui gratitude to the Scientific and Technical Information
Programs Division of the NASA Langley Research Center for publishing these
proceedings.

Richard J. Fateman, General Chairman

Carl M. Andersen, Program Committee Chairman

iii

OFFICERS OF THE 1977 MACSYMA USERS' CONFERENCE

General Chairman:
Richard Fateman, University of California, Berkeley

Program Chairman:
Carl M. Andersen, The College of William and Mary in Virginia

Program Committee:
Mary Ellen Brennan, Aerospace Corporation, Los Angeles
Jo Ann Howell, Los Alamos Scientific Laboratory, University of California

John Kulp, Research Laboratory of Electronics and Plasma Fusion Center,
Massachusetts Institute of Technology

Joel Moses, Laboratory for Computer Scilence, Massachusetts Institute of
Technology

Edward Ng, Jet Propulsion Laboratory, California Institute of Technology

David Stoutemyer, University of Hawaii

Editorial Committee:
Carl M. Andersen, The College of William and Mary in Virginia

Jeffrey Golden, Laboratory for Computer Science, Massachusetts Institute
of Technology

John N. Shoosmith, NASA Langley Research Center

Treasurer:

Michael Genesereth, Harvard University and Massachusetts Institute of
Technology

Local Arrangements:

Richard Fateman, University of California, Berkeley

iv

PREFACE

Symbolic and algebraic manipulation enables one to do exact, symbolic
mathematical computations on a computer. To illustrate the difference between
numeric and symbolic processing, consider a computer program (in FORTRAN, say)
which, given the quantities A, B, and C, can apply the quadratic formula to
approximate the roots of the quadratic equation A¥*x**2+B*x+C = 0. The
names A, B, and C, must of course correspond to numerical wvalues at run-time.
This is because the program has been written to provide numerical processing.
If A had as its run-time value the expression "Q," B had value "(-P*Q-1)," and
C had value "P," the FORTRAN program would be useless. Nevertheless, by
applying the quadratic formula symbolically, the two roots
[-(-P*Q~1) xSQRT (P**2%Q**24+2%P*Q+1-4%P*Q)]/ (2*%Q) can be represented. By further
efforts, this expression can be reduced to the set of values (P, 1/Q). This
substitution (in this case, into the -quadratic formula) and subsequent simpli-
fication are but two of the necessary operations in an algebra system. Some of
the more elaborate facilities that can be built up (and have been, in MACSYMA)
include partial differentiation, indefinite integration, inversion of matrices
with symbolic coefficients, solution of polynomial equations, and manipulation
of truncated power series. The range of capabilities can be seen in the papers
in this conference.

MACSYMA is a large symbolic and algebraic manipulation system which has
been under development at the Laboratory for Computer Science (formerly
Project MAC) of the Massachusetts Institute of Technology since 1969. The
system has more than quintupled in size since the first paper describing it
appeared in 1971. It is, by any measure, a rather large program, and this makes
it a challenging project from many points along the computer hardware-software

" spectrum. Some papers on the LISP system in these proceedings address this

issue.

During the last several years, the community of users of the MACSYMA system
has grown at an increasing rate; and because of the wide geographical range of
the ARPA computer communication network of the Defense Communication Agency,
there are now users from Hawaii to Cambridge, England. Another contributing
factor in the growth has been the ability of Joel Moses and his staff at the
Laboratory for Computer Science to make available at relatively low cost the
most versatile of algebraic manipulation systems currently implemented. Another
is the synergistic effect of the community itself: where the output of one
person's program may be the input to the next person's, and where nearly
instantaneous feedback on features and repair of bugs are the rule rather than
the exception.

Many of the users of MACSYMA (including contributors to this conference)
are also using or have used other systems (ALTRAN, FORMAC, REDUCE, SAC-1,
and SCRATCHPAD, to name a few) with symbolic and algebraic manipulation
facilities. Many of the techniques are not specific to MACSYMA, but are alge-
braic manipulation contributions independent of particular system context. Thus
we view this conference as a collection of persons interested in advancing the
field of inquiry in "symbolic and algebraic manipulation," and applying the
fruits of this inquiry to other areas. We believe the papers bear out this view.

v

Until recently, major funding for MACSYMA development has come from the
Advanced Research Projects Agency, Department of Defense, under Office of Naval
Research Contract N00014-70-0362-0006. More recent additions to the sponsors'
ranks have come from agencies whose own personnel and contractors have used
MACSYMA. These include the U.S. Energy Research and Development Administration,
the National Aeronautics and Space Administration, and the U.S. Navy. Combining
resources to provide the unique facility of the MACSYMA Consortium, these
sponsors have provided an invaluable resource.

Richard J. Fateman
General Chairman

vi

AUTHOR INDEX

Abdali . ¢« « « « ¢ « ¢ & ¢ o« . 253 Karney . -
Ament . « ¢ o+ « o ¢« o s o o« o« o 87 Kulp . . .
Andersen . « « « » o » s &« » . 161 Lafferty .
Anderson « « o + o o . . 395 Lau . . .
Avgoustis + ¢« o . . 21 Lewis . .
Bogen . . « « « + + o o « o 11, 75 Moenck . .
Bulnes « « « « &+ o o s » o o « « 461 Moses . .
Caviness . « « « o o o o o » o+ o 253 Ng . « « «
Char . . . + « 4 o« « o« « « s+ « +» 53 Noor . .
Cohen . . ¢« v o « ¢« ¢« o« o o« o« . 275 Pavelle .
Cuth{ill« . « .« . . . 131 Poole . .
Doohovskoy + o « « o o o« o « » . 473 Pridor .
Fateman . . . +» + « « » » . 43, 327 Rothstein
Fennelly . « ¢« ¢« ¢« v ¢« o o« « « « 97 Spear

Geddes « . ¢« ¢ & ¢ « « « « « « . 405 Steele . .

Genesereth 291, 309 Stoutemyer .

Golden 1, 109 Wahlquist
GOSpPer . . + « 4+ o o o o o+ o o o 237 Wang .

Grunbaum ¢ + . & . o o o 491 Yun . . .
Gupta . . + « ¢ o s s+ s & o o o 151 Zippel . .

Ivie « ¢« & ¢« ¢ ¢« ¢ o o o o « « o« 317

vii

. 315,

.« « . 377
« . o 385
. . . 347
. ;_. 395
. e o0 277
.« . 225
123, 275
151, 177
. . . 161
75, 97

. 145

. . . 253
. 263

. . . 369
203, 215
425, 447
.. 711

55, 435

. + + 361

CONTENTS

FOREWORD « ¢ « « « 5 o o o o o o o o o o o « o o o o o o o s o o o o s
PREFACE .« &+ & ¢ o o o o o o o o o o o o o o s s o o o o a o s o o o »
AUTHOR INDEX & & &+ ¢ o o o o o o o o o o o o o o o s o o o s o s o » &
1, MACSYMA'S SYMBOLIC ORDINARY DIFFERENTIAL EQUATION SOLVER
Jeffrey P. Golden
2. A PROGRAM FOR THE SOLUTION OF INTEGRAL EQUATIONS . . . +« « « o« « &
Richard A. Bogen
3. SYMBOLIC LAPLACE TRANSFORMS OF SPECTAL FUNCTIONS &+ « &« +
Yannis Avgoustis
4, AN IMPROVED ALGORITHM FOR THE ISOLATION OF POLYNOMIAL REAL ZEROS
Richard J. Fateman
5. FLOATING POINT ISOLATION OF ZEROS OF A REAL POLYNOMIAL VIA MACSYMA
Bruce W. Char
6. PRESERVING SPARSENESS IN MULTIVARIATE POLYNOMIAL FACTORIZATION . .
Paul S. Wang
7. ON THE EQUIVALENCE OF POLYNOMIAL GCD AND SQUAREFREE FACTORIZATION
PROBLEMS & & v v v o & o s o 5 o o o o o o« o o o o o o s o o s
David Y. Y. Yun
8. DIFFERENTTIAL FORM ANALYSIS USING MACSYMA . . v &+ & & ¢ o & o o o &
Hugo D. Wahlquist
9. INDICIAL TENSOR MANIPULATION ON MACSYMA + « « « « .
Richard A. Bogen and Richard Pavelle
10. PURE FIELD THEORIES AND MACSYMA ALGORITHMS . « + ¢ ¢ &« « « « +
William S. Ament
11. BLACK HOLES AND RELATIVISTIC GRAVITY THEORIES . . . + v « ¢ & «
A. J. Fennelly and Richard Pavelle
12. THE EVALUATION OF ATOMIC VARIABLES IN MACSYMA ¢ v & o « «

Jeffrey P. Golden

viii

iii

vii

11

21

43

53

55

65

71

75

87

97

109

13.

14.

15.

16.

17.

18.

19,

20.

21.

22.

23.

24,

25.

26.

27.

THE VARIETY OF VARIABLES IN MATHEMATICAL EXPRESSIONS . « . .« .
Joel Moses

RATIONAL APPROXIMATION TO e =X WITH NEGATIVE REAL POLES
Elizabeth Cuthill

TIMING FORMULAS FOR DISSECTION ALGORITHMS ON VECTOR COMPUTERS .
W. G. Poole, Jr.

SYMBOLIC CALCULATIONS IN A FINITE DYNAMIC ELEMENT ANALYSIS . .
Kajal K. Gupta and Edward W. Ng

SYMBOLIC MANIPULATION TECHNIQUES FOR VIBRATION ANALYSIS OF
LAMINATED ELLIPTIC PLATES . & & & ¢ « o ¢ o o o o o« a o o o «
C. M. Andersen and Ahmed K. Noor

OBSERVATIONS ON APPROXIMATE INTEGRATIONS . . . « . + .+ .
Edward W. Ng

LISP: PROGRAM IS DATA — A HISTORICAL PERSPECTIVE ON MACLISP
Jon L White

LISP: DATA IS PROGRAM — A TUTORIAL IN LISP « .« « .
Jon L White

DATA REPRESENTATIONS IN PDP-10 MACLISP . . . « & & « + « = o =
Guy Lewis Steele Jr.

FAST ARITHMETIC IN MACLISP . . & ¢ ¢ ¢ ¢ o o o o s o o o o o o
Guy Lewis Steele Jr.

ON COMPUTING CLOSED FORMS FOR SUMMATIONS « v ¢ « o « o o o
Robert Moenck

INDEFINITE HYPERGEOMETRIC SUMS IN MACSYMA
R. Wm. Gosper, Jr.

MODULAR POLYNOMIAL ARITHMETIC IN PARTIAL FRACTION DECOMPOSITION
S. K. Abdali, B. F. Caviness, and A. Pridor

A NEW ALGORITHM FOR THE INTEGRATION OF EXPONENTIAL AND
LOGARITHMIC FUNCTIONS . +¢ o &4 ¢ & ¢ o o s o o s o « o o s o
Michael Rothstein

SUMMATION OF RATIONAL EXPONENTIAL EXPRESSIONS IN CLOSED FORM .
Joel Moses and Jacques Cohen

ix

123

131

145

151

161

177

181

191

203

215

225

237

253

263

275

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

USER AIDS FOR MACSYMA . . ¢ ¢ o ¢ ¢ o o o o s o o s o o s o o o o o o

V. Ellen Lewis

THE DIFFICULTIES OF USING MACSYMA AND THE FUNCTION OF USER AIDS . . .
Michael R. Genesereth

AN AUTOMATED CONSULTANT FOR MACSYMA . & v &© ¢ ¢ o o o o o o o o o o »
Michael R. Genesereth

A MACSYMA COMPUTER-ALGEBRA MOVIE DEMONSTRATION
David R. Stoutemyer

SOME MACSYMA PROGRAMS FOR SOLVING DIFFERENCE EQUATIONS . . « .« « . .
John Ivie

SOME COMMENTS ON SERIES SOLUTIONS ¢ & « o o o o o 5 o o o o o o o o o«
Richard J. Fateman

POWER SERIES SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS IN

MACSYMA © . 4 v v v o o o o s o o o o & s o o o o o o o w2 4 e a
Edward L. Lafferty

RADICAL SIMPLIFICATION MADE EASY . v « v & o o o o o s o o « s o «
Richard E. B. Zippel

A CONSTRUCTIVE APPROACH TO COMMUTATIVE RING THEORY . . . ¢« + « « o .
David A. Spear

REDUCTION OF THE EQUATION FOR LOWER HYBRID WAVES IN A PLASMA
TO A NONLINEAR SCHRODINGER EQUATION . . & & & &« & o« o o o o o « o &
Charles F. F. Karney

RAY TRAJECTORIES IN A TORUS: AN APPLICATION OF MACSYMA TO A COMPLEX
NUMERICAL COMPUTATION . . ¢ ¢ v ¢ v o & o o o o o s o o o & o o &
John L. Kulp

APPLICATION OF MACSYMA TO FIRST ORDER PERTURBATION THEORY IN
CELESTIAL MECHANICS . « ¢ ¢ ¢ o « s e o s o o s o o o o« o o s o o »
John D. Anderson and Eunice L. Lau

SYMBOLIC COMPUTATION OF RECURRENCE EQUATIONS FOR THE CHEBYSHEV
SERIES SOLUTION OF LINFAR ODE"S &« v ¢ ¢ & o o o o o = o o s s o o »
K. 0. Geddes

*%
sin(x)**Z + cos(x) 2 =1 e e e s e e e e e e e e e e e e e e e e
David R. Stoutemyer

MATRIX COMPUTATIONS IN MACSYMA . . . v ¢ v ¢ ¢ ¢ ¢ o o o o o o o o &
Paul S. Wang

277

291

309

315

317

327

347

361

369

377

385

395

405

425

435

43. SYMBOLIC COMPUTER VECTOR ANALYSIS . .

David R.

44, A NATURAL WAY TO DO SPATIAL LINEAR GEOMETRY IN MACSYMA
Juan Bulnes

45. VARIETIES OF OPERATOR MANIPULATION
Alexander Doohovskoy

Stoutemyer

46. PROGRESS REPORT ON THE DETERMINANT OF A RANDOM MATRIX .

F. A. Grunbaum

BIBLIOGRAPHY

xi

447
461
473
491

493

~ MACSYMA's Symbolic Ordinary Differential Equation Solver *

~ Jeffrey P. Golden
Laboratory for Computer Science
Massachusetts Institute of Technology

ABSTRACT

This paper describes MACSYMA'’s symbolic ordinary differential
equation solver ODE2. Although available in MACSYMA for approximately three
years now, a paper describing how to use it had never previously been written. Also,
this paper showcases the code for this routine, which is of interest because it is
written in top-level MACSYMA language, and may serve as a good example of
programming in that language. Other symbolic ordinary differential equation
solvers are mentioned.

1. The ODE?2 Package

MACSYMA’s ordinary differential equation (ODE) solver ODE2 may be used for
symbolically solving elementary ODEs of first and second order. It consists primarily of a set of
routines based on techniques described in reference | for Moses’ SOLDIER ODE program, and in
reference 2, which had been used until recently as the major textbook in M.LT.s introductory
ODE course 18.03. The ODE2 package was written primarily by an M.I.T. graduate student, Ben
Kuipers, as a term project in a seminar on algebraic manipulation taught by Richard Fateman in
the fall of 1972-73. It has since been maintained, modified, and improved by the author.

When the user calls the ODE2 routine, e.g. as follows:

(C1) X*2x/DIFF(Y,X) + 3xXxY = SIN(X)/X;

2 dy SIN(X)
(01) X ~=+3XY= ---cu-
: ' dX X

(C2) ODE2(X,Y,X);

« This work was supported, in part, by the United States Energy Research and Development
Administration under Contract Number E(II-1)-3070 and by the National Aeronautics and Space
Administration under Grant NSG 1323.

the ODE package ODER LISP DSK SHARE (or ODER FASL DSK SHARE if the user is using
NEWIO MACSYMA) is automatically loaded in. Or, the user can load it in by typing eg.
LOADFILE(ODER,LISP,DSK,SHARE);. For this example, after several out-of-core files are loaded
in, the answer is obtained:

. : € - COS(X)
(D2) Y= cemmmmmana

We see from this example how ODE2 is used. Namely, it takes three arguments: an ODE
of first or second order (only the left hand side need be given if the right hand side is 0), the
dependent variable, and the independent variable. When successful, it returns either an explicit
or implicit solution for the dependent variable. C is used to represent the constant in the case of
first order equations, and K1 and K2 the constants for second order equations. An alternative
scheme, which has been suggested, of generating sequences of constants, eg. K1, K2, K3, .., so
that different solutions might use different "constants”, has not yet been implemented. If ODEZ
cannot obtain a solution for whatever reason, it returns FALSE, after perhaps printing out an
error message to the user.

The methods implemented for first order equations in the order in which they are tested
are: linear, exact - perhaps requiring an integrating factor, homogeneous, Bernoulli’s equation,
and a generalized homogeneous method described in reference 1.

For -second order: constant coefficient, exact, linear homogeneous with non-constant
coefficients’ which can be transformed to constant coefficient, the Euler or equidimensional
equation, the method of variation of parameters, and equations which are free of either the
independent or of the dependent variable so that they can be reduced to two first order linear
equations to be solved sequentially.

In the course of solving ODESs, several variables are set purely for informational purposes:
METHOD denotes the method of solution used eg. LINEAR, INTFACTOR denotes any integrating
factor used, ODEINDEX denotes the index for Bernoulli’s method or for the generalized
homogeneous method, and YP denotes the particular solution for the variation of parameters
technique.

Since the code is written in top-level MACSYMA language, it may easily be extended not
only by the author, but by other MACSYMA users as well. Indeed, there is much room for
extension and improvement. The basic approach used in ODE?2 is a pattern-directed one relying
heavily on the MACSYMA commands EXPAND, COEFF, FREEOF, DERIVDEGREE, HIPOW, and
SUBST, and on the MACSYMA pattern matcher DEFMATCH in checking for linearity. The basic
power of the routine comes from MACSYMA’s advanced indefinite integration package (ref. 3)
and, of course, the INTEGRATE command is heavily used. Finally, basic restructuring of
expressions is needed throughout, and for this RATSIMP is used heavily.

In order to solve initial value problems (IVPs) and boundary value problems (BVPs), the
routine IC1 is available for first order equations, and 1C2 and BC2 written by David Stoutemyer
for second order IVPs and BVPs, respectively. They are used as in the following examples:

(C3) IC1(D2,X=%PI,Y=0);

COS(X) + 1
(D3) Y S o cocaceacaa

(C4) “DIFF(Y,X,2) + Yx/DIFF(Y,X)"3 = 0;

2
dy dy 3
(D4) ===+ Y (--) =0
2 dX
dX
) (C5) ODE2(%,Y,X);
3
Y -6KLY-6X
(D7) meeeececcceconee- = K2

(C8) RATSIMP(IC2(D7,X%=0,Y=0,/DIFF(Y,X)=2));

3

2Y -3Y+6X

(Dg) - Eemecerceccace-—-— =0
3

(C10) BC2(D7,X=0,Y=1,X=1,Y=3);

3

Y ~-10Y-6X
(p1t) = eeseceeccceo-o- = -3
3

(The jumps in the line-number in the above examples are due to "hidden” calls to SOLVE.)

In order to see more clearly which methods have been implemented, a demonstration file is
available. To run it, the user may do DEMO(ODER,DEMO,DSK,SHARE); and follow the usual
prescription for running DEMO files as noted in the MACSYMA Manual (ref. 4).

The ODE2 package was used heavily in the work described by Richard Fateman in
reference 5, in David Stoutemyer's OPTV AR variational optimization package, available via the
SHARE file directory and described in reference 6, and in Stoutemyer’s INTEQN integral

equation solver, implemented in MACSYMA by Richard Bogen, also available via the SHARE
directory and described in reference 7.

2. Other Symbolic ODE Solvers

Another program for solving ODEs which uses a heuristic search approach, and is called
EULE, is described in references 8,9. Its author, Peter Schmidt of the University of Bonn, West
Germany, did not have access to a powerful algebraic manipulation system and integration
package such as with MACSYMA, so he was forced to implement his own simplification routines
and EULE does not solve the integrals generated in its solutions. EULE solves only ODEs of the
first order. However, Schmidt claims a high success rate in this area. EULE does handle a few
more first order cases than ODE2 currently does, eg. Riccati equations, and EULE’s heuristic
techniques may enable it to solve some “interesting” ODEs; however, the author believes that
ODE?2 could handle all of these cases as well with at most a few more pages of MACSYMA code.
In fact, since the simplification and transformation capabilities of MACSYMA are so much more
powerful than those of EULE, in experiments run by the author it turned out that several ODEs
which Schmidt claims required heuristics and substitutions of variables in EULE, were actually
solvable in ODE2 by more elementary methods, eg. integrating factors or the generalized
homogeneous method (which is not used by EULE as such.) ODEZ2 is much more successful than
EULE in using methods that are implemented .in both. (It is interesting to note that ODEZ2's first
order methods, while not nearly as exiensive as EULE’s, only amount to 70 lines of MACSYMA
code. Of course, ODE2 has some second order methods as well, and these amount to 120 lines of
MACSYMA code. I think this data offers an interesting measure of the power of MACSYMA!
EULE which together with all of its components has been developed only for the purpose of

solving ODEs consists of about 8500 PL/I statements (ref. 8).) Schmidt tested EULE using two
standard ODE tomes. A comparable test has not been done for ODE2.

Other methods for solving ODEs using MACSYMA have been or are being implemented.
Richard Bogen wrote a routine in the MACSYMA language for solving ODEs and systems of
ODEs using Laplace transforms. Its top-level routine is called DESOLVE and it is described in the
file SHARE ; DESOLN USAGE. It may be loaded into MACSYMA by
LOADFILE(DESOLN,LISP,DSK,SHARE);. DESOLVE may be used for initial value problems as well,
and it can handle some equations of greater than second order.

Edward Lafferty is working on a package written in the MACSYMA language for solving
ODE:s in terms of power series. This work is described in reference 10. (Indeed, Ben Kuipers, the
primary author of ODE2, began a series solver as well for Fateman’s course.)

One project that yet remains (and which is urged often by Dave Stoutemyer) is to merge
these three ODE solvers, using general analytical techniques, Laplace transforms, and series
methods, respectively, into one versatile ODE solver so that the user can get the power of all three
approaches in one routine.

I wish to thank Ellen Lewis for her helpfui assistance.

APPENDIX

The MACSYMA code for ODE2 follows. (This code comes from the file JPG;ODER 27.
Certain less important sections have been omitted.)

/% The Ordinary Differential Equation Solver.
This package consists primarily of a set of routines taken from Moses”
thesis and Boyce & DiPrima for solving 0.D.E.s of lst and 2nd order.
The top-level routines are ODE2, ICl, IC2, and BC2. =%/

ODE2(EQ, YOLD, X) :=SUBST(YOLD, YNEW,ODE2A(SUBST(YNEW, YOLD,EQ), YNEW,X))$

ODE2A(EQ,Y,X) :=BLOCK([DE,Al1,A2,A3,A4,Q],
INTFACTOR: FALSE, METHOD: “NONE,
IF FREEOF(“DIFF(Y,X,2),EQ)
THEN IF FTEST(ODE1(EQ,Y,X)) THEN RETURN(Q) ELSE RETURN(FALSE),
IF DERIVDEGREE(DE: EXPAND(LHS(EQ)-RHS(EQ)),Y,X) # 2
THEN RETURN(FAILURE(MES1,EQ)),
Al: COEFF(DE,”DIFF(Y,X,2)),
A2: COEFF(DE,“DIFF(Y,X)),
A3: COEFF(DE,Y),
A4d: DE - Alx/DIFF(Y,X,2) - A2x/DIFF(Y,X) - A3xY,
IF PR2(A1) AND PR2(A2) AND PRZ2(A3) AND PR2(A4) AND
FTEST(HOM2(A1,A2,A3,Y,X))
THEN IF A4=0 THEN RETURN(Q) ELSE RETURN(VARP(Q,-A4/Al,Y,X)}),
LF FTEST(REDUCE(EQ,Y,X)) THEN RETURN(Q) ELSE RETURN(FALSE))3

ODEl(EO,YJX):=BLOCK([DE,F,G,Q],
IF DERIVDEGREE(DE: EXPAND(LHS(EQ)-RHS({EQ)),Y,X) # 1
THEN RETURN{FAILURE(MES1,EQ)),
IF LINEAR2(DE,“DIFF(Y,X)) = FALSE THEN RETURN(FAILURE(MESZ,EQ)),
DE: SOLVE1l(DE,/DIFF(Y,X)),
IF FTEST(SOLVELNR(DE,Y,X)) THEN RETURN(Q),
IF FTEST(INTFACTOR(G,F,Y,X)) THEN RETURN(EXACT(QxG,QxF,Y,X)),
/% LINEARZ binds F and G %/
IF FTEST(SOLVEHOM(DE,Y,X)) THEN RETURN(Q),
IF FTEST(SOLVEBERNOULLI(DE,Y,X)) THEN RETURN(Q),
IF FTEST(GENHOM(DE,Y,X)) THEN RETURN(Q) ELSE RETURN(FALSE))$

PR2(F):=FREEOF(Y, DIFF(Y,X),”DIFF(Y,X,2),F)8
FTEST(CALL):=IS(NOT((Q: CALL)=FALSE))$

SOLVEI(EQ,Y):=
BLOCK([DISPFLAG,EQ1],DISPFLAG:FALSE,EQL:SOLVE(EQ,Y),FIRST(EV(EQl)))$

SOLVEZ2(EQ, Y):=BLOCK([DISPFLAG,EQ1],
DISPFLAG:FALSE,EQ1:SOLVE(EQ,Y),
IF NOT(LENGTH(EQ1l)=1) THEN RETURN(FAILURE(MES4,EV(EQ1))),
FIRST(EV(EQ1)))$

MATCHDECLARE([F,G],FREEOF(X))$
DEFMATCH(LINEARZ,FxX+G,X)$

/x B&DiP, pp. 13-14 x/

SOLVELNR(EQ, Y,X) :=BLOCK([F,G,W],
IF LINEARZ2(RHS(EQ),Y) = FALSE THEN RETURN({FALSE),
W: %XE~(INTEGRATE(F,X)),
METHOD: “LINEAR,
RETURN(Y=Wx(INTEGRATE(G/W,X)+7C)))$

/x B&DiP, pp. 34-41 =x/

INTFACTOR(M,N,Y,X):=BLOCK([B1,B2,DMDX,DMDY,DNDX,DNDY,DD],
DMDX: RATSIMP(DIFF(M,X)), DMDY: RATSIMP(DIFF(M,Y)),
DNDX: RATSIMP(DIFF(N,X)), DNDY: RATSIMP(DIFF(N,Y)),
IF (DD: DMDY-DNDX) = 0 THEN RETURN(1),
IF DMDX-DNDY=0 AND DMDY+DNDX=0 THEN RETURN(1/(M~2 + N*2)),
IF FREEOF(Y, (Bl: RATSIMP(DD/N))) THEN RETURN(XE~(INTEGRATE(B1,X))),
IF FREEOF(X, (B2: RATSIMP(DD/M)))
THEN RETURN(XE~(INTEGRATE(-B2,Y))) ELSE RETURN(FALSE))$

EXACT(M,N,Y,X):=BLOCK([A,B],
INTFACTOR: SUBST(YOLD,YNEW,Q),
A: INTEGRATE(RATSIMP(M),X),
B: RATSIMP(A + INTEGRATE(RATSIMP(N-DIFF(A,Y)),Y)),
METHOD: “EXACT,
RETURN(B="C))$

/x B&DiP, pp. 43-44 x/

SOLVEHOM(EQ, Y, X) :=BLOCK([QQ,Al,A2,A3],
Al: RATSIMP(SUBST(XxQQ,Y,RHS(EQ)}),
IF NOT(FREEOF(X,Al)) THEN RETURN{FALSE),
A2: INTEGRATE(1/(A1-QQ),QQ),
A3: SUBST(Y/X,QQ,A2),
METHOD:. “HOMOGENEOUS,
RETURN(RATSIMP(/CxX = XE"A3)))$

/= B&DiP, p. 21, problem 15 =/

6

SOLVEBERNOULLI(EQ,Y,X):=BLOCK([A1,A2,N],
Al: COEFF(EQ: EXPAND(RHS(EQ)),Y,1),
N: HIPOW(RATSIMP(EQ-AlxY),Y),
A2: COEFF(EQ,Y,N),
IF NOT(NUMBERP(N)) OR N=0 OR NOT(EQ = AlxY + A2xY~N) THEN RETURN(FALSE),
Al: INTEGRATE(A1,X),
METHOD: “BERNOULLI, ODEINDEX: N, _
RETURN(Y = %E~Al x ((1-N)XINTEGRATE(A2xXE~((N-1)%Al),X) + “C) ~ (1/(1-N))))8

/% Generalized homogeneous equation: y’/ = y/x x H(yx"n)
Reference: Moses” thesis. x/

GENHOM(EQ, Y, X) :=BLOCK([G,U,N,Al,A2,A3],
G: RHS(EQ)xX/Y,
N: RATSIMP(XxDIFF(G,X)/(YxDIFF(E,Y))),
IF NOT(FREEOF(X,Y,N)) THEN RETURN(FALSE),
Al: RATSIMP(SUBST(U/X"N,Y,G)),
A2: INTEGRATE(1/(Ux(N+Al)),U),
A3: RATSIMP(SUBST(YxX"N,U,A2)),
METHOD: “GENHOM, ODEINDEX: N,
RETURN(X = 7CxXE~A3))$

/x Chain of solution methods for second order l1inear homogeneous equations =/

HOM2(A1,A2,A3,Y,X):=
IF FTEST(CC2(A2/A1,A3/A1,Y,X)) THEN Q ELSE
IF FTEST(EXACT2(A1l,A2,A3,Y,X)) THEN Q ELSE
IF FTEST(XCC2(A1,A2,A3,Y,X)) THEN Q ELSE FALSES

/= B&DiP, pp. 106-112 x/

CC2(F,G,Y,X):=BLOCK([A,SIGN,RADPRODEXPAND,ALPHA],
IF NOT(FREEOF(X,Y,F) AND FREEOF(X,Y,G)) THEN RETURN(FALSE),
METHOD: “CONSTCOEFF, RADPRODEXPAND: FALSE,
SIGN: ASKSIGN(A: F"~2-4xG),
IF SIGN = ZERO THEN RETURN(Y = XE~(-FaX/2) % (7K1 + “K2xX)),
IF SIGN = POS THEN
RETURN(Y = “K1xXE~((-F+SQRT(A))%X/2) + “K2xXE*((-F-SQRT(A))xX/2)),
A: -A, ALPHA: XxSQRT(A)/2,
IF EXPONENTIALIZE = FALSE THEN
RETURN(Y = XE~(-FxX/2) x (“KIxSIN(ALPHA) + “K2%COS(ALPHA))),
RETURN(Y = XE~(-FxX/2) % (“KIxkEXP(XI®XALPHA) + “K2xEXP(-XIxALPHA))))$

/= B&DiP, pp. 98-99, problem 17 =x/

EXACT2(A1,A2,A3,Y,X):=BLOCK([B1],
IF DIFF(A1,X,2) - DIFF(A2,X) + A3 = 0
THEN Bl: %E~(-INTEGRATE((A2 - DIFF(A1l,X))/Al, X))
ELSE RETURN(FALSE),
METHOD: “EXACT,
RETURN(Y = “K1xBIxINTEGRATE(1/(A1xB1),X) + “K2xB1))$

/x B&DiP, pp. 113-114, problem 16 x/

XCC2(A1,A2,A3,Y,X):=BLOCK([D,B1],
IF A3=0 THEN RETURN(FALSE),
D: RATSIMP((A1xDIFF(A3/Al,X) + 2xA2xA3/A1)/(2%x(A3/A1)*(3/2))),
IF FREEOF(X,Y,D) THEN Bl: CC2(D,1,Y,Z) ELSE RETURN(FALSE),
METHOD: “XFORMTOCONSTCOEFF,
RETURN(SUBST(INTEGRATE(SQRT(A3/A1),X),Z,81)))$

/x B&D1P, pp. 124-127 =/

VARP(SOLN,G,Y,X):=BLOCK({[Y1,Y2,Y3,Y4,WR],
Y1: RATSIMP(SUBST([“K1l=1,7K2=0],RHS(SOLN))),
Y2: RATSIMP(SUBST([“K1=0,7K2=1],RHS(SOLN))),
WR: Y1xDIFF(YZ2,X) - Y2xDIFF(Y1,X),
IF WR=0 THEN RETURN(FALSE),
Y3: RATSIMP(Y1xG/WR),
Y4: RATSIMP(YZ2xG/WR),
YP: RATSIMP(YZ2xINTEGRATE(Y3,X) - YIxINTEGRATE(Y4,X)),
METHOD: “VARIATIONOFPARAMETERS,
RETURN(Y = RHS(SOLN) + YP))$

/% Methods to reduce second-order equations free of x or y x/

REDUCE(EQ, Y, X) :=BLOCK([B1,QQ],
Bl: SUBST([/DIFF(Y,X)=QQ, “DIFF(Y,X,2)=QQ]1, EQ),
IF FREEOF(Y,B1) THEN RETURN(NL1(EQ,Y,X)),
IF FREEOF(X,B1) THEN RETURN(NL2(EQ,Y,X)) ELSE RETURN(FALSE))S$

/x B&DiP, p. 89, probiem 1 =/

NL1(EQ,Y,X):=BLOCK([DE,B,Al,A2,V],
DE: SUBST([/DIFF(Y,X)=V, ZDIFF(Y,X,2)=/DIFF(V,X)], EQ),
IF (B: ODE1(DE,V,X)) = FALSE THEN RETURN(FALSE),
Al: SUBST([V=/DIFF(Y,X),”C="K1], B),
A2: SOLVE2(Al,’DIFF(Y,X)),
IF A2=FALSE THEN RETURN(FALSE),
IF FTEST(ODE1(A2,Y,X))

THEN (METHOD: “FREEOFY, RETURN(SUBST(“K2,7C,Q))) ELSE RETURN(FALSE))S
/= B&DiP, p. 89, problem 2 x/

NL2(EQ,Y,X):=BLOCK([DE,B,Al1,A2,YZ,V],
DE: SUBST([/DIFF(Y,X)=V, “DIFF(Y,X,2)=Vx/DIFF(V,YZ), Y=¥Z], EQ),
IF (B: ODE1(DE,V,YZ)) = FALSE THEN RETURN(FALSE),
Al: SUBST([V=/DIFF(Y,X),YZ=Y,”C="K1], B),
A2: SOLVE2(Al,”/DIFF(Y,X)),
IF A2=FALSE THEN RETURN(FALSE),
IF FTEST(ODEL(A2,Y,X))
THEN (METHOD: /FREEOFX, RETURN(SUBST(‘K2,7C,Q))) ELSE RETURN(FALSE))$S

IC1(SOLN,XC,YC):=
EV(SOLN, C=RHS{SOLVE1(EV{(SOLN,XC,YC),C)), RATSIMP)S

BC2(SOLN, XA, YA, XB, YB) : =BLOCK ([DISPFLAG, SINGSOLVE, TEMP],
DISPFLAG:FALSE, SINGSOLVE:TRUE,
TEMP: MAP(LAMBDA(LZZ], EV(SOLN,ZZ,EVAL)),
SOLVE([EV(SOLN,XA,YA), EV(SOLN,XB,YB)]1, [“K1,7K2]1)),
IF LENGTH(TEMP)=1 THEN RETURN(FIRST(TEMP)) ELSE RETURN(TEMP))S

IC2(SOLN,XA,YA,DYA):=BLOCK([DISPFLAG,SINGSOLVE, TEMP],
DISPFLAG:FALSE, SINGSOLVE:TRUE,
TEMP: LHS(SOLN) - RHS(SOLN),
TEMP: MAP(LAMBDA([ZZ], EV(SOLN,ZZ,EVAL)),
SOLVE([EV(SOLN,XA,YA), SUBST({DYA,XA],
LHS(DYA)=-SUBST(0,LHS(DYA),DIFF(TEMP,LHS(XA)))
/DIFF(TEMP,LHS(YA)))1],

[7K1,7K2])),

IF LENGTH(TEMP)=1 THEN RETURN(FIRST(TEMP)) ELSE RETURN(TEMP))$S

FAILURE(MES,EQ):=(LDISP(SUBST(YOLD,YNEW,EQ)), DISP(MES), FALSE)S$

MES1: "NOT A PROPER DIFFERENTIAL EQUATION"$

MES2: "FIRST ORDER EQUATION NOT LINEAR IN Y/"$

MES3: "CANNOT DETERMINE SIGN OF CONSTANT EXPRESSION"S$
MES4: "MULTIPLE SOLUTIONS TO FIRST PARTIAL PROBLEM"$

REFERENCES

I. Moses, J. Symbolic Integration. Ph.D. Thesis, Massachusetts Inst. Technol., Dec. 1967. (Also
available as Report MAC TR-47) -

2. Boyce, W. E; and DiPrima, R. C.: Elementary Differential Equations. Second ed.. John Wiley
& Sons, 1969.

3. Moses, J.: Symbolic Integration: The Stormy Decade. Commun. ACM, vol. 14, no. 8, Aug. 1971,
pp- 548-560.

4. The Mathlab Group: MACSYMA Reference Manual. Version 8. Lab. Comput. Sci,
Massachusetts Inst. Technol., Nov. 1975.

5. Fateman, R.: An Approach to Automatic Asymptotic Expansions. Proceedings of the 1976
ACM Symposium on Symbolic and Algebraic Computation, Aug. 1976, pp. 365-371.

6. Stoutemyer, D. Computer Algebraic Manipulation for the Calculus of Variations, the
Maximum Principle, and Automatic Control. ALOHA System Technical Report A74-5,

Univ. of Hawaii, Nov. 1974.

7. Bogen, R: A Program for the Solution of Integral Equations. Proceedings of the 1977
MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper no. 2 of this compilat_ion.)

8. Schmidt, P.: Automatic Symbolic Solution of Differential Equations of First Order and First
Degree. Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic
Computation, Aug. 1976, pp. 114-125.

9. Schmidt, P.: Maschinelle Symbolische Losung von Differentialgleichungen 1 Ordnung und 1
Grades. Doktorgradés dissertation, Univ. Bonn, 1976.

10. Lafferty, ELL.: Power Series Solution of Ordinary Differential Equations. Proceedings of the
1977 MACSYMA Users’ Conference. NASA CP-2012, 1977. (Paper no. 34 of this
compilation.)

10

A PROGRAM FOR THE SOLUTION OF INTEGRAL EQUATIONS*

Richard A. Bogen
University of Hawaii

SUMMARY

This paper is intended to supplement an article by Stoutemyer (ref. 1)
which describes a program for the solution of one dimensional integral equa~
tions. The program, first written in REDUCE (ref. 2) has been implemented
in MACSYMA with several additional techniques which are explained herein.

By utilizing many methods, the program can obtain closed-form and series
solutions to a large class of linear and non-linear problems. One of the
techniques developed, reduction to a differential equation, has not pre-
- viously appeared in the literature in the general form described in this
paper.

INTRODUCTION

The interface between a person and a computer system may be considered
to take place on many possible "levels", as distinguished by the facilities
most often used. In a symbolic mathematics system, e.g. MACSYMA, there are
system designers who work mainly in LISP offering an initial set of MACSYMA
functions. The application programmers in turn use these functions to con-
struct others which are useful to the casual users who need to solve some
particular problem by invoking a sequence of built-in functions. The ease
with which each level of.user can accomplish his task is dependent on how
complete and well-designed the facilities are at all lower levels. Ideally
there should be no need for a user at one level to program at a lower level.
The arguments for using a pre-written program rather than writing one from
scratch are as strong as those for using a computer in the first place as
opposed to hand calculation; i.e. it saves time and affords less chance of
making an error.

Some of the most useful programs are those for solving certain types of
equations. MACSYMA already contains routines for solving various kinds of
algebraic and ordinary differential equations. In reference 1, Stoutemyer
describes a program he wrote in the REDUCE symbolic mathematies language
(ref. 2) for solving integral equations. In order to make this facility
available to users of MACSYMA, an implementation was begun in July 1976.

"*This work was supported by the National Science Foundation under
Grant No. MC575 - 22983,

11

Since completing this, we have discovered several new techniques and these
have been added to the program. This paper is intended to supplement the
work reported in reference 1, so the emphasis here is on the new techniques
that are not described there. Following a discussion of these techniques an
outline of the program is given, some limitations are mentioned, and a com-
parison is made with the earlier REDUCE version. Finally some planned future
improvements are described. A demonstration is presented in the appendix.

TECHNIQUES

The types of integral equations considered by the program are those
reducible to the "quasi second-kind":

b(x)
p(x) = v(x,p(x), f w(x,u,p(x),p(u)) du)
a

(x)

and the'"first-kind'":

b(x)
/ w(x,u,p(u)) du = £(x)
a

(x)

where, for this paper, p(x) is the unknown function, x is the independent
variable, and u is the integration wvariable.

The original REDUCE program contains five techniques applicable to
certain second-kind equations, two for certain first-kind equations, and
two usable for both types of equations. These are summarized in table I.
Since implementing these in MACSYMA, a further search of the literature
turned up two additional first-kind techniques.

Kanwal (ref. 3) gives a generalization of Abel's method for singular
integrands of the form:

x
(u) @
‘I; (h(x? = h(E))k = f(x), O<k-<1

The solution is:

X
sin(kx d hiip)f(q)gu .
p(x) - Salkm) 4) | -
T -dX:J; (hi{x) - h(u))1 k where h' denotes = .

12

Cochran (ref. 4) gives a method for linear fixed-limit first-kind equa-
tions with finite-rank integrands. These have the form:

b
J (306w (@] du = £(x).

Letting the cdoefficient of qj(x) in f(x) be ¢ and assuming p(u) to be:

kﬁ?krk(u)

the problem is reduced to that of solving the n simultaneous linear equations:

‘ b
n
c; fm51qk j:b(u)rk(u) du J=1,2,40040

for the . This gives one solution. The result of adding to this linear
combinations of functions orthogonal to all of the rk(u) gives additional
solutions.

In addition to the two techniques mentioned thus far, one other has been
made available. Stoutemyer proposed a generalization of a method in Goursat
(ref. 5) for transforming any variable-limit finite-rank integral equation
into an ordinary differential equation. It is applicable to both first-kind
and second-kind equations. There are numerous methods for solving differen-
tial equations and MACSYMA already possesses routines implementing some of
these methods. Consequently, this reduction significantly enlarges the class
of integral equations for which exact solutions can be obtained. The method
is remarkably simple. We are given an integral equation of the form:

X
f(x) or ~ n
p(x) - £(x)) L Agy)z (op(w)) du.
Letting R (x) = | v (u,p(u)) du, we have:
a
f(x) or L

Equation (1) together with its first n-1 derivatives with respect to x gives
a set of n simultaneous equations linear in the n unknowns R.(x), j=1,2,...,0.
Solving these equations and substituting for the R.(x) in th& n* derivative
of equation (1) gives an ordinary differential equgtion for p(x) which is of
order n-1 or n depending on whether the left side of equation (1) was f(x),
for first-kind, or p(x) - f(x), for second-kind. Initial conditions can be
obtained by setting x=a in equation (1) and its derivatives, then solving
successively for p(a), p'(a), ... ,p (a), where m is n-2 or n-1 as above.

13

We illustrate this technique with a non-trivial example. Consider:

9X6 5’){4 _X'_2 2X § 2 2
2_O+g-,ﬂ_ﬁ=1(ux+ux)p(u)du.
bd X

Letting R1(X) = &'u p(u) du and R2(x) = J;u2p(u) du yields:

S
B E B A e ”

Taking two successive derivatives gives:

5 5
'%il%- %-%-=2Qmﬂ+2ﬂ4@+ﬁgm (%)
-2zx4 > 1 3 2
54107 -5 = 2 p'(x) + 9x p(x) + 2R1(X>. (4)

Solving equations (2) and (3) for R1(x) we have:

Y 2
R1(x) = -9x + 10x -1 2X2p(x>_

Substituting this into equation (4) and re-arranging terms results in:

2
2x p'(x) + 5p(x) = -9x +5
X . -5/2 2 .
whose solution is p(x) = cx To solve for ¢ we let x=1 in

+ 1 - x .
equation (%) and, noting that R1(1)=R2(1)=O, find that p(1)=0, which implies
c=0.

EXAMINATION OF THE PROGRAM

The program is invoked by the calling sequence:
TEQN(expression, unknown, technique, napprox, guess).

The first argument is the integral equation. Trailing arguments may be
omitted, in which case they will assume default values which are:

unknown - defaults to the first function encountered in an
integrand which is unknown to MACSYMA.

14

technique - defaults to FIRST which causes all applicable
techniques to be tried until one succeeds (see below).

napprox - defaults to.1 and represents the maximum number of
iterations or adjustable collocation parameters for an
approximate solution.

guess - defaults to NONE and represents the initial guess for
NEUMANN or FIRSTKINDSERIES techniques. If NONE, the initial
guess will be the value obtained by setting all integrals in
the expression to zero.

The method used by the program is to factor the first argument to IEQN and
for each factor containing an integral the equation "factor = O" is-
algebraically solved for the unknown in terms of the other parts of the
factor. If a solution results, then "second-kind" techniques are tried.
Otherwise the program tries "first-kind" techniques. These techniques are
listed below in outline form giving conditions under which they are appli-
cable. (The name of the technique, which can be used as the third argument
of TEQN, is capitalized.)

Second-Kind Techniques

(Exact)
Constant limits of integration (Fredholm type)
Finite-rank integrand - FINITERANK
A constant lower limit and x as the upper limit (Volterra type)
Tntegrand linear in p(u)
Convolution integral - TRANSFORM (Laplace transform)
Finite-rank integrand - DIFFEQN (Conversion to ODE)
(Approximate)
Arbitrary limits of integration
Integrand linear in p(u) - FREDSERIES
There exists a point at which the limits are equal - TAYLOR
NEUMANN
COLLOCATE
First-Kind Techniques
(Exact) Constant limits of integration
Integrand linear in p(u)
Finite-rank integrands - FINITERANK
A constant lower limit and x as the upper limit
Integrand linear in p{u)
Abel's equation - ABEL
Convolution integral - TRANSFORM
Finite-rank integrand - DIFFEQN
(Approximate)
Arbitrary limits of 1ntegratlon
FIRSTKINDSERIES
COLLOCATE

15

It is difficult to make an accurate comparison between the execution
times of the MACSYMA and REDUCE versions for several reasons. The PDP-10
processor on which MACSYMA runs is significantly faster and has more memory
space resulting in fewer garbage collections. Also the REDUCE versions of
the SOLVE, INTEGRATE, and LAPLACE routines were interpreted rather than
compiled and REDUCE includes display generation times in its figures.
Consequently, the execution times for the examples given in reference 1 were
around 10 times the figures obtained when these examples were run on MACSYMA.

The text of the program was approximately 30% smaller on MACSYMA due *o
the availability of more built-in functions. Naturally, the MACSYMA version
could handle more cases because of more comprehensive integration, equation-
solving, and transform routines.

At present, the major difficulty in using the integral equation solver
is the frequent exhaustion of available storage due to the loading of files
containing many auxiliary funétions which are not part of the initial system.
Indeed, a single problem may cause functions in a dozen such files to be
referenced. Once loaded, the space they occupy cannot be re-used even if they
are no longer needed, In this situation, the user can save relevant values,
load a fresh MACSYMA, and continue where he left off. If, however, all the
space was consumed in a single call to IEQN, because of attempting several
solution techniques, then the user should try separate calls for each one,

It is'unlikely that this approach will cause difficulty since the principal
limitations of particular techniques arise not from space or time constraints,
but from the inability of some functions to handle certain kinds of arguments.
In particular, for linear integral equations the trouble spots are the inverse
Laplace transform, which is limited to rational functions, and the ordinary
differential equation solver which is limited to first and second order equa-
tions., Thus the corresponding cases of convolution equations containing non-
polynomial functions and of finite-rank integrals with rank greater than two
can only be handled by the approximate methods. For non-linear finite-rank
equations, solutions can be found only if corresponding non-linear differen-
tial equations or algebraic equations can be solved.

FUTURE IMPROVEMENTS

Aside from alleviating the problems mentioned in the previous section,
there are a number of ways in which the program could be extended. Eigen-.
analysis as well as testing existence and uniqueness theorems could auto-
matically provide useful information even when no solution can be determined.
Integral transforms such as those of Focurier and Mellin and the Wiener-Hopf
technique would enable the program to be used for some important integrals
with infinite limits. Finally, the program could be made to handle systems
of integral equations thus greatly extending its applicability. Incorpora-
tion of these techniques is under current investigation.

16

REFERENCES
Stoutemyer, D.: Analytical Solution of Integral Equations Using
Computer Algebra. Trans. Math. Software, June 1977.

Hearn, A.C.: REDUCE 2 Users's Manual. Computational Physics Group,
Univ. Utah, 1973.

Kanwal, R.P.: Linear Integral Equations: Theory and Technique.
Academic Press, 1971.

Cochran, J.A.: The Analysis of Linear Integral Equations.
McGraw-Hill Book Co., 1972.

Goursat, E.: Integral Equations - Calculus of Variations, A Course in
Mathematical Analysis. Vol. III, Pt. 2, Dover Publ. Inc, 1964.

APPENDIX - Illustrative Examples

(C1) 'INTEGRATE(P(U)/(X*¥2-U%*2)%%(1/3),U,0,X)=X;

(D1)

(C2) IEQN(D1)$
DEFAULT 2ND ARG,
DEFAULT 3RD ARG,
DEFAULT UTH ARG,
DEFAULT 5TH ARG,

(E2)

THE UNKNOWN: P(X)

TECHNIQUE: FIRST

NUMBER OF ITERATIONS OR COLLOCATION PARAMETERS: 1
INITIAL GUESS FOR NEUMANN OR FIRSTKINDSERIES: NONE

1 2/3
SQRT(3) GAMMA(-) X
3
--------------------- , ABEL
5
2 SQRT(%PI) GAMMA(é)
(C3) P(X)=1-'INTEGRATE(P(U)**2,U,1,X)$
(c4) 1EQN(D3,P(X),DIFFEQN,1,NONE)$
1
P(X) = ————- ,Dnmmm;{X=1,zwx)=1]]

(E4)

X+ C

(C5) P(X)=2%X+'INTEGRATE (X*U*P(U),U,0,1)%

(C6) IEQN(DS5,P(X),ALL,2,NONE)$

(E8)
(E9)

(E10)

(E11)

18

[3 X, FINITERANK]

[3 X, FREDSERIES, 2]
26 X
[—---, NEUMANN, 2, APPROXIMATE]
9

[5 X, COLLOCATE, 2J

Name

FINITERANK

TRANSFORM

FREDSERIES

TAYLOR

NEUMANN
FIRSTKINDSERTIES

COLLOCATE

Differentiation

|

Form to which applicable

2nd-kind,fixed limits,
finiterank integrands.

1st or 2nd-kind, rank-1,
variable limits.

1st or 2nd-kind, convolu-
tion, variable limits.

2nd-kind, linear.

2nd-kind, variable limit.

2nd-kind.
1s8t-kind.

any.

1st-kind, var. limit,

TARIE I - SUMMARY OF TECHNIQUES PREVIOUSLY REPORTED ON (in ref. 1)

Method

Given p(x)="expr", distribute
integration in expr over all sums,
then replace each integral of

qj(X)rj(u,p(u)) by chj(X) where

cj is an arbitrary parm. to be

determined, This gives p{x)=8(x).
Then solve the n simul. lin. egns.

c. =[abrj(u,g(u>> au

for the cj, J=Tyeeaynts

Special cases of the DIFFEQN
method for a rank-1 integral.

Take Laplace trans., solve for
trans. of p(x), then invert.
K(x,u)p(u)du,
the solution is p(x)=f(x)+
/PG(x,u)f(u)du, where G(x,u) is

Given p(x):f(x)+/.

the quotient of two infinite
series whose terms are found
from recurrence relations.
b(x)
Given p(x):f(x)ij. w(x,u,p(u))du
a(x)
find a point ¢ where a(e)=b(c)=c.
Expand p(x)-f(x) in Taylor series
about x=c by differentiation.

Make a guess for p(x) and iterate
using original equation.

Assume a particular form for p(x)
involving n arbitrary parameters.
Substitute in equation and evalu-
ate at n values of x to get a set
of simul. egns. to solve for parms.

Differentiate given equation some

number of times to see if a 2nd-
kind equation results.

19

SYMBOLIC LAPLACE TRANSFORMS OF SPECIAL FUNCTIONS *

Yannis Avgoustis
Laboratory for Computer Science (formerly Project MAC)
Massachusetts Institute of Technology

ABSTRACT

A MACSYMA implementation of the Laplace Transform for Special Functions
is described. The Generalized Hypergeometric Functions are used as a basis for
the representation of approximately fifty Special Functions. Only a relatively
small number of formulas that generally involve Generalized Hypergeometric
Functions are utilized for the integration stage.

A sample of actual examples and their timing is provided at the end of
the paper.

I INTRODUCTION

We describe a design for the Laplace Transform of Special Functions
which has been implemented in MACSYMA (ref. 1). In our design we have employed
approximately all of the fifty uell knoun Special Functions, knoun also as the
Functions of Mathematical Physics (ref. 2}, (ref. 3). In designing the Laplace
Transform capability, uwe have considered it as part of the "definite
integration” problem and our design is planned to cover a significant part of
definite integration through interaction at some later time with the other
Integral Transforms, such as Hankel, Y, K, Fourier, Mellin, etc .

One faces tuwo main difficulties when dealing with this problem. First,
definite integration generally is a recursively unsolvable problem (ref. 4).
Second, the area of Special Functions is well known for its "chaotic state"
(ref. 5).

Wang and Bogen have also worked on the problem of definite integration
(ref. B6) and Laplace Transforms (ref. 7). Houever, they both uere interested

% This uork was supported, in part, by ERDA contract Number E(11-1)-3878 and
NASA Grant NSG 1323.

21

- mainly in Elementary Functions. To the best of our knouledge there has beeh no
other system designed for any of the integral transforms or definite integration
for the Special Functions. ' ' '

In our design we take advantage of the fact that most of the Special
Functions can be considered as particular instances of the Generalized
Hypergeometric Function and therefors can be integrated, using the Generalized
Hypergeometric Function representation, uith a table consisting of very few
formulas. A natural consequence is that the result of the integration procedure
involves Generalized Hypergeometric Functions. Hence an additional step is
required to reduce the Generalized Hypergeometric Functions into Special or/and
Elementary Functions.

I1 THE GENERAL IDEA

We begin uith the definitions of the Generalized Hypergeometric
Functions (ref. 8), .(ref. 2), and the Laplace Transforms (ref. 9), (ref. 18).

Definition 1. We call the Generalized Hypergeometric Function,
otheruise knoun as the Generalized Gauss function, the series
qu[al.az....,ap:bl,bz,.-.,bqul) (1)
inf (ag)p(ag)y oo (ap)y, 2"

-2

where A3, Ay, ap and by, bz.....bq are complex parameters, z is a complex

variable. We also denote the above series as .F_{aj,ar,...,3.3b1,bo,cc.,b.32].
p q'®1r92 p*Y1-P2 q

or qu[(a);(b);z] or simply qu(z).

The series qu(z) satisfies the differential equation

d d d d
(z ~-(z - + by-1)(z —- + by - 1) .. (z == + by - 1) (2)
dz dz dz dz
d - d d
-2{z —- + a1)(z -- + ap) ... (z -- ¢ ap)) y=0
dz dz dz
Definition 2. We call the Laplace Transform of a real or complex
function f(t), defined for all real nonnegative values of t, the integral
®, t
Lo e Pt gt (3)

22

if It exists for some values of the complex variable p. It is wuritten LIf(t)]
and determines a function F(p); thus

Lif(t)) = [T (t1e Pt at = F(p) (%)
The key ideas in our design, depicted in figurs 1, are
Stage 1. Represent the Special Functions, if possibie, as particular
instances of the Generalized Hypergeometric Function.

Stage 2. Provide a fairty general formula to integrate the results of
stage 1.)

Stage 3. Take the result of stage 2 involving a Generalized
Hypergeometric Function, and reduce it to an elementary or/and Special
Functionl(s). '

Hence, our design alternates betueen tuwo levels:

Level 1. The expression involves Special or/and Elementary Functions.
Level 2. The expression involves Generalized Hypergeometric Functions.
We next proceed with a simple illustration of the above scheme.

[llustration

Given Input
t-3/2 15(2al/2¢1/2) o-pt (5)

where I3(.) is a modified Bessel function of the first kind (ref. 11), (ref.
12), the folloning uill take place in each of the three stages:

Stage 1.
Because . .
I,(2) = e VFI/2 § (2e¥1/2) ' 6)
(5) becomes
1473/2 43(21al/241/2) o-pt n
Because
zv :
Jy(2) = —ommeeeee gF1l vels =176 22 (8)
2T (v41)

23

(7). becomes
a3/2 '

-- gF1l 4 at] 7Pt -)
Bp

Stage 2.

In this stage we integrate by using the following formula (ref., 13)

LotsL Fotag,eeiagirgsees i (10K e P gt (10)

s s+l s+k-1 ki
- P(S)p-sm_’_an(al' se 0 'am,-k, -—k-, LY ,---':—;r‘l.rz. 200 ,l"n; (--)k)

which is valid for Re(s) > 8, m+k < n+l, where k,m,n are integers.

Thus (39) becomes

a3/2
-- ¢F1 0 13 64; a/pl (11)
6p

Stage 3.

At stage 3, we apply to (11) the follonwing "Kummer's transformation"
(ref. 2)

1Filas ry 2] = e’ tF1l r-a; r; -2] (12)
and (11) reduces to
2372
- &3/P (Fi1 3; 4; -a/p) (13)
6p

le recognize that the series in (13) is an instance of an Incomplete
Gamma function (ref. 2}, because

1F1[as a+l; -x] = ax™@ ¥ (a,x) (14)

Therefore, (14) finally becomes

------- 7 (3,a/p) (15)

2

111 THE GENERALIZED HYPERGEOMETRIC FUNCTION AND

THE FUNCTIONS OF MATHEMATICAL PHYSICS

As we have already mentioned, we have deait with around fifty Special
Functions and our goal Is to interpret them as particular instances of the
General i zed Hypergeometric Function.

We have divided the set of the Special Functions into tuo major tuypes.
The first type includes all Special Functions that are directly transformed
through some retation into a Generalized Hypergeometric Function, and the second
type includes those functions that are expressed in terms of other Special
Functions and ultimately are expressed in terms of Special Functions of the
first type. This is the major objective of the first stage and it has been
influenced by the tendency to utilize and manipulate as few Special Functions as
Is necessary.

For example, the Bessel function of the first kind J,,{(z) belongs to the

first type and is automatically transformed into a Generalized Hypergeometric
Function through relation (8). :

The Hanke! function of the first kind, Hv,l(Z)' is expressed initially
as a sum of a first and second kind of Bessel functions as it is shoun in (16)

Hy,1(2) = J,(2)+iY, (2) (16)

Here J,(z) is a function of the first type, while Y,(z), a Bessel! function of
the second kind, is not. Y, (z) is transformed in terms of J, (2) as long as v
is not an integer through the relation

Yy (2} = (coslv pild, (2) - J_,(2)) csclv pi) (17)

Thus we have ultimately expressed Hv,l(Z) tn terms of the first type function
Jy(2), which 1In turn can readily be transformed into a Generalized
Hypergeometric Function. The case in which v is an integer, Y, (z) is considered
separately.

In a similar way we have considered products of Special Functions uwhich
can be expressed as a single Generalized Hypergeometric Function. Thus the
product of tuwo Bessel functions "J, (z)xJ,(z)" is a product belonging to the
first type and is transformed into a Generalized Hypergeometric Function through

the relations (8) and (18)

gF1l rs zl1gF [83 2] = oF3[r/2+8/2, r/2+48/2-1/23 r, s, r+s-1; 4z} (18)
On the other hand, the product I,(z)xK,(z) ,uhere I,(z}, K, (z) are modified
Bessel functions of the first and second kind, respectively, belongs to the

25

aacond typs and is ultimately expressible in te}ma of functions of the first
type, for noninteger values of the jndex m. '

IV LAPLACE TRANSFORMS

A design for the Laplace Transform algorithm should incorporate two
major components: the integration process, and the different Laplace Transforms

properties.

We decided to form a table which contains as few formulas as possible.
This strategy has the follouwing consequences:

1. The overall design of the system becomes algorithmic in the sense
that the system works deterministically and knous what it can really do and uhat
it cannot, and does not waste time by trying different approaches.

2. The main burden and difficulty of the problem shifts from stage 2 to
stage 1 and especially stage 3, wuhere we have to reduce the Generalized
Hypergeometric Functions to some Elementary or/and Special Function(s).

As far as the Laplace Transforms properties are concerned, our general
policy consists of applying them in stage 2, in the Generalized Hypergeometric
Function level, Hence, stage 2 can be divided into two substages.

Substage 2.1 Utilize the Laplace Transforms properties.

Substage 2.2 Integrate.

This policy changes only in cases uhere such a postponment of the
application of the Laplace Transforms properties until stage 2, causes
irreparable damage and failure in our scheme (figure 1). Therefore the Laplace
Transforms properties have been considered in two tuypes. Properties of the
first type can be applied in substage 2.1, independently of what kind of Special
Function(s) that the input expression contains. Thus, for example, all the well
knoun properties, such as the "scale property”" (ref. 18)

Lle~@tf ()] = F(p+a) 19
belong to the first type. : -

Properties of the second type cannot be applied after stage 1 for
certain Special Functions and our scheme is unable to proceed successfully to
stages tuwo and three. For example, the property

LEf(asinht)] = 5, (aulgtu) du (e

26

where g(p) = L[f{t)], cannot be applied after stage 1, for the Bessel function
Jgs» as in, for exampls, :

Jglasinht) ePt | . (21)

aince_after the completion of the first stage we get

g1l s - —- sinkZtleP (22)
. _ _

Expression (22) cannot be integrated since our table does not contain any
formulas uith such functional arguments uwhile it is too late to apply property
(20).

The above mentioned example could be solved by two recursive calls to
our scheme (figure 1). First, by calling the scheme as described for the
Laplace Transforms, and second by calling the same scheme in which the Laplace
Transforms properties and Integration formulas have been substituted with Hankel
Transforms properties and Integration formulas (ref. 9).

On a first examination, a program that can take the Laplace Transforms
of approximately fifty Special Functions would imply that quite a big number of
formulas would be necessary to be incorporated in the table look-up ‘of our
second stage. It turns out that relatively very few formulas are needed. Thus,
formula (18) has been applicable to a large number of Special Functions (ref.
14), (ref. 2), (ref. 3), namely the Bessel Functions of the first and second
kind, both Modified Besse! Functions, the two kinds of Hanke! Functions, also
the Struve functions, the Lommel functions, and the Kelvin functions, the
Whittaker, the error and both Incomplete Gamma functions, for almost all the
values of their indices and for linear and quadratic functions of the argument.
Fur thermore, in cooperation with general formulas of other Integral Transforms,
formula (18) contributes in integrating composite functions like Jg(sinht), as

We have already shoun.

_ Currently, our table look-up incorporates seven formulas and our design
I's generally capable of integrating expressions described in the two categories
belou:

1. Special Functions of linear or quadratic argument multiplied-uith

a. Arbitrary powers of the argument.

b. Trigonometric and exponential functions of |inear
argument.

27

2. Products of tuwo Special Functions of linear or quadratic argument,
multiplied nwith the same kind of functions ue mentioned in the first category.
The Special Functions of this category can be functions of only one of the
folloning groups: '

a. Any kind of Bessel, Modified Bessel, or Hankel
functions.

b. Orthogonal Polunomials.

¢. Confluent Hypergeometric Functions.

Houwever, the potentiality of keeping very few formulas around in the
table of our second stage would be of limited value if we were unable to
complete successfully the third stage, to reduce the Generalized Hypergeometric
Function to some Elementary or/and Special Functionl(s).

VYV THE REDUCTION STAGE.

In the reduction stage the Generalized Hypergeometric Function is
reduced, if that is possible, to some Elementary or/and Special Function{sl.
Priority is always given first to those methods that reduce the Series into
Elementary Functions and then to those that reduce to the most common Special
Functions, such as error, Besse! etc . The effort in the reduction stage
increases as the number of the series parameters, and subsequently the p and q
values, increase. If the reduction is unsuccessful then the series qu(z) is

returned.

The reduction stage incorporates two phases. In the first phase
algorithms independent of the values of p and q of the series qu(z) are
applied. In the second phase special algorithms dependent on the parameters are
per formed.

A surprisingly useful rule, incorporated in the first reduction phase,
is the following.

If a numerator parameter of the series F_(z) exceeds by a positive
integer, say k, a denominator parameter, then the series qu(z) can be expressed
as the sum of k+l1 p-qu—l(z’ ’s.

28

Such a series splitting, though it does not actuéllu fully reduce a
qu(z), simplifies the reduction by decreasing the p and q vatues.

To iltustrate series splitting, cohsider
13 Jg(t1/2)2 o-pt (23)
after stages one and two have been completed, we get

Bp~% gF3l 172, 1, 43 1, 1, 15 p~ 1 (26)

Nou, at stage three and after a trivial general reduction rule, (24)
becomes

6p~% Fol 172, 43 1, 13 —p~h) (25)
then applying our general "splitting" rule, (25) reduces to |
Bp~% U 4Fy L 1/2; 13 -p~h) - 372 p7l 4Ryt 372 25 -p~h) (26)
+ 9716 p=2 JFy 15725 3; -p~h) - 5796 p~3 yF 1 7725 43 -pInd
which ultimately yields
6p~% e-1/2 71 (150172 p7h) + 322 M.1/2,1/720-p"1) (27)
+ 9/16 p2 (-p)3/2 1y 4 t-p~l) - 5/96 p71 M_3/7 3/20-p710

where "i.j is a Whittaker function.

In the second phase, reductions are easy for the cases gFglz), gF;(z),
1Fg(2), and the difficulty increases significantly for higher p's and g’s. We
have been mainly concerned with the Confluent Hypergeometric Function reduction,
1F1(z), and the Gauss Hypergeometric Functions, oF{(z), that include, in
addition to certain important Special Functions, the Elementary Functions. The
most important tools here are the different transformations: linear, quadratic,
f;? {ref. 15), (ref. 2), (ref. 16), and the Contiguous Functions Relations (ref.

The different transformations (linear, guadratic, etc) are performed as
soon as it is detected that the Generalized Hypergeomtric Function is reducible
to some other ones and uwhich are definitely knoun to be reducible to some
Special or Elementary Functions in one or more steps. MWe clarify the above
ideas in a simple example, where a quadratic transformation is applied to a
Gauss Hypergeometric Function.

29

Suppose we are given
- oF; lalpha,beta; gamma; argl = oFy [3/4, 5/4; 1/2; 22 (28)

where :
beta ~ alpha = 5/4 - 3/4 = 1/2 (29)

therefore the quadratic trahsformation

4 al a 1 22
(1 --)-2 2F1[-,- + -3 b+ -3 ——-—-] - 2F1[a, b: 20; zl (39)
2 22 2 2 (2-2)2

is applicable. Hence, the following relation holds:

z
oF1 [3/4, 5/4; 1/23 —=mnn-] = 1 -2%2 F13/2, 8 8 7 (31)
(2-2)2 2 |
Upon application of a simple general reduction rule, the right hand.side of

expression (31} becomes

(1 - 2/203/2 [Fal 3/2; ; 2] (32)

and finally, taking into account the relation
iFgl @ 5 21 = (1 - z)-2 (33)

expression (28) reduces to

————————— 4+ ————m—— (34)

"Contiguity" has been also found useful and has been put into use in the
reduction of the Generalized Hypergeometric Functions.

Definition. We call two Generalized Hypergeometric Functions contiguous
if they are alike except for one pair of parameters in which they differ by a
unity. '

Thus the Hypergeometric Function oF;la,bjciz] is contiguous to oFjla+l,bic;z]
and obviously to only five others. Any three of the contiguous functions can he
connected with a linear relation, the so called Contiguous Functions
{Recurrence) Relations. Such relations are applied to a Generalized
Hypergeometric Function uwhenever it has been predetermined that the resulting
series can be reduced to Special or/and Elementary Functions.

30

|III!

Glven
- qF [-1/2; 3/2; 2] : - (35)

and using the follouing contiguous relation
(a-c+l) 4Fila; c; 2] - a 1F1 la+ls c3 2] + (c-1) jFjla; c-13 2] = @ (36)

He get .
1/2 1F1[1723 3/2: 2l + 1/2 4F4 1 -1/2; 172; 2z} (37)

where the ﬂrat series is identiﬂed as an error and the second as an Incomplete
Gamma function, namely

~1/4 izgt/2 Erei2l/2) - 172 2112 y(-1/2,-2) (38)

Similarily, the Hypergeometric Function
Fil a, a+9/2; c; 2] (39)

can be reduced through successive use of the contiguous relations to the
fol lowing sum

(c-a-9/2) (c-a-7/2) (c-a-5/2) (c-a-3/2) :
. - oFil a, a+l/2; c; zl (49)
(c-2a-9/2) (c-2a-7/2) (c-2a-5/2) (c-2a-3/2)

alc-a-9/2) (c-a-7/2) (c-a-5/2) (1-2)
-4 ' oF1 [a+l, a+3/2; c; z]
(c-2a-11/2) (c-2a-9/2) (c-2a-7/2) (c-2a-3/2)

ala+l) (c-a-9/2) (c-a-7/2) (1-2)2
+ 6 e - oFil a+2, a+5/2; c3 z)

{c-2a-13/2) (c-2a-11/2) (c-2a-7/2) (c-2a-5/2)

ala+l) (a+2) (c-a-9/2) (1-2)3 -
- &4 2F1[a+3, a+7/2: cs z)
(e-2a-15/2) (c~-2a-11/2) (c-2a-9/2) (c-2a-7/2)

ala+1) (a+2) (a+3) (1-2)%
+ oFi [a+h, a+9/2; c; 2]
(c-2a-15/2) (c-2a-13/2) (c-2a-11/2) (c-2a-9/2)

We next notice that the parameters of each of the above Hypergeometric
Serles satisfy a similar relation to (29). Therefore a quadratic transformation
is applicable to each of them, that ultimately leads to the following sum of
Legendre functions

31

2¢-1 pie) z11-¢)/2 (1.3 (c-2a-1)/2 41)

(c-a-9/2) (c-a-7/2) (c-a-5/2) (c-a-3/2)

[Pe-2a-1,1-c 11
(c-2a-9/2) (c-2a-7/2) (c-2a-5/2) (c-2a-3/2)

-z)-1/2)

alc-a-9/2) (c~a-7/2) (c-a-5/2)

=& - - Pc-2a-3,1-c (1
(c-2a-11/2) (c-2a-9/2) (c-2a-7/2) (c~2a-3/2)
a(a+l) (c-a-3/2) (c-a-7/2}

+ B oo === Pe.2a-5,1-¢c!(1
(c-2a-13/2) (c-2a-11/2) (c-2a-7/2) (c-2a-5/2)

~z)~1/2)

-z)-1/2)

a(a+1)(a+2)(c—379/2)

=4 —mmmem oo - Pc—2£a--7.1—t:“1
(c-2a-15/2) (c-2a-11/2) (c-2a-9/2) (c-2a-7/2)

-z)-1/2)

a(a+l) (a+2) (a+3)

+ - - Pe2a-9,1-c1(1

—— -2)-1/2)
{c-2a-15/2) (c-2a-13/2) (c-2a-11/2) (c~2a-9/2)

VI COMMENTS AND CONCLUSIONS.

The Laplace Transforms package is relatively fast, as the actual
. examples in the appendix shou. Furthermore, it is capable of quickly rejecting
cases that it cannot process.

The Laplace Transforms system is capable of providing results for the
well knoun Special Functions limited to essentially linear and quadratic
arguments, However, cases |like equation (21), mentioned earlier, or the
follouing one

t-1 Jy (at~h) e-pt (42)

are gsome of those that the present Laplace Transforms implementation is unable
to provide an answer, unless it wuill interact properly with other Integrat
Transforms., We expect to generalize the system to those other tranmsforms in the
coming year.

: Currently our system is able to solve approximatelly 88% of the entries
of the corresponding chapters of the Tables of Integral Transforms (The
Bateman’s Manuscript Project). UWe expect to be able to cover 3/4 of the
remaining cases in the coming months by increasing the capabilities of our first
and third stages. Finally, uwe should add in favor of our implementation, its
capability to Iintegrate expressions that are only implicitiy included in
Bateman’s Manuscript Project.

32

APPENDIX

This is a sample of some actual examples of the Laplace Transform
system in MACSYMA. "Definte" is the top function that calls the integral
transforms, it takes two arguments: the expression to be integrated
and the variable, and assumes {imits of integration from zero to infinity.

/% Laplace transforms x/

ASSUME (P > 8);
(D11) [P > 8]

(C12) TIME:TRUES
TIME= 1 MSEC.

(C13) /% Some "Confluents".

"Mik,ml (z)" is a Whittaker function.

"GAMMAINCOMPLETE(a,b)", and "GAMMAGREEK (a,b)" are current names
for the Incomplete Gamma functions: [Ya,b), and Jlab). »/

%E” (AxT) T 2xERF (T (1/2)) %x%E” (-PxT) 3
TIME= 22 MSEC.

2 AT-PT
(D13} ERF (SQRT(T)) T %E

(C14) DEFINTE(%,T);

RPART FASL DSK MACSYM being loaded
loading done
Is A - P positive, negative, or zero?

NEGATIVE;

GAMMA FASL DSK MAXOUT being loaded
loading done

TIME= 431 MSEC.

(D14)

[
-
w
~
N

)
—
32
~
N

(C1S) T~(1/2) »GAMMAINCOMPLETE (1/2, AxT)%XE” (-P%T) 3
TIME= 632 MSEC.

1 -PT
(D15) GAMMAINCOMPLETE (-, A T) SQRT(T) %E

2

33

34

(C16) DEFINTE(X,T);
TIME= 1586 MSEC.
%P1 : 2
(016) - -—-

3/2 A 372 372 A
2 (P +A) (1 - —=--) P+ A 1 - ——--)
P+A P+A

(C19) 'T~(3/2)xM[1/2,1) (T)R%E~ (-PxT);
TIME= 12 MSEC.

32 -PT
(D19) M mrT %E
172, 1
(C28) DEFINTE(%,T):
TIME= 263 MSEC.
1 1
6 (—emmmmeee + e)
1 1 2
1 - o 46 P+ -) (1 - ——-- }
1 2. 1
P+ - P+ -
’ 2 . 2
(D28) = e
14
P+ -)
2

(C21) /% Some Bessel functs (bf's). x/

/x JIlvl(z), 1st kind of bf’s., x/

/x YIvl{(z), 2nd kind of bf’s.x/

/% Hlv,11(2), lst kind of the 3rd kind of bf's (lst Hankel)., x/
/% Hiv,21(z}), 2nd kind of the 3rd kind of bf's (2nd Hankel).%/

T*(-1/2)%J [B] (2x%A™(1/2) xT~(1/2)) %x%E~ (-PxT) ;

TIME= 16 MSEC. :
-PT

J (2 SORT(A) SQRT(T)) %XE
8
(D21) e
SORT (T)
(C22) "DEFINTE(%,T);
TIME= 256 MSEC.
A
A 2P
SQRT(¥PI) I (---) %XE
B2FP
(D22) = eememmeemcem e
SQRT (P)

(C23) T~ (3/2) %Y (11 (AxT)xRE~(-T) 3
TIME= 9 MSEC.
32 -1
(D23) YWATT %E
1

3/2

(C24) DEFINTE(X,T);
TIME- 968 MSEC.
%1 1 3/4
15 %I SORT(2) P (= ==) (mmmmm- -1
-2, 172 A 2

{D24)

2 2 2 2 1/4
8 SART(XPI) (A + 1) ((A +1) -1)

(C25) T~ (3/2)xH[1/2,1] (T)x%E~ (-PxT);
TIME= 12 MSEC.
32 -PT
(D25) H mr %E .
172, 1

(C26) DEFINTE(%,T);
TIME= 1389 MSEC.

SART (2) SQRT(%PI) (-- + 1) P SQRT(%P1) P
2
P

(C29) /x 1lvl(z), KIvl{z), Modified bf's. x/

TA(1/72) %1 [1] (TY*%E~ (-PxT) ;
TIME= 11 MSEC.
-PT
(D29) I (T) SQRT(T) %E
1

(C38) DEFINTE(%,T);
TIME= 295 MSEC.
1 1 5/2
3 SQRT(%PI) P) SORT(-- - 1) P
-3/2, -1 1 4
SQRT(1 - --) P

(D38) e e

(C31) T~(5/2)xK[1/2] (T)x%E~(-PxT);
TIME= 12 MSEC.
572 -PT
(D31) K MT %E
172

(C32) DEFINTE(%,T);
TIME= 1761 MSEC.

4 1

3 (%I - 1) (%1 + 1) SQRT(2) SGRT(¥PI) (-4)
1 3 2 1 2
5 ---) P (1---)
2 2
P P
(D32) ——- — e
4
2P
4 1
(%1 - 1) (%I + 1) SORT(2) SORT(XPI) (=--ommmmmmmen 4 e)
1 3 2 1 2
3U0---) P (1---)
2 2
P P
3
2P

(C35) 18] (2%A~(1/2)%T*(1/2)) "2%%E" (-PxT) ;
TIME= 15 MSEC. '

2 -PT
(035) I (2 SQRT(A) SQRT(T)) %E
8
(C36) DEFINTE(X,T);
TIME= 944 MSEC.
2 A
2A P
I (---) %
g P
036) e
p

(C37) JI1/2) {T~(1/2) %Y [1/2]1 (T~ (1/2)) w%E~ (~PxT} 3
TIME= 15 MSEC.

-PT
(037) J (SQRT(M) Y (SQRT(T)) %E
172 1/2
(C38) DEFINTE(%,T);
TIME= 366 MSEC.
1
1 2P
%1 (--) %
1/2 2P
(038) e
P
(C39) 101721 (TA(1/2))%K [1/2] (TA(1/2)) %4E~ (-PxT) 5
TIME= 15 MSEC.
: -PT
(D39) I (SORT(T)) K (SQRT(T)) %E

172 172
(C48) DEFINTE(%X,T);

TIME= 2338 MSEC.

1 1
1 2P 1 2P
% %Pl (X1 + 1) 1 (---) % %I (%] +1) 1 (---) %
1722P 1/722°p
(D&B) —m e e e mm e
4 P 4 P
1 1
1 2P 1 2P
%L %P1 (%1 - 1) 1 (---) %E %Wl & -1 1 (——-) %
1/22P 1722P
I ittt F
4P 4 P

(C41) /x Related to bf's functions. %/
/x Struve functions. x/

T~ (-1/2)%LSTRUVE [-1/2] (T~(1/2)) %%E~ (-PxT);
TIME= 16 MSEC.

-PT
LSTRUVE (SQRT(T)) %E
-1/72
(D41) e
SQGRT(T)
(C42) DEFINTE(%,T);
TIME=~ 1196 MSEC.
1
1 3 1 8P
(XI - 1) (XI + 1) SQRT(2) GAMMA(-) GAMMA(-} 1 (---) %E
4 4 1/4 8 P
{D42) g USRS
4 SQRT(%PI) SQRT(P)
(C43) TxHSTRUVE [1] (T)x%XE"~ (-PxT);
TIME= 19 MSEC.
-PT
(D43) HSTRUVE (T) T XE
1
(C44) DEFINTE(%,T);
TIME= 2239 MSEC.
16 %I
(D44) S U
3/2 1 3/2 3
3 %Pl (-- + 1) P
2
P
(C45) /x Lommel functions. x/
T~(1/4)%5101/2,-1/2) (T~ (1/72))x%E~ (~PxT) ;
TIME= 15 MSEC.
1/ -PT
(D45) S (SQRT(TY) T %E

172, - 172

37

38

(C4B) DEFINTE(X,T);
TIME= 226 MSEC.

(D46) -

%1 SORT(XPI) ERF(- 2 ¥XI SQRT(P)) %E

372
2P

REFERENCES -

1. The Mathlab Group: MACSYMA Reference Hanual. Lab. Comput...Scl..

.Massachusetts Inst. Technol.. Nov. 1975.

2. Erdelyi, Hagnue: and . Oberhettinger, Tricomis Higher Transcendental
Functions. Bateman Manuscript Project - Volumes 1,2 and 3, McGraw-Hill Book
Co. ’ "1953. - ' : ' o :

3. Hochstadt, H.t The Functions of Mathematical Physics. Interscience Publ.,
1971. :

4. UWang, P. S.: The Undecidability of the Existence of Zeros of Real
Elementary Functione. J. Assoc. Comput. Mach., vol. 21, no &, Oct. 1974, pp.
586-589.

5. Vilenkin, N. J.: Special Functions and the Theory of Group Representations.
Transiations of Mathematical Monographs, vol. 22, American Math. Soc., 19B68.

6. MWang, P. S.: Evaluation of Definite Integrals by Symbolic Maniputation.
Ph.D Thesis, Massachusetts Inst. Technol., Oct. 1971. (Also avaiiable as TR-92)

7. Bogen, R. A.: Automatic Computation of direct and inverse Laplace
Transforms using Computer Symbolic Mathematics. Proceedings of the 18th Hauaii
International Conference on Systems Sciences, Jan. 1977, pp. 161-1B69.

8. Stater, L.: Generalized Hypergeometric Functiona. Cambridge Univ. Press,
1966. '

9. Sneddon, I. H.: The Use of Integral Transforms. McGrauw-Hill Book Co.,
1972. '

18. Hladik, J: La Transformation de Laplace a plusiers variables. Masson et
Cie, 1963.

11. Uatson, G. N.: A Treatise on the Theory of Besse! Functions. Cambridge
Univ. Press., 13952,

12. Tranter, C. J.: Bessel Functions. Hart Pub. Co., Inc., 1969.
13. Erdelyi, Magnus; and Oberhettinger, Tricomi: Tables of Integral

Transforms., Bateman Manuscript Project - Volumes 1 and 2, McGrau-Hill Book
Co., 1954,

'14. Buchholz, H.: The Confluent Hypergeometric Function. Springer Tracts

Nat. Philos., vol. 15, 1989,

15. Abramowitz, M.; and Stegun, Irene A.: Handbook of Mathematical Functions,

Dover Publ. Inc., 1965.

16. Goursat, E. M.: Sur |I' equation dlfferentfelle lineaire qui admet pour
integrale {a serie hypergeometrique. Ann. Sci. Ecole Norm. Sup. (2}, 18, 3-142.
1881,) _

39

17. Rainvilte, E. D.: The Contiguous Function Relations for
Amer ican Math. Soc., vol. 51, 1945, pp. 714-723.

4o

pFar

Bull.

Generalized _//ﬁ Generalized

Level 2.
Hdypergeo. - Hypergeo.
Functions L Functions
i E

Level 1. Special lementary

and —>

Functions Special Fung

Figure 1.

41

AN IMPROVED ALGORITHM FOR THE ISOLATION OF POLYNOMIAL REAL ZEROS¥*

Richard J. Fateman

University of California
Berkeley, California 94720

SUMMARY

The Collins-Loos algorithm for computing isolating intervals for. the
zeros of an integer polynomial requires the evaluation of polynomials at
rational points. This implies the use of arbitrary precision integer arith-
metic., This paper shows how careful use of single-precision floating-point
arithimetic within the context of a slightly modified algorithm can make the
calculation considerably faster and no less exact. Typically, 957 or more
of the evaluations can be done without exact arithmetic., The precise speed-up
depends on the relative costs of the arithmetic in a given implementation.

Our implementation on the DEC KL~10 computer is some 5 to 10 times faster than
the original Univac 1110 implementation in SAC-I. We are able to attribute
about a factor of three improvement to the MACSYMA machine and language, and
2.7-3.3 speed-up to the algorithm itself.

1. INTRODUCTION

Collins and Loos (reference 1) sketch an algorithm, and provide some
implementation details for computing a set of intervals on the real line
(al,bl], ..., (an,bn] such that each interval contains a single or multiple
real zero of a polynomial P. The multiplicity of the ith interval is also
computed. This algorithm requires the exact evaluation of P and its deriva-
tives at rational points. For most of the algorithm, one is actually
unconcerned about the value of P or its derivatives, since the sign (+1, 0, or
-1) is sufficient to determine whether P is above, on, or below the x-axis.

The sign may be determined, as shown in section 2, by a procedure using
primarily floating-point arithmetic; in case the sign cannot be so determined,
either higher precision or exact rational arithmetic is used. It might be
tempting to dismiss this technique as being ''machine dependent', and so it is;
however, the dependency is isolated to a single floating-point value repre-
senting the maximum relative error in the result of a floating point opera-
tion. We know of no computer for which this number cannot be determined.

* The work described herein was performed with the help of MACSYMA which is
supported, in part, by the United States Energy Research and Development
Administration under Contract Number E(11-1)-3070 and by the National
Aeronautics and Space Administration under Grant NSG 1323,

43

In places where exact values are computed in ref. 1, we are usually
able, through the use of (pessimistic) floating-point interval arithmetic
(ref. 2) to avoid the attendant cost of exact arithmetic. 1In fact, most of
the reliance on exact arithmetic demonstrated in the tests (duplicating
those in (ref. 1)) is generated by exponent overflow rather than insufficient

accuracy.

2. HORNER'S RULE WITH ERROR BOUNDS

n .
Assume we wish to evaluate a polynomial p(z) = I aJ PR
j=0
at a point z = x.
n-l n-1-7
p(z) =px) + (z-x) I bj z J (2.1)
j=0

where Horner's recurrence provides the bj‘s:

bO = aO

b

. x b,
k| j-1

and bn = p(x)

+ aj, j=12,...,n-1

Assume we are using arithmetic subject to truncation and round-off error.
Then for some small constants aj, Bj, the computed value of bj is
b, = (x b,
J -
(assume b__1 = 0 for the following)

; LA Bj_l) + aj)/(l + uj) (2.2)

. n .
- n-j n-j
p(z) = £ a, z 9= 3% [A+a)b, —xb, . 1+8,)]z

j=0 J 3=0 3773 j-1 j-1

n . n-1 14
= 5 (@Q+a)b, 22 -x T b, @A+B) A

5=0 it 3 Cy=0] j

n-1 el
= b (Q+a) 2°+ I b, {Q+a)z-0+8,)xr 277 2.3
n n j=0 1] J

Application of (2.1) provides, at z = X

By

n-1

bn(l + 0Ln) p(x) jEO bj (aj Bj) x (2.4)
n-1 n—j
Thus the magnitude of the error lb -pX)| = [% b.(a, — B.) x J+ba l.
n j=0 J 3 1 n'n
Since Iajl,]le <eg, €a unit in the last place, (£ = 2_27 on a 27-bit base
2 mantissa machine such as the PDP-10),
n .

the bulk of the error is < 2 € I [bj[[x| ™™ (2.5)

j=0

The above analysis, due to W. Kahan, can be extended to complex values of
x (ref. 2 and 3).

We wish to extend the analysis to include approximation of x by a floating
point representation, and approximation of each aj by a floating point represen-
tation.

That is x = R (1L + 8), a, =3, (1 + v.).
373 3
An alternative to (2.2) is then

by = (x(1+ 6y

1 } f; . } a, l } Y . / l + O .) (2 . 2 !)
Which becomes, analogous to (2.3) H

1+o n-1 1400, (1+6) (1+B.) .
- -1-j
p(2) -—bn< n>+ z b'{(l+3 >z-—] x} 2"
. 3 Y., T+v,
I+y 3=0 N j-1 (2.3")

Following the analysis to (2.4) yields

n-1 o.-Y, (6+B8,-v. ,+68.) .
= _ 1Yy i i-1 73 n-j
bn(lﬂn) (l+Yn) p (x) jio bj; (1 + yj) 1+Yj_1 } x

Thus the magnitude of the error, neglecting terms which are products of
two small terms is bounded by &, the rhs of the equation below:

|‘D]n -p®| <

n-1 ; n i
+b o |[+] T b, {a -y +y, -6-8, }x"] D ; -
v, P +]b o | |j=0 g logvydrg g -6-8 3] <5 €j=0 o5l I (2.5")

Typically the integer coefficients of p will be representable exactly as

45

floating point numbers, as will x (since x typically is an exact binary
fraction resulting from bisection of intervals with binary fraction end

points) so that § and the Yj will frequently be zero.

It may be argued that we have calculated &€ imprecisely, but the rhs of
(2.5') is a sum of positive terms and the error involved can be shown to be a
second order effect. Being pessimistic, we use 6€ rather than 5¢ as a

coefficient so as to be positive of bounding thie error.

Thus if we wish to find the sign of a polynomial p at a point x, we
evaluate p(X) and &, the error bound. If & z_lﬁ(ﬁ)l, then we do not know the sign
definitely. We can re-evaluate to higher precision: how much higher can be
estimated from equation (2.5). If p(x) = 0, we will have to use rational
arithmetic to prove it; thus if p(X) = 0, a direct test.for zero using rational
arithmetic would be needed.

3. IMPLEMENTATION

A first draft of this paper and a MACSYMA implementation were mentioned
in a talk at the SYMSAC conference, August, 1976 (ref. 4). Since that time,
Professor Loos was kind enough to supply an ALDES language version of the
program described in (ref. 1). After correcting a few typographical errors
presumably not present in the SAC~I program, it was possible to duplicate the
results of (ref. 1) fairly closely. We were not able to achieve exactly the
same numbers of evaluations, a situation which we believe arises because
the SAC~I program differs in some respects from the ALDES description. This
duplication was done by writing in MACSYMA's Algol-60-1like language, followed
by semi-automatic translation to LISP, followed by compilation to machine

language.

Certain programs were already in existence in MACSYMA, and did not have
to be programmed for this application; these included some involved with the
detection of floating point overflows. In step 4 below, one minor improvement
was achieved by a simple 4 line assembly language alteration. This amounted to
17 in total time. All other programming was done in higher level languages

such as LISP.

The MACSYMA implementation running on a DEC-KL-10 computer seems to run
faster than the SAC-I implementation on the UNIVAC 1110 by a factor of 3 or
more; this, using the most faithful recreation of the algorithm as seemed
appropriate. Computing a strict isolation list for the 5th Legendre polynomial,
L[5] required .74 seconds in SAC-I, .128 seconds in MACSYMA. TFor L[25] the
times were 35 and 11 seconds, respectively. An attempt to divorce these
numbers from storage allocation time may make the comparison more relevant: if
SAC-TI spends 1/3 of its time in such bookkeeping (a figure suggested by Prof.
Loos), and MACSYMA spent 5 of the 11 seconds in LISP "garbage collection" (gc)
by actual measurement, then the two systems compare at 23 and 6 seconds
respectively. We suspect that MACSYMA's host system has relatively faster

46

multiple-precision integer arithmetic, resulting in these shorter times.
Improvements to the Collins-Loos algorithm proceeded in several steps.
Step 1:

A1l computations of polynomial signs were attempted in single-precision
floating-point arithmetic, first. No exact values were computed except when
needed {equations 24 and 25 of (ref. 1)), when the error in the floating-point
evaluation was too high to determine the sign, or an exponent overflow occurred
during the sign computation. Note that some polynomials can never be evaluated
without overflow in single-precision because their coefficients are too large
to be expressed in the floating point range. For such cases we must use some
other technique: ekact rational arithmetic, approximate unlimited-exponent
arithmetic such as MACSYMA's "bigfloat" system, or some other algorithm
entirely. (The DEC-10 floating-point format specifies a 27-bit fraction, 8-bit
(excess 128) exponent, and 1-bit sign. Arithmetic is base 2 (not 8 or 16).)

For the same polynomial, L[25], 93.7% of the arithmetic could be done in
single-precision floating-point. The time was reduced from 11 seconds to about
7.2 (2.5 in ge). As noted in (ref. 1), these polynomials can be handled very
rapidly by a Sturm-sequence base root-finder, and in fact MACSYMA's took 7.5
seconds (4.3 in gc) on this polynomial..

Incidentally, the speed difference between SAC-I and MACSYMA on Sturm-—
sequences is also about 3:1. .

Step 2:

Computations were done in single-precision initially, then in multiple
precision when possible, otherwise using exact arithmetic. The software
multiple precision (ref.-4) removes the need to check for exponent overflow in
Horner's rule, but incurs a higher cost than the binary rational arithmetic
advocated by Collins and Loos, in some cases. (In fact, binary rational arith-
metic is very similar to floating point arithmetic, the difference being that
the "fraction" is of varying length, and is exact. TIf that length is small,
the floating-point arithmetic will be comparatively more expensive. For L[30],
the "longest'" binary rational endpoint of an isolating interval a/b is only 8
bits long in a and b, suggesting that floating point is at a disadvantage here.)

For L[25] again, 93.7% of the arithmetic could be done in single-
precision, another 4.6% in multiple-precision, and only 1.8% in exact arith-
metic. Considering the fact that L[25] cannot even be evaluated at its
computed root bound (16) without overflow in single-precision, this seems
fairly impressive.

Step 3:

It is possible to eliminate all exact computations within the scope of

u7

the algorithm by replacing the tangent construction in (ref. 1) by a procedure
suggested in the earlier draft of this paper requiring only evaluation with
rigorous error bounds. It was hoped that this removal of all exact arithmetic
would speed up the computation. The alternative of using essentially the same
tangent algorithm but with floating-point interval arithmetic, and when
necessary, exact arithmetic was more successful. Although it was possible to
reduce the number of exact evaluations to a very small number (e.g., 20 of some
1300 for L[301), some of the floating point multiple precision evaluations were
slower than exact evaluation at a binary-rational point.

It appears that single-precision floating-point interval arithmetic
nearly always is sufficient, in the tests suggested by Collins and Loos. Most
decisions can be made with this arithmetic and it is faster than multiple-
precision. 1In the table below we do not tabulate the multiple-precision
measurements. When an interval calculation is insufficiently precise for a
decision, we revert momentarily back to exact evaluation for isolating interval
computation for that polynomial derivative. A more elaborate algorithm would
use exact evaluation for redoing exactly the smallest computation that failed,
but we did not choose this technique, because of algorithm complexity.

Step 4:

Since so much of the computation is done in floating point, we gought to
decrease the time spent in arithmetic by open-compiling floating point arith-
metic in the one short program implementing Horner's rule.

This is easily done in MACLISP, but at the expense of loss of overflow
detection. TFour instructions were inserted in the compiler-generated LAP
(LISP Assembly Program) code for the Horner's. rule program to reset flags at
the beginning and at the end test (once) for overflow in any of the operatioms.
The coefficients in the polynomial and its derivatives were also converted to
floating point, once in the main loop. In case this could not be done because
of overflow, the original version of the algorithm was used for that polynomial
derivative under consideration. These changes sped up the run-time considera-
bly, to about 2.3 seconds for L[25] (plus gc). This is 10 times faster than
the original program running on the UNIVAC 1110, and 2.2 times faster than our-
own version of the Collins~Loos algorithm.

4. EMPIRICAL TESTS
The tests in table 1 are representative of a larger class of tests with
randomly generated polynomials, at least in the relative timing of the various

zero-finding programs being compared. Further comparisons, including addi-
tional work mentioned in section 5, should be forthcoming.

5. ANALYSIS

By comparison with (ref. 1), we may add only a few items of interest.

48

Since the "worst case' for aqur algorithm is similar to thHe Collins-Loos worst
case, we can only observe that empirically, most calculations were not 'worst
case'" and could be done in single—precision floating point. The major problem,
that of overflow, could be handled by more elaborate scaling procedures, such
as carrying an additional word for the exponent. We did not pursue this. The
time for finding all real zeros of a golynomial of degree n is likely to be on
the average, under our algorithm, 0(n°) by the same arguments as in (ref. 1).

We expect further progress in this area can be made in two directions:
Given the isolating intervals, it may be shown that a Newton-iteration's
convergence can be assured, using starting points developed from the strict
isolation list of the second derivative of the polynomial of interest; also,
the vast difference in time for finding these intervals versus numerically
approximating the roots is disturbing. Since the library programs for
polynomial zero approximation using standard numerical procedures are an order
of magnitude faster, it seems reasonable to obtain approximations in this way,
and then "prove" the locations of the zeros, and their multiplicities after
the fact. Bruce Char, a Berkeley graduate student has worked or this problem
using a simple technique described in reference 5. It is not clear that we
could compute even the one greatest-common~divisor calculation to remove
multiple roots in less time than we could find all isolating intervals for
the roots by the numerical methods currently available. Char's program
appears to be much faster than the functionally similar program described in
reference 6. TFor example, the roots of the 13th cyclotomic polynomial are
isolated by Pinkert's algorithm in 220 seconds on a PDP-10. Char's routine
takes less than 0.5 seconds on a PDP-10 (perhaps a model 4 times faster than
Pinkert's). Char's routine must sometimes defer to other methods such as
described here, where floating point yields to exact calculation, but this is
only when its internal checks demonstrate that the isolation of all complex
roots (currently, of a real polynomial) has not been achieved.

As the program currently exists, it is faster than Sturm sequence
calculations on most polynomials with few real roots, and thus should be used
in place of that zero-finder, except when it is known in advance that many
real zeros exist.. Since the numerical programs are so much faster, we expect
that the usefulness of this program is quite restricted, in terms of the
typical MACSYMA user, to those applications where misdiagnosis of a zero would
have special dire consequences in the course of a computation, and furthermore,
the polynomial is known in advance to be numerically difficult.

We are grateful to Prof. W. Kahan for numerous discussions on this topic.

49

50

6. REFERENCES

Collins, G. E.; and Loos, R.: Polynomial Real Root Isolation by
Differentiation. Proceedings of the 1976 ACM Symposium on Symbolic and
Algebraic Computation, Aug. 1976, pp. 15-25.

Adams, D. A.: A Stopping Criterion for Polynomial Root Finding. Commun.
ACM 10, no. 10, Oct. 1967, pp. 655-658.

Kahan, W.: Implementation of Algorithms, Parts I and II, Tech. Rep. 20,
Dept. of Computer Science, University of California (Berkeley), 1973.
(Available from DDC as AD 769 24.)

Fateman, R.: The MACSYMA 'Big Floating-Point' Arithmetic System.
Proceedings of the 1976 ACM Symposium on Symbolic. and Algebraic Computationm,
Aug. 1976, pp. 209-213.

Smith, B. T.: Error Bounds for Zeros of a Polynomial Based Upon
Gerschgorin's Theorems. J. Assoc. Comput. Mach., vol. 17, no. 4 (Oct.

1970), pp. 661-674.

Pinkert, J. R.: An Exact Method for Finding the Roots of a Complex
Polynomial. ACM Trans. on Math. Software, vol. 2, no. 4 (Dec. 1976),

pp. 351-363.

LS

Table 1: Time for Finding the Isolation Intervals for the nth Legendre Polynomial

n SAC-1 UNIVAC PDP-10 TRANSLATION FLOATING PQINT FLT, PT/INT. ARLTH

time* eevs time* eevs time* fevs eevs time Tevs €evs

5 0.5 39 0.131 46 0.129 45 7 0.083 49 3

10 2.2 149 0.529 163 0.485 162 9 0.273 166 5
15 5.6 320 1.44 357 1.15 356 12 0.597 360 8
20 11.9 555 3.11 598 2.16 597 16 1.03 601 - 12
25 23.2 877 6.29 945 4.14 944 63 2.81 856 117
30 ? ? 10.9 1326 7.57 1325 195 7.31 875 388

*Multiply time in seconds by 1.5 to include storage reclamation time. This ratio has been
estimated for SAC-1, and is typical for MACSYMA measurements (although actual time is highly
dependent on amount of system free storage). The column labelled "eevs' indicates number of exact
evaluations, "fevs" floating point evaluations.

The first column (n) is the degree. The next two columns are derived from reference 1. The
4th and 5th columns are times and counts for the PDP-10 translation of the Collins-Loos algorithm.
The 6,7, and 8 columns detail the results of using floating point evaluations, then exact evaluation.
The last three columns indicate the results when floating point, and floating point interval
arithmetic were used. The results in the last column could be improved for high degree polynomials

by attempting operations in floating point rather than giving up on a complete stage when an overflow
or insufficiently precise result is encountered.

FLOATING POINT ISOLATION OF ZEROS OF A REAL POLYNOMIAL VIA MACSYMA

Bruce W. Char
University of California, Berkeley

ABSTRACT

Given a square-free polynomial P of degree n with floating-point
representable (real) coefficients, we would like to find n disjoint
regions, each containing a root of P. Existing methods (ref. 1, 2) can
be slow because of their reliance upon rational arithmetic. We propose
a faster technique which uses only floating point arithmetic. A MACSYMA
function, BOUND, was written which when given such a polynomial P,
produces n complex discs C[i], each containing a true root of P. After
computing the discs, BOUND determines if they are a set of isolating
regions for the true roots of P (i.e. that no two of the C[i] overlap).
The routine uses the Jenkins-Traub zero-finding algorithm (ref. 3)—
MACSYMA s ALLROOTS function— to get approximations to the zeros, each
approximation becoming the center of a disc. The radius of each C[i] is
based upon error bound results by Adams (ref. U4) and Smith (ref. 5).

BOUND runs in time O(n2), with all calculations using the
standard floating~point arithmetic of the Decsystem-10. As a compiled
MACLISP routine, BOUND has been found to be 10 to 100 times faster than
rational arithmetic root-isolating techniques in SAC-1 on the Univac
1110 and the Decsystem-10 by Pinkert (ref. 1) and Collins and Akritas
(ref. 2), on test polynomials of degree 15 or less. It should be noted
however, that BOUND does not allow the user to specify the size of the
zero-containing regions nor is it guaranteed to find isolating regions
as the rational arithmetic methods are. It may also break down due to
underflow/overflow during intermediate computations on ill-conditioned
polynomials. A technique to extract the best of both the rational and
floating-point arithmetic approaches would be to use the above procedure
as a quick first attempt, reserving rational arithmetic for when the
initial method fails.

We anticipate several developments that will improve or extend
BOUND. Since the Jenkins-Traub algorithm and Adams’s and Smith’s
results work for polynomials with complex coefficients, the addition of
complex arithmetic to MACLISP will allow BOUND to be easily extended to
work in that general case. Because the quality of the zerofinding and
the radii of the C[i] are in part dependent on the precision of the
floating-point representation, BOUND would produce smaller regions if
implemented in double precision. Still being investigated are the
improvement of the existing error bounds, and development of methods
that can be applied to polynomials with non-rational coefficicnts.

53

54

REFERENCES

Pinkert, James R.: An Exact Method for Finding the Roots of a
Complex Polynomial. ACM Transactions on Mathematical Software,
vol. 2, no. 4, Dec. 1976, pp. 351-263.

Collins, George E.; and Akritas, Alkiviadis: Polynomial Real Root
Isolation Using Descarte’s Rule of Signs. Proceedings of the 1976
ACM Symposium on Symbolic and Algebraic Computation. Association
of Computing Machinery, 1976. pp. 272-275.

Jenkins, M.A.; and Traub, J.F.: Zeros of a Complex Polynomial.
Cormunications of the ACM, vol. 15, no. 2, Feb. 1972, pp. 97-99.

Adams, Duane A.: A Stopping Criterion for Polynomial Root Finding.
Communications of the ACM, vol. 10, no. 10, Oct. 1967, pp.
655-658.

Smith, Brian T.: Error Bounds for Zeros of a Polynomial Based Upon
Gerschgorin’s Theorems. Journal of the Association for Computing
Machinery, vol. 17, no. 4, Oct. 1970, pp. 661-674.

PRESERVING SPARSENESS IN MULTIVARIATE POLYNOMIAL FACTORIZATION

Paul S. Wang
Laboratory for Computer Science & Mathematics Department, MIT

INTRODUCTION

Working on heuristic programs for factoring polynomials over the integers, Claybrook has
come up with many fairly large multivariate polynomials. He has proposed ten of these.
polynomials as test cases for any algorithmic app-oach to factoring (ref.). Attempts were made to
factor these ten polynomials on MACSYMA (ref. 2). However it did not get very far with any of
the larger polynomials. At that time MACSYMA used an algorithm created by Wang and
Rothschild. This factoring algorithm has also been implemented for the symbolic manipulation
system, SCRATCHPAD (ref. 3) of IBM. A closer look at this old factoring algorithm (OFA) (ref.
4) revealed three problem areas, each of which contribute to losing sparseness and intermediate
expression growth. This study led to effective ways of avoiding these problems and actually to a
new factoring algorithm (NFA) (ref. 5), (ref 6).

The three problems are known as the extraneous factor problem, the leading coefficient
problem, and the bad-zero problem. These problems are examined separately in the following
three sections. Their causes and effects are set forth in detail. Then the ways to avoid or lessen
these problems are described.

The NFA has been implemented on MACSYMA. TIts performance on the ten polynomials
proposed by Claybrook is tabulated in Appendix A.

AVOIDING EXTRANEOUS FACTORS

Consider factoring U(x, Xy v) £ Zlx, Koy o x] which is primitive and squarefree. U is
reduced to a polynomial with only one variable by subsututmg selected integers for Xg, ... X, Let
U(x) U(x, aj, .., a,). Factors of U are constructzd from the irreducible factors of U(x) by a kind

of Hensel process.

An extraneous factor in this context is a univariate factor of U(x) over Z which does not
lead to an actual factor of U(x, .., x,), after multivariate p-adic construction. Consider, for example,

U(x,9,2) = - + 5tz %
If the evaluation y = z = 1 is made, then
U= LD =(e) m(x?-x+Dx+1).

Since U(x,9y,z) is irreducible over Z, neither of the two univariate factors can lead to a real factor

55

of U(x,9,2). They are all extraneous factors.

Obviously the cause of getting extraneous factors is unlucky points of evaluation. There
are three undesirable effects of having such factors in the factoring process. Firstly, a
combinatorial search for true factors has to be done at the end of the factoring procedure.
Secondly, the multivariate p-adic construction often has to be carried out all the way to reach the
bound for the total degree, A, of U(x, x,, .., x,) in %5, .., ¥, as opposed to reaching [A/r], on the

average, if all r factors are not extraneous. Thirdly, the extraneous factors grow in size and
density as they go through the multivariate construction process, quite uninhibited by the size or
density of the given polynomial.

To illustrate the growth phenomenon, let us continue the example where F (x) = x2-x+],
Go(x) =x+1and

U(x,y,2) = s y‘iz3 = Fo(x) Go(x) mod s
where s is the ideal (y-1, z-1).

The multivariate p-adic construction produces from F and G, polynomials F; and G; such
that
U=sFG; mod (5, 05)

where b is a prime or prime power bigger than the coefficient bound.
The first few F; and G, are shown below with 6=625.

Fy=2Z + X (Z+207Y - 1) + 2Y +x% + 1
G=Z-207Y + X +1

Fo =2Z + X(-Z +207Y - 1) + 211Y + X2 + 1
Go=Z-207Y + X +1

Fq = Z2 + X((207Y - 1)Z - 278Y2 + 207Y - 1)
+(2- 203Y)Z + 280Y2 « 2Y < X2 + 1

Gg = (1 - 207Y)Z + 278Y2 - 207Y + X + 1

Therefore it is clear that extraneous factors should be avoided if at all possible. The
approach taken here is to evaluate the given polynomial U(x, .., x,) at several different sets of

points {a,, .., a,} and to factor these resulting univariate images over Z. The set that gives the

minimum number of factors will be selected. This means that the requirement in OFA of getting
many zeroes and plus- or minus-one’s as substitution values has to be relaxed. For the purpose of

56

avoiding extraneous factors the conditions on the g;’s are: (1) degU(x) = degU(x,...x,) in x and
(2) Ox) is squarefree. If these a;'s are generated at random, then the probability of getting an
extraneous factor for any one set of a;'s is low.

To use several different substitutions and choose the best should virtually eliminate the
possibility of the occurrence of extraneous factors. Experiments on the machine indicate that two
to three different substitutions will almost always suffice. Furthermore, the different univariate
factorizations can be matched for degree compatibility among the factors. This, of course, provides
additional information on the number of true factors.

Although one would like to use random evaluations, one would also like to use integers that
are small in size so that the coefficients of u(x) are not unnecessarily large. In the program, the
substitution sets are generated randomly modulo a prime which is increased in size for each new
set.

SOLVING THE LEADING COEFFICIENT PROBLEM

The given polynomial U(x, ...,xt) can be written for a selected main variable, say x, in the
form

n
Uaan +...+V0

where Vi £ Z[xz, vy xt]. V, # 0 is the leading coefficient. In this paper, the term "leading

coefficient" always means that of the main variable, x. Some older factoring algorithms, for
example, (ref. 7), require a monic input. If V_ =1 then the change of variable x = y/V . is made

and the monic polynomial

o U(Y o, XZ----:Xt)

is factored. An inverse transformation is required on the irreducible factors thus obtained. This
approach is impractical because coefficients of W are much larger and denser than those of U. In
OFA no such monic transformation is made. Instead, a leading coefficient recovery scheme is used.

In the multivariate case, the leading coefficient problem is caused by V not being an
integer. Let f(x) = (a::2 +1), glx) = (x2+ x + 1) and g - f(x)g(x) over Z. In doing the multivariate p-
adic construction one computes the difference

R{x, .., x,) = flx)g(x) - Ulx, ..., xt)
If V4 is not an integer, then degree of R in x is 4, which is the degree of U in x. This means for

example one may get something like ¢(x) = 3x% + 2x as the coefficient for, say, the (xo - ag) term in
R. And the following congruence has to be solved

57

alx)f(x) + fglx) = 3%t + 2x. ()

If deg(c(x)) < deg(f) + deg(g), there exist unique a and 8 with deg(a) < deg(g) and deg(8) < deg(f)
satisfying af + 8g = c. However, this is not the case for equation (I). In fact, one has
-bf + (3x2 - 3x + B)g = c(x)
' (3x2 +3x - 2)f + (-3x + 2)g = c(x)

and an infinite number of linear combinations of these two equations. Because a(x) and 8(x) are
used to correct the factors and because the true factors and their homomorphic images are unique,
complications arise if « and § are nonunique. In OFA a unique selection is made based on the
condition deg(a) < deg(g), deg(8) < deg(f). However this choice can not be more appropriate than
the condition deg(a) < deg(g) and deg(f) < deg(f). In either case, the factors thus constructed are
only correct up to units in the underlying coefficient domain of truncated p-adic polynomials in
Xj,.x,. Therefore they often are much denser than necessary. This also explains why correct

coefficients have to be recovered after the p-adic construction.

Dealing with the leading coefficient problem in the context of the polynomial greatest
common divisor computation, Yun (ref. 8) suggested that the leading coefficients of the given
polynomial or an easily computible divisor of it be "imposed” on the univariate factors for p-adic
construction. The solution to the leading coefficient problem here is to "predetermine” the correct
leading coefficients of the factors of U(x,...,xt).

To do this, the leading coefficient of U(x, ...,xt), Vn, is factored over Z first. Let

e]_ e2 <]
Vn = F1 F2 Fkk

where F; are distinct irreducible polynomials in Z[x,,...x,]. Some of the F;'s may be integers. Let

us assume that V » an integer, for the case is trivial otherwise. Let F = F (a2, o t) The integers

{ay...a,} are chosen to satisfy the two conditions given in the prevnous sectlon and, for leading

coefficient distribution, the addmonal condition: For each nomntegral Fi F has at least one prime

divisor p; which does not divide any FJ j # i, or the content of U(x)

Let o be the content of ﬂ(x) and u(x) = Glo’. Now u(x) can be factored into distinct
irreducible factors over Z.
u(x) = ufx) .. ulx).
Assuming no extraneous factors, then U(x,. .X;) has r distinct irreducible factors G, (% AN LR
Let C. (xz, " t) be the leading coefficient of G, C =C, (a2, Y t) and G, (x @ 5oy t) = clul(x) where o
is some divisor of ¢. The following lemma allows one to determme Ci(x5,....%;) up to integer
multiples.

Lemma If there are no extraneous factors then, for all i,j and m, F]' divides C, if and only if ?'}‘
divides lc(ui)o'.

58

Proof If FMIC. then ?’m divides 8 =Ic{u.)e.. On the other hand, if F? does not divide C, then
] i 3 i | LA] i

W91 ~sk m R o-g . . ~m -
G, -F1 P with sj<m. Thus p'j does not divide C; which implies that Fj’ does not divice
lc(ul)a-.

The readers are referred to [6] for details of this leading coefficient distribution algorithm.
The process will be illustrated here by an example. Consider
2 2 2 2 2
UGk,y,2) = ((v =2)x+ 5 - 2°) * (4(y + 2)x'+ xyz - 1) * (yz"x+ 3xz + 2y),

where the factors are to be found. Factoring the leading coefficient of U(x,y,z) over Z gives
Vg = 22y220y + 2%y - 2)

Therefore, we have F=2, Fo=y, Fg=7, F4=y + z and Fg=y-z. The sets of integers {5,-12}, {-14.2}

and {-23,3} satisfy the three requirements and al} give three factors for U(x). Let us use y=5 and
z= -12. Thus Fl 2, Fg= 5, F3= -12, F4= -7 and Fg=17. Factoring U(x) = U(x,5,-12) one obtains

U(x) = 2ujugUq
where
u, = 1i9x? + 139,
ug = 2832 + 60x + I,
and ug = 360x2 - 18x + 5.

Now 119 = -?;PI'B gives C; = -F Fy = (22 - yz). Similarly, Co = 4(y + 2). And 2:360 = F~2'f-'132 implies

that Cq = yz2. These are correct leading coefficients of the true factors of u(x,9,z) up to integer
multiples.

COMBATTING THE BAD ZERO PROBLEM

From fJJ(x) = f(x)g(x) over Z with f(x) and g(x) relatively prime, the multivariate p-adic
construction algorithm of OFA computes the difference
R(x,...xt) = f(x)g(x) - U(x,...xt)

which is congruent to zero mod s, s = (¥9 - @y,..x; - @). Now R can be expressed in the form
R = c2(x)(x2 - a2) + cs(x)(xs - ag) + .+ ct(:'c)(xt -ap) + D(x,..,xt).

where the ¢;’s are the integers of evaluations and D =0 mod §_2. The goal is to obtain the

coefficients cz(x),...,ct(x). In other words, we neec the coefficients of the linear terms in the power

59

series expansion of R at xg = @o,...%; = @, In general, for the stage of the p-adic construction where

the residue is zero mod ' but nonzero mod si*l, the coefficients of the degree i terms in the power

series form of R will be needed. One way to do this is to substitute y; + a; for x; and work with

U(x,59 + @g....J; + ;) expanded. After the substitution, s becomes (y9.---9;) and obtaining

coefficients of terms in yo,..J, of any degree is very easy. Furthermore modulo operations with ;_i

are simply truncations. _

However substitution and expansion greatly increase the size and density of U. For instance,
a term xzéxgbxéc becomes (yg + a9)? (g + (13)b (94 +)" which has (a + 1)(6 + 1)(c + 1) terms when
expanded. The exponential growth is worst if all ¢;'s are not zero. Hence the name "bad-zero

problem.” This growth problem is so bad that the factoring program may run out of core for
moderately-sized polynomials.

Therefore, such substitution should not be made. If R =0 mod §i, and R &0 mod §M,
then the coefficient of (x2 - a2)‘, for example, can be obtained by the formula

1 / di' R (x,xz, e xt)
i! dx:'z' X,=a,
A typical term of degree i in R(x,.,x,) looks like
c(x) (x2—a2)ez... (xt- at)et, e]_+....+et = i. (2)

To obtain c(x) one uses the general formula

62 et
1 a ... d RGE, «ony X)) (3)

e, ! ... el dx dx
t

This method has no exponential expression growth problem. Polynomial differentiation
and evaluation being relatively inexpensive, it should be an improvement over the OFA which uses
substitution and expansion. Many polynomials that can not be factored by OFA because of storage
problems should be doable by this method. However, the number of possible terms in the form (2)
can be large, which means (3) may be computed many times.

In the worst case, i equals 4, which is the total degree of U(x,xz,...xt) in Xopn Xy The number

of possible terms in the form (2) with eg + .. + ¢, = 4 is then given by(h + t - 2 }which is of
-2 . , t -2
order o(A’ 2) if A is much larger than t. However if there are no extraneous factors and if the

leading coefficients of the factors are correctly determined, then (i) the maximum degree of any
xp &= 2,..,t in the factors are much less than & and (ii) the p-adic construction often need only be
carried out to i = [4/r] if there are r factors. Even so, experiments on the machine indicate that
many applications of formula (3) result in zero. [n other words, too often we are looking for terms

60

that are not there. The way to improve the situation is to do the p-adic construction variable-by-
variable instead of introducing all variables Xgpeeni¥y at ohce. Thus the actual factors of

U(x,xz,ag,...,at) are constructed first. From these factors in two variables, the true factors of
U(x,xg,%q,a4..,@,) are then constructed, etc. We shall not go into details here. Interested readers are

referred to [6] where a linearly convergent variable-by-variable parallel p-adic construction is
described in full detail.

The author wishes to thank Joel Moses for suggesting this paper and Miss Dianne Foster
for careful copying and editing.

REFERENCES

l. Claybrook, B.G. Factorization of Multivariate Polynomials Over the Integers. SIGSAM
Bulletin, Feb. 1976, p. 13.

2. The Mathlab Group: MACSYMA Reference Manual. Lab. for Comp. Sci., Massachusetts Inst.
Technol, Nov. 1975.

3. Griesmer, J.H. Jenks, D.R; and Yun, D.Y.Y. SCRATCHPAD Users’ Manual. IBM Research
Report, RA 70, June 1975.

4. Wang, P.S; and Rothschild, L.P.: Factoring Multivariate Polynomials Over the Integers. Math.
Comp., vol. 29, no. 131, July 1975, pp. 935-950.

5. Wang, P.S.: Factoring Larger Multivariate Polynomials. SIGSAM Bulletin, Nov. 1976.

6. Wang, P.S.: An Improved Mutltivariate Polynomial Factoring Algorithm. Submitted to Math.
Comp,, 1977.

7. Musser, D.R: Algorithms for Polynomial Factorization. PhD Thesis, Univ. of Wisconsin, Aug.-
1971.

8. Yun, D.Y.Y.. The Hensel Lemma in Algebraic Manipulation. PhD Thesis, Massachusetts Inst.
Technol, Nov. 1973.

61

—

APPENDIX A

Contained here are ten factoring examples done by MACSYMA using
the old factoring algorithm (OFA) (ref. 4) and the new factoring algorithm
(NFA) (ref. 6). These polynomials are proposed by Claybrook (ref. 1) who
factored them using a heuristic approach. To conserve space, these polynomials
are given in factored form below. The timing for OFA and NFA was done on a
DEC KL-10. Claybrook's timings are obtained from (ref. 1). He did his
timing on a Univac 1108. Times listed in Table 1 are in.seconds. A * indicates

running out of store.

FACTORING TIME COMPARISONS

Polynomial OFA NFA Claybrook
1 * 3.30 174.66
2 0.96 0.95 6.85
3 * 7.83 10.06
4 * 5.12 149.26
5 * 9.07 160.03
6 * 5.92 172.16
7 0.27 0.28 1.97
8 3.398 0.58 25.38
9 10.52 2.82 67.49
0 79.68 0.58 129.01
TABLE 1

The ten polynomials

4 3 2 2 4 5 6 2 3 5 3 2 3
1) W Z -XY Z -WUW XY -WU X Y (-XZ +YZ+X Y)

4 B 2 3 2 2 2 2 5 4 2 3 3
W Z +Y Z -U XY Z +XZ-XY-UX1Y

62

3 2
(2) (Z+Y+X=-3 (Z+Y+X-2)

2 16 4 12 12 3 3 2 15 20
(3) (-15Y Z +29U X Y Z +21X Z +3UWU Y)

31 12 26 18 14 2 2 21 2
(-2 W Z +Y ==Y +X Y +X +W)

4 2 2 3 2 2 3 2 2 2 3
(4) U XZ (BW Y Z +18U W XZ +15UZ +18U WUXY)

4 4 2 3 4 3 4 2 4 4 3
(446 UWNXY Z -25U W YZ +8UUWX Z -32U W Y Z

2 2 3 3 3 2 2 2 2 2 3 2
+48U X ¥ Z -12Y Z +2U UX Y -11UUWN X Y-4U X

2 2 2 2 2 2 2 2 2 2 2
(S) (BlU XZ+35WN Y +B6XY+40UX) (U W XY Z +26U UWXY Z

2 2 2 2 2 2 2 2 2 2 2 2
+12U0 XY Z +24U X YZ +43UXYZ +31UW YZ +8U W Z

2 2 2 2 2 2 2
+446 UMW Z +37U Y Z+41Y Z+12UX YZ+21U UXYZ+23XVYZ

2 2 2 2 2 2 2 2 2 2 2 22
+47 U W Z+13UU X Y +22XY +62U W Y +29 U Y +27Ud XY

2 2 2 2 2 2
+37UWH XZ+3BUWNXZ+43UX Y+26XY+3U WX +22U W)

3 2 3 3 3 2
B) XY (-13U W XYZ +UWU Z +646UXY +47XY)

3 3 3 2 3 3 3 3 3 2 3 3 2
(43 UX Y Z +36U W XYZ +16U X Y Z -29U XVY 2Z

2 2 2 2 2 2 3 3 2 2 3
-28U W X Y Z +36U UXY Z-48UWNX Y Z+5UUX Y

2 3 3 3 2 3 2 2 2 3 2
+36UUWN Y -9UNY -22UUX Y +46UX ¥ +8XY +31U U Y

2 2 3 2
-9U Y +45X -468U UX)

3
(7) (Z+Y+X-23)

63

3 3 2 3 2 3 2
(8) (3Z +2UZ-8Y -Y +45X) (W Z +47 XY ~-U)

4 5 5 3 & 2 4 2 3 4 2 4
(9) (-18X ¥ +22Y -26X Y -38X Y +29X Y -41 X Y +37X)

S 6 2 3 4
(X Y +11Y +35X Y-22X)

6 3 2 3 2 2 2 2 3
(18) X Y Z B3Z +2WZ-8XY +14U Y -Y +18X YY)

2 3 2 3 2 2
(-12W XYZ +UWU Z +3XY +29X-U)

64

ON THE EQUIVALENCE OF POLYNOMIAL
GCD AND SQUAREFREE FACTORIZATION PROBLEMS

David Y. Y. Yun
Mathematical Sciences Department

IBM Thomas J. Watson Research Center
Yorktown Heights, New York, 10598 USA

(Extended Abstract)

The importance of computing greatest common divisors (GCD’s) of polynomials has been

recognized more than a decade ago. All symbolic and algebraic computation systems must
provide some form of polynomial GCD capability in order to handle the fundamental extension
field of rational functions. The complexity of the GCD problem is aggravated by the fact that
most of these systems use an expanded canonical representation for polynomials, which is at its
worst, in terms of space requirement and comprehensibility, when the polynomials are multivari-
ate. Much work has been done to understand and improve algorithms for computing GCD’s over
the past decade (ref. 1, 2, 3). But the need fof a symbolic system to maintain relatively prime
numerators and denominators in a rational function continues to cause a large amount of
computer time to be spent computing GCD’s.

In 1974, Brown (ref. 4) paved the way to a ''factored'’ representation of rational
functions for symbolic systems. The idea is that if both the numerator and denominator are
factored into irreducible polynomials (primes in the polynomial domain) then the computation of
GCD’s simply involves finding the minimum powers of identical primes. Unfortunately, there are
two drawbacks to Brown’s approach. First, such a "factored" representation, though maintaining
the relatively prime property of numerator and denominator (with minimum effort), does not

result in canonically represented polynomials - that is, identical rational functions may appear

65

differently in the numerator and denominator polynomials. The other is, as Brown correctly
pointed out, factorization of polynomials into primes is too expensive an operation, so that his
"factored" representation can only look for "sharable factors" by inexpensive means and maintain
such partially factored forms. Consequently, equivalence of rational functions in such a repre-
sentation can only be recognized by subtractions and, in most cases, expansions as well as GCD
computations. Even though some symbolic systems have successfully utilized the "factored"
representation (mainly in terms of the ability to comprehend expressions), it is not clear what is
the actual trade-off between the effort for GCD computations that is presumably saved and the
sacrifice of canonical form with the possible gain of maintaining some ''sharable"” factors.

In 1976, Yun published an improved algorithm for finding the "squarefree' factorization
of a polynomial (ref. 5). By definition, a polynomial is said to be squarefree if it has nd divisor
(or factor) of multiplicity greater than 1. Thus, the problem of finding the squarefree
factorization (abbreviated as SQFR) is that of finding polynomials

P, Py, ..., P such that P = P,!P,2 ...P/ K, where P, # 1, each P, is squarefree, and

ged(P;, P)=1foralli#j<k
Although the squarefree factorization is not quite the complete factorization of polynomials into
primes, it is a canonical form for polynomials, as Yun pointed out. In fact, a result of Knuth
indicates that the probability of the squarefree factorization being the same as the complete
factorization for an arbitrary polynomial is approximately 4/5. Such a result further increases the
usefulness of a squarefree representation for polynomials which has no parallel in the case of
integers (i.e., given an integer, there is no known algorithm that will produce its squarefree
factorization without finding its prime factorization first). On the other hand, squarefree
factorization constitutes an essential step in polynomial factorization (ref. 6, 7, 8) , partial
fraction decomposition of rational functions (ref. 9), and rational function integration (ref. 10, 11,

12).

66

The mathematical theory for the new algorithm is given by the following three results (ref.
5):
Fundamental Theorem of Squarefree Decomposition:

If P(x) is a primitive polynomial in D[x] where D is a field of characteristic 0 and

the squarefree factorization of P is P;P,2...P.k, then gcd(P,P’) = P,P;2...P k2,
Corollary I: Let D = ged(P,P’), then P’/D - (P/D) =P, ilf[2 (i-1) P; jI,"Ii P;.
Corollary 2: ged(P/D, P’/D - (P/D)’) = P;.
Based on these results, an algorithm for finding the squarefree factorization of a polynomial P(x)
can be given. Let (G, A*, B*) <« gcd(A,B) denote the computation of GCD of A and B and
assignment of the GCDto G, A/G to A*,and B/G to B*.
Yun’s algorithm (ref. 5) is as follows:

(W, Cy, D)) « gcd(P,P');
For i =1, step 1, until C; =1,

Do (P;, C;, 1, Dj; 1) < ged(C,, D; - C).
Yun’s 1976 paper got as far as comparing three algorithms for squarefree factorization and
showing the superiority of the new algorithm both experimentally and by algorithmic analysis of
certain models for computation. However, there was no attempt to derive any specific expression
for the computing cost bound nor any reducibility result. In this paper, we will show that the
total computing cost of the squarefree factorization of a polynomial with degree n (i.e. SQFR(n))
is bounded by and, in fact, equal to 2*GCD(n). The crucial observation is that the inputs to calls
of the GCD function in Yun’s new algorithm are more "'balanced" in terms of degrees than those
algorithms previously proposed. Since the reduction of squarefree factorization problem to GCD
problem hinges on the use of a two-argument function (GCD) to do the job of a one-argument
function (SQFR), Fhe balancing of degrees becomes especially important. (The other algorithms
for squarefree factorization turn out to call on GCD functions with one input far more dominant

in degree than the other.)

67

Thus, we will show that a closer re-examination of Yun’s 1976 paper reveals the reduci-
bility of SQFR to GCD. The natural question that follows is whether GCD is reducible to SQFR.
That is answered affirmatively by the other half of this paper and the derivation will actually
suggest an algorithm for computing GCD’s when input polynomials are already represented by
their SQFR form.

The fundamental theorem for this reduction process is
Theorem: For squarefree polynomials A and B,

gcd(A,B) = A*B/sqfrpt(A*B)

where the squarefree part of P = sqfrpt(P) = PP,...P,

if P = P,1P,2...P K, hence, a by-product of sqfr(P).

This theorem, which is reminiscent to the relationship between GCD and LCM, suggests an
obvious way of reducing GCD to SQFR. That is, for F = F|!F,2..F K and G = G,!G,2..G_ ™,
compute ged(F;, Gj) for all i and j by the method of the theorem since each F; and Gj is square-
free. (Note that this type of "cross GCDing" is also necessary for the "factored" representation
of Brown.) Unfortunately, there are k*m GCD’s required which forces k and m into the
computing cost expression and affects the reduction process of GCD to SQFR — we are looking
for strong reducibility of GCD to SQFR with constant cost for transformation of problems, as in
the reduction of SQFR to GCD case where the constant is 2.

A corollary of the theorem provides a hint for a different approach.

Corollary: For polynomials F and G, let FS and GS denote sqfrpt(F) and sqfrpt(G) respectively.

Then sqfrpt(gcd(F,G)) = gcd(FS,GS) = FS*GS/sqfrpt(FS*GS)

Thus, a polynomial D;=sqfrpt(gcd(F,G)) can be computed, according to the corollary, from
sqfrpt(F) = F|F,...F, and sqfrpt(G) = G{G;...G,.
Similarly, we compute Dj = gcd(Fj...Fk, Gj...Gm) according to the corollary for all j up to

min(k,l). Finally, it will be shown that gcd(F,G) = D|D;...Di0k m)-

68

The important technique in this case is "triangularization'. As opposed to the k*m cross
GCD’s, squarefree pérts of F and G are peeled off successively and collectively. The total cost of
computing the D’s, hence the GCD, via the method of the corollary adds up to less than |
6*SQFR(n), where the degrees of F and G are assumed to be n. In other words, GCD(n)
problem is strongly reducible to SQFR(n) with a multiplying constant of 6.

If F and G are already in SQFR form, then the cost for computing their GCD is bounded
by 4*SQFR(n), i.e., the cost for computing GCD of polynomials in SQFR form is not more than
twice that of putting them in SQFR form originally. Another potential advantage of such a GCD
algorithm is that the computing cost will be generally dependent on the minimum of the degrees
of the input polynomials when the degrees are not equal, mainly because the computation goes on
only until min(k,m) is reached. Previously, all GCD algorithms have shown a strong dependence
on the maximum of the degrees, which is the cause of the need to "balance" the inputs of calls to
GCD functions, as noted earlier.

At this point, we can draw the following conclusion
Theorem: GCD(n) problem is equivalent to SQFR(n) problem.

It should be noted that the derivation of above results are based on the assumptions that

a2 M(n) > M(an) > a M(n) foralla > 1
where M(n) stands for the cost for multiplying polynomials of degree n (ref. 13, p. 280). Let
X(n) denote M(n), GCD(n), or SQFR(n). Then the satisfiability of the following condition has
also been assumed:

éil X(n) < X(Ekl n;) for any n; in N.

We point out, however, this condition is easily satisfied by the above operation costs, so that it

represents no severe restriction on our resuit.

69

10.

11.

12.

13.

70

REFERENCES

Brown, W. S.: On Euclid’s Algorithm and the Computation of Polynomial Greatest Common
Divisor. JACM, vol. 18, no. 4, Oct. 1971, pp 478-504.

Moses, J.; and Yun, D. Y. Y.: The EZ GCD Algorithm. Proceedings of ACM Annual
Conference, Aug. 1973, Atlanta, pp. 159-166.

Moenck, R.: Fast Computation of GCD’s. Proceedings of 5th Annual ACM Symposium on
Theory of Computing, 1973, 142-151.

Brown, W. S.: On Computing with Factored Rational Expressions. Proceedings of EURO-
SAM ’74, also SIGSAM Bulletin No. 31, Aug. 1974, pp. 26-34.

Yun, D. Y. Y.: On Square-free Decomposition Algorithms. Proceedings of 1976 ACM
Sympesium on Symbolic and Algebraic Computation, R. D. Jenks, ed., Aug. 1976, pp. 26-35.

Knuth, D.: The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-
Wesley, Reading, Mass., 1969.

Musser, D. R.: Algorithms for Polynomial Factorization, Ph. D. Thesis, C. S. Dept., Univ. of
Wisconsin, August 1971.

Wang, P. S.; and Rothschild, L. P.: Factoring Multivariate Polynomials Over the Integers.
Mathematica of Computation, Vol. 29, No. 131, July 1975, pp. 1035-950.

Kung, H. T.; and Tong, D. M.: Fast Algorithms for Partial Fraction Decomposition. Dept. of
Computer Science Report, Carnegie-Mellon University, January 1976.

Moses, J.: Symbolic Integration: The -Stormy Decade. Proceedings of the Second Symposium
on Symbolic and Algebraic Manipulation, S. R. Petrick, ed., March 1971, 427-440.

Horowitz, E.: Algorithms for Partial Fraction Decomposition and Rational Function Integra-
tion. Proceedings of the Second Symposium on Symbolic and Algebraic Manipulation, S. R.
Petrick, ed., March 1971, 441-457.

Yun, D. Y. Y.: Fast Algorithm For Rational Function Integration. Proceedings of IFIP
Congress 77, Aug. 1977, Toronto, Canada.

Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D.: The Design and Analysis of Computer
Algorithms, Addison- Wesley, Mass., 1974.

*
DIFFERENTTAL FORM ANALYSTIS USING MACSYMA

Hugo D. Wahlquist
Jet Propulsion Laboratory
California Institute of Technology

ABSTRACT

The calculus of exterior differential forms has increasing applications in
several areas of applied mathematics and theoretical physics. The formalism
was developed initially by E. Cartan (ref. 1) for his own research in differ-
ential geometry. Modernized and updated by present day mathematicians, it has
become a standard tool for mathematical work in the differential geometry of
manifolds (refs. 2 and 3).

With that genesis it is not surprising that the techniques of differen-
tial forms are useful in general relativity (ref. 4). Many protlems in rela-
tivity can be concisely expressed and efficiently solved using differential
forms together with Cartan's "method of moving frames.'" The calculational
effort involved is often significantly reduced compared to the standard tensor
formalism. Other areas of theoretical physics in which differential forms have
utility, as well as elegance, include Hamiltonian mechanics, statistical
mechanics, and the calculus of variations (refs. 5 and 6).

In recent years the geometric techniques of exterior calculus developed
(again by Cartan) for systems of partial differential equations (refs. 1 and 7)
have been applied to physically important nonlinear equations. Many results
on transformation properties, invariance groups, and conservation laws can be
derived directly and systematically using these methods (ref. 8). When the
methods are applied to nonlinear equations which exhibit the recently
discovered "soliton'" phenomenon (the Korteweg-de Vries equation, for instance),
a beautiful algebraic structure associated with the equations is revealed.
These so-called '"prolongation structures,' which are essentially "free'" Lie
algebras, can be shown to lead directly to solution methods such as the
inverse scattering method, Biacklund transformations, and exact nonlinear super-
position principles (ref. 9). The prolongation structures also have a geome-
trical interpretation in terms of affine connections over solution manifolds
(ref. 10). From this viewpoint they appear to be closely related to non-
linear, gauge-invariant, field theories; the Yang-Mills fields.

This paper presents the results of one phase of research carried out at the
Jet Propulsion Laboratory, California Institute of Technology, under Contract
No. NAS7-100, sponsored by the National Aeronautics and Space Administration.

‘a

The utility of differential forms is not limited to proving abstract
general theorems; they also provide an efficient calculational tool for
deriving particular results in specific problems (ref. 11). As in other areas
of analysis, the computer can be of great help in carrying out the actual
manipulations. Exterior calculus has been implemented in P1/1-FORMAC by
F. Ernst (ref. 12). The major purpose of his programs was to facilitate the
use of differential forms in general relativity, although the programs are not
restricted to that application. Recently, we have written a small file of
routines in MACSYMA which we are using to perform differential form calcula-
tions in the theory of nonlinear differential equations. These routines
accomplish only partial implementation; in fact, the main reason for this paper
is to advertise the need for implementing exterior calculus in MACSYMA which
clearly has the facilities to do the complete job. My hope is to provoke
enough interest in someone sufficiently knowledgeable to do the job right.

Algebraically, the differential forms constitute a Grassman algebra over
the cotangent space of a manifold involving the noncommutative exterior product
operation, usually denoted by the wedge symbol, A. The exterior derivative, d,
'is the unique operation of differentiation leading from one differential form
to another. Its application to a form of rank p results in a form of rank

p + 1.

When in addition the dual tangent vectors of the manifold are introduced,
new invariant algebraic and derivative operations can be defined: contraction
between vectors and forms, and Lie derivatives of both forms and vectors.

The paper describes the MACSYMA file which has been written to perform
these operations and discusses the improvements and additions which are needed
to accomplish a complete and efficient implementation. Examples of differen-
tial form calculations are also displayed.

72

REFERENCES

Cartan, E., "Les systemes differentials exteérieurs et leurs applications
géométrique,'" Hermann, Paris, 1945. This is the principal source.

Hermann, R., Interdisciplinary Mathematics, Vols. I-XI1, Math. Sci. Press,
Brookline, MA, 1976. Much of the classical work on differential geo-
metry, partial differential equations, Lie groups, etc. which is
important for applications is reconstructed in these volumes in modern
mathematical language and notation, often employing exterior calculus.

Choquet-Bruhat, Y., "Géométrie différentielle et systémes extérieurs,"
Dunod, Paris, 1968. A thorough, fairly rigorous, well-balanced coverage
of exterior calculus.

Israel, W., "Differential forms in general relativity," Comm. Dublin Inst.
Adv. Studies Ser. A, No. 19, 1970. The utility of differential forms in
general relativity is convincingly demonstrated herein.

Flanders, H., Differential Forms, Academic Press, New York, 1963;
D. Lovelock, and H. Rund, Tensors, Differential Forms, and Varia-
tional Principles, Wiley, New York, 1975. These are both excel-
lent introductions to the subject of differential forms with
applications to Riemannian geometry, variational calculus, and
other areas of theoretical physics.

Estabrook, ¥. B. and Wahlquist, H. D., "The geometric approach to sets of
ordinary differential equations and Hamiltonian dynamics,'" SIAM Review
17, No. 2, 201-220, 1975. A review article treating Hamiltonian theory
in the language of differential forms.

Slebodzinski, W., Exterior Forms and Applications, Polish Scientific
Publ., Warsaw, 1970. A fairly complete summary of Cartan's theory of
partial differential systems is included. 1In English translation.

Harrison, B. K. and Estabrook, F. B., "Geometric approach to invariance
groups and solutions of partial differential systems," J. Math. Phys.
12, 653-666, 1971. The Lie derivative of the differential ideal of
forms is used to systematize invariance groups and similarity solutions
of partial differential equations.

Wahlquist, H. D. and Estabrook, F. B., "Prolongation structures of non-
linear evolution equations," J. Math. Phys. 16, 1-7, 1975. Also,
Estabrook, F. B. and Wahlquist, H. D., II, J. Math. Phys. 17, 1293-
1297, 1976. Two papers with identical titles which introduce the
concept of prolongation structures, derive them for particular non-
linear soliton equations, and relate them to solution methods.

73

10. Hermann, R., 'The pseudopotentials of Estabrook and Wahlquist, the geo-
metry of solitons, and the theory of connections," Phys. Rev. Lett. 36,
835, 1975. 1In which the geometric significance of prolongation struc-
tures is revealed.

11. Estabrook, F. B., "Some o0ld and new techniques for the practical use of
exterior differential forms," in Backlund Transformations, No. 515,
Springer Lecture Notes in Mathematics, p. 136-161, Ed. R. M. Miura,
Springer-Verlag, New York, 1976. A concise discussion of forms and
their uses together with properties, identities, and calculational
techniques.

12. Ernst, F., "Manipulation of differential forms on a digital computer,"
Proceedings of the Relativity Seminar, PORS IIT-10, Illinois Institute
of Technology, Chicago, 1969. A documentation of the PL/I1-FORMAC
implementation of exterior calculus.

T4

INDICIAL TENSOR MANIPULATION ON MACSYMA

Richard A. Bogen
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 82139

Richard Paveile

Logicon, Inc.

Har tuell Avenue
Lexington, Massachusetts 82173

ABSTRACT

We describe a new computationa! tool for physical calculations. It is the first
computer system capable of performing indicial tensor calculus{as opposed to
component tensor calculus). [t is nou operational on the symbolic manipulation
system MACSYMA. UWe outline the capabilities of the system and describe some of
the physical problems we have considered as well as others we are examining at

this time.

INTRODUCTION
Symbolic or algebraic computer manipulation systems are finding a grouing
role in physics by performing compiex calculations without error. While symbo-
lic manipulation has been used in Quantum Electrodynamics, Quantum Mechanics,
Celestial Mechanics and gravitation theories (ref.l) , it is in the gravitation
theories uhere these systems are now becoming essential tools. Symbolic manipu-~

lation giQea one the ability to guess at exact sclutions of gravitational field

equations or use approximation procedures to find them (ref.2}. Symbolic calcu-

fation also provides one the freedom to consider lengthy problems whose solu-
tion by hand would be error prone and could take months. A recent paper revieus
some of the problems in gravitation which have been studied using symbolic

manipulation as well as the computing systems which are nou in use (ref.3).

75

The usual symbolic computing system for gravitation calculations operates
in the follouwing manner: The user often uishes to study a particular metric and
inputs each specific component relative to a coordinate system or noncoordinate
frame. The sgstém then computes the geometric objects or differential equations
of interest. There are many types of relativistic calculations which computér
systems are performing (ref.3). We have had such a sustem running on,HACSYHA
since 1973. In 1974, however, ue began construction of a novel package for
performing actual indicial tensor analysis as opposed_to the usual component
tensor calculus. The purpose of this paper is to describe the current capabili-
ties of our indicial tensor manipulation system, ITHS. MWe shall also describe

some of the problems we have solved as uell as others of current ir:terest.

INDICIAL TENSOR MANIPULATIGN
PjKe.

We represent a tensor T as a function of . two arguments which are the
lists of indices. A list iasﬁAéSYHA is a sequence of its elements uhich are
separated by commas énd enclosed by square brackets. Thus ue write the above
tensor as'T([r,s....],[i,j,k,..]) While a scalar is represented by a function
Wwith empty lists such as P{{l,(3).

In ITHMS ordinary differentiation of a tensor with respect to a coordinate
xk causes the k index to be appended onto the list(tensor) as an additional
argument to the tensor function. Thus we represent T" as T(Li,}),]1,K).
Since ordinary differentiation is commutative, multi;:;kordinary derivative
indices are sorted in alphanumeric order causing expressions such as
T, j1, 00 ,k,n,m) - TCLi,jl, 0,mk,n) to vanish automatically as part of
MACSYMA's simplification routine. We may also declare a tensor independent

of coordinates and this causes its ordinary derivative to vanish., This feature

is employed in weak field approximations and algebraically degenerate metrics .

76

where. the Lorentz metric appears as a function of the metric tensor. We may
also identifg a metric by entering the command ’’'metric(g)’’ (all ITMS

~ function names and defiﬁitions are written with double quotes in this text)
which enables MACSYMA to raise and lowsr indices o%-a tensor with respect to

**contract’’

the tensor named g. With such a definition we may employ the
command so that the statement "contract(g([i.j].[])*g([],[j.k]))" returns
**delta(lil, [k])*'. The Kronecker delta as well as the generalized Kronecker
delta are also used in the contract routine for index substitution. The
function ""delta(l]l,{l1})’’ is the dimension of the ménifold Wwith a default of 4.
In contrast to hand calculations, one of the difficulties faced with indi-

cial tensor manipulation is the ease With which one may create expressions with
more than one covariant and contravariant dummy index with the same symbol. To
avoid the error we employ an algorithm in 1TMS uhereby dummy indices are aluays
represented by the set ¥1,%2,...%n. Whenever a dummy index is genérated. a
counter is increased by one and appended onto the % symbol to form a new index.
For a given metric the calculation of a curvature tensor may cause the counter
to reach a large number. Houwever, expressions Wwith multiple dummy indices are
avoided, Clearly, in such a calculation, many of the terms are capable of being
combined, differing only in the index number. Simplification of this kind ig
carried out by expanding the expression and applying the function ’’rename’’
which resets the counter to zero and renames dummg indices in each of the
expanded terms. The resulting expression is then the same order of complexity
as one would find bg'hand calcuiation.

| Multiple covariant differentiation of any tensor density is based upon an
algorithm described elseuhere (ref.4). The resultant expression may be expres-
sed in terms of Christoffel symbols or evaluated for a particular indicial

metric if one has been defined.

7

Other features we have implemented include a function called '’'shon’’
which displays any indexed object with its appropriate covariant and contrav-
ariant indicesf A function calied '"nterms’’ uill tell the user the upper limit
to the number of terms an expression would Eave if fully expanded. This is use-
- ful for avoiding the manipulation of an expression uhich is so large that the
system is not capable of simplifying it. If too large the user may use ITHMS to
simplify the subexpressfons and combine them later or decide a new approach to
the calculation is appropriate. A funétion called '"defcon’’ allows one to im-
pose various types of contraction properties such as ;hether a given vector is

'*geodesic’’ evaluates

null or uhether a given tensor is trace free. A function
expressions in coordinate systems in which undifferentiated Christoffel symbols
are set to zero. ITMS has pattern matching routines to enable the user to apply
various conditions on differentiated tensors such as the Lorentz conditions.
Anﬁther feature is the ability of ITHS to perform differentiation with respect
to the metric tensor and its derivatives. This enables ITMS to compute field
equations for alternative relativietic Lagrangians (ref.5). [ITMS also manip-
‘ulates the numerical tensor densities,

To exemplify the speed and ability of the system we can carry out
vgfification of the Bianchi identity (see any text on relativity) given by
F!'VJ (ke = @ by expanding the Riemann tensor in terms of Christoffel symbols
and employing the.simblification routines of I1TMS in 4 seconds cpu time. Here
the parentheses imply symmetrization of enclosed indices, the semiéqlon is
covariant differentiation and the hook denotes anti—sgmme?fic indices. As
another example, the Balakram identity (ref.B) which is R'VJ - @ can be
verified in 48 seconds cpu time. kit

Mtany calculations in gravitation are straightforward with ITHS., The defin-

itions of the Christoffel symbols, curvature tensor, and various geometrical

78

objects are programmed in the system as functions of the metric tensor or
other geometrical objects. For example we may define the metric tensor and its

inverse by commands in ITHS notation such as

CDHPUNENTS(g([i.j],[]). ECLi, j3,)+ (2oH (i, j1, D) -ECLi, jI, [D)xH((], (1))
COMPONENTS (g (03, (i, j)), EC(), [, j1)-Lx(2H (I3, UF, jR)+ECTD, Ui, j))xHID, (1))

for the weak field metric approximation defined by the metric tensor components

ij i) ij i :
g =E +Lx(2xH - H:E) . g =E -Lx(2xH - HsE) (1)
i ij ij ij

Here E' is the Lorentz metric, H" is an arbitrary tensor field, H its trace
and L ;i an infinitesimal expansi;; parameter(ref.7). In this case it is usual
to impose the Lorentz condition HlJ - @. For such a metric we can use ITHS
to compute the first order Riemann ;;nsor. Einstein tensor and Weyl tensor in
less than 18 seconds cpu time with the implementation of the Lorentz condition.
While the full manipulative ability of the ITMS system has not been rigorously
tested we have had occasion to compute Einstein tensors with fourth ordér
metrics replacing the right hand side of {1). These calculations involved the
manipulation of expressions With more than 1800 terms uhich were contracted and
simplified. Thus the memory space available to ITMS is seen to be quite large.
One of the Iaége calculations used to test ITMS involved the study of the

gravitation theories of H. Yilmaz. To third order, Yilmaz’ metric is (ref.8)

2 2. a
g =E 4+ 2¢x(HeE - 2xH)} + 2o x(H 2E - 4xHsH + 4xH H)
ij ij ij Pj ij ij ia j
: (2)
8 3 3 2 a b a
+ - x(H »E - 6xH xH +12%HxH xH =~ 8«H H H)

3 ij ij ia j aib j

79

ij
where H is the trace of H which satisfies the Lorentz condition H = B,
ij _ v]
ITMS uwas used to compute the third order Einstein tensor G for (2) and
ab

subtract from it the third order tensor d’Alembertian of H . These calcula-
ab

tions with ITMS indicate the theory is valid to first order, but when carried
to second order difficulties arise which invalidate the theory to all orders.
These results are presented elsewhere (ref.9).

An analysis which is ideally suited to I1TMS is the study of various
metric gravitational theories by using algebraically special metrics (ref.18)

where the metric takes the form

g =E -2xml L (3)
i i P

uhere m is constant, E.' is the Lorentz metric and L‘ is a null vector with
respect to both g9 anéJE-.. For the metric (3) onelalso Has a number of dif-
ferential ident?t;és uhicéjarise from the differentiation of the identity for
nul! vectors, LlL = @. Implementing these identities we can compute the Ricci

tensor for (3) in'39 seconds cpu time and verify the well knoun expressions for
the Einstein vacuum field equations in these coordinates (ref.18). MWe are nou
attempting to find algebraically special solutions for the Mansouri-Chang
equations (ref.11) in addition to the Kilmister-Yang equations (ref.12) which
have been discussed in particular coordinate systems (ref.13).

Conformally flat metrics of the form

G = PxE (4)
ij ij
where P is a scalar and E is the Lorentz metric represent ideal candidates
ij .
for ITMS since simplifications become extensive. For the metric (4) we have

examined the class of Riemannian invariants defined in terms of the generalized

80

Kronecker delta by

i i i i Jadrees]
3

JZm—l'l

172 j3j4 2m i1i2 2m

These invariants are discussed in quantum gravity as they satisfy the Gauss-
Bonnet theorem in 2m dimensional spaces. Using ITMS we have expressed the
general term L(m) as an ordinary divergence in conformally flat space-times of
2m dimensions and thereby found alternate expressions for the identities of
Horndeski (ref.l4).

One of our hopes is that ITMS will also have the ability to carry out
needed investigations in differential geometry. Many identities in Riemannian
geometry are of great importance in physics and new identities will presumably
be discovered when computer systems can take the enormous drudgery out of this
particular kind of calculation. The difficulty faced is the construction of an
algorithm for the complicated symmetry properties which one encounters. We are
presently attempting to construct an appropriate algorithm which will permit
tensorial manipulations of this type.

A somewhat primitive feature which ITMS currently possesses is the indi-
cial tensor manipulation of non-symmetric metrics. Given a non-symmetric metric
and affinity as in the Einstein-Straus theory (ref.l15) we can employ ITMS to
compute the various geometrical tensors. However, we have not yet implemented
appropriate simplification rodtines.

While we have stressed the relativistic and differential geometrical

aspects of ITMS, the package has been used by others and we believe ITNS, with

minor modifications, will find applications in many branches of physics.

81

APPENDIX

Below we exhibit the output for the meak field approximation in General
Relativity(ref.7), (Ell) and (E12) are the covariant and contravarnant metric
tensors to first order in L. The previous commands (C5)-(C8) define the metric
tensor to be G, declare the Lorentz metric E to be constant with respect to
ordinary differentiation and specify its inner product. (E16) demonstrates that
the contraction of the inner product of G with itself, tq first order, is equal
to the Kronecker delta as expected. The first order Ricci tensor is displayed
by (E28). (E21l} is the same tensor after implementation of the Lorentz condi-
tion. Contracting the Ricci tensor with the metric we obtain the scalar curva-
iure displayed in (E23). We then construct the contravariant Einstein tensor
displayed in (E25). A convenient feature of ITMS is seen in (C26) uhere the
metric is redefined as E to enable us to display the ordinary d'Alembertian in
the first term of (E28). Then redefining the metric as G we take the covariant

divergence of the Einstein tensor to find it vanishes identically as expected.

(C5) DECLARE(E,CONSTANTjS
(C6) DEFCON(E)S

(C7) DEFCQN(E.E.DELTA)S
(C8) METRIC(G)S

(C9) COMPONENTSI(G(LI,J1, [1),2«(P ({1, D)ELLL,J], [1)-24P((1,J], (1)) %L
+E((1,J1,01))8

(C18) COMPONENTS(G(U1, [1,J1),-2x(P(11, [1)E(TI, I, Jn-2xe (0, I, J]))*L
+£(0, 1,J1))8

(C1l) SHOW(G(II,J1,1Ns

(E11) 2 (PE -2P JL+E
IJ IJd IJ

82

(c12)
(E12)
(C13)
(C14)
(C15)
(C16)
(E16)

(C17)
(C18)
(C19)
(C20)
(E20)

(C21)
(E21)

(C22)
{C23)
(E23)

(C24)

SHOW(G (), [1,J1))8

E -2 ((PE -2P)L
RATVARS (L) $
RATUEIGHT(L,1)8
RATUTLVL:1$
SHUN(CUNTRACT(RATEXPAND(G([I.J].[])*G(é].[J.K]))f)t

DELTA
I
RIEMANN([S,U,NI, [IN]) 8
D17,EVALS
RICCI :CONTRACT (RATEXPAND (D18)) 8
SHOW (RICCI) 8
%1 Xl w2 %1 %2
-2LP +2E LP -P E LE
U, %1 S SU,% %2 L% %2 S U
%
-2LP
S,%1 U
SHOW (LORENTZ (RICCI)) 8
% %2 % %2
2E LP -P E LE
S UYL %2 L% %2 S U

SC: CONTRACT (RATEXPAND (RICCI»G((1, [S,U1))) 8

SHOW(SC) $
%1 %2 %1 %2
~-4P L-2P E L
W%l %2 ' %1 %2

EINSTEIN: CONTRACT (RATEXPAND ((RICCI - SCaG((S,Ul, [1)/2)xG ({1, [1,S])%
G, J,ulns

83

(C25)
(E25)

(C26)
(C27)
(C28)
(E28)

(C29)
(C30)
(C31)
(C32)
(C33)
(E33)

84

SHOW (EINSTEIN) $ '
%2 1IJ W2 1J %11 %2 J

2E P L+2P E L-2°P E L
y51 %2 W2l %2 v ol %2
% J %2 1
-2P E L
, %1 %2
METRIC(E) S

EINSTEIN:MAKEBOX (EINSTEIN) 8

SHOW (EINSTEIN) 8
IJ %1 %2 1J %11 %2 J %1 J %2 1
2 0P L+2P E L-2P E L-2P E L
y %1 %2 y %1 %2 v 41 %2
METRIC(G) S

COVDIFF(EINSTEIN.J)S
D30,EVALS

CONTRACT (RATEXPAND (D31)) 8
SHOW (D32) 8

18.

11.

12.

13.

14.

15.

REFERENCES
Barton, D.; and Fitch, J. P.: Applications of Algebraic Manipulation
Programs in Physics. Rep. Prog. Phys., 35, 1972, pp. 235-314.

Pavelle, R.: Unphysical Characteristics of Yang's Pure Spaca Equations.
Phys. Rev. Lett., 37, 1976, pp. 961-964.

d’ Inverno, R. A.: Algebraic Computing in General Relativity.
Gen. Rel. Grav., 6, 1975, pp. 567-593.

Pavelle, R.: Multiple Covariant Differentiation- A New Method.
Gen. Rel. Grav..7, 1976, pp. 383-386.

Buchdahl, H. A.: The Hamiltonian Derivatives of a Class of
Fundamental Invariants. Quart. J. Math., 19, 13948, pp. 150-159.

Balakram: A Theorem in Tensor Calculus. J. Lon. Math. Soc., 4, 1923.

HWeber, J.: General Relativity and Gravitational Waves, Interscience
Publ. , 1961, Section 7.1.

Yilmaz, H.: Neu Approach to Relativity and Gravitation.
Annals of Physics., 81, 1973, pp. 179-200.

Fennelly A. J.; and Pavelle, R.: Nonviability of Yilmaz' Gravitation
Theories and his Criticisms of Rosen's Theory. Gen. Rel. Grav., 1977,
in press.

Adler, R.; Bazin, M.; and Schiffer, M.: Introduction to General Relativity.

McGrau-Hitl Book Company Inc., 13975, Chapter 7.

Mansouri, F.; and Chang, L. N.: Gravitation as a Gauge Theoruy.
Phys. Rev., 13, 1976, pp. 3192-3200.

Yang, C. N.: Integral Formalism for Gauge Fields.
Phys. Rev. Lett., 33, 1974, pp. 445-447,

Pavelle, R.: Unphysical Solutions of Yang's Gravitational-Field Equations.

Phys. Rev. Lett., 34, 1975, pp. 1114.

Horndeski, G. W.: Dimensional ly Dependent Divergences.
Proc. Camb. Phil. Soc.,72, 1972, pp. 77-82.

Schrodinger, E.: Space-Time Structure. Cambridge Univ. Press., 1963,
Chapter XII.

85

PURE FIELD THEORIES AND MACSYMA ALGORITHMS

William S. Ament
Naval Research Iaboratory

SUMMARY

A pure field theory attempts to describe physical phenomena through
singularity-£free solutions of field equations resulting from an action princi-
ple. The physics goes into forming the action principle and interpreting
specific results. Algorithms for the intervening mathematical steps are
sketched, Vacuum general relativity is a pure field theory, serving as model
and providing checks for generalizations. The fields of general relativity
are the 10 components of a symmetric Riemannian metric tensor g;.; those of
the Einstein-Straus generalization are the 16 components of a nohsymmetric By ae
Algebraic properties of g s are exploited in top-level MACSYMA commands 1]
toward performing some of ~“the algorithms of that generalization. The light-
cone for the theory as left by Einstein and Straus is found and simplifications
of that theory are discussed. Attention is called to the need for spinor
theories; the algebra of 81 j may help in their construction.

PURE FIELD THEORY (PFT)

A pure field theory (PFT) (ref. 1, final pages) attempts to describe
physical phenomena in terms of singularity-free solutions of a set of field
equations, the Euler-Lagrange equations of an action principle. The physical
wisdom goes into assembling the action integral and into interpreting any
specific results; the intervening mathematics appears strictly algorithmic and
therefore doable with, and perhaps only with, computer symbol manipulations
such as done by MACSYMA. Einstein's general relativity (GR) is a prototype
PFT. GR serves both as the physical basis for test algorithms and as model
for the following outline of 'formal' PFT.

One has a coordinate manifold of (presumably) four dimensions, param-
eterized by Gaussian coordinates x*, i = 1,2,3,4. Dependent 'fields' having
N scalar components f = f£(x') are assembled, together with their low-order

coordinate derivatives f,; , f’ij , sse, into a scalar density L serving as
integrand of the action principle LL. The scalar fields f of GR are the 10
components of a symmetric Riemannian metric tensor giJ = ng

Algorithmic Process No., 1 (APl): Coordinate Independence
Taking the integration of LL over a coordinate region V having smooth

boundary B, check that the value of LL is properly invariant to coordinate
transformations interior to V.

87

10

Ap2: Get the Field Equations as Fuler-Ilagrange Equations of LL

This amounts to replacing f with £ + df, f,i with f’i + df,i etc.,

throughout 1, retaining terms of first degree in df, df’i”" in the expansion
of the result, and integrating by parts to eliminate, in"V, derivatives
df,. , df,.,. , ... of the 'variations' df. The coefficients of the N df, set

to zero, are then the N scalar field equations in the N scalar fields f.

AP3: Gauge Conditions (Ref. 2)

When the dependent scalars f are components of a tensor such as the éij of
. . . i i i, j ,
GR, then coordinate transformations in V such as T: x- - x + y (xJ) require
corresponding transformations for the indexed field components. For example,

%37 By Y T Eay YT Bin Yy

* . . ~ . . - . .) .
is a 'variation' of g.. arising from a mere infinitesimal coordinate transfor-

mation T. The 10 Euler-lLagrange equations of GR are linear in second deriv-
atives of g but there are four scalar Bianchi identities of third

d1fferent1a1 order arising from 1nvar1ance of LL to the four dg i possible with

a four- parameter gauge transformatlon y (xJ) The (unassembled) algorithms for
finding the 'gauge variations' and corresponding Bianchi-like identities should
be some mix of those of APl and AP2.

AP4: Small Amplitude High Frequency Waves and the Light Cone

If a PFT is to describe physical vacuum somewhere and is to be
singularity-free, then the PFT describes vacuum everywhere. The accepted
physical vacuum permits gravitational, electromagnetic, and neutrino waves
propagating according to a single light-cone or dispersion relation. To find,
the light cone: 1In each of the N field equations, substitute f + df*exp(Kb,xl)
(K a frequency parameter, b, a propagation vector, df an infinitesimal scalar
amplitude) for each f in each field equation. Expand and retain only terms
linear in the df of highest degree in K--which then factors out, along with
exp(). The result is N equations each linear and homogeneous in the N ampli-
tudes df, each homogeneous in the b Factor the coefficient determinant,

finding a sufficient number of quadratlc factors b g Jb = bgb to feel sure
that bgb = 0 is the light-cone equation. [If no such bgb factor is found or
believed, then use what you may have learned for revising L.]

AP5: GR With Non-Phenomenological Source Terms

The élJ of bgb = 0, built from the f and their coordinate derivatives, is
necessarily symmetric, and its inverse can be construed as (up to a conformal
scalar factor S) the Riemannian metric tensor gij of GR. Use the algorithms

88

of GR to get the Einstein tensor Gij’ a form in the £, f’i"" . Use the field
equations for eliminating from Gij the highest derivatives of the f. What's
left over is either zero (vacuum) or counts as a Tij energy-tensor source

term--again a form in the f and their (low-order) derivatives. [Select, or
eliminate the need for selecting, conformal scalar S. Recognize any T,, as
X R X R . . ij
implied in L according to Noetherian principles.]

AP6: WNeutrinos and Spin One-Half

Unless some of the f in L are spinor variables, there will be no neutrinos
among the vacuum waves, or other 'spin-%' structure in the field equations.
Thus: prepare a 'spinor version' of L and plod through the foregoing semi-
algorithms. [Conversion to 'spinor form' appears algorithmic in GR, starting
from a Riemannian metric tensor (ref. 3), but may not be so in other PFT's.]

EINSTEIN-STRAUS THEORY

The scalar fields of Einstein-Straus (ES) theory (refs. 1 and 4) are the
16 components of a nonsymmetric tensor gij' This gij is used in an L and in

subsequent development in a way suggested in GR, but the gij is in no way

usable for or equivalent to the symmetric Riemannian 10-component metric ten-
sor gij of GR. The ES field equations are derived from an action principle; no

one appears to have asked after the 'vacuum waves' of ES theory, their light
cone, or its mathematical connection with GR. So we began with the problem of
finding the vacuum waves of the ES field equations--equations given in terms of
an affine connection or 'gamma' defined as the solution of a 64x64 linear
equation system

_ n n
8Bij,k =~ Bin Lkj T Bnj lik 1)

_ in _ 51 .
=g gjn § .. This leaves

Let the inverse glJ be defined through gnlg i

nj
another order for the summation over the 'dummy index' n:

i _ _in . ni _ . -1i _Li
h 5= g gnj’ with g gjn =t) i let AA = h ; = trace (h),

cC = (hlthi) = trace (hZ), BB = (AA% - GC)/2. Then h = hlj satisfies

Q(h) = h* - AA%h® + BB*hZ - AA%h + 1 = O; (2)

Q(h-l) = 0 by symmetry. Matrix h has generally four eigenvectors V[n] and
eigenvalues vn]:

89

bt v} = vl 5 bl vl = viWal, (3)

One can normalize so that V[m] V[n] = §{n,m] and (summing over the repeated
'eigenindex' n) V[n] V[n]J = éJ The symmetry of Q(h) implies that if

Q(x) = 0 then Q(l/x) 0 so that if v[n] is an eigenvalue then so is
l/v[n] = v[n'], say. Thus, eigenindices [n] (which are not tensor indices)
run over say 1,1',2,2' and we introduce op: op[n] =n', op[n'] =n. With this,
and with u[n]2 = v[n], u[nlu[n'] = 1, we have ht, = v[n]V[n] v[n]. and
compatible representations J J

g;; = ulnlvin')vinl, . &' = uln' Win' JVal)

Thus, the l6-scalar gij of ES theory has a natural 18-parameter representation
with spinor-like (ref. 3) eigenindexing, and supplies what may be called a

built-in vierbein provided by the four directions V[n]", n = 1,1',2,2',

The ES field equations being in terms of the gammas, we solved (1) for the
gammas using Fljk = gnlwnjk with W represented in the manner of (3), (4)
through eigenindices as Wiik = Z[p,q,r]V[p]iV[q]jV[r]k say. By exploiting

symmetries, the 64x64 problem (ref. 5) of inverting (1) for the gammas reduces
to a 10x10 problem for finding Z[p,q,r]. The straightforward MACSYMA solution,
giving terms of up to degree 6 in AA, 5 in BB, is computationally useless (as
suspected by Schrodinger, ref. 4, p. 111): formally, there are some 472 terms
before replacing three scalar symbols by three hij matrices.

The ES field equations, however, entail the gammas in symmetrized or
internally contracted forms, so that it was possible to use eigenindexing to
set them in terms of the basic fields gij without resort to the formal inver-

sion of (1). The 16x16 determinant of the homogeneous equation system result-
ing from AP2 was much too big for the computer but could be made tractable:-
(1) Resolve the equations and the bi along vierbein directions, as already done

for the gammas by the W — Z above. (2) Then bgb has to be two formally identi-
cal terms, one in eigenindices 1,1' the other in 2,2'; replace variables having
2,2'" indices with random integers. (3) Any b given in eigenindex or vierbein

components as (bl,bl’',b2,b2') = b is orthogonal for any pos31b1e gl 'metric’
to ¢ = (bl,-b1",0,0) and to d = (0,0,b2,-b2") in the sense b 8 ch =bge =cgb =0

and bgd = 0. A final such vector e = (bl,bl',-b2,-b2") satlsfles cge = 0 = dge;
cgd = 0 but bge # 0 generally. Take the amplltude tensor dg 13 as a 4x4

quadratic form (exterior product) in the near-orthogonal vector system b,c,d,e,
with 16 unknown coefficients as new 'amplitudes'. The substitution
diagonalizes the 16x16 equation system into 6x6 and 10x10 blocks. Both blocks
appear degenerate (coefficient determinants vanishing). But eliminating

90

equations of the result one at a time gives a sequence of identical bgb factors
in which the structure of the symbols of the 1,1' term is matched by that of

the integers of the 2,2' term. The resulting eigenindexed bgb then implies a

glJ from which the light-cone metric is then, via Q(h) = 0

A~ _ n n
83 —.S[(ginh i + gjnh Dt BB(gij + gji)] > (5)

where S is an undetermined conformal scalar. 3But: the nature of the waves
propagating according to the bgb light-cone equation remains unknown, owing to
complexity and, particularly, to failure to eliminate 'gauge transformations'
mentioned in AP3. (That failure may also account for the degeneracy of the
coefficient determinant.)

In GR the bgb = 0 light-cone equation is known a priori; it is asserted in
the metric tensor gij' In examining final equations, for the nature of the

'vacuum waves' one can take éij as locally diagonal, thus rendering symboli-

cally indexed expressions in compact, inspectable forms. ©No such diagonaliza-
tion is seen valid in ES theories, and finding bgb may always have to be done
with explicit components. If so, the foregoing sketch of a route to bgb will
save much time,

Published variants of ES theory use the gammas and are thereby unnecessar-
ily complicated. 1In Riemannian geometry the gammas, defined in terms of the
metric tensor gij’ are used for forming tensors from derivatives of further

.scalar and tensor objects. But ES theory is in terms of the gij from which the

gammas are defined, via equation (1), and there are no further objects. There-
fore the gammas are superfluous. The ES equations follow GR by using a Riemann
tensor given compactly in terms of the gammas and their first derivatives. The
Riemann tensor has two basic definitions, equivalent in GR: The coefficient of

. R . d . .
tensor T, in Ta;bj;c - Taj;c;b is the Riemann tensor R abc--but there is no Ta in

d
ES theory for which this function of the Riemann tensor might be needed.
Alternatively, the lower-indexed Riemann tensor Rijkl is the non-trivial tensor

of lowest degree formable from a 'metric tensor' gij and its derivatives.

Handcrafting gives, with

> . ; - .

1 - -
Rixni = *®ij,kn ¥ 8kn,1j ~ Bin,kj ~ Bkj,in’ T

+ I ([1ix][kny] - [inx][kjy]) 7

91

1]
the indices is to be respected. (Compare eq. (7) with eq. (30) of ref. 6, p. 153.)

in which IE'J is the (symmetric) inverse to g(ij) = (g,. + gji)/Z, and order of

The class of PFT's now under consideration is therefore restricted to
those starting from the foregoing tensor R, i jkm contracted to a curvature

scalar R by some multiplier M 1 jkm concocted from glJ, hlngnj,..., and then

multiplied by various similarly available Jacobians J to form the scalar
. ik ikad
density L; these forms are essentially unique in GR, where Mt = gl ng and

A i
= (det(gij))z. In this general ES theory, each term of L can have a scalar

coefficient arbitrarily dependent on scalars AA,BB formed from gij'

Tensor Riknj has the familiar symmetries

Riknj = nJlk Rklnj :

In forming a 'curvature scalar' M*R = MlknJRiknj, one may assign the same

symmetries to the multiplying tensor M. Equation (2) restricts the occurrence
ij . . ij ji .1 mj j mi .
of g usable in M to essentially four forms g -,g” " ,h .- and h oS - generi-
cally represented here as F'J. 1In view of the symmetries, M can be given as a
10-parameter form Me of symmetrically arranged products FlnFJk plus a

3-parameter form Mo of products FlanJ. In addition, from totally antisymme-
trized derivatives ag(i,j,k) = g[ij K] one can assemble a legitimate two-
2

parameter scalar NN = N(a,b,c,d,e,f)ag(a,b,c)ag(d,e,f); tensor N has two
additional parameters. Thus symbolic action integrand L = M*RHNN is a form
linear in a total of 15 free scalar parameters. Any 'parameter' is actually
some function f(AA,BB) depending on the basic fields g; - via the AA,BB of
equation (2). +J

CONFORMALLY INVARIANT ES THEORY

The present attempt is to assign the foregoing 15 parameters so that LL is
conformally invariant, i.e., its value is unchanged by the substitution
giJ =8 14 + wg,., where w is an arbitrary infinitesimal scalar function of
coordinates. We choose conformal invariance because no plausible alternatives
are visible [suggestions are welcome, particularly those having 'spinor' impli-
cations], because physicists have said kind things about such conformal invari-
ance, because the problem of assigning conformal scalar S of AP5 and equation
(5) becomes eliminated, and most of all, because the choice appears to give a
well posed, doable problem having a possibly unique answer.

The present situation with this problem is best described as fluid. The

implication, if any, of 'gauge invariance' is mot yet understood in this con-
text. Several unmentioned algebraic simplifications make the problem easier

92

than it appears at first glance; not all such algebraic niceties are incor-
porated, and the present package of computer commands requires too much think-
ing at the keyboard.

APPROPRTATE SYMBOL MANIPULATIONS IN MACSYMA

First described are notational and other conventions, then some general
purpose commands and functions.,
.. ij A
let g, . 2 g(i,j) ; & —egg(i,i) ; s

1 - gl(i,j,k) .

~ g2(i,j,k,p) rljk—»gama,j,k),rl

ij,k

g _’gaml(i’j’k"P)""

ij,kp jh,p
(conventional symbol) — (MACSYMA typein and display symbol).

No attempt at displays in textbook format is made; one has to remember that
both indices i,j of gg and the first index of gam and gaml are upper (U)
indices whereas the other indices above are lower (L) indices. Thus

gnlgnj - gg(n,i)*g(n,j); repeated index n is a 'dummy' index of summation
appearing once as U-index and once as L-index., U-index i and L-index j here
are 'free' indices appearing once each.

An indexed expression EE is valid only when each free U- or L-index is
represented by the same symbol (letter or atom), and occurs only once, in each
term of EE, and when any dummy index symbol appears just once in any term as
U-index, once as L-index. A validity-checking TEST(EE) is readily constructed.
One builds desired forms by 'contraction' on one or more free indices. For
example, s = s(i,j,k) = t(i,j,n)*u(n,k) = t*u, where free U-index n in u,
L-index n in t, becomes dummy index n in the contracted tensor product s = t¥*u.
To JOIN t,u as s then entails 1) preserving the final free indices i,j,k and
'contraction' dummy index n while 2) changing dummy indices x of say u so as to
differ from these of s. This is done by DECLARE'ing i,j,k,n to be constants
while changing any item say x of LISTOFVARS(u), found in the similar list of
dummies of s, to some new symbol say xrr = CONCAT(x,rr). But this process
should not change other atomic symbols such as the AA,BB of (2)--such symbols
are thus initially DECLARED constant.

Of course replacement symbol xrr could be found in t; also t,u and a valid
resulting s may contain identical, possibly cancelling, terms disguised by
having different symbols for the same dummy variable. Thus one wants a func-
tion converting each term of an expression EE to consistent canonical indexing.
Command hOx(EE,ILIS) does this term by term: ILIS is a list of free indices
declared constant. Intermal to hOx, YLIS = [yl,y2,...] is an adequately long
list of symbols declared constant, and NAMES is an alphanumerically ordered
internal list of these names (such as g,gg,gaml) which occur in the term.
Suppose ILIS is [b,x,v,a] and £(i,j,b,p,a) is a factor in the formal term of
EE; hOx finds this factor as the one containing b, finds its LISTOFVARS
[i,j,p], substitutes yl,y2,y3 for i,j,p throughout the term and reconsiders

93

the result with ILIS = [yl,y2,y3,x,y,a],YLIS = [y4,¥5,...]. Or if the initial
TLIS were empty and the foregoing factor's name f is first in NAMES then
vl,y2,y3,y4,y5 are substituted in order for the LISTOFVARS [i,j,b,p,a] and
become the new ILIS. At the close, the constants [yl,y2...] of YLIS are
replaced by variables pl,p2,... to avoid conflicts in any iteration of hOx.

I believe that hOx converts a valid EE to unique form of minimal length when
each term of EE has some dummy-containing name occurring just once so as to
appear in NAMES, and the order of indices within each named object is unique.
Otherwise hOx(EE,[]) will produce an EE with dummy symbols pl,p2 not neces-
sarily in minimal form. Regrettably, this now calls for ad hoc measures and
iterations of hOx, which never increase the number of terms.

The symmetry IE(a,b) = IE(b,a) is invoked automatically by a prior
DECLARE(IE,COMMUTATIVE); this imposes the canonical ordering IE(a,b) for either
form. Declaring ALF commutative, and C constant, then doing LISTOFVARS
(APPLY (ALF, [a,y,C,x,b,x2])) produces the alphanumerically ordered list
[a,b,x,x2,y]--sans constant C, of course. ALF may analogously be used to
order gij - g2(i,j,y,x) = g2(i,j,x,y) in the latter form, and used in canon-

3
ical antisymmetrizing commands.,

Perhaps the central problem in simplification of dummy-indexed expressions
is seen in an example: let scalar form F be IEXy(ny-ny). Tensor IEXY - IE(x,y)

has been declared 'commutative' so that IE(y,x) appears alphanumerically
reordered as IE(x,y). Thus, though nothing is asserted about tensor K, scalar
F as contracted from IE,K above is to vanish--it would if the indices of the
second factor of F were canonically reordered as permitted by the symmetry of
IE. Our dodge has been: substitute the name AK for K in F, do hOx(F,[]) so
that the priority in the order of the new indexing goes to AK, resulting for-
mally in F = AK(pl,p2)*(IE(pl,p2)-I1E(p2,pl)), whereupon the declared symmetry
of IE produces cancellation in the last factor and one gets the wanted F = 0,

Clearly, what one wants is some simplifier that orders dummy indices, of
factors in a monomial, taking full account of declared symmetries of tensor
factors in which dummies have already been assigned. The problem is compli-
cated by (a) the variety of possible symmetries and antisymmetries, (b) multi-
ple occurrences of tensor names in the monomial, (c) the present necessity to
change dummy eigenindex p' = op[p] in step with p = op[p'], (d) the utility of
keeping intact the symbols for free indices.

One plausible way to keep free indices, say i,j,k, of a form
f = f(i,j,k,dummies), is to contract f with a 'holding tensor' H = H(i,j,k),
process the contracted scalar Hf, and then substitute back i,j,k for the
pl,p2,p3 of the final result as indexed with priority set by the name H. But
this sometimes results in some terms with the anticipated factor H(pl,p2,p3)
while other terms have factors say H(pl,p2,op[pl])--making for unwanted
thought and typing.

The sketched algorithms of AP2,AP3,AP4 require different types of differ-
entiations. All can (apparently) be done in a single overall command
TENSDIFF (EE,NLIS) by supplying appropriate versions of DIFFLIS, listing forms
of derivatives, when TENSDIFF calls on it. NLIS lists names of tensors

9y

considered differentiable, all other symbols and functions being considered
constants. Example: TENSDIFF(£(i,j,p)*g(i,j), [gl) first sees name g in NLIS,
goes to a list GSUBS to find g(a,b):=g%[a,b] evaluates EE as FEE:f(i,j,p)*g%[i,]i]
does DIFF(FEE) returning £(i,j,p)*DEL(g%[i,j]), replaces the MACSYMA symbol

DEL by DDEL, DDEL(array member) being specified in DIFFLIS, e.g.,
DDEL(g%[a,b]):=gl(a,b,ik). Such indexed forms g%, gg%, gam? as may remain are
reconverted to initial forms through the array definitions of list GBACK,
reversing GSUBS., Index-renaming as in JOIN prevents dummy indices occurring

in DIFFLIS from conflicting with those already in EE. The generic differen-
tiation index "ik" is then to be replaced by some chosen symbol, and before any
second differentiation the result should (as with an iterated JOIN operation)
be boiled down and converted to relatively harmless indices via hOx.

After all differentiations, one goes immediately to eigenindexed forms as
much more compact and perspicuous. The basic substitutions are g(x,y):= y*f(x,y)
and gg(x,y):= x*f(x,y)--the tensor indices x,y of g,gg become eigenindices
and the freestanding factors x,y are in effect the eigenvalues u of equation
(4). Function NUFF then sequentially extracts each factor £(p,q) and in its
coefficient replaces q with op[p], op[q] with p. Function CRIMP(EE,NAMES) then
renames and reorders, term by term, the eigenindices p together with their
'opposites’' p' = op(p) in the general manner of hOx, though with priorities as
set by the ordered list NAMES of germane function names. With sufficient
application of CRIMP, some minimum of ad hoc substitution, and luck, the named
objects are canonically indexed and may be factored out, leaving a polynomial
P =PA,...,pl,pl",...) linear in undetermined parameters A. One must event-
ually allow for p' = op[p] as implying p' = 1/p--but not too soon, for expres-
sion p*p'*Z(other indices) represents a sum over eigenindex p with result 4Z.
Function CRIMP leaves indices of objects in NAMES as constants, other free-
standing indices, like the above p,p', as variables. Function CFDO does sums
over such variables: CFDO applied to p*p' yields 4, applied to p'D#%pif2 yields
the scalar AA of equation (2), etc. Polynomial P is reducible to degree 3 in

p2 through Q(pz) = 0, equation (2). Requiring P to vanish then gives a set of
linear relations among the parameters A, which may now be solved for in
familiar ways.

REMARKS

Described elsewhere in these Proceedings (ref. 7) is a tensor manipulating
package ITMS, designed primarily to analyze field equations of GR based on a
symmetric metric tensor gij' Our developing package is aimed at finding gij

as upshot of field equations derived from action integrals based on non-
symmetric tensors. There appears to be no significant duplication of ITMS
items, I welcome appropriate extensions of ITMS and recommend its use in case
of overlapping capabilities.

I call attention to the problem of providing a spinor representation
natural for the non-symmetric Bik* The present n,n' eigenindexing is sugges-

tive of two-component spinor notation, and the eigenvectors may provide a
natural framework for a spinorization.

95

96

REFERENCES

Einstein, A.: Meaning of Relativity. Fourth or Fifth ed. Princeton
Univ. Press, 1955.

Misner, C. W.; Thorne, K. S.; Wheeler, J. A.: Gravitation. W. H. Freeman
and Co., 1973.

Pirani, F. A. E.: Introduction to Gravitational Radiation Theory.
Brandeis Summer Institute in Theoretical Physics 166, 1964,

Schrodinger, E.: Space-Time Structure. Cambridge Univ. Press, 1950,

Einstein, A.; Kaufman, B.: Algebraic Properties of the Field in the
Relativistic Theory of the Asymmetric Field. Ann. of Math., vol. 59, no. 2,
1954, pp. 230-244.

McConnell, A, J.: Applications of Tensor Analysis. Dover Publ., 1957.

Bogen, R. A.; Pavelle, R.: 1Indicial Tensor Manipulation on MACSYMA. 1977
MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper no. 9 of this
compilation.)

BLACK HOLES AND RELATIVISTIC GRAVITY THEORIES

A. J. Fennelly
Physics and Astronomy Department
Western Kentucky University
Bowling Green, Kentucky 42101

Richard Pavelle
Logicon, Inc.
Hartwell Avenue
Lexington, Massachusetts 02173

ABSTRACT

We consider all presently known relativistic gravitation theories which have
a Riemannian background geometry and possess exact static, spherically symmetric
solutions which are asymptotically flat. We show each theory predicts the
existence of trapped surfaces (black ‘holes). For a general static isotropic
metric we use MACSYMA to compute the Newman-Penrose equations, the black hole
radius, the impact parameter and capture radius for photon accretion, and verify
asymptotic flatness. These results are then applied to several of the better
known gravitation theories. It appears the claims of Hawking, Lightman, Lee and
Rosen regarding the existence of black holes in several theories are not valid,
and black holes are a natural consequence of present ideas about gravity.

INTRODUCTION

The subject of black holes has become very popular in recent years. With
dozens of papers appearing in scientific journals each month and popular articles
in abundance, the subject of black holes is a true mystery since there is no
known method for observing them directly if indeed they exist. Opponents develop
theories which they believe eliminate black holes entirely while proponents

attempt to show that black holes are legitimate or that their existence is

97

11

temporary in the evolution of certain classes of si:ars. Our purpose in t.his paper
is to show that black holes are a natural consequence of the basic format of‘
gravitation theories (at this time) when solutions of field equations can be
found in exact form and where the background geometry of the space-time is
Riemannian. The calculations involved in the analysis are extremely complicated
and we would not have attempted this particular problem without the aid of
MACSYMA. MACSYMA possesses a number of special purpose relativistic programs as
part of the component tgnsor manipulation system, CTMS, in addition to ITMS
(ref.1). Given the metric components as implicit or explicit functions of the
coordinates, CTMS can compute all geometrical objects such as Riemann
tensors,etc. It also has the capabilities for finding the Newman-Penrose spin
coefficients as well as a host of other obJects' owing to the generality of

MACSYMA and CTMS.

TRAPPED SURFACES AND PHOTON CAPTURE

The 1line element for a static spherically symmetric metric may be written in
isotropic form as

ds? = e2¥(dr? + R2dN2) - e%Pdt2 (1)
where Y(R) and ¢(R). We use isotropic form rather than Schwarzschild coordinates
for a glance at the literature shows that (1) with its high degree of symmetry
lends itself to closed form solutions more readily than other metrics. For
example a closed form solution of the Brans-Dicke theory in Schwarzschild
coordinates has never been exhibited (ref.2).

98

A trapped surface (the physical measure of the radius at which physical laws
change) 1is one fqr which all geodesic congruences converge, 1i.e.,strike a
singularity (ref.3, ref.4). The measure of the convergence 'of a geodesic is the
spin coefficient (ref.5)

p = luwml_‘ii’ (2)
where 1“ is the tangent vector to an outward directed null geodesic congruence,

the semi-colon is covariant differentiation and m* 1is the complex vector

m,. and m, are combined with an

spanning the celestial sphere. The vectors l“, n "

ingoing tangent vector n,, to form a complex null tetrad. The metric is given by

u
Oy = T(u") = M(uMy) (3)

where () is symmetrization. The tetrad obeys usual inner product rules (ref.5).
The isotropic metric (1) may be written in terms of a new Tuminosity coor-
dinate by the transformation
ePdt = ePdv + eVdR (4)
which gives the transformed metric (1) as
ds? = -e2®gvl - 2eP*VWdvdR + RZe2¥dQ2 (5)
The null tetrad components are easily found, and the complex expansion of the
null congruence is then found by MACSYMA to be
pocl+RY (6)
where ¢“ = dy/dR. The expansion p will be negative and a trapped surface will
form only if 1 +Ry“ < 0. Clearly, a large class of metrics will satisfy this

condition for some critical finite value(s) of the radius which we denote by Rg.

99

This trapped surface location 1is coordinate dependent. For comparison we shall
wish to transform the expression Ry to Schwarzschild coordin'at'es by choosing the
coordinate system in which we redefine the radius by r = Re"’. Thus having found
the trapped location for (1) we easily find ry.

For a metric to represent the gravitational field of an isolated particle it
is nécessary that the field vanish asymptotically at large distances from the
particle and the space-time reduce to that of special relativity. The invariant
measure of ““asymptotic flatness’’ is satisfied if the Weyl invariant

Wy = ~1/2 Copeq 12nP(16n9-nChd) (7
vanishes asymptotically as R where Cabcd 15 the Weyl tensor. For the metric (1)

we find CTMS gives the following expression for the Weyl invariant as

e-2¥
Wp= - (P -7 +R(G"+ (672 - 287 - ¥ + (§)7) (8)
12R

It is well known that General Relativity predicts both the existence of a
trapped surface and the logically related physical consequence which is an impact
parameter for particle capture residing outside the trapped surface (ref.6). This
is a non-Newtonian effect and it is therefore of interest to determine whether
other relativistic gravity theories also predict such a phenomenon. The only
assumption we make is that the geodesic equations which are valid in General
Relativity hold in other theories toon. This assumption 1is reasonable since
alternatives to the geodesic equations of motion have not been proposed.

For the metric (1) and motion in the equatorial plane the geodesic equations

100

|

immediately give two constants of the motion h, and K. These follow respectively
from g¢¢ ds/d$ = 0 and g ds/dt = 0. Writing A = K/h as the impact parameter
one finds orbital equations which may be put in the form
1/2
dR R EA2R2e2¢ | Y/

- = & ---| R2e2(¥-9) -)N (9)
dé A he

where E=0 for a photon and E=1 for a material particle.

We proceed now directly to the photon E=0, since material particles are
more drastically affected and will simply give more extreme physical bebavior.
Orbits are stable down to a critical radius given by R=R.. We find a general
method for computing the value of Re 1s given by simultaneously setting
dR/d¢p = 0 and. d/dR (dR/d¢) = 0. These equations also give a corresponding
critical impact parameter Ac. These conditions are found to give Rc from

1 +R(¢p" -¢) ReR. - 0 (10)

C
and

2[d(R)-¥(R.)] (11)

Ac = Ree

for the corresponding capture impact parameter.
VALUES OF THE PHYSICAL PARAMETERS

We now apply MACSYMA to the equations derived above for the study of various
gravitation theories. We adopt the following notation for our physical
parameters:

R¢ = location(s) of trapped surfaces in isotropic coordinates from (6)

101

ry = corresponding location(s) in Schwarzschild coordinates by transformation

Tocation(s) of photon capture-radii in isotropic coordinates from (10)

=
0
.

corresponding location in Schwarzschild coordinates by transformation

corresponding impact parameter for photon capture(coordinate independent)

>
[y]
fn

In each theory we use MACSYMA to compute and simplify the physical parameters as
well as verify the condition of asymptotic flatness. By equating (1) to the
actual metric in each theory we can solve for ¢ and ¢. Then we use MACSYMA to
compute (6), (8), (10) and (11) as well as transform the physical parameters to
Schwarzschild coordinates.

A) GENERAL RELATIVITY: The isotropic form of the Reissner-Nordstrom metric is

2 2
M -E 2
(1 - ~=------)
2
2 2 2 2 M-E 2 M+E 2 4R 2
dS = (d} R + dR) (----- + 1) (=---- +1) = c;cccccncrmneeneeceennes dt
2R 2R M-E 2 M+ E 2 (12)
(eeeee +1) (----- + 1)
2R 2 R
where E 1s the charge of the mass M. We find
Ry = 1/2 (M2-g2)1/2 ry = Mx (M2-g2)172

Re = 1/84 (MK) = 1/72¥2 (MK)1/2(3msKk)1/2 where K= (9M2-8E2)1/2 and M<K<aM
(13)
re = 3M/2 & 1/2 (9m2-8e2)1/2 Ae = (3M+K)3/2/(vZ (mex)1/2)
The results for the trapped surface location are known whereas the form of the

metric (12) and the photon capture parameters appear to be new. Setting €E = 0 in

(13) the parameters become

102

Ry = M/2 ry = 0,24

Re = M(1x ¥3/2) ro=0,30 2. = M 3V3

all of which are known (ref.7) and confirm the validity of our computations.

(14)

B) Rosen’s Theory (ref.8) : This theory has received wide attention recently

and is presently the most popular alternative to General Relativity. One of the

reasons for this is the belief that the theory does not predict the existence of

black holes. We shall now see this claim is false. Rosen’s metric is
ds? = e?M/R(dr? + R2002) - e~ZM/Rgy2
and we find
Ry = M ry = Me

Rc = 2M ro=2Me A, = 2Me

(15)

(16)

We now see trapped surfaces do exist in this theory as well as capture radii and

photon impact parameters.

C) Brans-Dicke Theory: We use the metric in its standard form (ref.2) to find

3w
M (1 SQRT(--~- + 2) + w + 1)
2
Rt= ---------------------------
2w+ 3
1 -0 P+1
(R¢ - «) (Ry + a)
rt= ---------------------------
R¢

SQRT(4 w + 6)

(17)

103

(Rc - a) (RC + a)
Mg S ==-s=s=c-cecssscccsccocceo-
Re
2 a 2 a
1-----P P+ ---+1
M M
(R¢ - a) (Re + a)
xc 2 evmemeccccccccrccseeees T, e m e e —————————
Re
where
(w+l)V2
P =
Vo+2 V2w+3
(18)
MVw+2
a =
VZ V2w+3

Here too we find a contradiction with earlier results which claimed that Brans-
Dicke black holes are identical to those of General Relativity (ref.9). Note
that trapped surfaces do not form uniess the coupling constant w is negative.
Also, (17) reduce to (14) as @ becomes infinite as one would expect since this
is the asymptotic correspondence 1imit of the Brans-Dicke theory.

D) Yang-Kiilmister Theory (ref.10) : Two solutions of the Yang-Kilmister
equations are given as (ref.ll)

dsZ = (1-M/R)Z (dRZ + RZdQ2 - dt?) (19)

and

dsZ = (1+M/2R)? (dRZ + R2dQ2) -dtl (20)

104

which give respectively
p = R/R-M (21)
Ry = M/2 ry=2M R,=M/2 rcs2W A= 2M (22)
The first solution (19) is peculiar as it implies, from (21), an 1mpenetrable
barrier at R = M corresponding to r = 0 in Schwarzschild coordinates. The second
solution exhibits more unusual behavior since the trapped surface Jocation,
capture radius and impact parameter reside at the same radius in Schwarzschild
coordinates. These results are not surprising since it has been shown, using
.HACSYMA, that these metrics are unphysical (ref.12) by possessing solutions which
give incorrect physical predictions.

E) Lightman-Lee Theory (ref.13) : A metric for this theory is

2R-M12 2R-M12 .
ds? = |——]| (dR? + RZ2dQ2) -|— dtl (23)
2R-3M 2R+M
which yields
Ry = M/2(3V6) ry = M/2(5:2V6)

(24)
Re = M/2(3+2¥3) ro = M/2(5+43V3) A = M/2(7+443)

It has been claimed (ref.14) that (23) does not contain a black hole radius at
M/2 and 3M/2 , where the metric components become singular, since there radii
cannot be encountered after travelling a finite affine distance. This claim is
invalid since, from (24), we find a trapped surface forms at M/2(3+V6) which lies

beyond 3M/2. It is clear a black hole forms in this theory too.

105

CONCLUSIONS

We ha;e establised that black holes are a normal rather than a pathological
feature of viable gravitation theories. This fact 1s amplified by the new
observation that photon capture and photon impact parameters are also normal
occurrences in the behavior of the gravitational field of dense bodies. Thus we
have disproven the claim that black holes do not exist in Rosen’s theory as well
as shown that the trapbed surface exists and can be approached in the L1ghtﬁan-
Lee theory. In addition we have shown that Brans-Dicke black holes are.quite
unlike fhose of General Relativity. We are now using MACSYMA to investigate a
recent attempt introducing Quantum theory into the subject of black.ho1es in the
study of the ““evaporation of black holes”” in which particles can tunnel out of -

the trapped surface. These results will be presented elsewhere.

106

10.

11.

12.

13.

14.

REFERENCES
Bogen, R. A.; and Pavelle, R.: Indicial Tensor Manipulation on MACSYHA.
Proceedings of the 1977 MACSYMA Users’ Conference, NASA CP-2012, 1977.
(Paper No. 9 of this Compilation).

Brans, C.; and Dicke; R. H.: Mach’s Principle and a Relativistic Theory
of Gravitation. Phys. Rev., 124, 1961, pp. 925-935.

Penrose, R.: Gravitational Collapse and Space-Time Singularities.
Phys. Rev. Lett., 14, 1965, pp. 57-59.

Hawking, S. W.: Occurrence of Singularities in Open Universes.
Phys. Rev. Lett., 15, 1965, pp. 689-690.

Newman E.; and Penrose, R.: An Approach to Graviiational Radiation
by a Method of Spin Coefficients., J. Math. Phys., 3, 1962, pp. 566-578.

Darwin, C.: The Gravity Field of a Particle,I. Proc. Roy. Soc. London A.,
249, 1958, pp. 180-194.

Misner, C. W.; Thorne K. S.; and Wheeler J. A.: Gravitation.
W. H. Freeman, and Co., 1973, pp. 921-924.

Rosen, N. A Bi-Metric Theory of Gravitation.
Gen. Rel. Grav., 4, 1973, pp. 435-448.

Hawking, S. W.: Black Holes in the Brans-Dicke Theory of Gravitation.
Commun. Math. Phys., 25, 1972, pp. 167-171.

Yang, C. N.: Integral Formalism for Gauge Fields.
Phys. Rev. Lett., 33, 1974, pp. 445-447.

Pavelle, R.: Unphysical Solutions of Yang’s Gravitational-Field Equations.
Phys. Rev. Lett., 34, 1975, pp. 1114.

Pavelle, R.: Unphysical Characteristics of Yang”’s Pure Space Equations
Phys. Rev. Lett., 37, 1976, pp. 961-964.

Lightman A. P.; and Lee, W. L.: New Two-Metric Theory of Gravity with
Prior Geometry. Phys. Rev. D., 8, 1973, pp. 3293-3302.

Lightman, A. P.; Press, W.; Price R.; and Teukolsky, S.: Problem Book in
Relativity and Gravitation, Problem 17.12, Princeton Univ. Press, 1975.

107

12

The Evaluation of Atomic Variables in MACSYMA *

Jeffrey P. Golden
Laboratory for Computer Science
Massachusetts Institute of Technology

1. Introduction

In this tutorial paper, we explore the many issues involving the use of atomic variables, of
names, in MACSYMA. We hope thereby to gain insight into the complexities of evaluation
which may sometimes cause frustration to the MACSYMA user. Some of the simpler aspects will
be glossed over as they are adequately covered in the MACSYMA Reference Manual (ref. 1), and
as we may assume that alt MACSYMA users are somewhat familiar with them.

2. Evaluation-Free Expressions

We begin by looking at "evaluation-free” expressions, in which names stand for themselves.

(C1) FACTOR(X"2-Y*2);
(D1) = (Y = X) (Y +X)

The basic idea in the above example is clear to the MACSYMA user. We wish to factor the

polynomial x2-yZ over the integers, so we type in the command line shown at (C1), obtaining the
answer at (D1). X stands for itself and Y stands for itself.

3. Implicit Assignment

Now, we decide to expand the result (D1). We may type
(C2) EXPAND(D1);
or more usually
e This work was supported, in part, by the United States Energy Research and Development
Administration under Contract Number E(l1-1)-3070 and by the National Aeronautics and Space

Administration under Grant NSG 1323.

109

-

(C2) EXPAND(X);

obtaining

(nz)'_ X -Y

In this case, we know that D1 or X do not stand for themselves, but rather that they both
refer to the expression -(Y-X)(Y+X); D1 because MACSYMA implicitly labelled that expression
with "D1%, and X because in MACSYMA it refers to the "previous” expression or computation.

4. Evaluation

It is important to be clear on the process by which the command lines (C1) and (C2) were
handled. These command lines were evaluated, meaning that in order to determine the
expressions FACTOR and EXPAND were to operate on, their arguments, the expressions X*2-Y*2, D1,
or % were evaluated (and simplified) first, and this means that the variables or names in them
were evaluated one time. Evaluation of names means that if a name has been implicitly or
explicitly assigned a value, that we obtain that vaiue. If a name has not been assigned a value,
the evaluator just returns the name itseif.

5. Explicit Assignment

We know that we can explicitly assign a value to a name with the use of : (colon). So, if
we wish to hold on to a polynomial, say x2+x+y, and invent a name of our own for it, we can

type

(C3) POLYI:X"Z-I-X#-Y;
2
(D3) Y+ X + X

we know that POLY1 and D3 are the same in the sense that they both refer to the same expression,
Y+X2+X. We also note that even though X and Y have no assigned values (are "unbound®), and
thus evaluation produced no changes in our polynomial, that it has been reordered by the
simplifier. Lastly, D3 being an implicitly assigned name goes on the LABELS list, while POLY1
being an explicitly assigned name goes on the VALUES list, which perhaps is named somewhat
confusingly. (These lists have many uses as noted in the manual) The following should be clear:

(C4) POLY1-2xX;

(D4) Y+eX =X

110

6. MACSYMA Options

We can also use explicit assignment to reset the value of a MACSYMA option. A .
MACSYMA option is simply a name that has been initially assigned a value by MACSYMA, and
which directs the performance of MACSYMA a certain way by its current setting. Thus, if we
wish to see the computation time elapsed in evaluating command lines, we may type

(C5) TIME:TRUES
time= 1 msec.
(C6) FACTOR(X*3+Y*3);
time= 90 msec.

2 2
(D6) (Y+X) (Y -XY+X)
(C7) TIME:FALSES

When we reset a MACSYMA option, even if we reset it back to its initial value, it goes on the
MYOPTIONS list.

-(C8) [LABELS,VALUES,MYOPTIONS];
(p8) [[c8, D7, C7, D6, C6, D5, C5, D4, C4, D3, C3, D2, C2,

D1, C1], [pPOLY1], [TIME]]

7. The EV Command

Often, we only wish to reset the value of a MACSYMA option temporarily, say, for a single
computation. We may do this as follows:

(C9) SIN(X)%COS(X),EXPONENTIALIZE;
*IX -%X XX - XX
| %I (XE - XE) (XE + %E)
(D9) - ereeeeceeceescseeeeeceeeneeee———-

This sets the value of the MACSYMA option EXPONENTIALIZE, normally FALSE, to TRUE only
during the evaluation of the expression sin x cos x, thus causing the trigonometric expression
~ to be converted to exponential form.
First, let us note that (C9) as given above is an easy way for typing in

(C9) SIN(X)%COS(X),EXPONENTIALIZE:TRUE;

The latter form is also acceptable, but the former abbreviated variant is available for many

11

MACSYMA options, and may also be introduced by the user by DECLAREing a variable as an
EVFLAG (see the manual, p. 120).

We also note that (C9) is an abbreviated syntax for a call to the EV command, and could
have been given as

(C9) EV(SIN(X)%COS(X),EXPONENTIALIZE);

EV is by far the most frequently used command in MACSYMA. The above example on the face
of it looks ver'y simple, and indeed, in most instances EV gives the expected result in a
straightforward manner. Unfortunately, as we shall see later on in this paper, EV’s many variants
which lead to its great usefulness, are also the reason for its complexity, in understanding it and
in how it is handled by MACSYMA.

8. Single Level of Evaluation

Let’s now assign to X the value of Z:

(Cl0) X:Z;
(D10) Y4

We know what typing in x2-yZ does:

(Cl1) X*2-Y~2;

: 2 2
(b11) z -Y
Let us now request the value of D2:
(C12) D2;
2 2
(B12) X -Y

We notice that the value of D2 has not changed even though X has now been assigned a value.
This is because MACSYMA ordinarily evaluates expressions (in this case D2) only one time and
does not re-evaluate expressions even if doing so would result in further change.

9. Multileveled Evaluation

One can request evaluation until no further change takes place by using the INFEVAL
("infinite evaluation”) flag of EV, as follows:

112

(C13) D2, INFEVAL;
(D13) | z -Y

In designing MACSYMA, we chose to ordinarily evaluate expressions only one time as this
gives the user much more control over his/her expressions in that he/she can control the number
of times evaluation is to take place. In almost every case this is not an important issue as
variables appearing in expressions are usually either unbound (stand for themselves) or are
bound to expressions containing variables all of which are unbound. Thus, in almost every case,
it would make no difference if we evaluated variables only one time or attempted to evaluate
them more than once.

However, suppose the user has an expression which is labelled, say, L1, which contains one
or more occurrences of the variable A, and that A in turn has been assigned as value a large
expression. (One way of accomplishing this easily is by assigning to L1 before assigning to A)
Then, thanks to the evaluation scheme described above, the user can play around with the
expression L1, ie use L1 in his/her command lines, without fearing that a large expression will be
plugged in for A'before the user wants this to occur.

(As another example, when the user typed D2; at (C12), the user may have only wanted to
see D2 displayed again, rather than wanting additional computation to take place at that point.
Or, when the user types VALUES; at MACSYMA, the user wants to see the names of the variables
that have been assigned to, rather than their values.)

When the user wants this plug-in to L1 to take place, this may be done simply with
MACSYMA by typing any of the following command-lines:

EV(L1); or L1,RESCAN; or L1, INFEVAL;

The first two are equivalent, and take advantage of the fact that calling EV causes the expression
L1 to be evaluated one extra time, ie. twice. This is obviously the reason the flag is named
"RESCAN". (The reason for this extra evaluation will be gone into further below, when EV is
taken up again.)

The above example, however, is actually somewhat artificial. If the user wanted the above
effect, it is more usual to either postpone assigning to A until that assignment is needed, or to use
the SUBST command when needed to substitute in that large expression for A However, one
circumstance in which a situation similar to that above occurs is when using the SOLVE command,
as in the following:

(C14) KILL(X)S

(C15) SOLVE(X*3+X+C,X);

113

2
SQRT(27 C + &)

(E15)) eeeecceeemeae-
6 SQRT(3)
c1/3
(E16) (E15 - -)
2
solution
%I SQRT(3) 1
%I SQRT(3) 1 2 2
(E17) Xz (= sccocencn <) E16 = ==cccoceccaca-
2 2 3 E16
%I SQRT(3) 1
. %I SQRT(3) 1 2 2
(E18) - X2 (-==ceneeen - «) E16 = ==--vocccmeceeea
2 2 3 E16
1
(E19) X = E16 - ==---
3 E16
(D19) ' [E17, E18, E19]

We note that in order to keep the solutions E17, E18, and E19 to the cubic equation somewhat
smaller than they otherwise might be, the label E16 is automatically assigned by SOLVE to a
subexpression common to all three solutions. The label E15 is also generated as an auxiliary
label. Thus, we gain somewhat in the size of displayed expressions at the expense perhaps of
some convenience in manipulating the expressions.

Now, let us look at what might be seen by some as a problem with MACSYMA's evaluation
and simplification scheme. Suppose we have

(C20) SIN(X)=COS(X);
(D20) COS(X) SIN(X)

(C21) EXPONENTIALIZE:TRUES

(C22) DIFF(D20,X);

114

%I X - % X %I X - %I X
%I (XE - XE) SIN(X) (%E + XE) COS(X)

Note that the EXPONENTIALIZE flag has been reset in the middle of a computation. The result
obtained in D22 (which, by the way, is equivalent to COSZ(X)-SINZ(X)) at first sight may be
surprising to the MACSYMA user. We see that even though the EXPONENTIALIZE switch has
been set to TRUE via C21, that D22 still has SIN's and COS’s in it! This can be seen to be a result
of MACSYMA's single level evaluation and simplification scheme in its interaction with the rule
for differentiation of products. Those parts of the result which are generated by DIFF are
scanned and converted into exponentials, whereas the unrescanned subexpressions are unchanged.
The user can obviously obtain the probably desired result, i.e. a fully exponentialized expression,
by causing a rescan to take place, eg. by

(C23) EV(DIFF(D20,X));
%I X - %I X xI X - %I X
XI (XE + XE) (%I %E + %I XE)
(D23) = =mmemcmcmcmcecccccaccecemceecmemccecmmcmmoee
4

*I X - %I X %I X - %I X
%I (XE - XE) (XI XE - %I %E)

or by
(C24) EV(D22);
*I X - %I X2 %1 X - %I X2

(XE + %E) (%E - %E)
(D24) 2 cececcmcccccccemnaa- 4 mmeeecccoccrnecaaaao

(C25) EXPONENTIALIZE:FALSES
(C25 resets EXPONENTIALIZE back to its default value.)
The results D23 and D24 are different for reasons explained in the section on EV below.
The single level evaluation and simplification scheme gives the user the extra flexibility
and control desirable in certain circumstances. Also, manipulation of expressions is faster, as -

expressions are not ordinarily rescanned unless specifically requested by the user. (An exception
to this is in MACSYMA's rational function package, where, in order for algorithms to work

115

correctly, it may be necessary for expressions to be consistent with the current environment) An
implementation which automatically rescans expressions whenever flags such as EXPONENTIALIZE
are reset since the last time the expressions were scanned is possible, although cumbersome, and it
would remove some level of control from the user.

10. The EV Command Explained

We have seen several examples of the versatility of the EV command above. The EV
command is used to control the environment in which an evaluation and/or simplif ication are to
take place. The general syntax is

exp, argl,...,argn

meaning that the expression exp is to be evaluated and simplified in the environment given by
the remaining arguments, the argi. For example, noting (C9) above

(C9) SIN(X)=COS{X),6 EXPONENTIALIZE;

we see that the intention is that the expression SIN(X)%C0S(X) be simplified, i.e. transformed, in
the environment where EXPONENTIALIZE is TRUE.

To see how this affects evaluation, we consider the example

(C26) X~2+1;

2
(D26) X +1
(C27) %,X=3;
(D27) 10

The expression % (or D26) is to be evaluated in the environment where X has value 3, giving 10. X
has value 3 while evaluating % (D26) irrespective of any vailue X might have in the “outside
world™. Also, X will revert to its "outside world™ (global) value when evaluation of the call to EV
in C27 is completed. (By the way, the syntax X:3 may also be used for X=3 here.)

Now, let us see just how the evaluation of the call to EV in €27 takes place. First, the name
% is evaluated, giving X2+1, thereby obtaining the expression EV is to work on. In general, names
appearing in the first argument to EV are evaluated one time at this stage. Usually, these names
are labels which point to (whose vaiues are) the expressions EV is to work on. The evaluation (of

the name X) will not take place in a case like EV(X2+1,X=3); where the name (X) is the left hand
side of an equatipn or assignment. Obviously, the global value of X is not wanted in this case.

Next, X is bound to 3, and the expression XZ+1 is evaluated in this environment, giving 10.
So, we note that the original expression % was evaiuated twice, i.e. one extra time.

116

Using this!informatlon, we can analyze how the command lines (C23) EV(DIFF(D20,X));
and (C24) EV(D22); are handled. In the case of €23, first the values of D20 (which is
COS(X)%SIN(X)) and of X (which is X) are retrieved. Then, the resulting expression
DIFF(COS(X)xSIN(X),X) is evaluated, which means, since EXPONENTIALIZE is TRUE and since
the evaluation of arguments takes place before DIFF is called, that COS(X) and SIN(X) are
converted to exponentials before the differentiation is carried out. Thus, we see that
EV(DIFF(D20,X)); is equivalent here to DIFF(EV(D20),X);. In the case of C24, first the value
of D22 is retrieved, which is an expression containing both SIN's and COS’s and exponentials.
Then, this expression is evaluated, which in this case, since EXPONENTIALIZE is TRUE, simply
causes the occurrences of SIN(X) and COS(X) to be converted to exponentials.

Noting the above analysis, the examples in the manual following the description of the
SUBST command should be clear. There, the differences between substitution as performed by the
SUBST command and binding as performed by EV, as well as the differences in the order in which
and extent to which evaluation takes place are illustrated. (The arguments in a call to SUBST are,
of course, evaluated before substitution takes place.)

We have seen above how EV may be used to affect evaluation. We have also seen the use
of the INFEVAL flag of EV to cause repeated evaluation of an expression until no further change
takes place. Now, we will briefly mention other flags of EV which may be used to affect how
evaluation and simplification takes place.

Especially when we use EV to plug in solutions obtained by SOLVE, eg.

(C28) X*3+X+C,E19,RATSIMP;
2 2
108 €15 -27C - 4
(D28) eemeemmemmeeeeeo
108 E15 - 54 C

we may wish one more evaluation than normal to take place, in this case to eliminate the E15.
This may be done with the INFEVAL flag of EV, but if we wish to control the number of extra
evaluations (usually, only one will be necessary), this may be done with the EVAL flag of EV.

(C29) X~3+X+C,E19,EVAL,RATSIMP;
(D29) 0

In fact, one extra evaluation will take place for each mention of the EVAL flag. EV finds that E19
evaluates to an equation that is used to obtain a value for X. The RATSIMP flag is a so-called
EVFUN which is used to obtain the simplification we desire, by composing it around the first
argument, i.e. C29 is equivalent to

(C29) RATSIMP(X*3+X+1),E19,EVAL;

(EXPONENTIALIig used above, is called an EVFLAG. It is a true flag, used to affect simplification
of trigonometric ?‘ unctions.)

There is also a NUMER flag to EV which is used to obtain numerical, i.e. floating point,
answers where possible. Eg.

(C30) SIN(1/2)+SQRT(1+XI),RECTFORM,NUMER;
(D30) 0.45508987 %I + 1.57810968

Sometimes, e.g. when the NUMER effect of EV is desired, but the extra evaluation done by EV is not,
the NOEVAL flag may be used to indicate that substitutions rather than evaluations are to be used
where necessary. (An example of the use of NOEVAL is given later.) EV will also use substitutions
rather than binding when the left hand sides of equations in its latter arguments are non-atomic.

Eg.

(C31) 2«SIN(X)"2+2%COS(X)"2,C0S{X)*2=1-SIN(X)"2,EXPAND;
(D31) 2

EV also plays a role in MACSYMA’s noun/verb scheme in converting nouns like DIFF
("derivative”) into verbs like DIFF ("differentiate”), as noted in the manual.

11. Program Binding

This section discusses the binding of names to values in function calls and the handling of
BLOCK variables. We proceed by considering an example. The following function definition for
MYTAYLOR defines a very limited Taylor series capability.

(C32) MYTAYLOR(EXPR,VAR,POINT,HIPOWER):=
BLOCK([RESULT],
RESULT: SUBST(POINT,VAR,EXPR),
FOR I:1 THRU HIPOWER
DO (EXPR: DIFF(EXPR,VAR)/I,
RESULT: RESULT+(VAR-POINT)*I
*SUBST(POINT,VAR,EXPR)),

RETURN(RESULT))S
(C33) MYTAYLOR(SIN(X),X,A,3);
3 2
COS(A) (X - A) SIN(A) (X - A)
(D33) 1= ~=comoommmcccoe - cemccmmceemoees + COS(A) (X - A) + SIN(A)
6 2

I
The definition for MYTAYLOR has four names, EXPR, VAR, POINT, and HIPOWER, which are

118

called the “formal parameters” of the function definition. They are bound in turn to the values
of the argument;i‘ or "actual parameters” of the function call; in the case of (C33), to SIN(X), X,
A, and 3, respectively, (X and A are unbound) when the cail is handled. When the body (right
hand side of the function definition) of MYTAYLOR is exited upon completion, these bindings are
undone, and EXPR, VAR, POINT, and HIPOWER again take on whatever values they may have
had prior to the call. We also note that EXPR is assigned a new value each time the DO statement
loops. This, of course, causes no difficulties.

The definition also has a local BLOCK variable RESULT. Being a BLOCK variable, it is
treated as unbound upon entering the BLOCK, and in this case, in the first actual statement of the
BLOCK, it is assigned to. RESULT is reassigned in the body of the DO statement, and, noting the last
statement of the BLOCK, its final value is actually the value returned by the call to MYTAYLOR
And, like the formal parameters of the definition, when the BLOCK is exited, RESULT takes on
whatever value it may have had outside the BLOCK.

(We note that we can use this last fact to temporarily reassign the value of a MACSYMA
option, as in the following example for teaching MACSYMA a possible simplification rule 0°0 »-
1. Here, we want simplification turned off while the rule is being set up to avoid getting an error

message.

{C34) 070;
0
0 has been generated

(C35) "'BLOCK([SIHP],SIHP:FALSE.TELLSIHP(O“O.l));
rule ﬁlaced on *%x _
(D35) {=xRULE1, SIMPEXPT]

(C36) 0°0;
(D36) 1)

Lastly, the definition has a local DO variable I. I is given an initial value of 1 in the
definition. This is the value I has the first time through the body of the DO. Each successive
time through the body of the DO, the value of I is incremented by 1. And, just as with BLOCK
variables, when the DO statement is exited, I takes on whatever value it may have had outside the
DO.

The above example exhibits no real difficulties. When a function call is made, variables
are bound to certain values. The values these variables had prior to these bindings are placed on
a list, and when the body of the function, BLOCK, or DO statement is exited, these prior values are
retrieved and the variables are reassigned to them.

But, let us exhibit a case that doesn’t work so well. Consider

(C37) F(X):=SIN(X)+XS

119

(C38) F(-X);
(D38) - SIN(X) - X

This is surely the answer we expected. We note that X was bound to -X during the evaluation of
the body of the definition for F. But, what if

(C39) f’(X) :=EV(SIN(X)+X,NUMER)S

(C40) F(1/2);
(D40) 0.97942555

(C41) F(-X);
(D41) SIN(X) + X

The intention of the user is to obtain numerical answers in cases like C40. But, notice what
happened in evaluating the command line for C41. Variables in EV's first argument are
evaluated twice, and X evaluated twice gives -(-X) or X; not the -X the user probably intended.

One way to get around the problem in this case is to use the NOEVAL flag to EV.
(C42) F(X):=EV(SIN(X)+X,NUMER,NOEVAL)S

(C43) (F(1/2),F(-X)];
(D43) [0.97942555, - SIN(X) - X]

Note that SIN is handled by the simplifier, rather than by the evaluator.

In general, however, when EV is used as above in the body of a function definition, a better
_ and sometimes necessary solution is to name one’s local program variables (i.e. function, BLOCK, or
DO variables) differently from one’s symbolic variables (the variables appearing in one’s actual
expressions). E.g. if one expects that XX will not appear in one’s expressions (or in that of a user
of one’s programs!), then the following will work.

(C44) F(%X):=EV(SIN(%X)+XX,NUMER)S

(ca5) [F(1/2),F(-X)];
(D45) [0.97942555, - SIN(X) - X]

Problems like the above occur rarely in using MACSYMA. We are thinking about

solutions to it. It is discussed in reference 2 and a possible solution via a change in
implementation of MACSYMA is proposed there.

120

12. Single-Quote and Quote-Quote

Single-quote (”) and quote-quote (“/) are two operators which affect the evaluation of
names (and of other forms) in essentially opposite ways. A complete discussion of these operators
is given in section 3.2 on Evaluation in the MACSYMA manual, and that discussion will not be
repeated here. Essentially, preceding a variable by a single-quote prevents an evaluation from
taking place; while preceding a variable by a quote-quote causes an extra evahiation and
simplification to take place. The effect of single-quote is at evaluation time, while that of quote-
quote is at parse time. Quote-quote is often used to cause re-evaluation of a C-label.

One interesting use of single-quote is when using the INFEVAL flag of EV. Suppose one has
an expression named EXPR which one wishes to repeatedly evaluate until no further change takes
place. Suppose, however, that EXPR contains a variable, say X, which one would prefer to retain
as a name in the expression, even though X is now bound. One simple way of doing this is as
follows.

EV(EXPR, INFEVAL, X=X);

This assigns to X the vaiue of X during the “infinite” evaluation of EXPR, thus causing X to
remain unchanged in the process.

(By the way, using single-quote, of course, offers another solution to our problem above, e.g.
(C46) F(X):=EV(“(SIN(X)+X),NUMER)S

(C47) [F(1/2),F(-X)];
(D47) [0.97942555, - SIN(X) - X])

13. Other Issues

To keep this paper reasonably sized, only the evaluation of atomic variables was discussed.
Thus, many other evaluation issues were not mentioned. For the sake of completeness, a list of
these omitted issues is given here: Other evaluation-forms, eg. compound statements, the colon-
colon (:) operator, LAMBDA notation, APPLY and MAPping, 60 and RETURN, predicate evaluation,
passing function names into programs and the evaluation of function names, passing array names
into programs, the evaluation and simplification of SUM and PRODUCT, the noun-verb scheme,
subscripted variables and functions, running interpreted (normal) functions vs. running translated
or compiled functions, and debugging what the evaluator has done to you. Many of these issues
are discussed at length in the manual, or may be the sub ject of future papers.

I wish to thank Joel Moses for coaxing me into writing this paper, Ellen Lewis for her
helpful assistance, and all members of the Mathlab Group and others at M.LT. and elsewhere for
our many discussions, agreements, and disagreements on the subject of evaluation - a hotly
contested issue!

REFERENCES

- L The Mathlab Group: MACSYMA Reference Manual. Version 8. Lab. Comput. Sci,
Massachusetts Inst. Technol.,, Nov. 1975.

2. Moses, J: The Variety of Variables in Mathematical Expressions. Proceedings of the 1977
MACSYMA Users’ Conference, NASA CP-2012, 1971. (Paper no. 13 of this compilation.)

122

13

THE VARIETY OF VARIABLES IN MATHEMATICAL EXPRESSIONS

Joel Moses
Laboratory for Computer Science, MIT*

The methods of evaluating mathematical expressions in a symbolic mathematical system
differ from system to system. We show that classical computer science evaluation approaches are
inadequate for this task. The problem is that one is mixing two worlds - the world of mathematics
and the world of programming. An approach which separates these two worlds is indicated, and
various alternatives to it are indicated.

Consider the evaluation of the following pair of statements in a programming language
such as FORTRAN or PL/I. The statements are written in MACSYMA syntax.

(C1) y:5
(C2) . x:9+2

After the first statement has been evaluated, the variable y will have the value | stored in
a cell reserved for y. In evaluating the second statement, C2, the value of y is obtained from that
cell, a constant 2 is added to it, using integer addition , and the result is stored in the cell reserved
for x. This process of looking up values in cells temporarily reserved for variables is equivalent to
the usual method of evaluation of variables employed in most programming languages.

Now consider a slight variation on the two statements above:

(C1) X:9+2
(C2) y: 1

Suppose that has no value at the time the first statement is reached. What is the value
to be given to x? Different languages will have different results. Some might automatically store
some starting value, say 0, for all variables. Others may discover the problem in the compiler and
give an error message. In an algebraic manipulation system such as MACSYMA, neither of these
actions occurs. The result stored in the cell reserved for x is the expression y + 2. This is obtained
in the following manner. The identifier 9 is encountered and the cell reserved for it is examined.
This yields the information that y has no value at this time. Thus the result returned for y is the
expression ¥y itself. Such an action cannot be taken by an algebraic language which does not have
a symbolic expression as a legal data type, and it is one thing which makes algebraic manipulation
languages differ from other languages. Next the constant 2 is evaluated as usual. The addition
is handled differently. Since we no longer have numbers only, numerical addition becomes

». This work was supported, in part, by ERDA contract Number E(1I-1)-3070 and NASA Grant
NSG 1323. '

123

simplification of sums. The simplifier may use numerical addition, but in this case cannot, and
thus returns the expression y + 2 to be stored in the cell for x.

Now consider the second statement, C2. The evaluation done here is quite normal, that
is, a constant | is stored in the cell reserved for y. Consider the value for x after this point,
however. Either x has the old value of y + 2 or else it has the value 3, which utilizes the newly
obtained value of y. That there is an issue here is due solely to the fact that the variable x has a
value involving the symbol 9. In the usual algebraic language, if x depended on an old numerical
value of y, and then y's value changed, no one would expect x’s value to change automatically.

Let us consider the alternatives for the value of x again. The value y + 2 is easy to get,
because that is exactly what is stored in the cell reserved for x. We claim that users of algebraic
manipulation systems want to get the value 3 most of the time. There are several ways of getting
that value for x. The rest of this paper will discuss such approaches, and the difficulties that they
engender.

The basic idea of the alternative approaches is to re-evaluate the value of a variable.
Thus in MACSYMA the command:

(C3) x;
will return y + 2, but

(C3") EV(x)
will return 3.

The EV function will, in effect, evaluate the expression y + 2 for x. Since y now has the
value 1, simplifying 1 + 2 will yield 3. Thus the MACSYMA user can in this case choose either of
the alternative values for x. The EV command is insufficient in handling more complex cases,
however. Furthermore, experience indicates that the value the user would normally want to see is
3, and thus extra work should be required for getting the y + 2 rather than the 3, as is now the
case.

A simple example, where EV fails to give the desired value, is shown below:

(C1") x:y+1
(C27) y:z+2
(C3") Z:w+ Y

Consider the possible values for x: Using the usual algebraic evaluation scheme, x
evaluates to y + I. Using EV(x), we would get z + 3 after simplification. Our user probably wants
to see w + 6. We could get that by calling EV twice, or EV(x,EV AL), but that simply exposes the
problem with EV, that one may need to hold its hand until one gets the value one desires. The
key to getting w + 6 automatically is to consider another evaluation strategy; namely a Markovian
or infinite evaluation strategy. '

124

The basic idea behind infinite evaluation is to keep evaluating the results until there is
no change. The process ends when one obtains a constant or a variable which has not yet been
given a value. Such a strategy has recently been introduced into EV with the INFEVAL mode.
Thus, EV(x, INFEVAL) would yield w + 6 in the example above.

There are two basic problems with the infinite evaluator strategy. It is not the strategy
you want when dealing with usual programming variables. Moreover, when it is clear that you
want something like infinite evaluation, it is not precisely infinite evaluation that you want. We
shall deal with the latter, and easier, issue first.

Consider a situation which might occur when one uses substitution of variables a
number of times in a problem:

x: f(y,2);

y : gilu,0);
z: galu,v);

u: hy(r,s)
v : hy(r,s);

r:kyp.qh
5 kz(p,q);

What are the possible values for x? The usual evaluation strategy will yield f(y,z2).
EV(x) will yield an expression in u and ». EV(x, INFEVAL) will yield an expression in values p
and ¢. Suppose you wanted to see x in terms of r and 5. This request, which is not unreasonable,
is hard to satisfy in general using the strategies we have discussed. There is an easy solution,
however. This is to make r and s temporarily appear to have no value, and then infinitely
evaluate x. We call the role that r and s play in this case shadow variables. Shadow variables are
variables which have known values, but are temporarily considered to be atomic.

Shadow variables are, in a sense, already in use in MACSYMA in various ways. When
solving cubic or quartic equations, certain intermediate results are generated and given E labels.
The final result is given in terms of these E labels. The reason for using the E labels is to keep
the expression relatively small. We claim that the E labels are acting as shadow variables for those
intermediate expressions they possess as values. Unfortunately, there is no easy way to keep the E
labels from being evaluated on command. An expression containing them, when evaluated using
EV, will substitute the values for the E labels. The shadow variable scheme, when implemented,
would allow one to introduce shadow variables and specify exactly when their values are to be
shown. There are yet other situations in MACSYMA where a similar need for shadow variables
shows up. MACSYMA’s constants 2E and %Pl have numerical values associated with them which
ara revealed when one evaluates an expression with, say, EV(expression, NUMER). Thus %E and
ZPI may be said to be shadow variables. Similarly the functions SIN and COS are shadowing

125

their numerical counterparts. Thus EV(SIN(I), NUMER) calls the “value” of the SIN function in
order to obtain a numerical result.

In the above we have considered evaluation of mathematical expressions without dealing
with the companion operation, that is, simplification. Since these two operations tend to get
confused, we would like to indicate a possible distinction. We like to consider evaluation as a
relatively straightforward, well-defined, and simple operation whose basic job is to replace
variables and functions with arguments by their "values”. Simplification, on the other hand is a
less well-defined operation which does not usually deal with programming concerns such as
variables and their values, but rather with equivalence transformations on the mathematical
ob jects themselves. We would like the result of evaluation to be unique. We know that the results
of simplification are often not so well defined and different users will want different results.

It turns out that a classic way to implement simplification algorithms is with a Markov
algorithm, i.e, infinite evaluation. Since we indicated that infinite evaluation might be of use in
evaluation, it is not surprising that one algebraic manipulation system, SCRATCHPAD, has opted
for having only an infinite evaluation scheme. This is reasonable only as long as one avoids
writing subroutines and stops using variables in the usual programming sense. In such a case, one
can get into unexpected difficulties, with one of the simplest of them shown below:

(CI) flx) =x + 1
(C2) f(x + 2);

Consider the value of f(x + 2) called for in C2. In MACSYMA, using the usual
evaluation strategy, you would get x + 3. But with infinite evaluation for all variables you will get
an infinite loop, since the x occurring in the expression x + | in the definition of f(x) forces one to
keep evaluating its value. SCRATCHPAD prevents the user from defining functions in the usual
way, but this is clearly unsatisfactory in general.

Infinite evaluation thus has a drawback in that it allows infinite loops. The possibility
for looping may be essential when dealing with most Markov algorithms. But mathematicians do
not evaluate expressions that way! When x depends on y and y depends on x that leads to a system
of equations to be solved and not one to be evaluated or simplified. Evaluation of mathematical
expressions requires a finite number of substitutions and no loops are allowed. We shall call
"finite evalution” the process which evaluates without bound, but which checks for loops and thus
avoids infinite loops. We believe that infinite evaluation has been in vogue in certain symbolic
systems due, in part, to a confusion between simplification and evaluation. Simplification
algorithms, if implemented as Markov algorithms will, in fact, require loops! If a loop is found in
finite evaluation, we shall assume that evaluation stops and an error message is given.

Another approach that has been taken is to recognize that some variables will be
evaluated once and others infinitely, and to force the user to choose the mode by a declaration or a
change in the spelling of the variable’s name. An approach which relies on declarations is
essentially the one taken in REDUCE. In addition to our desire for a distinction between finite

126

and infinite evaluation and for a shadow variable capability, we eschew the declaration or the
spelling approach because one does not want users of interactive systems to make declarations
unless they’re absolutely required, as successful interactive systems such as APL and LISP have
clearly indicated. In addition, the declaration approach is unnecessarily restrictive, since it does not
normally allow a variable to be used in both the usual or finite evaluation modes in the same
subroutine, for example.

Hence our goal is to indicate an evaluation strategy that 1) gives the user the usual
strategy when he wants it for a given variable, 2) gives him the finite evaluation strategy when it
is more appropriate and (3) allows him to switch from one mode to the other while requiring
hardly any declarations. This particular feat of magic appears possible when we make the
following observations:

1) Variables used inside subroutines are usually intended for programming ob jectives
and not as symbolic data objects. Users of such variables will usually want them to be evaluated
just once.

2) Variables used in an interactive step-by-step mode, with the exception of labels, are:
usually intended as symbolic data objects. Users of such variables will usually desire them to be
evaluated finitely. Labels, such as MACSYMA's C; and D, labels are not data ob jects. The values
of labels will usually be desired to be evaluated finitely, however.

If we take these observations to heart, then we would evaluate all variables inside
subroutines just once, and all variables occurring in step-by-step (top level) calculations finitely.
We could allow for exceptions by declaration, but such declarations will rarely be necessary. Yet
this doesn’t solve the problem. The basic dilemma is that inside a given subroutine one could
have the identifier x representing a local variable (which is to be evaluated just once for its value)
and implicitly have a data ob ject containing the variable x (which is to be evaluated finitely for its
(usually different) value).

Before I describe a proposed solution, let me recall some remarks made to me by the late,
famous computer scientist, C. Strachey, in 1965. Strachey said that mathematicians never really
understood the concept of a variable. The variables in mathematics are clearly constants. It is
computer scientists who were the first to deal with and appreciate variability in mathematical
ob jects.

I was deeply impressed by Strachey’s comments and to my sorrow I have learned how
misleading they were. Mathematicians, physicists and engineers, I have concluded, have used a
much richer concept of yariable than computer scientists have ever dreamt of. Since symbolic and
algebraic manipulation systems are essentially the only computer systems to attempt to deal with
mathematics in the way it is usually dealt with, they have been most hurt by the interpretation of
'variables in vogue in computer science. In part, computer scientists have been overly enamored by
variability of our variables (eg., x : x + 1), and have oniy lately learned that there is much to be
gained in ease of understanding by restricting variability. In part, and this is a ma jor point of the

127

present effort, variables in computer science have not shown much variety of interpretation. The
reason is largely that the data ob jects in vogue in computer science (i.e, numbers) do not possess
much structure.

Getting back to the present sub ject, we note that one solution is to recognize that there
may be several different variables with the same name at the same time throughout a computation.
Many languages already allow one to use the same identifier for both a function and a variable,
since the usage is so very different. Others might let one use array names which are the same as
variable names. Again the usage differentiates them. In mathematics it is common to play such
games, some would call them puns, depending on context to give sufficient information regarding
the type of the variable intended and its mode of interpretation. In our situation, we claim that
there is no acceptable solution unless each variable can essentially have two different values, a
regular one and a symbolic one. At any given time, the value chosen is a function of the
interpretation assigned to the variable. The remaining questions are largely of how one
determines what interpretation to assign.

We are, therefore, led to propose the following evaluation strategy:

Rule 1. A variable used in the top level, step-by-step mode uses its symbolic value, unless
a declaration is made to do the contrary. The symbolic value is then evaluated finitely.

Rule 2. A variable used inside a subroutine uses its regular value which is not further
evaluated, unless there is a declaration made to do the contrary. '

Rule 3. A label used at the top level stores its value in its regular value cell. The value
of a label is further evaluated finitely.

Switching modes, an issue we made much of earlier, could be accomplished with EV
using the following rule.

Rule 4. In a subroutine, EV of a programming variable first evaluates using the
variable’s regular value. The result is then evaluated finitely, using only the symbolic values for
any variables. Should a variable given to EV not have a regular value or be declared symbolic, its
symbolic value (which always exists) is used and evaluated finitely.

We believe that such rules allow for the diversity of usage of variables in symbolic and
algebraic manipulation systems that users expect. Since the scheme above has rot yet been
implemented, we unfortunately do not have practical experience as yet to indicate its acceptance in
such a context, but we hope this situation will be remedied soon.

We shall now discuss various approaches which are closely related to the proposal above.
The first is that instead of having two value cells for each variable, one would achieve largely the
same purpose by automatically renaming one of the variables. For example, any variable
occurring inside a subroutine and not declared to be symbolic could be renamed, for example, by

128

automatically attaching the symbol % to the name. Thus, the symbolic and programming variables
would be distinct and the values would not clash. The communications between the two modes
would be handled by EV still, but slightly differently. For example, suppose we communicate the
expression x+I into a subroutine which would like to assign different values to I. Inside that
subroutine, we might use the variable J, and then perform SUBSTITUTE (], 'I, expression).
Here, 'I will indicate that we mean the symbolic variable I, rather than the programming variable.
L

Another approach, which is closer to what the FORTRAN-based (e.g., FORMAC) rather
than the LISP-based systems have attempted is to disallow assignment to symbolic variables and to
force users to simulate the Markov algorithm evaluation by explicit substitution, Thus if you wish
to substitute 2 for y in an expression, you explicitly make the substitution or similarly indicate it
with EV(expression, y = 2). This forces the user to separate his mathematical and programming
worlds and could avoid some confusions. It does appear to force the user to be more explicit in his
evaluations, which may get tiresome. It also necessitates another mechanism for dealing with
shadow variables and possibly even with labels for expressions.

CONCLUSION

This paper discusses various distinctions which can be made regarding evaluation of
mathematical expressions: regular evaluation vs. infinite evaluation vs. finite evaluation, regular
variables vs. mathematical variables vs. shadow variables vs. labels, simplification vs. evaluation
vs. solution of equations. We claim that the unsatisfactory state of evaluation strategies in
symbolic systems is due to insufficient use of such distinctions in the past. Yet we can claim to
have only begun the discussion about such distinctions and the various mechanisms for
implementing them in a human engineered manner.

This paper resulted from discussions that have been going on in the Mathlab Group for
the past year. Not surprisingly, a number of positions on evaluation have arisen. We shall
mention only two here. In a companion paper, Jeffrey Golden defends MACSYMA's current
evaluation strategy. This strategy has changed somewhat in the past year with the introduction of
the INFEVAL mode in EV. Another view is held by David Barton. He maintains that
mathematicians hardly evaluate expressions. Usually they restrict the range of solutions with side
conditions {e.g., let x2 = @ in ..) until only one result is possible. He also maintains that assignment
to mathematical variables should appear syntactically different from assignment to programming
variables. Substitution also replaces evaluation in many cases in his scheme. The approach of this
paper may be viewed as a compromise between such views.

We wish to acknowledge the usefulness of discussions with David Barton and Jeff
Golden, as well as with Michael Genesereth, Barry Trager, and Richard Zippel.

129

RATIONAL APPROXIMATION TO e WITH NEGATIVE REAL POLES

Elizabeth Cuthill
David W. Taylor Naval Ship Research and Development Center

SUMMARY

This note describes an application of MACSYMA to the generation of an
expansion in terms of Laguerre polynomials to obtain approximations to e ¥
on [0, ») of the form

P
m

X m
1+ E?

Here P, is a polynomial of degree m-1 in x. These approximations are compared
with those developed by Saff, Schonhage, and Varga [3]. Their's are optimum
Chebyshev approximations. In particular, Table 3 contains a comparison ot

the maximum errors in the Chebyshev sense showing the superior performance of
the approximations in [3] when this norm is used. Table 4 contains a compari-
son of the least squares errors. In such a comparison, the approximations
developed in this paper are superior.

Kaufman and Taylor [4] consider approximations to e = of the form

P
m

(l+BlX) (l+B2x)...(l+Bmx)

where By,...,B; are positive real numbers. In this note we also consider the
expansion of e“X(l+le).;.(l+Bmx) in terms of Laguerre polynomials. The

first few terms of such an expansion are derived with MACSYMA.
INTRODUCTION

In the few months that we have been working with MACSYMA, we have found
that it provides us with a greatly expanded capability for generating and
exploring the behavior of a variety of approximations. In this note we dis-
cuss one such application of MACSYMA for the generation of ratiomal approxi-
mations to e ¥ on [0,) with negative real poles. There has been consider-
able interest in the past few years in'such approximations because of their
importance in developing and analyzing numerical methods for solving certain
systems of differential equations [1, 2].

In particular, in a recent paper, Saff, Schonhage, and Varga [3]

developed a sequence of rational approximations to e™® for x on [0, «) of the
form

131

14

P m=1, 2, ... (1)

Xx.m
1+ E?

(with P, a polynomial of degree m-1) which are optimum in the Chebyshev norm
and converge geometrically to e X on [0, ®). On considering this sequence of
approximations, a natural question arises - how does it compare to an
approximating sequence obtained by using for P, the first m terms of the
expansion of

-x X\ M
e (1 + m)

in Laguerre polynomials? Such an expansion can be generated analytically.
The availability of MACSYMA allowed us to easily obtain the required expansion
to answer some of our questions.

A recent paper of Kaufman and Taylor [4] considers a more general form
for the approximating function:

P m=1, 2, ... (2)
(l+le) (l+B2X)...(l+Bmx)

where again P, is a polynomial of degree m-1 in x and the By are real and
positive. They prove an existance theorem for best Chebyshev approximations
of this form to e * on [0, -«). Their numerical results suggest that the
best uniform approximation to e ¥ from this class has only one pole and

for m=2 they prove such a result. Here we consider the first few approxima-
tions of this type which can again be generated using the appropriate number
of terms of an expansion of e‘X(l+le)(l+Bzx)...(l+Bmx) in Laguerre poly-
nomials. In these expansions P, depends mnot only on X but on the parameters
Bi1s..+.5By. Nearly optimum values for the By in the Chebyshev sense for the
first few such approximations are obtained and compared with those obtained

in [4].
RESULTS

The first case comnsidered is the generation of a sequence of approxima-

tions to e X of the form

Pm
(3)

X m
1+ 5?

form =1, 2, ..., 10, by a sequence of expansions of the form

132

B
1
=

A, mLi(x) (4)

H
]
o

where .
o0

A, =)~ e X (1+ §)m L. (x) e_xdx.
im J m i

We do not expect such an approximation to behave well for large m, but for
small m we expect it to do reasonably well. Table 1 contains the values of

Ai generated by MACYSMA for m = 1, 2, ., 10. Table 2 contains the
egdivalent polynomials. The program .used for generating such an approximation
of order m is given in Figure 1. Figure 2 shows the execution of the program
of Figure 1 for m = 4.

Since the Chebyshev approximations are developed in [3] and (4) gives
a weighted least squares approximation, we expect cur maxXximum absolute error
to be larger than that obtained in [3] for an approximation of the same
order. This is confirmed by Table 3 which contains estimates of the maximum

errors on [0, =) for the approximations in Table 2 and in Reference [3]. The
relative error for the approximation sequence presented here remains under
control somewhat longer than for the minimax approximations of [3]. An

estimate of the interval on which the relative error remains under 10% for
both sets of approximations is also given in Table 3. Note that beyond that
point there will in general be less than one significant figure in the
approximation.

Table 4 contains weighted least squares errors in two forms:

(e (e - P’“—)2 dx v (5)
j 1+ 5H"
o m

and
g EEeFa +5H™ o p)2 g H (6)
. e e o o X .

Note that for given m and Pm’ MACSYMA can perform the integration in (6)
exactly.

133

The approximations given by (4) behave somewhat erratically with respect
to the error norm (5), but they behave more regularly with respect to the
error norm (6) used in generating the approximation.

For the general approximating form in expression (2),
the first three approximations to e ¥ of the parametrized form

m-1
P = Z Ay (B B ())
i=0
where
= -X -
im —f e (1+le) (l+Bzx)...(l+Bmx)Li(x)e dx (8)
(]

were generated. In particular, for m=1,

B.+2

_ 1
Bo,1° T4 (9)

so that the approximating function is

B.+2
1 (10)

Z?1+le)
The entire set of approximations generated by varying Bl goes through the
point x = .5 with a value of .5. Since |e™- ~-.5| = 7.1065..., we have
a bound on how well (1) can perform in approximating e ® on [0,) for any
fixed value of B.

From Table 3 we have that for By = 1 in (10), an estimate of the maximum
error in approximating e * on [0, ») is .25. This can be improved to .109
by taking By = 2.435.

134

For m = 2, we determine

B.B_+B_+B,+2

_ BB, B ¥B,

By, 2 = G

PO
1,2 8

so that the approximating function has the form

(B)B,-2)Z + B,B,+2(B,+B,) +6
8(L+B,2) (1+B,Z)

(11)

As noted in Table 3, when B, = B, = .5, an estimate of the maximum
_error in using (11) as an approxiImation to e X on [0, ») is .033. It
appears that this can be improved only slightly by changing the values of

B, and B,. Kaufman and Taylor [4] show that the optimum Chebysuev approxima-
tion to €X of the form (2) with negative real poles has B, = B2. The optimum
approximation in the Chebyshev sense which they determine %as Bl = B2 = .52416

and has an estimate for the maximum error on [0, =) of .02271.

For m = 3 we determine

R _ 3B1B2B3+2(B1B2+B1B3+B2B3)+2(Bl+BZ+B)+4
0,3 8
L 3B, BB+ (B, B +B) Bo+B,B,) =2
13 8
' 3B1B2B3+2(BlBZ+BlB3+BZB3)+(B1+B2+B3)—2
Apg = - 16

With this set of expressions,

Bl = ,214 B2 = .27 B3 = .3
or any permutation thereof appears to be near optimum. With this set of
parameters our estimate for the maximum error is .019 which compares with
the value of .056 from Table 2 for B,=B.,=B,=1/3 and .00805, the error
estimate of Kaufman and Taylor obtaiined whén B=B.=B =B,= .27127 in (2)
and P, was determined to minimize the Chebyshev form. “They determined that
this value for B was near optimum.

For convenient reference, a table of the first ten Laguerre polynomials
generated by MACSYMA is appended as Figure 3..

135

136

REFERENCES

Cody, W. J.; Meindardus, G.; Varga, R. S.: Chebyshev Rational Approxima-
tions to e X in [0, =) and Applications to Heat—Conduction Problems.

J. Approx. Theory, 2, 1969, pp. 50-65.

Cavendish, J. C.; Culham, W. E.; and Varga, R. S.: A Comparison of Crank-
Nicolson and Chebyshev Rational Methods for Numerically Solving Linear
Parabolic Equations. J. Comp. Physics, 10, 1972, pp. 354-368.

Saff, E. B.; Schgnhage, A.; and Varga, R. S.: Geometric Convergence

b

to e X by Rational Functions with Real Poles. Numer. Math. 25, 1976,
pp. 307-322.

Kaufman, E. H., Jr.; and Taylor, G. D.: Best Rational Approximations with
Negative Poles to eX on [0,). To appear in Pade and Rational
Approximations: Theory and Applications (E. B. Saff and R. S. Varga,
Eds), Academic Press, Inc.

LEL

TABLE 1

Coefficients A

(See Equation (4))

i,m
jird
i 1 2 3 4 5 6 7 8 9 10
N # v

0 3 |13 | 61| 891| 4433 | 37289 | 1711167 | 61545067 | 35347283 | 2974181307
5 | T6 72 | 1024 | “5000 | 41472 | 1882384 | 67108864| 38263752| 3200000000
1 7 | 71359 799 | 12191 64081 | 17034691 4549531 715994377
32 36 | 2048 | 5000 | 82944 | 470596 | 134217728 38263752| 6400000000
1| 13| - 77| - 179 | -45061 |- 3847297| - _2451601| =-110203799
72 | 4096 | 20000 | 20736 | 3764768 | 268435456| 153055008 | 6400000000
~183 | - 223 | - 895 | -38721 {-10444889| - 350659 | -220627809
8192 | 10000 | 41472 | 1882384 | 536870912| 19131876 | 12800000000
- 551 | =3919 | =-76315 |- 9363467| - 4609771 | _-334134773
40000 |331776 | 7529536 [L073741824 | 612220032 | 51200000000
5 ~2833 | -23881 |- 5050243 | - 1061711 - -129582367
663552 | 7529536 [2147483648 | 612220032 | 102400000000
6 ~11313 |- 290279 310547 . 12658197
30118144 (1294967296 | 2448880128 | 51200000000
3374353 487751 39102607
8589934592 | 1224440064 | 102400000000
8 323197 90749869
1224440064 | 409600000000

9
71643279

819200000000

TABLE 2
APPROXIMATING POLYNOMIALS Pm (See Equation (3))

o o3 o - _12-33 b o 22~ 32 7 + 152
1 "% 2 32 3 144
3 2
» 612 - 523 7% - 1878 7 + 16814
4 16384
4 3 2
o 551 7% - 12384 2> + 73632 7” + 28896 7 - 966216
5 960000
. 2833 7> - 110015 z* + 1480040 Z> - 7442760 z° + 288600 2 + 79611960
6 79626240
6 5 4 3 2
P, = - (3771 z° - 326804 z° + 9525750 z* - 120883040 2> + 621070920 Z
— 58785120 Z — 7221056400) /7228354560
7 6 5 4
B, = - (3374353 z' - 161279391 z° + 1981437906 Z° + 13968908310 Z
— 472304862120 Z° + 3058703597880 z2 — 190815090480 Z
—~ 43270628481360) /43293270343680
8 7 6 5
P, = (323197 z° - 24586616 2’ + 706666604 2° - 9122407392 Z
+ 37275042840 Z* + 284113381440 Z° - 2860087476960 Z2 + 61728145920 Z
+ 49362418082880)/49369423380480
B 9 8 7
P, = - (23881093 2° ~ 2478867747 Z° + 104255443296 2
~ 2266707280992 z® + 26146314869472 7Z° - 126953976270240 z*

296150820215040 Z3 + 4937695894897920 Z2 + 1012259928960 Z

99090082246700160) /99090432000000000

138

TABLE 3.

ERROR ESTIMATES

Interval in which relative error
Maximum Error remains less than 107
For For Using Approxi- '
Approximation | From [3] Approximation | mation from
o (3), (4) (3), 4 [31
1 .25 .16 - -
2 .033 .025 [0,2.0] [0,1.6]
3 .056 .015 [0,2.7] [0,1.9]
4 .026 .0079 [0,4.4] [0.2.8],[3.1,4.1]
5 .0135 .0031 [0,4.9] [0,4.0]
6 .0080 .0089 [0,7.1] [0,4.7]
7 .0011 .00019 [0,8.2] [0,7.3]
8 .0042 .000121 [0,8.7] [0,7.4]
9 .0059 .000070 [0,10.1] [0,7.4]
10 .0043 .000030 [0,12.5] [0,8]

139

TABLE 4.

LEAST SQUARES ERRORS

Estimate of
Expression (5) Estimate of Expression (6)
for Approximation of for Approximation of
m (3),(4) Reference [3] (3), (%) Reference [3]
1 .136 .106 .259 .274
2 L0124 .0176 .0432 .0552
3 .0175 .0105 .0300 L0451
4 .0082 .0055 .0180 .0328
5 : .00203 .00214 .0060 .0157
6 .000118 .000620 .00100 .0059
7 .000267 .000137 . 00054 .00158
8 .000138 .000085 .000352 .00126
9 .0000375 .000049 .000125 .00092
10 .00000214 . 0000207 . 0000224 .000466

140

FIGURE 1. - PROGRAM TO GENERATE Pm

time:true;
1{n)(x,a):=((2*n-1+a-x)/n)*1[n=-11(x,a)-((n-1+a)/n)*1[n-21(x,a);
1[0](x,a):=1;
1[1](x,a):=1=-x;
fn(x,n):=(1+x/n)**n*exp(-x);
for 1:0 thru m-1 do '
(1ifil:ev(1[il}(x,0),ratsimp), ‘
in:-integrate(lif{il]¥*exp(-x)%*fn(x,m),x),
display(ali,m):ev(in,x:0,ratsimp)));
display(plm]:ev(sum(ali,m}*1i{i},i,0,m=-1),ratsimp));

141

(ct1)
TIME=
(D11)

(C12)
(C13)

TIME=
(D13)

Tciy

142

LAY
TIME=

(D14)

Tc15)
TIME=
(D15)

1c16)
TIME=
(D16)

1c17)
TIME=

(D17)

7c18)

FIGURE 2. ~ EXECUTION OF PROGRAM TO GENERATE P4

“K
m:b;
1 MSEC.
i
demo(e,1,dsk,elizc);
TIME:TRUE;
1 MSEC.
TRUE

L[N}(X,A)::((2*N-1+A-X)/N)*L[N-1](X,A)-((N-1+A)/N)*L[N-2](X

1 MSEC.
2N -1+ 4 =X
L (X, A) t= =c-cmmmmimeeeeo L (%, &)
N N N -1
N -« 1+ A
. - L (X, 8)
N N -2
LI0J(X,A):=1;
1 MSEC.
L (X, A) =1
0
L{11(X,A):=1=X;
1 MSEC.
L (X, &) := 1 =X
1
FN(X,N):=(1+X/N)®®N*EXP(-X);
1 MSEC.
X N
FN(X, N} := (1 + =) EXP(- X)
N

FOR I:0 THRU M-1 DO

(LI[I]:EV(L[I](X,0),RATSIMP),
IN:-INTEGRATE(LI[IJ®*EXP(-X)®FN(X,M),X),
DISPLAY(A[I,M]:EV(IN,X:0,RATSIMP)));

891
A z .-
0, 4 1024
359
A = ———-
1, U 2048
13
A 2 me—-
2, U 4096
183
A R
3, 4 8192

TIME=
(D18)

Tc19)

TIME=
(D19)

TIME=
(D20)

(c21)

9266 MSEC.

DISPLAY(P{M]:EV(SUM{A[TI,M]*LI(I],X,0,M=1),RATSIMP));

40 MSEC.

10392 MSEC.

FIGURE 2. - CONTINUED

DONE

3
61 X - 523 X - 1878 X + 16814

DEMO TERMINATED

143

FIGURE 3. ~ TABLE OF LAGUERRE POLYNOMIALS GENERATED BY MACSYMA
M= 10

(C15) L[N](Z,A)::((2*N-1+A-Z)/N)*L[N-1](Z,A)-((N-1+A)/N)*L[N—2](Z,A)$
(C16) LION(Z,A):=1%
(Cc17) L{1)(Z,A):=1-28

(C18) FOR I:0 THRU M-1 DO DISPLAY(LI[I1:EV(LLIT(Z,0),RATSIMP))4
LT =1

0
LI =1-172
1
2
7 -N7 42
LT 2 commmmmmeeee
2 2
3 2
7 =97 + 137 -4
LI = -
3 6
U 3 2
Z -1 7 +727 -1 7 + 24
LI = - — ———
Yy 24
5 4 3 2
7 -25%7 + 2007 -Hh007 4+ ADD 7 - 120
LI g= =~ e
5 120
6 5 b 3 2
7 ~367 4+ U507 - 20007 4+ 5HOD 7 - U220 7 4+ 720
LI = -
5 720
7 6 5 L 3 2
Z -39 7 +B8827 -73%0 7 + 294007 -52920 7 4+ /280 7 - 504N
LI = - _—
7 5040
8 7 6 5 b 2 ?
LI =(Z -607 4+ 15687 - 18816 7 + 117600 7 - 376320 7 + SALUSD 7
8
- 3272560 7 + UN320)/UN22n0
9 8 7 5 5 4
LI =-(2 =817 + 25927 - 12336 7 + 381024 7 - 1905120 Z + 5090320 7
9
2

- 6531840 7+ 3265920 7 - 3623R0)/3H2330

14

TIMING FORMULAS ¥FOR DISSECTION ALGORITHMS
ON VECTOR COMPUTERS

W. G. Poole, Jr.
College of William and Mary

SUMMARY

The use of the finite element and finite difference methods often leads to
the problem of solving large, sparse, positive definite systems of linear equa-
tions. Recently the one-way dissection and nested dissection algorithms have
been developed for solving such systems. Concurrently, vector computers (com—
puters with hardware instructions that accept vectors as operands) have been
developed for large scientific applications. In reference 1, George, Poole and
Voigt analyzed the use of dissection algorithms on vector computers. In that
paper, MACSYMA played a major role in the generation of formulas representing
the time required for execution of the dissection algorithms. In the present
paper the author describes the use of MACSYMA in the generation of those
formulas.

DISSECTION ALGORITHMS

When finite difference or finite element methods are used for approxi-
mating solutions of partial differential equations, it is often the case that a
large, sparse, positive definite system of linear equations,

Ax = b (1)

must be solved. We shall assume that the domain over which the differential
equation is defined is a square region covered by an n by n grid consisting
of (n—l)2 small squares called elements. It follows that A 1is an

n? by n? matrix. The ordering of the unknowns at the grid points determines
the location of the nonzero components of A and, consequently, the storage
and time required to solve the linear system by Gauss elimination.

An ordering of the unknowns called one-way dissection is due to George
(see ref. 2). Referring to figure 1, the idea of omne-way dissection is first
to divide the grid with m horizontal separators. The unknowns in the mtl
remaining rectangles are numbered vertically toward a separator and then the

This paper was prepared as a result of work supported in part under NASA
Contract No. NAS1-14101 at ICASE, NASA Langley Research Center, Hampton, VA
23665 and in part by Office of Naval Research Contract N00014-75-C-0879.

15

145

separator nodes are numbered. The problem is to derive formulas for storage
and timing requirements and to minimize those formulas with respect to m (see
ref. 2).

The second dissection scheme is called nested dissection (again, see ref.
2) and has been shown to be asymptotically optimal (see ref. 3). The idea here
is to divide the grid with both horizontal and vertical separators as shown in
figure 2. Unknowns in regions 1 - 4 are numbered before those on separators
5 - 7. Each of the regions 1 - 4 is a square and may itself be dissected using
horizontal and vertical separators. Thus the idea may be applied recursively
and, in the case n = Zk—l, nested dissection will terminate after k-1 steps.

Although both dissection orderings were analyzed in reference 1, only
nested dissection will be discussed further here because it is a more important
algorithm and the generation of its timing formula was a much more formidable
task.

The nested dissection algorithm is nontrivial to describe in detail. It
was first developed and analyzed with scalar computers in mind by A. George in
the early 1970's. The first attempts at obtaining a timing formula were done
by hand and only gave a description of the asymptotic behavior, O(n3). Later,
the first few terms were generated by hand. Then in reference 3, A. George
obtained the entire formula with the aid of ALTRAN.

VECTOR COMPUTERS

The existence of vector computers, i.e., computers with hardware instruc-
tions that operate on vectors rather than scalars, raises the question of how
effective the dissection techniques are on this rather new class of computers.
It is assumed that these computers have basic vector instruction execution
times which are of the form

T, (3) = S, + 3P, (2)

where T*(j) is the total time for the vector instruction *; S, 1is an over-
head time, called "start-up" time; Px is the "per-result" time of that
instruction; and j 1is the length of the vector.

The large value of Sx/Px on currently available vector computers implies
that one pays a significant penalty for operation on short vectors; consequent-
ly, one would prefer algorithms which permit the longest possible vectors (see
ref. 4). However, both of the dissection algorithms work by repeated subdivi-
sion of the grid until a minimum operation count is obtained. It is this
apparent conflict between the cost of using shorter vectors and the correspond-
ing lower operation counts that was studied in reference 1.

146

GENERATION OF FORMULAS

In reference 1, George, Poole and Voigt were interested in obtaining
parameterized versions of the timing formulas for the dissection algorithms on
vector computers. Such formulas were needed in order to study the effects of
varying several parameters. They identified nine parameters characterizing the
vector computers: 3-start—-up times for vector addition, multiplication, and
inner product; 3 per-result times for the same instructions; and 3 scalar
operations. Furthermore, there was a parameter, n, related to the problem
size and another, &, related to the algorithm which the user could vary at
liberty. The goal was to choose £ s0 as to minimize the timing formula for
a given set of computer parameters and a given problem size., Obtaining the
timing formulas was useful in several ways:

(1) With the formulas in hand, one could study the effects of chang-
ing values for the parameters. In a hypothetical sense one
could try to optimize subject to certain side constraints. 1In a
very practical sense, manufacturers announced changes in the
parameter values several times;

(2) There are several options in the implementation of the dissec-
tion algorithms. For example, one can use a vector inner
product or a vector "outer product” version (see ref. 1). The
choice reduces to comparing the time required for a vector inner
product versus a vector addition plus a vector multiplication.
Timing formulas permitted analysis of such options;

(3) Considerable insight into the vectorization of algorithms was
gained. For example, average vector lengths could be studied;

(4) Without the formula, a table of timing values for particular
choices of the parameters could be generated by executing a
model of the algorithm. However, the coefficients in the formu-
las could not be generated.

The nested dissection timing formula was generated in the following manner.
The execution of the nested dissection algorithm was simulated in a top-—down
fashion. The top level, level 1, involved several summations of which

j-1

. i
5 (21 _ 2)29(n - Zi + 1 ,

1 2 2

4(n + 1)
i

> 4) (3

1

is typical, where 8 1is a procedure at the second level, Each of the second
level procedures called several third level procedures, e.g.,

THETA(Q,P,K) := CHLSKY(Q) + P LOWSOL(Q) + MODNES(Q,P,K). (4)

CHLSKY, LOWSOL and MODNES are three of the third level procedures defined to be
the timing formulas for simple numerical computations, e.g.,

147

(PA + PM) Q° (SA + SM + M) Q>
CHLSKY(Q) := +
6 2

(5)
SM SA 2 PM PA
+ (DSR + == — == = ———— = =) Q - SM
2 2 3 6

is the timing formula for the factorization of a dense linear system. These
third level procedures were formulas for factorization, lower solve and upper
solve of dense systems and banded systems and matrix modifications of the form

A := A - UVHE . (6)

Finally, the bottom level consisted of the parameters which characterize the
vector computer. E.g.,

SA + Q PA (7)
is the time for a vector add of length Q.

The second and third levels each consisted of 10 to 15 modules and level
4 consisted of 9 dinstruction parameters, 1 parameter related to the algo-
rithm and 1 related to the grid size for the problem. The top level module
contained several MACSYMA sums of the form

stM(' (BV (((21-2) D)% (trETA (=241 7 (2T, ax 1) 7 (2T, 4)),
(8)
EXPAND)),I,1,J-1) .

This is the MACSYMA form of the sum in eq. (3). The entire generated formula
consists of over 200 terms and can be found in Appendix B of reference 1. The
formula was checked by evaluating it for several sets of parameter values and
comparing the results to execution times of a FORTRAN simulation of the algo-
rithm. The one-way dissection formula was generated in a similar, but much
more forward, manner.

CONCLUDING REMARKS

MACSYMA has been shown to.be of considerable value in the study of the
performance of the nested dissection algorithm when used on hypothetical vector
computers. The derived timing formulas lead to an understanding of the effects
of varying the parameters which characterize the computers, Options in the
algorithm's implementation can be studied as well as the extent to which the
algorithm vectorizes.,

148

REFERENCES

1. George, A.; Poole, W. G., Jr.; and Voigt, R. G.: Analysis of Dissection
Algorithms for Vector Computers. ICASE Report No. 76-17, June 8, 1976.
(Available as NASA CR-145177.)

2. George, A.: Numerical Experiments Using Dissection Methods to Solve n by n
Grid Problems. SIAM J. Numerical Analysis, vol. 14, no. 2, Apr. 1977,
pp. 161-179.

3. George, A.: Nested Dissection of a Regular Finite Element Mesh. SIAM J.
Numerical Analysis, vol. 10, no. 2, Apr. 1973, pp. 345-363.

4. Lambiotte, J. J., Jr.; and Voigt, R. G.: The Solution of Tridiagonal Linear

Systems on the DCD STAR-100 Computer. ACM Trans. Math. Software, vol. 1,
no. 4, Dec. 1975, pp. 308-329.

149

FIGURE 1. - ONE-WAY DISSECTION WITH ORDERING OF
UNKNOWNS INDICATED BY NUMBERS (m = 3).

4

7
3

6
2

5
1

FIGURE 2, - ONE STEP OF NESTED DISSECTION WITH
ORDERING OF UNKNOWNS INDICATED BY NUMBERS.

1 2
5 6
3 7 4

150

16

SYMBOLIC CALCULATIONS IN A FINITE
DYNAMIC ELEMENT ANALYSIS

Kajal K. Gupta and Edward W. Ng
Jet Propulsion Laboratory

INTRODUCTION

Since this paper is addressed to an audience primarily interested in sym-
bolic computations, we shall briefly describe the context of engineering
mathematics to motivate the computational aspect. The present problem is

concerned with prestressed membrane elements with application to the development

of large furlable conical spacecraft antennas whose reflector surfaces are made

of stretched membranes (Ref. 1). The mathematical aspect involves the appli-
Cation of a finite element method to approximate the membrane deformation as a
function of time. The phrase 'dynamic element' is used here to connote time
dependent corrections to the static models attacked by the usual finite element
method. The general strategy and overall scope of the present application is
described by Gupta (Ref. 2) and in the following we shall confine ourselves to
the computationmal problems. Throughout this paper we shall use capital letters
for vectors and matrices, and lower case letters for scalars. We shall describe
in detail a second order problem for which MACSYMA was used only for checking
purpose, and then in brevity a fourth order problem for which a symbolic system
is necessary. At the end, some sample output is displayed to indicate the

complexity of the computational problem.

A SECOND ORDER PROBLEM

For the simpler problem we are dealing with a second order time harmonic

differential equation in two dimensions, (x,y) and a time variable t:

v b M R Yru
4+ = L i
ki b’ar\ h ot* (-)

¢ =x/a, N=Y/b

151

subject to boundary conditions for the four corners of each rectangular finite

element, say, (0,0), (1,0), (1,1) and (O,i):

u(0,0) = ql » u(1,0) = q2 » u(l,1) = q3 s u(0’1> = q4

Here we are simulating a thin rectangular membrane of thickness h, mass per unit
area p and uniform tensile force per unit length Oh, and (a,b) specified the
size of the rectangle. The solution is constructed from a second-order ex-

pansion of the time harmonic problem, with natural frequency w, i.e.,

t

Uz (A, +wh, + w4) QT e @)

0’ Al and A2 are vector functions of instantaneous nodal displacement and
also of the frequency of such motion, and QT is a unit vector, all these vectors

where A

being dependent only on § and n. We have no formal proof that such expansion
converges, but in (Ref. 2) it is given physical arguments and empirical evidence
that such expansion does lead to dramatic improvement over the usual finite
element approach. Substituting eq. (2) into eq. (1) and equating like powers

of w render the following equations:

v*A.Q =0 (3)
VA, Q' =0 @)

2 T Q T 5
K] /AHZ(Q + 6:E /\O (Q =0 ()
with the corresponding boundary conditions that AO = [ql,qz,qB,q4], Al = 0 and
A2 = 0, where the above symbol [, , ,] is used throughout the present paper fgr

a row vector, and the superscript T signifies the transpose of a matrix or

vector.

At this step we have to choose certain basis functions to form the

solutions, for examﬁle,
AOQT: ¢t G+ G+ clr?r')
L '
AQ_= di+duy + dyn+dyan S0
/A\,_Q =g r 61465; + € n + &y n + P(C,',...‘.,C‘,;,]?, '/]) ®)

152

where these coefficients have to satisfy the boundary conditions, and P is a
particular integral that satisfied eq. (5). Once a set of basis functions is
picked, we need to calculate the A vectors as functions of £, N and the

boundary parameters a and b.

The next step concerns the application of the principle of minimum total
potential energy. In particular, a sufficient condition for this principle is
given by equating the lateral strain energy and the kinetic energy of transverse

vibration, i.e.,

AU =T @)
AU = JLM%'“—H(%%) 5 (85) P hdedn o)

- _ | AU '
AT =)} Leab () dsdy a
Substitution of eq. (2) into eqs. (10) and (11) gives

AU = -,')- Q (l<cc + 2w Ky, + w* K,) QT 12)

[1:8

AT = 30 Q (M, + 20 My, + WM,)QT (1)

where the K's are stiffness matrices and the M's are mass matrices. The zeroth-
order terms correspond to the well-known static counterparts in the usual
finite element method and the higher—-order terms represent dynamic corrections.

These matrices are given by

Lo oh DAL A
KL& = j/’ﬂrea (C‘—l =T "

| AL DA
e Y T%w\ 5_1\)&@,] "

Ml‘k _—.@ib_akj.

2
The disappearance of the odd

de d (15)
Area A A j V] |

terms is due to the symmetry of the problem.

Finally, we can apply the above expressions to eq. (9) and obtain an

equation of motion in the form

153

Y_ |<co - 2LL32<M°°-— Koz) - wq—(Moz - Kaz)] Q = 0 (I('))

This is a quadratic eigenproblem and is to be solved numerically. The main
use of a symbolic calculator is to prepare and simplify the matrices K's and
M's in the form of FORTRAN statements for the inclusion into a numerical

program. The symbolic calculation steps may be summarized as follows:

(i) The vectors [Cl’CZ’CB’Cé] and [dl’dz’d3’d4] are computed from the

boundary conditions.

(ii) AO and Al are computed from these two vectors.

(iii) The particular integral P in eq. (8) is chosen. So far the choice
has been made from an ad hoc procedure. In the next section we

shall describe an attempt towards a more systematic approach for

this step.

(iv) From the boundary conditions the vector [el,ez,eB,e4] can be
calculated in terms of [cl,cz,c3,c4] which in turn gives the

vector A,.
2

() Once the A's are determined, we need to compute the matrices Kij

and Mij through symbolic differentiations and integratiouns.

(vi) The output has to be simplified and formatted for inclusiomn in a

FORTRAN program.
A FOURTH ORDER PROBLEM
For a plate bending problem we are dealing with the biharmonic equation

L tw .2 P, w1 R ()

— —_— ——

a4- D g4- o* bz szieaiy] L4- 'a Y]4‘ - ‘9‘?‘ D tZ

Conceptually the approach 1s exactly the same as the above problem. The dif-

ference in size, however, is two orders of magnitude. There are now 12

154

boundary conditions, 4 each in u, du and du. Thus all the vectors and matrices

described above are now of dimensiggs 12 ggd 12, respectively. The algebraic
manipulation is most extensive, and a symbolic system is an absolute necessity:

here.

For this problem the six steps above basically carry through, with the
exception of (iii) which can be somewhat hazardous. We shall illustrate this
process in some detail here. Following the same procedure from eq. (1) to eq.
(5), we get, with DE = 3/9E&, Dn = 3/9on

(D3 +23) AQ" =0 (®
(D5 + ;)" AQ + BAQ =0 (1)

. 1
Let - EH(E,n) be a solution of eq. (18), and let P(§,n) be a particular integral
of (19). Thus we have,

('D; + Dy) ?(;,q) = H ('S_,V)) (20)

Let

D, +02) Ph,y) = Ry 21)
¢ T Tl)

We can formally invert the above equations by defining the antiderivatives as

Dgn and D;n. Combining eqs. (20) and (21) gives us
(D;”%—D:O R(’g,r\) = H(Ell’,) G2)

r -2 N
RGmM) = Dy (1+ Dy Dy) Hisy) (23)
=D (] - D;ZD}T + DIIFD:; —) HAm) (23)

To satisfy the twelve boungary conditions we can choose a simple bivariate
cubic function, viz.,

A

| . 2
A,Q =« ¢ C.% ‘k-cﬂ G5 G5 Nt G (25)

s

155

Then DzH(E,ﬁ) = 0 for n > 3, and only two terms remain in eq. (24), i.e.

RGsm) = Dy HGup =Dy By i) (2k)
and, similarly,
P(s:n) = B Rl =Dy Dy RE5))

- D LD “HG 1) -—D;D}]l H(T,YIU

(v

D. D [D§ Hs, 1)~ D D H(3,],j

7

= D H(p =200 Hn) (27)

3
-

The last simplification comes from DzH(E,n) =0, n>3 and (DEDH— DDDE) *
H(g,n) = 0.

So the above represents a somewhat ad hoc procedure to find a particu-
lar integral, but obviously the answer is not unique, because we could have
reversed the role of DE and Dn at eq. (23) and/or at eq. (27). This freedom is
however constrained by the physics of the problem which requires certain

symmetry in the matrices K's and M's

SAMPLE OUTPUT

On the next two pages, we present some sample output from MACSYMA to
indicate the complexity involved. We print the vectors AO and A2 from eqs. (6)

and (8), and A0
to display for the present purpose. The two different AO’s demonstrate that

from eq. (25). The matrices, however, are a bit too unwieldy

the fourth order problem is two orders of magnitude more complex than the second

order problem (the vectors being one order and the matrices being two orders).

156

The two vectors on this page, given by eqs. (D5) and (D6) correspond to

A0 and A2 from eqs. (6) and (8).

T3 MATRIXMAPCFMAZT xS

[ETA %I - %1 - ETR + 1 1
[]
C 2l - ETR I]
(DS C]
[ETA 1]
r]
C ETH - ETH %I]
ECEY MATRIMMAFR CFH RS 3]] o
B EETA I + AE ETA ®I A HI A ETR I ARl
ST6Y MATRINGL = = oo m oo oo 4 o — 4 mmm———mmm o o
12 A E 1z 4 4
E ETR #I E ETA I ® ETA ¥ ® ®IL ® ETA E ETA E ETA
+ mm———————— _ ——————— -~ + ———— 4 e - e + —————
3 = = [1z B) =
A BETAR %I + A E ETA %I @A %I E ETA =1 B ETA ®I A ETA XI
——————————————————————————— -— —— — " —— — — ————— i —— — + —————— e ———— — —— e o ——
Aol A OEETR I +AE ETR %I B ETR ®I A ETA ¥I
+ - N T T e e e + ———————— + ————————)
12 12 A E 12 12
F EETR %I + A E ETA %I @& ETAR %I E ETA ®I » ETA I E ETA
______________________________________ — e e
12 A E 4 1z & 12
E ETH
+ ————— 3
12

157

158

P -]

D4

21 2
[ETA =1

The vector given below corresponds to A

0 from eq. (25).
MATRIXMAFR CFHRZ > 3
MATEI®CL -

= ETR ®I

3 w1 > ETA
T ETA + 11 [— FE ETA ¥ +
Z © ETH

i

+ B ETR1s [H ETA = H =
w1 e

2 R ETHR =
w1 2 -)

m
—
I
i

“1 + ETA ®I1s [E ETA I

#1 + B ETH ¥I1s
A ETA HI + A X

L
2

g3]

ETR +

R ETH ¥I3%

= ETH Is

REFERENCES

1. Oliver, R, E., and Wilson, A. H.: Furlable Spacecraft Antenna Development:
an interim report. Tech. Memo 33-537, Jet Propulsion Laboratory,

Pasadena, California, 1972.

2. Gupta, K. K.: On a Finite Dynamic Element Method for Free Vibration
Analysis of Structures. Computer Methods in Applied Mechanics and
Engineering, vol. 9, pp. 105-120, 1976.

159

17

SYMBOLIC MANTPULATION TECHNIQUES FOR VIBRATION
ANALYSIS OF LAMINATED ELLIPTIC PLATES*

C. M. Andersen
The College of William and Mary in Virginia

Ahmed K. Noor
The George Washington University
Joint Institute for Advancement of Flight Sciences
at NASA Langley Research Center

SUMMARY

A computational scheme is presented for the free vibration analysis of
laminated composite elliptic plates. The scheme is based on Hamilton's
principle, the Rayleigh-Ritz technique and symmetry considerations and is
implemented with the aid of the MACSYMA symbolic manipulation system. The
MACSYMA system, through differentiation, integration and simplification of
analytic expressions, produces highly-efficient FORTRAN code for the evalu-
ation of the stiffness and mass coefficients. Multiple use is made of this
code to obtain not only the frequencies and mode shapes of the plate, but
also the derivatives of the frequencies with respect to various material and
geometric parameters.

INTRODUCTION

Many of the boundary-value problems which arise in engineering and
physics cannot be solved in a closed or analytic form. Therefore, numerical
methods are necessary for their solution. Nevertheless, we can expect that
some of the steps in the solution process will be symbolic or analytic in
nature. For example, early steps in the solution process may involve
(a) casting the governing differential or functional equations in a more
convenient form for solution through replacement of the fundamental unknowns
by new variables which are dimensionless or have other desirable properties,
and (b) the introduction of approximation functions or perturbation expansions
and a regrouping of the various terms. Thus, the solution process can be
thought of as consisting of a symbolic (or analytic) phase followed by a
numerical phase. With the aid of computerized algebraic manipulation, we may
sometimes carry the symbolic phase of the calculation further than is con-
ventionally done and thereby reduce the cost and/or improve the accuracy of
the calculations.

*Work supported by NASA Langley Research Center.

161

A case in point is the free vibration analysis of laminated composite
elliptic plates (refs. 1 and 2). A plate is a flat body whose thickness is
small compared to its other dimensions. Plates and other structures formed
from composite maternials such as graphite or boron fibers imbedded in a matrix
of epoxy or polyimide resins have considerable interest to the aircraft
industry because of their high strength and rigidity, easy machinability and
1ight weight. These composites are characterized by extremely high tensile
strength in the direction of the fibers but relatively low strength in direc-
tions normal to the fibers. As a consequence, the composites are typically
used in Taminated structures where the orientation of the fibers changes from
lamina to lamina. The highly anisotropic behavior of composite materials
considerably complicates the analysis of the structures in which they are used.
An investigation of the dependence of the frequencies of vibration (and the
associated mode shapes) on the various geometric and lamination parameters is
needed for the efficient design of plates made from composite materials. This
requires not only the efficient evaluation of the frequencies and mode shapes
for a given set of parameters, but also the efficient computation of the
derivatives of the frequencies with respect to the Various design variables.
Such derivatives provide information about the sensitivity of the frequencies
to changes in the design variables.

The objectives of the present paper are to develop a computational scheme
for the free vibration analysis of laminated composite elliptic plates with
clamped edges and to identify the major advantages gained from the use of
symbolic manipulation in the solution process. The main elements of the
scheme include (1) the use of the Rayleigh-Ritz method in conjunction with
Hamilton's principle, (2) simplification of the computation through consider-
ations of various types of symmetries, (3) the use of the MACSYMA symbolic
manipulation system to generate efficient FORTRAN code, and (4) multiple use
of that code in the determination of both frequencies and frequency derivatives
Because of the elliptical shape of the plates, MACSYMA is able to provide
short exact analytic forms for a large number of expressions which would
otherwise have to be approximated through the use of numerical quadrature.

MATHEMATICAL FORMULATION

Figure 1 shows an elliptic plate and its Cartesian coordinate system.
The z-axis is normal to the flat surfaces of the plate, and the x- and y-
axes 1lie in the middle plane along the principal axes of the ellipse. The
problem domain is thus specified by

(x/a)® + (y/0)% <1 -h/2 <z < h/2 (1)

In this study we treat the plate vibration problem as a three-dimensional
elasticity problem. A free vibration mode of the plate is described by a
frequency w (actually an angular velocity) and by the displacement
amplitudes wuj(x,y,z) (i = 1,2,3). A point in the vibrating plate with
equilibrium position (x,y,z) will have the position

162

(x+u](x,y,z)sinmt, y+u2(x,y,z)sinuwt, z+u3(x,y,z)sinwt) at time t.

The components eig(x,y,z) of the strain tensor are defined in terms of

the displacement componénts uj by
=1 c s
ej5(y52) = 5 (d5uy + 35up) (1,5 = 1,2,3) (2)

9/6z. We group the six strain compon-

where 9371 = 3/8x, 32 = 3/3y and a3 =
= 1+6) by letting

ents into a vector EI(x,y,z) (1

T B2 &3

N €2 £33

(3)

€4=2€23 €5=2€3-| €6=2€

12

We analogously define a stress vector op(x,y,z) (I = 1+6) in terms of
the six independent components of the stress tensor and assume the stress-
strain relationship is linear and given by the -constitutive relation

6
51(xsy,2) = E] crq(2) £5(xsy,2) (I =1-6) (4)

We assume that c J(z) is constant within each layer but can vary from layer
to Tlayer. Furthe;, we assume that the fibers are all parallel to the x-y
plane. As a consequence, the cyj(z) form a symmetric matrix of the form

[cq7(2) cy,(2) cq53(2) 0 0 c16(2)ﬂ
Cnp(2) Coq(2) 0 0 Cog(2)
[c(z)] = c35(2) 0 0 cq6(2)
Ce(2) c45(2) 0
Symmetric “55(2) °
cg(2)

The strain energy U and the kinetic energy T are given in terms of the
strains and displacements by

163

6
U= J{ 2: EI(X’y’Z)[CI,J(Z) EJ(x,y,z)] dx dy dz

no|—

6
, , (6)
7o u f Z (x,y,2)1% dx dy dz

where p(z) 1is the density of the plate material. Since we assume that
o(z), T1ike [c(z)], is constant within each layer but can vary from layer
to layer, the integrations in the z-direction are to be performed in a piece-
wise manner.

The quantity m(uj) =T - U is to be regarded as a functional of the
displacement funct1ons ui(x,y,z). Hamilton's variational principle states
that uj(x,y,z) must be such that the quantity m(uj) 1is statiornary with
respect to variations in the displacement functions, i.e.

6m =0 (7)

where 8T is the symbol for the first variation of 1. The variational
principle thus gives rise to a set of elliptic partial differential equations
in the uj (x,y,z). However, rather than explicitly developing these dif-
ferent1a1 equations we shall adopt a slightly different approach. We approxi-
mate the Ui(,¥»Z) in 1 by linear combinations over a set of approximation
functions. The coefficients yj (3 = 1»N) which appear in these linear
combinations are determined from the requirement that

31 (y;)

B0

= 0 (i = T-N) (8)

This results in a linear generalized eigenvalue problem of the form

N N
2 -
2 K v. = ow M s vs (9)
=1 =1
where
_ 1%
(10)
v o 527
1] Tr(02 awi an

164

SYMBOLIC PHASE OF COMPUTATION

The first step in the symbolic phase of computation is to approximate the .
displacements ui(x,y,z) in the functional 1n. The boundary conditions

ui(x,y,z) = 0 (i =1,2,3) (11)

along the clamped edge of the plate are automatically satisfied by the use of
approximations of the form

u; (x,y,2z) = % 24 X ¢T’"’k [1-(x/a)? - (y/b)?1 X" y" (12)
m,n

where the upper limit of k in the summation is one higher for i=1 or 2
than for 1i=3. The number of terms needed in the expansion (12) depends on

the thickness of the plate as well as on the accuracy desired for the solutions.
The yj of egs. (8) through (10) are the coefficients ¢T°" N,k taken in some
arbitrary order. The symbolic phase of the computation can proceed as follows:

(1) Se]ect a (new) pair of indices, i and Jj, for which expressions
for . and M.. are desired (see the section on Symmetry
Cons1de}at1ons)

(2) Set all y, to zero except . and y., which remain as
undefined © (atomic) varijables. J

(3) Form the terms of uk(x ,¥-z) (k = 1,2,3) which depend on Vs
(12

and wj using eq.

).
(4) Compute the terms of &.(x,y,z) (I = 1+6) which depend on .
I i

and z using eq. (2).

(5) Evaluate the terms of the integrands of U and T which depend
on ., 2 using eq. (6).

(6) Evaluate the integrands of Ki' and M.. by differentiation
with respect to both Vs and Jw. usinéJeq. (10).

(7) Evaluate . and M. by performing the integrations over
X,y and z @1a patterﬂ matching.

(8) Simplify the nonzero Ki' and Mi' and develop FORTRAN
expressions for them. J J

(9) Go to step (1) unless finished.

In step (7), the integration with respect to the z coordinate is aicomplished
symbolically (analytically) simply by introducing new variables % and

165

D(z) defined by

h/2
cﬁ) =f/ 2* Cp(2) dz (I,d = 163 % =0,1,2 ...)

-h/2

(13)
h/2 .
() _ f 2 _
D = z¥ o(z) dz (s =0,1,2 ...)
J{--h/z i

and the integration with respect to x and y 1is accomplished by the
replacements

X >ar cos(o)

(14)
y > b r cos(s)
followed by exact closed-form integration in r and o. The expressions
produced for Kj; and M;. 1in step (8) are very simple since an
expression contaQns at mos% a single term, and a K;j ,expression con%a1ns
at most three terms. The Mjj are linear in the p(2)" and the most
general form for the Kjj fis
M
AA
- 2 (15)
A3B

(hy A2 + 25 B2 + 2g A2B2)[(A, AB)

where A;, XA, and XA, are Tinear combinations of the C(2) with ratz ?a1
number coefficients; ; and A, are integer mu1t1p{8s of the
A, 1is an integer; and the FBRTRAN valliables A, B. AB, A2, B2, AZB2 o
defined by

A=a B=©5DL AB ab

2 A2B2 = albl

(16)

fl
o

A2 = a B2

The symbolic phase ends when the FORTRAN code has been transferred to a Tocal
computer for the numerical phase of computation.

NUMERICAL PHASE OF COMPUTATION

The first goal of the numerical phase of computation is to solve the
linear generalized eigenvalue problem {eq. (9)) for the Towest few frequencies
mk(k=],2, ...). To accomplish this the numerical program evaluates

166

the ct%’, the (%), the FORTRAN variables of eq. (16), and finally the
Ki; and Mj;. Then the eigenvalues (wy)“ and their associated eigenvectors
b5~ may be determined by the method of subspace iteration (ref. 3).

The second goal of the numerical phase of computation is to determine the
derivatives of the wg with respect to changes in geometry, fiber orientations
or material properties. The derivative of the frequency wk with respect to
the plate area wab (keeping the aspect ratio a/b, thickness h and
material properties fixed) is given by

N 3(mab K. .)
(k) iJ (k)
0y _.2;] Vi 3(mab) |y, asp '3
_i,d= :
3 (wab) - N = 0 (17)
h, a/b Zwk(wab)(> Vs Mij wj)
i,j=1

This equation takes into account the fact that each Mjj 1is proportional to
the area but is independent of the aspect ratio. The derivative on the RHS of
eq. (17) is evaluated by using the FORTRAN code for the Kjj but with

FORTRAN variables of eq. (16) defined as follows:

A2

a/b B2 = b/a A2B2 = 0

The computational effort involved in the evaluation of 512957- using

eq. (17) is considerably less than that required for ma solving the
eigenvalue problem. Note that it would be difficult to evaluate the derivative
matrix in eq. (17) by conventional numerical techniques. The derivative of

wk with respect to the thickness h (keeping a and b fixed) is given by

1 3wy)
molek t 2(wab) 3(mab
a,b h, a/b

o
ah

(19)

This equation is based on the fact that the replacement of a by 2ra, b by
Ab, and h by ah (keeping the re]gtive thicknesses of the laminae constant)
results in wy being replaced by A~%w The derivative of the frequency w
with respect to a change in the aspect ratio a/b (keeping the area wab an
thickness h fixed) is given by

N 3(Ks)
(k) (k)
o 2 Y S(a}g) Y3
k _ i,g=l h,mab
3(a/b) N (20)
h, ab (k) k
o (?:3 REUTRY))

167

where the summation in the denominator is the same as in eq. (17). We now
need to make the A1 and ig terms of eq. (15) vanish since they do not
depend on a/b. We accomplish this by setting

A= N b2 B =- N b%/(2a) AB = a b
5 (21)
A2 =Nab B2 = - N b"/a A2B2 = 0
where N 1is a very large number (e.g., N = 1015), and compensate for the

introduction of N by dividing by N after the summation indicated in

eq. (20) has been carried out. When the derivatives of wk with respect
to area, aspect ratio and thickness are known, one can easily determine the
derivatives of wk with respect to a, b and/or any other functions of
mab, a/b and h.

Derivatives of wy with respect to the fiber orientation angles or mat-
erial properties may be computed similarly, but for these cases the FORTRAN
variables of eq. (21) regain their original definitions (eq. (16)) and the
A; (i =1+6) are replaced by their appropriate derivatives. This kind of
multiple use of a large block of FORTRAN code is very useful for reducing the
length of the FORTRAN program as well as the amount of symbolic computation.
Both are further reduced by the symmetry considerations discussed in the next
section.

SYMMETRY CONSIDERATIONS

There are three types of symmetries which help simplify our calculations.
These are associated with a) symmetry of the [K] and [M] matrices, b)
rotation-reflection symmetry of the undeformed plate, and c¢) symmetry of
the stiffness and mass coefficients with respect to interchanging the roles of
a, b and the subscripts 1,2.

Symmetry of the [K] and [M] Matrices

The first type of symmetry is the symmetry of the [K] and [M] matrices
under transposition, that is

.. = K.,
5 7 5 (22)

Mos = My

(see eq. (10)). The presence of this symmetry means that we need symbolic
expressions only for those Kij and Mij with 1 < J.

168

Rotation-Reflection Symmetry of the Undeformed Plate

The second type of symmetry is the symmetry of the (undeformed) plate
itself. Various rotations or reflections may leave the boundaries and material
properties of the plate invariant (ref. 4). For instance, by our assumption

~ that the fiber directions are paraliel to the plate, rotations of the plate by

1800 about the z- axis leave [C(z)] invariant.

A consequence of this symmetry (the symmetry group is called C2 in
Schoenflies notation (ref. 5)) is that there are two families of solutions -

those with o =1 and those with o = -1 1in the relations
u](x,y,z) = - g uT(-x,-y,z)
Us(X,¥,2) = - o uy(-x,-y,2) (23)
u3(x,y,z) = o u3(—x,-y,z)

Equation (23) defines the minimum symmetry exhibited by the laminated plates
considered in the present study.

The largest symmetry group which can leave the boundaries invariant is
the group D2p. A plate which has this symmetry is invariant under rotations
by 1800 not only around the z-axis but around the x- and y-axes as well.
Further, it is invariant under reflections in the x-y, y-z and 2z-x planes
and under inversion (the operation which sends the generic point (x,y,z)
to the point (-x,-y,-z)). Plates with Dy, symmetry have eight families of
solutions each corresponding to one of the possible combinations of
o = 1, gy = 1, o3 = +1 in the relations

u](x,y,z) = —o1u1(—x,y,z) = 02u1(x,-y,z) = —o3u](x,y,—z)

UZ(X,y,Z) = Uluz('X:Y9Z) = —OZUZ(X’_YQZ) = —03U2(X,ys—2) (24)

U3(X,y,2) 0]U3(-X,y,2) = 02u3(x,—y,z) = 03u3(X5Ys‘Z)

For the four families with Gy = -1 the middle surface of the plate (the
surface with z = 0) 1is defoPmed with planar motions only. In order for a
laminated composite plate to have the full D2p symmetry, the fiber angle
with respect to the x-axis, 6(z), must take only the values 00 and 90°
and 6(z) must equal o6(-z).

The group Dpp, has three subgroups of order four which contain C, as
a subgroup. In Scﬂoenf]ies notation they are called C2p, C2y and D2.

Each of these subgroups correspond to a possible plate symmetry higher than
the minimal C2 symmetry yet lower than the full Dy, symmetry. Plates with
any of these symmetries have four families of solutions. Plates with symmetry
Cop, have o6(z) equal to e(-z) and have solutions characterized by

(0’ 03) = (]s])a (]s_])’ (']s]) or (']:'1) in

169

up(x,y,2) = =0 ug(-x,-y,z) = -o3u;(x,y,-2)
Up(X,¥52) = =0 Up(-x,-y,2) = -o3u,(X,y,-2) (25)

uz(x>y,2) = o uz(-x,-y,z) = ogqus(x,y,-z)

Plates with symmetry ng have fiber angles of 0° and 909 only and have
solutions characterized by (o], 02) = (1,1), (1,-1), (-1,1) or (-1,-1) in

up(x,y,2) = -oqui(-x,y,2) = o5us(x,-y,z)
Uy (X5¥52) = oqUs(-X,y,2) = -o5Us(x,-y,2) (26)

uz(x,y,2) = oquz(-x,y,2) = o3us(x,-y,2)

Plates with symmetry Do are invariant under rotations by 180° about the
X-, y- and z-axes and thus have

6(z) = -6(-z); -90° < 6 < 90° (27)
For these plates we let

u; (x,y,2) = uS(x.y,2) + u3(x,y,2) - (28)

where

U?(X,y,z) U?(Xsya-z)

(29)

-U?(x,y,—Z)

U?(x,y,Z)

Then the solutions are characterized by (0], 02) = (1,1), (1,-1), (-1,1) or
(-1,-1) in

e
U?(Xay,z) = 01U]('X,y,2) = -02U$(X:-ys2)
Up(X5¥52) = =0qUs(-X,y,2) = o u5(x,-y,2) (30)
e _ e _ e
u3(x,y,z) = 0]u3('X:YsZ) = 02“3(X3'y52)
with (o7, op) replaced by (-o7, -op) in the corresponding relations for
u?. If any two of the eqs. (25), (26) and (30) hold simultaneously then
eq. (24) must hold. On the other hand, eq. (23) is a consequence of
egs. (25), (26) or (30) separately.
Solutions lacking the appropriate symmetry are possible only in the

(unlikely) event that the eigenvalues for members of two different families
of solutions coincide, in which case the solutions are linear combinations of

170

symmetric solutions. The presence of families of solutions with different
symmetries means that with the choice of a proper ordering of the i the

[K] and [M] matrices have a block diagonal form with one b]ock for each family
of solutions +t. That is, 1 may be written as

I=zm (31)
T

where 1_ contains the yi associated with the symmetry <. This results in
replacing a large problem by two, four or eight (depending on the symmetry
group) smaller subproblems. For each of the subproblems, the expansion 1in

eq. (12) is adjusted to match the desired symmetries.

Symmetry of Stiffness and Mass Coefficients With Respect to
Interchanging the Roles of a,b and the Subscripts 1,2

The third type of symmetry is related to the observation that when given
a physical plate we may analyze it in two different ways - with the semi-major
axis of the plate a]ong the x-axis or along the y-axis. The two ways are
equivalent but result in interchanging the numerical values for a, and b
and for some of the material properties cyj(z). Let Kjj and K1 be com-
ponents of the stiffness matrices (befo"e the part1t1on1ng of eq. %1)) for
the same phys1ca1 problem as formulated in the two different ways. While it
is not true 1n general that Kjj equa]s K1J, it is true that for each pair
%ﬁ indices 1i,j there corresponds a pair ' such that K1J = K1 j's

us

(2) (o) (o) o(2) ((2) (2)
K g0 (@sb,C3y7s €575 Cig”s €575 Ca37s Cog”s o)
i} (2) (o) (o) o(2) (o) (%) (32)
= Kj;5(bsa:Cp5% Co37s Cog's Cqp%s Ciz7s Cygls --o)
Thus, while K1 and Kj: do not necessarily have the same numerical value,
they do have essent1a11y %he same algebraic form, and the FORTRAN code used
to evaluate Kj; can serve to evaluate Kj'j+ as well. The relation turns
out to be even stronger for the [M] matrix since

The first, second and third types of symmetries interact with each other in
the following way. Either all the index pairs 1i,j 1in the block of the [K]
matrix associated with symmetry t correspond to index pairs i',j' 1in the
block having a different symmetry <' or they all correspond to i',j' in
the same block. For the former case the FORTRAN code generated to find the
solutions with symmetry +t can be used to find the solutions with symmetry

t' as well. For the latter case the relations (22), (32) and (33) together
serve to reduce the FORTRAN code needed for symmetry +t to 1ittle more than
half that needed when considering eq. (22) alone. For this case the code is
executed once and the incomplete [K] and [M] saved. Then the code is executed

an

a second time with variables interchanged as in eq. (32) and the two sets of
matrices are merged. The interactions of the three types of symmetry are
summarized in Table 1 for the five symmetry groups of interest. The symmetry
considerations discussed in this section apply equally well for the determi-
nation of the derivative matrices in eqs. (17), (19) and (20).

TABLE 1. - INTERACTIONS AMONG THE FIRST, SECOND AND THIRD TYPES OF SYMMETRIES

Symmetry Symmetry Symmetries for which

" Symmetries interrelated

Group of Parameters, [K] and [M] are simpli- by eqs. (22), (32)
Plate T fied by egs. (22), (32) and (33)
and (33
C2 (O) (])5 (_])
C (U,)) (15])5 (]5'])3 (—]s])a
h 3 (-1.-1)
sz (015 02) (]3])3 (']:']) (]a"-l) ~r (']s])
D2 (O'Is 02) (]s])s (']9"'1) (]s']) -~ (']9])
D (O’,O’,O’) (]9]9])5 (]913']): (]3']a])<—>’(']9]91)3
2h] 2 3 (_13_131)) (_-]a"-ls"-l) (]5'19"1) e (_]5]9_])

NUMERICAL RESULTS
Numerical results have been obtained for moderately thick Taminated plates

with symmetry Dp. For the case o] = o2 = 1, we use the following version of
eq. (12) which takes eq. (30) into account:

up (x,y,2) = [1-(;§—)2-(%)2][y><](x,y) +xzx, (6,y) + y2ox; (x,y) + x23xy(x23)]

1y (xy52) = T1-92-(Do () + xg(x6y) + x2xgx0y) + y2x; (x09)]

2

()P Ixg (xoy) + xyzxg(xoy) *+ 2 xg(x:3)] - (34)

1l

u3(xy,2) = [1-(2)

172

where

o 2 2 2.2 4 6
X (60 = 04 yqaq X0 F dpppq YT F dagey XV F Uggeq X0 F Uggyg X

4,2 2 4 6 6
Flgeei XY T V774 XY F ggei X0 T ¥90ei Y (4 = 1511) (35)

This approximation scheme results in matrices [K] and [M] having dimension
110 by 110 and requires the generation of 3541 FORTRAN statements. Similar
approximation schemes are used for the other families of solutions. Typical
results are shown in figure 2. These results are for eight-layered plates
with h = b/10 and fiber orientations (with respect to the x-axis) which are
alternately 6 and -6, where ¢ = 45Y. The material properties are chosen
to be those typical of a high-modulus graphite-epoxy composite. Figure 2
shows the variation with the aspect ratio a/b of the lowest frequencies and
of the derivatives of these frequencies with respect to the fiber orientation
angle 6.

CONCLUDING REMARKS
The major advantages of using symbolic manipulation in the free vibration

analysis of laminated composite elliptic plates are

1} The accurate and reliable symbolic evaluation of large numbers
of derivatives and integrals

2) The concise form of the resulting FORTRAN expressions for Ki'
and M.. J
1J
3) The ease of implementing symmetry concepts

4) The simplicity of evaluating the first derivatives of the
frequencies with respect to the design variables

The multiple usage of the large blocks of FORTRAN code generated by
MACSYMA allows the calculation of frequency derivatives with no extra symbolic
effort and very 1ittle extra numerical computation. Of course, the symbolic
approach would be useless were it not for the fact that the output is in the
form of FORTRAN statements which need never be keypunched. Manual operations
on such a large quantity of data would surely introduce errors which would be
very difficult to rectify.

The major disadvantages are

1) The large amount of FORTRAN code needed to obtain accurate numerical
results

2) The relatively long symbolic computation times

173

3) The slow speed of transferring data from the symbolic
processing computer to the number processing computer
when the two computers are not on the same network

Several extensions of the present work come to mind, such as studying
plates with other boundary conditions and other geometries. Shapes requiring
numerical quadrature for.the x-y integration may also be investigated. The
various integrals required can be identified, isolated and assigned variable
names through the use of symbol manipulation much as the z-integrals are
treated in the present study. The techniques used herein are applicable to a
wide variety of other boundary-value problems.

REFERENCES

1. Andersen, C. M.; and Noor, Ahmed K.: Free Vibration of Laminated Composite
E1liptic Plates. Advances in Engineering Science, Volume 2, NASA CP-2001,

1976, pp. 425-438.

2. Ashton, J. E.; and Whitney, J. M.: Theory of Laminated Plates. Technomic
Publ. Co., 1970.

-3. Bathe, K. J.; and Wilson, E. L.: Numerical Methods in Finite Element
Analysis. Prentice-Hall, Inc., 1976.

4. Noor, A. K.: Symmetries in Laminated Composite Plates. Proceedings of
the Eighth Southeastern Conference on Theoretical and Applied Mechanics,
Virginia Polytech. Inst. & State Univ., Apr. 1976, pp. 225-246.

5. Hamermesh, Morton: Group Theory and Its Application to Physical Problems.
Addison-Wesley Pub. Co., Inc., c.1962.

174

900

800

700

600 |,

———

1

i
4
>

—a—
h |
1,
| ,/1—>x

Fia. 1 Clamned laminated el1liptic plate
L2 _
(01, 02) = {,1)
—_———- (01. 02) ={1,-1
1.0 ——~ (01. 02) = (-1,1} g
. (01, 02) = {-1,-1) //1

400
300
200
100

1 [l L { -6 1. i 1 i

1.0 15 2.0 2.5 3.0 1.0 L5 2.0 2.5 3.0

alb alb
Fig. 2. Effect of a/b on w2 and %-%%-for clamped eight-layered ellintic

plates with D2 symmetry and fiber orientations alternately +45°
0 . = . = . = .

and -45~. h/b = 1/10; gL/FT ; 405 vy 1 = 1/4;5 G 1/E1 = 3/5;

Gr7/Er = 1/25 wy = (E;h®)/(eb").

o N

175

18

OBSERVATIONS ON APPROXIMATE INTEGRATIONS

Edward W. Ng
Jet Propulsion Laboratory

Extended Abstract

In this presentation we explore a class of integration strategies that
fall in between the two extremes of symbolic integration and numerical quadra-
ture, which are, respectively, aimed at the computer generation of answers in
the form of exact expressions and numerical values. We shall first discuss the
theoretical advances in symbolic integration, as motivation to the following,
then examine three major contexts of applications with attendant case studies,
and finally explore four possible types of strategies for approximate inte-
gration. In particular we shall comment on the feasibility and adequacy (or
inadequacy) of MACSYMA for implementing these strategies.

We begin with theoretical discussions. In this aspect we have discerned
two major paradigms of strategies, which we label the "pattern~recognition
paradigm" and the "problem-solving paradigm'. These labels, though far from
perfect, are chosen to indicate the emphasis only. In the former class we
include, for example, Risch's algorithm, (Ref. 1) and Moses' new approach based
on extension operators (Ref. 2). We believe these strategies to be particularly
characterized by the search of algorithmic ability to recognize that certain
expressions or operators belong to some specified class of such. The problem
solving paradigm is obviously inherited from heuristic strategies of artificial
intelligence. In this latter class we include, for example, Wang's definite
integrations (Ref. 3) and our elliptic integrations (Ref. 4). All these
theoretical strategies suffer from practical limitations of one kind or another.
Notably among these are the multivariate factorization problem, the optimal
selection of input vis—a-vis output class of expressions and intelligent choice
of contours for definite integration. The optimal selection needs particular
elaboration here. Take for example the integration of rational functions. It
is easy to devise an efficient algorithm to decide if a given rational function
can be integrated in terms of ratiomal functions. But such algorithm would be
of extremely limited interest because it would return a negative answer for
most input expressions, such as something as simple as 1/(x+1l). The addition
of one "new' function (logarithm) in the output class dramatically expands the
problem-solving horizon. On the other hand, we obviously cannot carry this to
the other extreme of choosing a large number of new functions, lest the result
be next to worthless. All these discussions, however, force us to consider
what we mean by 'usefulness' of an output expression, which in turn leads us to
considering three major contexts of applications.

At this Laboratory we have been associated with an applied mathematics

group which provides consultation and support to a diversity of engineers and
scientists. Although our picture is still somewhat limited, it does give us an

177

indication ‘of the major contexts in which integration tools are considered neces-
sary or useful., The first is the usual exploratory context, where a scientist
or engineer encounters isolated integrals which he needs to tackle. Here he
typically wants closed form solution, but often settles for an approximate
answer. The need here is based on the motivation to "do something with" the
result, that 1is, to either study its dependency on some parameters or on some
other mathematical operations. The second context revolves around multiple
integration. Here the goal is usually numerical evaluation, but one is inter-
ested in reducing the dimensionality of integration as much as possible, because
multiple quadrature is costly both In computing time and accuracy. The third
context concerns multi-parameter studies, where the integral depends on a

number of parameters, thus making numerical results difficult, if not impossi-
ble to interprete. For example, if the integral 1s a function of six parameters,
the numerical result would require a six-dimensional table or six-dimensional
hypersurface to represent. In all these contexts of applications, current
technology forces an investigator to take either alternative of the two ex~
tremes of numerical versus analytic results (with some exceptions to be
mentioned later). It is fair to say that most "real 1life" problems are non-
elegant in nature and for which analytic results are difficult and unlikely to
come by. For example, a polynomilal of 5th degree whose coefficients are

derived from data or other computations are usually irreducible over the
integers. ‘In most non-trivial algorithms of integration this fundamental
limitation is often fatal, because they Involve, in one form or another, partial
fraction decomposition which depends on factorization. All these discussions
point to the need of a compromising approach between the extremes of numerical
and exact integration. Such an approach (let us call it approximate integration),
is resorted to by scientists and engineers in isolated instances, but has not
been investigated as a possible general purpose tool in the sense of a quadrature
scheme or a symbolic integration algorithm. The important point to stress is
that the approximate approach is intended to yield an output that is an ex-
pression, rather than a table of numbers..

At this stage we have examined four broad categories of such approximate
schemes. The first consists of the approximation of the integrand by a set of
basis functions such as polynomials or splines. There have been some isolated
applications using such approximation, for instance, in finite element analysis.
One example 1s given in the particular integration of mass and stiffness
matrices given in (Ref. 5). Here the integrand, after a sequence of symbolic
manipulations, is made up of a matrix of bivariate polynomials which are readily
integrated. In a more general vein, Andersen (Ref. 6) describes the variety of
integrations for triangular and quadrilateral finite elements.

The second approach may be labelled interpolatory scheme. Here the spirit
is analogous to the derivation of quadrature schemes. i.e., by approximating
the integrand by some interpolation formula and then integrating term by term.
An example can be cited from Filon quadrature (Ref. 7). Here the integrand is
of the form f(x)sico(ax) where sico is either sine or cosine. The integration
interval is subdivided into n segments and f(x) is interpolated by a quadratic
in each segment to fit the midpoint and two endpoints of that segment. The
interpolated expression can then be integrated analytically. Similar techniques

178

can be applied to other types of functions. As pointed out by a referee,
interpolation actually can be viewed as a special case of approximating in
terms of a basis, it being the Lagrange polynomials associated with the inter-
polation points and having an integral error criterion subject to exact fit at
these points.

The third approach is based on a reduction of transcendence of the inte-
grand. Termwise integration of approximations of the integrand by power or
asymptotic series is a well-known example in this category. This strategy
amounts to an approximation of the integrand by a polynomial. However, one can
also approximate the integrand by a rational function. For example, take the
exponential of a polynomial. For a proper range the exponential can be
approximated by a rational function, but there 1is an associated difficulty
here, namely, that the rational function consists of polynomials of high degrees,
and that some kind of telescoping procedure need be applied in order that the
integrated result is manageable. An example will be presented to detail the
advantages and disadvantages of such a strategy.

The last approach is to compute the integral by quadrature and then
approximate the answer by, for example, some basis functions. This approach
can hardly be considered under the umbrella of integration (it is more of a
curve or surface fitting problem). In a paper on practical approximations
(Ref. 8) the author gives an example on the approximation of an integral. The
basic idea will carry through to a more general problem where quadrature can
be used instead. We shall comment on the pros and cons of this approach.

In the oral presentation we shall provide a concrete example for each
approach and discuss the MACSYMA relevance to each. Though we do not have a
coherent theory behind each, we believe this investigation is a modest
beginning of approaches of practical significance.

179

180

REFERENCES

Risch, R.: The Problem of Integration in Finite Terms. Trans. American
Math. Soec., vol. 139, 1969, pp. 167-189.

Moses, J.: Toward A General Theory of Special Functions. Commun. ACM,
vol. 15, no. 7, July 1972, pp. 550-554.

Wang, P.: Evaluation of Definite Integrals by Symbolic Manipulation.
Rep. 92, Lab. Comput. Sci., (formerly Proj. MAC), Massachusetts Inst.
Technol., 1971.

Ng, E.; and Polajnar, D.: A Study of Alternative Methods for Symbolic
Calculation of Elliptical Integrals. Proceeding of 1976 ACM Symposium
on Symbolic and Algebraic Computations, Aug. 1976, pp. 372-376.

Gupta, K.; and Ng, E.: Symbolic Calculations in a Finite Dynamic Element
Analysis. Proceedings of the 1977 MACSYMA Users' Conference, NASA
CP-2012, 1977. (Paper no. 16 of this compilation.)

Andersen, C.: Use of Computerized Symbolic Integration in Finite Element
Development. Proceedings of the ACM Annual Conference, pp. 554-562,
1974,

Chase, S.M.; and Fosdick, L.D.: An Algorithm for Filon Quadrature.
Commun. ACM, vol. 12, no. 8, Aug. 1969.

Cody, W.J.: A Survey of Practical Rational and Polynomial Approximation
of Functions. SIAM Rev. vol. 12, no. 3, 1970.

LISP: PROGRAM IS DATA
A HISTORICAL PERSPECTIVE ON MACLISP

Jon L White
Laboratory for Computer Science, M.I.T.*

ABSTRACT

For over 10 years, MACLISP has supported a variety of projects at M.I.T.’s Artificial Intelligence
Laboratory, and the Laboratory for Computer Science (formerly Project MAC). During this time, there
has been a continuing development of the MACLISP system, spurred in great measure by the needs of
MACSYMA development. Herein are reported, in a mosiac, historical style, the major features of the
system. For each feature discussed, an attempt will be made to mention the year of initial development,
and the names of persons or projects primarily responsible for requiring, needing, or suggesting such
features.

INTRODUCTION

In 1964, Greenblatt and others participated in the check-out phase of Digital Equipment
Corporation’s new computer, the PDP-6. This machine had a number of innovative features that were
thought to be ideal for the development of a list processing system, and thus it was very appropriate that
the first working program actually run on the PDP-6 was an ancestor of the current MACLISP. This
early LISP was patterned after the existing PDP-1 LISP (see reference 1), and was produced by using
the text editor and a mini-assembler on the PDP-1. That first PDP-6 finally found its way into M.L.T.’s
Project MAC for use by the Artificial Intelligence group (the A.l. group later became the M.LT.
Artificial Intelligence Laboratory, and Project MAC became the Laboratory for Computer Science). By
1968, the PDP-6 was running the Incompatible Time-Sharing system, and was soon supplanted by the
PDP-10. Today, the KL-10, an advanced version of the PDP-10, supports a variety of time sharing
systems, most of which are capable of running a MACLISP.

MACSYMA (ref. 2) grew out of projects started on the 7090 LISP 1.5, namely Moses’ SIN
program and Martin's MATHLAB. By implementing the Project MAC Symbolic and Algebraic
manipulation system in LISP, many advantages were obtained. Of particular importance were
(i) a basic data convention well-suited for encoding algebraic expressions, (ii) the ability for many
independent individuals to make programming contributions by adhering to the programming and data
framework of LISP, and (iii) the availability of a good compiler and debugging aids in the MACLISP
system. As the years rolled by, the question was asked "What price LISP"? That is, how much faster
could the algebraic system be if the advantages brought by the LISP system were abandoned and an
all-out effort was made in machine language? Moses has estimated that about a factor of two could be
gained (private communication), but at the cost of shifting much of the project resources from mathe-
matical research to coding and programming. However, that loss could have been much larger had not
MACLISP development kept pace, being inspired by the problems observed during MACSYMA
development, and the development of other projects in the A.I. Laboratory. The most precarious strain
placed on the supporting LISP system by MACSYMA has been its sheer size, and this has led to new
and fundamental changes to MACLISP, with more yet still in the future. Many times, the MACSYMA

*During the calendar year 1977, the author is located at the IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598.

181

19

system was not able to utilize the solution generated for one of its problems, due to the familiar trap of
having already too- much code invested in some bypass solution; but there has generally been an
interchange of ideas amongst those groups using MACLISP at the A.I. Lab and L.CS, and another group
may have received the benefit of an idea born by MACSYMA needs.

Because the system is still evolving after a decade of development, it is useful to think of it as one
big piece of data, a program still amenable to further critical review and emendation. Below are
presented some of the developments of this past 10 years, with a little bit of explanation as to their

significance and origin.

HOW WE GOT TO WHERE WE ARE
Clever Control Features

In 1966, Greenblatt suggested abandoning the a-list model for program variables, and returning to a
standard save-and-restore stack model such as might be used by a recursive FORTRAN. This was the
first LISP to do so, and a later LISP developed at Bolt, Beranek, and Newman (BBN) in Cambridge
used a model whereby storage for program variables was dynamically allocated on the top of a stack.
Both stack models could achieve a significant speed-up over the a-list models, but at a cost of limiting
the use of FUNCTION (see ref. 3). The BBN LISP later became INTERLISP (ref. 4), and currently
has a stack model with the same function capabilities as the a-list model. In 1975, the PROGYV feature
was added and is apparently unique to MACLISP. PROGYV is essentially PROG, except that the list of
variables is not syntactically present, but rather is computed as an argument to PROGV; previously,
about the best one could do was to call EVAL (or APPLY) with a dynamically-constructed LAMBDA

expression.

In 1969, Sussman, noticing features of the MULTICS operating system, demanded some similar
features for MACLISP: asynchronous interruption capability, such as alarmclocks, job-console control
keys, hardware faults, interprocess communication, and exceptional process conditions (chiefly, errors).
Many LISP systems now permit the user to supply functions for handling standard LISP errors, and
provide for some mechanism at the job-console to interrupt the system, putting it into a top-level-like
loop called BREAK. MACLISP permits interruption capability on any character of the input-console
keyboard; the user may designate any function to be run when a particular key is typed. To some
degree, these features appeared concurrently in INTERLISP, but especially the stackframe and
debugging facilities of INTERLISP inspired similar ones in MACLISP. In mid-1976, MACLISP could
finally give an interrupt to the user program on several classes of hardware-detected conditions: access
(read or write) to a specific address, attempted access to non-existent address, attempted write access
into read-only memory, parity error, and illegal instruction. Furthermore, some operating system
conditions could trigger special interrupts: system about to shut down in a few minutes, and console
screen altered by system. Evident from the development of LISP-embedded systems was the need for a
NOINTERRUPT facility, which could protect user-coded processes from an accidental, mid-function
aborting such as might occur during an asynchronous interrupt. Steele designed and implemented the

current scheme in late 1973.

Sussman’s development of MICRO-PLANNER (ref. 5) required some more capabilities for
intelligent, dynamic memory management; and thus White, in 1971, introduced programmable parame-
ters for the garbage collector — a minimum size for each space, a maximum allowable, and a figure
demanding that a certain amount be reclaimed (or found free) after a collection. Then in the next year
came the GC-DAEMON mechanism, whereby a user function is called immediately after each garbage
collection so that it can intelligently monitor the usage of memory and purposefully modify the
memory-management parameters. Baker, who has recently done work on concurrent garbage collection
(ref. 6), has produced a typical storage monitor using the MACLISP mechanisms (ref. 7).

182

Sussman’s later development of CONNIVER (ref. 8) showed the need for a sort of non-local
GOTO, as a means of quickly aborting a computation (such as a pattern-matching data-base search) that
had gone down a wrong path. Thus in 1972 White devised the CATCH and THROW facilities
(THROW provides a quick, non-local break-out to-a program spot determined by CATCH), and
implemented FRETURN as a means of an impromptu "THROW" out of any stackframe higher up than
the current point of computation (this is especially effective if an error break occurs, and the user can
supply by hand a correct return value for some pending subroutine call several levels up the stack). In
1975, Steele coded the EVALHOOK feature, which traps each interpretive entry to EVAL during the
evaluation of a piece of code; this permitted users to write debugging packages that can effectively
"single-step'' through an evaluation.

The embedding of advanced programming-language systems in LISP, such as MACSYMA,
MICRO-PLANNER, CONNIVER, and LLOGO (ref. 9) required a means of insulating the supporting
system (written as LISP code) from the users code (written in the new experimental language). Sussman
and White noticed that the action of INTERN was primarily a table look-up, and they implemented this
table (in 1971) as a LISP array, which array is held as the value of the global variable OBARRAY.
Thus a user can change, or even LAMBDA-bind, the INTERN environment. Similarly, the action of the
programmable reader could be controlled by exposing its syntax and macro table as the value of the
global variable READTABLE, which was done in 1972. In 1975, the MAPATOMS function as found in
INTERLISP was implemented for quickly applying a function te all the objects on a given OBARRAY.
All these .embedded systems wanted to have better control over the LISP top-level and break-level
loops; so in 1971 two features were added: 1) ability to replace the top-level and break-level action
with a form of the user’s choice, and 2) a facility to capture control after a system-detected error has
occurred but before re-entry to the top level. At first, the error-break permitted only exiting by quitting
out back to top level, but later these breaks were such that many errors could be corrected and the
computation restarted at the point just prior to the error detection. By early 1975, it was noted that
many applications wanted to alter what might be called the default input reader and the default output
printer; the former because their code files were written with many macro and special facilities, and the
latter because of the occurrence of circular list structure. Thus the two variables READ and PRIN1, if
non-NIL, hold a user-supplied function for these operations.

1/0 Facilities

In 1968, White proposed a programmable, macro-character input reader, and by the summer of
1969, the reader was in operation. .Since that time, some other LISPs have added certain special
features to their readers, such as inputting ’A as (QUOTE A), or as in INTERLISP, permitting the user
to change the meaning of break, separator, and escape characters; but to the author’s knowledge none
have any user-programmable macro! facility, nor so wide a range of parsing options as does MACLISP.

The PRINT function of MACLISP has remained relatively neglected over the years; but in 1973
Steele implemented the PRINLEVEL and PRINLENGTH facilities as inspired by the INTERLISP
PRINTLEVEL facility. LISP has always had the notion of "line length", such that if more than a
specified number of characters were output without an intervening newline character, the a newline was
automatically inserted by the system (this was especially practical in the days when model 33 Teletypes
were the main terminal used, and the operating system did not take care of preventing too long a line).
MACLISP allowed an override on this automatic insertion feature, but in 1976 Steele modified this
facility so that, even when not overriden, it would not insert the generated newline character in the
middle of some atom. Along with the macro-reader in 1968, White installed dynamically-variable base
conversion for fixnums, so that any base between 2 and 36 could be used; for what it’s worth, Steele
extended this for roman numerals also in 1974.

1 Of course the macro functions are written in LISP, what else!

182

-

The problem of "perfect” output for floating-point numbers on the PDP-10 has apparently not been
solved in any other system. That is, given the more-or-less standard input algorithm for base conversion
from floating-point decimal numbers (dfpns) to floating-point binary numbers (bfpns), construct an
output conversion algorithm such that

i) every representable bfpn is converted to a shortest dfpn, and

i) if e is a representable bfpn, and e* is its dfpn image by the output algorithm, then the input

algorithm applied to e* produces exactly e.

In 1972, White devised and installed in MACLISP an algorithm that was more nearly "perfect" than any
other known to the author or to persons of his acquaintance; and in May 1977 White and Steele
improved that algorithm so that they think it is "perfect” (a proof of which is forthcoming). Most other
algorithms will increase the least-significant bit of some numbers when passed through the read-in of
print-out cycle (see reference 10 for a possible explanation of why this problem is so hard). Golden
anticipates MACSYMA's usage of this capability, "perfect” print-out, if it indeed is truly so.

Inspired by LISP 1.6 (ref. 11), a preliminary version of a multiple I/O scheme was coded up by
Stallman in 1971. Prior to this, MACLISP could effectively READ from at most one file at a time, and
PRINT out onto at most one file at a time; furthermore, there were no provisions for I/O other than the
ASCII streams implicit in READ and PRINT. That preliminary version was abandoned in early 1973,
and a decision was made to copy the design of the MULTICS version 1/O (which had been developed
rather independently). This scheme, coded by Steele and ready for use early in 1975, has been termed
“Newio". Tt has since been undergoing continuing check-out and development up until now, and in
January 1977 became the standard MACLISP on the ITS versions, although we have not yet made the
necessary modifications to the TOPS-10 version.

Between 1967 and 1971, the A.L. Lab Vision Group, and MACSYMA Group saw the need for a
faster method of getting compiled LISP subroutines off disk storage and into a running system. Back
then, the compiler would produce a file of LAP code, which would be assembled in each time it was
required. The first step in this direction was taken in 1969 when White devised a dynamic array space,
with automatic garbage collection. Then White and others worked out a relocatable format for disk
storage such that the load in time could be minimal; Steele and White implemented this scheme between
1972 and 1973, called FASLOAD. Golden reported that the time to load in all the routines comprising
the then-existing MACSYMA dropped from about an hour to two minutes; continuing MACSYMA
development certainly required this FASt LOADing scheme. Closely following in time was the
AUTOLOAD scheme, whereby a function that was not part of the in-core environment, but resident in
FASL format on disk, would be FASLOADed in upon first invocation.

Arithmetic Capabilities

Perhaps the most stunning achievement of MACLISP has been the method of arithmetic that has
permitted FORTRAN-like speed from compiled LISP code. In 1968, Martin and Moses, foreseeing
future needs of MACSYMA, demanded better arithmetic capabilities from MACLISP. In 1969, Martin
changed the implementation of numbers so that FIXNUMs and FLONUMS consumed only one word,
rather than three — that is, the LISP 1.5 format was abandoned and numbers were implemented merely
as the pointer to the full-word space cell containing their value. Such a scheme had already been
accomplished, partially, in other LISPs. After that change in the interpreter had been completed, some
new functions were introduced for type-specific arithmetic:

for fixed point: + - * / 1+ 1-

for floating point: +$ -$ *$ /$ 1+$ 1-$

for either (but not mixed): = < >
Later, more functions were added, such as fixed-point square-root, and greatest-common-divisor. The
fixed-point functions would be an automatic declaration to the compiler that all arguments and results
would be fixnums, and that all arithmetic can be modulo 237; similarly, the flonum functions would
specify the use of floating point hardware in the compiled code.

184

At the same time, Binford suggested installing- separate full-word stacks for FIXNUMs and for
FLONUMs, and interpreting these stack addresses as the corresponding type number. Then White
proposed eliminating the discontinuity in FIXNUM representation caused by the INUM scheme, so that
open-compilation of numeric code would need no extra, interpretive-like steps to extract the numerical
value from a LISP number;2 White also designed a scheme for using the number stacks, interfacing
compiled subroutines with one another and with the interpreter. The redesign of number storage, and
the design of a numeric subroutine interface, was for the purpose of permitting the compiler to produce
code similar to what a PDP-10 FORTRAN compiler could produce on essentially numeric programs.3
Work then began on the compiler to take advantage of all this, and a preliminary version for arithmetic
code was operational by late 1971, under the care of Golden and Rosen who did most of the early
coding. Rosen and White developed optimization in the compiler during 1972, and White continued this
work through the end of 1976. In 1974, White and Steele extended the array data facilities of
MACLISP to include FORTRAN-like arrays of fixnums and flonums so that the compiler could optimize
array references in numerical code; see Steele’s paper describing the current output available from the
compiler (ref. 13).

Early along in MACSYMA development, Moses and Martin saw the need for variable-precision
integer arithmetic, and thus the BIGNUM functions were born, with most algorithms taken from Knuth
(ref. 14). During 1972 and 1973, Golden suggested the need in MACSYMA for some of the usual
transcendental functions, like SIN, COS, natural logarithm and anti-logarithm, and arc-tangent (these
were adapted from some rational approximations originally developed by White in 1967); for GCD,
HAULONG, HAIPART, and improvements to the the exponentiation function EXPT; and for the
ZUNDERFLOW switch, which permits interpretive arithmetic routines to substitute a real zero for any
floating-point result that causes a floating-point underflow condition. By combining the binary and
Lehmer algorithms from Knuth (ref. 15), Gosper produced a GCD algorithm early in 1976 which runs
much faster on bignum inputs. Also, in 1976, a feature was added to the interpretive floating-point
addition and subtraction routines such that if the sum is significantly less than the principal summand,
then the sum is converted to zero; the variable ZFUZZ holds a scale-factor for this feature, which is
still considered experimental (LISP370 has a more pervasive use of a similar feature in all floating-point
arithmetic and I/O functions).

Randomness has always been a property of MACLISP, having had a linear-shift-register RANDOM
number generator since early times. This generator produced a maximally-long sequence, was extremely
fast, and moderately acceptable for most applications. However, it failed the correlated-triples test, and
when it was used to generate random scenes for display on the LOGO Advent color projector, it
produced some very nice kaleidoscopic pictures; so in late 1976, a modification of Knuth’'s Algorithm A
(ref. 16) was coded by Horn.

Ancillary Packages

A number of ancillary functions have been coded in LISP, mostly by persons who were LISP users
rather than system developers, and are kept stored in their compiled, FASL format for loading in when
desired. In 1970, Binford coded a small, but powerful, subset of the INTERLISP in-core editor as a
LISP package, but this was later recoded in machine language; a more extensive version of the
INTERLISP editor has been coded by Gabriel in 1975. In 1970, Winston designed and coded INDEX,

2ZMACLISP, by inspecting the numerical value of a number coming into the FIXNUM-conser, supplies a
canonical, read-only copy for fixnums in the range of about -1000. to +2000. This significantly
reduces the number of new cells required by running arithmetic code, without significantly slowing
down the operations. Currently, no similar action is taken for FLONUMs.

3The generally-accepted opinion in 1968, and indeed in some quarters up until 1973, was that LISP is
inherently a hundred times slower on arithmetic than is FORTRAN. Fateman’s note in 1973 effectively
rebutted this opinion (ref. 12), but in 1969 it tonk faith to go ahead with this plan; only Martin and
the author had a clear resolve to do so then.

185

a package to analyze a file of LISP programs and report on’ certain properties therein. During 1972,
Goldstein replaced an existing, slow pretty-printer (called GRIND) with a programmable pretty-printer
(ref. 17), and Steele spruced-up an existing TRACE package to have more features. After the Newio
scheme became operational, two packages were coded for the fast dumping onto disk and retrieval
therefrom of numeric arrays, and a FASDUMP package was implemented for MACSYMA that could
quickly and efficiently store list structure on disk (Kulp had a hand in developing this package, but it
may no longer be in use). Many of these user-supplied packages now reside on a disk area called
LIBLSP, which includes a FORMAT package by White for printing out numbers under control of a
format (such as is used in FORTRAN), a package for reading and printing circular list structures,
various debugging packages and s-expression editors, and many others.

In 1973 Pratt was continuing work on a "front end" for LISP, CGOL (ref. 18), which he had
begun at Stanford University in 1971, and he had it generally operational at a number of sites by 1975.
It exemplifies the Pratt operator-precedence parser (now used at the front end of MACSYMA), and has
some of the character of MLISP (ref. 19). However, the CGOL-to-MACLISP conversion is dynamic and
fast, and furthermore, an acceptable inverse operation has been implemented, so that one can effectively
use this ALGOL-like language while still retaining all the advantages of MACLISP (fast interpreter,
good compiler, many debugging aids, etc.). It is not at all impractical to replace the MACLISP default
reader and printer with CGOL’s (see notes on READ and PRIN1 in the last paragraph of "Clever
Control Features'' above), so that CGOL may be properly thought of as an alternate external syntax for
LISP. See reference 7 for a practical example — one particular GC-DAEMON function for MACLISP,

coded in CGOL.

MIDAS, the A.l. Lab’s assembly-language system for the PDP-10, cooperates with MACLISP to
the extent of being able to produce a FASL format file. A number of these ancillary packages have thus
been coded in machine language for greater efficiency. In mid 1973, Steele coded a version of
Quicksort (ref 20) which is autoloadable as the function SORT; in 1976, after Newio became stable,
Steele coded a file-directory query package (called ALLFILES), and designed a package for creating and
controlling subjobs (tasks) in the ITS time-sharing environment (called HUMBLE). Using the HUM-
BLE package, Kulp and others interfaced the text editor TECO with MACLISP, for increased program-
mer efficiency in debugging and updating LISP programs. Kulp and others had proposed a text-
processing system suitable for use with a photo-composer to be written in MACLISP and using these
features, but this has not yet been realized. With the ALARMCLOCK facility for periodic interrupts,
and HUMBLE for driving sub-tasks, MACLISP is fully equipped for becoming a time-sharing system.

Export Systems

Martin’s desire to be able to use MACSYMA on the MULTICS system led to the start of a
MULTICS version of MACLISP, begun in late 1971 by Reed; after this was fully operational in 1973,
Moon, who had worked on it wrote the now-extinct MACLISP Reference Manual published in March
1974 (ref. 21). Although there has been little use of MACSYMA on the MULTICS version, it was
successfully transplanted there; several other extension systems developed on the PDP-10 version were
also successfully tested on the MULTICS version, such as LLOGO and CONNIVER.

In the summer of 1973, the MACLISP system was extended to permit its use on TOPS-10, DEC’s
non-paged time sharing system. Much help on this development has come from members of the
Worcester Polytech Computation Center, and from the resources of the Computer Science department of
Carnegie-Mellon University. The impetus for having a TOPS-10 version came from many academic
institutions, where students with interests in artificial intelligence had been intrigued by MICRO-
PLANNER and CONNIVER and their applications, and had wanted to experiment with these systems
on their own PDP-10s. Later, as M.I.T. graduate students and professors moved to other universities,
they took with them the desire to use MACLISP, rather than any of the other available LISP alterna-
tives. The major difficulty in export to these other institutions has been their lack of adequate amounts
of main memory — few places could even run the MACLISP compiler, which requires 65+7K. At one

186

time Moses had a desire to export MACSYMA through this means, but this has not proved feasible.
Even for the KI-10 and KI.-10 processors, which have paging boxes, the TOPS-10 operating system
does not give user programs sufficient control over the page-map; consequently, this version of
MACLISP is to some degree less efficient in its memory utilization.

The TENEX and TOPS-20 operating systems should be able to support the TOPS-10 version of
MACLISP, under a compatibility mode, but there has been some difficulty there. In 1971, a specially
tailored version of MACLISP was run under the TENEX system, but this version died out for lack of
interest. If future interest demands it, there should be no trouble in getting almost the full range of
MACLISP features found on the ITS version to be implemented in a TOPS-20/TENEX version. In
1976 Gabriel adapted the TOPS-10 version to run on the Stanford A.l. Laboratory operating system,
and there is currently an increasing body of users out there.

Revised Data Representations

A major step was taken in 1973 when the long-awaited plans to revise the storage strategy of
MACLISP saw the light. A plan called Bibop (acronym for Blg Bag Of Pages), inspired in part by the
prior INTERLISP format, was designed by White, Steele, and Macrakis; and this was coded by Steele
during the succeeding year. The new format relieves the need for a LISP user to make precise alloca-
tions of computer memory, and permits dynamic expansion of'each data space (although only the array
storage area can be dynamically reduced in size). In 1974, numeric arrays were added, and in 1976 a
new data type called HUNK was added as a s-expression vector without any of the overhead associated
with the array data type. Steele’s paper in these proceedings (ref. 22) gives a detailed account of how
the current storage picture looks inside MACLISP.

Especially MACSYMA, as well as Winograd’s SHRDLU and Hewitt’s PLASMA systems, needed
the efficiency and versatility of these new formats. The concept of "pure free storage' entered the
picture after Bibop became operational: this is list and s-expression structure that is essentially constant,
and which can be removed from the active storage areas that the garbage collector manages. Further-
more, it can be made read-only, and shared among users of the same system; in MACSYMA, there are
myriads of such cells, and the consequent savings is enormous. Thus the incremental amount of memory
required for another MACSYMA user on the system starts at only about 45K words!

The Compiler

Greenblatt and others wrote a compiler for the PDP-6 lisp, patterned initially after the one for 7090
LISP on CTSS. This early attempt is the grandfather of both the current MACLISP and current
LISP 1.6 compilers. However, optimizing LISP code for the the PDP-6 (and PDP-10) is a much more
difficult task than it might first appear to be, because of the multiple opportunities provided by the
machine architecture. That early compiler had too many bugs to be really useful, but it did provide a
good, basic structure on which White began in 1969 (joined by Golden in 1970) to work out the plans
for the fast-arithmetic schemes (see ref. 13). The LISP 1.6 compiler has apparently not had so
thorough a check-out and debugging as the MACLISP compiler, since its reputation is unreliability. The
INTERLISP compiler was produced independently, and seems to be quite reliable; but comparisons have
shown that average programs compile into almost twice as many instructions through it than through the
MACLISP compiler.

Ad-Hoc Hacs

As the number of new and interactive features grew, there was observed need for a systematic way
to query and change the status of various of the operating system and LISP system facilities. We did not
want to have to introduce a new LISP primitive function for every such feature (there are scores!), so
thus was born in 1969 the STATUS and SSTATUS series. The first argument to these functions selects
one of many operations, ranging from getting the time of day from a home-built clock, to reading the
phase of the moon, and to setting up a special TV terminai line to monitor the garbage collector. Later,

187

in 1975, the function SYSCALL was added as a LISP entry into the time-sharing system’s CALL series
of operations. (See reference 23 for information on the ITS system.)

Between 1970 and 1972, the demands of the A.I. Lab Vision group necessitated the installation of
a simulated TV camera, called the FAKETV, along with a library file of disk-stored scene images. A
cooperative effort between the Vision group and the LOGO group led to the design of a Display-slave
— a higher, display-orientated language for use with the Lab’s 340 Display unit using the PDP-6 as an
off-line display processor. Goldstein, because of his interest in LLOGO (ref. 9), participated in the
initial design along with Lerman and White; the programming and coding were done by the latter two.

In 1973, terminal-input echo processing (rubout capability) was enhanced, and cursor control was
made available to the user for the existing display terminals. When the A.I. Lab began using the
home-built TV terminal system, Lieberman coded a general-purpose display packages in LISP for use on
the TV display buffer. When Newio became available in 1975, Lieberman and Steele showed examples
of split-screen layouts usable from LISP, and in 1976 Steele showed how to code a variety of "rubout"
processors in LISP. Furthermore, Newio permitted extended (12-bit) input from the keyboards
associated with these terminals.

In 1973, MACLISP copied a feature from LISP 1.6 for improving facilities in linkage between
compiled subroutines — the UUOLINKS technique. All compiled- subroutine calls are done indirect
through a table, which contains interpretive links for subroutine-to-subroutine transfer. Under user
option, these links may be "snapped' during run time — that is, converted to a single PDP-10 subrout-
ine transfer instruction. A read-only copy is made of this table (after a system such as MACSYMA is
generated) so that it may be restored to its unsnapped state at any time. The advantage of this is that,
normally, subroutine transfers will take place in one or two instruction executions, but if it is desired to
debug some already compiled subroutines, then one need only restore the interpretive links from the

read-only copy.

Inspired by MACSYMA'’s history variables, MACLISP adopted the convention in early 1971 that
the variable "*" would hold the most recent quantity obtained at top level.

In 1973, White coded an s-expression hashing algorithm called SXHASH, which has been useful to
routines doing canonicalization of list structure (by hashing, one can greatly speed-up the search to
determine whether or not there is an s-expression copy in a table EQUAL to a given s-expression).

To accommodate the group that translated the Iunar rocks query-information system from
INTERLISP to MACLISP, the convention was established in 1974 that car[NIL]=cdr[NIL}=NIL. This
seems to have been widely accepted, since it simplifies many predicates of the form
(AND X (CDR X) (CDDR X)) into something like (CDDR X).

WHERE DO WE GO FROM HERE?

The major problem now with MACLISP, especially as far as MACSYMA is concerned, is the
limitation imposed by the PDP-10 architecture — an 18.-bit address space, which after overhead is
taken out, only leaves about 180K words for data and compiled programs. Steele discusses some of our
current thinking on what to do about this in his paper (ref. 22) of these proceedings, under the section
"The Address Space Problem'. Since the LISP machine of Greenblatt (ref. 24) is such an attractive
alternative, and is even operational now in 1977, we will no doubt explore the possibilities of incorporat-
ing into PDP-10 MACLISP some of its unique features, and in general try to reduce the differences
between them. For the future of MACSYMA, we foresee the need for new, primitive data types for
efficient use of complex numbers and of double-precision floating-point numbers. We anticipate also the
need to have a version efficiently planted in the TOPS-20 system.

188

W N

10.
. Quam, L.; STANFORD LISP 1.6 MANUAL. SAILON 28.3, Artificial Intelligence Lab, Stanford

11

12.
13.

14.
15.
16.
17.

18.
19.
. Knuth, D.; The Art of Computer Programming. V3, Addison-Wesley, 1973, pp. 114-116.
21.
22.

23.
24.

FULL NAMES OF PERSONS ASSOCIATED WITH MACLISP DEVELOPMENT
AND MENTIONED IN THIS PAPER

Research Staff

Jon L White

Jeffrey P. Golden
Richard Greenblatt
Thomas O. Binford*
Jerry B. Lerman¥*

R. William Gosper*

MIT Professors

Joel Moses
William A. Martin
Gerald J. Sussman
Ira P. Goldstein
Vaughan Pratt
Patrick H. Winston

Students

Guy L. Steele Jr.
David A. Moon
Eric C. Rosen*
John L. Kulp
Richard P. Gabriel*
Henry Lieberman

Terry L. Winograd*
Carl E. Hewitt

Richard J. Fateman*
Berthold K. P. Horn

Richard M. Staillman
Stavros Macrakis
David P. Reed
Henry G. Baker, Jr.

. Deutsch, L., and Berkeley, E.; The LISP Implementation for the PDP-1 Computer,

* = No longer at M.L.T.

REFERENCES

in THE
PROGRAMMING LANGUAGE "LISP". edited by Berekeley, E., and Bobrow, D., Information
International Inc., 1964.

. MACSYMA Reference Manual, Project MAC Mathlab Group, M.L.T., November 1975.
. Moses, 1.; The Function of FUNCTION in LISP. Al Memo 199, Artificial Intelligence Lab, M.L.T.,

June 1970.

. Teitelman, W.; INTERLISP Reference Manual (Revised edition). Xerox Palo Alto Research Center,

1975

. Sussman, G., Winograd, T, and Charniak, E.; Micro-Planner Reference Manual (revised). A1 Memo

203 A, Artificial Intelligence Lab, M.I.T., December 1971.

. Baker, H.; A Note on the Optimal Allocation of Spaces in MACLISP. Working Paper 142, Artificial

Intelligence Lab, M.1.T., March 1977.

. Baker, H.; List Processing in Real Time on a Serial Computer. Working Paper 139, Artificial

Intelligence Lab, M.1.T., February 1977.

. McDermott, D., and Sussman, G.; THE CONNIVER REFERENCE MANUAL. Al Memo 259A,

Artificial Intelligence Lab, M.L.T., January 1974.

. Goldstein, 1.; LLOGO: An Implementation of LOGO in LISP. Al Memo 307, Artificial Intelligence

Lab, M.LT., June 1974.

Matula, D.; In-and-Out Conversions. CACM 11, I, January 1968, pp. 47-50.

University, 1969.

Fateman, R.; "Reply to an Editorial", SIGSAM Bulletin, 25, March 1973, pp. 9-11.

Steele, G.; Fast ‘Arithmetic in MACLISP. Proceedings of the 1977 MACSYMA Users Conference,
NASA CP-2012, 1977. (Paper no. 22 of this compilation).

Knuth, D.; The Art of Computer Programming, V2. Addison-Wesley, 1969, pp. 229-240.

, ibid., pp. 293-307.

, ibid., pp. 26-217.

Goldstein, 1.; Pretty-Printing, Converting List to Linear Structure. Al Memo 279, Artificial
Intelligence Lab, M.L.T., Feburary 1973.

Pratt, V.; CGOL — An Alternative External Representation for LISP Users. Working Paper 121,
Artificial Intelligence Lab, M.L.T., March 1976.

Smith, D.; MLISP. AIM-135, Artificial Intelligence Lab, Stanford University, 1970.

Moon, D.; MACLISP Reference Manual, Revision 0. Laboratory for Computer Science (formerly
Project MAC), M.I.T., March 1974.

Steele, G.; Data Representations in PDP-10 MACLISP. Proceedings of the 1977 MACSYMA
Users Conference, NASA CP-2012, 1977. (Paper no. 21 of this compilation).

Eastlake, D.; ITS Status Report. Al Memo 238, Artificial Intelligence Lab, M.L.T., April 1972.
Greenblatt, R.; The Lisp Machine. Working Paper 79, Artificial Intelligence Lab, M.L.T.,
November 1974.

189

LISP: DATA IS PROGRAM
A TUTORIAL IN LISP

Jon L White
Laboratory for Computer Science, M.L.T.*

ABSTRACT

A novel approach at teaching LISP to a novice is herein developed. First, the abstract data format
is presented, emphasizing its real structure and its machine implantation. Then the technique of writing
programs in the data language, and of "interpreting" them, is presented. Illustrative features are drawn
from various extant LISP implementations.

INTRODUCTION

The design of LISP as a programming language was based on the desire for a practical implementa-
tion of recursively defined subroutines capable of operating on data of arbitrarily complex structure.
This paper will develop, partly from a historical point of view and partly for the benefit of a program-
ming novice, the requirements placed on the data implementation, and the usefulness of the data
structure to symbolic computation. A self-contained and motivating data presentation for the novice has
not been adequately handled elsewhere, as previous works invariably define a classic logical language of
well-formed-formulae over a character alphabet — an approach which does not relate well to the
structured nature of LISP data, and which cannot provide the basis for explaining one of the primary
data predicates: EQ. In addition, the goal of embedding the programming language into the data
language, and achieving efficient interpretation therein, will be discussed. LISP is unique in that a
simple data operation will take an expression of the data language and, leaving its structure intact,
extend it to be an applicable function in the programming language. This is essentially the ability to
create LAMBDA expressions dynamically (and, where appropriate, to create FUNARG expressions, and
to compile functions at run time). It is not expected that this paper will be sufficient for a novice
actually to learn how to program in LISP, but it should provide a good, basic understanding of the
concepts involved.

THE DATA
Its Structure

In many programming languages, the data are essentially "'flat" objects. In FORTRAN, the basic
datum is an integer (or floating point number), limited in information content to some fixed number of
bits, and the basic arithmetic operators are not thought of as decomposing an integer into sub-parts.
Even the notion of a vector of numbers is quite "flat" since the components of such a vector are not
themselves considered to be sub-vectors, but merely numbers. In languages which provide for character-
string processing, there is a similar "flatness', with ‘number’ replaced by ‘character’, and ‘vector’
replaced by ‘string’. Just as we would not want each program variable to be restricted to one kind of
data, similarly we would not want our most general type of composite data to be restricted as to the type

*During the calendar year 1977, the author is located at the IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598, and wishes to acknowledge members of the LISP370 project as having
contributed to the development of ideas in this paper.

191

20

of subcomponents it may have. Another problem in these languages is that the program variables must
often be restricted to data of a particular size — FORTRAN integer variables being implicitly limited by
the word size of the supporting machine, FORTRAN vectors (and vector variables) requiring explicit
compile-time dimensioning of sizes, and PL/I string variables being limited analogously by explicit
program declaration.

One goal of LISP is to remove the limitations of ''flatness" and size from the data objects and their
corresponding variables; e.g., typeless variables are permissible in LISP, and the transition from
hardware-supported integer arithmetic (modulo, say, 235)) to infinite-precision integer arithmetic need
not concern the programmer (except for the question of computation cost). For the data to be of the
most general structure, its components must not be restricted as to type; in short, the data should be
defined recursively. Two obvious features of structured data sets are: 1) that at least some of the data
structures have more than one component (otherwise, there would be no structure!), and 2) that without
any real loss of generality it is sufficient to have only binary structures, since there is a natural, easy
embedding of any other into these.

LISP has, for its basic non-atomic data, objects of two components which are decomposed by the
functions CAR and CDR, and which are built up by the function CONS. These functions represent, in
an abstract sense, the necessary operators defined over a structured data set — CONS being mnemonic
for the construction function, and the other two, subcomponent accessors, being named after a particular
feature of the architecture of the IBM 704 on which the first LISP system was implemented. In fact,
actual machine architecture has deeply influenced LISP design, for one goal of LISP was to become a
useful programming language. Thus, a first step was to assign a logical record of memory (that is, some
finite number of bits easily accessible by the supporting hardware) to hold a data object; we call such a
block of memory a 'cell", and use the machine address of the cell as a handle for the object. An
address used this way will variously be called a "pointer” or "name' of the stored object. Half of the
bits in the cell (or thereabouts) hold the first part of the pair, accessed by CAR, and the other half hold
the second, or CDR, part. Computer architecture intrudes at this point, in that the computer word is
often chosen as the unit of memory for a cell, partly because of economy in memory utilization and
partly because of a computer instruction repertoire which permits easy decomposition of data stored this
way. This has been true for almost all PDP10 LISPs, and quite a few IBM360 LISPs, but LISP370 (an
experimental LISP at IBM’s Research Center) uses a double word for each cell, and the MULTICS
MACLISP takes four words per cell. At first, this storage method seems to invalidate the goal of not
limiting the size of a data object to a fixed bound, but this is not nearly so serious as it may seem, since
the parts of a cell are interpreted as names for other cells; thus a data object is thought of as a graph,
consisting of all the cells and links reachable from a given pointer by CAR and CDR.

In the world of algebraic manipulation, any reasonable fixed allocation for the maximum size of
integers will prevent most simplification algorithms from working.! For this reason, most good LISP
systems provide for variable-precision integer arithmetic, often by embedding the parts of a long integer
into one of the other complex data structures. However, the maximum size of a data structure is limited
by the total number of names available for nodes of the conceptual graph which it represents, and this
name space is limited by the number of bits in a half-cell. At the outset of LISP development, large
computers had up to 32K words of main memory, and this was thought to be larger than any program
would ever need; however, applications soon came up requiring many times that number of LISP cells

1 An "unreasonable" size allocation would be one in which only a few hundred integers could fit in main
memory at one time. The default allocation for most languages is one computer word per integer,
because there is generally built into the hardware the circuitry for quickly doing arithmetic on one- or
two-word cells. One can only go so far in attempts to speed up arithmetic with larger and larger
circuitry, as the work of Winograd shows in references 1 and 2. Another approach at increasing
speed has been to analyze numerical algorithms, trying to separate out the parallel parts so that
duplicate arithmetic units may carry out the subcomputations in parallel; the ILLIAC-IV has much
circuitry involved in the latter approach.

192

— MACSYMA is a particularly good offender in this regard. An early LISP at the IBM Research
Center had only a 16-bit address space, and was soon 'choked" to death by SCRATCHPAD the current
system, LISP370, has a 24-bit address space in a completely revised design. This size seems optimistic
now (24 bits, of which three are the byte address within a cell, leaving room for addressing 2M cells), in
that 2 million 64-bit doublewords is probably more main memory than most computers are likely to have
directly addressable during the next five or so years, but we have been wrong about this in the past.
The danger of biting off too many bits for the address space is that each cell would then require more
and more words for storage, and thus with a bounded amount of main memory fewer and fewer cells
could be held therein. Of course, 2<number of address bits> j5 3 real upper bound, even in a virtual-
memory machine with a much smaller amount of real memory. Sometimes, it is possible to segment_the
data and process it in two or more passes so that it need not all be directly addressable at once, but the
familiar "intermediate-expression swell" of algebraic manipulation shows that this can not serve as a
general solution. Again, it would be possible to extend the name space beyond actual address space by
treating each name as an address in an extended secondary-storage space; however, except for very
limited applications, this would slow down operations drastically. The costs of computer memories are
still decreasing, larger and larger address spaces are becoming more feasible, but the finiteness bound is
still there. Even though we have bumped into the top of that bound several times, it should not be too
frightening; an excellent article by Knuth puts "finite" into proper perspective (reference 3).

A data object, graphically represented as in figure 1, can easily and directly be translated into
computer memory by assigning each node of the graph a new cell, and labelling each directed edge with
the address of the translated node that it points to. Stored in a cell, then, would be the two addresses
found on the edges leading out of the corresponding node. In order to get these data "off the ground",
certain structures are designated as atomic, that is, not decomposable by (there are no sub-parts
accessible by) the functions CAR and CDR. Atomic objects can be denoted graphically as a string of
alphabetic characters (from a computer alphabet such as ASCII or EBCDIC), and in figure 1 they are
enclosed in rectangular rather than round boxes.?2 The collections of atomic and non-atomic data are
called "s-expressions', which is short for "symbolic expressions'.

Atoms — Symbols

Atoms are in fact structured objects (but not in the general sense described above), and their
sub-parts are obtained by specialized accessor functions. Because of the varying potential for efficiency
of representation and operation, there are generally several classes of atoms in a LISP system, distin-
guishable in their memory structure. A most important one of these will be called an "atomic symbol',
or merely SYMBOL, and each has a place in its structure for storing (i) a pointer to a list of associated
properties, (ii) a pointer to a binding cell when the symbol is being used as a program variable, (iii) a
string of alphabetic characters for denoting the object on input-output, and possibly other parts
depending on the implementation. Item (iii) has been historically called the print name, but now
generally acronymized as PNAME (pronounced pea-name), and provides the output routine with a quick
method of generating a sequence of characters corresponding to that object. An input routine, when
given a string of characters, could, by taking new cells of storage, construct a symbol with that string as
PNAME. But more often, it is desired to use the PNAME sequence as an external, address-free
reference to a specific symbol, a canonical symbol with that PNAME, so that pre-existing properties

2Qur use of rectangular and round boxes is an inversion of the convention found in other presentations,
e.g. Weissman’s "LISP 1.5 Primer'" (ref. 4), and the "LISP 1.5 Programmers Manual" (ref. 5). This
is by design, partly to emphasize that the structure in the boxes, rather than their shape, is the
important thing; but also two other advantages occur: 1) the PNAMESs of atoms, which can be quite
long, have a box shape more suitable to their typography, and 2) there is a fuller separation between
the older notation, which prompted one to think of s-expressions as well-formed-formulae over a
character set, and the notation in this paper, which only begrudgingly admits of the linearized print
form.

193

attached to that particular object may be easily accessed — the PNAME thus serving as a kind of
"key'. The standard input routine for LISP, generally called READ, constructs s-expressions by parsing
an input stream of characters; but in particular, when it parses a string into a PNAME, it uses a function
INTERN to locate the canonical symbol with that PNAME; INTERN, in turn, accomplishes this by
keeping a table (called the OBARRAY, or the OBLIST) of all canonical symbols, creating new ones as
the need arises. Some implementations do not permit the creation of any symbols except the canonical
ones, so that no two distinct symbols would have the same PNAME; but in others not so strict, the
terminology "uninterned atom' is used to mean a symbol not entered (and hence not "canonical") on
the current OBARRAY. The importance of an external, address-free reference will be seen as this paper
develops the presentation of the LISP data language as a programming language: atomic symbols are
used as names (in the informal sense) for system subroutines, for user-defined subroutines, for program
variables, and for a few specially recognized constants.

Atoms — Numbers

The desire to use machine hardware arithmetic instructions, and to economize on storage, has led
LISP to introduce the class of atoms called FIXNUM (and, in most systems, FLONUM also). The
programming language provides basic predicates for testing whether a given object is an atom of numeric
type, the most general such being NUMBERP, and most LISP systems support a variety of numeric data
types with associated type-specific predicates in order to accommodate programming needs (some LISPs
also provide a basic predicate to test whether an object is an atomic symbol, such as SYMBOLP in
MACLISP and LITATOM in INTERLISP, but some others do not — the programmer resorting to a
compound form like "atom[x]A ~numberp[x]"). A fixnum, for example, has a word in which a number is
stored in the usual computer notation (say, 2’s complement in a 36-bit word); numeric operations will
now be facilitated, but the output routine will have to go through some base-conversion process to
produce the digit-string that one would like to see for that number. On the input side of the question, a
digit-string can be evaluated assuming a particular radix notation, and a new cell (or cells, if a multiple-
precision integer is indicated) allocated for storing the incoming number. At this point, a certain
ambiguity is evident concerning the input parser: should a string of characters, all of which are decimal
digits, be converted into a fixnum, or into a symbol with that string as PNAME? As a convention, such
a string would be input as a fixnum (or flonum if the sequence also had some character recognized by
the parser as a floating point indicator), and another convention is established for escaping the special
significance that the parser might apply to particular characters. In MACLISP, the character / is used in
prefix of any character that might otherwise cause the parser not to include that character in the
PNAME of a symbol. For example,

1729
could be read in as a fixnum, the least integer expressible as the sum of two cubes in precisely two
different ways, whereas

/1729
would be read in as a symbol with four characters in its PNAME. There are no systemic properties
associated with a number other than its numerical value, so there seems to be no need to try to identify
a canonical storage location for a given value (but some systems do canonicalization, of varying degrees,
in order to reduce storage utilization).

Lists

The general data structures of LISP are then built up over the field of atomic objects with the
construction function CONS. The basic non-atomic object, because of the way it is constructed and
stored, is called by some persons a ""cons” cell, by others a "pair", and by many others a "list" cell. As
a function, CONS is anti-commutative in that if e; and e, are unequal, then CONS[e,,e,] and
CONSJe,,e,] are aiso unequal. Graphically, this is seen in figure 1 in that the edges emanating from a
node have a definite left-hand and right-hand orientation; also evident is the binary nature of CONS, in
that each non-atomic node has precisely two edges emanating from it (and each atomic node has none).

194

The external, linearized representation of a non-atomic object; called its "print representation"”, is a
modification of a fully-parenthesized notation. The full notation is easily described: let ¢; and e, be any
two data objects, and let e;* and e,* be their respective print representations. Then a data object
constructed from e, and e,, that is by CONS[e,,e,], will have the print representation
(e1* . &%)

It is generally convenient to think of the pair cell as holding a list, even though this is only an interpreta-
tion in the mind of the beholder: the CAR part of a pair is the first element of the list, and the CDR
part is the tail of the list with the first element removed. Ostensibly, by successive applications of the
CDR function, some atom will be reached; by convention, we desire this atom to be the symbol NIL,
and elevate it to the status of the null list, i.e., the list with no elements. Many LISP systems will permit
list operators to work with lists terminating in some other atom, but by fixing on this conventional use of
NIL, the following simplification can be made for the print representation:

(i) Instead of (e;* . NIL),
we will print (e;*)
(ii) Suppose there is a list / which prints as
(e1* ey* ... en*),
then, for /' = consley,/], instead of
(eo* . (e1* e,* ... en*)),
we will print (ep* €,* ex* ... en*)
Figure 2 shows a graph for a data structure, as in figure 1, with the two possible print representations
printed below it. Note, also, the several common references to the boxes for the symbols ABC and NIL,
and the duplication of the boxes for the fixnum 35; see how the graph more directly shows the
canonicalization that has taken place for the input of symbols and the duplication for input of numbers.

THE PROGRAMS

What kind of operations might one want to do in this data world? McCarthy’s classic paper,
"Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I" (ref. 6, one
might say the grandfather of LISP papers), is a good start at answering this question. Both it and the
LISP 1.5 Programmer’s Manual indicate that the élementary operations CAR, CDR, CONS (discussed
above as being the requisite operations needed over any binary structured data set), and the elementary
predicates ATOM, EQ, along with the mathematical notions of functional composition, conditional
expression, and recursive definition comprise a sufficient means to build up any computable function on
this data domain.? This collection of primitive functions and functional schemata is minimal in that no
one part can be derived from the others alone. (The two points, sufficiency and minimality, have been
proven by Mike Levin, one of the early originators of LISP). Of course, in real usage, many more
functions are added for the convenience of the programmer; part of the job of a LISP system implem-
enter is to choose a reasonable set of basic, system-supplied functions — not so large as to bloat the
computer’s memory, and not so small as to unduly cramp the programmer.

Historically, the development of LISP as we know it today, was quite accidental. Originally, it was
assumed that various functions could be defined and written down with some mathematical rigor, using a
more-or-less standard mathematical notation which was called the Meta-language (see refs. 5,6). Then
from this presentation, one would compile the algorithm into a machine language program, with
subroutines holding their data and exit addresses on a stack in order to provide for recursive operation

31t is interesting to note that the paper (ref. 6), while laying the foundation of a good non-numeric data
structure for computers (symbolic expressions), at the same time has had a profound effect on the
development of program schema, namely the way in which programs are put together from compo-
nents. Conditional expression and memory operation are required in any non-trivial programming
world; but McCarthy, by emphasizing functional composition and recursive definition, injected a bit
of mathematical common-sense into the world of sequential programming.

195

— hardly the interpretive LISP we know today! In any programming project, the task of getting
programs into the computer always becomes more difficult as time goes on (and time has a notorious
infamy for always going on), so someone had the bright idea of transcribing programs, not into machine
language, but into the data language already defined, namely s-expressions, so that they could be
automatically transiated into machine language. The first mechanical compiler was, of course, written in
machine language, but it was not very successful (needless to say, subsequent compilers were written in
LISP). Then, one of the programmers associated with the original LISP project had the bright idea of
making an s-expression évaluator, which could interpret these encoded programs, and hence, through
EVAL, the LISP interpreter was born.

That single idea has had enormous consequence on the development of the fields of list processing,
artificial intelligence, and symbolic manipulation. Although some other languages, such as APL, permit
the dynamic evaluation of computed expressions, in none save LISP is the programming language so
thoroughly embedded into the data. In no other is there the smooth naturalness with which LISP
programs may dissect, analyze, report upon, review, ""dress-up”, synthesize, emulate, and compile other
LISP programs.

Functions, Functional Composition, and QUOTE

What, then, is the transcription scheme? It is really quite simple. First, we note that most LISP
systems have at least the characters of the 6-bit ASCII alphabet, which is 26 uppercase letters, 10 digits,
some punctuation marks, and the usual assortment of special characters found on most typewriters or
teletype machines. Then, a variable or function is represented by the symbol of the corresponding
PNAME; numbers stand for themselves, that is they will be transcribed directly; functional application is
shown as a list of the function and all its arguments in order; functional composition is shown as list
composition; the elementary operations are represented by the atomic symbols CAR, CDR, CONS,
ATOM, and EQ; and some of the basic arithmetic operators are implemented with mnemonic names in
prefix notation (instead of writing '"'x+z+2.3", we would write in prefix notation "plus[x,z,2.3]"). As
an example illustrating all the rules mentioned so far, we would transcribe

5e[log sin(x+z+2.3)]
into a list printable as
(TIMES 5 (LOG (SIN (PLUS X Z 2.3)))) (1)

If all our functions were defined only over numbers, then the intent of such a program, coded in list
structure, is clear: add together the nume_ric values of the variables x and z and the number 2.3, take the
trigonometric sin of the result, then the natural log of that, and finally multiply by 5. But some of our
functions are defined over lists as well as other objects, and the question arises as to how the argument
for such a function is obtained. For example, suppose we want to print out the list (PLUS X 3), and
suppose coincidentally that the variable X has the value 7. Then what does
(PRINT (PLUS X 3)) (2)

do as a program? By the above rules, it should print out the number 10. How then are we to indicate
that we want to print out the list (PLUS X 3)? It becomes necessary to add a rule in the transcription
scheme that overrides the notation for functional composition — for this purpose, we use the atom
QUOTE in the first element of a list to indicate that the second element is not a sub-program, but rather
is to be taken directly as data without any interpretation. Line (2) above would print out the number 7,
whereas

(PRINT (QUOTE (PLUS X 3))) (3)
would print out the desired list, (PLUS X 3). Line (2) could be a transcription of the expression
"print[x+3]", whereas line (3) could be that for "print[*(PLUS X 3)’]".

There are several kinds of overrides to the functional composition rule, to be discussed in turn
below. Because of the similarity of structure — namely, an atomic symbol at the first element of a list
— many persons have begun referring to these overriders as "functions" also; but they should more

196

properly be viewed as parts of the syntax of the programming language LISP. In LISP 1.5, they are
called "special forms'". In particular, they represent the realization in LISP of some of the abstract,
universal concepts found in any practical programming language; e.g., COND, PROG, SETQ, DEFINE.
LISP further has QUOTE as just discussed, and LAMBDA — the former to distinguish data expressions
from programs in which the data might be embedded, and the latter to distinguish programs from some
data in which they, in turn, might be embedded. At this point, it must be stressed that these rules and
conventions comprise part of the programmatic interpretation of LISP data expressions; other, radically
different interpretations are possible, e.g. without QUOTE, or without PROG and SETQ, but they are
generally less usable.

Program interpretation also implies an importance to the sequence in which the sub-computations
are carried out. If there were no memory cells in a computer, nor any side-effects during computation,
then the order of evaluation of the sub-parts of a program would be irrelevant. For example, what
difference would it make if, in computing ''(x+3)«(y-5)", the sum were performed after the difference
calculation? Logically, none; but if while computing the difference "y-5", some action is taken that
changes the value of the variable x, then probably a different final product would result. The normal
rule for LISP program interpretation is left-to-right order of evaluation, beginning with the first element
of the list. This first element, corresponding to some function to be applied, is inspected for a basic
function definition, or for one supplied by the programmer (which may involve recursion through the
interpreter);* and then the first argument to the function is calculated according to the program part in
the second element of the list; and then the third, and so on. Finally, the function is invoked with the
corresponding arguments. The special forms PROG and SETQ do not come under this normal rule.
PROG corresponds to the sequential nature, with GOTOs, of FORTRAN programs; and SETQ
corresponds to the notion of assigning a new value to a variable while releasing the old value. Because
of lack of space, these features will not be further discussed in this paper.

Predicates and Conditional Expressions

Predicates operate on data to produce one of two values — true or false. In the LISP world, we let
the symbol NIL encode the value false and T encode true. However, as a convenience, we allow any
non-NIL value to be returned by a predicate, and in so doing interpret it as true. Furthermore, we
remove NIL arid T from the collection of possible program variables, considering them as constants
which stand for themselves just as numbers do.

The elementary predicate ATOM is a function which is true for terminal nodes of the graph-
structured data (the items in rectangular boxes in figures 1 thru 3), and false for cons cells. It is
apparent that the domain of ATOM on which it is false is precisely the domain of s-expressions on

4Normally, the identity of the function, or sub-program, to be applied is evident upon "inspection', in
that it will be an atomic symbol with some direct functional property. What happens when this is not
the case has never been clearly defined — notice, for example, the discrepancy between lines 18-19
and line 20 on page 71 of the LISP 1.5 Programmer’s Manual (ref. 5); and reference 6 has an even
more confusing bug at the corresponding spot of the definition of EVAL. Most LISP systems make
one evaluation of the first element, then evaluate all the remaining elements once in order to obtain
the arguments, and then begin a process of re-evaluation of the result from the first element until it is
directly discernible to be a function. There is no problem unless some relevant memory location is
changed, such as happens in the following example. First, note the shorthand convention of writing
'exp instead of (QUOTE exp).

((SUBST 3 'N "(PROG2 (SETQ X (PLUS X N)) 'DIFFERENCE))
X
Y)

In this case, by evaluating the first element successively twice, one gets a result different from that
obtained by the order of evaluation just mentioned above.

197

which CAR and CDR are applicable. Atoms which are'interpretable as numbers are stored in computer
memory in such a way as to require specialized functions and predicates, for the purpose of achieving
efficiency in numeric operations; e.g., NUMBERP, FIXP, FLOATP, GREATERP, and numeric-equal.
In MACLISP, and some others, many new numeric functions and predicates have been introduced
generally having shorter names, such as > as a less general form of GREATERP, = for (exact) numeric
equal, + for addition restricted to fixnums, +$ for addition restricted to flonums, and so on.’

The predicate EQ, a function of two arguments, is a test for pointer identity; let us see how this
works. In figure 3, two lists L1 and L2 are shown graphically along with their print representation (in
L2, the edges are not shown as extending all the way to the rectangular boxes for atoms, merely because
of the complexity of drawing too many intersecting lines). Suppose for example that the top node of L1
is stored in a cons cell at computer address 0129, and L2 at 3724. Let x, y, z be program variables such
that x =L1, y = L2, and z = L1. This means that the variables hold some pointer to a cons cell — the
bits of x and z would correspond to the decimal number 129, and those of y to 3724. But a LISP
system interprets this pointer according to its data classification; thus ATOM is false for each of the
variables, and each would be printed out as

(LIST (QUOTE FOO))

Now, EQ is true of [x,z], but false of [x,y] and [y,z] because x and z hold the same pointer, but x and y
are different pointers corresponding to isomorphic structures.

Of course, not all functions, even over the domain of numbers, are smooth and "analytic";
discontinuities of various sorts can be introduced by conditional expressions. Let DELTA be defined as

a function of x and n as follows: 1 if x>n, -1 if x<n, and 0 otherwise. This conditional
expression would be transcribed into LISP as
(COND ((GREATERP X.N) 1) 4)
((LESSP X N) -1)
(T 0))

As with QUOTE, COND is a special form in the programming language, and indicates that a sequence
of sub-lists follows, each sub-list consisting of one or more expressions. The first elements of the
sub-lists are evaluated in sequence order until the first one that comes up not false is found; the
remaining elements of that sub-list are then evaluated and value of the last element (which might also
incidentally be the first) is taken as the resulting value for the COND expression. In addition to the
"discontinuity" which the conditional expression introduces, there is a noticeable programmatic feature,
namely that of selective evaluation. Not all of the predicates are evaluated, but only those which, in
sequence, turn out to be false, up until the first one that is rrue. Obviously, COND may be thought of
as a compound predicate; so are OR and AND, whose definitions are in accord with one’s intuitive
notion. [t may be helpful to see corresponding code for OR and AND in terms of COND:

(OR x y2) (COND (x)
6%
(T z))
(AND x y z) (COND (x (COND (y2)
(T NIL)))
(T NIL))

To round out the logical connectives, NOT operates as truth-value inversion. Both (NOT x) and
(NULL x) operate the same as the expression (COND (x NIL) (T)). :

SLISP systems which have introduced novel data types generally have introduced functions and
predicates with restricted domains in order to operate efficiently on them. This is one way of

extending LISP.
198

Defining Functions -

The expression (4) above is almost a definition for a function "delta", but it is not symmetric in the
two variables x and n; if you were to write (DELTA 3 5), you would want to know whether X would
hold 3 and N 5, or vice-versa. The symbol LAMBDA is a special form to indicate that a function is
being defined from an expression, by specifying the order in which the variables of the expression shall
correspond to the incoming arguments. Rewriting (4) as a functional expression, we get

(LAMBDA (X N) (5)
(COND ((GREATERP X N) 1)
((LESSP X N) -1)
(T 0)))

Now (5) is an expression that can be applied to [3,5] and*result in -1, but when applied to {7,2] results
in 1. The syntax permits us to write this expression directly in the functional position of a list intended
for program interpretation:

((LAMBDA (X N) (COND ((> X N) 1) (« X N)-1) (T 0))) 3 5)

However, for convenience of writing, we might like to define DELTA as a function name corresponding
to the functional expression (5); in the case of recursive definition, there is no choice about the matter,
we must start out with some function name so that we can write down the definition using that name.
Consider the classic case, defining the factorial function.

(LAMBDA (N) (COND ((= N 0) 1) (T (* N (fact-continuation (- N 1))))))

At the point where fact-continuation occurs, we would like another copy of the entire functional
expression substituted, so that the computation could be carried on recursively. Rather than extend the
notation to encompass cyclic structure, or to infinite sub-structure, we find that using a symbol as a
name for a function being defined solves not only this problem, but also that of conciseness. Thus the
factorial definition becomes:

(DEFINE FACT (LAMBDA (N) (6)
(COND ((=NO) 1)
(T (* N (FACT (- N 1))))))

Function definition is generally realized in-a LISP system by executing a program that places a
property on the property list of the symbol which is the function name; DEFINE (or DEFUN in
MACLISP) is a special form which causes this to happen.6 Evaluating (DEFINE FOO exp) will cause
an attribute-value pair to go on the property list of FOO — the attribute name is EXPR, and its
corresponding value is exp. The interpreter can then quickly recognize FOO to be a function name by
accessing its EXPR property, and substituting the LAMBDA expression so obtained for the name. In
the case of machine-language subroutines, a starting-address is stored under the SUBR attribute, and,
after the arguments are obtained, the interpreter can quickly despatch control off to the relevant
location. In such a LISP, one needs only the ability to read-in lists and to evaluate them after read-in in
order to add subroutines (or programs, if you will) to the system. The so-called "top level" of a LISP
system is basically a loop:

A print(eval(read()))
go A
From this we can see the importance of INTERN to the input READ function: it is necessary that both
instances of "FACT" in (6) above be read in as pointing to the same atomic object (and not merely to
atoms with the same PNAME), and the same holds true of the three instances of "N''. Thus it is that
one programs in LISP, and interacts with LISP environment.

6There are LISP systems that do not use the property list for function definition, but instead use
whatever mechanism implements the assignment of a value to a variable. This approach is adequate,
although it means that one could not use a symbol both for a variable name and a function name.

199

A Useful Example

Let us consider a definition of an 'equality" predicate EQUAL defined over all the data types
mentioned in this paper, such that two s-expressions are printed out in linear format the same way if and
only if they are EQUAL. For numbers, the numeric equality predicate is used; for symbols,
SAMEPNAMEP and for lists, the definition is recursive over the CAR part and the CDR part.
Historically, EQUAL was defined before any consideration was given to multiple copies of atomic
objects all with the same PNAME; hence EQ was generally used instead of SAMEPNAMEDP; because if
two symbols were stored in different locations then they necessarily had different PNAMEs. As far as
the author knows, all LISP systems still use EQ here, and this is considered satisfactory.

(DEFINE EQUAL
(LAMBDA (X Y) v
(COND ((EQXY)T)

((ATOM X)

(COND ((NOT (ATOM Y)) NIL)
((AND (NUMBERP X) (NUMBERP Y)) (= X Y))
((OR (NUMBERP X) (NUMBERP Y)) NIL)
(T (SAMEPNAMEP X Y))))

((ATOM Y) NIL)

((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y)))

(T NIL))))

It would be instructive for the reader to consider this example line by line to verify how it works. Note
carefully that EQUAL does not define ''graph-isomorphism'', but rather a concept that has come to be
called "access-equivalence'”. Two structures are said to be access-equivalent (or EQUAL) if any access
chain (a sequence of CARs and CDRs, for LISP) leading to an atomic object in one structure also leads
to the same atomic object in the other. See figure 4 for a graphic presentation of two structures that are
EQUAL but not isomorphic.

REFERENCES

. Winograd, S.; On The Time Required to Perform Addition. J. ACM [2, 2, April 1965, pp. 277-285.
2. Winograd, S.; On The Time Required to Perform Multiplication. J. ACM 14, 4, Oct 1967,
pp. 793-802.
3. Knuth, D.; Mathematics and Computer Science: Coping with Finiteness. Science, 194,
17 Dec 1976, pp. 1235-1242.
. Weissman, Clark; LISP 1.5 Primer, Dickenson Publishing Co., 1967.
. McCarthy, John, et. al.; LISP 1.5 Programmer’s Manual, The MIT Press, Second edition 1965.
. McCarthy, John; Recursive Functions of Symbolic Expressions and Their Computation by Machine,
Part I. CACM 3, 4, April 1960, pp. 184-195.

—_

AN B

200

L2

3724
to LIST
L NTL
to QuoTe
t. Foo to NIL
(LIST (QUOTE FO0O)) (LIST SQUOTE FOO0))
Figure 3
A | NIL | A NIL
((A) A) ((a) a)
Figure 4

202

DATA REPRESENTATIONS IN PDP-10 MACLISP

Guy Lewis Steele Jr.
Massachusetts Institute of Technology
Laboratory for Computer Science
(formerly Project MAC)

ABSTRACT

The internal representations of the various MacLISP data types are presented
and discussed. Certain implementation tradeoffs are considered. The ultimate
decisions on these tradeoffs are discussed in the light of MacLISP's prime
objective of being an efficient high-level language for the implementation of large
systems such as MACSYMA. The basic strategy of garbage collection is outlined,
with reference to the specific representations involved. Certain "clever tricks"
are explained and justified. The "address space crunch" is explained and some
alternative solutions explored.

INTRODUCTION

MacLISP is a version of LISP which is used not only as a user application
language but as a systems programming language, supporting such systems as MACSYMA
and CONNIVER. As such, it has been carefully designed with speed as one of its
major goals. Generality, ease of use, and debuggability have not been neglected,
but speed of compiled code has been the primary consideration. This is a departure
from the traditional view of LISP as a friendly and general but slow and clumsy
language.

The representations of data objects in MacLISP have undergone a continuous
evolution towards this goal. When MaclLISP was first created, the data
representations were designed for simplicity and compactness at the expense of
speed. Since then there have been at least two major revisions, each to speed up
compiled code and simplify the processing of the data. Here we discuss the current
implementation on the PDP-10 (MacLISP also runs on Multics, and on the "LISP
machines™ being constructed at the MIT Artificial Intelligence Laboratory). We
shall contrast it with previous MacLISP implementations and implementations of
other LISP systems, and discuss some of the design decisions involved.

ORGANIZATION OF THE PDP-10

The data representations in MacLISP have been carefully designed to take
full advantage of the PDP-10 architecture. A full understanding of the design
decisions involved requires the following minimal knowledge of the PDP-10
instruction set.

The PDP-10 operates on 36-bit words. Memory addresses designate words, not
bytes, and are 18 bits wide; thus two addresses can fit in one word. There is a
class of instructions which manipulate half-words; for example, one can store into
half of a memory word and either not affect the other half or set the other half to
all zeros or all ones.

The PDP-10 has 16 accumulators, each 36 bits wide. All but one can be used
for indexing; all can be used as stack pointers; all can be used for arithmetic.

203

21

The accumulators can also be referenced as the first 16 memory locations (though
they are hardware registers and not actually memory locations). For reasons
explained later, MacLISP devotes certain accumulators to specific purposes.
Accumulator 0 contains the atom NIL. Accumulators 1-5 may contain pointers to data
objects; these are used to pass arguments to LISP functions and return values from
them. Accunmulators 6-10 are scratch registers, and are generally used for
arithmetic. Accumulator 11 is reserved for a future purpose. Accumulators 12-15
are used for stack pointers to the four stacks.
Every user PDP-10 instruction has the following format:

opcode ac jejidx address

Each instruction has a 9-bit operation code and a 4-bit field specifying an
accumulator. The effective memory address (or immediate operand) is uniformly
computed by adding to the 18-bit address field the contents of the accumulator
specified by the 4-bit index field (a zero index field means no indexing). If the
indirection bit "@" is set, then a word is fetched using the computed address and
the process iterated on the address, index, and @ fields of the fetched word. In
this way the PDP-10 allows multiple levels of indirection with indexing at each

step.

MACLISP DATA TYPES

MacLISP currently provides the user with the following types of data
objects:

FIXNUM Single-precision integers.

FLONUM Single-precision floating-point numbers.

BIGNUM Integers of arbitrary precision. The size of an integer arithmetic
result is limited only by the amount of storage available.

SYMBOL Atomic symbols, which are used in LISP as identifiers but which are also
manipulable data objects. Symbols have value cells, which can contain
LISP objects, and property lists, which are lists used to store
information which can be accessed quickly given the atom. Symbols are
written as strings of letters, digits, and other non-special characters.
The special symbol NIL is used to terminate lists and to denote the
logical value FALSE.

LIST The traditional CONS cell, which has a CAR and a CDR which are each LISP
objects. A chain of such cells strung together by their CDR fields is
called a list; the CAR fields contain the elements of the list. The
special symbol NIL is in the CDR of the last cell. A chain of list cells
is written by writing the CAR elements, enclosed in parentheses. A non-
NIL non-list CDR field is written preceded by a dot. An example of a
list is (ONE TWO THREE), which has three elements which are all symbols.
It is made up of three list cells thus:

204

list cell 1 list cell 2 list cell 3 NIL

car car
ONE TWO THREE
ARRAY Arrays of one to five dimensions, dynamically allocatable.
HUNK Short vectors, similar to LIST cells except that they have more. than two

components. This data type is fairly new and is still experimental.

POINTERS

In MacLISP, as in most LISP systems, the unit of data is the pointer. A
pointer is typically represented as a memory address, with the components of the
data object pointed to in the memory at that address. The reason for this is that
LISP data objects have varying sizes, and it 1s desirable to manipulate them in a
uniform manner. Numbers, for example, may occupy varying numbers of words, and it
is not always feasible to put one as such into the accumulators. A pointer, being
only 18 bits, can always fit in one accumulator regardless of the size of the
object pointed to; moreover, it requires only 18 bits for one data object to
contain another, since it need actually only contain a pointer to the other.

Given a pointer, it is necessary to be able to determine what kind of
object is being pointed to. There are two alternatives: one can either have a
field in every data object specifying what type of object it is, or encode the type
information in the pointer to the object. The latter method entails an additional
choice: one can either adjoin type information to the memory address (in which
case it takes more bits to represent a pointer), or arrange it so that the type is
implied by the memory address itself (in which case the memory must be partitioned
into different areas reserved for the various data types). MacLISP has generally
used this last solution, primarily because of the half-word manipulation facilities
of the PDP-10. Two memory addresses will fit in one word with no extra bits left
over. (Contrast this with an IBM 370, which has 32-bit words and 24-bit addresses;
on this machine one would use 32-bit pointers, encoding type information in the
extra eight bits.) This 1s extremely useful because a list cell will fit in one
word; the left half can contain a pointer to the CAR and the right half a pointer
to the CDR.

The method MacLISP presently uses for determining the type of a data object
involves using a data type table. The 18-bit address space (256K words) of the
PDP-10 is divided into segments of 512 words. All objects in the same segment are
of the same data type. To find the data type of an object given its address, one
takes the nine high-order bits of the address and uses them to index the data type
table (called ST, for Segment Table). This table entry contains an encoding of the
data type for objects in the corresponding segment:

Bit 0 0 if atomic, 1 otherwise.

Bit 1 1 if 1list cells.

Bit 2 1 if fixnums.

Bit 3 1 if flonums.

Bit 4 1 if bignums.

Bit 5 1 if symbols.

Bit 6 1 if arrays (actually, array pointers; see below).
Bit 7 1 if value cells for symbols.

205

Bit 8 1 if number stack (one of bits 2-3 should also be set).

Bit 9 is currently unused.

Bit 10 1 if memory exists, but is not used for data.
Bit 11 1 if memory does not exist.

Bit 12 1 if memory is pure (read-only).

Bit 13 1 if hunks.

Bits 14-17 are currently unused.

Bits 18-35 (the right half) contain a pointer to the symbol
representing the data type, namely one of LIST,
FIXNUM, etc. The symbol RANDOM is used for segments
containing no standard MacLISP data objects.

The encoding is redundant to take advantage of the PDP-10 instruction set and to
optimize certain common operations. There is an instruction which can test
selected bits in a half-word of an accumulator and skip if any are set. Thus, one
can test for a number by testing bits 2, 3, and 4 together. Bit 0 (the sign bit)
is 1 for 1list, hunk, and value cell segments (non-atoms) and 0 for all others
(atoms). This saves an instruction when making the very common test for atom-ness,
since one can use the skip-on-memory-sign instruction instead of having to fetch
the table entry into an accumulator. The right half of a table entry contains a
pointer to the symbol which the MacLISP function TYPEP is supposed to return for
objects of that type. Thus, the TYPEP function need only extract the right half of
a table entry; it does not have to test all the bits individually. Finally, the
system arranges for all the symbols to which a table entry can point to be in
consecutive memory locations in one symbol segment. Since these symbols have
consecutive memory address, the right half of a table entry can be used to index
dispatch tables by type. For example, the EQUAL function, which determines whether
two LISP objects are isomorphic, first compares the data types of its two
arguments; 1if the data types match, then it does an indexed jump, indexed by the
right half of a Segment Table entry, to determine how to compare the two objects.

By way of contrast, let us briefly consider the storage convention formerly
used by MacLISP. Memory was partitioned into several contiguous regions, not all
of the same size. The lowest and highest addresses of each region were Kknown
(usually the low address of one region was one more than the highest address of the
region below it). To determine the data type of a pointer it was necessary to
compare the address to the addresses of all the boundaries of the regions. This
was somewhat faster than the current table method if only one or two comparisons
were needed (as in determining whether a pointer pointed to a number, since the
number regions were contiguous), but slower in the general case; furthermore,
there was no convenient way to dispatch on the data type. On the other hand, the
table method requires space for the entire 512-word table, even if only a small
number of segments are in use. (There is another 512-word table for use by the
garbage collector, the GC Segment Table (GCST), which doubles this penalty.) The
deciding advantage of the table method is that it permits dynamic expansion of the
storage used for each kind of data. The region method requires all list cells, for
example, to be in a contiguous region; once this region is fixed, there is no easy
way to expand it. Under the table method, any currently unused segment can be
pressed into service for list cells merely by changing its table entry. An
additional bonus of the table scheme is that the space reguired for the
instructions to do a type-check is small, and so it is often worth-while to compile
such type-checks in-line in compiled code rather than calling a type-checking
subroutine.

In practice new data segments are not allocated randomly, but from the top

206

of memory down. AS new pages of memory are needed they are acquired from the time-
sharing system and used for segments (on the ITS system, there are two segments per
page). Compiled programs are loaded starting in low memory and working up; thus
between the highest program loaded and the lowest data segment allocated there is a
big hole in memory, which is eaten away from both ends as required. This hole has
been whimsically named "the BIg Bag Of Pages” from which new ones are drawn as
needed; hence the name "BIBOP" for the scheme. (The TOPS-10 timesharing system
provided by DEC does not allow memory to be grown from the top down, but only from
the bottom up. When running under this time-sharing system MacLISP has a fixed
region for loading programs, and allocates new data segments from the bottom up.)

DATA REPRESENTATIONS

List cells, as mentioned above, are represented as single words. The CAR
‘pointer is in the left half of the word, and the CDR pointer in the right half.

Fixnums are represented as single words which contain the PDP-10
representation of the number. As explained more fully in reference 1, this
representation permits arithmetic to be performed easily. If a pointer to a fixnum
is in an accumulator, then any arithmetic instruction can access the value by
indexing off that accumulator with a zero base address.

Flonums are represented as single words in a manner similar to fixnums.

Bignums each have a single word in a bignum segment. The left half of this
word is all zeros or all ones, representing the sign of the number. This
representation of the sign is compatible with that for fixnums and flonums; thus
the sign of any number can be tested with the test-sign-of-memory instruction.
(Bignums were formerly represented as list cells with special pointers in the CAR;
this did not permit the compatibility of sign bits, and made it difficult to test
for either numbers or lists.) The right half points to a list of positive fixnums,
which represent the magnitude of the bignum, 35 bits per fixnum, least significant
bits first in the list. A list is used instead of a contiguous block of storage
for both ease of allocation and generality of use. The least significant bits come
first in the list to ease the addition algorithm.

Symbols are quite complex objects. Each symbol has one word in a symbol
segment and two words in another segment. The right half of the one word points to
the symbol's property list, which is an ordinary list; the left half points to the
two-word block. These two words in turn are laid out so:

bits 0 pointer to value cell I

"args" property pointer to print name

The "bits" have various specialized purposes. The value cell for the symbol is in
a value cell segment. Notice that bits 13-17 of the first word are zero,
specifying no indexing or indirection. This permits an instruction to indirect
through this word to get the value of the symbol. Getting the address of the two-
word block also takes an instruction; thus one can get the value of a symbol in
two instructions. The "args" property is used by the MacLISP interpreter for
checking the number of argument to a function (for symbols are also used to denote
the names of functions). The print name is a list of fixnums containing the
characters of the symbol's name, packed five ascii characters to the word.

207

The special symbol NIL is not represented in this manner. The address of
NIL is zero. This allows a particularly fast check for NIL; one can use the jump-
if-zero instruction. This is why accumulator 0 (which is also memory location 0)
is reserved for NIL. Accumulator 0 normally contains zero itself; in this way
taking CAR or CDR of NIL yields NIL. This allows one to follow a list by CDR
pointers to a predetermined depth and not have to check at each step whether one
has run off the end. (This trick was borrowed from InterLISP (ref. 2).) Most
functions make special checks for NIL anyway, so this non-standard representation
is not harmful.. PRINT, for example, just checks for NIL specially and just outputs
"NIL" without looking for a print name. NIL does have a property list, but it is
not stored where 1t is in other symbols; the property list functions must check
for NIL (which takes only one instruction anyway). NIL has no value cell, and
always evaluates to NIL.

One might wonder why normal symbols are divided up into two parts, and why
the value cell is not simply part of the two-word block. The answer is that once
constructed the two-word block normally does not change, and so may be placed in
read-only memory and shared between processes. If several MACSYMA processes are in
use, this sharing may ease core requirements by tens of thousands of words.

To save even more memory, symbols are not provided with value cells until
necessary (most symbols are never actually given valiues). Instead, they are made
to point to a "standard unbound" value cell, which is read-only and contains the
marker specifying that no value is present. When an attempt is made to write into
this value cell, the write is intercepted and a new value cell created for the
symbol in question. .

(Besides making parts of symbols read-only, MacLISP currently allows for
read-only 1list cells, fixnums, flonums, and bignums. These are useful for
constructing constant data objects which are referred to by compiled code but never
modified, and for properties on property lists whose values are not expected to
change (such as function definitions). 1In certain cases, such as the property-1list
modifying routines, checks are made for read-only objects, and such objects are
copied into writable memory if necessary to carry out the operation. This copying
causes the old read-only copy to be wasted from then on, but this is acceptable as
such copying is seldom necessary in practice. This strategy may be contrasted to
the approach of InterLISP (ref. 2), in which an entire page of memory is made
writable if an attempt is made to modify any object on that page. This approach is
more general than that of MacLISP, but in practice tends to reduce the sharing of
pages among processes, increasing the load on the time-sharing system.)

Value cells, though not properly a MacLISP data type, are worthy of
discussion. They are single words, containing a pointer in the right half and zero
in the left half. This apparent waste of 18 bits is motivated by speed
considerations. Compiled code often references the value cells of global
variables. Since the left half of a value cell is zero, a test for NIL can be done
with a single skip-if-memory-zero instruction; this is useful for switches.
Furthermore, if a value cell is known to contain a 1list, the CAR or CDR can be
taken in one instruction, using a half-word instruction with indirect addressing,
because the index and indirection fields are zero, without having to fetch the
value into an accumulator first. Similarly, if a value cell contains a number, the
sign can be tested and the value (except for bignums) accessed by using indirect
addressing. (It should be noted that compiled code does not keep local variable
values in value cells, but uses even more clever techniques involving stacks.)

Arrays have a complicated representation because they can be of arbitrary
size, and must be allocated as a contiguous block for efficient indexing. The
solution chosen is to split it into two parts: a Special ARray cell (called SAR,

208

not SAC, for some reason) in an array segment, and the block of data. The data
itself is kept just below the hole in memory, floating above loaded programs. When
new programs are loaded, the array data is shuffled upward in memory, and the
special array pointers are updated. Similarly, when allocating a new array or
reclaiming an old one it may be necessary to shuffle the array data.

The special array pointer is two words:

special array -

pointer (SAR) L
bits J0 °- >

for garbage collector]

code for array access

bits {7 o— pointer back to SAR

dimension
information

array
data

A complete discussion of the SAR contents and array access methods is beyond the
scope of this paper. Notice, however, that the indirection and index fields are
chosen to be 0 and 7 for the two SAR words. The first admits an indirection for
calling the array as if it were a function, according to MacLISP convention; the
second allows indexing off accumulator 7 for accessing the data from compiled code.
See reference 1 for a fuller treatment of this.

Hunks are like list cells, but consist of several contiguous words. They
are always a power of two in size, for convenience of allocation. Hunks of sizes
other than powers of two are created by allocating a hunk of a size just big
enough, and then marking some of the halfwords as being unused by filling them with
a -1 pointer (actually 777777). This was chosen because it never points to a data
object, and because it is easily generated with instructions that set half- or
full-words to all ones. It is time-consuming to determine the actual size of a
hunk, since one must count the number of unused halfwords, but then hunks were
created as an experimental space-saving representation with properties somewhere
between those of lists and arrays.

GARBAGE COLLECTION

Every so often there comes a point when all the space currently existing
for data objects has been allocated. At this point there are two alternatives:
[1] allocate a new segment for data objects of the type needed.
[2] attempt to reclaim space used by data objects which are no longer needed (by
the process of garbage collection).
A study by Conrad indicates that the best strategy is to do [2] only if [1] fails
because one's address space (256K words, in this case) is completely allocated,
PROVIDED that one has the facility to compact one's data storage and de-allocate

209

segments. (Ref. 3) Since MacLISP currently hasn't the ability to de-allocate
segments ("once a fixnum, always a fixnum"), this strategy must be modified. One
must be cautious about allocating a new segment, since the allocation cannot be
undone; thus MacLISP tries garbage collection first unless explicitly told
otherwise by the programmer, and then allocates a new segment if garbage collection
fails to reclaim enough space for the required data type.

Suppose, for example, that it is necessary to allocate a new list cell.
The CONS function checks the freelist for the data type "list cell"; if the
freelist is not empty, then the first cell on that list is used. (There is a
freelist for each data type, which consists of all the currently unused objects in
all the segments for that data type, strung together such that each object points
to the next. This can be done even for objects which ordinarily do not contain
pointers, such as fixnums and flonums, since those objects are large enocugh to
contain at least a single pointer. There is a set of fixed locations, one for each
data type, which contain pointers to the first cells on the respective freelists.)

If, in our example, the list cell freelist is empty, then the garbage
collector is invoked. Controlled by user-settable parameters, the garbage
collector may decide simply to allocate a new list segment (which involves getting
a new memory page from the time-sharing system, altering the Segment Table, and
adding the newly allocated objects to the freelist). If it decides not to do this,
aor if the attempt fails for any reason, then the actual garbage collection process
is undertaken. This involves finding all the data objects which are accessible to
the user program. An object is accessible if it is pointed to by compiled code, if
pointed to by a global variable or internal pointer register (such as accumulators
1-5), or if pointed to by another accessible object. Notice that this definition
is recursive, and so requires a recursive searching of all the data objects to
determine which are accessible. This searching is known as the mark phase of the
garbage collector.

Associated with each data object is a "mark bit"™ for. use by the garbage
collector. As the garbage collector locates each accessible object, it sets that
object's mark bit. For 1list cells, fixnums, flonums, bignums, and hunks, these
bits are stored in a part of memory unrelated to the memory occupied by the data
objects themselves. For each 512-word segment there is a "bit block” of 16 words,
each holding 32 mark bits. The location of the bit block is found by using the top
9 bits of the address of the data object to index the GC Segment Table. (Bit
blocks themselves are allocated in special "bit block™ segments; thus bit blocks
are treated internally as yet another data type. Occasionally the obscure error
message "GLEEP ~ OUT OF BIT BLOCKS" is printed by LISP in the highly infrequent
situation where it cannot allocate a new bit block after allocating a new segment
which needs a bit block.) No bit blocks are needed for symbols and special array
pointers. Recall that the left half of a symbol word points to a two-word block.
Since such a two-word block is always at an even address, the low bit of the
pointer to it is normally zero. This bit is used during garbage collection as the
mark bit for that symbol. Special array pointers have room in them for a variety
of bits, and one of them is used as a mark bit. Value cells are only reclaimed
when the symbol pointing to them is reclaimed (and not even then, if compiled code
points to the value cell, which fact is indicated by a bit in the two-word symbol
block pointing to the value cell), and so they require no mark bits.

To aid the garbage collector in the mark phase, the GCST contains some bits
which also encode the data type redundantly, in a form useful to the marking
routine. The bits indicate whether the object must be marked, and if so the method
of marking; they also indicate how many pointers to other objects are contained in
the object now being marked.

210

After recursively locating and marking all accessible cells, the garbage
collector then performs a sweep phase, in which every data object is examined, and
those which have not been marked are added to the appropriate freelist. To aid the
sweep phase, each GCST entry has a field by which all entries for segments of the
same data type are linked together in a list. In this way the garbage collector
does not need to scan the entire segment table looking for entries for each type.
For each segment, the garbage collector examines each data object in the segment
and its mark bit, and adds the object to the appropriate freelist if the mark bit
is not set. For symbols and arrays it also resets the mark bit at this time. (Bit
blocks are reset at the beginning of the mark phase.)

If, in our example, the garbage collection process has not reclaimed enough
list cells (as determined by another programmer-specified parameter), then it will
try to allocate one or more new list cell segments. If, however, this causes the
total number of list cells to exceed yet another programmer-specified parameter,
then a "“user interrupt" is signaled, and a function written by the programmer steps
in. In MACSYMA, this function is the one that typically informs you:

YOU HAVE RUN OUT OF LIST SPACE.
DO YOU WANT MORE?
TYPE ALL; NONE; A LEVEL-NO. OR THE NAME OF A SPACE.

The reason for all these parameters is the necessary caution described above; if
all the available segments get allocated as list cell segments (which can easily
happen due to intermediate expression swell, for example), then they cannot be used
for anything else, including compiled code. This is why, in MACSYMA, if you use up
too much list space, you can't load up DEFINT thereafter!

Array data (as opposed to the SAR objects) is handled by a special routine
that knows how to shuffle them up and down in core as necessary. When a new array
1s allocated, the garbage collector has the same decision to make as to whether to
allocate more memory or attempt to reclaim unused arrays. The decision here is
less critical, since memory allocated for arrays CAN be de-allocated, and so no
programmer-specified parameters are used. Array data only goes away when the
corresponding SAR is reclaimed by the normal garbage collection process (or when
the array is explicitly killed by the user, using the *REARRAY function).

For the interested reader, the format of a GCST entry is shown here:

Bit 0 1 if data objects in this segment must be marked.

Bit 1 1 if this segment contains value cells.

Bit 2 l if symbols.

Bit 3 1 if special array pointers.

Bit 4 1 if the right half of this data object contains a
pointer (true of list, bignum, and hunk data objects).

Bit § 1 if the left half of this data object contains a

pointer (true of list and hunk objects -- note that
symbols and special array pointers get special treatment).
It is always true that bit 4 is set if this one is.

Bit 6 1 if hunks (in this case, the ST entry is used to
determine the size of the hunk).

Bits 7-12 are unused.

Bits 13-21 contain the index into GCST of the next entry with the
same data type, or zero if this is the last such entry.
(Segment 0 never contains data objects, except NIL,
which is treated specially anyway.)

211

Bits 22-35 contain the high 14 bits of the address of the bit
block for this segment, if any.

Since bit blocks are 16 words long, the low four bits of the address of such a bit
block are always zero. Thus the GCST entry only needs to contain the high 14 bits
of the address. These 14 bits are right-adjusted in the GCST entry for the
convenience of a clever, tightly-coded marking algorithm. This algorithm works
roughly as follows: .

[a] Shift the address of the data object to be marked right by 9 bits, putting the
low 9 bits into the next accumulator.

[b] Use the high 9 address bits to fetch a GCST entry into the accumulator holding
the high 9 address bits, skipping on the sign bit (whether to mark or not).

[c] Test bits 1, 2, 3 (special treatment), skipping if none are set.

[d]) Shift the two accumulators left by 4 bits. This brings four of the low 9
address bits back into the first accumulator, which together with 14 bits from the
GCST entry yield the address of a word in the bit block. The 5 bits remaining in
the second accumulator indicate the bit within the word to use as the mark bit.
Finally, bit 4 is brought into the sign bit of the first accumulator.

[e] Rotate the second accumulator, bringing the 5 bits .to the low end.

[f] Indexing off the first accumulator, fetch the word of mark bits.

[g] Set a mark bit in the word, skipping if it was not already marked. (If this
doesn't skip, then we exit the marking algorithm. It is not necessary to store
back the word of mark bits.) The bit is selected by indexing off the second
accumulator into a table of words, each with one bit set.

[h] Store back the word of mark bits.

[i] Test the sign bit of the first accumulator (bit 4 of the GCST entry), jumping
to the exit if not set.

[J] If bit 1 is set (bit 5 of the GCST entry), recursively mark the pointer in the
left half. If bit 2 is set (bit 6 of the GCST entry), mark all the pointers in the
hunk.

[k] Iteratively mark the pointer in the right half.

I have taken the trouble to outline these steps carefully because most of
them are single PDP-10 instructions, carefully designed to perform two or three
useful operations simultaneously. The point is that the careful design of tables
and the use of redundant encoding can greatly increase the speed of critical inner
loops. (It should also be mentioned that such careful thought about design is
usually warranted only for critical inner loops!) I should also mention that most
of the constants which have been mentioned in this paper (bit numbers, sizes of
segments, and so on) are represented symbolically in the text of the MacLISP code;
one can change the size of a segment by changing a single definition, and the sizes
of fields in GCST entries, positions of bits, and so on will be adjusted by
assembly-time computations. I have used numbers in this paper only for
concreteness.

For certain spaces the mark bits are actually used in the inverted sense:
1 means not marked, and 0 means marked. This allows the sweep loop to test for an
entire block of 32. words all being marked by testing for a zero word of mark bits;
the loop can then just skip over the block, and avoid testing the individual bits.
The test for a zero word is done while moving the word into an accumulator, which
has to be done anyway, and so is essentially free.

212

THE ADDRESS SPACE PROBLEM

One of the difficulties currently facing MacLISP is the "limited" address
space provided by the PDP-10. The architecture of the machine inherently limits
addresses to 18 bits; hence a single program cannot address more than 256K words
of memory. Combined with the fact that MacLISP does not presently allow for de-
allocation of data segments (or of loaded compiled code, for that matter), this
severely limits the use of memory. Some MACSYMA problems, for example, would
require much more than 256K of programs and list data to solve; others require
less than 256K at any one time, but cannot be run because of the de-allocation
difficulty.

It is fairly clear that completely solving the de-allocation problem would
be more trouble than it is worth, and would not stave off the fundamental
difficulty indefinitely. As both MACSYMA problems and MACSYMA itself grow in size,

we will feel more and more the "address space crunch”. The only general way to
solve this problem is to arrange for a bigger address space.
There are three solutions which are presently at all realistic. Two

involve continued use of the PDP-10 architecture, but modified in several ways to
allow programs to access more memory. These modifications may or may not be made
available by DEC, and may or may not be retrofittable to the MACSYMA Consortium
KL10 processor. The difference between the two schemes involves the decision as to
whether MacLISP data pointers should still fit into 18 bits. If not, there is
immediately a factor-of-two memory penalty, since list cells must be two words
instead of one. However, there are also some technical advantages to such an
arrangement, as well as the obvious advantage that list space can become bigger
than 256K. If pointers are kept to 18 bits, then all LISP data must fit in 256K,
but any amount of compiled code and any number of arrays could be loaded. Both of
these schemes have been worked out on paper to a great extent by Guy L. Steele Jr.
and Jon L. White, to compare their merits and to prepare for the possibility that
one of them may be needed. Either scheme would require a good deal of work (at
least one to two man-years) to implement fully in both the interpreter and the
compiler.

The third solution involves moving to another machine architecture
altogether. This leaves open the choice of machine. Few commercially available
machines are as conducive to the support of LISP as the PDP-10, and it probably
would not be practical to undertake a completely new implementation. MacLISP does
presently run on Multics (on a Honeywell 6180 processor), but is rather slow, and
the Multics system is expensive and not widely available. The best bet in this
direction seems to be the LISP machine, designed by Richard Greenblatt, Tom Knight,
et al. at the MIT Artificial Intelligence Laboratory. The prototype machine has
been working for a number of months now, and the basic software is beginning to
show signs of life. It is not inconceivable that MACSYMA may be run experimentally
on it by summer 1977. The LISP machine has a 23-bit address space, and makes more
efficient use of its memory than even the PDP-10. However, although it is much
less expensive than a KL10, it is not designed for time-sharing.

The PDP-10 implementation of MacLISP and of MACSYMA will certainly be
useful for at least the next five to ten years. After that, only time can tell.

SUMMARY

MacLISP is designed to be an efficient, high-level systems programming
language, rather than primarily an applications programming language. Its internal

213 ‘o

organization 1s a carefully chosen balance between useful generality and special-
case efficiency tricks. A thoughtful choice of data and table representations can
exploit the architecture of the host machine to gain speed in critical places
without great loss of generality. The use of symbolic assembly parameters can
avoid tying the system to a single rigid format. The greatest effort has been
expended on speeding up type-checking, access to values in global variables, and
garbage collection, since these are among the most frequent of LISP operations.
The address space crunch may eventually force yet another redesign if the PDP-10

architecture is retained.

REFERENCES

1. Steele, Guy L. Jr.: "Fast Arithmetic in MacLISP."™ Proceedings of the MACSYMA
Users' Conference, NASA CP-2012, 1977. (Paper No. 22 of this compilation.)

2. Teitelman, Warren: InterLISP Reference Manual. Revised edition. Xerox Palo
Alto Research Center (Palo Alto, 1975).

3. Conrad, William R.: A compactifying garbage collector for ECL's non-homogeneous
heap. Technical Report 2-74. Center for Research in Computing Technology, Harvard
U. (Cambridge, February 1974).

214

22

FAST ARITHMETIC IN MACLISP

Guy Lewils Steele Jr.
Massachusetts Institute of Technology
Laboratory for Computer Science
(formerly Project MAC)

ABSTRACT

MacLISP provides a compiler which produces numerical code competitive in
speed with some FORTRAN implementations and yet compatible with the rest of the
MacLISP system. All numerical programs can be run under the MacLISP interpreter.
Additional declarations to the compiler specify type information which allows the
generation of optimized numerical code which generally does not require the garbage
collection of temporary numerical results. Array accesses are almost as fast as in
FORTRAN, and permit the use of dynamically allocated arrays of varying dimensions.
Here we discuss the implementation decisions regarding user interface, data
representations, and interfacing conventions which allow the generation of fast
numerical LISP code.

INTRODUCTION

For several years now MacLISP has supported a compiler which produces
extremely good numerical code. Measurements made by Fateman indicate that the
generated code is competitive with FORTRAN. (Ref. 1) Expressing such numerical
code does not require the use of special numerical language embedded within LISP,
in the manner that some higher-level languages allow the user to write machine code
in the middle of a program. Rather, all numerical programs are completely
compatible with the MacLISP interpreter. The compiler processes the interpreter
definitions along with additional numerical declarations. These declarations are
not required; omitting them merely results in slower compiled code. For
convenience, special numeric functions are provided which carry implicit declared
type information (such as + and +3$ for integer and floating point addition, as
opposed to PLUS), but the user need not use them to get optimized numerical code.

CHANGES TO THE MACLISP LANGUAGE

The primary change to the MacLISP language, as seen by the user, was the
creation of numerical declarations for use by the compiler. A general compiler
declaration mechanism was already a part of the language, so adding the numerical
declarations was not difficult. This mechanism involves writing a MacLISP
expression beginning with the word DECLARE and followed by various declarations.
Declarations may be global or local. Global declarations are written by themselves
in a file, and affect all following functions; 1local declarations are written
within the text of a MacLISP function, and affect only the scope of the construct
they are written within.

The simplest new declarations are statements of the types of variables.
Recall that MacLISP has three basic numeric types: fixnum, flonum, and bignum.
These are (respectively) single-precision integers, single-precision floating-point

215

numbers, and arbitrary-precision integers. Only the first two types can be
operated on directly by hardware instructions, and so they are the only types of
interest to the compiler. An example of a variable declaration:

(DECLARE (FIXNUM I J K) ssingle-precision integers
{FLONUM A B FOO ZAP) ;single-precision reals
(NOTYPE SNURF QUUX)) ;no specific type

If a variable is always nuﬁeric but sometimes may hold bignums, it must be declared
NOTYPE. The default assumption is that a variable is NOTYPE (that is, may contain
any MacLISP data object); NOTYPE declarations are primarily useful to undo

previous numeric declarations.
The types of the arguments and returned values of functions may be

similarly declared:

(DECLARE (FLONUM (CUBE-ROOT FLONUM)
(INTEGER-POWER-OF-REAL FLONUM FIXNUM))
(FIXNUM (FIBONACCI FIXNUM)
(LENGTH-OF-LIST NOTYPE)) '
(NOTYPE (BETWEEN-ZERO-AND-ONE-PREDICATE FLONUM)))

This declaration specifies that CUBE-ROOT takes a FLONUM argument and delivers a
FLONUM result, that INTEGER-POWER-OF-REAL takes a FLONUM and a FIXNUM and delivers
a FLONUM, and so on. The types of the arguments could also be specified by using a
local declaration:

(DECLARE (FLONUM (CUBE-ROOT))) ;global declaration

{DEFUN CUBE-ROOT (X)
(DECLARE (FLONUM X)) ;local declaration
(EXPT X .333333333))

The result type must be specified by a global declaration, however, and declaring
the argument types globally also can help the compiler to produce better code for
functions which call the declared function.

Arrays may also be declared globally to the compiler. MacLISP arrays come
in three types, which are essentially FIXNUM, FLONUM, and NOTYPE. (There are other
types also, but these do not concern us here.) The ARRAY* declaration takes a
subdeclaration specifying the array type; the subdeclaration in turn specifies the
names of arrays and their dimensions. An example:

(DECLARE (ARRAY® (FIXNUM TUPLE 1 TABLE 2)
(FLONUM VECTOR 1 MATRIX 2)))

This declares TUPLE and VECTOR to be one-dimensional arrays, and TABLE and MATRIX
to be a two-dimensional arrays. (MacLISP arrays may have up to five dimensions.)
If the values of the dimensions are also known ahead of time, a slightly different
form may be used:

(DECLARE (ARRAY* (FIXNUM (TUPLE 43) (TABLE 3 5))
(FLONUM (VECTOR 3) (MATRIX ? 17))))

This declares TUPLE to be of length 43, TABLE to be 3 by 5, and MATRIX to have 17

216

columns and an unknown number of rows. Note that "?" can be used to denote an
unknown dimension value; even partial dimension information can help the compiler
to optimize array accesses.

The user can write arithmetic code using the traditional names PLUS,
DIFFERENCE, TIMES, and QUOTIENT; these functions work on any kinds of numbers,
even bignums, and admit mixed-mode arithmetic. In the presence of type
declarations, the compiler may be able to deduce that the arguments are always
flonums, for example, and produce hardware instructions for floating-point
arithmetic. The user can also use the FIXSW and FLOSW declarations to tell the
compiler that such "generic" arithmetic will always involve only fixnums or only
flonums.

As a convenience to the user, however, several versions of the common
arithmetic functions are provided:

generic fixnum only flonum only
PLUS + +3
DIFFERENCE - -5

TIMES x *x$
QUOTIENT // /7%
REMAINDER \

GCD \\

GREATERP > >

LESSP < <

EQUAL = =

EXPT ~ ~$ (fixnum exponent)

(The division functions are written as "//" instead of "/" because "/" is a MacLISP
escape character.) The functions in the last two columns are completely equivalent
to those in the first column, except that they convey additional type information
about their arguments and results. (An exception is that the fixnum-only functions
do not check for overflow, so in a situation where, for example, 100000000 and
100000000 were multiplied together, TIMES would produce a bignum, whereas * would
overflow and produce a not-very-meaningful fixnum. The flonum-only functions do
not check for overflow either, whereas the generic functions give an error for
overflow, and either an error or zero for underflow.)

CHANGES TO THE MACLISP IMPLEMENTATION

In order that the arithmetic machine instructions might be used directly on
MacLISP numeric data objects, it was necessary to modify MacLISP to use a uniform
representation for fixnums and flonums. Before the fast-arithmetic scheme was
implemented, MacLISP, like many other LISP systems, used two representations for
single-precision integers. One represented the integer as a pointer to a machine
word containing the value, in the same manner as floating-point numbers were
represented. The other encoded the value into the pointer itself, using pointer
values which were otherwise worthless because they pointed at code instead of data
objects. The motivation behind the earlier dual representation was to avoid
allocating storage for small integer values, which are frequently used. (InterLISP
has for several years "open-compiled"® arithmetic functions as single machine
instructions. (Ref. 2) Unfortunately, it still has a dual representation for
integers; as a result, before adding two numbers it must call a routine which
determines at run-time the representation of each number and converts each into a

217

full machine word representation. Compiled InterLISP code also calls a similar
routine for floating-point numbers, not because of multiple representations, but in
order to perform error-checking as completely as the interpreter does. This run-
time checking destroys any advantage gained by open-compiling the arithmetic
instructions.) :

The pointer encoding was removed from MacLISP for the fast-arithmetic
scheme, and all numbers are now uniformly encoded as pointers to full machine words
which contain the machine representations of the values. In order to avoid
allocating storage for frequently used small integers, there are several hundred
words of memory containing consecutive small integer values, and small integers are
created by making a pointer to one of these standard locations, rather than
allocating a new word for each use of a small integer. (MacLISP does not allow the
words used to contain numbers to be modified in the way InterLISP allows using the
SETN primitive (ref. 2), so there is no difficulty in sharing such words. In
fact, these small integer locations are even shared among all the MacLISP processes
in the time-sharing system by making them read-only.)

While arithmetic on bignums cannot be compiled as standard arithmetic
machine instructions, their representation has been chosen to permit sign tests to
be open-compiled. A bignum is a pointer to a word which has the sign of the bignum
in the sign bit (and in fact the entire left half), and a pointer to a list of
fixnums (which represent the magnitude) in the right half. Thus all numbers are
pointers to words which contain the sign of the number in the sign bit, and such
functions as MINUSP can always be compiled as single machine instructions.

In order to preserve the uniformity of the function-calling interface, it
was decided that all arguments to functions must be valid MacLISP data objects. On
the other hand, it is not desirable to have to "number cons" out of free storage,
with the garbage collection overhead that- implies, in order to pass numbers to
functions. The solution used was to introduce two extra pushdown lists (stacks)
called the fixnum and flonum pdls. The storage in these pdls appear to have fixnum
or flonum data type, but they are allocated as stacks rather than as garbage-
collected heaps. These stacks can be used to hold temporary numerical values and
the values of PROG variables which have been declared to be numeric, but they can
also be used to allocate pseudo-data objects compatible with MacLISP's standard
number representation. A pointer to a fixnum pdl location is indistinguishable
from an ordinary fixnum for most purposes; it is a pointer to a full machine word
containing the numeric value. A typical code sequence resulting from compiling
(FOO (+ A 5)) is:

;assume accumulator 1 has the pointer value of A in it

MOVE 7,(1) ;get the machine word for A into accumulator 7
ADDI 7,5 ;add 5 to the machine word

PUSH FXP,7 ;pbush resulting word into fixnum pdl

MOVEI 1,(FXP) ;copy fxp pointer into argument accumulator 1
CALL 1,FCO ;call foo

SuB FXp,[1,,1] ;remove pushed word from fixnum pdl

To the function FOO the pointer passed in accumulator 1 has the precise format of a
MacLISP integer: a pointer to a machine word containing the integer value. Note
that the value of the variable A may itself have been such a "pdl number"; the
MOVE instruction would move the machine word value into accumulator 7 whether it

was a pdl number or an ordinary fixnum.
One of the difficulties of using stack-allocated numbers is that they have
a definite lifetime; on return from the function they are passed to, they are de-

218

allocated and no longer exist. By the time they are de-allocated, there must be no
more pointers to that word accessible to the user program, or else subsequent
references might see a wrong value because the pdl word was re-allocated for some
other purpose.

To overcome this difficulty the notion of safety was developed. A copy of
& pointer is safe if it can be guaranteed that the copy will become inaccessible
before what it points to is de-allocated if the pointer in fact points to a pdl
number. Alternatively, a use for a pointer is safe if that use doesn't require a
safe pointer. The fast-arithmetic compiler does some complex analysis to determine
what situations are safe. Some standard conventions for safety:
[1] A pointer in a global (special) variable may have an indefinite lifetime, and
S0 putting a pointer in a global variable is unsafe. It follows that such a
variable may not contain a pointer to a pdl number, since we cannot guarantee such
a pointer to be safe. Consequently, any pointer actually obtained from a global
variable is safe.
[2] Consing a pointer into a list cell {(or using RPLACA to put a pointer into an
existing list call) is similarly unsafe. Pointers actually occurring in 1list
structure must therefore be guaranteed safe.
[3] It is not possible to return a pdl number as the value of a function, because
there would be no return to the code to de-allocate it. Therefore returning a
pointer from a function is unsafe, and all pointers actually returned from
functions are safe.
[4] Passing a pointer as an argument to a function is safe; therefore pdl numbers
{unsafe pointers) may be passed as arguments to functions. All function arguments
are thus potentially unsafe. They may be passed on down to other called functions,
but may not be returned or otherwise used as if they were safe.
[5] Pdl numbers may be pointed to by ordinary compiled local variables. Such
local variables may or may not have unsafe values, depending on where the values
came from. The compiler must guarantee that when the value of a local variable is
used either the value is safe or the use is safe.

Suppose we wrote a function such as:

(DEFUN ZAP (A) (CONS A 'F00))

We are putting the argument A into a 1list cell (an unsafe use), but the argument A
is also (potentially) unsafe. In this situation the compiled code must create a
safe copy of the unsafe pointer. The compiled code therefore uses a routine PDLNMK
("pdl number make") which checks for a pdl number and makes a copy by doing a
number cons if necessary. That is, if the pointer given to PDLNMK is already safe,
it is returned as is; but if it is unsafe, a safe copy is made with the same
value. The compiled code for ZAP would look like this:

MOVEI 2, 'FO0 ;put constant "foo" in accumulator 2
JSP T,PDLNMK smake sure accumulator 1 has a safe pointer
JCALL 2,CONS ;call CONS

If A is not a pdl number, PDLNMK does nothing; but if it is, PDLNMK replaces the
pointer in accumulator 1 with a freshly allocated fixnum with the same value as the
pdl number. In this way a safe value will be passed to the CONS function. (The
convention about function arguments being potentially unsafe has an exception in
CONS, so that CONS itself need not always perform PDLNMK on its arguments. The
compiler knows about this exception, and guarantees that anyone who calls CONS will
provide safe arguments. In practice, arguments passed to CONS often can be

219

guaranteed safe by compile-time analysis, and it saves time not to have CONS use
PDLNMK.)

Notice that one consequence of the use of PDLNMK is that two numbers which
are apparently EQ (i.e. the same pointer) may not be if the compiled code has to
make a copy. For example, consider this code:

(DEFUN LOSE (X)
(SETQ G X)
(EQ X G)) -

The result of the EQ test could be NIL, even though the global variable G
apparently is assigned the same pointer as was passed to LOSE as an argument. If
an unsafe pointer is passed to LOSE, G will receive a safe copy of that value,
which will not be the same pointer, and so the EQ test will fail. (This is another
reason why MacLISP does not have a SETN primitive; since the compiler can make
copies of a number without warning, conceivably SETN might modify one copy of a
number but not the other, with anomalous results.)

Recall that one unsafe use of a pointer is returning it as the value of a
function. We would like for numeric code not to ever have to "number cons", but we
cannot return a pdl number from a function. The solution to this dilemma is to
allow numeric-valued functions to have two entry points. One is the standard
MacLISP entry point, and is compatible with the standard MacLISP calling sequence;
calling the function there will produce a MacLISP pointer value, which will involve
a number cons if the value is in fact numeric. The other is a special entry point
which is non-standard, and can only be used by compiled code which knows that the
called function is numeric-valued. Entering a numeric function there will deliver
a machine word in accumulator 7 instead of the standard pointer in accumulator 1.

In order to use this special calling sequence, both the called function and
the calling function must be compiled with declarations specifying that the called
function is numeric-valued. The compiler will then compile the called function to
have two entry points, and the calling function to use the non-standard numeric
entry point.

The entry points are actually implemented as two consecutive locations at
the beginning of the function. The first is the standard entry point; it merely
pushes the address of a special routine FIXl (or FLOATl, for a flonum-valued
function) onto the stack, and then falls into the non-standard entry point. The
function then always produces a machine number in accumulator 7. If the function
is called at the numeric entry point, it will deliver its value as a machine word.
If called at the standard entry point, then on delivering the machine word it will
"return® to FIX1l, which performs a "number cons" on the machine word, producing a
normal fixnum (or FLOAT1, which produces a flonum), and then returns to the caller.

As an example, here are two functions with appropriate declarations:

(DECLARE (FLONUM (DISC FLONUM FLONUM FLONUM)))

(DEFUN DISC (A B C)
(-3 (*3 B B) (*3 4.0 A C)))

(DEFUN QUAD (A B C)
(PROG (D)
(DECLARE {FLONUM D))
(SETQ D (DISC A B C)) .
(COND ((MINUSP D) (RETURN (ERROR)))

220

(T (RETURN (//% SQRT D) B)
2

(-$ (
(*$ A 2.0)))))))
The code produced would look like this:

DISC: PUSH P,[FLOAT1] ;for normal entry, push address of FLOAT1

MOVE 7,(2) ;numeric entry point; get machine word for B
FMPR 7,7 ;floating multiply B by itself

MOVSI 10,(4.0) ;get 4.0 in accumulator 10

FMPR 10,(1) ;floating multiply by A

FMPR 10,(3) ;floating multiply by C

FSBR 7,10 ;floating subtract ac 10 from ac 7

POPJ P, ;machine word result is in ac 7

Notice that DISC does no number consing at all if called at the numeric entry
point. It does all arithmetic in the accumulators, and returns a machine word as
its result. The code is remarkably compact, of the kind one ordinarily expects
from a FORTRAN compiler.

QUAD: PUSH P,1 ;save A, B, and C on the stack
PUSH P, 2 ;+ to preserve them across the
PUSH P,3 ; call to DISC
NCALL 3,DISC ;call DISC with the same arguments
PUSH FLP,7 ;push the result onto flonum pdl
JUMPGE 7,G0003 ;jump if value non-negative
MOVEI T,0
CALL 16,ERROR ;call the ERROR routine
JRST G00O05 ;go to G0005

G0003: MOVEI 1, (FLP) ;get a pointer into flonum pdl
NCALL 1, SQRT ;call SQRT with that pointer
FSBR 7,0-1(P) ;floating subtract machine value of B
MOVE 10,0-2(P) ;fetch machine word value of A
FSC 10,1 ;multiply by 2.0 (using "floating scale")
FDVR 7,10 ;divide ac 7 by ac 10
JSP T,FLCONS ;perform a flonum cons
Go005: SUB P,[3,,3] ;:clean up the stacks
sus fFLP,[1,,1]
POPJ P, sreturn pointer value in accumulator 1

There are several points to note about QUAD:

(1) It was not declared to be numeric-valued. As a result, when returning a
number it must do a number cons. Moreover, it does not have a numeric entry point.
(2) Because DISC was declared to be numeric-valued, QUAD uses NCALL instead of
CALL to invoke it; NCALL enters at the numeric entry point. The result of DISC is
expected in accumulator 7. Since QUAD needs to use this result to pass to SQRT, it
makes a pdl number out of this machine word. In this way function values can be
made into pdl numbers after all -- but by the caller rather than the called
function.

(3) As an aside, the compiler makes some other neat optimizations. It uses a
JUMPGE instruction for MINUSP, because the value to be tested is in an accumulator
anyway. It takes advantage of the address arithmetic of the PDP-10 to fetch
machine words pointed to by pointers on the stack in one instruction. It knows how
to use several accumulators for arithmetic, and to arrange for the result to end up

221

in the correct accumulator. It expresses the multiplication by 2.0 as a "floating
scale®™ instruction, which is faster than the multiplication instruction if one
operand is a floating-point power of two.

The representation of arrays in MacLISP was carefully redesigned to allow
fast access to them by compiled code, again taking advantage of the powerful
address arithmetic of the PDP-10. There are essentially two kinds of arrays: s-
expression arrays, whose components may be any safe pointers, and numeric arrays,
whose components must be all fixnum machine words or all flonum machine words.

The MacLISP ARRAY data type is a pointer to a double word (the "special
array pointer"™) which in turn points to the array data. The reason for this is
that the pointer must point to a fixed place (as all MacLISP pointers must), but
the actual array data may have to be shifted around by the garbage collector to
accommodate new storage requests, because arrays are not of a uniform size. When
the garbage collector moves the array data, it updates the the contents of the
special array pointer, but the special array pointer itself may remain in a fixed:
place.

In exchange for the flexibility of dynamically allocated arrays, however,
one pays the price of always accessing the array data indirectly through the
special array pointer. This cost is alleviated by taking advantage of addressing
arithmetic. The second word of each special array pointer points to the array
data, which 1s arranged linearly in row-major order; this second word furthermore
specifies indexing by accumulator 7.

IGC information

header code J array data
. - .
dimension 1.

special array pointer

W

type bits
(7) dimension 2
dimension n
element 0
element 1

element D1**...*Dn-1

Compiled code can access a numeric array datum by calculating the linear subscript
value in accumulator 7 and then using an indirect fetch through the second word of
the special array pointer for the array. The linear subscript value is of course
calculated as

(... (J1 D2 +J2) *D3 +J3 ...) %*Dn + Jn

where the Ni are the dimensions of the array and the Ji are the actual subscripts.
For example, suppose that accumulator 1 contains a pointer to a 3 by 5 by 13 fixnum
array, and that accumulators 2, 3, and 4 contain fixnum subscripts for that array.
Then to fetch the desired datum this code would be used:

MOVE 7,(2) ;fetch first subscript into ac 7
IMULT 7,5 ;multiply by 5 (second dimension)
ADD 7,(3) ;add in second subscript

IMULT 7,13 ;smultiply by 13 (third dimension)

222

ADD 7,(4) ;add in third subscript .
MOVE 7,@1(1) ;fetch indirect through special array pointer

If the number of dimensions of the array has been declared to the compiler but not
the values of the dimensions, the compiler arranges to fetch the dimension values
at run time. This is easy because the array is arranged so that negative subscript
values fetch the dimension information. (The LISP user is not supposed to use this
fact, but only compiled code.) The same example for a three-dimensional array of
arbitrary dimensions might look like this:

MOVE 10,(2) ;fetch first subscript into ac 10
MOVNI 7,2 sput -2 into ac 7

IMULT 10,@1(1) ;multiply by second dimension
ADD 7,(3) ;add in second subscript

MOVNI 7,1 ;put -1 into ac 7

IMULTI 10,€1(1) ;multiply by third dimension

ADD 10,(4) ;add in third subscript

MOVE 7,10 ;move into ac 7 for subscripting

MOVE 7,@1(1) ;fetch indirect through special array pointer

The code is a little longer than before, but will work for any three-dimensional
array. In general, the compiler tries to minimize subscript computations. If the
exact dimensions are declared, or if some of the subscripts are constant, the
compiler will de part or all of the subscript calculations at compile time.

For s-expression arrays, the pointer data are stored two per word, with
elements having even linear subscripts in the left half of a word and the
succeeding odd subscripted elements in the right half of the word. The compiler
must generate code to test the parity of the linear subscript and fetch the correct
half-word. Suppose that a pointer to a one-dimensional array is in accumulator 1,
and a fixnum subscript is in accumulator 2. Then the following code would be
generated:

MOVE 7,(2) ;fetch subscript into ac 7
ROT 7,-1 ;divide by 2, putting remainder bit in sign
JUMPL 7,G0006 ;jump if linear subscript was odd
HLRZ 3,01(1) ;fetch pointer from left half
JRST G0007 ;jump to G00O7
G0006: HRRZ 3,81(1) ;fetch pointer from right half
G0007: ...

If the compiler can determine at compile time that the linear subscript will always
be odd or always even, it will simplify the code and omit the JUMPL, JRST, and the
unused halfword fetch.

SUMMARY

_ MacLISP supports the compilation of numerical programs into code comparable

to that produced by a FORTRAN compiler while maintaining complete compatibility
with the rest of the MacLISP system. All numeric code will run in the MacLISP
interpreter; additional information may be given to the compiler in the form of
declarations to help it generate the best possible code. If such declarations are
omitted, the worst that happens is that the code runs slower.

223

Compatibility with non-numeric functions was achieved by the judicious
choice of a uniform representation for LISP numbers combined with a compatible
stack-allocated representation for temporary numeric values passed between
functions. The use of stack allocation reduces the need for garbage collection of
numbers, while the uniformity of representation eliminates the need for most run-
time representation checks. One exception to this is that the use of stack-
allocated numbers must be restricted; this difficulty is kept in check by
maintaining a careful interface between safe and unsafe uses, and analyzing the
safety of pointers as much as possible at compile time.

While numeric functions and non-numeric functions may call each other
freely, a special interface is provided for one numeric function to call another in
such a way as to avoid number consing.

Arrays are stored in such a way that they may be dynamically allocated and
yet accessed quickly by compiled code. This is aided by the rich address
arithmetic provided by the PDP-10.

The philosophy behind the implementation is that the generality of LISP and
the speed of optimized numeric code are not incompatible. All that is needed is a
well-chosen, uniform representation for data objects suitable for use by hardware
instructions, combined with a willingness to handle important special cases
cleverly in the compiler.

REFERENCES

1. Fateman, Richard J.: "Reply to an Editorial.® SIGSAM Bulletin 25 (March 1973),
9-11.

2. Teitelman, Warren: InterLISP Reference Manual. Revised edition. Xerox Palo
Alto Research Center (Palo Alto, 1975).

224

23

ON COMPUTING CLOSED FORMS FOR SUMMATIONS

Robert Moenck
Division of Physical Sciences
Scarborough College
University of Toronto

ABSTRACT

The problem of finding closed forms for a summation involving polynomials
and rational functions is considered. A method closely related to Hermite's
method for integration of rationmal functions is derived. The method expresses
the sum of a rational function as a rational function part and a transcendental
part involving derivatives of the gamma function.

Section 1. Introduction

Mathematicians have long been interested in finding closed form expressions
for formal summations.

For example:

Il ~18
[
Il

i
or

)i - ; - ,-1 :

Il . l
Z i n+
i=1

The history of this problem is dotted with the names of the giants of
mathematics; names like Newton, Euler, Bernoulli or Boole. Jordan (ref. 1)
gives a comprehensive survey of this field of mathematics. In spite of the many
years of work which has been devoted to the problem, there is no general algo-
rithmic approach to finding such closed forms. Jordan's book is more like a
cookbook of approaches, rather than a rigorous algorithmic treatment, such as we
would like to have for computer applications.

For this reason, since the turn of the century, the field has developed in
other directions. 1In particular the areas of approximation theory and numerical
analysis have been it's progeny. However, the need for finding closed forms for
summations still exists. It is useful for large portions of the study of combi-
natorics. So, it would be nice, if the problem could be solved algorithmically,
with the aid of algebraic manipulation. This paper is intended to lay some
ground work to explore parts of the problem.

One reason that there is hope for an algorithmic solution, is the remarkable

225

success in solving the integration problem. Work by mathematicians like Risch
(ref. 2), Moses (ref. 3) and many others has resulted in the development of
algorithms for finding closed forms for a large range of integrals. As Boole
(ref. 4) noted in his work on differences over a century ago, there are strong
parallels between the two problems. 1In this paper, we shall explore some of
them and use the methods of the integration problem as a light to guide our way.

To a large extent the problem of finding closed forms for summations has
been neglected in the work of algebraic manipulation. Johnson (ref. 5) con-
sidered the zero recognition problem for combinatorial sums and Gosper (ref. 6)
considered the problem of automatically economizing summations. Recently,
Cheatham (ref. 7) described a program which attempts to find a closed form for
summations computed by loops in a program, and in reference 8 Gosper describes
a method based on continued fractions, for finding summations.

In section (2) we present some notation and properties of differences.
Section (3) sketches the summation of polynomials. Section (4) deals with
finding the rational part of a summation of a rational function and section (5)
briefly considers the transcendental part.

Section 2. Some Notation

If we are presented with a definite summation and asked to find its closed
form:

n
(D gn) = } £(1),

i=a
one way we can approach the problem is to find the indefinite summation:

x-1
h(x) =) f(i)
i=0

Then one can evaluate h(x) to obtain g(n).
1 x=n+1
g(x) = [h(X)J
x=g+1
This brief sketch sidesteps the issue of any singularities which may occur in

the function over the range of summation. However, it does point out the impor-
tance of the indefinite summation, the quantity we shall be concerned with here.

Implicit in our notation for (eq. 1) is that i takes on integral values
between a and b. Therefore, if we take the first difference of h(x):

(2) Ah(x) = h(xtl) - h(x) = f(x)

we obtain f(x), the function we are trying to sum. Conversely, if we apply the
inverse difference operatior A ! to f(x):

226

ATlE(x) = h(x)
we obtain the indefinite summation.

This leads to our first parallel between summation and integration: we can
obtain an expression for the summation by anti-differencing the function; much
in the way one obtains an integral by anti-differentiation. Also, the study of
differences leads to the understanding of sums, much in the way differentiation
is the key to integration.

The anti-difference is unique up to the addition of functions whose first
difference is zero. Examples of such functions are:

a) constants

b) functions with period 1 e.g. sin(mx).

Since the beginning of the study of differences,; it has been convenient to
employ an operator notation to express equations. We shall use the notation

employed by Jordan (ref. 1), which is fairly standard. The common and most
useful operators are:

a) the Shift Operator E : Ef(x) = f(x+1)

b) the Difference Operator A Af(x) = Ef(x) - f(x)
x=-1

c) the inverse difference operator A™! : A7l f(x) = X £(1)
i=0

We will use the inverse difference operator A—-l to represent the quantity
wWeé wish to compute, to avoid any confusion between it and any bounded sums which
will be expressed by the summation operator L. Occasionally, we shall extend
the notation by indicating the variable involved in the difference and the length
ef the difference:

i.e.: A £(x,y) = f(x+h,y) ~ £(x,y).
h

Normally x will be understood from the context and h=1, and so this extra embel-
lishment will not be necessary.

In modern terms operators a) and b) are derivations on an extension field
F(X,%y,...,%p) over some ground field F(x). Using these derivations Cohn (ref.
9) constructs a Difference Algebra much like Ritt's (ref. 10) Differential
Algebra. However, Cohn is more concerned with the larger problem of systems of
difference equations, rather than the simple linear difference equation (eq. 2).

Properties of Differences:

The following properties can be simply .derived from the definition of
differences:

P1) Akf(x) = kAf(x) , keF

227

P2) AE(x)+g(x)) = Af(x)+Ag(x)
P3) ACE(x) -g(x)) = £(x)-Ag(x) + Eg(x)-Af(x)
1) _ _ __Ag(®)
P4) A(g(x)) " T W E®
f(x)) _ _ £(x)Ag(x)+g(x)Af(x)

F3) A(g(x>) £ () Eg ()
P6) A (E(g(1)) = £(g(x)

1 Ag(x)

It is the slight discrepancies between these properties and their analogous
ones in differential algebra, that prevents direct application of its results and
methods.

Section 3. Sums of Polynomials

The simplest form of function we might want to sum is a polynomial:

a(x) = I ag xi

In the case of differential algebra, the integral is easily obtained since:

(3) D x®=p 7L,

Therefore, the integral is constructed by anti-differentiation. However, dif-
ferences of powers do not have such a concise form:

0 n-1 n Xn—i
Ax = y .) .
i

1=0

Thus expressing a function as a sum of powers is not a convenient form in dif-
ference algebra. Instead, the factorial functions are used:

(4) [x]n = x(x-1)(x-2) ... (x-n+1)
The difference of a factorial is:

(5) Alx] = Elx] - [x] = nlx]

n n n n-1
This has the concise form of (eq. 3) and so is a better representation. We can
convert a polynomial to the factorial form using Newton's formula, which expre-
sses a function in terms of it's higher differences:

[x].
1
il

(6) £(x) = rte (o)

i

Il ~13

0

228

where f(x) is a polynomial of degree n. The higher differences can be found
using a difference table after evaluating the polynomial at the points
x=0,1,...,n. Now:

n [x]i
(7) £(x) = izo T £
and so:
- n [x]i+l n <
(8 ACE(x) = iZO TGt 5 iZO <i+l>fi

eg: To compute g(x) = ATL(3x3-2x+1) = ATlE(x)

The difference table is:

X f(x) Af (x) A2f(x) A3£ (%)
0 1 1 18 18
1 2 19 36

2 21 55

3 76

and so Lt o) A_l[@) +()+ 18 (3) + 18 @J
@ Q=)

A‘1(1+[x]l+9[x]2+3[x]3)

A_?([X]l+%[x]2+3[x]3+%[x]4)

To convert from factorial representation to power representation we can expand
the factorial functions using their definitions.

[x]l = x
1 = _ 41 1o
2%, 7% T ¥
3[x]3 = 6x - 9%x° + 3%°
3 = -2, 210 9.3, 3
4[x]4 X 4 7%+ 4x3

Total g(x) = 2x - 13%x2 —~%x3 + %xF

229

Section 4. Sums of Rational Functions

The next larger class of problems is sums of rational functions. In inte-
gration, these are approached using Hermite's method which performs a partial
fraction decomposition of the function. Moses (ref. 3) describes this process.
The partial fraction decomposition breaks the rational function into a sum of
rational functions whose denominators are powers of square free factors of the
original denominator. Then using integration-by-parts the integral can be ex-
pressed as a rational function portion and a transcendental portion which is a

sum of logarithms.

We shall follow this method, with slight modifications, to derive a ra-
tional portion of the summation and a transcendental portion. The match of the
two methods is close enough that we can describe it as Hermite Summation.

Remembering from section 3 that powers are not nice forms for summation,
we define a factorial operator on a function:

(9 [f(x)]k = f(x) < £f(x-1)+f(x-2)...f(x=k+1l) for k>0
We can extgnd this operator by noticing:
(10) [£Ga], = E 1 -Lix-0],

If we define [f(x)]o = 1 and assert that (10) is an identity then substituting
k=0 we get:
1

(11) [f(X)]_z TN
2

We will call the value of k or £ in equations 9 and 11, the factorial degree of
function, because of its parallel to the "power" degree. We now proceed to
examine the differences of factorials.

(12) ME(], = [£(0], Z%; £(x-k+1) , k>0 .
A special case of this is eq. 5 for factorial polynomials.
(13) ALEG]_) = =[G, % Ef (x)

%‘Ef(x)

= Ef(x+2+ijj§+1

Notice that the factorial degree is decreased (resp. increased) by 1 on differ-
encing factorials (resp. reciprocal factorials).

Shift Free Decomposition:

If we are given a product of functions we can decompose it into a product
of factorial functions. Suppose our product is of the form:

230

S = a*b-c

where a,b,c are mutually relatively prime and Ea=b. Then:
ES = (Ea) *(Eb) +(Ec) = b(Eb)-(Ec)

and GCD(S,ES) = b
so we can divide out b and a from S and form:

s = [bl,-C .
Applying this method repeatedly we can put a product into the form:
(14) § = [8111+[8215 ... [8.], -

where the individual S, are shift-free. Given a ratjional function we can per-
. 1 . PR
form a shift-free partial fraction decomposition:

15 AG) _ E A
5G4y I8y T

and also a complete shift-free partial fraction decomposition.

ki A ki A (0
=1 L 1) st

(16)

This complete shift-free partial fraction decomposition is completely analogous

to the starting point of the integration-by-parts phase of Hermite's method.

It can be computed in the same way the complete square free partial fraction

decomposition for integration is done (see eg. Horowitz ref. 11 or Yum

ref.12). We can also deduce (f(x+k), A f(x+1)) =1 iff (£(x+k), £f(x+1)) = 1.
k-1

This will be true if we have performed a k-shift-free decomposition of f(x).

Shift Independence:

We can test if a function is shift free using the GCD construction above.
However this does not eliminate all the cases. Consider:

A(x) _ 1
S(x) x(x+3)

Our GCD test will say S(x) is l-shift-free which might lead to errors if we
assume it is k-shift-free for all keZ. We might call such function shift de-
pendent since it is not 3-shift-free. We can test for shift independence using
the following method:

1) Form S(x+k) where k is a new variable..
S(xtk) = x2+(2k+3)x+(k2+3k) .

2) Compute the resultant with respect to k:

231

Res (S(xt+k), S(x)) = R(k)
Res (x2+(2k+3)x+(k2+3k), x243x) = -k'*-9k?

3) Test for integer roots of R(k); these will disclose any k's with non-trivial

GCD's of the form. Kk
GCD (5(x), ES(x)).
i.e.: k=0,%3. Choose: Lk=+3.

4) Apply Stirling's Method to convert the rational function into a factorial
denominator. i.e. multiply top and bottom by (x+1)(x+2) to obtain
A(x) _ (x+1) (x+2)
S(x) [x+3]14

5) Proceed as before.

Summation by Parts

From property P3) of differences we can deduce the rule for summation-by-
parts:

(17) ATl (ueav) = uev - ATHEv Au]

We can apply this to a typical term in our complete shift-free partial fraction
decomposition.

A, (%)
1 L]
[fi(x+i)]j ?

A j<i

First we can apply the extended euclidean algorithm to find B,C such that:

(18) B £, (x+i-j+1) + C f(x+i-j) = 1.
j-1

This can be used to expand the term further as:

A, A, ., C,A f(x+i-j A, |, Bf(x+i-j+1
A-l l’ (X) - A—1 l’J J—l (. J) + A-] 19] (x * J)
Efi(x+l)]j [fi(x+1)]j [fi(x+1)]j
(19)
D.A, f(x+i-3) A, . B
= ™! E'l ST AT e
£, (xH+i) ; [fi(x+1)]j_l
Applying summation by parts to the first term of eq. 19,
- D-%élf(x+153) - TD el —AD >
fi(x+1) i fi(x+1—l)]j_l E[f(x+1—l)]j_l
(20)
- -D + A=l < AD
[fi(x+1—l)]j_l [f(x+1)]j_l

The second terms of (20) and (19) and any terms of factorial degree j-1 in the
complete shift-free partial fraction decomposition, can be combined together to

232

give the next term of the iteration:

AD+A, BH+A.
Al 1,] - i,j-1
[fi(x+1)]j_1

The same method can be applied again. Continuing in this way we eventually ob-
tain an expression for the indefinite sum of a rational function as a rational
function plus an indefinite summation of terms with shift-free denominators of
factorial degree 1.

An Example of Hermite Summation:

We wish to compute: A'l'%
where:
A _ —(x%+3x+3)
B x"+2x3-3x%-4x+2

First we put B into a shift free form:
EB = x"+6x3+9x2-2
and

GCD(B,EB) = (x2+2x-1)
A _ —(x2+3x+3)
B [x2+2x-1]2

Next we perform a complete shift-free decomposition on % :

and so

A —(3x+5) -1 C
2 - + =24+ F .
B [X2+2X—l]2 . [X2+2x—l]1 D

C .
Now we want to put b into a form suitable for summation by parts. Since
E-1(x?-2x-1) = x2-2.

£
D

GA(x2-2) + H(x2%-2)
[x2+2x—l]2 [x2+2x—l]2

Since (x2-2) is shift free:
(0 (x%-2), (x%-2)) =1

and therefore we can employ the extended euclidean algorithm to solve the
equation:

—(3x+5) = S(2x+1) + T(x2-2)

—(x4+1) (2%+1) + 2(x2-2)

233

So-% is of the form:

—(x+1) (2x+1) L 2G2-2)
[x2+2x—l]2 [x2+2x—1]2

c_
D

— () A(x-2) 2
[x2+2x-1], [x?+2x-1], *

Now we perform summation by parts to obtain:

A—lg_:__it];__A'l{A_(}Ll).} 4+ A2 2
D

(x2-2) E(x%-2) [x2+2x—1]1
and so:
A C x+1 -1 2
A~ == A-12 + A-lF = + A-l +
B D x2=2 [x2+2x—l]1 [x2+2x—l]l

_ 1 x+1
[x242x-1] x2-2

Section 5: The Transcendental Part

We have reduced the problem of summation of rational functions to the summation
of a set of terms with shift-free denominators. Now we define a set of functions:

v (x) = D™ logT(x+1) , m>0

where TI'(x) is the gamma-function, a generalization of the factorial. The func-
tions wm have the property:

By_(x) = D" Alogl(x+1)
T (x+2
=" 1°gr‘%+1—§ = D" log(x+1)
m-1 1 (D" T(@-1)!
=D +1 m)
x (x+1)

Therefore the sum of a negative power of (x+1) is:

1 _ (_l)m—l
(x+l)m- (m-1)"!

A-t .wm(x) .

The functions wm(x) are also known as the polygamma functions.

We can now expand the remainder of our rational function in terms of its
roots:

234

A(x) k 2y

i=1 (x-p,)3 D
1

where j(i) is the multiplicity of the root.

Using the ¢m functioﬁs the indefinite summation of remainder of the ration-—
al function is:
K a, (-npiD-1

i

= T s -b.-1
B(x) izl GO i@ (x=b;-1)

The functiomns wm play a role similar to logarithms in the integration of

rational functions. I conjecture: ;

a) The functions wm(x) are transcendental with respect to the ground
field F(x).

b) 1If bi are the shift-free roots of a polynomial then wj(i)(x—bi) are

algebraically independent.

If these statements are true then one could argue, much as Hermite did for

integration, that the rational and transcendental parts of a summation are
unique.

235

REFERENCES

1. Jordan, C.: Calculus of Finite Differences. Chelsea, N.Y., 1965, 3rd ed.

2., Risch, R.: The Problem of Integration in Finite Terms. Trans. A,M.S5.139,
May 1969, pp. 162-189.

3. Moses, J.: Symbolic Integration: the Stormy Decade. Comm., A.C.M., vol. 14
no. 8, Aug. 1971, pp. 548-560.

4., Boole, G.: A Treatise on the Calculus of Finite Differences. Cambridge,
1860.

5. Johnson, S.C.: On the Problem of Recognizing Zero. J.A.C.M., vol. 18,
no. 4, Oct. 1971, pp. 559-565.

6. Gosper, R.W.: A Calculus of Series Rearrangements. Proc. Symp. on New
Directions in Algorithms and Complexity, C.M.U. 1976.

7. Cheatham, T.E. and Townley, J.A.: Symbolic Evaluation of Programs: A
Look at Loop Analysis. Proc. 1976 Symp. on Symbolic and Algebraic
Computation, R.D. Jenks Ed., A.C.M. New York, pp. 90-96.

8. Gosper, R. Wm., Jr.: Indefinite Hypergeometric Sums in MACSYMA. Proceed-
ings of the 1977 MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper
no. 24 of this compilation.)

9. Cohn, R.M.: Difference Algebra. Interscience, N.Y., 1965.

10. Ritt, J.F.: Differential Algebra. Coll. A.M.S., vol. 33, 1950.

11. Horowitz, E.: Algorithms for Partial Fraction Integration. Proc. 2nd
Symp. on Symbolic and Algebraic Manipulation, Max 1971. S.R. Petrick
ed., pp. 441-457.

12. Yun, D.: On Partial Fraction Decomposition Algorithms. Proc. 1977 IFIP
Congress.

236

Indefinite Hypergeometric Sums in MACSYMA*

R. Wm. Gosper, Jr.
XEROX Palo Alto Research Center

ABSTRACT
- We present a MACSYMA function which, given the summand
(A) a, = Qgln) = glnel) - gln)

finds g(n), the "indefinite sum”, within an additive constant, provided that g(n+1)/g(n) is a rational function of
n. We then have the identity

(8) i: a, = glg+1) - ¢lp) .
Examples: e
f‘: 1 . V53 2(_L ., 1 ., 1)
&4 n*+/5n-1 6 3IV2m+ /51 7 2ma /541 T 2me /5437
N n(n+arh)a™b” = 1 . am™*lpm+l
g (n+a)! (r+b) (a-11 (-1 ~ (m+a) (m+b)}! *
i ni4n - _2_((m+1)(63m‘+112m3+18m2-22m+3)4"‘ 3)
&t (Zn) 693 (2m) A
n mn
f: (3n)! _ (B1m?+261m+200) (3m+2)! _ 9
&4 n! (n+1)! (n+2)! 27" 40m! (m+1)! (ma2t 277 2 °

The algorithm seeks a "telescoping function” f(n) salisfying
(o)) gn) = fn)e, ,

which, if used to eliminate g from (A), yields the functional aquation

(func) a;,] - ;—(—5(::2:11 '
whente, from (B) and (C), " '
(voila) i 2, = a/(flg}l) - a flp).

n=p

From (A) and (C) it can be shown that f(n) is a rational function if g(n+1)/g(n) is. Our sigorithm determines f
as a finite continued fraction whose terms are polynomials in n. We await either a mathematical proof of its
effectiveness, or alternatively, an example on which it {ails, to determine whether it is a decision procedure,
or merely a useful but fallible heuristic.

*This work was supported, in part, by the National Science Foundation, and was fostered by
the hospitable and unfettered environment at the Stanford Artificial Intelligence Laboratory.

237

24

Sums and Summands, Range and Domain

If g(n+1)/g(n) is a rational function of r, then g(n), and therefore a, = Ag(n), is a constant times a product of
n consecutive values of some rational function. We shall cail such functions "hypergeometric terms”. We
believe our algorithm finds all inverse differences which have this form, thus performing indefinite summation

on generalized hypergeometric series.

Of course, not all finite products of rational functions sum to functions of the same type, just as not ail rational
functions integrate to rafional functions. One might ask, therefore, whether precluding higher functions from
the answer g(n) might thwart our slgorithm the way precluding logarithms, etc., would thwart an integration
algorithm. The answer is yes, but not nearly as badly. It appears that among the familiar higher functions,
only the polygammas™® of certain linear arguments have first differences in the form of hypergeometric terms.
This paucity of functions applicable fo the expression of indefinite sums is due fo the lack of a discrete
analogue to the chain rule, and has the unfortunate consequence that a given sum is less likely to have a
closed form than is an integral of similar complexily. In particular, the only hypergeomeiric series whose
indefinite sums are facilitated by polygammas are those with rational summands. Should it be needed, a fairly
simple partial fractions algorithm can sum rational functions as polygammas, at least when it is clear how to
adequately factor the summand’'s denominator. (Polygammas in the summands might be handled using
summation by parts, but not in the algorithm under discussion.)

It is a little surprising that the rational summands which require polygammas are invariably special cases of
hypergeometric summands which are amenable to our MACSYMA sum function, e.g.

L=) - Pmen)

will simplify no further ({ is the trigamma function), yet this sum is the special case x - 0 of

mn

$ @l mP___snm
(n-x)! (n+x)! 22(m-x)! (m+a)! nad

Here the telescoping function was f(r) = n%/¥* - 1. (We also used the factorial reflection formula,
.zl (-x)! = tx/sin 7x.) In general, the telescoping function f(n) = -1/¢a, yields the identity

1- ﬁ (1-€a,)

Z a"(l-éao)(l-eal) Ve (I-Gan-l) - _"=0T___ '
n=0

Letting € - 0, we have an arbitrary sum as the limit of a product over the same range (which is clear from
considering the expansion of the product through the 0(¢) terms.) When a_is rational in n, we can always
express this product and the summand as hypergeometric terms prior to taking the limit. Thus, for another
example of the sum of reciprocal squares, use ¢, = 1/r? (and, for convenience, replace ¢ by ¢2):

L

- m=

(m-€)! (m+€)! sin 7€
mitmed)

1
= -

2 o () " i

(The value $(2) = w2/6 is evident if m - o before ¢ = 0.)

M

*derivatives of log I'(x)

238

Unfortunately, the current algorithm is not a decision procedure for the expressibility of indefinite
bypergeometric sums in closed form. The top level procedure heuristically bounds the complexity of the
telescoping function f, {o prevent the main iteration, when given an impossible problem, from plunging down
an endless continued fraction. Another as yet nonrigorous aspect of the main iteration: it uses a rather
shortsighted, "greedy" algorithm to determine the successive term polynomials, and we have yet to show that
it will never need to backirack when solving the functional equations which arise from series. (if necessary,
backtrack could be installed, but it might be very costly in cases which turn out inexpressible in closed form.)

The Algorithm

The only significant problem is to soive the rational functional equation

(func) ‘%1_ - ;(:2:11

n

for . Since this foliowed from differencing g(n) = f(n) e = S g(n), we have

v

_ gm) 1
Sfin) = ZeT)-gln) gln+l)
2n)

which is rational when g(n+1)/g(n) is. Because we have no boundary condition to satisfy, equation (func) is
easier to satisfy than a first order linear recurrence with polynomial coefficients. In fact, if f(n) is 8 solution,
then so is f(n)+c/a , c arbitrary. Thus if the summand a_ is rational, then there is a continuum of rational f
satisfying (func), differing only in the "constant of summation” ¢ that they add to the sum g.

if f is a rational function, then the quotients from Euclid's algonthm (using polynomial division) form ‘the terms
of its continued fraction: ’

fn) = pyin) + S,
py(n) + i
IRORS
(0
Our MACSYMA algorithm successively determines p,, py, . . ., with the proviso that no p, be constant for i >

1, so as to guarantee the uniqueness of the represantation.

Since the term ratio a,,,/a, is a rational function, we ¢an write it as P(n)/Q(n), where P and Q are
polynomiais. Then f must satisfy

(1) P@n)f(n+1) - On)(f(n)+1) = 0.
ln particular, this relation holds for large n, where f(r) - p,(n). We thus "greedily” determine Py as the
polynomial approximation to f which most nearly satisties (1), that is, the polynomial which minimizes the

degree of the lefthand side. We then substitute p,(n) + 1/f,(n) for f(n), so that we can recursively determine
the rest of f's continued fraction as fy, the solution of the new functional equation

239

Pl(") + ;-2715 +1
e, py(n+l) + 1 '
1 fziml;

We write this equation in the form
(2ndform) Aln)fy(m)fy(n+1) + B(n)fy(n) + Cn)f,(n+1) + D) = 0,

where A, B, C, and D are polynomials. Then we "greedily” seek the polynomial p, which, in place of Sar
most nearly satisfies (2ndform). We proceed in this way, replacing

(subst) f{n) by pfn) + 1/f;,)

until we either find a p,(n) which exactly satisfies our equation, or we conclude that no solution exists.
Fortunately, further substitutions of the form (subst) lead to no equations more complicated than (2ndform).

Worked Example: we seek

in closed form. Equation (func) becomes

n-r/2+1 r-n _ f(n)+l
n-r n+l fln+l
or
(f1) (n-r/2+1)n-r)fin+1) + (n-r/2)n+1){f(n)+1) = 0,

In order to determine the first polynomial of f's continued fraction, we must first determine the degree of
that polynomial. We do this by replacing / with the “polynomial” estimate p,(n) = en?+0(n%"'), ¢ to be
determined. Suppose ¢>0. Then (f1) becomes

2an9*? + O(n9*1) = 0,

implying a = 0, meaning that q was too large. S0 q must be 0, and thus p; must be a constant a, making (f1)
(2a+1)n + O(n) = 0,

which determines @ = -1/2 and therefore f(n) = -1/2 + 1/f,(n). This determines the new equation

(f2) rin- '%l)y (n+1)fy(n) + 2n- g_)(nd)fz(n-rl) + 2(n-r)n- % +1)fy(n) = 0

to be solved for f,. Again, if we estimate f, by p,(n) = an? + 0n?-1), (f2) becomes

240

ra*n?*l 4 400 + 0(n29) + On?*Y) = 0.

Now q must be positive since we have forbidden p; to be constant for i>1. But if ¢>1 then 2g+1 > q+2,
forcing a to be 0, which is equivalent to reducing ¢. So ¢g=1, and the above becomes

(ra%+4a)n® + O(n?) = 0

which determines & = -4/r. Now we know that py(n) is of the form -4n/r + b, and we can determine b by
substituting this expression for /, in (f2), leaving for the lefthand side

(2-b) (41:2 + (4-br-2rin + b "(Lz'l—) + 2) '

which identicall_y vanishes if b = 2. Thus we have found the sclution .

1 1 n
f) = -5« — =
SCLLEgN |
whence, by
{voila) gpan = a,(flgl1) - a,f(p),
we get
m-r)

?,;; (n—r/Z)(;) e

(This example was suggested by D. Knuth.) Incidentally, Euler, (refs. 1, 1a), had the special case m = co of
(voila) in 1753, but he didn't get much mileage out of it. Chrystal (ref. 2) gives (voila) within a change of
variables, but still underestimates its generality. He credits Euler in "Nov. Comm. Petrop., 160", but | can't
locate this.

In certain cases where the conlinuéd fraction fails to terminate quickly, it is possible to deduce the general
formula for the ith term. With this you can tell if and when the fraction will terminate, and in any case get an
interesting identity. Consider, for example,

5 ()
(2F1) F[P154] = ﬂ—(%—.

a-c

which encompasses the Taylor series of many useful functions, e.g.

(1-x)? [a=-p, =1, z=x]
- lL%Z.x_) [a=1, c=2, g=x]
arelan v la=lfs, c=3s, zm-32)
:rcsliv-'t: [a=1, c=3/s, z=22]

241

First off,'we note that equation (voila) has arbitrary upper snd lower limits on the sum. Wo oxplovi this
degree of freedom by shifting the summation index by c-1, so that (2F1) becomes

- +@-
e n+a c)z,.
a-c

Fi[¥154] = "7;-1) '

a~C

which, if we raeplace a-c by b, eliminates a parametar from the summand. (Summing for n2c-1 means for n =
¢-1, ¢, c+l, ... regardless of whether ¢ is integral or even real.)

Equation (func) now becomes

n+b+lz o fln)+l
n+l fln+l

Experience indicates that, having determined p; in the form (An + B)/C, say, we should clear out the
denominator C by writing

s = g(an By i) insteadot A2, T L
+]

i*]

before going on to determine f;,,. This will usually lead to simpler coefficients in the lster polynomials, Our
solution will then begin

1 bz
fm) = ;T(l ’ (1-z)n - bz + 1+ (b-1)z)
2(6-2)z

(1-2)n - (b-1)z + 2 +
(1-z)n - (b-2)z + 3 +

3(b-3)x

and, in general, the ith equation

(—1)i((i—2)(b-i+2)zf,.(n)f,.(n+1) - (n+i-1)f{n+1) + (n+b-i+3)zf (n) - 1) = 0

determines

_ 1 , , 1
fin) = RN (NPT ((l-z)n - (b-ie2)z +i -1+ m)
which in turn yields the i+1st equation

-(-l)i"((i-l)(b—t+l)zf.,(n Wiy (ned) - (ned)f;, (n41) + (neb-is2)zf;, (n) - 1) =0,

for i23. Finally, since e, = 1 and (if the series converges) a, - 0,

, 1. i {a-e)
2F1[a c,z] = '1:;(1* acz(a-c-l)z 7)
(1-a)z + ¢ + 2(a~c-2)z
(2-a)z+c+1+ Tace-3)z

B-a)z+ec+2+

242

By the same method we can also establish

00
z%"‘_ = ?n,—';(l+ . z)'
n=m m+1l-2+ 5%

which, for m = 0, gives a nice continued fraction for e®

Messy Details

| have glossed over three problems that arise in determining the successive polynomials, namely, what
degree polynomial to choose, how many coefficients must be solved for at once, and what to do about
multiple solutions. ’

1) The polynomial degree:

The MACSYMA algorithm basically chooses the largest integer ¢ such that when an? is substituted for f(n) in
the expression

(ithtorm) A o) + BOCO iy py « BOER sy piy + D = 0,

more than one of the four lefthand terms is of maximal degree in n. When there is such a largest g, the
coefficient of the highest power of n will contain at least two different powers of a, so that the coefficient
can be eliminated with a nonzero choice of a. But on the first term (i = 1), A(n) = 0 and G(n) = D(n), and it
can happen that deg (B(r)+C(n)) < deg (B(n)-C(n)), i.e. B(n) and C(n) have the forms

en? + dg Py OnPt) and -enP + de nPl 4 O(nP-?)

respectively. Then, since deg (f(n+1)+f(n)} = deg (B(r)-C(n)) + 1, there is no largest ¢ meeting our
condition. In this case, we estimate f,(n) = an + bn?-1 + O(n9-2), and the quantity we are trying to annihilate
becomes

(tricky) B(n)f {n+1) + C(n)f(b) + D(n) = az(cqﬂiB+¢zlc)n"“7'l -cnP + OnP*9°2) 4 O(nP7Y)

Here we can zero the high order coefficient with either of two choices: q = -(dg+d;)fc or q = 1. The
program heuristically chooses the larger of these, provided it is an integer, on the theory that there is a
good chance of later determining that @ = 0, should the choice prove wrong. But this reasoning is
questionable in light of the functional equation

{loser) | ((f(n)-n105)2 - n) (nflnsl) - 1) = 0.

The two solutions of this squation are evidently

fin) = al% + /n and fln) = ﬁ'l:i' ,

243

but only the sécond solution is a rational function. Thus, any attempt to find the first solution will result in
nontermination. Yet the erroneous choice of p,(n) = n'% reduces the lefthand side of (loser) to degree 107,
while the correct choice p,(n) = 0 only reduces it to degree 210. Qur meek excuse is that in problems arising
from sums we never encounter such products as (f(n+1))2/(n), which appears in (loser). (Robert Maas helped
construct this example). '

At the end of the next section, we give an example where the heuristic succeeds in retroactively determining
that the high coefficient is 0, but very nearly requires backtracking to do it.

2) The need to consider more than one coefficient at a time:

The aforementioned (tricky) case, in which the exponent becomes involved in the coefficients, is the source of
another, less serious annoyance. In this case, and this alone, it is necessary to determine each coefficient of

p, in terms of the next lower one. Consider the sum

which determines the functional equation

(n+lf)? .)l
(n+1)(n+2) fn+l)

In the notation of the preceding discussion, ¢ = 1, dg = 1, d; = -3, and thus g = 2. Now suppose we
estimated f(n) as an® + bn + O(1). Then we would have

(%?-b-l)n“O(n) = 0.

Had we merely estimated f(r) by an’, we would have erroneously determined a on the assumption that b was
0, and then gone on to determine that b was, in fact, nonzero, Since a's value depends on b's, this incorrect
value of a would fail to annihilate the n® term, leaving that job for b. If ¢ is expended on the linear term, it
happens that the constant term remains unvanquished, and the conlinued fraction process will plunge down an
almost certainly bottomless hole. This would be a shama, since the equation could have been solved with the

first term:

fn) = 4n? + 4n.

This, incidentally, provides

n m

"2=0 (n+1)4_2n = 42m

(2;;)2 (m+l)(2m+l)2

In principle, it is never necessary to sclve simultaneous equations, even in this worst case. It is merely
necessary to determine each coefficient in terms of the as yet undetermined succeeding coefficient, and only
in those cases where B(n)+C(n) has iower degree than B(n)-C(n), and only for the first polynomial. In
practice, our algorithm invokes MACSYMA’s LINSOLVE linear system package, mainly for its automatic back

substitution.

24

incidentally, the only way that a coefficient could depend on the next two coefficients would be if the
functional equation contsined three distinet invocations of f, say f(n-1), f(n), and f(n+1).

Very occasionally, an equation for a coefficient can have no solutions! This happens while summing

n (4"—1)(2’:!)2

weirdo ———
() n=0 (2"-1)24-2"
which requires the solution of

(n-1/2)%(4n+3) . [
(n+1)*(4n-1) flne1) ©

Proceeding as before, we would again find ¢ = 2 and estimating f by an? + bn + 0(1), we would determine
that @ = -2-2b. Then estimating f = -2(b+1)n? + bn + ¢ + O(n!), we would determine b = (16¢c+1)/3. But this
leaves the equation

3n+9% +3+0@n) =0

and there is no way to choose ¢ to annihilate the coefficient of n, since it depends on the next continued
fraction term rather than on ¢. It is unsafe to choose ¢ arbitrarily, since our nonrational summand preciudes
the "constant of summation™, s0 we must postpona the determination until after determining that the second
continued fraction term is (-16n+36¢+13)/3, which leaves us the lefthand side

-3 (4c + 1) ((180c+45)n - 324¢% - 117¢ + 16) .

Our patience is rewarded, for the determination ¢ = -1/, terminates the problem, but with the ironic result
that b = 4/3 and a = 0, so that the choice ¢ = 1, which is always available in such cases, was correct after ail.
(See the first sentence after equation (tricky).) Incidentally, we have determined

2
fin) = - An

n-1
m (4;:-1)(7;:')2 (me)2

e (2"_1)2 42'! == 42"‘ *

and thus

3) Multiple roots when determining a coefficient:

If f(n) is a rational function with rational coefficients, we can be sura that no irrational coefficient will arise in
its continued fraction. It is therefore reasonable to hope that in solving a functional equation for such &
continued fraction, no nonlinear equation nead be solved. This hope is substantially fulfilled, but for a couple
of glitches. For exampie, in establishing the identity

i 4 m{in+1)2m+1)3m*+3m-1)
nt = ’
~ 30

245

we would determine the telescoping funclion to be

1 (n-1)(2n-1)(3n%-3n-1) . €

* 3 30n3 300n°

3n +
2 2
10n+c+ (c®-10) n

10(c2-10)n -~ 63 + S
(c*-10)m - c* + (c2-100n + ¢

DI b=

f(n) = g_

where ¢ is the arbitrary "constant of summation” which we get when the summand is rational. But our
algorithm is not smart enough to leave ¢, (which is also the coefficient of n? in p;(n)), undetermined, and the
consequences of this greed can be annoying. To determine the linear coefficient in p,, an is substituted for
fa(n) in the current (i.e. the third) equation, resulting in a polynomial of the form a(10-a)n* + O(n?), which
determines e = 10. But then, when we go to determine ¢ by estimating f,(n) as 10n + ¢, we find we have »
polynomial of the form (c2-10)n? + O(n). In other words, the choice a = 10 "fortuitously” annihilated the cubic,
as well as the quartic term. Ordinerily, the only quadratic equations we encounter are of the degenerate
form a(k-e) = 0, which occur when we are determining the high coefficient of each p; after i = 1. If choosing
a (or any lower coefficient) annihilates only one term of the expression being reduced then the next term
cannot be quadratic in the coefficient below a. This is because squares of coefficients of f can only come
from the f(n)f(n+1) term of the functional equation, but here the first quadratic instances of each coefficient
come two powers of n apart. But when two or more powers of n disappear with one choice of coefficient,
we may be left with a nondegenerate quadratic equation for the next coefficient.

Greedily pursuing our example, then, we find ¢ = /10, which makes our continued fraction for f an
indeterminate form. Either by performing the algorithm or taking limils, we find that the continued fraction

found by the greedy algorithm is actually one term shorter:

. 1
3

3n +
10n + /10 +

fin) =

)
B3t

1
JI0n - n

Although MACSYMA solves quadratic equations as readily as linear ones, the introduction of surds into the
computation can consume valuable time and storage, especially if it happens more than once, or involves Iargo
expressions containing symbolic parameters. !t the original sum was rational and involved no surds, yaet a
surd arises in the course of the solution, it is probably always safe to arbitrarily replace this surd by 0 or
anything else convenient, but until this step has been mathematically justified, it should be tasken only when

the greedy approach runs out of time or storage.

The quadratic final term of the above continued fraction iliustrates another conjecture which, if true, would
simplify the solution algorithm. We note that in converting a rational function {o a continued fraction with
Euclid’s algorithm, most remainders are of degree one less than the corresponding divisor, and, consequently,
the next partial quotient is finear. But if some remainder is "fortuitously” two or more powers less than the
divisor, then the next quotient wili be quadratic or greater. Recall that on the term preceding the quadratic
(and last) term in our example, we were "fortuitously” able to annihilate three pclynomial terms with two
degrees of freedom. We therefore conjacture that the degree of a given polynomial is simply 1 + however
many fortuitous annihilations occurred during the determination of the previous polynomial.

2u6

Knewing When o Quit

How many terms of a continued fraction should we compute before relinquishing hope of its termination? |
can only offer what secms to be a safe and reasonable bound, namely 1 + the sum of the magnitudes of the
integer roots, x;, of the resuitant of P(n) and Q(n+x) with respect to n, where P(n) and Q(n) are the
numerator and denominator of the term ratio ¢ ,,/a,, and multiple roots are to be weighted by their
multiplicities m, This represents all of the possible integer shifts of the denominator with respect to the
numerator which resuit in one or more cancellations. :

Possible Extensions

Trigonometric sums might be handled by a process which first converts to complex exponential notation, then
replaces some power of ¢* by the "base" ¢, thus forming a basic, or g analog hypergeometric sum. Then
we would apply the existing MACSYMA function to the corresponding ordinary hypergeometric, and form the
q analog of the resuit, if we got one. This is, however, highly speculative, and, in any event, would be
unlikely to find such fancy telescoping functions as f(n) = -1-cos 2"x, which provides the identity

n

Lo ocot % - cot2mx.

=4 sin 2"x 2

Just as with definite integration, the problem of definite (typically infinite) summation is complicated by the
bewildering variety of techniques available. One especially promising technique historically precedes and
generalizes the method described in this paper (ref. 3). To see the relation between the methods, we point
out another way of looking at the telescoping function f(it), that is, as the "splitting function” determining the
proportions into which the nth term of a series be partitioned, prior to combining the left portion of each
term with the right portion of the preceding term. Writing f, for f(n), we have

a,+8,,*...+a = (-fp+1+fp)ap + (—,)'P,l+1+fpﬂ)ap,l ...+ (-fq+1+fq)aq
a a
= - - —p* of 4.
apfp + (1+fp fp*] a,)ap o+ (1+Iq-l fq o)aq_l + (l+fq)aq ’

which yields equation (voila) upon the satisfaction of (func). But suppose it is not possible to annihilate the
quantity

Gy e ..
vy, < 1"’f("}-f(n+1)a—"' = 1+f"-fnqa_n.)

Then we will have only succeeded in creating a new series whose terms are u, times the old ones. But if u,
is reasonably simple and numerically small, it might be possible to iterate this splitting process indefinitely, so
that in the limit, all of the original terms are multiplied by 0. When the various edge effects are taken into
account, this process yields many interesting identities, such as

247

Y/ ; 242*2 41 (3a)!
Fl[a 2 /] 33a'1aiza)‘|z2

Sometimes, the edge effects involve limits which have thus far eluded analysis, whereupon we invoke a
nonrigorous technique which involves interpreting finite products over noninteger ranges. This results in

conjectural identities such as

1['“’ 2a+1~a/] = 2:3% cos T(a+f3) .

All of these conjectural formulas can be proven for countably many valuas of their paramelers, and they have
withstood extensive numericai testing at other values, but they remain tantalizingly uncertified.

Before the next MACSYMA Users' Conference, we hope to report on a partial implementation of a system for
definite summation.

Late Developments

Kevin Karplus of Stanford has been developing a roughly parallel set of MACSYMA functions, so as to
effectively double the rate of aigorithmic experimentation. Discussions with him led me to discover that

f: (n-1p)2 (12m+16) (m+1)2
= 47T -
(n+1)12 (m+1)?

is an out-and-out counterexample o the greedy algorithm, since the correct telescoping function is
9 4
fn) = -12n° - 28n - 20 - 5

whila the polynomial which most nearly satisfies (func) is

2
Pl(" _ Mn +3gOn+4 0

As a result, | patched the algorithm to only determine ¢ of its ¢+1 undetermined coefficients on non terminal
terms where ¢ > 1, thus treating all such cases in the manner of (weirdo). This seemed to repair the
problem, at the cost of exhausting list storage capacity on certain cases that had formerly worked.
Fortunately, on 20 April 1977, all of this kludgzery was rendered obsolete when | found a decision procedure
for this problem. (A discrele analog to the Risch algorithm for indefinite integration.) The procedure is
simpler, and makes belter use of Jeff Golden's recently installed FUNMAKE and SUBST(LAMBDA(...
capabilities, and, as a result, runs ten to fifty times faster than the continued fraction aigorithm. For those
most interested, the details will be available in a handout at the conferenca.

Here follows the transcript of a short demo of both algorithms.
(C1) loadfile(bother,?>,dsk,rug)$

BOTHER SUM15 DSK RWG being loaded
loading done

248

(C2) bothersum((-1}n/n12,n,1,m),%cfdepth:9;
TIME= 11585 MSEC.

” .
s=== N
\ (- 1}
(D2) > mmmmem
/ 2
==== N
N =1
(C3) %cf;
TIME= B MSEC. 1
__ -1
1
____________________________________ - N
2
________________________________ -N
A
____________________________ - N
6
________________________ - N
3
____________________ - N
12
________________ - N
16
____________ - N
1
-------- - N
: --MORE--
(D3) e
2

Old version fails (correctly) to find a closed form, but finds a nice continued fraction for f(n), which it stores

in %CF. Binding ¥CFDEPTH to an integer overrides the heuristic depth limiter.
(C4) loadfile(nusum,?>,dsk,share)$
NUSUM 19 DSK SHARE ... loaded

(C5) n1t3%3%n;
TIME= 3 MSEC. , 3 N
(05) N 3

(CB) nusum(%,n,B8,m);

TIME= 1283 MSEC.
3 2 M
3 &M -6 +12M-11 3 311

(DB) e + ———

New version (decision procedure) does an easy case.

249

(C7) nt3x3tnxn!/prod(3%i-2,i,a,ntb);
TIME= 43 MSEC.

(170 e

(C8) nusum(%,n,8,m);
TIME= 5858 MSEC.

2
3((3B-2) (3B+13)
(D8) —mm e e e
B
/===\
I
(3B-~14) 3B-11) (3B-8) (38-5) 'l (31 -2
I
I =A
3 2 3 3 2 2
-3 (27 B -216B +5498B -448) M + (81 B - 486 8B + 9458 - 689) M
3 2 3 2 M
+ (81 B -216B +153B-38)M+27B +81B ~144B+52)3 M+ 1)}
M+8B
/:::\
!
/(3B -~14) (3B -11) (3B -8} (3B-5) ' (31 -2))
It
I = A
(C9) unsum(%,m);
TIME= 3885 MSEC.
3 M
M 3 M!
gy eeemmmmeme e
M+ B
/===\
|
' @31 -2
P!
I = A
(C19)

New version does & tougher case. UNSUM (backward difference) then checks it.

250

REFERENCES

1. Euler, L.: Consideratio Quarundam Serierum Quae Singularibus Proprietatibus Sunt Praeditae.
Novi Comentarii academiee scientarum Petropolitanae 3 (1750/1), 1753, pp. 86-108

This appears in the Collected Works as
la. Opera Omnia, Series I, Volume 14, Teubner, 1925, pp 525-6.
2. Chrystal, G.: Algebra, an Elementary Text, Chelsea, 1964, Chapter XXXi, Sec. 12, p. 392.

3. Gosper, R. Wm,, Jr.: A Calculus of Series Rearrangemaents. Algorithms and Complexity, New
Directions and Recent Results, Academic Press, 1976, (Ed. J. Traub), pp. 121~-151.

This paper is stored as TELESCXGP[1,RWG]@SAIL, converted from TELESC.POX by the POX document
compiler, which was extended for this occasion by its daveloper, Robart Maas, of Stanford University.

251

25

MODULAR POLYNOMIAI, ARITHMETIC IN PARTIAL FRACTION
DECOMPOSITION*

S. K. Abdali
B. F. Caviness
A. Pridor
Rensselaer Polytechnic Institute

ABSTRACT

Algorithms for general partial fraction decomposition are
obtained by using modular polynomial arithmetic. An algorithm
is presented to compute inverses modulo a power of a polynomial
in terms of inverses modulo that polynomial. This algorithm is
used to make an improvement in the Kung-Tong partial fraction
decomposition algorithm.

INTRODUCTION

The partial fraction decomposition (pfd) of rational func-
tions constitutes an important step in some symbolic integration

algorithms (Horowitz ref. 1l). Such a decomposition is frequently
needed also in electrical network theory and control theory (e.g.,
Kuo ref. 2, Hsu and Meyer ref. 3). Consequently, a number of pfd

algorithms dealing with the general and the important special
cases (only linear or quadratic factors in the denominator of the
rational function being decomposed) have appeared in the liter-
ature (see references in Kung and Tong, ref. 4). These
algorithms fall into two categories: those based on applying the
extended Euclidean algorithm (see Knuth ref. 5) and those based
on solving linear systems of equations. Prior to 1969, the pfd
algorithm most widely implemented in symbolic computation sys-
tems (e.g., Engelman's MATHLAB ref. 6, Moses' SIN ref. 7) was one
of the former type and dated back to Hermite (ref. 8). Horowitz
(ref. 1), however, discovered a faster algorithm of the latter
type. The latter type algorithms require solving n linear
equations in n unknowns, where n is the degree of the denominator
in the rational fractlon to be decomposed. Thus in the general
case, they requlre O(n) operatlons using classical elimination
methods, or O(n2-81) operations u31ng Strassen's method (ref. 9).
In special cases, the best bound is 0(n“). But gquite recently,

*Research partially supported by National Science Foundation
Grant MCS-7623762.

253

Kung and Tong (ref. 4) have given an O(n 1ogzn) algorithm which
is again based on the extended Euclidean algorithm.

This paper uses the notation of modular polynomial arith-
metic to derive pfd algorithms. This formulation brings out the
similarities between the general pfd algorithms and the well-
known technique of pfd by substitution for non-repeated linear
factors (e.g., Kuo ref.2). The Kung-Tong algorithm is then
easily derived as an adaptation of the general algorithm for fast
computation. An algorithm is presented to obtain inverses
modulo powers of a polynomial in terms of inverses modulo that
polynomial. This is used in an improvement to Kung-Tong algor-
ithm, which improvement although asymptotically minor, is be-
lieved to be of practical value in symbolic computation systems.

PRELIMINARIES

Throughout this-paper, polynomials are assumed to be uni-
variate with coefficients in some given field.

Let B be a fixed polynomial. As usual, the relation
congruence modulo B and the binary operation mod on polynomials

are defined by

X =Y (mod B) iff, for some polynomial Q, X = QB + Y.
X mod B =Y, where X = Y (mod B) and deg (Y) < deg (B).

Let A be a polynomial relatively prime to B. Then it is
well-known (see, e.g., Herstein ref. 10) that there exist unique
polynomials X, Y satisfying

AX + BY = 1 , deg (X) < deg (B), deg (Y) < deg (a). (1)

Accordingly we have the following:

Definition 2.1 (Inverse and division modulo B. Defined only if
the denominator is relatively prime to B.)
(a) % mod B = X where AX B 1 (hod B) and deg (X) < deg (B)
(b) & mod B = (a+ (5 mod B)) mod B
Definition 2.2 (7T-—incated polynomial quotient)
|A/B] = (A - (A mod B))/B .

We use M(n), D(n), F(n) to denote (an upper bound on) the number
of operations needed, reu:nectively, to multiply two polynomials

254

of degree'n, divide a polynomial of degree 2n by one of degree n,
obtain polynomials X and Y of (1) when given A and B with max
(deg (A), deg (B)) = n. We assume that the following convexity
conditions are satisfied.

aM(n) < M(an) , a >1

ZM(ni) < M(Zni) r Dy integer

ZF(ni) < F(Zni) ro Dy integer.
It is reasonable to require such conditions as they are satisfied
by the bounds M(n) and F(n) for all existing algorithms. Similar

conditions are usually assumed, for example, by Aho, Hopcroft,
and Ullman (ref. 1l1), Kung and Tong (ref. 4).

PARTIAL FRACTION DECOMPOSITION PROBLEMS AND SIMPLE ALGORITHMS
Following Kung and Tong (ref. 4), we define three problems

related to partial fraction decomposition.

1) General partial fraction decomposition (PF) Problem.

Let Qp/s--.,Q be pairwise relatively prime polynomials of
degree NoyreeerDy respectively. Let zl,...,zk be positive
integers and let P be a polynomial such that

k k
l [2y
deg (P) < deg . Q. = 25 n.%. = n .
1 . 1 1
i=1 i=1

The problem is to obtain the polynomials P..,l1 < i < k,
1<3 <2y satisfying 1]

k.
i=1l j=1 (1 < 1 <k , 1< 3 < &.,),
I I 0. — — — - 7i
i=1 i
2) Problem Pl: (Special case of PF with &; = 1, 1 < i < k.)
Given pairwise relatively prime polynomials Rl""'Rk’

and the polynomial P such Ehat

deg (P) < deg <1_I Ri> .

i=1

255

The problem is to obtain the polynomials Cl,...,Ck satisfy-

ing

I 5; , deg (Ci) < deg (Ri) y 1 <i<k. (2)
HR

i=1 '
3) Problem P2: (Special case of PF with k = 1.)

Given polynomials P, Q such that deg (P) < deg (Ql), to
obtain the polynomlals Cl""’cl satisfying
2 Z—l,deg<c.)<deg<o),1gjiz. (3)
JlQ ’

It is well known (e.g., HOrowitz ref. 1) that the poly-
nomials to be determined in the above three problems all exist
and are unique.

Using the modular polynomial arithmetic, we can now state
simple algorithms for solving problems P1 and P2.

Algorithm 3.1 To solve Pl.

for i « 1 to k do

_ P
Ci " mod Ri

l_l Rj /R,

J=1

The algorithm is derived by multiplying both sides of (2) by
R, and reducing each side modulo R, .

Remark Note the similarity with the algorithm that works by
substitution in the case of non-repeated linear factors (ref. 2).
If R, = x - a, then according to that algorithm one would obtain

Ci by substituting a for x in the fraction after cancelling x - a
from the denominator. That is,

_ p : _ _ P e -
Ci = TR, evaluated with x = a = TR, mod X a

X - a X - a
Algorithm 3.1 is thus a straightforward generalization of that

approach replacing substitutions by evaluation modulo a poly-
nomial.

256

Algorithm 3.2 To solve P2.

begin P' <« P;
for j « 2 downto 1 do

begin

Cj < P' mod Q;
Pl -« LP'/QJ

end

end
The PF problem can now be solved by cascading solutions of
Pl and P2:

Algorithm 3.3 (Horowitz ref. 1) To solve PF.

begin

L,
1 compute R, < Q.7 , i =1,...,k;
i i K
2 solve problem Pl for P/ I lRi » Obtaining C. which
satisfy (2);
i=1 2 .
3 solve problems P2 for the fractions C. /Q , i=1,...,k;

end

The above algorithm lends itself to fast computation, and
will be discussed further in section 5. We close this section
with another useful algorithm which req