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FOREWORD 

I The technical program  of the 1977 MACSPMA Users' Conference,  held a t  
Berke ley ,   Cal i forn ia ,  from J u l y  27 to J u l y  29, 1977, c o n s i s t e d   o f   t h e  45 
con t r ibu ted   pape r s   r epor t ed  i n . t h i s  publ ica t ion   and   of  a workshop.  The work- 
shop was designed  to   promote  an  exchange  of   information between implementers 
and  users   of  the MACSYMA computer  system  and to   he lp   gu ide   fu ture   deve lopments .  

The  response  to  the c a l l  f o r   p a p e r s   h a s  w e l l  exceeded   the   ear ly  estimates 
of the   confe rence   o rgan ize r s ;  and the   h igh   qua l i ty   and   broad  ra.nge  of t o p i c s  
of the   papers   submi t ted   has   been   mos t   sa t i s fy ing .  A b ib l iography of papers  
concerned   wi th   the  MACSYMA system is included at t h e  end  of t h i s   p u b l i c a t i o n .  

We would l i k e   t o   t h a n k   t h e  members of t h e  program  committee, t h e  many 
r e fe rees ,   and   t he  secretarial a n d   t e c h n i c a l   s t a f f s  a t  t h e   U n i v e r s i t y  of 
C a l i f o r n i a  a t  Berkeley and a t  t h e   L a b o r a t o r y   f o r  Computer Science,   Massachuset ts  
Ins t i tu te   o f   Technology,   for   shepherd ing   the  many papers   through  the  submission-  
to-publ ica t ion   process .  We are e s p e c i a l l y   a p p r e c i a t i v e  of t he   bu rden .   ca r r i ed  
by .V. El len  Lewis  of M. I. T.  f o r   s e r v i n g  as e x p e r t   i n  document preparat ion  f rom 
computer-readable  to  camera-ready  copy  for several papers .  

This   conference   o r ig ina ted  as t h e   r e s u l t  of an   o rgan iz ing   s e s s ion   ca l l ed  by 
J o e l  Moses of M . I . T .  a t  the  1976 ACM Symposium on  Symbolic  and  Algebraic Comput- 
a t i o n ,  a t  Yorktown Heights ,  New York, i n  August  1976. It owes i t s  s u c c e s s   t o   h i s  
cont inuing  encouragements   and  effor ts ,  n o t  t o   m e n t i o n   h i s   i n t e l l e c t u a l  and 
p r a c t i c a l   s k i l l s   i n   k e e p i n g   t h e  MACSYMA p r o j e c t   t h r i v i n g .  

We wish  to   acknowledge  the  kind  cooperat ion of ACM, ACM-SIGSAM, t h e  Elec- 
t ronics   Research   Labora tory  and the  Department  of Electr ical  Engineering  and 
Computer Sc iences   o f   the   Univers i ty  of C a l i f o r n i a ,   t h e   L a b o r a t o r y   f o r  Computer 
Science of M . I . T . ,  NASA Langley  Research  Center,  and  the U.S. Energy  Research 
and  Development Adminis t ra t ion.  

We w i s h   t o   e x t e n d   o u r   g r a t i t u d e   t o   t h e   S c i e n t i f i c   a n d  Technical Information 
Programs  Divis ion.of   the NASA Langley  Research  Center   for   publ ishing  these 
proceedings.  

Richard J. Fateman,  General  Chairman 

Carl M. Andersen,  Program  Committee  Chairman 
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PREFACE 

Symbolic  and  algebraic  manipulation  enables  one  to  do  exact,  symbolic 
mathematical  computations on  a  computer.  To  illustrate  the  difference  between 
numeric  and  symbolic  processing,  consider  a  computer  program  (in  FORTRAN,  say) 
which,  given  the  quantities A, B, and Cy can  apply  the  quadratic  formula  to 
approximate  the,  roots  of  the  quadratic  equation A*x**2+B*&C = 0. The 
names  A, By and Cy must  of  course  correspond  to  numerical  values  at  run-time. 
This  is  because  the  program  has  been  written  to  provide  numerical  processing. 
If A had  as  its  run-time  value  the  expression  "Q ,'I B  had  value  "(-P*Q-1) , It and 
C  had  value  "P,"  the  FORTRAN  program  would be  useless.  Nevertheless,  by 
applying  the  quadratic  formula  symbolically,  the  two  roots 
[-(-P*Q-l)?SQRT(P**2*Q**2+2*P*Q+1-4*P*Q)]/(2*Q) can  be  represented.  By  further 
efforts,  this  expression  can  be  reduced  to  the  set  of  values  (P, 1/Q). This 
substitution (in  this case,  into  the  ,quadratic  formula)  and  subsequent  simpli- 
fication  are  but  two  of  the  necessary  operations  in an algebra  system.  Some  of 
the  more  elaborate  facilities  that  can  be  built  up  (and  have  been,  in  MACSYMA) 
include  partial  differentiation,  indefinite  integration,  inversion  of  matrices 
with  symbolic  coefficients,  solution  of  polynomial  equations,  and  manipulation 
of  truncated  power  series.  The  range of  capabilities  can  be  seen  in  the  papers 
in  this  conference. 

MACSYMA  is  a  large  symbolic  and  algebraic  manipulation  system  which  has 
been  under  development  at  the  Laboratory  for  Computer  Science  (formerly 
Project  MAC)  of  the  Massachusetts  Institute  of  Technology  since 1969. The 
system  has  more  than  quintupled  in  size  since  the  first  paper  describing  it 
appeared  in  1971. It is, by  any  measure,  a  rather  large  program,  and  this  makes 
it  a  challenging  project  from  many  points  along  the  computer  hardware-software 
spectrum.  Some  papers on the  LISP  system  in  these  proceedings  address  this 
issue. 

During  the  last  several  years,  the  community  of  users  of  the  MACSYMA  system 
has  grown  at  an  increasing  rate;  and  because  of  the  wide  geographical  range of  
the  ARPA  computer  communication  network  of  the  Defense  Communication  Agency, 
there  are  now  users  from  Hawaii  to  Cambridge,  England.  Another  contributing 
factor  in  the  growth  has  been  the  ability  of  Joel  Moses  and  his  staff  at  the 
Laboratory  for  Computer  Science  to  make  available  at  relatively  low  cost  the 
most  versatile  of  algebraic  manipulation  systems  currently  implemented.  Another 
is  the  synergistic  effect of the  community  itself:  where  the  output  of  one 
person's  program  may  be  the  input  to  the  next  person's,  and  where  nearly 
instantaneous  feedback on features  and  repair  of  bugs  are  the  rule  rather  than 
the  exception. 

Many  of  the  users  of  MACSYMA  (including  contributors  to  this  conference) 
are  also  using  or  have  used  other  systems  (ALTRAN,  FORMAC,  REDUCE,  SAC-1, 
and  SCRATCHPAD,  to  name  a  few)  with  symbolic  and  algebraic  manipulation 
facilities.  Many  of  the  techniques  are  not  specific  to MACSYMA, but  are  alge- 
braic  manipulation  contributions  independent  of  particular  system  context.  Thus 
we  view  this  conference  as  a  collection  of  persons  interested  in  advancing  the 
field  of  inquiry  in  l'symbolic  and  algebraic  manipulation,"  and  applying  the 
fruits  of  this  inquiry  to  other  areas.  We  believe  the  papers  bear  out  this  view. 

V 
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U n t i l   r e  cen t ly ,   ma jo r   fund ing   fo r  MACSYMA development  has come from  the 
Advanced Research   Pro jec ts  Agency,  Department of Defense,   under  Office of Naval 
Research  Contract N00014-70-0362-0006. More r e c e n t   a d d i t i o n s   t o   t h e   s p o n s o r s '  
ranks  have come from  agencies whose own personnel   and  contractors   have  used 
MACSYMA. These   inc lude   the  U.S. Energy  Research  and  Development  Administration, 
the  Nat ional   Aeronaut ics   and  Space  Adminis t ra t ion,   and  the U.S. Navy. Combining 
r e s o u r c e s   t o   p r o v i d e   t h e   u n i q u e   f a c i l i t y  of t h e  MACSYMA Consortium,  these 
sponsors  have  provided  an  invaluable  resource.  

Richard J. Fateman 
General Chairman 
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MACIS_YMA's_Symbolic Ordinary Differential Equation Solver * 

Jeffrey P. Golden 
Laboratory for Computer  Science 

Massachusetts  Institute of Technology 

ABSTRACT 

This paper describes MACSYMA's  symbolic ordinary differential 
equation solver ODE2. Although  available in  MACSYMA for approximately three 
years now, a paper describing how  to  use  it had never  previously  been  written.  Also, 
this  paper showcases the code for this  routine,  which  is  of  interest because it is 
written in top-level  MACSYMA  language, and may serve as a good example of 
programming in that language. Other symbolic ordinary differential  equation 
solvers are mentioned. 

1. The ODE2 Package 

MACSYMA's ordinary  differential equation (ODE) solver ODE2 may be used for 
symbolically solving elementary ODES of first. and second order. It  consists primarily of a set of 
routines based on techniques  described in reference 1 for Moses' SOLDIER ODE program, and in 
reference 2, which had been  used until recently as the major  textbook  in  M.I.T.'s introductory 
O D E  course 18.03. The ODE2 package was  written primarily by an M.I.T. graduate  student,  Ben 
Kuipers,  as a term project in a seminar  on  algebraic  manipulation taught by Richard  Fateman  in 
the fall of 1972-73. It  has since  been  maintained,  modified, and improved by the  author. 

When  the user  calls the ODE2 routine, e.g. as follows: 

( C 1 )  XA2s'DIFF(Y,X) + 3+X*Y = SIN(X)/X; 

( D l  1 
2 dY SIN(  X )  

x " + 3 x y """ 

dX X 

( C 2 )   O D E 2 ( X , Y , X ) ;  

0 This  work was supported, in part, by the United  States  Energy  Research anti  Development 
Administration  under  Contract Number E(ll-I)-3Cl70 and by the National Aeronautics and  Space 
Administration  under  Grant NSG 1323. 



the ODE package ODER LISP USK  SHARE (or ODER FASL DSK  SHARE if the user is using 
NEW10 MACSYMA) is automatically  loaded in. Or, the user  can  load it in by typing e.g. 
LOADFILE(ODER,LISP,DSK,SHARE);. For this example, after 
in,  the  answer is obtained: 

several out-of-core files are loaded 

c - COS(X) 
y = """"" 

3 
X 

We see from this example how ODE2 is  used.  Namely, it takes three  arguments: an ODE 
of first or second order (only the left hand side need  be given if the  right  hand  side is 01, the 
dependent variable, and  the independent variable.  When  successful, it returns  either an explicit 
or implicit solution for  the dependent variable. C is used to  represent the constant in the case of 
first  order equations,  and K1 and K2 the constants for second order equations. An alternative 
scheme, which has been  suggested, of generating  sequences of constants, e.g. K1, K2,  K3, ..., so 
that  different solutions might use different "constants", has not yet been implemented. If ODE2 
cannot  obtain a solution for whatever  reason, it returns FALSE, after  perhaps  printing out  an 
error message to the user. 

T h e  methods implemented for first order  equations in the  order in  which they are tested 
are:  linear, exact - perhaps requiring an integrating  factor,  homogeneous,  Bernoulli's equation, 
and, a generalized homogeneous  method  described  in  reference 1. 

For . second order: constant  coefficient,  exact,  linear  homogeneous  with non-constant 
coefficients. which can be transformed  to  constant  coefficient, the Euler or  equidimensional 
equation, the method of variation of parameters, and equations  which are  free of either  the 
independent  or of the dependent variable so that they  can  be  reduced  to  two first  order  linear 
equations to be solved  sequentially. 

In the course of solving ODES, several  variables are set purely for informational  purposes: 
METHOD denotes the method  of  solution used  e.g. LINEAR,  INTFACTOR denotes any  integrating 
factor used, ODEINDEX denotes the index for Bernoulli's  method or for  the  generalized 
homogeneous method, and YP denotes the particular  solution for  the variation of parameters 
technique. 

Since  the code  is  written in top-level MACSYMA language, it may  easily be  extended  not 
only by the  author, but by other MACSYMA users as well. Indeed, there is much room for 
extension and improvement. The basic  approach used in ODEZ'is a pattern-directed one relying 
heavily  on the MACSYMA commands EXPAND,  COEFF,  FREEOF, DERIVDEGREE, HIPOW, and 
SUBST, and on  the MACSYMA pattern  matcher DEFMATCH in  checking for linearity. T h e  basic 
power of the routine comes from MACSYMA's advanced indefinite integration package  (ref. 3) 
and, of course, the INTEGRATE command  is  heavily  used.  Finally,  basic restructurlng of 
expressions is needed throughout,  and  for this RATSIMP is used heavily. 
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In  order to  solve initial value  problems  (IVPs) and boundary value problems (BVPs), the 
routine I C 1  is available for first order equations, and IC2 and BC2 written by David  Stoutemyer 
for second order  IVPs  and  BVPs, respectively. They are used as in the following examples: 

( C 3 )   I C l ( D 2 , X = X P I , Y = O ) ;  

( D 3 )  
COS(X) + 1 

y = - "-"""- 
3 

X 

( C 4 )   ' D I F F ( Y , X , 2 )  + Y*'DIFF(Y,X)"3 = 0;  

d Y  dY 3 

2 dX 

2 

( D 4 )  --- + y (") = 0 

dX 

( C 5 )  ODEZ(X,Y,X);  
3 

Y - 6 K l Y - 6 X  
(07)  ----------------- = K 2  

3 

( C 8 )  RATSIMP(IC2(D7,X=O,Y=O,'DIFF(Y,X)=2)); 
3 

2 Y   - 3 Y + 6 X  
(09)  - """""""" = o  

3 

(C10) BC2(D7,X=O,Y=l ,X=l ,Y=3) ;  
3 

Y - 1 O Y - 6 X  
( D l 1 1  """"""-"- = - 3 

(The  jumps in the Iine-number  in the above examples are  due to "hidden" calls to SOLVE.) 

In  order to see  more  clearly  which  methods have been  implemented, a demonstration file is 
available. T o  run it, the user may do DEMO(ODER, DEMO, DSK,SHARE) ; and follow the  usual 
prescription for running DEMO files as noted in the MACSYMA Manual (ref. 4). 

The  ODE2 package was used  heavily  in the work described by Richard  Fateman  in 
reference 5, in David Stoutemyer's OPTVAR variational  optimization  package, available  via  the 
SHARE file directory and described in reference 6, and in  Stoutemyer's INTEQN integral 
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equation solver, implemented  in  MACSYMA by Richard  Bogen,  also available  via the  SHARE 
directory and described  in  reference 7. 

2. Other Symbolic ODE Solvers 

Another  program  for solving ODES which  uses a heuristic  search approach,  and is called 
EULE, is described in  references 8,9. Its author, Peter  Schmidt of the University of Bonn,  West 
Germany,  did not have access to a powerful  algebraic  manipulation  system and integration 
package such as with  MACSYMA, so he was forced  to  implement  his  own simplification routines 
and  EULE does not  solve the integrals  generated in its  solutions. EULE solves  only ODEs of the 
first  order. However, Schmidt claims a high success rate in this  area. EULE does handle a few 
more  first  order cases than  ODE2 currently  does,  e.g.  Riccati  equations, and EULE's  heuristic 
techniques may enable it  to  solve  some  "interesting"  ODEs;  however, the author believes that 
ODE2 could handle all of these cases as well  with at most a few  more  pages of MACSYMA code. 
In fact, since the simplification and transformation  capabilities of MACSYMA are so much more 
powerful  than those of EULE, in  experiments  run by the author it turned out  that  several ODES 
which  Schmidt claims  required  heuristics  and  substitutions of variables  in EULE, were actually 
solvabie in ODE2 by more  elementary  methods,  e.g.  integrating factors or the generalized 
homogeneous method  (which Is not  used by EULE as such.) ODE2 is much  more  successful than 
EULE in using methods that  are implemented-in  both.  (It is interesting to note that  ODE2's  first 
order methods, while  not  nearly as extensive  as EULE's,  only amount to 70 lines of MACSYMA 
code. Of course, ODE2 has some  second order  methods as well, and these amount to 120 lines of 
MACSYMA code. I think this data  offers an  interesting  measure of the power of MACSYMA! 
EULE which together with all of its  components  has  been  developed  only for  the  purpose of 
solving  ODEs consists of about 8500 PL/I statements  (ref. 8).) Schmidt  tested .EULE  using  two 
standard  ODE tomes. A comparable test has  not  been  done for ODE2. 

Other methods for solving ODEs using  MACSYMA have been  or are being implemented. 
Richard Bogen  wrote a routine in the MACSYMA language for solving ODEs  and systems of 
ODEs using Laplace transforms.  Its  top-level  routine  is  called DESOLVE and it is described in the 
file SHARE ; DESOLN  USAGE. It may  be loaded  into MACSYMA by 
LOADFILE(DESOLN, LISP,DSK,SHARE) ;. DESOLVE may  be  used for initial value problems as well, 
and it can  handle some  equations of greater than second order. 

Edward  Lafferty is  working  on a package  written in the  MACSYMA language for  solving 
ODEs in terms of  power  series. This work is described in reference 10. (Indeed, Ben Kuipers, the 
primary  author of ODE2, began a series  solver as well for Fateman's  course.) 

One project that yet remains  (and  which  is  urged  often by Dave Stoutemyer)  is  'to merge 
these  three ODE solvers,  using  general  analytical  techniques,  Laplace transforms, and series 
methods, respectively, into one  versatile ODE solver so that the  user can get the power of all three 
approaches in one routine. 

I wish  to thank Ellen  Lewis for her  helpful  assistance. 
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APPENDIX 

The MACSYMA code for ODE2 follows. (This code  comes from  the fiie JPG;ODER 27. 
Certain  less  important  sections  have been omitted.) 

/* The  Ordinary  Differential  Equation Solver.  
This  package  consists  primarily  of a set  of  routines  taken  from  Moses’ 
thesis  and  Boyce & DiPrima  for  solving 0.D.E.s of 1st and  2nd  order. 
The  top-level  routines  are ODEZ, IC1, IC2, and BC2. a/ 

ODE2(EQ,YOLD,X):=SUBST(YOLD,YNEU,ODE2A(SUBST(YNEU,YOLD,EQ),YNEU,X))S 

ODE2A(EQ,Y,X):=BLOCK([DE,Al,AZ,A3,A4,Q], 
INTFACTOR:  FALSE,  METHOD: ’NONE, 
IF FREEOF(’DIFF(Y,X,Z),EQ) 

THEN  IF FTEST(ODEl( EQ, Y, X ) )  THEN RETURN(()) ELSE RETURN( FALSE), 

T.HEN RETURN(FAILURE(MESl,EQ)), 
IF  DERIVDEGREE(DE: EXPAND(LHS(EQ)-RHS(EQ)),Y,X) # 2 

Al: COEFF(DE,’DIFF(Y,X,2)), . 

A2: COEFF(DE,’DIFF(Y,X)), 
A3:  COEFF(DE,Y), 
A4: DE - Al*’DIFF(Y,X,Z) - AZ*’DIFF(Y,X) - A3*Y, 
IF  PRZ(A1)  AND PRZ(A2). AND PRZ(A3) AND PRZ(A4) AND 

FTEST(HOMZ(Al,AZ,A3,Y,X)) 
THEN IF A4=0  THEN RETURN(()) ELSE RETURN(VARP(Q,-84/Al,Y,X)), 

IF FTEST(REDUCE(EQ,Y,X))  THEN RETURN(()) ELSE RETURN(FALSE))S 

ODEl(EQ,Y,X):=BLOCK([DE,F,G,Q], 
IF  DERIVDEGREE(DE: EXPAND(LHS(E0)-RHS(EQ)),Y,X) # 1 

THEN  RETURN( FAILURE( MES1,  EQ) ), 
IF LINEARZ(DE,’DIFF(Y,X)) = FALSE THEM RETURN(FAILURE(MESZ,EQ)), 
DE: SOLVEl(DE,’DIFF(Y,X)), 
IF  FTEST(SOLVELNR(DE,Y,X))  THEN RETURN(Q), 
IF  FTEST(  INTFACTOR( G, F, Y, X )  ) THEN RETURN( EXACT( WG, W F ,  Y, X) ) , 

/* LINEAR2  binds F and G */ 
IF  FTEST(SOLVEHOM(DE,Y,X))  THEN RETURN(Q), 
IF FTEST(SOLVEBERNOULLI(DE,Y,X)) THEN RETURN(Q), 
IF  FTEST(  GENHOM(  DE, Y, X) ) .THEN RETURN( Q) ELSE  RETURN 

PR2(F):=FREEOF(Y,’DIFF(Y,X),’DIFF(Y,X,Z),F)$ 

FTEST(CALL) :=IS(NOT( (Q: CALL)=FALSE) 1s 

SOLVEl(EQ,Y):= 

(FALSE))$ 
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SOLVEZ(EQ,Y):=BLOCK([DISPFLAG,EQl], 
DISPFLAG:FALSE,EQl:SOLVE(EQ,Y), 
IF NOT(LENGTH(EQl)=l)  THEN RETURN(FAILURE(MES4,EV(EQl))), 
FIRST(EV(EQ1)))S 

MATCHDECLARE([F,G],FREEOF(X))S 
DEFMATCH(  LINEAR2 , F*X+G, X)$ 

/ a  B&DiP, pp. 13-14 */ 
SOLVELNR(EQ,Y,X):=BLOCK([F,G,WI, 

IF LINEAR2( RHS( EQ)  ,Y) = FALSE  THEN RETURN(  FALSE), 
U: %E^(INTEGRATE(F,X)), 
METHOD: 'LINEAR, 
RETURN(Y=W*(INTEGRATE(G/W,X)+'C)))S 

/Ir B&DiP, pp.  34-41 */ 
INTFACTOR(M,N,Y,X):=BLOCK([Bl,B2,DMDX,DMDY,DNDX,DNDY,DD], 

DMDX: RATSIMP(DIFF(M,X)), DMDY:  RATSIMP(DIFF(M,Y)), 
DNDX: RATSIMP(DIFF(N,X)), DNDY:  RATSIMP(DIFF(N,Y)), 
IF  (DD:  DMDY-DNDX) = 0 THEN RETURN(l), 
IF  OMDX-DNDY=O  AND  DMDY+DNDX=O THEN RETURN(l/(Mn2 + N"2)), 
IF  FREEOF(Y, (Bl: RATSIMP(DD/N))) THEN RETURN(%E^(INTEGRATE(Bl,X))), 
IF FREEOF(  X, (B2 : RATSIMP( OD/M) ) )  

THEN RETURN(%E*(INTEGRATE(-B2,Y))) ELSE RETURN(FALSE))S 

EXACT(M,N,Y,X):=BLOCK([A,B] ,  
INTFACTOR: SUBST(YOLD,YNEW,Q), 
A: INTEGRATE(RATSIMP(M),X), 
B: RATSIMP(A + INTEGRATE(RATSItlP(N-DIFF(A,Y)),Y)), 
METHOD : 'EXACT, 
RETURN( B='C) )S 

/* B&DiP, pp. 43-44 */ 
SOLVEHOM(EQ,Y,X):=BLOCK(CQQ,Al,A2,A3], 

Al: RATSIMP(SUBST(X*QQ,Y,RHS(EQ))), 
IF NOT(FREEOF(X,Al)) THEN RETURN(FALSE), 
A2: INTEGRATE(l/(Al-QQ),QQ), 
A3:  SUBST(Y/X,QQ,A2), 
METHOD:.  'HOMOGENEOUS, 
RETURN(  RATSIMP( 'ClrX = XE"A3) ) )S 

a 

/at B&DiP, p. 21, problem 15 */ 
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1 SOLVEBERNOULLI(EQ,Y,X):=BLOCK([Al,A2,N], 
A l :  COEFF(EQ:  EXPAND(RHS(EQ)),Y,l), 
N: HIPOW(RATSIMP(EQ-Al*Y),Y), 
A2: COEFF(EQ,Y,N), 
I F  NOT(NUMBERP(N)) OR  N=O  OR NOT(EQ = Al+Y + A2sY"N) THEN RETURN(FALSE), 
A l :  INTEGRATE(Al,X),. 
METHOD: 'BERNOULLI,  ODEINDEX: N, 
RETURN(Y 0 XE"A1 * ( (  l-N)*INTEGRATE(AZ*XE"((N-I)*Al),X) + 'C) A (I/( I - N ) ) ) ) s -  

/* G e n e r a l i z e d   h o m o g e n e o u s   e q u a t l o n :  y0 2: y/x H(yx"n) 
R e f e r e n c e :  Moses' t h e s l s .  */ 

GENHOH(EQ,Y,X):=BLOCK([G,U,N,Al,AZ,A3], 
G: RHS(EQ)*X/Y, 
N: RATSIMP(X*DIFF(G,X)/(Y*DIFF(G,Y))), 
I F  NOT(FREEOF(X,Y,N)) THEN RETURN(FALSE), 
A l :  RATSIMP(SUBST(U/X"N,Y,G)), 
A2:  INTEGRATE(  l/(U*(N+Al)),U), 
A3: RATSIMP(SUBST(Y*XAN,U,A2)), 
METHOD: 'GENHOM, ODEINDEX: N, 
RETURN(X = 'C*XEAA3))8 

/+ Chain o f  s o l u t l o n   m e t h o d s  f o r  s e c o n d   o r d e r   l i n e a r   h o m o g e n e o u s   e q u a t l o n s  %/ 

HOM2(Al,AZ,A3,Y,X):= 
I F  FTEST(CC2(A2/Al,A3/Al,Y,X))  THEN Q ELSE 
I F  FT€ST(EXACT2(Al,A2,A3,Y,X)) THEN Q ELSE 
I F  FTEST(XCCZ(Al,A2,A3,Y,X)) THEN Q ELSE  FALSES 

/+ BLDIP,  pp. 106-112 */ 
CC21F,G,Y,X):=BLOCK([A,SIGN,RADPRODEXPAND,ALPHA], 

I F  NOT(FREEOF(X,Y,F) AND FREEOF(X,Y,G)) THEN RETURN(FALSE), 
METHOD:  'CONSTCOEFF,  RADPRODEXPAND:  F,ALSE; 
SIGN:  ASKSIGN(A:  FA2-4*G), 
I F  SIGN = ZERO  THEN RETURN(Y 3 XE"(-F*XIZ) * ('Kl + 'KZSX)), 
I F  SIGN = POS  THEN 

RETURN(Y = 'Kl*XE"((-F+SQRT(A))*X/2) + 'KZ*%EA((-F-SQRT(A))*X/2)), 
A: -A,  ALPHA: X*SQRT(A)/2, 
I F  EXPONENTIALIZE = FALSE THEN 

RETURN(  Y  %EA( -F*X/2)  ('Kl*EXP(%I*ALPHA) + 'K2*EXP( -%I*ALPHA) ) ) )S 
RETURN(Y a XEA(-F*X/2) * ('Kl*SIN(ALPHA) + 'K2*COS(ALPHA))), 

/at B&DIP, pp. 98-99, p r o b l e m   1 7  %I 
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EXACT2(AI,A2,A3,Y,X):=BLOCK([Bl], 
I F  DIFF(Al ,X,2)  - DIFF(A2,X) + A3 0 

THEN B1: %E*( -INTEGRATE( (A2 - DIFF(A l ,X) ) /A l ,  X ) )  
ELSE RETURN(FALSE), 

METHOD : ’EXACT, 
RETURN(Y +.’Kl*Bl*INTEGRATE(l/(Al*Bl),X) + ‘KZ+Bl))S 

/rl B&DiP, pp. 113-114, p r o b l e m  16 #/ 

XCC2(Al,A2,A3,Y,X):=BlOCK([D,Bl], 
I F  A3=0 THEN RETURN(FALSE), 
D: RATSIMP((Al*OIFF(A3/Al,X) + 2aA2#A3/A1)/(2*(A3/Al)A(3/2))), 
I F  FREEOF(X,Y,D) THEN 81: CC2(D,l,Y,Z) ELSE  RETURN(FALSE), 
METHOD:  ’XFORMTOCONSTCOEFF, 
RETURN(SUBST( INTEGRATE(SQRT[A3/Al),X),Z,Bl)))S 

/* B&DiP, pp.  124-127. #/ 

VARP(SOLN,G,Y,X):=BLOCK([Yl,YZ,Y3,V4,UR], 
Y1: RATSIMP(SUBST([/Kl=l,/K2=0],RHS(SOLN))), 
Y2: RATSIMP(SUBST([/Kl=O,/K2=11,RHS(SOLN))), 
WR: Yl*DPFF(YE,X) - YZ*DIFF(Yl,X), 
I F  WR=O THEN RETURN(FALSE), 
Y3:  RATSIMP(Yl*G/WR), 
Y4: RATSIMP(YZ*G/WR), 
YP: RATSIMP(YZ*INTEGRATE(Y3,X) - YhINTEGRATE(Y4,X)), 
METHOD: ’VARIATIONOFPARAMETERS, 
RETURN(Y = RHS(S0LN) + YP))S 

/* M e t h o d s  t o  r e d u c e   s e c o n d - o r d e r   e q u a t i o n s   f r e e  o f  x or  y #/ 

REDUCE(EQ,Y,X):=BLOCK([Bl,QQ], 
81: SUBST([’DIFF(Y,X)=QQ,  /DIFF(Y,X,2)=QQ],  EO), 
I F  FREEOF(Y.81) THEN RETURN(NLl(EQ,Y,X)), 
I F  FREEOF(X,Bl) THEN RETURN(NLE(EQ,Y,X))  ELSE RETURN(FALSE))S 

/* B&DiP, p.  89, p r o b l e m  1 #/ 

NLl(EQ,Y,X):=BLOCK([DE,B,Al,A2,V],  
DE: SUBST([/DIFF(Y,X)=V, ’DIFF(Y,X,2)=’DIFF(V,X)], EQ), 
I F  (B :  ODEl(DE,V,X)) = FALSE THEN RETURN(FALSE), 
d l  : SUBST(  [V=’DIFF( Y, X )  ,’C=’Kl], B ) ,  
A2:  SOLV€Z(Al,’DIFF(Y.X)), 
‘IF AZ=FALSE THEN  RETURN( FALSE), 
I F  FTEST(ODEl(AZ,Y,X)) 
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THEN (METHOD : 'FREEOFY.  RETURN(  SUBST( 'K2, 'C ;Q) ) ) ELSE RETURN( FALSE) )S 

/rl B&DiP, p.  89,  problem 2 a/ 

NL2IEQ,Y,X):=BLOCK([DE,B,Al,A2,YZ,VJ, 
DE: SUBSf(['DIFF(Y,X)=V, 'DIFF(Y,X,Z)=V*'DIFF(V,Yb), Y=YZ], EO), 
I F  (B:  ODEl(DE,V,YZ)) = FALSE THEN RETURN(FALSE1, 
A l :  SUBST([V='DIFF(Y,X),YZ=Y,'C='Kl], B ) ,  
A2:  SOLVE2(Al,'DIFF(Y,X)), 
I F  AZ=FALSE THEN  RETURN( FALSE), 
I F  FTEST(  00E1( A2, Y, X )  ) 

THEN (METHOD:  'FREEOFX, R€TURN(SUSST('K2,'C,Q))) ELSE  RETURN(FALSE))S 

ICl(SOLN,XC,YC):= 
EV(SOLN, C=RHS(SOLVEl(EV(SOLN,XC,YC),C)), RATSIMP)% 

6C2(SOLN,XA,YA,XB,YB):=BLOCK([DISPFLAG,SINGSOLVE,TEMP], 
DISPFLAG :FALSE, SINGSOLVE :TRUE, 
TEMP: MAP(LAMBDA(CZZ1,  EV(SOLN,ZZ,EVAL)), 

SOLVE([EV(SOLN,XA,YA), EV(SOLN,XB,YB)], ['Kl,'KE])), 
I F  LENGTH( TEMP)=l THEN RETURN(FIRST(TEMP))  ELSE RETURN(  TEMP) )% 

fC2(SOLN,XA,YA,DYA):=BLOCK([DISPFLAG,SINGSOLVE,TEMP], 
DISPFLAG :FALSE,  SINGSOLVE :TRUE, 

TEMP: MAP(LAMBDA([ZZ],  EV(SOLN,ZZ,EVAL)), 
TEMP: LHS(S0LN) - RHS(SOLN), 

SOLVE([EV(SOLN,XA,YA), SUBST([DYA,XA], 
LHS(DYA)=-SUBST(O,LHS(DYA),DIFF(TEMP,LHS(XA))) 

/DIFF(TEMP,LHS(YA)))], 
C'Kl,'K21)), 

I F  LENGTH(TEMP)=l THEN RETURN(FIRST(TEMP))  ELSE  RETURN(TEMP))% 

FAILURE(MES,EQ):=(LDISP(SUBST(YOLD,YNEW,EQ)), DISP(MES),  FALSE)% 

M E S l  : "NOT A PROPER DIFFERENTIAL EQUATION"% 
MES2: "FIRST ORDER EQUATION NOT LINEAR I N  Y'"S 
MES3: "CANNOT DETERMINE SIGN OF  CONSTANT  EXPRESSION'S 
HES4: "MULTIPLE SOLUTIONS TO FIRST  PARTIAL PROBLEM"% 
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2 

A PROGRAM FOR THE SOLUTION OF INTEGRAL EQUATIONS* 

.Richard A. Bogen 
Unive r s i ty   o f  H a w a i i  

SUMMARY 

This  paper i s  in t ended   t o   supp lemen t   an   a r t i c l e  by  Stoutemyer  (ref.  1) 
which  describes a program f o r   t h e   s o l u t i o n  o f  one  dimensional  integral   equa- 
t i o n s .  The program, f i r s t   w r i t t e n   i n  REDUCE ( r e f .  2) has  been  implemented 
i n  MACSYMA with  several   addi t ional   techniques  which  are   explained  herein.  
By u t i l i z i n g  many methods,   the  program  can  obtain  closed-form  and  series 
s o l u t i o n s   t o  a l a r g e   c l a s s  o f  l i n e a r  and non-linear  problems. One o f  t h e  
techniques   deve loped ,   reduct ion   to  a d i f f e ren t i a l   equa t ion ,   has   no t   p re -  
v i o u s l y   a p p e a r e d   i n   t h e   ' l i t e r a t u r e   i n   t h e   g e n e r a l  form  described i n  this 
paper . 

INTRODUCTION 

The interface  between a person and a computer  system may be considered 
to   t ake   p l ace   on  many p o s s i b l e   " l e v e l s " ,  as d i s t ingu i shed  by t h e   f a c i l i t i e s  
most   of ten  used.   In  a symbolic  mathematics  system,  e.g. MACSYMA, t h e r e   a r e  
system  designers who work  mainly i n  LISP o f f e r i n g  an in i t i a l  s e t   o f  MACSYMA 
func t ions .  The a p p l i c a t i o n  programmers i n   t u r n   u s e   t h e s e   f u n c t i o n s   t o  con- 
s t r u c t   o t h e r s  which   a re   usefu l   to   the   casua l   users  who need t o   s o l v e  some 
par t icu lar   p roblem by invoking a sequence   of   bu i l t - in   func t ions .  The ease 
wi th   which   each   leve l   o f .user   can   accompl ish   h i s   t ask  i s  dependent  on how 
comple te   and   wel l -des igned   the   fac i l i t i es   a re  a t  a l l  lower   l eve ls .   Idea l ly  
there   should  be no need   for  a u s e r  a t  one l e v e l   t o  program a t  a lower  level .  
The arguments f o r   u s i n g  a pre-wr i t ten   p rogram  ra ther   than   wr i t ing  one  from 
s c r a t c h   a r e   a s   s t r o n g  as those   fo r   u s ing  a  computer i n   t h e   f i r s t   p l a c e  as 
opposed t o  hand c a l c u l a t i o n ;   i . e .  it saves  t ime and af fords   l ess   chance  o f  
making  an  error. 

equat ions.  MACSyMll a l r eady   con ta ins   rou t ines  for so lv ing   var ious   k inds   o f  
a lgeb ra i c  and   o rd ina ry   d i f f e ren t i a l   equa t ions .   In   r e f e rence  1 ,  Stoutemyer 
desc r ibes  a program  he  wrote i n   t h e  REDUCE symbolic  mathematics  language 
( r e f .  2 )  for so lv ing   i n t eg ra l   equa t ions .   In   o rde r   t o  make t h i s   f a c i l i t y  
a v a i l a b l e   t o   u s e r s   o f  MACSYMA, an  implementation was  begun i n  July 1976.. 

Some o f   t he   mos t   u se fu l   p rog rams   a r e   t hose   fo r   so lv ing   ce r t a in   t ypes   o f  

" -~ - " - ." 

- *This work was supporte-d by the  Nat ional   Science  Foundat ion  under  
Grant No. MC575 - 22983. 
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Since comBleting  this,  we  have  discovered  several new techniques and these 
have  been  added  to  the  program.  This  paper  is  intended  to  supplement  the 
work reported in reference 1 ,  so the  emphasis  here is on  the  new  techniques 
that  are  not  described  there.  Following  a  discussion of these  techniques an 
outline of the program  is  given,  some  limitations  are  mentioned,  and  a  com- 
parison  is  made  with  the  earlier REDUCE version.  Finally  some  planned  future 
improvements  are  described. A demonstration  is  presented in the  appendix. 

TECHNIQUES 

The  types of integral  equations  considered  by  the  program  are  those 
reducible  to  the  "quasi  second-kind" : 

and  thel'first-kind": 

where,  for  this  paper,  p(x)  is  the unknown function, x is  the  independent 
variable,  and u is  the  integration  variable. 

certain  second-kind  equations,  two f u r  certain  first-kind  equations,  and 
two  usable for both  types of equations.  These  are  summarized  in  table I. 
Since  implementing  these in MACSYMA, a  further  search of the  literature 
turned  up  two  additional  first-kind  techniques. 

integrands of the form: 

The  original REDUCE program  contains  five  techniques  applicable  to 

Kanwal  (ref. 3) gives  a  generalization  of  Abel's  method  for  singular 

The  solution  is: 

O t k t l  

sin(krr) % lx h' (u)f(u)du P(X> = where h' denotes - dh 
(h (x )  - h(u))l-k du 
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Cochran ( r e f .  4 )  g ives   a   me thod   fo r   l i nea r   f i xed - l imi t   f i r s t -k ind   equa -  
t ions  with  f inite-rank  integrands.   These  have  the  form: 

L e t t i n g   t h e   c o e f f i c i e n t   o f   q . ( x )   i n   f ( x )  be  c  and  assuming p ( u )   t o   b e :  
J j 

the  problem i s  reduced t o  t h a t  of  so lv ing   t he  n  s imultaneous  l inear   equat ions:  

j = 1 , 2 , .  . . , n  

f o r   t h e  %. This   gives  one so lu t ion .  The r e s u l t  of  adding t o  t h i s   l i n e a r  
combinatlons  of  functions  orthogonal t o  a l l  o f  t h e   r k ( u )   g i v e s   a d d i t i o n a l  
s o l u t i o n s .  

made avai lable .   Stoutemyer   proposed  a   general izat ion o f  a  method i n  Goursat 
( r e f .  5) for   t ransforming  any v a r i a b l e - l i m i t   f i n i t e - r a n k   i n t e g r a l   e q u a t i o n  
i n t o  an o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n .  It i s  appl icable  t o  b o t h   f i r s t - k i n d  
and  second-kind  equations.   There  are  numerous  methods  for  solving  differen- 
t i a l   e q u a t i o n s  and MACSYMA already  possesses  routines  implementing some of 
these   methods .   Consequent ly ,   th i s   reduct ion   s ign i f icant ly   en la rges   the   c lass  
of i n t eg ra l   equa t ions  f o r  which  exact  solutions  can  be  obtained. The method 
i s  remarkably  simple. We a re   g iven   an   i n t eg ra l   equa t ion  o f  t h e  form: 

I n   a d d i t i o n  t o  t he  two techniques  mentioned  thus  far,  one other   has   been 

Equation ( 1 )  t oge the r   w i th  i t s  f i r s t  n-I d e r i v a t i v e s   w i t h   r e s p e c t   t o  x  gives 
a s e t  o f   n   s imul taneous   equat ions   l inear   in   the   n  unknowns R . ( x ) ,   j = 1 , 2 ,  ..., n. 
Solv ing   these   equat ions   and   subs t i tu t ing   for   the  R . ( x )   i n   t h d  nth d e r i v a t i v e  
of   equat ion (1 ) gives   an   o rd inary   d i f fe ren t ia l   equdt ion   for   p (x)   which  i s  of 
order  n-I or n  dependipg  on  whether  the l e f t   s i d e   o f   e q u a t i o n  ( 1 )  was f ( x ) ,  
f o r   f i r s t - k i n d ,  or p ( x )  - f ( x ) ,   f o r   s e c o n d - k i n d .   I n i t i a l   c o n d i t i o n s   c a n   b e  
ob ta ined   by   s e t t i ng   x=a   i n   equa t ion  6') and i t s  d e r i v a t i v e s ,   t h e n   s o l v i n g  
success ive ly  for p ( a ) ,   p ' ( a ) ,  ... , p   ( a ) ,  where m i s  n-2 or n-I  as  above. 

13 



We  illustrate  this  technique  with a non-trivial  example.  Consider: 

-9x6 5x x2 2x 
20 + 6 - '4 - - - x%$ (x) + xR2(x) 15 - 

Taki'ng  two  successive  derivatives  gives: 

4 2 
R (x) = -9x + lox - 1 1 2 

4 - 2x P(X). 

Substituting  this  into  equation (4) and  re-arranging  terms  results  in: 

2x p'(x) + 5 p(x) = -9 x2 + 5 

whose  solution  is p(x) = ex -'I2 + 1 - x . To solve  for c we  let x=l in 
equation (3) and,  noting  that R (l)=R (1)=0, find  that p(l)=O,  which  implies 
c=o. 

2 

1 2 

EXAMINATION OF THE PROGRAM 

The  program  is  invoked by the  calling  sequence: 

IE&N(expression, unknown, technique,  napprox, guess). 

The  first  argument  is  the  integral  equation.  Trailing  arguments  may  be 
omitted, in which  case  they will assume  default  values  which  are: 

unknown - defaults  to  the  first  function  encduntered in an 
integrand  which  is unknown to  MACSYMA. 
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technique - d e f a u l t s  t o  FIRST which  causes a l l   a p p l i c a b l e  
t e c h n i q u e s   t o   b e   t r i e d   u n t i l  one  succeeds  (see  below). 

napprox - d e f a u l t s   t o  1 and   represents   the  maximum number of 
i t e r a t i o n s  or a d j u s t a b l e   c o l l o c a t i o n   p a r a m e t e r s   f o r  an 
approximate  solut ion.  

guess - d e f a u l t s   t o  NONE and r e p r e s e n t s   t h e   i n i t i a l   g u e s s  f o r  
NEUMANN or FIRSTKINDSERIES t echn iques .   I f  NONE, t h e  in i t ia l  
guess will b e   t h e   v a l u e   o b t a i n e d   b y   s e t t i n g   a l l   i n t e g r a l s   i n  
t he   expres s ion   t o   ze ro .  

The method  used  by  the  program is  t o  f a c t o r   t h e   f i r s t  argument t o  IEQN and 
f o r   e a c h   f a c t o r   c o n t a i n i n g   a n   i n t e g r a l   t h e   e q u a t i o n   f f f a c t o r  = 0" i s  
a l g e b r a i c a l l y   s o l v e d   f o r   t h e  unknown i n  te rms   of   the   o ther   par t s   o f   the  
f a c t o r .   I f  a so lu t ion   r e su l t s ,   t hen   f l s econd-k ind f f   t echn iques   a r e   t r i ed .  
Otherwise  the  program  t r ies   "f i rs t -kind"  techniques.   These  techniques  are  
l i s t e d  below i n   o u t l i n e  form giving  conditions  under  which  they  are  appli-  
cable.  (The name of  the  technique,  which  can  be  used  as  the  third  argument 
of IF,&N, i s  c a p i t a l i z e d . )  

Second-Kind  Techniques 
(Exac t )  

Constant limits of   integrat ion  (Fredholm  type)  

A constant  lower l i m i t  and  x  as  the  upper l i m i t  (Vo l t e r r a   t ype )  
F in i te - rank   in tegrand  - FINITEFLANK 

I n t e g r a n d   l i n e a r   i n   p ( u )  

F in i te - rank   in tegrand  - DIFFEQN (Conversion t o  ODE) 
Convolu t ion   in tegra l  - TRANSFORM (Laplace  transform) 

(Approximate ) 

Arb i t r a ry  limits o f   i n t e g r a t i o n  
I n t e g r a n d   l i n e a r   i n   p ( u )  - FREDSERIES 
T h e r e   e x i s t s   a   p o i n t   a t  which the  limits are   equal  - TAYLOR 
NEUMANN 
COLLOCATE 

First-Kind  Techniques 

(Exact) Constant limits o f   i n t e g r a t i o n  
I n t e g r a n d   l i n e a r   i n   p ( u )  

Fini te-rank  integrands - FINITERANK 
A constant  lower limit and  x as   the   upper  l i m i t  

I n t e g r a n d   l i n e a r   i n   p ( u )  
Abel ' s   equa t ion  - B E L  
Convolu t ion   in tegra l  - TRANSFORM 

Fini te-rank  integrand - DIFFEQN 

(Approximate ) 
Arb i t r a ry  limits o f   i n t e g r a t i o n  

FIRSTKINDSERIES 
COLLOCATE 
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It is  difficult  to  make an accurate  comparison  between the execution 
times  of  the MACSYMA and REDUCE versions  for  several  reasons.  The PDP-10 
processor on which MACSYMA runs  is  significantly  faster  and  has  more  memory 
space  resulting in fewer'garbage collections. A l s o  the REDUCE versions  of 
the SOLVE, INTEGRATE, and LAPLACE routines  were  interpreted  rather  than 
compiled  and REDUCE includes  display  generation  times in its  figures. 
Consequently,  the  execution  times  for  the  examples  given in reference 1 were 
around 10 times the figures  obtained when these  examples  were run on MACSYMA. 

The  text  of  the  program  was  approximately 30% smaller  on MACSYMA due  to 
the  availability  of  more  built-in  functions.  Naturally,  the  MACSYMA  version 
could  handle  more  cases  because  of more comprehensive  integration,  equation- 
solving,  and  transform  routines. 

At  present,  the  major  difficulty in using  the  integral  equation  solver 
is  the  frequent  exhaustion  of  available  storage  due  to  the  loading of files 
containing  many  auxiliary  fun?tions  which  are  not  part of the  initial  system. 
Indeed,  a  single  problem  may  cause  functions in a  dozen  such  files  to  be 
referenced.  Once  loaded,  the  space  they  occupy  cannot  be  re-used  even if they 
are no longer  needed. In this  situation,  the  user  can  save  relevant  values, 
load  a  fresh MACSYMA, and  continue  where  he  left  off. If, however,  all  the 
space  was  consumed in a  single  call  to IEQN, because of attempting  several 
solution  techniques,  then  the  user  should  try  separate  calls  for  each  one. 
It is 'mlikely that  this  approach  will  cause  difficulty  since  the  principal 
limitations of particular  techniques  arise  not  from  space or time  constraints, 
but  from  the  inability of some  functions  to  handle  certain  kinds  of  arguments. 
In particular, f o r  linear  integral  equations  the  trouble  spots  are  the  inverse 
Laplace  transform,  which  is  limited  to  rational  functions,  and  the  ordinary 
differential  equation  solver  which  is  limited  to  first  and  second  order  equa- 
tions.  Thus  the  corresponding  cases  of  convolution  equations  containing  non- 
polynomial  functions  and of finite-rank  integrals  with rank greater  than  two 
can  only  be  handled  by  the  approximate  methods. For non-linear  finite-rank 
equations,  solutions can be  found  only if corresponding  non-linear  differen- 
tial  equations or algebraic  equations  can  be  solved. 

FUTURE TMPROVEMENTS 

Aside  from  alleviating  the  problems  mentioned in the  previous  section, 
there  are  a  number  of  ways in which  the progrm could  be  extended. Eigen-. 
analysis  as  well  as  testing  existence  and  uniqueness  theorems  could  auto- 
matically  provide  useful  information  even  when  no  solution  can  be  determined. 
Integral  transforms  such  as  those of FGurier  and  Mellin  and  the  Wiener-Hopf 
technique  would  enable  the  program  to  be  used  for  some  important  integrals 
with  infinite  limits.  Finally,  the  program  could  be  made  to  handle  systems 
of  integral  equations  thus  greatly  extending  its  applicability.  Incorpora- 
tion  of  these  techniques  is  under  current  investigation. 
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APPENDIX - Illustrative  Examples 

(C1) 'INTEGRA!T'E(P(U)/(X**2-U**2)**(1/3),U,O,X)=X; 

(c2)  IEW(DI )sS 
DEFAULT 2ND JRG , THE UNKNOWN : P ( X  ) 
DEFAULT 3FXl ARG, TECHNIQVE: FIRST 
DEFAULT 4TH AFG, NUMBER OF ITEFLATIONS OR COLLOCATION PAF1AMETERS: 1 
DEFAULT  5TH ARG, INITIAL GUESS FOR NElJMANN OR FIRSTKINDSERTES: NONE 

2 SQRT(%PI) GAMMA(-) 
6 

1 

x + c  
[ P(X) = -----, DIFFEQJ, , X = 1, P ( X )  = 1 ] 1 r 

[ 3 X ,  FREDSERIES, 2 
26 x I 
-9" , NEUMANN, 25  APPROXIMATE 1 
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II II I I 

TABLE I - ‘SUMMARY OF TECHNIQUES PREVIOUSLY REPORTED ON ( i n   r e f .  1 ) 

- Name Form t o  which app l i cab le  Method 

FINITERANK 2nd-kind,  f ixed limits, Given p ( x ) = ” e x p r t l ,   d i s t r i b u t e  

then   r ep lace   each   i n t eg ra l   o f  
q . ( x ) r   . ( u , p ( u ) )  by c . q . ( x )  where 

c i s  an a r b i t r a r y   p a m .  t o  be 

determined.   This   gives   p(x)=g(x) .  
Then so lve   t he  n  simul.   l in.   eqns.  

f i n i t e r a n k   i n t e g r a n d s .   i n t e g r a t i o n   i n   e x p r   o v e r   a l l  Sums, 

J J J J  

j 

b 
J 

r . ( u , g ( u ) )  du 

f o r   t h e  c j = l ,  ... ,n. 
j ’  

1st o r  2nd-kind, r a n k - I ,  Special   cases   of   the  DIFFEQN 
v a r i a b l e  limits. method f o r  a rank-I i n t e g r a l .  

TRANSFORM 1st o r  2nd-kind,  convolu- Take Laplace   t rans . ,   so lve   for  
t i o n ,   v a r i a b l e  l h i t s .  t r a n s .   o f   p ( x ) ,   t h e n   i n v e r t .  

FREDSERIES 2nd-k ind ,   l inear .   Given   p(x)=f   (x)+/K(x ,u)p(u)du ,  

t h e   s o l u t i o n  i s  p ( x ) = f ( x ) +  

G(x ,u ) f (u )du ,  where  G(x,u) i s  

TAYLOR 

the   quot ien t   o f  two i n f i n i t e  
s e r i e s  whose terms  are  found 
from recu r rence   r e l a t ions .  

2nd-kind,   var iable  l i m i t .  Given p ( x ) = f ( x ) +   w ( x , u , p ( u ) ) d u  E:) 
f i n d  a po in t  c where a ( c ) = b ( c ) = c .  
Expand p ( x ) - f ( x )   i n   T a y l o r   s e r i e s  
about x=c by d i f f e r e n t i a t i o n .  

mu”N 2nd- kind. 
FIRSTKINDSERIES 1 s t -k ind .  

COLLOCATE any 

D i f f e r e n t i a t i o n   1 s t - k i n d ,   v a r .  limit. 

Make a   guess   fo r   p (x )   and   i t e r a t e  
us ing   or ig ina l   equa t ion .  

Assume a p a r t i c u l a r  form f a r   p ( x )  
involv ing   n   a rb i t ra ry   parameters .  
S u b s t i t u t e   i n   e q u a t i o n  and evalu- 
a t e   a t  n  values  of  x t o  g e t  a s e t  
of   s imul .   eqns.   to   solve  for   pams.  

D i f f e ren t i a t e   g iven   equa t ion  some 
number o f   t i m e s   t o   s e e   i f  a 2nd- 
k ind   equa t i an   r e su l t s .  
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3 
SYRBOLI C LAPLACE TRANSFORMS OF SPEC1 AL FUNCTIONS * 

Yann i s Avgoue t i s 
Laboratory   for  Computer Science  (formerly  Project MAC) 

~assachuee t ta   I ns t i t u te   o f  Technology 

ABSTRACT 

A MACSYMA implementation  of  the  Laplace  Transform fo r  Specia l   Funct ions 
i e  described. The Generalized  Hypergeometric  Functions  are  used  as a b a s i s   f o r  
the  representat ion  o f   approx imate ly   f i f ty   Specia l   Funct ions.   Only  a r e l a t i v e l y  
m a l l  number of   formulas  that   general ly  involve  General ized  Hypergeometr ic 
Func t i ons   a re   u t i l i zed   f o r   t he   i n teg ra t i on  stage. 

A sample o f   ac tua l  examples  and t h e i r   t i m i n g   i s   p r o v i d e d   a t   t h e   e n d   o f  
the paper. 

I I NTRODUCT I ON 

We descr ibe a design  for  the  Laplace  Transform  of  Special  Functions 
which has  been  implemented in  MACSYMA (ref.  1). I n  our  design we have  employed 
a p p r o x i m a t e l y   a l l   o f   t h e   f i f t y   u e l l  knoun Special  Functions,  knoun  also  as  the 
Functions  of  Mathematical  Physics  (ref.  21, ( ref .  3) .  I n  designing  the  Laplace 
Transform  capabi I i t y ,  we have  considered i t  as p a r t   o f   t h e   " d e f i n i t e  
i n teg ra t i on "   p rob lem and our  design i s  planned t o  cover a s i g n i f i c a n t   p a r t   o f  
d e f i n i t e   i n t e g r a t i o n   t h r o u g h   i n t e r a c t i o n   a t  some la ter   t ime with t h e   o t h e r  
I n t e g r a l  Transforme,  such  as  Hankel, Y, K, Fourier, Me1 tin, e t c  . 

One faces two main d i f f i c u l t i e s  when deal ing with t h i s  problem. F i r s t ,  
d e f i n i t e   i n t e g r a t i o n   g e n e r a l l y   i s  a recursively  unsolvable  problem  (ref .  4). 
Second, the  area  of   Special   Funct ions  is  wel l  known f o r   i t s   " c h a o t i c   s t a t e "  
( r e f .  5 ) .  

Wang and Bogen have a lso worked  on the  problem o f   d e f i n i t e   i n t e g r a t i o n  
( r e f .  6 )  and  Laplace  Transforma  (ref. 71. However, they  both were i n t e r e s t e d  

rol This work was supported, in part ,  by ERDA contract  Number E(11-1)-3878 and 
NASA Grant NSG 1323. 
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, .  

nainlu in Elementarg  Functions. To the  beet 07 our  knouledge  there  has  been no 
o t h e r  system  designed  for ang o f   the   in tegra l   t rans forms  o r   de f in i te   in tegra t inn  
-for the  Speci  a1 Functions. 

In  our  design ue take advantage o f   the   fac t   tha t  most o f   t he   Spec ia l  
Funct ions can be  considered as p8rticular instances  of   the  General  i zed 
Hypergeometr ic  Funct ion and therefore can  be integrated,  using  the  General ized 
Hypergeometric  Function  representation, u i th a tab le   cons i s t i ng   o f   ve ry   f eu  
formulas. A natura l  consequence Is that the   resu l t   o f   the   in tegra t ion   p rocedure  
involves  Generalized  Hypergeometric  Functions. Hence an a d d i t i o n a l   s t e p   i e  
required  to  reduce  the  General ized  Hypergeometric  Functions  into  Special  or/and 
Elementary  Functions. 

I 1  THE GENERAL IDEA 

we begin uith the  def in i t ions  of   the  General ized  Hypergeometr ic 
Func t ions   ( re f .  81, . ( ref .  21, and the  Laplace  Transforms  (ref. 91, ( r e f .  18). 

D e f i n i t i o n  1. We cal l   the  General ized  Hypergeometric  Function, 
o therw ise  known as  the  General  ized Gauss function,  the  series 

pFqtal,az ,..~,ap:b~,b~,....bq:zl (1 1 

inf (al In(a2In .. (ap),, zn 

n-0 (bl )  ,,(b21n . . . (bqIn n! 
.,E """"""""""""""" 

where a l ,  a2,.*., ap and b l ,  b2,...,bq are complex parameters, z i s  a  complex 
v a r i a b l e .  we a1 80 denote  the above ser ies a8 pFq[al,a2,. . . ,ap: b l ,  b2,. . . , bq: zl . 

or pFqt(a)z (b ) )z l   o r   s imp ly  pFq(zl. 

The s e r i e s  pFq(z)  sa. t is f ies  the  d i f ferent ia l   equat ion 

d d  d  d 

dz  dz dz  dz 
( Z  --(Z -- + bl-1) ( Z  -- + b2 - 1) 0 .  ( Z  -- + bq - 1) 

d . d  d 

dz  dz dz 
- z(i -- + a l ) ( z  -- + a21 ... (z -- + apl) - 8 

D e f i n i t i o n  2. We c a l l  the  Laplace  Transform  of  a  real  or  complex 

s,"f (t)e'Pt dt  (3) 

f u n c t i o n   f ( t 1 ,   d e f i n e d   f o r  a l l  r e a l  nonnegative  values  of t, the   i n teg ra l  
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I f  I t  e x i s t s   f o r  80.e values  of  the complex var iab le  p. I t  i s   w r i t t e n   L C f ( t 1 1  
and determines  a  function  F(p);  thus 

The keg ideas in our  derign,  depicted in f i gu re  1, are  

Stage 1. Represent  the  Special  Functions, i f  possible, a5 p a r t i c u l a r  
instances  o f   the  Genera l  I r e d  Hypergeometr Ic  Function. 

Stage 2. Prov ide   a   fa i r l y   genera l   fo rmula   to   in tegra te   the   resu l ts  of 
r t a g e  1. 

Stage 3. Take the  resul t   of   stage 2 i nvo lv ing   a   Genera l   i ted  
Hgpergeometr i c  Function, and reduce i t to  an elementary  or/and  Spec i a I 
F u n c t i o n  (81. 

Hence, our  design  al ternates between two levels: 

Level  1. The axpression  involves  Special  or/and  Elementary  Functions. 

Level  2. The expression  involves  Generalized  Hypergeometric  Functions. 

Ue next  proceed ,ui th a  simple i I l us t ra t ion   o f   the  above scheme. 

I I l u s t r a t i o n  

Given  Input 

uhere 13(.) i s  a  modif ied Bessel f unc t i on   o f   t he   f i r s t   k i nd   ( re f .  111, ( r e f .  
121, t he   f o l   l ow ing  w i  I I take  place in each of  the  three  stages: 

Stage 1. 

Because 

Becauae 



Stage 2. 

I n  t h i s  etage ue in tegrate by ueing the fo l louing  formula (ref. 13) 

~mts-lmFnIal, ..., a m : r ~ , . ~ ~ , r n : ~ I t ~ k ~ e ~ ~ t   d t  (10) 

s s+l S+k-l k l  

k k  k k 
= r (s) p-sm+kFn (al,. . , a,,,, -, ---, . . . , -----e , rl, r2,. . . , rn: ( - - I  k~ 

u h i c h   i s   v a l i d   f o r  Re(s) > 0 ,  m+k e ,n+l, uhere k,m,n are  integers. 

Thus (9) becomes 

,312 
-- 1F1 t 1: 4: alp1 
6P 

(11) 

Staae 3. 

A t  stage 3, ue apply  to (11) the  fo l lou ing "Kummer's t rans format ion"  
( r e f .  2) 

and (11) reduces  to 

We recognize  that   the ser ies in (13) i s  an instance  of   an  Incomplete 
Gamma func t i on   ( re f .  21, because 

1F11 a: a+l: -x1 = ax'a 7 (a,x) (14 )  

Therefore, (14) f i n a l  l y  becomes 
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I 1 1  THE GENERALIZED HYPERGEOMETRIC FUNCTION AND 

THE FUNCTIONS OF  MATHEMATICAL PHYSICS 

As we have a lready ment i oned, ue have deal t ui th around f i f t y  Spec i a I 
Funct ion8 end our  goal l a  t o   i n te rp re t  them as p a r t i c u l a r   i n s t a n c e s   o f   t h e  
Genera I i zed Hypergeome tr I c Func t i on. 

We have  divided  the  set  of  the  Special  Functions  into two major  types. 
The f i r s t  type  includes  al l   Special   Funct ions  that   are  d i rect ly  t ransformed 
through some r e l a t i o n   i n t o  a Generalized  Hypergeometric  Function,  and  the  second 
type  inc ludes  those  funct ions  that   are expressed in terms o f  other   Spec ia l  
Func t ions  and u l t i m a t e l y  are expressed in terms o f   Spec ia l   Func t ions   o f   the  
f i r s t  type.  This i e  the  major  object ive  of   the  f i rst   stage and i t  has  been 
in f luenced  by   the  tendency t o   u t i l i z e  and manipulate  as few Specia l   Funct ions  as 
i s necessary. 

For  example, the  Bessel  function  of  the f i r s t  k ind   Jv (z )   be longs   to   the  
f i r s t  type  and is   automat ica l ly   t ransformed  in to  a General ized  Hypergeometric 
F u n c t i o n   t h r o u g h   r e l a t i o n  ( 8 ) .  

The Hankel   funct ion  o f   the  f i rs t   k ind,  H,,~(z), i s  expressed i n i t i a l l y  
as a sum o f  a f i r s t  and  second k i n d   o f  Bessel functions  as i t  i s  shown in  (16) 

HV,1(z) - J,(z)+iY,(z) (16) 

H e r e   J v ( z )   i s  a f u n c t i o n   o f   t h e   f i r s t  type, wh i l e  Y,(z), a Besse l   func t ion   o f  
t h e  second  kind, i s  not. Yv(z) i s  transformed in terms o f  J,(z) as  long as v 
i s  not   an  in teger   through  the  re la t ion 

Y,,(z) - (cos(v pi)J,(z) - J-,(z)) csc(v p i )  (17) 

Thus we have ul  t imate ly  expressed Hv,1(z1 i n  terms o f   t h e   f i r s t   t y p e   f u n c t i o n  
J,(z), which in turn can r e a d i l y  be transformed i n t o  a General   ized 
Hypergeometric  Function. The case in which v i s an integer, Y, (z) i s considered 
separa   t e  I y. 

I n  a s i m i l a r  way  we have  considered  products  of  Special  Functions which 
can  be  expressed  as a single  Generalized  Hypergeometric  Function.  Thus  the 
p r o d u c t   o f  two  Bessel  functions "J,(z)*J,,,(z)" i s  a p roduc t   be long ing   to   the  
f i r a t   t y p e  and i s  transformed  into a Generalized  Hypergeometric  Function  through 
t h e   r e l a t i o n s  ( 8 )  and (18) 

t r: zlgF1 t 9; zl - 2F3 t r/2+e/2, r/2+e/2-1/2; r, s, r+s-1; 421 (18) 

On the   o the r  hand, the  product Iv(z)M,,,(z) ,where Iv (z ) ,  K,(d a r e   m o d i f i e d  
B e s s e l   f u n c t i o n 8   o f   t h e   f i r s t  and  second k ind,   respect ive ly ,   be longs  to   the 
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sscond  type  and i s   u l t ima te l y   exp ress ib le  in term8 o f   f u n c t i o n s   o f   t h e  f i r s t  
type;for noninteger  values  of  the  index m. 

I V  LAPLACE TRANSFORMS 

A design  for   the  Laplace  Transform  algor i thm  should  incorporate  two 
major components: the  in tegrat ion process, and the  di f ferent  Laplace  Transforms 
proper t i 8s. 

we decided  to  form a table which contains  as  feu  formulas  as  passible. 
This s t ra tegy  has  the  fo l lowing consequences: 

1. The overa l l   des ign o f  the system becomes a lgor i thmic  in the  sense 
t h a t  the system  works  determinist ical ly and  knows  what i t  can r e a l l y  do and what 
i t  cannot,  and  does  not  waste t ime by t r y i n g   d i f f e r e n t  approaches. 

2. The main  burden and d i f f i c u l t y   o f   t h e  problem s h i f t s  from  stage 2 t o  
s tage 1 and  especial ly stage 3, uhere we have to  reduce  the  Genera 1 i zed 
Hypergeometric  Functions  to some Elementary  or/and  Special  Function(s1. 

A's f a r  a8 the  Laplace Transforms propert ies  are  concerned,  our  general 
p o l l c y   c o n s i s t s   o f   a p p l y i n g  them in stage 2, in the Generalized  Hypergeometric 
Func t i on   l eve l .  Hence, stage 2 can be divided  into  tuo  substages. 

Substage 2.1 U t i l i z e  the  Laplace  Transforms  properties. 

Substage 2.2 Integrate.  

Th is   po l i cy  changes only i n  cases where such a postponment o f   t h e  
a p p l i c a t i o n   o f   t h e  Lapla.ce  Transforms proper t ies u n t i l  stage 2, causes 
i r r e p a r a b l e  damage and f a i l u r e  i n  our scheme [ f i g u r e  1). Therefore  the  Laplace 
Transforms  propert ies have been considered in two types. P r o p e r t i e s   o f   ' t h e  
f i r s t   t y p e  can  be  applied in substage 2.1, independently o f  what k i n d   o f   S p e c i a l  
Function(s1  that  the  input  expression  contains. Thus, f o r  example, a l l   t h e   w e l l  
known proper t ies ,  such  as  the  "scale  property"  (ref. 10) 

Lte-atf (t1l - F(p+a) (191 
b e l o n g   t o   t h e   f i r s t  type. 

P roper t i es   o f   t he  second type  cannot  be app l i ed   a f te r   s tage  1 f o r  
cer ta in   Spec ia l   Func t ions  and our scheme i s  unable  to  proceed  successful ly  to 
stages  tuo  and  three.  For example, the  property 

L [ f  (asinht) ]  - ~ J p ( a u l g ( u l  du (28) 

26 

. . . .  . 



i on  where 'Q(p) - L t f  (til, cannot  be  applied  after  stage 1, for  the  Bessel funct 
J0, as, in, f o r  example, 

Jg(asinht1 8-p' (21 1 

s ince   a f te r   t he   comp le t i on   o f   t he   f i r s t  stage ue get 

a2 
1; - -- sinh2tle-Pt 

4 

,Expression (22) cannot  be  integrated  since  our  table does no t   con ta in  any 
formulas with such  functional arguments wh i l e  i t  i s  t oo   l a te   t o   app ly   p roper t y  
(28) .  

The above  msnt ioned example could be solved  by two recurs ive   ca t  1 s t o  
our  scheme ( f i g u r e  1). F i r s t ,  by c a l l i n g  the scheme as  descr ibed  for   the 
Lap I ace  Transforms, and second by cal  I ing  the same  scheme in  uhi ch  the  Lap I ace 
Transforms  propert ies and In tegra t ion  formulas have been subs t i t u ted  with Hankel 
Transforms  propert ies and In tegra t ion  formulas ( re f .  9).  

On a f i r s t  examination, a program that can take  the  Laplace  Transforms 
o f   approx imate ly   f i f t y   Spec ia l   Func t ions  would imply  that   qui te a b i g  number o f  
formulas  would be  necessary t o  be incorporated in the table  look-up  .of   our 
second  stage. I t  turns  out  that  relat ively  very  feu  formulas  are needed. Thus, 
formula (16) has been appl   icable  to a large number of   Specia l   Funct ions  ( re f .  
141, ( re f .  21, ( re f .  31, namely the Bessel  Functions  of  the f i r s t  and  second 
kind, both  Modif ied  Bessel  Functions,  the two kinds o f  Hankel   Funct ions,   a lso 
the  St ruve  funct ions,   the Lommel functions, and the Ke lv in   func t ions ,   the  
Whi t taker ,   the   e r ro r  and both  Incomplete Gamma functions,  for  almost a l l   t h e  
values o f   t h e i r   i n d i c e s  and for   l inear  and quadratic  functions  of  the  argument. 
Furthermore, in cooperat ion with general  formulas  of  other  Integral  Transforms, 
formula (10) cont r ibu tes  in in tegra t ing  composite  functions I i ke   JB(s inh t1 ,  as 
we have  already shown. 

Current  I y, our  tab1 e look-up  incorporates 8even formulas  and  our  design 
1.8 general ly  capable  of  integrating  expressions  described in the two ca tegor ies  
be I our 

1. Special   Funct ions  of  l inear  or  quadratic argument m u l t i p l i e d  with 

a. A rb i t ra ry  powers of  the argumenta 

b. Trigonometric and exponent ia l   funct ions  of   ! inear 
argurnen t . 
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2. Products  of  tuo  Special  Functions  of  l inear or quadratic  argument, 
m u l t i p l i e d  with the same k ind  o f   funct ions ue mentioned in t h e   f i r s t   c a t e g o r y .  
?he Special   Funct ions  of   th is  category can  be func t i ons   o f   on l y  one o f   t h e  
f o l l o w i n g  groups: 

a.  Any k ind   o f  Bessel, t lod i f ied  Bessel, or Hankel 
functions. 

b. Orthogonal  Polynomials. 

c. Confluent  Hypergeometric  Functions. 

However, t h e   p o t e n t i a l i t y  of  keeping  very  feu  formulas  around in t h e  
t a b l e   o f   o u r  second  stags  would be of   l imi ted  va lue i f  ue were u n a b l e   t o  
comp!ete  successfu l ly   the  th i rd  stage, to  reduce  the  Generalized  Hypergeometric 
F u n c t i o n   t o  some Elementary  or/and  Special  Funct  ion(s). 

In  the  reduction  stage  the  Generalized  Hypergeometric  Function i s  
reduced, i f  t ha t   i s   poss ib le ,   t o  some Elementary  or/and  Special  Function(s1. 
P r i o r i t y   i s  a tuays   g iven   f i r s t   to  those methods that  reduce  the  Ser ies into  
Elementary  Funct ions and  then t o  those that  reduce  to  the most common Spec ia l  
Functions,  such a8 error,  Bessel  etc . The e f f o r t  in the   reduc t i on   s tage  
increases  as  the number of  the  series parameters, and subsequently  the p and q 
vaJue8,  Increase. I f  the  reduction i s  unsuccessful  then  the  series pFq(z) i s  
re turned.  

The reduction  stage  incorporates  tuo phases. I n  t h e   f i r s t   p h a s e  
a lgor i thm8 independent of  the  values o f  p  and q of  the   ser ies   pFq(z)   a re  
appl ied. I n  the second  phase special  algorithms dependent  on the  parameters  are 
performed. 

A surpr is ing ly   usefu l   ru le ,   incorporated in  t h e   f i r s t   r e d u c t i o n  phase, 
la  the   fo l lou ing .  

1 f a numerator  parameter of  the  series pFq (z)  exceeds  by a p o s i  t i  ve 
i n teger ,  say k. a denominator  parameter,  then  the series  pFq(z)  can be expressed 
ab t h e  sum o f  k+l p-lFq-l (2) 's. 
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To i I l us t ra ts   ser ies   sp l   i t t ing ,   cons ider  

t3 Jg(t1/2)2 e-Pt 

a f t e r   s t a g e s  one and two have  been  completed,  ue get 

6p-4 3F3t 112, 1, 4: 1, 1, 1: p- '1 ' (24) 

Now, a t  stage  three and a f t e r  a t r i v i a l  genera l   reduct ion  ru le ,  (24)  
becomes 

then  applying our  general   "spl i t t ing"  ru le,  (25) reduces t o  

6p-4 t 1F1 t 1/28 1: -p- l I  - 312 p" 1F1 t 3/28 2: -p-l l  (26) 

+ 9/16 p-2 1F1[ 5/2: 3: -p-lI - 5/96 pe3 1F1 t 712: 4: -p"I 1 

I n  the ,second phase, reduct.ions  are easy for  the  cases  gF0(2),  0F1(z), 
1Fo(z) ,   and  the   d i f f i cu l ty   inc reases   s ign i f i can t ly   fo r   h igher   p 's  and  q's. We 
have  been  mainly  concerned with the  Confluent  Hypergeometric  Function  reduction, 
1F1(z),  and  the Gauss Hypergeometric  Functions,  2F1(z),  that  include, in 
addi t ion  to   cer ta in   impor tant   Specia l   Funct ions,   the  E lementary  Funct ions.  The 
most  important  tools  here  are  the  d i f ferent  t ransformat ions:  l inear,   quadrat ic,  
e t c   ( r e f .  151, ( re f .  21, ( re f .  161, and the  Cont iguous  Funct ions  Relat ions  ( ref .  
17). 

The di f ferent  t ransformat ions  ( l inear,   quadrat ic,   etc)   are  performed as 
soon  as i t  i s  detected  that  the  Generalized  Hypergeomtric  Function i s   r e d u c i b l e  
'lo some o ther  ones  and  which  are d e f i n i t e l y  known t o  be   reduc ib le   t o  some 
Special   or   Elementary  Funct ions in one or  more stepe. We c l a r i f y   t h e   a b o v e  
ideas in  a simple example, where a quadratic  transformation i s   a p p l i e d   t o .  a 
Gause Hypergeometric  Function. 
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Suppose we are  g iven 

2F1 [alpha-beta: gamma: argl  - 2F1 [ 314, 5/4: 1/2: z21 
uhere 

beta - alpha = 5 / 4  - 3 / 4  = ,112 

therefore  the  quadrat ic   t ransformat ion 

i s  app l icab le .  Hence, the  fo l louing  relat ion  holds:  

Upon a p p l i c a t i o n   o f  a s imple  general   reduct ion  ru le,   the  r ight  hand s i d e   o f  
express i on (31 1 becomes 

and f i n a l l y ,   t a k i n g   i n t o  account  the r e l a t i o n  

express ion (28 )  reduces  to 

1 5 

6 ( 1 + ~ 1 ~ ’ ~  6(1-zI3/* 
””-“” + ”-”“” 

“Cont igu i ty ”  has been also found useful and has  been put   in to   use i n  the 
reduction  of  the  Generalized  Hypergeometric  Functions. 

D e f i n i t i o n .  We c a l l  two Generalized  Hypergeometric  Functions  contiguous 
i f  they  are a1 ike  except  for one pa i r  o f  parameters i n  which  they d i f f e r  1 x 1  a 
u n i t y .  

Thus the Hypergeome tr i c Function 2F1 [a, b: c: 21 i s  con t i guous t o  2F1 Ia+1, b: c; zl 
and  obv ious ly   to   on ly   f ive  o thers.  Any three  of the contiguous  functions  can he 
connected u i th  a l inear   re la t ion ,  the so cal led  Cont iguous  Funct ion5 
(Recurrence)  Relations. Such re la t ions  are  appl ied  to  a Genera l ized 
Hypergeometric  Function uhenever i t  has been predetermined  that the  r e s u l t i n g  
series  can  be  reduced to  Special  or/and  Elementary  Functions. 



G 1 von 
1F1 t- -1/28  3/28 21 (35) 

and ur ing   the   fo l low ing   con t iguous   re la t ion  

(a-c+l) 1F1 tar c; 21 - a 1F1 [a+l: GI 21 + (c-1)  1F1 [a: c-1: 21 - 8 (36) 

u. g e t  
112 1F1 t 1/21 3/28 21 + 1/2 1F1 t -1128 1/28 21 (37) 

where  the f i r b t  aer ien in i d e n t i f i e d  ab an er ror  and the  second as an Incomplete 
Gamma funct ion,  namely 

-114 irrl/z E r f  ( id4 - 1/2 P 2  (-I/z, -21 (38) 

Simi l a r lu ,   the  Hypergeometric  Function 

$1 t a, e+9/21 c; 21 (391 

can  be  r'educed  through  successive use of  the  cont iguous  re1  a t   ion8  to   the 
f o l l o w i n g  sum 

(c-a-9/2)  (c-a-7/2)  (c-a-5/2)  (c-a-3/2) 

(c-Za-S/Z) (c-2a-7/2)  (c-2a-5/21  (c-Za-3/2) 
-_""""""""""""""-"~""" 2F1[ a, a+1/2: c: 23 (40) 

a  (c-a-9/2)  (c-a-7/2)  (c-a-5/2) ( 1 4  

(c-2a-11/2)  (c-Za-9/2)  (c-2a-7/2)  (c-2a-3/2) 
- 4 ~""""""""""""""--""""~"- zF1 t a+l, a+3/2: c: 21 

a  (a+l)  (c-a-9/2)  (c-a-7/21 ( 1 4  
+ 6 -------------________________c__________-- 2F1[  a+2, a+5/2: c; z] 

(c-Za-13/2)  (c-2a-11/2)  (c-2a-7/2)  (c-2a-5/2) 

a (a+ l l  (a+21 (c-a-9/21 ( l-2I3 - 4 ""-_"""""""""""""""""-- 2F1 t a+3, a+7/2: c: zl 
(c-2a-15/21  (c-2a-11/21  (c-Za-9/21  (c-2a-7/21 

a(a+l)  (a+2) (a+31(1-~14 
+ """I"""""""""""""""""" 2F1 t a+4, a+9/2: c: 21 

(c-Za-15/2) (c-Za-13/21  (c-2a-11/2) (c-2a-9/2) 

we next  notice  that  the  parameters  of each of   the above Hypergeometric 
S e r i e s   a a t i s f y  a s i m i l a r   r e l a t i o n   t o  (23). Therefore  a  quadrat ic  t ransformat ion ' 

i m  a p p l i c a b l e   t o  each o f  them, tha t   u l t imate ly  leads to   t he   f o l l ow ing  sum o f  
Legendre  funct iona 



(41 I 

(c-a-9/2)  (c-a-7/2)  (c-a-5/2) Cc-a-3/2) 
[""""""""""""""""""""- 
(c-2a-9/2)  (c-2a-7/2)  (c-2a-5/2)  (c-2a-3/2) 

Pc -za - l ,~  -c ( (1-21 - 1 4  

a  (a+l) (a+2)  (c-a-9/2) - 4 """"""""""""""""""""" 
(c-Za-15/2)  (c-2a-11/21  (c-2a-9/2)  (c-2a-7/2) 

Pc-2a-7, l - c  ( (1-Zl-14 

a  (a+l) (a+2) (a+3) 

(c-2a-15/2)  (c-2a-13/2)  (c-2a-11/2)  (c-2a-9/2) 
+ --"""""-"""""-"""""""""- Pc-2a-9,l-c (1-2) -112) ] 

V I  COMMENTS AND CONCLUSIONS. 

The Laplace  Transforms package i s   r e l a t i v e l y   f a s t ,  as 
. examples in the  appendix show. Furthermore, i t  i s  capable  of  quick 

cases   tha t  i t  cannot  process. 

t he   ac tua l  
I y   r e j e c t i n g  

The Laplace  Transforms system l e  capab le   o f   p rov id ing   resu l t s   f o r   t he  
u e l l  known Specia l   Funct ions  l imi ted  to   essent ia l ly   l inear  and q u a d r a t i c  
arguments. However, cases I i ke  equation (21 1 ,  ment i oned ear 1 i er, or t h e  
f o l l o w i n g  one 

t'l J l ( a t - l I  e-Pt (42)  

a r e  some o f   those  tha t  the present  Laplace  Transforms  implementation i s   u n a b l e  
t o   p r o v i d e  an  ansuer,  unless i t  uill interact   proper ly with o t h e r   I n t e g r a l .  
Transforms. We expect  to  generalize  the syetem t o  those  other  transformB in t h e  
coming  year. 

C u r r e n t l y  our system is  able  to  solve  approximatel ly 86% of  t h e   e n t r i e s  
of  the  corresponding  chapters  of  the  Tables of  Integral  Transforms  (The 
Bateman's  Manuscript  Project). We expect t o  be able  to   cover   314  o f   the 
remaining  cases in the coming months by   i nc reas ing   t he   capab i l i t i es   o f   ou r   f i r s t  
and t h i r d  stages.  Final ly,  ue should add in favor  of  our  implementation, i t s  
c a p a b i l i t y   t o   I n t e g r a t e   e x p r e s s i o n s   t h a t   a r e   o n l y   i m p l i c i t l y   i n c l u d e d  in 
Bateman's  Manuscript  Project. 



APPEND I X 

T h i s   i s  a sample o f  some actual  examples of  the  Laplace  Transform 
system i n  MACSYMA. "Def in te"   i s   the   top   func t ion   tha t   ca l l s   the   in tegra l  
t ransforms,  i t  takes  tuo arguments: the  expression  to  be  integrated 
and t h e   v a r i a b l e .  and assumes l i m i t s   o f   i n t e g r a t i o n  f r o m   z e r o   t o   i n f i n i t y .  

/* Lap lace   t rans forms */ 
ASSUME(P > 0 ) :  
(011) 

(C12) T1ME:TRUES 
TIRE- 1 MSEC. 

(C13) /* Some "Conf  luents". 
"flIk,ml ( z ) "  i s  a Uh i t taker   func t ion .  
"GAMMAINCOMPLETE (a, b) 'I, and "GAMPlAGREEK(a,b)" are  current names 
f o r   t h e   I n c o m p l e t e  Gamma funct ions:   na,b) ,  and J(a,b). */ 
%EA(A*T) *TA2*ERF (TA( l /2 )  )*%E"(-P*T) : 
TIRE- 22 MSEC. 

2 A T - P T  
(013) ERF(SQRT(T1 1 T %E 

(C14) DEFINTE ( X .  T )  : 

RPART FASL DSK  MACSYM being  loaded 
l o a d i n g  done 
Is A - P pos i t i ve ,   negat ive ,  o r  zero? 

NEGAT I VE: 

GAnRA FASL DSK  MAXOUT being  loaded 
l o a d i n g  done 
TIME- 431 MSEC. 
(014) 

1 2 1 
15 ("""""""- - """""""""""" + """""~"""""""- 1 

1 1 312 2 1  512 
SllRT (----- + 1) 7 (P - A) (----- + 1) 21 (P - A )  (----- + 1) 

P - A   P - A   P - A  
"~""""""""""""""""""""""""""""""""""""~ 

7/2 
4 (P - A )  

(C15) T^(1/2)*GAMMAINCO~PLETE(1/2.A*T)*%E^(-P*T); 
TIME- 632 MSEC. 

1 - P T  

2 
(Dl51 GAMMAINCOMPLETE(-, A T I  SQRT ( T I  %E 

33 



(C16) DEFINTE(X,T): 
TIHE-  1586 HSEC. 

(016) 
- % P I  2 _""""""""""""" - """""""-""""" 

312 A 312 3/2 A 312 
2 (P + A)  (1 - ----- 1 (P + A) (1 - ----- I 

P + A   P + A  

(020) 
2 2 

""""""""""""""""""" 

1 4  

2 
(P + -1  

(c21) /* Some Bessel functs ( b f ' s ) .  */ /* J I v l  ( 2 ) .  1st kind o f   b f ' s .  */ /* YIv ]  ( 2 ) .  2nd  kind o f   b f ' s . * /  /* H I v , l l  ( 2 ) .  1st kind  of the 3rd  kind o f   b f ' s  (1st Hankel). */ 
/* HCv.21 ( 2 1 ,  2nd  kind o f  the 3rd  kind of bf's (2nd Hankel).*/ 

TA(-1/2)*J  101 (2*A*(1/2)*TA(1/2) )*XE"(-P*T); 
TIME- 16 MSEC. 

- P T  
J (2 SQRT(A) SQRT(T))  %E 
e 

(021 1 """"""̂ """""""" 

SPRT ( T 1 

(C22)  'DEFINTE ( X ,  T) : 
TIME- 256 MSEC. 

A - "- 
A 2 P  

SQRT(%PI 1 I ( - - - I  %E 
0 2 P  

SQRT (PI 
(022 1 """"""""_"""" 

(C23)  TA(3/2)*Y [11 (A*T)*%E"(-T): 
TIME- 9 HSEC. 

(023 1 Y (A T I  T XE 
312 - T 

1 
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(C24) DEFINTE (X, T) : 
T I E -  968 MSEC. 

X I  1 3/4 
15 X I  SQRT(2) P (- ") (""" - 1) - 2, 112 A 2 

A + 1  
(024) --"-"""""""""""""""""""" 

2 2 2  2 1 / 4  
8 SQRT(%PI) (A + 1) ( ( A  + 1) - 1) 

(025) 
3/2 - P T 

H ( T I  T XE 
112. 1 

4 
2 2 

P P 

1 2 3  
SQRT ( 2 )  SQRT(%PI 1 (-- + 1) P 

2 
P 

I 

(C30) DEFINTE ( X ,  T I  : 
TIME- 295 MSEC. 

1 1 5/2 
3 SQRT(%PIl P ("""""--) SQRT(_- - 1) p 

- 312. - 1 1 4 
SQRT(1 - - - I  P 

2 
P 

(030) """""""""_"""""""""""""""""" 
16 

(C31)  Tn(5/2)*K 11/21 (T)*%E"(-P*T) : 
TIME- 12 MSEC. 

(031 1 
5/2 - P T 

. K ( T I  T %E 
112 

(C32) DEFINTE (X. T I  : 
TIME- 1761 MSEC. 
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4 1 
( X I  - 1) ( X I  + 1) SORT 12) SQRT (%PI 1 (-------------- + --------- I 

1 3 2   1 2  

2  2 
3 (1 - "1 P (1 - "1 

P P - """"~""""_""""""""~"""""""""""""~" 
3 

2 P  

(C35)  I [01 (2*AA(1/2)*TA(l/2))"2*%EA(-P*T): 
TIME- 15 MSEC. 

(035) I (2 SQRT(A) SClRT(T) 1 W 
2 - P T  

0 

(C36) DEFINTE (%,TI :. 
TIME- 944 MSEC. 

2 A  

(036) 

"- 
2 A  P 

I ("-1 %E 
8 P  """"""_ 

P 

(C37)  J 11/21 ( T " ( l / Z )  ) *Y  [1/21  (Tn(1/2)  )*Wn(-P*T) : 
TIME- 15 MSEC. 

(037) 
- P T  

J (SPRT(T1) Y (SQRT(T1)  %E 
1 /2 1 12 

X 3 8 1  DEF I NTE ( X .  TI : 
TIME- 366 MSEC. 

1 - -" 
1 2 P  

X I  I ("-1 w 
1/2 2 P 

( 0 3 8 1  - """"_""""_" 
P 

(C39) I [1/21 (T"( l /Z) )*K11/21 (T"( l /Z)  )*%E"(-P*TI : 
TIME- 15 MSEC. 

(039) I (SORT ( T I  1 K (SQRT(T) 1 %E 
- P T  

1 /2 112 

(C40)  DEFI NTE ( X ,  T I  : 



TIME- 2938 MSEC. 
1 1 "- 

1 2 P  1 2 P  
"- 

%I %PI ( X I  + 1) I ("-I %E %PI (XI + 1) I ("-1 %E 
112 2 P  112 2 P 

(048) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - ____________________-------- 
4 P   4 P  

1 1 

1 2 P  1 2 P  
"- "- 

XI %PI (XI - 1) I (---I %E % P I  ( X I  - 1) 1 ("-1 %E 
1/2 2 P 112 2 P 

+ """"""""_""""""" + """~""""""""""- 
4 P  4 P  

(C41) /* R e l a t e d   t o   b f ' s   f u n c t i o n s .  */ /* S t r u v e   f u n c t i o n s .  */ 
Tn(-1/2)*LSTRUVE 1-1/21 ( T A ( l / 2 )  )*XE"(-P*T) : 
TIME- 16 MSEC. 

- P T  
LSTRUVE (SORT ( T I  1 %E 

- 1/2 
(041 1 """"""_"""""""" 

SQRT ( T I  

(C42) OEFINTE ( X ,  T I  : 
TIME-  1196 MSEC. 

(C44) DEFINTE ( X ,  T I  : 
T I  ME- 229 MSEC. 

16 XI 
(D44) - """"""""""-" 

312 1 3/2 3 
3 %PI (-- + 1) P 

2 
P 

0245) /* Lommel functions. */ 
Tn(1/4)*S11/2,-1/21  (TA(1/2))*XEA(-P*T); 
TIME- 15 MSEC. 

(045) S (SQRT(T) 1 T %E 
1/4 - P T 

1/2, - 1/2 
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IC461 DEFJNTE I%, T I  ; 
T1.E-  226 HSEC. 

1 

(046) 

- "- 
4 P  

XI SQRT(W1) ERF(- 2 X I  SQRT(P)) %E - """""""""""""""""""" 
3/2 

2 P  



FKFERENCES 

. .. 

1. The Math1  ab Group: NACSYNA ' Reference  flanual . Lab.  Comput. ScI . , 
Haaeachuse t t a I ns t . Techno I. , Nov. 1975. 

2.. Erde I y i , Magnus: and . Oberhe t t i ngm, T r  i corn i : Hi  gher  Transcenden ta I 
Func't ions. Bateman tlanuscr i p t  Pro Jact - Volumes 1,2 and 3, tlcGraw-Hi. I I Book 
Co. e '1953. 

3. Hochatadt, H.: The Functions  of Mathematical  Physics. Interscience  Publ . ,  
1971 . 
4. Wang,  P. S.: The Undecidabi I i ty  of  the  Existence  of  Zeros  of  Real 
Elementary  Functions. J. Assoc.  Comput.  flach., vol. 21, no 4, Oct.  1974, pp. 
586-589.' 

5. Vi lenk in ,  N. J.: Special  Functions and the Theory o f  Group R8preSentatiOnS. 
Translat ione  of   Mathematical  flonographs, vol. 22, American  Math. SOC., 1968. 

6. Wang,  P. S.: Evaluat ion  o f   Def in i te   In tegra ls   by  Symbol ic   Manipulat ion.  
Ph.0 Thesis,  Massachusetts  Inst. Technol.,.  Oct. 1971. (A lso   ava i iab le   as  TR-321 

7. Bogen, R. A.: Automatic  Computation  of d i r e c t  and inverse  Laplace 
Transforms  using Computer Symbolic  Mathematics.  Proceedings of  the l o th  Hawaii  . 
I q t e r n a t i o n a l  Conference  on Systems  Sciences, Jan.  1977,  pp. 161-169. 

8. Sla ter ,  L.: Generalized  Hypergeometric  Functiona.  Cambridge  Univ.'  Press, 
1966 . 
9,. Sneddon, 1. H.:  The Use o f   In tegra l  Transforms. McGrau-Hi I I Book Co. , 
1372. 

10. Hladik ,  J: La  Transformation de Laplace  a p lus ie rs   var iab les .  Masson e t  
Cie, 1969. 

11. Watson, G. N.: A Treat ise on the Theory o f  Bessel Functions.  Cambridge 
Univ.  Press. 1952. 

12. Tranter,  C. J.: Bessel Functions.  Hart Pub.  Co.. Inc.. 1969. 

,15. Abramowitz, M.: and  Stegun, l rene A.: Handbook of  Mathematical  Functions, 
Dover Pub I. 1 nc. , 1965. 

16. Goureat, E. M.: Sur I '  e q u a t i o n   d i f f e r e n t i e l l e   l i n e a i r e   a u i  admet Dour 
l n t e g r a l e   l a  eer l e  hypergeometr  ique. Ann. Sci . Ecole Norm.  Sup. (2) , 16, 3-142. 
1881 . 

39 



17. R a i n v i  Ile, E. 0 . :  The Contiguous  Function  Relations for  ,,Fq- Bull. 
American Math. SOC., vol ,  51, 1345, pp. 714-723. 

40 



L e v e l  2 .  G e n e r a l i z e d  -f G e n e r a l i z e d  
H y p e r g e o .  
, F - u n c t i o n s   F u n c t i o n s  

H y p e r g e o .  > 
r 

L e v e l  1. S p e c i a l  
E l e m e n t a r y  

a n d  
S p e c i a l   F u n  F u n c t i o n s  

F i g u r e  1. 

41 

I I l1l111ll11lll 





4 

AN IMPROVED ALGORITHM FOR THE ISOLATION OF POLYNOMIAL REAT., ZEROS* 

Richard J .  Fateman 

Unive r s i ty   o f   Ca l i fo rn ia  
Berkeley, C a l i f o r n i a  94720 

SUMMARY 

The Co l l in s -Loos   a lgo r i thm  fo r   comput ing   i so l a t ing   i n t e rva l s   fo r .   t he  
zeros   o f   an   in teger   po lynomia l   requi res   the   eva lua t ion   of   po lynomia ls  a t  
r a t i o n a l   p o i n t s .   T h i s   i m p l i e s   t h e   u s e   o f   a r b i t r a r y   p r e c i s i o n   i n t e g e r   a r i t h -  
met ic .   This   paper  shows how ca re fu l   u se   o f   s ing le -p rec i s ion   f l oa t ing -po in t  
a r i t hme t i c   w i th in   t he   con tex t   o f  a s l igh t ly   modi f ied   a lgor i thm  can  make t h e  
ca l cu la t ion   cons ide rab ly   f a s t e r   and  no less exac t .   Typ ica l ly ,  95% o r  more 
of   the   eva lua t ions   can   be   done   wi thout   exac t   a r i thmet ic .  The p r e c i s e  speed-up 
depends   on   the   re la t ive   cos ts  of t he  arithmetic i n  a given  implementation. 
Our implementation  on  the DEC KL-10 computer i s  some 5 t o  10 times f a s t e r   t h a n  
t h e   o r i g i n a l  Univac  1110  implementation i n  SAC-I. We are a b l e   t o   a t t r i b u t e  
about a f a c t o r  of t h ree  improvement to   t he  MACSYMA machine  and  language,  and 
2.7-3.3  speed-up t o   t h e   a l g o r i t h m   i t s e l f .  

1. INTRODUCTION 

Co l l in s  and  Loos ( r e fe rence   1 )   ske t ch   an   a lgo r i thm,   and   p rov ide  some 
implementat ion  detai ls   for   computing a set  of i n t e r v a l s  on the  real  l i n e  
( a l , b l ] ,  ...,( an ,bn ]   such   t ha t   each   i n t e rva l   con ta ins  a s i n g l e   o r   m u l t i p l e  
real  zero of  a polynomial P .  The m u l t i p l i c i t y   o f   t h e   i t h   i n t e r v a l  is a l s o  
computed.   This   a lgori thm  requires   the  exact   evaluat ion  of  P and i t s  der iva-  
t i v e s  a t  r a t iona l   po in t s .   Fo r  most  of  the  algorithm,  one i s  a c t u a l l y  
unconcerned  about  the  value  of P o r  i t s  d e r i v a t i v e s ,   s i n c e   t h e   s i g n  (+l, 0,  o r  
-1) is su f f i c i en t   t o   de t e rmine   whe the r  P i s  above, on, o r  below the   x -ax is .  

The s i g n  may be  determined,  as shown i n   s e c t i o n   2 ,  by a procedure  using 
p r i m a r i l y   f l o a t i n g - p o i n t   a r i t h m e t i c ;   i n  case the   s ign   cannot   be  so determined, 
e i t h e r   h i g h e r   p r e c i s i o n   o r   e x a c t   r a t i o n a l   a r i t h m e t i c  i s  used. It might  be 
tempting  to   dismiss   this   technique as being "machine  dependent",  and s o  i t  i s  ; 
however,  the  dependency is  i s o l a t e d   t o  a s i n g l e   f l o a t i n g - p o i n t   v a l u e   r e p r e -  
s e n t i n g   t h e  maximum relat ive e r r o r   i n   t h e   r e s u l t   o f  a f loa t ing   po in t   ope ra -  
t i o n .  We know of  no  computer f o r  which t h i s  number cannot  be  determined. 

* The work desc r ibed   he re in  was performed w i t h  the he lp   o f  MACSYMA which .is 
s u p p o r t e d ,   i n   p a r t ,  by the  United  States  Energy  Research  and Development 
Adminis t ra t ion  under   Contract  Number E(l1-1)-3070  and  by  the  National 
Aeronautics  and  Space  Administration  under Grant NSG 1323. 
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In   p l aces   where  exact va lues  are computed i n  ref. 1, w e  are u s u a l l y  
a b l e ,   t h r o u g h   t h e   u s e   o f   ( p e s s i m i s t i c )   f l o a t i n g - p o i n t   i n t e r v a l   a r i t h m e t i c  
( r e f .  2)  t o   a v o i d   t h e   a t t e n d a n t   c o s t   o f  exact a r i t h m e t i c .   I n   f a c t ,   m o s t   o f  
t h e   r e l i a n c e  on exact a r i thmet ic   demonst ra ted  i n  t h e  tests ( d u p l i c a t i n g  
t h o s e   i n   ( r e f .  1)) is genera ted   by   exponent   over f low  ra ther   than   insuf f ic ien t  
accuracy. 

2. HORNER'S RULE WITH ERROR BOUNDS 

n 
Assume w e  w i s h   t o   e v a l u a t e  a polynomial   p(z)  = C a z 

n- j 

j =O j 
a t  a p o i n t  z = x. 

where  Horner 's   recurrence  provides  the b ' s :  
j 

bo = a. 

b j  = X bj-l + a j ,  j = 1 , 2 ,  .. . ,n-1 

and bn = p(x)  

Assume w e  are  us ing   a r i t hme t i c   sub jec t   t o   t runca t ion   and   round-o f f   e r ro r .  

Then f o r  some small c o n s t a n t s  , B j  , t h e  computed va lue   o f  b i s  
j 

b = (x bj-l (1 + B j  l) + a . ) / ( l  + aj) 
j J 

- (2.2) 

(assume b-l E 0 f o r   t h e   f o l l o w i n g )  

n n 

j =O 
p ( z )  = C a  z n-j = C [(l + a . )  b - x bj-l  (1 +Bj-l)l  z n-j  

j j =O J j  

n n-1 

j =O 
= C (1 + a.) b z - X C b .  (1 + B.)  z n- j n-1- j 

~j j =O J J 

Appl icat ion  of   (2 .1)   provides ,  a t  z = x 
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n-1 

j=O 
Thus the   magn i tude   o f   t he   e r ro r  Ibn - p(x )  [ = I C b j  (aj - P j )  x 

n- j 
+ b,anl 

Since [ a .  [ , I 6 .  [ < E ,  E a u n i t   i n   t h e  l as t  p l a c e ,  ( E = 2-27 on a 27-bi t   base  
J J -  

2 mantissa  machine  such as t h e  PDP-lo),  

t h e   b u l k   o f   t h e   e r r o r  i s  - < 2 E C [ b j [  [XIn- '  

n 

j =O 

The above   ana lys i s ,   due   to  W .  Kahan,  can  be  extended t o  complex va lues   o f  
x ( r e f .  2 and  3). 

We wish   to   ex tend   the   ana lys i s   to   inc lude   approximat ion   of  x by a f l o a t i n g  
poin t   representa t ion ,   and   approximat ion   of   each  a b'y a f l o a t i n g   p o i n t   r e p r e s e n -  
t a t i o n .  j 

That i s  x = 2 (1 + a ) ,  a = 2 
j 

(1 + Y j > .  

An a l t e r n a t i v e   t o   ( 2 . 2 )  i s  then 

which  becomes,  analogous  to  (2.3) : 

Fol lowing   t he   ana lys i s   t o  ( 2 . 4 )  y i e l d s  

L 

Thus the   magn i tude   o f   t he   e r ro r ,   neg lec t ing  terms which a re  products   o f  
two small terms i s  bounded  by $, t h e   r h s  of the   equat ion   be low:  

b n  - P(X)l L 

T y p i c a l l y   t h e   i n t e g e r   c o e f f i c i e n t s  of  p w i l l  b e   r e p r e s e n t a b l e   e x a c t l y  as 
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f l o a t i n g   p o i n t  numbers, as w i l l  x ( s i n c e  x t y p i c a l l y  is an   exac t   b ina ry  
f r a c t i o n   r e s u l t i n g   f r o m   b i s e c t i o n   o f   i n t e r v a l s   w i t h   b i n a r y   f r a c t i o n   e n d  
p o i n t s )   s o   t h a t  6 and   t he  y w i l l  f requent ly   be   zero .  

j 
It may be   a rgued   tha t  w e  have   ca lcu la ted  ^e imprec i se ly ,   bu t   t he   rh s   o f  

(2 .5 ' )  i s  a sum o f   p o s i t i v e  terms and   the   e r ror   involved   can   be  shown t o   b e  a 
second   o rde r   e f f ec t .   Be ing   pes s imis t i c ,  w e  use 6E r a t h e r   t h a n  56 a s  a 
c o e f f i c i e n t  so as to   be   pos i t i ve   o f   bound ing  tFie e r r o r .  

. Thus i f  w e  w i s h   t o   f i n d   t h e   s i g n   o f  a polynomial p a t  a p o i n t  x, we 
eva lua te  $ ( G )  and 6 ,  t h e   e r r o r  bound. If e [p^(Gjt) [ , then w e  do n o t  know the s i g n  
d e f i n i t e l y .  We can   r e -eva lua te   t o   h ighe r   p rec i s ion :  how much higher   can  be 
est imated  f rom  equat ion (2.5).  I f  p (x) = 0, w e  w i l l  have   t o   u se   r a t iona l  
a r i t hme t i c   t o   p rove  i t;  t h u s   i f  $(a) = 0,  a d i r e c t  t e s t .  f o r   z e r o   u s i n g   r a t i o n a l  
a r i t h m e t i c  would be  needed. 

3 .  IMPLE3ENTATION 

A f i r s t   d r a f t   o f   t h i s   p a p e r   a n d  a MACSYMA implementation were mentioned 
i n  a t a l k  a t  the  SYMSAC conference,  August,  1976  (ref. 4 ) .  Since   t ha t  t i m e ,  
P ro fes so r  Loos was kind  enough to   supp ly   an  ALDES language  vers ion  of   the 
program  descr ibed   in   ( re f .  1). A f t e r   c o r r e c t i n g  a few typograph ica l   e r ro r s  
presumably   no t   p resent   in   the  SAC-I program, i t  w a s  poss ib l e   t o   dup l i ca t e   t he  
r e s u l t s   o f   ( r e f .   1 )   f a i r l y   c l o s e l y .  We were n o t   a b l e   t o   a c h i e v e   e x a c t l y   t h e  
same numbers  of e v a l u a t i o n s ,  a s i t u a t i o n  which w e  b e l i e v e  arises because 
the  SAC-I program d i f f e r s   i n  some re spec t s  from t h e  ALDES desc r ip t ion .   Th i s  
dup l i ca t ion  was done  by w r i t i n g   i n  MACSYMA's Algol-60-like  language,  followed 
by  semi-automatic  translation  to  LISP,  followed by compilat ion  to   machine 
language. 

Certain  programs were a l r e a d y   i n   e x i s t e n c e   i n  MACSYMA, and  did  not  have 
t o   b e  programmed f o r   t h i s   a p p l i c a t i o n ;   t h e s e   i n c l u d e d  some involved   wi th   the  
de t ec t ion  of f l o a t i n g   p o i n t   o v e r f l o w s .   I n  s t e p  4 below,  one  minor  improvement 
w a s  achieved by a s imple 4 l i ne   a s sembly   l anguage   a l t e r a t ion .   Th i s  amounted t o  
1% i n   t o t a l  time. A l l  o t h e r  programming was done i n   h i g h e r   l e v e l   l a n g u a g e s  
such as LISP. 

The MACSYMA implementation  running  on a DEC-KL-10 computer seems t o   r u n  
f a s t e r   t h a n   t h e  SAC-I implementation on the  UNIVAC 1110  by a f a c t o r   o f  3 o r  
more; t h i s ,   u s i n g   t h e   m o s t   f a i t h f u l   r e c r e a t i o n   o f   t h e   a l g o r i t h m  as seemed 
appropr ia te .  Computing a s t r i c t   i s o l a t i o n  l i s t  for   the  5th  Legendre  polynomial ,  
L[5]   required .74 seconds   i n  SAC-I , .128 seconds i n  MACSYMA. For  L[ 251 the  
times were 35 and 11 seconds , r e spec t ive ly .  An a t  tempt to   d ivo rce   t hese  
numbers  from s t o r a g e   a l l o c a t i o n  time may make t h e  comparison  more r e l e v a n t :   i f  
SAC-I spends  1/3  of  i ts  time i n   s u c h  bookkeeping (a f igu re   sugges t ed  by P r o f .  
Loos),  and MACSYMA s p e n t  5 o f   t h e  11 seconds i n  LISP "garbage  col lect ion"  (gc)  
by actual  measurement,   then  the two systems  compare a t  23  and 6 seconds 
r e spec t ive ly .  We s u s p e c t   t h a t  MACSYMA's h o s t   s y s t e m   h a s   r e l a t i v e l y   f a s t e r  
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mul t ip l e -p rec i s ion   i n t ege r  arithmetic, r e s u l t i n g   f n  tkese sfiorter ttmes. 

Improvements t o  the Collins-Loos  algorithm  proceeded i n  several s t e p s .  

S tep  1: 

All computations  of  polynomial signs were attempted i n  s ingle-prec is ion  
f l o a t i n g - p o i n t   a r i t h m e t i c ,   f i r s t .  No exact va lues  were computed except  when 
needed  (equations 24 and   25   o f   ( r e f .   l ) ) ,  when t h e   e r r o r  i n  the f loa t ing-poin t  
eva lua t ion  was too   h igh   to   de te rmine   the   s ign ,   o r   an   exponent   over f low  occurred  
dur ing   the   s ign   computa t ion .   Note   tha t  some polynomials   can  never   be  evaluated 
wi thou t   ove r f low  in   s ing le -p rec i s ion   because   t he i r   coe f f i c i en t s  are t o o   l a r g e  
to   be   expres sed   i n   t he   f l oa t ing   po in t   r ange .   Fo r   such  cases we must  use some 
other   technique:   e9act   ra t ional   ar i thmetic ,   approximate  unl imited-exponent  
a r i t hme t i c   such  as MACSYMA's "b igf loa t"   sys tem,   o r  some o ther   a lgor i thm 
e n t i r e l y .  (The DEC-10 f loa t ing -po in t   fo rma t   spec i f i e s  a 2 7 - b i t   f r a c t i o n ,   & b i t  
(excess   128)   exponent ,   and  l -bi t   s ign.   Ari thmetic  is base  2 (not  8 o r   1 6 )  .) 

For  the same polynomial ,   L[25] ,   93.7%  of   the  ar i thmetic   could  be  done  in  
s ing le -p rec i s ion   f l oa t ing -po in t .  The t i m e  w a s  reduced  from 11 seconds  to  about 
7.2 (2.5 i n   g c ) .  A s  no ted   in   ( re f .   l ) ,   these   po lynomia ls   can   be   handled   very  
r ap id ly  by a Sturm-sequence  base  root-f inder ,   and  in   fact  MACSYMA's took  7.5 
seconds  (4.3  in  gc)  on  this  polynomial.  

Inc identa l ly ,   the   speed   d i f fe rence   be tween SAC-I and MACSYMA on  Sturm- 
sequences is a lso   about  3: 1. 

Step 2: 

Computations  were  done i n   s i n g l e - p r e c i s i o n   i n i t i a l l y ,   t h e n   i n   m u l t i p l e  
p r e c i s i o n  when poss ib l e ,   o the rwise   u s ing   exac t   a r i t hme t i c .  The  software 
m u l t i p l e   p r e c i s i o n  (ref:4) removes the   need   to   check   for   exponent   over f low  in  
Homer ' s   ru l e ,   bu t   i ncu r s  a h ighe r   cos t   t han   t he   b ina ry   r a t iona l   a r i t hme t i c  
advocated  by  Collins  and  Loos,   in some c a s e s .   ( I n   f a c t ,   b i n a r y   r a t i o n a l   a r i t h -  
met ic  is  very similar t o   f l o a t i n g   p o i n t   a r i t h m e t i c ,   t h e   d i f f e r e n c e   b e i n g   t h a t  
t he   " f r ac t ion"  is of  varying  length,   and is e x a c t .   I f   t h a t   l e n g t h  is small, 
t h e   f l o a t i n g - p o i n t   a r i t h m e t i c  w i l l  be   comparat ively more expensive.   For  L[30],  
t h e   " l o n g e s t "   b i n a r y   r a t i o n a l   e n d p o i n t   o f   a n   i s o l a t i n g   i n t e r v a l   a / b  is  only 8 
b i t s   l o n g   i n  a and b ,  s u g g e s t i n g   t h a t   f l o a t i n g   p o i n t  is a t  a disadvantage  here . )  

For   L[25]   again,   93.7%  of   the  ar i thmetic   could  be  done  in   s ingle-  
p rec i s ion ,   ano the r   4 .6%  in   mu l t ip l e -p rec i s ion ,   and   on ly   1 .8%  in   exac t   a r i t h -  
met ic .   Cons ider ing   the   fac t   tha t   L[25]   cannot   even   be   eva lua ted  a t  i ts  
computed roo t  bound  (16)   wi thout   over f low  in   s ing le-prec is ion ,   th i s  seems 
f a i r l y   i m p r e s s i v e .  

Step 3: 

It is p o s s i b l e   t o   e l i m i n a t e  a l l  exact   computat lons  within  the  scope  of  
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t he   a lgo r i thm  by   r ep lac ing   t he   t angen t   cons t ruc t ion   i n   ( r e f .   1 )  by a procedure 
s u g g e s t e d   i n   t h e  earlier d r a f t   o f   t h i s   p a p e r   r e q u i r i n g   o n l y   e v a l u a t i o n   w i t h  
r igorous   e r ror   bounds .  It w a s  hoped t h a t   t h i s   r e m o v a l   o f  a l l  exact a r i t h m e t i c  
would  speed up the  computat ion.  The alternative o f   u s i n g   e s s e n t i a l l y   t h e  same 
tangen t   a lgo r i thm  bu t   w i th   f l oa t ing -po in t   i n t e rva l   a r i t hme t i c ,   and  when 
necessa ry ,   exac t   a r i t hme t i c  was more successfu l .   Al though i t  w a s  p o s s i b l e   t o  
reduce  the number o f   e x a c t   e v a l u a t i o n s   t o  a very small number (e .g . ,  20 of some 
1300 for   L[3OJ) ,  some o f   t h e   f l o a t i n g   p o i n t   m u l t i p l e   p r e c i s i o n   e v a l u a t i o n s  were 
s lower   than   exac t   eva lua t ion  a t  a b i n a r y - r a t i o n a l   p o i n t .  

It a p p e a r s   t h a t   s i n g l e - p r e c i s i o n   f l o a t i n g - p o i n t   i n t e r v a l   a r i t h m e t i c  
near ly   a lways i s  s u f f i c i e n t ,   i n   t h e  tests suggested by Co l l in s  and  Loos. Most 
decis ions  can  be made w i t h   t h i s   a r i t h m e t i c   a n d  i t  is f a s t e r   t h a n   m u l t i p l e -  
p rec i s ion .   In   t he   t ab l e   be low w e  do no t   t abu la t e   t he   mu l t ip l e -p rec i s ion  
measurements. When a n   i n t e r v a l   c a l c u l a t i o n  is i n s u f f i c i e n t l y   p r e c i s e   f o r  a 
dec i s ion ,  w e  r eve r t   momenta r i ly   back   t o   exac t   eva lua t ion   fo r   i so l a t ing   i n t e rva l  
computa t ion   for   tha t   po lynomia l   der iva t ive .  A more e l abora t e   a lgo r i thm would 
use   exac t   eva lua t ion   fo r   r edo ing   exac t ly   t he  smallest computa t ion   t ha t   f a i l ed ,  
bu t  w e  d id   no t   choose   t h i s   t echn ique ,   because  of algorithm  complexity.  

Step 4 :  

Since so  much of  the  computation is done i n   f l o a t i n g   p o i n t ,  w e  sought to 
decrease   the  t i m e  s p e n t   i n   a r i t h m e t i c  by open-compi l ing   f l oa t ing   po in t   a r i t h -  
metic in   the   one   shor t   p rogram  implement ing   Homer ' s   ru le .  

This is  e a s i l y  done i n  MACLISP, bu t  a t  the  expense  of l o s s  of  overflow 
de tec t ion .   Four   i n s t ruc t ions  were inse r t ed   i n   t he   compi l e r -gene ra t ed  LAP 
(LISP  Assembly  Program)  code f o r   t h e   H o m e r ' s .   r u l e   p r o g r a m   t o  reset f l a g s  a t  
the   beginning  and a t  the  end tes t  (once)   for   overf low  in   any  of   the  operat ions.  
The coe f f i c i en t s   i n   t he   po lynomia l  and i t s  de r iva t ives   were   a l so   conve r t ed   t o  
f l o a t i n g   p o i n t ,   o n c e   i n   t h e  main l o o p .   I n  case t h i s   c o u l d   n o t   b e  done  because 
of   over f low,   the   o r ig ina l   vers ion   of   the   a lgor i thm w a s  used   for   tha t   po lynomia l  
der ivat ive  under   considerat ion.   These  changes  sped up the  run-time  considera- 
b l y  , to   about  2 .3  seconds   for  L [  251 (plus  gc) . This  i s  10  times fas te r  than 
the  or iginal   program  running on the  UNIVAC 1110, and 2.2 times f a s t e r   t h a n   o u r .  
own vers ion  of   the  Col l ins-Loos  a lgori thm. 

4 .  EMPIRICAL TESTS 

The tests i n   t a b l e  1 are r ep resen ta t ive   o f  a l a r g e r   c l a s s   o f  tests wi th  
randomly  generated  polynomials, a t  l eas t  i n   t h e   r e l a t i v e   t i m i n g   o f   t h e   v a r i o u s  
zero-finding  programs  being  compared.  Further  comparisons , including  addi-  
t i o n a l  work mentioned i n   s e c t i o n  5, s h o u l d  be  forthcoming. 

5. ANAZYSIS 

By comparison  with  (ref.  1) , w e  may add only a few items o f   i n t e r e s t .  
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Since   t he  "worst case" for   Qur   a lgor i . t f im is s?milar t o  tFie Collins-Loos  worst 
case, we can   on ly   observe   tha t   empir ica l ly ,   mos t   ca lcu la t ions  w e r e  not   "worst  
case'' and  could  be  done i n   s i n g l e - p r e c i s i o n   f l o a t i n g   p o i n t .  The major  problem, 
that   of   overf low,   could  be  handled by more e l abora t e   s ca l ing   p rocedures ,   such  
as ca r ry ing   an   add i t iona l  word fo r   t he   exponen t .  We d i d   n o t   p u r s u e   t h i s .  The 
time f o r   f i n d i n g  a l l  r ea l  zeros  of a tolynomial  of  degree n is l i k e l y  t o  be  on 
the  average,  under  our  algorithm, O(n ) by t h e  same arguments as i n   ( r e f .  1) . 

We e x p e c t   f u r t h e r   p r o g r e s s   i n   t h i s  area can  be made i n  two d i r e c t i o n s :  
G iven   t he   i so l a t ing   i n t e rva l s ,  it may be shown t h a t  a Newton-i terat ion 's  
convergence  can  be  assured,   us ing  s tar t ing  points   developed  f rom  the strict 
i s o l a t i o n  l i s t  of the   second  der iva t ive   o f   the   po lynomia l   o f   in te res t ;   a l so ,  
t h e   v a s t   d i f f e r e n c e   i n  time f o r   f i n d i n g   t h e s e   i n t e r v a l s   v e r s u s   n u m e r i c a l l y  
approximating  the  roots  i s  d i s tu rb ing .   S ince   t he   l i b ra ry   p rog rams   fo r  
polynonial   zero  approximation  using  s tandard  numerical   procedures  are an   o rde r  
of   magni tude  fas ter ,  i t  seems r e a s o n a b l e   t o   o b t a i n   a p p r o x i m a t i o n s   i n   t h i s  way, 
and   t hen   "p rove"   t he   l oca t ions   o f   t he   ze ros ,   and   t he i r   mu l t ip l i c i t i e s   a f t e r  
t h e   f a c t .  Bruce  Char, a Berke ley   g raduate   s tudent   has  worked 01, t h i s  problem 
us ing  a s i m p l e  t echn ique   desc r ibed   i n   r e f e rence  5 .  It is  n o t   c l e a r   t h a t  w e  
could compute  even  the.one  greatest-common-divisor  calculation  to remove 
m u l t i p l e   r o o t s   i n  less time than w e  could   f ind  a l l  i s o l a t i n g   i n t e r v a l s   f o r  
t h e   r o o t s  by the  numerical   methods  current ly   avai lable .   Char 's   program 
appears   to   be  much f a s t e r   t h a n   t h e   f u n c t i o n a l l y  similar program  descr ibed  in  
r e fe rence  6 .  For   example,   the   roots   of   the   13th  cyclotomic  polynomial  are  
i s o l a t e d  by P i n k e r t ' s   a l g o r i t h m   i n  220 seconds  on a PDP-10. Char ' s   rou t ine  
t akes  less than 0.5 seconds  on a PDP-10 (perhaps a model 4 times f a s t e r   t h a n  

desc r ibed   he re ,   where   f l oa t ing   po in t   y i e lds   t o   exac t   ca l cu la t ion ,   bu t   t h i s  is 
only when i t s  i n t e r n a l   c h e c k s   d e m o n s t r a t e   t h a t   t h e   i s o l a t i o n  of a l l  complex 
r o o t s   ( c u r r e n t l y ,  of a rea l  polynomial)   has  not  been  achieved. 

, P i n k e r t ' s ) .   C h a r ' s   r o u t i n e  must  sometimes  defer  to  other  methods  such as 

A s  the   p rogram  cur ren t ly   ex is t s ,  i t  is faster   than  Sturm  sequence 
c a l c u l a t i o n s  on most  polynomials  with few real roots ,   and  thus  should  be  used 
in   p l ace   o f   t ha t   ze ro - f inde r ,   excep t  when i t  i s  known i n  advance  that  many 
real  z e r o s   e x i s t .  I Since  the  numerical   programs are s o  much f a s t e r ,  w e  expect  
tha t   the   usefu lness   o f   th i s   p rogram is  q u i t e   r e s t r i c t e d ,   i n  terms of   the 
t y p i c a l  MACSYMA use r ,   t o   t hose   app l i ca t ions   where   mi sd iagnos i s   o f  a zero  would 
have special  dire   consequences  in   the  course  of  a computation,  and  furthermore, 
the  polynomial is known i n   a d v a n c e   t o   b e   n u m e r i c a l l y   d i f f i c u l t .  

We are g r a t e f u l   t o   P r o f .  W. Kahan f o r  numerous d i scuss ions  on t h i s   t o p i c .  
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n 

5 
10 
15 
20 
25 
30 

SAC-1  UNIVAC 
time* eevs 

0.5  39 
2.2  149 
5.6  320 

11.9  555 
23.2 877 
? ? 

PDP-10 TRANSLATION 
time * e evs 

0.131 46 
0.529  163 
1 . 4 4  357 
3.11  59 8 
6.29  945 

10.9 1326 

FLOATING POINT 
time* fevs eevs 

0.129 45 7 
0.485 162 9 
1.15 356 1 2  
2.16 597 1 6  
4.14 944 63 
7.57 1325 195 

P L L  PT/INT. ~ I T H  
time* XeVs eevs 

0.083 49 3 
0.273 166 5 
0.597 360 8 
1 .03  601 . 12 
2.81 856 117 
7 . 3 1  875 388 

*Multiply time i n  seconds  by 1 . 5  to   include  s torage  reclamation time. T h i s   r a t i o  has been 
est imated  for  SAC-1, and is t y p i c a l   f o r  MACSY'MA measurements  (although  actual time is highly 
dependent on amount of   system  f ree   s torage) .  The column l a b e l l e d  "eevs" ind ica t e s  number of exact 
evaluat ions,   "fevs"   f loat ing  point   evaluat ions.  

The f i r s t  column (n) is  the  degree. The next  two columns are derived from reference 1. The 
4th  and  5th columns are times and  counts  for  the PDP'10 translation  of  the  Collins-Loos  algorithm. 
The 6 , 7 ,  and 8 columns d e t a i l   t h e   r e s u l t s  of   us ing   f loa t ing   po in t   eva lua t ions ,   then   exac t   eva lua t ion .  
The las t  th ree  columns i n d i c a t e   t h e   r e s u l t s  when f l o a t i n g   p o i n t ,  and f l o a t i n g   p o i n t   i n t e r v a l  
a r i t hme t i c  were used. The r e s u l t s   i n   t h e  l a s t  column could  be improved for high  degree  polynomials 
by a t tempt ing   opera t ions   in   f loa t ing   po in t   ra ther   than   g iv ing  up on a complete  stage when an overflow 
o r   i n s u f f i c i e n t l y   p r e c i s e   r e s u l t  i s  encountered. 





5 
FLOATING  POINT  ISOLATION OF ZEROS OF A REAL POLYNOMIAL V I A  MACSYMA 

Bruce W. Char 
Un ive r s i ty   o f .Ca l i fo rn ia ,   Be rke ley  

ABSTRACT 

Given a square-free  polynomial P of degree n wi th   f loa t ing-poin t  
r e p r e s e n t a b l e  (real) c o e f f i c i e n t s ,  we would l ike  to  f i n d  n d i s j o i n t  
r eg ions ,   each   con ta in ing  a root of P. Exis t ing  methods (ref. 1, 2 )  can 
be slow because of t h e i r   r e l i a n c e  upon r a t i o n a l  arithmetic. We propose 
a faster technique   which   uses   on ly   f loa t ing   po in t  arithmetic. A MACSYMA 
f u n c t i o n ,  BOUND, was wr i t ten   which  when given  such a polynomial P ,  
produces n complex d i s c s  C [ i ] ,  each  containing a t r u e  root of P. After 
comput ing   t he   d i sc s ,  BOUND determines i f  they  are a set of i s o l a t i n g  
reg ions  for  t h e   t r u e  roots of P ( i . e .  t h a t  no two of t h e  C [ i ]  o v e r l a p ) .  
The rout ine  uses   the  Jenkins-Traub  zero-f inding algorithm (ref .  3 ) -  
MACSYMA’s ALLROOTS function- t o  get   approximations t o  t h e  ze ros ,   each  
approximation  becoming the c e n t e r  of a d i s c .  The r a d i u s  of each C [ i ]  is 
based upon error bound r e s u l t s   b y  Adams (ref. 4) and %itn (ref. 5 ) .  

BOUND runs i n  time O(n2), w i t h  a l l  c a l c u l a t i o n s   u s i n 2   t h e  
s tandard   f loa t ing-poin t  arithmetic of t h e  Decsystem-’0. As a compiled 
MACLISP r o u t i n e ,  BOUND has been  found to  be 10 t o  100 times faster than 
r a t i o n a l  arithmetic r o o t - i s o l a t i n g   t e c h n i q u e s   i n  SAC-I on the  Univac 
1110 and the  Decsystem-10  by P inker t  (ref. 1)  and  Col l ins   and Akritas 
( ref .  2 ) ,  on test  polynomials of degree 15 or less. It should  be  noted 
however, t h a t  BOUND does   no t  allow t h e  user t o  s p e c i f y  t h e  s ize  of t h c  
zero-containing  regions nor is it guaranteed t o  f i n d   i s o l a t i n g   r e g i o n s  
as the r a t i o n a l  arithmetic methods are.. It may also break down due t o  
underflow/overflow  during  intermediate  computations on i l l - c o n d i t i o n e d  
polynomials. A technique t o  e x t r a c t  t h e  b e s t  of both the  r a t i o n a l  and 
f loa t ing-poin t  arithmetic approaches would be to  use t h e  above  proccdure 
as a quick first a t t e m p t ,   r e s e r v i n g   r a t i o n a l  arithmetic for when thc 
i n i t i a l  method fa i ls .  

We a n t i c i p a t e  several devclopnents tha t  will improve or extend 
BOUND. Since t h e  Jenkins-Traub algorithm and Adams’s and Smith’s 
r e s u l t s  work for  polynomia ls   wi th   complex   coef f ic ien ts ,   the   addi t ion  of 
complex arithmetic t o  IIACLISP w i l l  allow BOUND t o  be   eas i ly   ex tended  t o  
work i n  that  g e n e r a l  case. Because t h e  q u a l i t y  of the zerof inding  and 
t h e  rad i i  of the C [ i ]  w e  in   pa r t   dependen t   on  t h e  p r e c i s i o n  of t h e  
f loa t ing -po in t   r ep resen ta t ion ,  BOUND would  produce smaller r e g i o n s  i f  
implemented i n   d o u b l e   p r e c i s i o n .  S t i l l  be ing   i nves t iga t ed  are the 
improvement of the  e x i s t i n g  error bounds,  and  development of‘ methods 
t h a t  can be appl ied  to  2olynomials with non- ra t iona l   coe f f i c i en t s .  
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PRESERVING  SPARSENESS IN MULTIVARIATE POLYNOMIAL 
6 

FACTORIZATION 

I .  Paul S. Wang 
Laboratory for Computer Science & Mathematics Department, MIT 

INTRODUCTION 

Working on heuristic programs for factoring  polynomials  over the integers, Claybrook has 
come up  with  many  fairly  large  multivariato polynomials. He  has  proposed  ten of these 
polynomials as test  cases for any algorithmic  app:roach to factoring (ref. I). Attempts were made to 
factor these ten  polynomials  on  MACSYMA (ref. 2). However it did not  get  very far with any of 
the  larger polynomials. At that time MACSSMA used an  algorithm  created by Wang  and  
Rothschild. This factoring algorithm has  also  been  implemented for  the symbolic manipulation 
system, SCRATCHPAD (ref. 3) of IBM. A closer  look at this  old factoring alporithm (OFA) (ref. 
4) revealed  three problem areas, each of  which contribute to losing sparseness and  intermediate 
expression  growth. This study led  to effective ways  of avoiding these  problems and actually to a 
new factoring algorithm (NFA) (ref. 5). (ref 6). 

T h e  three problems are known  as the extraneous  factor  problem, the  leading  coefficient 
problem,  and  the bad-zero problem. These problems are examined  separately  in the following 
three sections. Their causes and effects are set forth in detail. Then  the ways  to avoid  or lessen 
these problems are described. 

T h e  NFA has been  implemented on  MACSYMA. Its performance on the ten polynomials 
proposed by Claybrook is tabulated in  Appendix A. 

AVOIDING EXTRANEOUS FACTORS 

Consider  factoring U(x, x? ..., xt) E Z[x, : cp  ..., X,] which is primitive and  squarefree. U is 
reduced  to a polynomial  with  only  one  variable by substituting  selected integers for x2, ..., xt. Let 
U(x) - U(x, u2, ..., ut). Factors of U are constructcd  from the irreducible factors of U(x) by a kind 
of Hensel process. 

N nJ 

An extraneous  factor in  this  context is a univariate factor of U(x) over 2 which does  not 
lead to  an actual  factor of U(x, ..., x,), after multivariate  p-adic  construction. Consider, for  example, 

U(x,y,z) - (x y 2 1 3 ,  4 3  

If the evaluation y = z - I is made,  then 

u - ( x ,  1, 1) = (x3 + I) - (x2 - x + l)(x + 1). 

Since U(x,y,z) is irreducible  over 2, neither of the two univariate factors can  lead to a real  factor 
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of U(x,y,z). They  are all extraneous factors. 

Obviously  the cause of getting extraneous  factors is unlucky points of evaluation. There 
are three  undesirable  effects of having such  factors i n  the  factoring process. Firstly, a 
combinatorial  search  for  true  factors  has to be  done  at  the  end of the  factoring  procedure. 
Secondly, the multivariate p-adic construction  often has to  be  carried out all the way to reach the 
bound  for  the total degree, h, of U(x, x2,  ..., xt )  in x2, ..., xt ,  as opposed to reaching rh/rl. on the 
average,  if all T factors  are not  extraneous.  Thirdly,  the  extraneous  factors  grow  in  size and  
density  as they go  through  the multivariate construction  process, quite uninhibited by the size or 
density of the given polynomial. 

T o  illustrate the growth phenomenon, let us continue the example where Fo(x) - x2 - x + I, 
Co(x) = x + 1 and 

where 5 is the ideal (y-1,  2-1). 

T h e  multivariate p-adic construction  produces from Fo and Go polynomials Fi and  Gi  such 
that 

U f FiCi mod @+', 6) 

where b is a prime  or prime power  bigger than the coefficient bound. 

T h e  first few Fi and  Gi  are shown  below with 6-625. 

F1 = 22 + X (-2 + 207Y - 1) + 211Y + X' + 1 
GI = Z - 207Y + X + 1 

FQ Z2 + X((207Y - I)Z - 278Y2 + 207Y - 1) 

+ (2 - 203Y)Z + 2815Y2 + 211Y + X2 + 1 

GQ = (1 - 20'7Y)Z + :>78Y2 - 207Y + X + 1 

Therefore i t  is clear that  extraneous factors  should be avoided if at  all  possible. T h e  
approach taken  here is  to evaluate the given  polynomial U(x, ..., x t )  at several different sets of 
points {u2, ..., ut] and to factor these  resulting univariate images  over Z. The  set that  gives  the 
minimum  number of factors will be  selected. This means that the requirement  in OFA of getting 
many zeroes and plus- or minus-one's  as  substitution  values  has to  be relaxed. For the  purpose of 
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avoiding extraneous  factors  the conditions on the (zits are: (1) degfi(x) = degU(x ,...,xt) in x and 
(2) f h )  is squarefree. If  these ui)s are generated at random,  then the probability of getting an  
extraneous  factor  for any one set  of uis is  low. 

T o  use several different substitutions  arid  choose  the should virtually  eliminate the 
possibility of the occurrence of extraneous factors.  Experiments on the  machine  indicate that  two 
to three  different substitutions will almost  always  suffice. Furthermore, the  different  univariate 
factorizations can be matched for degree  compatibility  among the factors. This, of course, provides 
additional  information on the number of true factors. 

Although  one would  like  to  use  random  evaluations,  one  would  also  like  to  use integers that 
are small in size so that  the coefficients of u(x) are not  unnecessarily  large. In the  program,  the 
substitution sets are generated randomly  modulo a prime  which  is  increased  in  size for each  new 
set. 

SOLVING THE LEADING  COEFFICIENT PROBLEM 

The given polynomial U(x, ..., x,) can  be  written for  a selected main variable, say x ,  in the 
form 

u = vnx" + ... + v, 

where  Vi E Z[xz, ..., x t ] .  Vn z 0 is the  leadirg coefficient. I n  this  paper,  the  term  "leading 
coefficient" always  means that of the main variable, x. Some older factoring  algorithms,  for 
example,  (ref. 7), require a monic input.  If Vn z 1 then the change of variable x = y/Vn is made 
and  the monic polynomial 

is factored. An inverse transformation is  required on the  irreducible factors thus  obtained. This 
approach is impractical because  coefficients of W are much larger and denser than those of U. In 
OFA no such monic transformation is made.  Insread, a leading  coefficient  recovery scheme is used. 

In  the  multivariate case, the  leading  coefficient problem is caused by V n  not  being  an 

integer. Let f ( x )  = (x2 + I), g(x> = (x2+ x + 1) and 0 = f ( x ) g ( x )  over Z. In doing  the  multivariate p- 
adic construction  one computes the difference 

R(x, ..., x r )  = f(x)g(x) - U(X, ..., X J  

If Vq is not an integer, then degree  of R in x is 4, which is the degree of U in x. This means for 

example  one may  get something like c(x) = 3x4 + 2x as  the  coefficient for, say, the (x2  - u2) term  in 
R. And  the following congruence has to  be  solved 
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If deg(c(x)) < deg(f) + deg(g), there exist  unique a and fi  with deg(a) c de&) and  deg(8)  deg(f) 
satisfying af + Bg = c. However, this is  not the cilse for equation (I). In  fact,  one has 

-5f + (3x2  - !!x + 5)g = c(x) 
(3x 2 + 3x - 2)f + (-3x + 2)g = c(x) 

and  an  infinite number of linear combinations of these two equations.  Because a(%) and B(x) are 
used to correct the factors and because the true factors and their homomorphic images are  unique, 
complications  arise if a and 6 are nonunique. In OFA a unique  selection  is made  based on  the 
condition  deg(a) 5 deg(g),  deg(8) < deg(f). However  this  choice  can  not be more appropriate  than 
the condition  deg(a) < deg(g)  and deg(0) <deg(f). In either  case, the  factors thus constructed are  
only correct u p  to units in the underlying  coefficient  domain of truncated p-adic polynomials  in 
x2, ... X,. Therefore they often are much  denser than necessary. This also explains why correct 
coefficients  have to  be  recovered after the p-adic  construction. 

Dealing with the  leading coefficient problem in the context of the  polynomial  greatest 
common  divisor  computation, Yun (ref. 8)  suggested that the leading coefficients of the  given 
polynomial  or  an easily  computible  divisor of it be  "imposed"  on the  univariate  factors for  p-adic 
construction. The  solution  to the leading  coefficient  problem here is to "predetermine" the correct 
leading coefficients of the factors of U(x, ..., x,). 

To do  this, the leading coefficient of U(x, ..., x,), Vn, is  factored over 2 first. Let 

e l  e2 @k V = F  F n 1 2 ' "  Fk 
where Fi are distinct irreducible polynomials in Z[x2, ..., xtl .  Some of the Fi's  may be integers.  Let 
us  assume  that  Vn # an integer, for the case  is trivial otherwise.  Let Fi = Fi(a2, ..., a,). The  integers 
(a2, ..., at] are chosen  to  satisfy the two conditions  given in the previous section, and,  for  leading 
coefficient  distribution,  the additional condition:  For  each nonintegral Fi, Fi  has  at least one  prime 
divisor pi which does not divide any i? ., j f i, or  the  content of g(x). 

r-.J 

rc, 

J 
Let u be  the content of U(x) and  u(x) = U/u. Now u(x) can be  factored  into  distinct 

n) N 

irreducible  factors over 2. 
u(x) = U l i X )  ... ur(x). 

Assuming  no  extraneous factors, then U(x ,...,xt) has r distinct irreducible factors  Gi(x, ..., x,), i = I ,  ...,I-. 
Let Ci(x p . . ,  x r )  be the leading coefficient of Gi, Ci  = Ci(a2, ..., a,) and Gi(x,a2, ..., a,) = .uiui(x)  where O i  

is  some  divisor of u. T h e  following lemma  allows one to determine  Ci(x2, ..., x, )  up to  integer 
multiples. 

N 

Lemma  If  there  are no extraneous factors  then, for all i,j and m, F T  divides Ci if and only if Fly 
divides Ic(ui)u. 
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Proof If FTICi then ?y divides Ci = lc(ui)ui. On the  other hand, if F T  does not divide Ci then 

with s .  < m. Thus pm does  not divide Ci which  implies that Fy does  not divide 

rJ 

~ ‘ 1  wsk 
Fk J J 

cu 
Ci =F1 .e. 

lC(Ui)U. 

T h e  readers are referred to &I for details of this  leading  coefficient distribution algorithm. 
T h e  process will be illustrated here by an example.  Consider 

2 2 2  2 2 2 2  
U(X,Y,Z> = ((Y -2 >x + y - z * (4(y + z)x + xyz - 1) * (yz x + 3xz + 2 y ) ,  

Therefore, we have F1=2, F2=y, F3=z, F4=y + z and F5=y-z. The sets of integers {5,-12], {-l+,~?,j 
and (-23,3j saLsfy thzthreeAequiremz1ts and  al;  ‘ive  three  factors Lor U(x). Let us use y- 5 a n d  
z- -12. T h u s  F1= 2, F2= 5, F3= -12, F4= -7 and j5= 17. Factoring U(x) = U(x,5,-12) one  obtains 
U ( X >  = 2UlU2U3 
rJ 

where 

U, = 1 1 9 ~ ~  + 139, 

= 28x2 + 6 0 ~  + I ,  

and u3 = 360x2 - 1SX + 5. 

Now 119 - -F4F5 gives C1 - -F4F5 - ( z  2 2  - y ). Similarly, C2 = 4(y + z).  And 2:::360 = F2F32 implies 
that  C3 = yz2. These  are correct  leading  coeffic;.ents of the true factors of u(x,y,z) up to integer 
multiples. 

drrl n J , d  

COMBATTING THE BAD ZERO PROBLEM 

d 

From U(x) = f(x)g(x) over Z with  f(x) and g(x) relatively  prime, the  multivariate  p-adic 
construction  algorithm of OFA computes the difference 

R(x ,... X J  = f(x)g(x) - U(X ,... xt) 

which is congruent to  zero  mod s, 2 = (x2 - aP..xt - at). Now R can be expressed  in the  form 
R c ~ ( x ) ( x ~  - ~ 2 )  + c ~ ( x ) ( x ~  - “3) + ... + c,(x)(x, - at) + D(x,..,xt). 

where  the ui’s are  the integers of evaluations  and D E 0 mod 5. . T h e  goal  is to obtain  the 
coefficients cp(x),  ..+(x). In other words, we  need the  coefficients of the linear terms in the power 

2 
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series expansion of R at x2 = a2, ..., xt = at. In  general, for the stage of the p-adic construction where 

the  residue is zero mod 2 but nonzero mod ?", the  coefficients of the degree i terms in the  power 
series  form of R will be needed. One way  to do this  is to substitute yi + ai for xi and work with 
U(x,y2 + u2,...,yt + at) expanded.  After  the  substitution, 5 becomes (92 ,...,ye) and  obtaining 

coefficients of terms in y2,...,yt of any  degree  is  very easy. Furthermore modulo operations  with 5 i 

are  simply truncations. - 

However substitution and expansion  greatly  increase the size and density of U. For  instance, 
a term becomes (y2 + (y3 + a3lb (y4 + a4lc which has (a + l ) (b  +.l)(c + 1) terms when 
expanded.  The exponential growth is  worst if all  ai's are not  zero.  Hence the  name  "bad-zero 
problem." This growth problem  is so bad that the factoring program may run  out of core for  
moderately-sized polynomials. 

Therefore, such substitution should not  be  made.  If R a 0 mod 2, and R $0 mod 5 '+', 
then  the coefficient of (x2 - a$, for example, can  be obtained by the  formula 

A typical term of degree i in R ( x  ,..., xt) looks like 

1 t 
e2 e 

c (x )  (x2-a2) . . . (x t -  a t )  , e +...+e = i. 
t 

To obtain c(x) one uses the general  formula 

e2 e 
1 d ... - d R ( x y  ... Y X t >  ( 3  1 t 

e,! ... e: dx2 dx t x . =  a 
1 i  

This method has no exponential  expres:;ion  growth  problem.  Polynomial differentiation 
and evaluation  being relatively  inexpensive, it should be an  improvement over the OFA which uses 
substitution  and  expansion. Many  polynomials that can  not  be factored by OFA because of storage 
problems  should be doable by this method.  However, the number of possible  terms in the  form (2) 
can  be  large, which  means (3) may  be  computed  many  times. 

In the worst  case, i equals h, which is the total degree of U(x,x2, ... xt) in x2. ... x The  number 
of possible terms in the  form (2) with e2 + ... + I ? ~  = h is then given by( h 4- t - t2)which is of 

order o(h ) I f  h is much larger than t. However if there are no extraneous  factors and if the 
leading coefficients of the factors are correctly  determined, then (i) the maximum degree of any 
x., i = 2, ..., t in the factors are much less than  h and (ii) the p-adic  construction often need only be 
carried  out to i = [h/rl if there are I factors.  Even so, experiments  on the  machine  indicate that 
many  applications of formula (3)  result in zero. In other  words, too often we are looking for terms 

t-2 ' t - 2  

1 
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that  are not 'there. The  way to improve the situation is  to do the p-adic construction variable-by- 
variable  instead of introducing all  variables x2, ..., xt at once. Thus  the  actual  factors  of 
U(x,x2,a3, ..., at)   are  constructed  first. From these factors in  two variables,  the  true  factors  of 
U(x,x2x3.a4,...,at) are then constructed, etc.  We shall  not go into details  here. Interested readers are 
referred  to [61 where a linearly  convergent  variable-by-variable  parallel  p-adic construction is 
described in full detail. 

T h e  author wishes  to thank Joel  Moses for suggesting this paper and Miss Dianne  Foster 
for  careful copying and editing. 
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APPENDIX A 

Contained here a r e  ten factoring  examples  done by MACSYMA using 
the o ld   fac tor ing   a lgor i thm (OFA) ( r e f .   4 )  and the new factor ing  a lgori thm 
(NFA) ( r e f .  6 ) .  These polynomials  are  proposed by C1 aybrook  (ref.  1 ) who 
fac to red  them using a heurist ic approach. To conserve  space, these polynomials 
a r e  g i v e n  i n  f ac to red  form  below. The t i m i n g  f o r  OFA and NFA was done on  a 
DEC KL-10. Claybrook's timings are  obtained  from (ref.  1 ) .  He d id  his 
timing on  a Univac  1108. Times l i s ted  i n  Table 1 a re   i n - seconds .  A * i n d i c a t e s  
r u n n i n g  ou t  o f  s t o r e .  

FACTORING  TIME  COMPARISONS 

Polynomial 

b 
7 
8 
9 

10 

0 FA N FA C1 aybrook 

* 3.30 
0.96 0.95 * 7.83 * 5.12 * 9.07 * 5.92 
0.27 0.28 
3.398 0.58 

10.52 2.82 
79.68 0.58 

174.65 
6.85 

10.06 
149.26 
160.03 
172.16 

1.97 
25.38 
67.49 

129.01 

TABLE 1 

The ten polynomials 

4 3  2 2  4 5 6  2 3  5 3  2 3  
(1) (w z - X Y  z - w  x Y - w  x Y) ( - X  z + Y Z + X  Y )  

4 6  2 3  2 2 2 2  5 4 2  3 3  
(W z + Y  2 - w  x Y z + x  2 - x  Y - u  x Y)  
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3 2 
( Z + Y + X - 3 )  ( Z + Y + X - Z I  

2 16 4 12 12 3 3 2  15 20 
(3) ( - 1 5 Y  Z +29W X Y Z + 2 1 X  Z + 3 W  Y I 

31 12 28  18  14 2 2 21 2 
( - z  - W  2 + Y   - Y  + x  Y + x  + W )  

4 2   2 3 2   2 3  2 2 2 3 
(4) U X Z  (6W Y Z + 1 8 U  W X Z  + 1 5 U Z   + 1 8 U  W X Y )  

4 4   2 3  4 3 4   2 4 4 3  
( - 4 4 U W X Y  Z - 2 5 U  W Y Z  + 8 U W X  Z - 3 2 U  W Y Z 

2 2 3 3   3 2  2 2 2  2 3  2 
+ 4 8 U  X Y Z - 1 2 Y  Z + 2 U  W X  Y - 1 1 U W  X Y - 4 W  X) 

2 2 2  2 2 2  2 2  2 2 2  
(5) ( 3 1 U   X Z + 3 5 W  Y + 6 X Y + 4 0 W X )  (U W X Y  Z + 2 4 U  W X Y  Z 

2 2 2  2 2  2 2 2 2   2 2 2  
+ 1 2 U  X Y  Z + 2 4 U  X Y Z  + 4 3 W X Y Z   + 3 1 W  Y Z  + 8 U  W Z 

2 2  2 2 2  2 2 2 2  2 2  2 2  
+ 4 7 U  W Z + 1 3 U W  X Y + 2 2 X Y   + 4 2 U  W Y +29W Y + 2 7 U W X Y  

2 2 2 2  2 2  
+ 3 7 w  X z + 3 9 U W X Z + 4 3 U X   Y + 2 4 X Y + 9 U  W X  + 2 2 U  W )  

3 3 3   2 3  3 3 3 3 2  3 3 2  
( 4 3 U X  Y Z + 3 6 U  W X Y Z  + 1 4 W  X Y Z - 2 9 W  X Y  Z 

2 2 2 2 2  2 3 3 2   2 3  
- 2 8 U  W X Y Z + 3 6 U  W X Y  Z - 4 8 U U X  Y Z + S U W X  Y 

2 3  3 3 2   3 2  2 2 3 2  
+ 3 6 U W  Y - 3 U W Y   - 2 3 U W X  Y + 4 6 U X  Y + 8 X Y   + 3 1 U  W Y 

2 2  3 2 
- 9 U  Y + 4 5 X   - 4 6 U  W X I  

( 7 )  
3 

( Z + Y + X - 3 )  
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3 3 2  3 2 3  2 
(3Z + 2 W Z - 9 Y  - Y  + 4 5 X )  ( W  z + 4 7 X Y - W )  

4 5  5 3 4   2 4   2 3   4 2  4 
(9) ( - 1 8 X  Y + 2 2 Y  - 2 6 X  Y - 3 8 X  Y + 2 9 X  Y - 4 1 X  Y + 3 7 X )  

5 6  2 3  4 
( 3 3 X  Y + 1 1 Y  + 3 5 x   Y - 2 2 X )  

6 3 2  3  2 2 2  2 3 
(18) X Y Z (3Z + 2 W Z - 8 X Y  + 1 4 W  Y - Y  + 1 8 X  Y) 

2 3 2 3  2 2 
( - 1 2 W  X Y Z  + w  z + 3 X Y   + 2 9 X - W )  

6 4  
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ON THE EQUIVALENCE OF POLYNOMIAL 
GCD  AND  SQUAREFREE  FACTORIZATION  PROBLEMS 

David  Y.  Y.  Yun 

Mathematical Sciences Department 
IBM Thomas J. Watson  Research  Center 

Yorktown  Heights,  New  York, 10598 USA 

(Extended  Abstract) 

The  importance of computing  greatest  common divisors (GCD's) of polynomials has been 

recognized  more than  a  decade ago. All symbolic  and  algebraic  computation systems must 

provide some form of polynomial GCD capability  in order  to handle the  fundamental  extension 

field of rational functions.  The complexity of the  GCD problem is aggravated by the  fact  that 

most of these  systems use an  expanded  canonical  representation for polynomials, which  is at  its 

worst, in terms of space  requirement  and comprehensibility,  when the polynomials are multivari- 

ate. Much work has been done to understand  and improve  algorithms for  computing  GCD's  over 

the past decade  (ref. 1 ,  2, 3).  But the  need for a symbolic  system to maintain  relatively  prime 

numerators  and  denominators in a rational function  continues  to cause a large  amount of 

computer time to  be  spent  computing  GCD's. 

In 1974, Brown (ref. 4) paved the way to  a  "factored"  representation of rational . 

functions for symbolic  systems. The  idea is that if both  the  numerator  and  denominator  are 

factored  into irreducible  polynomials (primes in the polynomial  domain) then  the  computation of 

GCD's simply involves finding the .minimum powers of identical primes. Unfortunately,  there  are 

two  drawbacks  to  Brown's  approach.  First,  such  a  ''factored"  representation,  though  maintaining 

the relatively  prime property of numerator  and  denominator  (with minimum effort),  does  not 

result in canonically represented polynomials - that is, identical rational  functions may appear 

65 



differently  in  the  numerator and  denominator polynomials. The  other is, as  Brown  correctly 

pointed  out,  factorization of polynomials into primes is too  expensive  an  operation, so that his 

"factored"  representation  can  only look for  ''sharable  factors"  by  inexpensive  means  and  maintain 

such  partially factored  forms.  Consequently,  equivalence of rational  functions in  such  a  repre- 

sentation  can  only be  recognized  by  subtractions  and,  in  most  cases,  expansions  as well as GCD 

computations.  Even  though  some  symbolic  systems  have  successfully  utilized  the  "factored" 

representation (mainly in terms of the  ability  to  comprehend  expressions), it is not  clear  what is 

the  actual  trade-off  between  the  effort  for GCD computations  that is  presumably  saved  and  the 

sacrifice of canonical  form  with  the  possible  gain of maintaining  some  "sharable"  factors. 

In 1976, Yun published  an  improved  algorithm for  finding  the  "squarefreel'  factorization 

of a  polynomial  (ref. 5). By definition,  a  polynomial  is  said to  be  squarefree if it  has  no  divisor 

(or  factor) of multiplicity greater  than 1. Thus,  the  problem of finding  the  squarefree 

factorization  (abbreviated  as SQFR) is that of finding  polynomials 

P,,  P,, ..., Pk such  that P = P , ' P , ~  ... pkk, where Pk # 1 ,  each pi is squarefree,  and 

gcd(Pi, Pj) = 1 for all  i # j S k. 

Although the  squarefree  factorization is not  quite  the  complete  factorization of polynomials into 

primes, it  is a  canonical  form  for  polynomials,  as Yun pointed  out.  In  fact,  a  result of Knuth 

indicates  that  the  probability of the  squarefree  factorization being the  same  as  the  complete 

factorization  for  an  arbitrary polynomial  is  approximately 4/5. Such  a  result further  increases  the 

usefulness of a  squarefree  representation  for polynomials  which  has no parallel  in the  case of 

integers (i.e.,  given  an  integer,  there is no  known  algorithm  that will produce  its  squarefree 

factorization  without  finding  its  prime  factorization  first). On  the  other  hand,  squarefree 

factorization  constitutes an essential  step in  polynomial factorization  (ref. 6 ,  7, 8) , partial 

fraction  decomposition of rational  functions  (ref. 9), and  rational  function  integration  (ref. 10, 1 1 ,  

12). 
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The  mathematical  theory  for  the new  algorithm  is  given  by the following three  results  (ref. 

5 ) :  

Fundamental  Theorem of Squarefree Decomposition: 

If P(x) is a  primitive  polynomial  in D[x] where  D is a  field of characteristic 0 and 

the  squarefree  factorization of P is  P,P22...Pkk, then gcd(P,P‘) = P2P,2...Pkk-2. 

Corollary 1: Let  D = gcd(P,P’), then P’/D - (P/D)’ = P II (i-1)  P. ll Pj . 

Corollary 2: gcd(P/D, P’/D - (P/D)’) = PI .  

Based on  these  results,  an  algorithm  for  finding  the  squarefree  factorization of a  polynomial P(x) 

can be  given. Let  (G.  A*, B*) + gcd(A,B)  denote  the  computation of GCD of A  and  B  and 

assignment of the GCD  to G ,  A/G  to  A*,  and  B/G  to B*. 

Yun’s algorithm  (ref. 5) is as  follows: 

k 

1 i=2 ’ j+i 

(W, C,,  Dl) + gcd(P,P’); 

For i = 1 ,  step 1, until Ci = 1 ,  

DO  (Pi, Ci+l,  Di+l) 6 gcd(Ci, Di - C i ) .  

Yun’s 1976 paper  got  as far  as comparing  three  algorithms  for  squarefree  factorization  and 

showing the  superiority of the new algorithm both  experimentally  and by algorithmic  analysis of 

certain  models  for  computation.  However,  there  was  no  attempt to derive  any  specific  expression 

for  the  computing  cost  bound  nor  any  reducibility  result.  In  this  paper, we  will show  that  the 

total  computing  cost of the  squarefree  factorization of a  polynomial  with  degree  n  (i.e. SQFR(n)) 

is  bounded by and, in fact,  equal  to  2*GCD(n).  The crucial  observation is that  the  inputs  to calls 

of the  GCD  function  in Yun’s  new  algorithm are  more  “balanced1’ in terms of degrees  than  those 

algorithms  previously  proposed.  Since the  reduction of squarefree  factorization  problem  to GCD 

problem  hinges on  the use of a  two-argument  function (GCD)  to  do  the  job of a  one-argument 

function (SQFR), the balancing of degrees  becomes  especially  important.  (The  other  algorithms 

for  squarefree  factorization  turn  out  to call on  GCD  functions with one  input  far  more  dominant 

in  degree  than  the  other.) 
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Thus,  we will show  that a closer  re-examination of Yun's 1976 paper reveals the reduci- 

bility of SQFR  to  GCD.  The  natural  question  that follows  is whether GCD is reducible to SQFR. 

That is answered  affirmatively  by  the  other half of this  paper  and  the  derivation will actually 

suggest an algorithm  for  computing  GCD's when  input  polynomials are  already  represented by 

their  SQFR  form. 

The  fundamental  theorem  for  this  reduction  process is 

Theorem:  For  squarefree polynomials A  and B, 

gcd(A,B) = A*B/sqfrpt(A*B) 

where the  squarefree part of P = sqfrpt(P) = PlP,...Pk, 

if P = PI  'P2,...Pkk, hence,  a  by-product of sqfr(P). 

This  theorem, which is reminiscent to the  relationship  between  GCD  and  LCM, suggests  an 

obvious way of reducing GCD  to  SQFR.  That is, for  F = Fl IF22...Fkk and  G = G11G22...G,m, 

compute  gcd(Fj,  Gj)  for all i  and j by  the  method of the  theorem  since  each  Fi  and G j  is square- 

free.  (Note  that this type of ''cross  GCDing" is also  necessary for  the  "factored"  representation 

of  Brown.)  Unfortunately,  there  are k*m GCD's  required which forces k and m into  the 

computing  cost  expression  and  affects  the  reduction  process of GCD to SQFR - we are looking 

for  strong  reducibility of GCD  to  SQFR with constant  cost  for  transformation of problems,  as  in 

the  reduction of SQFR to GCD case  where  the  constant is 2.  

A corollary of the  theorem  provides  a  hint  for  a  different  approach. 

Corollary:  For  polynomials  F  and G, let  FS  and GS  denote  sqfrpt(F)  and  sqfrpt(G) respectively. 

Then  sqfrpt(gcd(F,G)) = gcd(FS,GS) = FS*GS/sqfrpt(FS*GS) 

Thus,  a  polynomial D,=sqfrpt(gcd(F,G))  can be  computed,  according to the  corollary, from 

sqfrpt(F) = F , F  ,... F, and  sqfrpt(G) = G I G  ,... G,. 

Similarly, we compute Dj = gcd(F  j...Fk,  Gj...Gm)  according  to  the  corollary  for all j up to 

min(k,l).  Finally, it  will be  shown  that  gcd(F,G) = D1D2...Dmin(k,m). 
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The  important  technique  in  this  case  is "triangularization". As opposed to the k*m cross 

GCD's,  squarefree  parts of F and G are  peeled off successively and collectively. The  total  cost of 

computing  the D's, hence  the  GCD, via the  method of the corollary adds  up to  less  than 

6*SQFR(n),  where  the  degrees of F and G are assumed to  be n. In  other  words,  GCD(n) 

problem is strongly reducible to  SQFR(n) with  a multiplying constant of 6. 

If F and G are  already  in SQFR form,  then  the  cost  for  computing  their GCD is bounded 

by  4*SQFR(n), i.e., the  cost  for  computing GCD of polynomials in SQFR form is not more than 

twice that of putting  them in SQFR form  originally.  Another  potential  advantage of such  a GCD 

algorithm is that  the  computing  cost will be  generally dependent  on  the minimum of the  degrees 

of the  input polynomials  when the  degrees  are  not  equal, mainly because  the  computation goes on 

only until.min(k,m) is reached. Previously, all GCD algorithms have shown  a  strong  dependence 

on  the maximum of the  degrees, which is the  cause of the need to  "balance"  the  inputs of calls to 

GCD functions,  as noted  earlier. 

At  this  point, we can  draw  the following  conclusion 

Theorem: GCD(n) problem is equivalent  to SQFR(n) problem. 

It should be  noted  that  the derivation of above  results  are based  on the  assumptions  that 

a2 M(n) 2 M(a n)  2 a M(n) for all a - > 1 

where M(n) stands  for the cost  for multiplying polynomials of degree n (ref. 13, p. 280). Let 

X(n)  denote  M(n),  GCD(n), or SQFR(n).  Then  the  satisfiability of the following condition  has 

also  been  assumed: 
k k 

i = l  I=1 
Z X(ni) 5 X(Z ni) for  any  ni in N. 

We  point out,  however,  this  condition is easily satisfied by the  above  operation  costs, so that  it 

represents  no  severe restriction on our result. 
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DIFFERENTIAL  FORM  ANALYSIS  USING  MACSYMA 
* 

Hugo D. Wahlquist 
Jet  Propulsion  Laboratory 

California  Institute  of  Technology 

ABSTRACT 

' The  calculus  of  exterior  differential  forms  has  increasing  applications  in 
several  areas  of  applied  mathematics  and  theoretical  physics.  The  formalism 
was  developed  initially  by E. Cartan  (ref. 1) for  his own research  in  differ- 
ential  geometry.  Modernized  and  updated  by  present  day  mathematicians,  it  has 
become  a  standard  tool  for  mathematical  work  in  the  differential  geometry  of 
manifolds  (refs. 2 and 3 ) .  

With  that  genesis  it  is  not  surprising  that  the  techniques  of  differen- 
tial  forms  are  useful  in  general  relativity  (ref. 4 ) .  Many  problems  in  rela- 
tivity  can be  concisely  expressed  and  efficiently  solved  using  differential 
forms  together  with  Cartan's  "method  of  moving  frames."  The  calculational 
effort  involved  is  often  significantly  reduced  compared  to  the  standard  tensor 
formalism.  Other  areas  of  theoretical  physics  in  which  differential  forms  have 
utility,  as  well  as  elegance,  include  Hamiltonian  mechanics,  statistical 
mechanics,  and  the  calculus  of  variations  (refs. 5 and 6 ) .  

In  recent  years  the  geometric  techniques  of  exterior  calculus  developed 
(again  by  Cartan)  for  systems of partial  differential  equations  (refs. 1 and  7) 
have  been  applied  to  physically  important  nonlinear  equations.  Many  results 
on  transformation  properties,  invariance  groups,  and  conservation  laws  can  be 
derived  directly  and  systematically  using  these  methods  (ref. 8 ) .  When  the 
methods  are  applied  to  nonlinear  equations  which  exhibit  the  recently 
discovered  "soliton"  phenomenon  (the  Korteweg-de  Vries  equation,  for  instance), 
a  beautiful  algebraic  structure  associated  with  the  equations  is  revealed. 
These  so-called  "prolongation  structures,"  which  are  essentially  "free"  Lie 
algebras,  can  be  shown  to  lead  directly  to  solution  methods  such  as  the 
inverse  scattering  method,  Backlund  transformations,  and  exact  nonlinear  super- 
position  principles  (ref. 9). The  prolongation  structures  also  have  a  geome- 
trical  interpretation  in  terms of affine  connections  over  solution  manifolds 
(ref. l o ) .  From  this  viewpoint  they  appear  to  be  closely  related  to  non- 
linear,  gauge-invariant,  field  theories;  the  Yang-Mills  fields. 

* 
This  paper  presents  the  results  of  one  phase of research  carried  out  at  the 
Jet  Propulsion  Laboratory,  California  Institute  of  Technology,  under  Contract 
No. NAS7-100,  sponsored  by  the  National  Aeronautics  and  Space  Administration. 
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The u t i l i t y  o f   d i f f e r e n t i a l   f o r m s  is n o t   l i m i t e d   t o   p r o v i n g   a b s t r a c t  
g e n e r a l   t h e o r e m s ;   t h e y   a l s o   p r o v i d e   a n   e f f i c i e n t   c a l c u l a t i o n a l   t o o l   f o r  
d e r i v i n g   p a r t i c u l a r   r e s u l t s  irr spec i f ic   p roblems  ( re f .   .11) .  A s  i n   o t h e r  areas 
o f   ana lys i s ,   t he   compute r   can   be   o f   g rea t   he lp   i n   ca r ry ing   ou t   t he   ac tua l  
manipula t ions .   Exter ior   ca lcu lus   has   been   implemented   in  Pl/l-FORMAC by 
F. E r n s t   ( r e f .   1 2 ) .  The  major  purpose  of h i s  programs w a s  t o   f a c i l i t a t e   t h e  
use   o f   d i f f e ren t i a l   fo rms   i n   gene ra l   r e l a t iv i ty ,   a l t hough   t he   p rog rams  are  n o t  
r e s t r i c t e d   t o   t h a t   a p p l i c a t i o n .   R e c e n t l y ,  w e  h a v e   w r i t t e n  a small f i l e  of 
r o u t i n e s   i n  MACSYMA which w e  a r e   u s i n g   t o   p e r f o r m   d i f f e r e n t i a l   f o r m   c a l c u l a -  
t i o n s   i n   t h e   t h e o r y   o f   n o n l i n e a r   d i f f e r e n t i a l   e q u a t i o n s .   T h e s e ' r o u t i n e s  
a c c o m p l i s h   o n l y   p a r t i a l   i m p l e m e n t a t i o n ;   i n   f a c t ,   t h e  main r e a s o n   f o r   t h i s   p a p e r  
is  t o   a d v e r t i s e   t h e   n e e d   f o r   i m p l e m e n t i n g   e x t e r i o r   c a l c u l u s   i n  MACSYMA which 
c l e a r l y   h a s   t h e   f a c i l i t i e s   t o  do the   comple te   job .  My hope i s  t o  provoke 
enough i n t e r e s t   i n  someone su f f i c i en t ly   knowledgeab le   t o  do t h e  j o b  r i g h t .  

A l g e b r a i c a l l y ,   t h e   d i f f e r e n t i a l   f o r m s   c o n s t i t u t e  a Grassman algebra  over  
the   co tangent   space   o f  a manifold  involving  the  noncommutat ive  exter ior   product  
ope ra t ion ,   u sua l ly   deno ted   by   t he  wedge symbol, A.  The e x t e r i o r   d e r i v a t i v e ,   d ,  
' is  t h e   u n i q u e   o p e r a t i o n   o f   d i f f e r e n t i a t i o n   l e a d i n g   f r o m   o n e   d i f f e r e n t i a l   f o r m  
t o   a n o t h e r .  I ts  a p p l i c a t i o n   t o  a form  of  rank p r e s u l t s   i n  a form of  rank 
p + 1. 

When i n   a d d i t i o n   t h e   d u a l   t a n g e n t   v e c t o r s   o f   t h e   m a n i f o l d   a r e   i n t r o d u c e d ,  
new i n v a r i a n t   a l g e b r a i c   a n d   d e r i v a t i v e   o p e r a t i o n s   c a n   b e   d e f i n e d :   c o n t r a c t i o n  
between  vectors  and  forms,  and L i e  derivatives of  both  forms  and  vectors.  

The pape r   desc r ibes   t he  MACSYMA f i l e  which  has   been  wri t ten  to   perform 
these   opera t ions   and   d i scusses   the   improvements   and   addi t ions   which   a re   needed  
t o  accomplish a complete   and  eff ic ient   implementat ion.  Examples  of d i f f e r e n -  
t i a l  fo rm  ca l cu la t ions   a r e   a l so   d i sp l ayed .  
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ABSTRACT 

we descr ibe  a new computational  tool  for  physical  calculations. I t  i s   t h e   f i r s t  
computer  system  capable  of  performing  indicia1  tensor  calculus(as  opposed  to 
component tensor  calculus).  I t  i s  nou operational on the symbol ic  manipulat ion 
system HACSYMA.  We out l ine   the   capab i l i t ies   o f  the system  and descr ibe some o f  
the  physical   problems we have considered as w e l l  as others we are  examin ing  a t  
t h i s  time. 

I NTRODUCT I ON 

Symbodic or   a lgebra ic  computer manipulation systems a re   f i nd ing  a growing 

r o l e  in physics  by  performing complex calculat ions  u i thout  error.   Whi le symbo- 

l i c  manipulat ion  has been  used in  Quantum Electrodynamics, Quantum Mechanics, 

C e l e s t i a l  Mechanics and gravi tat ion  theor ies  ( ref .1)  , i t  i e  i n  t h e   g r a v i t a t i o n  

t h e o r i e s  where these systems are now becoming essential  tools.  Symbolic mani 

l a t i o n   g i v e s  one t h e   a b i l i t y   t o  guess at   exact   so lu t ions  o f   grav i ta t ional  f i  

equat ions  or use  approximation  procedures  to  f ind them (ref.2).  Symbolic  cal 

ta t ion . , '   a lso   p rov ldes  one the freedom to  consider  lengthy  problems  uhose sol 

9 

PU- 

e l d  

cu- 

U- 

t i o n  by hand  would  be  error  prone and could  take months. A recent  paper  reviews 

aome of  the  problems in g r a v i t a t i o n  which have been studied  using  symbol ic 

man ipu la t ion   as  ue l l  as the  computing systems which  are now in use  (ref.3). 
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of  coordinates  and th 

i e  employed in weak f 
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i s  

i e  

The usual symbol i c  computing system f o r   g r a v i t a t i o n   c a l c u l a t i o n s   o p e r a t e s ,  

In t h e   f o l l o w i n g  manner:  The user  of ten wishes to  study a p a r t i c u l a r   m e t r i c   a n d  

inputs each  spec i f i c  component r e l a t i v e   t o  a coordinate  system or noncoordinate 

frame. The system  then computes the  geometr ic   ob jects   or   d i f ferent ia l   equat ions 

o f  i n t e r e s t .  There a re  many types o f   r e l a t i v i s t i c   c a l c u l a t i o n s  khich computer 

systems  are  performing  (ref.31. We have had  such a system running on,flACSYMA 

s i n c e  1973. In  1974,  however, we began construct ion  of  a novel  package f o r  

per forming  actua l   Ind ic ia1  tensor   analys is  as opposed to  the  usual  component 

tensor   ca lcu lus.  The purpose o f   t h i s  paper i s   t o   desc r ibe   t he   cu r ren t   capab i l i -  

t i e s  o f  our  indicia1  tensor  manipulat ion system, ITMS. We s h a l l   a l s o   d e s c r i b e  

some o f   t h e  problems we have solved as well as o thers   o f   cur ren t   in te res t .  

INDICIAL TENSOR  UANIPULATION 

i jk.. 

rs.. . We represent  a tensor T as a funct ion  of  two arguments  which a re   t he  

l i s t s   o f   i n d i c e s .  A l i s t  i n  MACSYMA i s  a  sequence o f   i t s  elements  which  are 

separated  by comm'as and  enclosed  by  square  brackets. Thus we w r i t e   t h e  above 

tensor  as  'T(1r.s ,... 1,1i~,j,k,..11  while a scalar i s  represented  by a f u n c t i o n  

with empty I i s t s  such  as  P(Cl,[11. 

i n  IT f lS   o rd ina ry   d i f f e ren t i a t i on   o f  a tensor u i t h  respect   to  a coo rd ina te  
k 

x causes  the k index  to be appended onto  the  l is t ( tensor1  as  an  addi t ional  

argument to  the  tensor  funct ion.  Thus we represent T as T ( [ i ,  j l ,  [ l , k l .  

S i n c e   o r d i n a r y   d i f f e r e n t i a t i o n   i s  commutative, m u l t i p l e   o r d i n a r y   d e r i v a t i v e  

i n d i c e s   a r e   s o r t e d  in alphanumeric  order  causing  expressions  such  as 

T(li, j1,13,k,n,ml - T([ i , j I , [ l ,m,k,nl   to  vanish  automat ical ly  as  part   of  

MACSYMA's s i m p l i f i c a t i o n   r o u t i n e .  We may a l s o  declare a tensor  independent 

i j,k 

causes i t s   o rd inary   der iva t ive   to   van ish .   Th is   fea ture  

I d  approximations and a lgebra ica l l y   degenera te   met r i cs .  

. .  



uhere . the   Lo ren tz   me t r i c  appears  as a funct ion  of   the  metr ic  tensor.  We may 

a l s o   i d e n t i f y  a metr ic  by  enter ing  the command "me t r i c (g ) "   (a l l  ITHS 

f u n c t i o n  names and de f i n i t i ons   a re   w r i t t en  u i th double  quotes in  t h i s   t e x t )  

uhich enables HACSYHA t o   r a i s e  and louer  indices  of a tensor u i th  r e s p e c t   t o  

the   tensor  named  g. With such a d e f i n i t i o n  ue may employ the  "contract ' *  

command so that   the  statement  **contract(g([ i ,  j l ,  Cl)*g(CJ, C j , k l ) ) "   re tu rns  

"de l   ta(Ci1,  Ckll**. The Kronecker de l ta  as uel I as the  general  ized  Kronecker 

d e l t a   a r e   a l s o  used in  the  contract   rout ine  for   index  subst i tut ion.  The 

func t i on   * *de l ta (C1 ,11 ) * *   i s   t he  dimension of  the  manifold u i th  a d e f a u l t   o f  4. 

I n  con t ras t   t o  hand calculat ions,  one o f   t he   d i f f i cu l t i es   f aced  u i th  indi- 

c ia1  tensor   manipulat ion  is   the ease with uhich one  may create  expressions with 

more  than one covar iant  and contravar iant  dummy index u i th  the same symbol. To 

a v o i d   t h e   e r r o r  ue  employ an algor i thm in  ITMS whereby dummy ind ices  are  a lways 

represented  by  the  set  Xl,X?,...Xn. Whenever a dummy index i s  generated, a 

counter  i s  increased  by one and appended onto the X symbol t o  form a neu  index. 

Fo r  a g iven  met r ic   the   ca lcu la t ion   o f  a curvature  tensor may cause the  counter 

t o   r e a c h  a large number. Houever, expressions u i t h   m u l t i p l e  dummy i n d i c e s   a r e  

avoided.  Clear ly,  in  such a calculat ion,  many of  the terms are  capable o f  b e i n g  

combined. d i f f e r i n g   o n l y  i n  the  index number. S imp l i f i ca t i on  o f  t h i s   k i n d   i s  

c a r r i e d   o u t  by expanding  the  expression and apply ing  the  funct ion  ' * rename** 

which resets  the  counter  to  zero and  renames dummy indices in  each  of  the 

expanded terma. The resu l t ing   express ion   i s  then  the same order   o f   complex i ty  

a s  one  would f ind by hand ca lcu lat ion.  

f l u l t i p l e   c o v a r i a n t   d i f f e r e n t i a t i o n   o f  any tensor  density i s  based  upon  an 

algori thm  described  elseuhere  (ref.4). The resul tant   expression may be expres- 

sed in te rms  o f   Chr is to f fe l  symbols or  evaluated  for a p a r t i c u l a r   i n d i c i a 1  

m e t r i c  i f  one has been defined. 
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Other  features we have  implemented include a func t i on   ca l l ed   * *show**  

which d i s p l a y s  any indexed  object ui th i t s  appropriate  covariant  and  contrav- 

a r i a n t   i n d i c e s .  A func t ion   ca l led   * *n te rms**  u i l l  t e l  

t o   t h e  number o f  terms an expression would  have i f  fu 

ful for   avo id ing  the  manipulat ion  o f  an expression uh 

system i s   n o t  capable o f  s imp l i f y i ng  it. I f  too  large 

I the  user  the  upper limit 

I l y  expanded. T h i s   i s   u s e -  

i c h   i s  so l a rge   tha t   the  

the  user may use I'TMS t o  

s impl i fy   the  subexpress ions and combine them later  or  decide a new approach t o  

t h e   c a l c u l a t i o n   i s   a p p r o p r i a t e .  A function  cal led  "defcon"  al lows one t o  i m -  

pose  var ious  types  o f   .cont ract ion  proper t ies such  as  whether a g i v e n   v e c t o r   i e  

null or   uhether  a given  tensor i s  trace  free. A func t ion   * *geodes ic**   eva lua tes  

express ions in  coordinate systems i n  which und i f f e ren t i a ted   Chr i s to f fe l   symbo ls  

a r e   s e t   t o  zero. ITMS has  pattern  matching  rout ines  to  enable  the  user  to apply 

va r ious   cond i t i ons  on d i f ferent ia ted  tensors such  as the  Lorentz  condi t ions.  

A n o t h e r   f e a t u r e   i s   t h e   a b i l i t y   o f  ITMS t o   pe r fo rm  d i f f e ren t i a t i on  u i th  respec t  

t o   t h e   m e t r i c   t e n s o r  and i ts  der ivat ives.   This  enables ITMS t o  compute f i e l d  

e q u a t i o n s   f o r   a l t e r n a t i v e   r e l a t i v i s t i c  Lagrangians (ref.S)., ITtlS.also.  manip- 

ulates  the  numerical   tensor  densi t ies.  

To exempl i fy  the speed and a b i l i t y   o f   t h e  system we can  carry  out  

v e r i f i c a t i o n   o f   t h e   B i a n c h i   i d e n t i t y  (see any tex t  on r e l a t i v i t y )   g i v e n   b y  
i j ( k l r a )  

R '  - 8 by  expanding  the Riemann tensor in terms o f   C h r i s t o f f e l  symbol-s 

and emp loy ing   t he .s imp l i f i ca t i on   rou t i nes   o f  ITtlS in 4 seconds cpu  time.  Here 

the  parentheses  imply  symmetrization  of  enclosed  indices,  the  semicolon i s  

c o v a r i a n t   d i f f e r e n t i a t i o n  and the hook denotes  anti-symmetric  indices. As 

another  exampler  the  Balakram  identity  (ref.6)  which i s  R v  - 0 can  be 

v e r i f i e d  in  40 seconds  cpu time. 

i j  

k t :  i j 

f lany  ca lcu lat ions in grav i ta t ion   a re   s t ra igh t fo rward  u i th  ITflS. The d e f i n -  

i t i o n s  of t h e   C h r i s t o f f e l  symbols, curvature  tensor, and var ious  geometr ical  
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o b j e c t s   a r e  programmed in the system  as functions  of  the  metric  tensor o r  

other  geometr ical   objects.   For example ue may define  the  metric  tensor  and i t s  

i nve rse  by commands in ITMS nota t ion  such as 

f o r  .the weak f ie ld   metr ic   approx imat ion  def ined by the  metric  tensor 

Here E i s  the  Lorentz  metr ic, H i s  an arb i  

and L i s  an i n f i n i t e s i m a l  expansion  parameter( 
i j  

I .  

' J  

i i  

i j   i j  
- L*(2*H - H*E 1 

t rary   tensor   f ie ld .  H 

ref.7). I n  t h i s  case 

components 

i t s   t r a c e  

i t  i s  usual  

t o  impose the  Lorent r   condi t ion H = 0. For such a metric  ue  can  use I TMS 

t o  compute  the f i r s t  .order Riemann tensor, Einstein  tensor and Weyl tensor in  

less than 18 seconds cpu t ime u i th  the  implementation  of  the  Lorentz  condition. 

Whi le   the ful I m a n i p u l a t i v e   a b i l i t y  of  the ITMS system has  not 'been r i g o r o u s l y  

tes.ted UB have  had  occasion t o  compute Einstein  tensors with four th   o rder  

m e t r i c s   r e p l a c i n g   t h e   r i g h t  hand side  of (11. These ca lcu la t ions   invo lved  the  

manipulat ion  of   expressions u i th  more than 1008 terms which  uere  contracted  and 

s i m p l i f i e d .  Thus the memory space avai lab le  to  ITnS i s  seen t o  be qu i te   l a rge .  

, j  

One o f   t he   l a rge   ca l cu la t i one   wed   to   t es t  ITMS involved  the  study  of   the 

g r a v i t a t i o n   t h e o r i e s   o f  H. Yilmaz. To t h i r d  order, Yilmaz' me t r i c   i s   ( re f .81  

g E + 2*L*(HlrE - 2*H 1 + 21h 
i j  i j  i j  i i  

2 -  a 

i j  i j  i a  j 
*(H *E - 4" + 4*H H 1 

a b a  

a ib  j 
di - 8 d H  H I  
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i j  
where H i s   t h e   t r a c e   o f  H which sa t is f ie8   the   Loren tz   cond i t ion  H - 8. 

i j  , j  
ITMS uas  used  to compute the t h i r d  order  Einstein  tensor G f o r  (2) and 

ab 
subtract   f rom i t  the  third  order  tensor  d’Alembert ian  of H . These ca l cu la -  

t i o n s  u i th ITMS i nd i ca te   t he   t heo ry   i s   va l i d   t o   f i r s t   o rde r ,   bu t  when c a r r i e d  
ab 

t o  s e c o n d   o r d e r   d i f f i c u l t i e s   a r i s e  which inva l ida te   the   theory   to   a l l   o rders .  

These resu l ts   a re   p resented  elsewhere  (ref.91. 

An ana lys is   wh ich   i s   idea l l y   su i ted   to  ITMS i s  the  study o f  var ious  

m e t r i c   g r a v i t a t i o n a l   t h e o r i e s  by us ing  a lgebra ica l ly   spec ia l   metr ics   ( re f .18)  

where  the  metric  takes  the form 

g - E - 2*mk L 
i j  i j  i j  

(31 

where m i s  constant, E i s  the Lorentz  metric and L 

r e s p e c t   t o   b o t h  g and E . For the metr ic (31 one a 

f e r e n t i a l   i d e n t i t i e s  which  arise from the d i f f e r e n t i a t  

i j  i 

i j  i j  

i s  a nu 

I s 0  has 

ion  o f  
I 

nul I vectors ,  L L - 0. Implementing  these  identit ies we can 
i 

I vector  with 

a number o f  d i f -  

he i d e n t i t y   f o r  

compute t h e   R i c c i  

t enso r   f o r  (31 in 30 seconds  cpu time and v e r i f y  the wel l  known express ions   fo r  

t h e   E i n s t e i n  vacuum f i e l d  equations in  these  coordinates  (ref.10). We a re  now 

at tempt ing  to   f ind  a lgebra ica l ly   spec ia l   so lu t ions  for   the  f lansour i -Chang 

equat ions  ( ref .11) in  add i t i on   t o  the Kilmister-Yang  equations  (ref.12)  which 

have  been  discussed in part icular  coordinate systems (ref.131. 

Conformal ly 

where P i s  a sca 

f o r  ITMS s ince s 

f l a t   m e t r i c s   o f  the form 

G - P*E 
i j  i j  

l a r  and E i s  the Lorentz metric  represent 

i m p l i f i c a t i o n s  become extensive.  For the  metr 
i j  

ideal   candidates 

i c  (41 we have 

examined  the  c lass  of  Riemannian invar ian tadef ined in terms o f   the   genera l i zed  
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Kronecker  delta by 

These  invariants  are  discussed in quantum  gravity as they satisfy  the  Gauss- 

Bonnet  theorem in 2m dimensional spaces. Using ITMS we  have  expressed  the 

general  term L(m) as an  ordinary  divergence in conformally flat space-time9 of  

2m  dimensions  and  thereby found alternate  expressions for the  identities of 

Horndeski (ref. 14). 

One.  of  our  hopes is that ITMS wi 1 I also  have  the abi I i  ty to carry  out 

needed  investigations in differential geometry. Many identities in Riemannian 

geometry  are of great  importance in physics and new identities uill presumably 

be  discovered  uhen  computer  systems  can take the enormous  drudgery  out o f  this 

particular  kind of  calculation. The difficulty faced is the  construction  of  an 

algorithm  for  the  complicated symmetry properties  uhich  one  encounters. We  are 

presently  attempting to construct an appropriate  algorithm  which uill permit 

tensorial  manipulations o f  this type. 

A somewhat  primitive  feature which ITMS currently  possesses is the  indi- 

cia1  tensor  manipulation  of non-symmetric metrics. Given a non-symmetric  metric 

and  affinity  as in the  Einetein-Straue theory (ref.15) we can  employ ITMS to 

compute  the  various  geometrical tensors. Houever,  we have not  yet implemented 

appropriate  simplification routines. 

While  we  have  stressed the relativistic and differential geometrical 

aspects  of ITMS, the  package has been  used by others and ue  believe ITMS, uith 

minor  modifications, uill find applications in many branches of physics. 
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APPEND1 X 

Below we exhib i t   the  output   for   the weak f ie ld   approx imat ion  i n  General 

R e l a t i v i t y ( r e f . 7 ) .  ( E l l 1  and (E121 are  the  covariant and con t rava r ian t   me t r i c  

tensors  to f i r s t   o r d e r  in L. The previous commands (CS)-(C8) de f ine   t he   me t r i c  

t enso r   t o   be  G, declare  ' the  Lorentz  metr ic E t o  be constant with r e s p e c t   t o  

o r d i n a r y   d i f f e r e n t i a t i o n  and speci fy  i ts   inner  product.  (€16) demonstrates  that 

the  cont ract ion  o f   the  inner   product   o f  G with i t s e l f ,   t o   f i r s t   o r d e r .   i s  equal 

t o   t he   K ronecke r   de l ta  as  expected. The f i r s t  order  Ricci  tensor i s   d i ' s p l a y e d  

by (€281. (€21) i s  the same tensor  af ter   implementat ion  of   the  Lorentz  condi-  

t ion.   Contract ing  the  Ricci   tensor with the  metric ue obta in   the  sca lar   curva-  

t u r e   d i s p l a y e d  in (E23). We then construct   the  contravar iant   Einst .e in  tensor 

d i s p l a y e d  in (E25). A convenient  feature  of ITMS i s  seen i n  (C26) where the 

m e t r i c   i s   r e d e f i n e d  a8 E t o  enable  us  to  display  the  ordinary  d'Alembert ian in 

t h e   f i r s t  term  of  (€28). Then redefining  the  metric  as G ue  take  the  covariant 

d ivergence  o f   the   E ins te in   tensor   to  f ind i t  vanishes i d e n t i c a l l y  as  expected. 

(C5) DECLARE  (E,CONSTANT) S 

(C6 1 DEFCON (E 1 S 

(C71 DEFCON(E,E,DELTA) 1) 

(El 1) 2 ( P E   - 2 P  ) L + E  
I J  I J  I J  
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(C12) SHOW(G([I, [I,Jl))S 

(E121 E - 2 ( P E  - 2 P  ) L  
I J  I J   I J  

(C13) RATVARS (L) S 

(C141 RATWEIGHT (L, 1) S 

(C15) RATWTLYLt 18  

(C16) SHOW (CONTRACT  (RATEXPAND (G ( [I , J1, [I ( 11 , [J, K 1 1 ) )  1 S 

(E161 DELTA 
K 

I 

(C171 RIEMANN(  [S,U.NI . tN3 IS 

(C181 D17.EVALS 

(C191 RICCI:CONTRACT(RATEXPAND(Ol81)S 

(C201 SHOW (RICCI 1 S 
X1 x1 x2 x1 x2 

u,x1 s s u,x1 x2 ,x1 x2 s u  
(€20) - 2 L P  + 2 E  L P  - P  E L E  

x1 
s,x1 u 

- 2 L P  

(C211 SHOW (LORENTZ (R I CCI 1 1 S 

(E21 1 2 E  L P  - P  E L E  
x1 x2 x1 x2 

9 u,x1 x2 ,x1 x2 s u  
(C22) SC:CONTRACT(RATEXPAND(RICCI*G( 11, [S,UI))IS 

(C231 SHOW (SC) S 

(E231 - 4 P  L - Z P  E L 
x1 x2 x1 x2 

,%l x2 ,x1 x2 



(C25) SHOW (EINSTEIN) S 

(€25) 2 E P L + 2 P  E L - 2 P  E  L 
X1%2 I J  X1x2 I J  X1  I X2 J 

,x1 x2 ,x1 x2 ,x1 % 2  

X1 J %2 I 

,%1 x2 
- 2 P  E L 

(C26) tlETRIC (E) t 

(C27) EINSTEIN:MAKEBOX(EINSTEIN1S 

(C28) SHOW (EINSTEIN) S 

(E28 1 2 [ 1 P  L + 2 P  E L - 2 P  E L - 2 P  E L 
I J  X l X 2  I J  X 1  I X2 J X 1  J %2 I 

, X 1  x2 ,X1  x2 , X 1  ‘x2 

(C29) METRIC (GI t 

E 3 8 1  COVDIFF (EINSTEIN, J) S 

(C31) 038, EVALS 

E 3 2 1  CONTRACT  (RATEXPAND (D311 1 S 

(C33) SHOW (032) I) 

(E331 
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PURE FIELD  THEORIES  AND  MACSYMA  ALGORITHMS 

William S. Ament 
Naval  Research  Iaboratory 

SUMMARY 

A pure  field  theory  attempts  to  describe  physical-phenomena  through 
singularity-free  solutions  of  field  equations  resulting  from  an  action  princi- 
ple. The  physics  goes  into  forming  the  action  principle  and  interpreting 
specific  results.  Algorithms  for  the  intervening  mathematical  steps  are 
sketched.  Vacuum  general  relativity  is  a  pure  field  theory,  serving  as  model 
and  providing  checks  for  generalizations.  The  fieTds of general  relativity 
are  the 10 components  of  a  symmetric  Riemannian  metric  tensor gij; those  of 
the  Einstein-Straus  generalization  are  the  16  components  of  a  nonsymmetric  g 
Algebraic  properties  of  gij  are  exploited in top-level MACSYMA commands 
toward  performing  some  of  the  algorithms  of  that  generalization.  The  light- 
cone  for  the  theory  as  left  by  Einstein  and  Straus  is  found  and  simplifications 
of  that  theory  are  discussed.  Attention  is  called  to  the  need  for  spinor 
theories;  the  algebra  of  gij  may  help  in  their  construction. 

ij 

PURE FIELD  THEORY (PFT) 

A pure  field  theory  (PFT)  (ref. 1, final  pages)  attempts  to  describe 
physical  phenomena  in  terms of singularity-free  solutions of a  set  of  field 
equations,  the  Euler-Lagrange  equations of an  action  principle.  The  physical 
wisdom  goes  into  assembling  the  action  integral  and  into  interpreting  any 
specific  results;  the  intervening  mathematics  appears  strictly  algorithmic  and 
therefore  doable  with,  and  perhaps  only  with,  computer  symbol  manipulations 
such  as  done by MACSYMA. Einstein's  general  relativity  (GR)  is  a  prototype 
PFT.  GR  serves  both as the  physical  basis  for  test  algorithms  and as model 
for  the  following  outline  of  'formal'  PFT. 

One  has a  coordinate manifold-of (presumably)  four  dimensions,  param- 
eterized  by  Gaussian  coordinates  XI,  i = 1 , 2 , 3 , 4 .  Dependent  'fields'  having 
N  scalar  components  f = f(xl) are  assembled,  together  with  their  low-order 
coordinate  derivatives  f,i , fYij , ..., into  a  scalar  density L serving as 
integrand  of  the  action  principle LL. The  scalar  fields f of GR  are  the 10 
components  of  a  symmetric  Riemannian  metric  tensor g  ̂ = 

A 

ij gji- 

Algorithmic  'Process No. 1 (AP1): Coordinate  Independence 

Taking  the  integration of LL over a coordinate  region V having  smooth 
boundary B y  check  that  the  value of LL is  properly  invariant  to  coordinate 
transformations  interior  to V. 
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AP2: Get  the  Field  Equations  as  Euler-Iagrange  Equations  of LL 

This  amounts  to  replacing  f  with  f + df, fYi with fYi + dfYi etc., 
throughout L, retaining  terms  of  first  degree in df, df,i,... in  the  expansion 
of  the  result,  and  integrating  by  parts  to  eliminate,  in V, derivatives 
dfYi Y dfYij , ... of the  'variations'  df.  The  coefficients  of  the N df,  set 
to zero,  are  then  the N scalar  field  equations in the N scalar  fields  f. 

A P 3 :  Gauge  Conditions  (Ref. 2) 

When  the  dependent  scalars  f  are  components  of  a  tensor  such  as  the g of 
i  i i j  ij 

GR,  then  coordinate  transformations in V such  as T: x 4 x + y (x ) require 
corresponding  transformations  for  the  indexed  field  components.  For  example, 

n - n  dgij - - n A  n - gijyn Yn - inj Y,i - gin Y, j 

is  a  'variation'  of gij arising  from  a  mere  infinitesimal  coordinate  transfor- 
mation T. The  10  Euler-Lagrange  equations  of GR are  linear  in  second  deriv- 
atives  of  but  there  are  four  scalar  Bianchi  identities  of  third 

differential  order  arising  from  invariance  of LL to  the  four dg possible  with 

a  four-parameter  gauge  transformation  y (x ). The  (unassembled)  algorithms  for 
finding  the  'gauge  vaziations'  and  corresponding  Bianchi-like  identities  should 
be  some  mix of those  of AP1 and AP2. 

ij 

i j  ij 

AP4: Small  Amplitude  High  Frequency  Waves  and  the  Light  Cone 

If  a PFT is  to  describe  physical  vacuum  somewhere  and  is  to  be 
singularity-free,  then  the  PFT  describes  vacuum  everywhere.  The  accepted 
physical  vacuum  permits  gravitational,  electromagnetic,  and  neutrino  waves 
propagating  according  to  a  single  light-cone  or  dispersioq  relation.  To  find. 
the  light  cone:  In  each  of  the N field  equations,  substitute  f + df;\exp(Kb.xl) 
(K a  frequency  parameter, bi a  propagation  vector,  df an infinitesimal  scalar 
amplitude)  for  each  f in each  field  equation.  Expand  and  retain  only  terms 
linear in the  df  of  highest  degree in  K--which then  factors  out,  along  with 
expo. The  result  is N equations  each  linear  and  homogeneous in the N ampli- 
tudes df, each  homogeneous in the bi. Factor  the  coefficient  determinant, 

finding  a  sufficient  number  of  quadratic  factors  b.g E bgb to  feel  sure 

that bgb 0 is  the  light-cone  equation.  [If  no  such  bgb  factor  is  found or 
believed,  then  use  what  you  may  have  learned  for  revising L.] 

1 

,-.i jb 
1 j 

AP5 : GR  With  Non-Phenomenological  Source  Terms 

The si' of bgb = 0, built from the f and  their  coordinate  derivatives,  is 
necessarily  symmetric,  and  its  inverse  can  be  construed  as  (up  to  a  conformal 
scalar  factor S) the  Riemannian  metric  tensor g  ̂ of GR.  Use  the  algorithms ij 
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of  GR  to  get  the  Einstein  tensor  Gij,  a  form in the f, f, 

equations  for  eliminating  from  G  the  highest  derivatives  of  the f.  What's 

left  over  is  either  zero  (vacuum)  or  counts  as  a Tij energy-tensor  source 
.term--again  a  form in the  f  and  their  (low-order)  derivatives.  [Select,  or 
eliminate  the  need  for  selecting,  conformal  scalar S. Recognize  any T as 
implied in L according  to  Noetherian  principles.] 

i"** Use  the  field 

ij 

ij 

AP6:  Neutrinos  and  Spin  One-Half 

Unless  some  of  the  f in L are  spinor  variables,  there  will  be  no  neutrinos 
among  the  vacuum  waves,  or  other  'spin-2'  structure in the  field  equations. 
Thus:  prepare  a  'spinor  version'  of L and  plod  through  the  foregoing  semi- 
algorithms.  [Conversion  to  'spinor  form'  appears  algorithmic in  GR,  starting 
from  a  Riemannian  metric  tensor  (ref. 3 ) ,  but  may  not  be so in other  PFT's.] 

EINSTEIN-STRAUS  THEORY 

The  scalar  fields of Einstein-Straus (ES) theory  (refs. 1 and 4) are  the 
16  components o f  a  nonsymmetric  tensor  g  This g is  used  in an L and  in 
subsequent  development  in  a  way  suggested  in GR, but  the gij is  in  no  way 

usable  for  or  equivalent  to  the  symmetric  Riemannian  10-component  metric  ten- 
sor  of  GR.  The  ES  field  equations  are  derived  from  an  action  principle;  no 

one  appears  to  have  asked  after  the  'vacuum  waves'  of ES theory,  their  light 
cone, or  its  mathematical  connection  with  GR. So we began  with  the  problem  of 
finding  the  vacuum  waves  of  the  ES  field  equations--equations  given  in  terms of 
an affine  connection  or  'gamma'  defined  as  the  solution  of  a  64x64  linear 
equation  system 

ij' ij 

ij 

n - - n 
gij,k ,gin  rkj " gnj rik (1) 

Let  the  inverse g be  defined  through  g  gnj = g  gjn = 6 . This  leaves 

another  order  for  the  summation  over  the  'dummy  index'  n: 

ij ni - in i 
j 

hi = g gnj , with  g gjn in  ni -1 i 
j 

E (h ) Let AA = hi = trace  (h) , 
j' i 

CC = (hi  .hj. ) = trace (h ) , BB = (AA2 - CC)/2. Then  h = h  satisfies 2  i 
J 1  j 

Q(h ) = 0 by  symmetry.  Matrix  h  has  generally  four  eigenvectors V[n]  and 
eigenvalues  v [n] : 

-1 



hi.V[n]j = v[n]V[nIi ; h .V.  [n] = v[n]V[nIj i 
3 1  

(3 )  
3 

One can normalize so that V[mIiV[n] = b[n,m]  and  (suunning  over  the  repeated i 

'eigenindex' n)  V[nIiV[n]j = bji. The  symmetry of Q(h) implies  that  if 

Q(x) = 0 then Q(l/x) = 0 so that  if v[n] is  an  eigenvalue  then so is 
l/v[n] = v[n'  1,  say. Thus, eigenindices  [n]  (which  are not tensor  indices) 
run over  say  1,1',2,2'  and we introduce  op:  op[n]:=n',  op[n']:=n.  With this, 

and  with = v[n],  u[n]u[n'] = 1, we have  h = ~[n]V[n]~V[n]  and 
compatible  representations j j 

i 

Thus,  the  16-scalar  gij  of ES theory  has  a  natural  18-parameter  representation 

with  spinor-like (ref. 3 )  eigenindexing,  and  supplies  what  may  be  called  a 

built-in  vierbein  provided  by  the  four  directions V[n] , n = 1,1',2,2'. i 

The ES. field  equations  being in terms  of  the  gammas,  we  solved (1) for  the 
gammas  using ri = g Wnjk with W represented  in  the  manner  of ( 3 ) ,  ( 4 )  

through  eigenindices as Wijk = Z[p,q,r]V[p]iV[q]jV[r]k  say.  By  exploiting 

ni 
jk 

symmetries,  the  64x64  problem (ref. 5) of inverting (1) for  the  gammas  reduces 
to a  10x10  problem  for  finding Z[p,q,r]. The  straightforward MACSYMA solution, 
giving  terms of up to  degree  6  in AA, 5 in  BB,  is  computationally  useless  (as 
suspected  by  Schrodinger,  ref. 4, p. 111): formally,  there  are  some  472  terms 
before  replacing  three  scalar  symbols  by  chree hi matrices. 

j 

The ES field  equations,  however,  entail  the  gammas in symmetrized  or 
internally  contracted  forms, so that  it  was  possible  to  use  eigenindexing  to 
set  them  in  terms  of  the  basic  fields  g  without  resort  to  the  formal  inver- 

sion  of (1). The  16x16  determinant  of  the  homogeneous  equation  system  result- 
ing  from  AP2  was  much  too  big for the  computer  but  could  be  made  tractable:. 
(1) Resolve  the  equations  and  the  bi  along  vierbein  directions,  as  already  done 
for  the  gammas  by  the W -+ Z above. (2) Then  bgb  has  to  be  two  formally  identi- 
cal  terms,  one  in  eigenindices 1,l '  the  other  in  2,2';  replace  variables  having 
2,2'  indices  with  random  integers. ( 3 )  Any b. given  in  eigenindex  or  vierbein 

components  as  (blYbl',b2,b2') = - b is  orthogonal,  for  any  possible  'metric', 
to c = (b1,-bl',O,O)  and  to d = (Oy0,b2,-b2')  in  the  sense big c =bgc Ecgb-0 

and  bgd E 0. A final  such  vector  e = (blYbl',-b2,-b2') satisfies  cge E 0 E dge; 
cgd f 0 but  bge # 0 generally.  TaFe  the  amplitude-tensor  dg  as  a 4x4 
quadratic form (exterior  product) in the  near-orthogonal  vector  system b,g,d,e, 
with  16  unknown  coefficients  as  new  'amplitudes'.  The  substitution 
diagonalizes  the  16x16  equation  system  into  6x6  and  10x10  blocks.  Both  blocks 
appear  degenerate  (coefficient  determinants  vanishing).  But  eliminating 

ij 

1 

ij ,.ij - 
- - j 

ij 
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equations of the  result  one  at  a  time  gives  a  sequence of identical  bgb  factors 
in which  the  structure of the  symbols  of  the 1,l' term  is  matched  by  thdt  of 
the  integers  of  the 2,2' term. The  resulting  eigenindexed  bgb  then  implies  a 
iij from  which  the  light-cone  metric  is  then,  via Q(h) - =  0 

where S is  an  undetermined  conformal  scalar.  But:  the  nature  of  the  waves 
propagating  according  to  the  bgb  light-cone  equation  remains  unknown,  owing  to 
complexity  and,  particularly,  to  failure  to  eliminate  'gauge  transformations' 
mentioned  in AP3. (That  failure  may  also  account  for  the  degeneracy  of  the 
coefficient  determinant.) 

In  GR  the  bgb = 0 light-cone  equation  is  known  a  priori;  it  is  asserted  in 
the  metric  tensor  In  examining  final equations,for  the  nature  of  the 

'vacuum  waves'  one  can  take  as  locally  diagonal,  thus  rendering  symboli- 
cally  indexed  expressions  in  compact,  inspectable  forms. No such  diagonaliza- 
tion  is  seen  valid  in ES theories,  and  finding  bgb  may  always  have  to  be  done 
with  explicit  components.  If so, the  foregoing  sketch  of  a  route  to bgb will 
save  much  time. 

ij' 
ij 

Published  variants  of ES theory use the  gammas  and  are  thereby  unnecessar- 
ily  complicated.  In  Riemannian  geometry  the  gammas,  defined  in  terms  of  the 
metric  tensor g are  used  for  forming  tensors  from  derivatives  of  further 

.scalar and  tensor  objects.  But ES theory  is  in  terms  of  the g from  which  the 
gammas  are  defined,  via  equation (l), and  there  are  no  further  objects.  There- 
fore  the  gammas  are  superfluous.  The ES equations  follow  GR  by  using  a  Riemann 
tensor  given  compactly in terms  of  the  gammas  and  their  first  derivatives.  The 
Riemann  tensor  has  two  basic  definitions,  equivalent  in  GR:  The  coefficient  of 

tensor T in  Ta;b;c - Ta;c;b is  the  Riemann  tensor  R abc--but there  is  no Ta in 
ES theory  for  which  this  function  of  the  Riemann  tensor  might  be  needed. 
Alternatively,  the  lower-indexed  Riemann  tensor  R is  the non-trivial  tensor 

of  lowest  degree  formable  from  a  'metric  tensor' and  its  derivatives. 

Handcrafting  gives,  with 

ij' 

ij 

d 
d 

i  jkl 

gi j 

+ IExy  ([ijx][kny] - [if2x][kjy]) 
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in which  IEij is  the  (symmetric)  inverse  to g - (gij + gji)/2,  and order of 
the indicesisto be  respected.  (Compare  eq.  (7)with  eq. ( 3 0 )  of  ref. 6, p. 153.) 

(ij 1 
- - 

The  class  of  PFT's  now  under  consideration  is  therefore  restricted  to 
those  starting  from  the  foregoing  tensor  Rijkm  contracted  to  a  curvature 

scalar  R  by  some  multiplier M concocted  from  g , h  ng ,..., and  then 
multiplied  by  various  similarly  available  Jacobians J to  form  the  scalar 

density L; these  forms  are  essentially  unique  in GR,  where  M - g  g  and 

J = (det(g. .)) . In  this  general ES theory,  each  term  of L can  have  a  scalar 
coefficient  arbitrarily  dependent  on  scalars AA,BB formed  from  g 

i  jkm ij  i nj 

i  jkm - AikAjm 

ti 
= J  

ij' 

Tensor Riknj 
has  the  familiar  symmetries 

In  forming  a  'curvature  scalar' M;kR E M 

symmetries  to  the  multiplying  tensor M. Equation ( 2 )  restricts  the  occurrence 

of gij usable  in  M  to  essentially  four  forms  gij,gji,hi gmj and  h mg , generi- 
cally  represented  here  as F . In  view of the  symmetries,  M  can  be  given  as  a 

10-parameter  form  Me  of  symmetrically  arranged  products F F  plus  a 

3-parameter  form  Mo of products F F . In  addition,  from  totally  antisymme- 
trized  derivatives  ag(i,j,k) = g  one  can  assemble  a  legitimate  two- 

parameter  scalar  NN = N ( a , b , c , d , e , f ) a g ( a , b , c ) a g ( d , e , f ) ;  tensor  N  has  two 
additional  parameters.  Thus  symbolic  action  integrand L = Mf:R+NN is  a  form 
linear  in  a  total  of 15 free  scalar  parameters.  Any  'parameter'  is  actually 
some  function  f(AA,BB)  depending  on  the  basic  fields  g  via  the AA,BB of 
equation (2). 

ikn  j 
Rikn j ' one  may  assign  the  same 

j mi 

ij m 

in jk 

ik nj 

[ij  ,k 1 

ij 

CONFORMALLY  INVARIANT ES THEORY 

The  present  attempt  is  to  assign  the  foregoing 15 parameters s o  that LL is 
conformally  invariant, i.e., its  value  is  unchanged  by  the  substitution 
gij 4 gij -I- wgij,  where w is an  arbitrary  infinitesimal  scalar  function of 
coordinates.  We  choose  conformal  invariance  because no plausible  alternatives 
are  visible  [suggestions  are  welcome,  particularly  those  having  'spinor'  impli- 
cations],  because  physicists have  said  kind  things  about  such  conformal  invari- 
ance,  because  the  problem  of  assigning  conformal  scalar S of AP5 and  equation 
(5) becomes  eliminated,  and  most of  all, because  the  choice  appears  to  give  a 
well  posed,  doable  problem  having  a  possibly  unique  answer. 

The present  situation  with  this  problem  is  best  described  as  fluid.  The 
implication,  if any, of 'gauge  invariance'  is  not  yet  understood  in  this  con- 
text.  Several  unmentioned  algebraic  simplifications  make  the  problem  easier 
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than  it  appears  at  first  glance;  not  all  such  algebraic  niceties  are  incor- 
porated,  and  the  present  package  of  computer  commands  requires t o o  much  think- 
ing  at  the  keyboard. 

APPROPRIATE SYMBOL MANIPULATIONS  IN  MACSYMA 

First  described  are  notational  and  other  conventions,  then  some  general 
purpose  commands  and  functions. 

No  attempt  at  displays in textbook  format  is  made;  one  has  to  remember  that 
both  indices  i,j  of  gg  and  the  first  index  of  gam  and  gam1  are  upper (U) 
indices  whereas  the  other  indices  above  are  lower (L)  indices.  Thus 

g gnj 
appearing  once  as  U-index  and  once  as  L-index.  U-index  i  and  L-index  j  here 
are  'free'  indices  appearing  once  each. 

ni 
+ gg(n,i)+:g(n,j); repeated  index  n  is  a  'dummy'  index  of  summation 

An  indexed  expression  EE  is  valid  only  when  each  free  U-  or  L-index  is 
represented  by  the  same  symbol  (letter  or  atom),  and  occurs  only once,  in each 
term  of  EE,  and  when  any  dummy  index  symbol  appears  just  once  in  any  term  as 
U-index,  once as  L-index. A  validity-checking TEST(EE)  is readily  constructed. 
One  builds  desired  forms  by  'contraction'  on  one  or  more  free  indices.  For 
example, s = s(i,j,k) = t(i,j,n)>;u(n,k) = t k ,  where  free  U-index  n in u, 
L-index  n  in t, becomes  dummy  index  n  in  the  contracted  tensor  product s = t;;u. 
To  JOIN t,u as s then  entails 1) preserving  the  final  free  indices  i,j,k  and 
'contraction'  dummy  index  n  while  2)  changing  dummy  indices  x  of  say  u so as  to 
differ  from  these  of s .  This  is  done  by  DECLARE'ing i,j,k,n to  be  constants 
while  changing  any  item  say  x  of  LISTOFVARS(u),  found in the  similar  list  of 
dummies  of s ,  to  some  new  symbol  say  xrr = CONCAT(x,rr).  But  this  process 
should  not  change  other  atomic  symbols  such  as  the  AA,BB  of  (2)--such  symbols 
are  thus  initially  DECLARED  constant. 

O f  course  replacement  symbol  xrr  could  be  found  in t; also t,u and a  valid 
resulting s may  contain  identical,  possibly  cancelling,  terms  disguised  by 
having  different symbols for  the  same  dummy  variable.  Thus  one  wants  a  func- 
tion  converting  each  term  of an expression  EE  to  consistent  canonical  indexing. 
Command  hOx(EE,ILIS)  does  this  term  by  term:  ILIS  is a  list  of  free  indices 
declared  constant.  Internal  to  hOx,  YLIS = [yl,y2, ...I is an adequately  long 
list  of  symbols  declared  constant,  and  NAMES  is an alphanumerically  ordered 
internal  list  of  these  names  (such  as  g,gg,gaml)  which  occur in the  term. 
Suppose  ILIS  is  [b,x,y,a]  and  f(i,j,b,p,a)  is  a  factor in the  formal  term of 
EE;  hOx  finds  this  factor  as  the  one  containing b, finds  its  LISTOFVARS 
[i, j ,p] , substitutes yl,y2 ,y3  for i, j ,p  throughout  the  term  and  reconsiders 
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the  result  with  ILIS = [yl,y2,y3,x,y,a],YLIS = [y4,y5,...]. Or  if  the  initial 
ILIS were  empty  and  the  foregoing  factor's  name  f  is  first in NAMES  then 
yl,y2,y3,y4,y5  are  substituted  in  order  for  the  LISTOFVARS  [i,j,b,p,a]  and 
become  the  new  ILIS . At  the  close,  the  constants [yl,y2.. . 3 of YLIS are 
replaced  by  variables  pl,p2, ... to  avoid  conflicts in any  iteration  of  hOx. 
I believe  that  hOx  converts a valid  EE  to  unique  form  of  minimal  length  when 
each  term of EE  has  some  dummy-containing  name  occurring  just  once so as  to 
appear in NAMES,  and  the  order  of  indices  within  each  named  object  is  unique. 
Otherwise hOx(EE,[]) will  produce an EE  with  dummy  symbols  pl,p2  not  neces- 
sarily  in  minimal  form.  Regrettably,  this  now  calls  for  ad  hoc  measures  and 
iterations  of  hOx,  which  never  increase  the  number  of  terms. 

The  symmetry IE(a,b) = IE(b,a)  is  invoked  automatically  by  a  prior 
DECLslRE(IE,COMMUTATIVE); this  imposes  the  canonical  ordering IE(a,b)  for  either 
form.  Declaring A W  commutative,  and C constant,  then  doing  LISTOFVARS 
(APPLY(ALF,[a,y,C,x,b,x2])) produces  the  alphanumerically  ordered  list 
[a,bYx,x2,y]--sans  constant C y  of  course.  ALF  may  analogously  be  used  to 
order g -, g2(i,jyy,x)  g2(i,j,x,y) in the  latter form, and  used  in  canon- 

ical  antisymmetrizing  commands. 
ij ,F 

Perhaps  the  central  problem in simplification  of  dummy-indexed  expressions 
is  seen in an example:  Let  scalar  form F be  IEv(K -K ). Tensor  IEXY+IE(x,y) 
has  been  declared  'commutative' so that  IE(y,x)  appears  alphanumerically 
reordered  as IE(x,y). Thus,  though  nothing  is  asserted  about  tensor K, scalar 
F as  contracted  from  IE,K  above  is to vanish--it  would  if  the  indices of the 
second  factor  of  F were canonically  reordered  as  permitted  by  the  symmetry  of 
IE.  Our  dodge  has  been:  substitute  the  name AK for K in F, do  hOx(F, [I) so 
that  the  priority in the  order  of  the  new  indexing  goes  to AK, resulting  for- 
mally in  F = AK(p1,p2)*(IE(p1,p2)-IE(pZYpl)), whereupon  the  declared  symmetry 
of IE produces  cancellation in the  last  factor  and  one  gets  the  wanted  F = 0. 

XY  YX 

Clearly,  what  one  wants  is  some  simplifier  that  orders  dummy  indices,  of 
factors in  a  monomial,  taking  full  account  of  declared  symmetries  of  tensor 
factors in which  dummies  have  already  been  assigned.  The  problem  is  compli- 
cated by (a) the  variety  of  possible  symmetries  and  antisymmetries, (b) multi- 
ple  occurrences  of  tensor  names  in  the  monomial, (c)  the  present  necessity  to 
change  dummy  eigenindex p' = op[p] in  step  with  p = op[p'  1, (d) the  utility of 
keeping  intact  the  symbols  for  free  indices. 

One  plausible  way  to  keep  free  indices,  say  i,j,k,  of  a  form 
f = f(i,j,k,dumies),  is  to  contract f with  a  'holding  tensor'  H = H(i,j,k), 
process  the  contracted  scalar Hf, and  then  substitute  back i,j,k for  the 
plYp2,p3 of  the  final  result  as  indexed  with  priority  set  by  the  name H. But 
this  sometimes  results  in  some  terms  with  the  anticipated  factor  H(plYp2,p3) 
while  other  terms  have  factors  say  H(pl,p2,op[pl])--making  for  unwanted 
thought  and  typing. 

The  sketched  algorithms  of  AP2,AP3,AP4  require  different  types  of  differ- 
entiations.  All  can  (apparently)  be  done in  a  single  overall  command 
TENSDIFF(EE,NLIS) by supplying  appropriate  versions  of  DIFFLIS,  listing  forms 
of  derivatives,  when  TENSDIFF  calls on it.  NLIS  lists  names  of  tensors 
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considered  differentiable,  all  other  symbols  and  functions  being  considered 
constants.  Example: TENSDIFF(f(i,j,p)fcg(i,j), [g]) first  sees  name  g in NLIS, 
goes  to  a  list GSUBS to  find g(a,b):=g%[a,b] evaluates  EE  as FEE:f(i,j,p)*g%[i,j] 
does  DIFF(FEE)  returning  f  (i, j ,p)'kDEL(g%[i, j I ) ,  replaces  the MACSYMA symbol 
DEL by  DDEL,  DDEL(array  member)  being  specified  in  DIFFLIS, e.g., 
DDEL(g%[a,b]):=gl(a,b,ik). Such  indexed  forms  g%,  gg%,  gam%  as  may  remain  are 
reconverted  to  initial forms through  the  array  definitions  of  list GBACK, 
reversing GSUBS. Index-renaming  as  in  JOIN  prevents dumy indices  occurring 
in DIFFLIS  from  conflicting  with  those  already in EE. The  generic  differen- 
tiation  index  "ik" is then  to  be  replaced  by  some  chosen  symbol,  and  before  any 
second  differentiation  the  result  should (as with an iterated  JOIN  operation) 
be  boiled  down  and  converted  to  relatively  harmless  indices  via  hOx. 

After  all  differentiations,  one  goes  immediately  to  eigenindexed  forms  as 
much  more  compact  and  perspicuous.  The  basic  substitutions  are g(x,y):=yW(x,y) 
and  gg(x,y):=  xftf(x,y)--the tensor  indices  x,y  of  g,gg  become  eigenindices 
and  the  freestanding  factors  x,y  are in effect  the  eigenvalues u of  equation 
(4). Function  NUFF  then  sequentially  extracts  each'  factor  f(p,q)  and  in  its 
coefficient  replaces q with op[p],  op[q] with p. Function  CRIMP(EE,NAMES)  then 
renames  and  reorders,  term by term,  the  eigenindices  p  together  with  their 
'opposites'  p' = op(p) in the  general  manner  of hOx, though  with  priorities  as 
set by  the  ordered  list  NAMES of  germane  function  names.  With  sufficient 
application  of  CRIMP,  some  minimum  of ad  hoc  substitution,  and  luck,  the  named 
objects  are  canonically  indexed  and  may  be  factored  out,  leaving  a  polynomial 
P = P(A,...,pl,pl',...) linear  in  undetermined  parameters A .  One  must  event- 
ually  allow  for p' = op[p]  as  implying  p' = l/p--but  not  too soon, for  expres- 
sion pJ;p';kZ(other indices)  represents  a  sum  over  eigenindex p with  result 42. 
Function  CRIMP  leaves  indices of objects  in  NAMES  as  constants,  other  free- 
standing  indices,  like  the  above  p,p',  as  variables.  Function  CFDO  does  sums 
over  such  variables:  CFDO  applied  to p'9' yields 4 ,  applied  to  p'nf.pnk2  yields 
the  scalar AA of  equation (2), etc. Polynomial  P  is  reducible  to  degree 3 in 

p2  through Q(p ) = 0 ,  equation (2). Requiring  P  to  vanish  then  gives  a  set  of 
linear  relations  among  the  parameters A ,  which  may  now be solved  for in 
f ami 1 iar  ways . 

2 

REMARKS 

Described  elsewhere in these  Proceedings  (ref. 7) is  a  tensor  manipulating 
package  ITMS,  designed  primarily  to  analyze  field  equations  of GR based on  a 
symmetric  metric  tensor 2 Our  developing  package  is  aimed  at  finding 2 

ij' ij 
as  upshot  of  field  equations  derived  from  action  integrals  based on  non- 
symmetric  tensors.  There  appears to be  no  significant  duplicati,on  of  ITMS 
items. I welcome  appropriate  extensions  of  ITMS  and  recommend  its  use  in  case 
of  overlapping  capabilities. 

I call  attention  to  the  problem  of  providing  a  spinor  representation 
natural  for  the  non-symmetric g The present  n,n'  eigenindexing  is  sugges- 

tive of two-component  spinor  notation,  and  the  eigenvectors  may  provide a 
natural  framework  for  a  spinorization. 

ik 
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ABSTRACT 

We c o n s i d e r   a l l   p r e s e n t l y  known re la t i v i s t i c   g rav i ta t i on   t heo r ies   wh ich   have  
a Riemannian  background  geometry and possess exact   s ta t ic ,   spher ica l ly   symmetr ic  
so lu t ions   wh ich   a re   asympto t ica l l y   f la t .  We show each t h e o r y   p r e d i c t s   t h e  
existence  of   t rapped  surfaces  (black  'holes).   For a g e n e r a l   s t a t i c   i s o t r o p i c  
m e t r i c  we use MACSYMA t o  compute the Newman-Penrose equat ions,   the  b lack  ho le 
radius,  the  impact  parameter and capture  radius for photon  accret ion,   and  ver i fy  
asympto t ic   f la tness .  These r e s u l t s  a r e  then  applied t o  several  o f  t h e   b e t t e r  
known g r a v i t a t i o n   t h e o r i e s .  It appears the  claims  of Hawking, Lightman,  Lee  and 
Rosen regarding  the  existence of black  holes i n   s e v e r a l   t h e o r i e s   a r e   n o t   v a l i d ,  
and b lack   ho les   a re  a na tura l  consequence o f  present  ideas  about  gravity. 

INTRODUCTION 

The sub jec t  o f  black  holes has become very  popular i n   r e c e n t   y e a r s .  With 

dozens o f  papers  appearing i n  s c i e n t i f i c   j o u r n a l s  each month and p o p u l a r   a r t i c l e s  

i n  abundance, the   sub jec t  o f  black  holes i s  a t rue  mystery   s ince  there i s  no 

known method for   observ ing them d i r e c t l y  If indeed  they  exist.  Opponents  develop 

theor ies   wh ich   they   be l ieve   e l im ina te   b lack   ho les   en t i re ly   wh i le   p roponents  

a t t e m p t   t o  show tha t   b lack   ho les   a re   leg i t imate   o r   tha t   the i r   ex is tence I s  
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temporary i n  the   evo lu t i on   o f   ce r ta in   c lasses   o f   s ta rs .  Our purpose i n  t h i s  paper 

i s  t o  show tha t   b lack   ho les   a re  a natura l  consequence o f   t h e   : b a s i c   f o r m a t   o f  

g r a v i t a t i o n   t h e o r i e s   ( a t   t h i s   t i m e )  when s o l u t i o n s   o f   f i e l d   e q u a t i o n s   c a n  be 

found i n  exact  form and where the background  geometry o f   the   space- t ime i s  

Riemannian. The ca lcu lat ions  invo lved  in   the  analys is   are  ext remely  compl icated 

and we would not have attempted t h i s   p a r t i c u l a r   p r o b l e m   w i t h o u t   t h e   a i d   o f  

MACSYMA.  MACSYHA possesses a number o f  special  purpose r e l a t i v i s t i c  programs  as 

p a r t  o f  t h e  component tensor  manipulation system, CTMS, i n   a d d i t i o n   t o  ITMS 

( re f .1 ) .  Given the   met r ic  components as i m p l i c i t   o r   e x p l i c i t   f u n c t i o n s   o f   t h e  

coord inates,  .CTMS can compute a l l  geometrical  objects  such  as Riemann 

tensors,etc .  It also  has   the   capab i l i t ies   fo r   f ind ing   the  Newman-Penrose spin 

c o e f f i c i e n t s   a s   w e l l  as a host o f  other  objects  owing t o   t h e   g e n e r a l i t y   o f  

MACSYMA and CTMS. 

TRAPPED SURFACES AND PHOTON CAPTURE 

The l i n e  element f o r  a s ta t i c   spher i ca l l y  symmetric met r ic  may be w r i t t e n  i n  

i s o t r o p i c   f o r m  as 

dS2 = e2#(dR2 + R2dn2) - e2+dt2 ( 1 )  

where $ ( R )  and +(R) .  We use isotropic  form  rather  than  Schwarzschi ld  coordinates 

f o r  a g l a n c e   a t   t h e   l i t e r a t u r e  shows tha t  (1) w i t h   i t s   h i g h  degree o f  symmetry 

l e n d s   i t s e l f   t o   c l o s e d   f o r m   s o l u t i o n s  more readi ly   than  o ther   metr ics .   For  

example a closed  form  solution  of  the  Brans-Dicke  theory i n   S c h w a r z s c h i l d  

coordinates  has  never been exhibi ted  ( ref .2) .  
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A t rapped  sur face  ( the  phys ica l  measure o f   t he   rad ius   a t   wh ich   phys i ca l   l aws  

change) i s  one fo r   wh ich   a l l .  geodesic  congruences  converge, i . e . , s t r i ke  a 

s i n g u l a r i t y   ( r e f . 3 ,   r e f . 4 ) .  The measure o f   t he  convergence o f  a geodesic i s  t h e  

spin c o e f f i c i e n t   ( r e f . 5 )  

. 
where l,, i s   t h e   t a n g e n t   v e c t o r   t o  an outward  directed  nul l   geodesic  congruence, 

the  semi-co lon i s  cova r ian t   d i f f e ren t i a t i on  and ns( i s   t h e  complex v e c t o r  

spann ing   t he   ce les t i a l  sphere. The vectors lC, m and Zfi are  combined w i t h  an 

ingo ing   tangent   vec tor  nfi t o  form a complex n u l l   t e t r a d .  The m e t r i c   i s   g i v e n  by 

C' 

gfiv = ' ( p 5 )  - "(p% (3) 

where ( ) i s  symmetrization. The te t rad  obeys usua l   inner   p roduc t   ru les   ( re f .5 ) .  

The i s o t r o p i c   m e t r i c  (1 )  may be w r i t t e n   i n  terms o f  a new lum inos i t y   coo r -  

d i n a t e  by the  t ransformat ion 

e'bdt = e4dv + e#dR 

which gives  the  t ransformed  metr ic (1 )  as 

ds2 = -e2+dv2 - 2e++#dvdR + R2e2$m2 

The n u l l  t e t r a d  components a re   eas i l y  found, and the complex expansion o f   t h e  

n u l l  congruence i s  then  found  by MACSYMA t o  be 

p oc 1 + R$' ( 6 )  

where $' = dJl/dR.  The expansion p will be negative and a t rapped  sur face w i l l  

form o n l y  if 1 +R$" < 0. Clear ly,  a l a rge   c lass   o f   me t r i cs  will s a t i s f y  t h i s  

c o n d i t i o n   f o r  some c r i t i c a l   f i n i t e   v a l u e ( s )   o f   t h e   r a d i u s   w h i c h  we denote by R t .  
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This  trapped  surface  location i s  coordinate  dependent. For comparison we shall 

wish  to  transform  the expression Rt tu  Schwarzschild  coordinates  by  choosing  the 

coordinate  system in which  we  redefine  the  radius by P = Re$. Thus  having  found 

the  trapped  location  for  (1)  we  easily find rt. 

For a metric  to  represent  the gravitational  field of  an  isolated  particle it 
I 

i s  necessary  that  the  field vanish  asymptotically at large  distances  from  the 

particle  and  the  space-time  reduce to that o f  special  relativity.  The  invariant 

measure of "asymptotic flatness'' is satisfied  if  the  Weyl  invariant 

q2 = -I/Z Cabcd  lanb(lcnd-mc#) ( 7 )  

vanishes  asymptotically  as R where Cabcd i s  the  Weyl  tensor.  For  the  metric (1) 

we find CTMS gives  the  following  expression  for  the Weyl  invariant as 

e-2$ 

*2 = "" (9' - 4' + R (4" + (4')2 - Z+'#' - # "  + (9')') ( 8  1 
12R 

It is well  known  that  General  Relativity  predicts  both  the existence o f  a 

trapped  surface  and  the  logically related  physical  consequence  which is an  impact 

parameter  for  particle  capture  residing  outside  the  trapped  surface (ref.6). This 

i s  a non-Newtonian  effect and it is therefore  of  interest  to  determine  whether 

other relativistic  gravity  theories  also  predict  such  a  phenomenon.  The  only 

assumption  we  make is that  the  geodesic  equations  which  are  valid in General 

Relativity  hold in other  theories too. This  assumption is reasonable since 

alternatives  to  the  geodesic  equations  of  motion  have  not  been  proposed. 

For the  metric  (1)  and  motion in the  equatorial  plane  the  geodesic equations 
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immedia l t e l y   g i v e  two  constants  of  the  motion h, and K .  These f o l l o w   r e s p e c t i v e l y  

from g++ ds/d+ = 0 and gtt  ds/dt = 0. Wri t ing x = K/h  as the  impact  parameter 

one f inds  orb i ta l   equat ions  which may be p u t   i n  the  form 

dR R r  

We proceed now d i r e c t l y   t o   t h e  photon E=O, s i n c e   m a t e r i a l   p a r t i c l e s   a r e  

more d r a s t i c a l l y   a f f e c t e d  and will simply  give more extreme phys ica l   behav io r .  

O r b i t s   a r e   s t a b l e  down t o  a c r i t i c a l   r a d i u s   g i v e n  by R=Rc. We f i n d  a genera l  

method f o r  computing  the  value o f  Rc i s  g iven   by   s imu l taneous ly   se t t ing  

dR/d+ = 0 and d/dR (dR/d+) = 0 .  These equations  also  give a corresponding 

c r i t i c a l  impact  parameter x,. These condi t ions  are  found  to  g ive Rc f rom 

1 + R(+’ - $’) = o  
R=Rc 

and 

f o r  the  corresponding  capture  impact  parameter. 

VALUES OF THE PHYSICAL PARAMETERS 

We now apply  MACSYMA to  the  equations  derived above f o r  t h e  s t u d y   o f   v a r i o u s  

g r a v i t a t i o n   t h e o r i e s .  We adopt   the   fo l low ing   no ta t ion   fo r   our   phys ica l  

parameters: 

R t  = locat ion(s)   o f   t rapped  sur faces  in   isot rop ic   coord inates  f rom ( 6 )  
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rt = corresponding  locat ion(s)  i n  Schwarzschi ld  coordinates  by  transformation 

R, = l o c a t i o n ( s )  o f  photon   cap ture   rad i i   in   i so t rop ic   coord ina tes   f rom (10). 

r, = corresponding loca t i on  i n  Schwarzschi ld  coordinates  by  transformation 

Ac = corresponding  impact  parameter  for  photon  capture(co0rdinate  independent) 

I n  each  theory we use MACSYMA t o  compute and s impl i fy   the  phys ica l   parameters  as 

we l l   as   ve r i f y   t he   cond i t i on   o f   asympto t i c   f l a tness .  By equat ing (1) t o   t h e  

a c t u a l   m e t r i c   i n  each theory we can so lve   fo r  9 and $. Then we use MACSYMA t o  

compute ( 6 ) ,  (a) ,  (10) and (11) as we l l  as transform  the  physical  parameters t o  

Schwarzschi ld   coord inates.  

A )  GENERAL RELATIVITY: The i so t rop i c  fo rm of  the  Reissner-Nordstrom  metric i s  

2 2  
M - E  2 

( 1 i "-"" 1 
2 

2 2 2  2 M - E  2 H + E  2 4 R  2 
dS = (a R + dR ) (----- + 1) ("" + 1) - """"""""""""- d t  

2 R   2 R  M - E  2 M + E  2 (12)  
(""_ + 1) (""- + 1) 

2 R  2 R  

where E i s   t h e  charge o f   t h e  mass M. We f i n d  

Rt = 1/2 (M2-E2)1/2 

Rc = 1/4 (M+K) f 1 / 2 4  (M+K)1/2(3M+K)1/2 where K= (9M2-8E2)1/2 and M5K53H 

rc = 3M/2 f 1/2 ( 9M2-8E2)1/2 = (3M+K)3/2/(fi  (M+K)1/2) 
(13) 

The resu l t s   f o r   t he   t rapped   su r face   l oca t i on   a re  known whereas t h e   f o r m   o f   t h e  

m e t r i c  (12)  and the  photon  capture  parameters appear t o  be new. S e t t i n g  E = 0 i n  

(13) the  parameters become 
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a l l  of  which  are known ( ref .7)  and conf i rm  the  va l id i ty   o f   our   computat ions.  

B) Rosen‘s Theory  (ref.8) : This  theory has rece ived   w ide   a t ten t i on   recen t l y  

and i s  presen t l y   t he  most popu lar   a l te rna t ive   to  General R e l a t i v i t y .  One o f  the 

r e a s o n s   f o r   t h i s  i s  the  be l ie f   that   the  theory does n o t   p r e d i c t   t h e   e x i s t e n c e   o f  

b l a c k   h o l e s .  We s h a l l  now see t h i s   c l a i m   i s   f a l s e .  Rosen’s me t r i c  i s  

and we f i n d  

R t  = M rt = Hoe 

Rc = 2M rc = 2 M G  ‘Xc = 2Me 

We now see trapped  surfaces do e x i s t   i n   t h i s   t h e o r y  as w e l l  as cap tu re   ra ’d i i   and  

photon  impact  parameters. 

C )  Brans-Dicke  Theory: We use the   met r ic   in  i t s  standard  form  ( re f .2)   to  f i n d  
3 w  

2 
M ( i  SQRT(--- + 2)  + w + 1) 

Rt = ........................... 
2 w + 3  



2 0  2 a  

M n 
1 - "- - P p + --- + 1  

(Rc - a) (Rc + a) x, = """""""""-"""""""""" 
RC 

where 

Here  too  we  find  a  contradiction  with earlier  results  which  claimed  that  Brans- 

Dicke  black  holes  are  identical  to  those  of General  Relativity  (ref . 9 ) .  Note 

that  trapped  surfaces  do  not form  unless  the  coupling  constant w is negative. 

Also, (17)  reduce  to (14) as w becomes  infinite  as  one  would  expect  since  this 

is the  asymptotic  correspondence limit of  the  Brans-Dicke  theory. 

D )  Yang-Kilmister  Theory (ref.10) : Two  solutions  of  the  Yang-Kilmister 

equations  are  given  as (ref.11) 

ds2 = ( l - t ~ / R ) ~  (dR2 + R2dQ2 - dt2) 
and 
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which g i v e   r e s p e c t i v e l y  

Rt = M/2 rt = 2M Rc = M/2 rc = 2M X, 2M (22)  

The f i r s t  s o l u t i o n  (19) i s   p e c u l i a r  as it implies,  from ( Z l ) ,  an impenetrab le 

b a r r i e r   a t  R = M corresponding  to r = 0 i n  Schwarzschild  coordinates. The se'cond 

s o l u t i o n   e x h i b i t s  more unusual  behavior  since  the  trapped  surface,  location, 

cap tu re   rad ius  and  impact  parameter  reside a t   t h e  same rad ius   i n   Schwarzsch i l d  

coord ina tes .  These , resul ts   are  not   surpr is ing  s ince it has  been shown, using 

MACSYMA, that   these  metr ics  are  unphysical   ( ref .12)  by  possessing  solut ions  which 

g i ve   i nco r rec t   phys i ca l   p red ic t i ons .  

R t  = M/2(3*6) rt = M/2(5*26) 
(24 )  

Rc = M/2(3+26) rc = M/2(5+3fi) X, = M/2( 7+4d3) 

It has been claimed  (ref.14)  that  (23) does not  contain a b lack   ho le   rad ius  a t  

M / 2  and 3M/2 , where the   met r ic  components become s i n g u l a r ,   s i n c e   t h e r e   r a d i i  

cannot   be  encountered  a f ter   t ravel l ing a f i n i t e   a f f i n e   d i s t a n c e .   T h i s   c l a i m  is 

i n v a l i d   s i n c e ,  from (24), we f i n d  a trapped  surface  forms a t  H/2(3+&)  which l i e s  

beyond 3M/2. It i s   c l e a r  a black  hole  forms i n   t h i s   t h e o r y  too. 
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CONCLUSIONS 

We have  establ ised  that   b lack  holes  are a normal ra ther   than a p a t h o l o g i c a l  

f e a t u r e  o f  v iab le   g rav i ta t i on   t heo r ies .   Th i s   f ac t   i s   amp l i f i ed  by t h e  new 

observat ion  that   photon  capture and photon  impact  parameters  are a lso  normal  

occurrences i n   t h e   b e h a v i o r   o f   t h e   g r a v i t a t i o n a l   f i e l d   o f  dense bodies. Thus we 

have  d isproven  the  c la im  that   b lack  ho les do n o t   e x i s t   i n  Rosen's theo ry   as   we l l  ' 

as shown that   the  t rapped  sur face  ex is ts  and can  be approached i n   t h e   L i g h t m a n -  

Lee theory.  I n   a d d i t i o n  we have shown t h a t  Brans-Dicke  black  hples  are  qui te 

u n l i k e   t h o s e   o f  General Relat iv i ty .  We are now using HACSYHA t o   i n v e s t i g a t e  a 

recent   a t tempt   in t roduc tng  Quantum theory  in to   the  subject  o f  b l a c k   h o l e s   i n   t h e  

study o f   the   "evapora t ion  o f  black  holes" i n  which p a r t i c l e s  can tunnel  out  o f  

the  t rapped  sur face.  These r e s u l t s  will be presented  elsewhere. 
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The Evaluation of Atomic Variables in MACSYMA * 

Jeffrey P. Golden 
Laboratory for Computer  Science 

Massachusetts Institute of Technology 

1. Introduction 

In  this tutorial pager, we explore the many issues fwvolviwg the use of atomic variables, of 
nume$, in MACSYMA. We hope thereby  to gain insight into the m p k x i t k s  of d u a r t t o n  
which may sometimes cause frustration to the MACSYMA user. Some sf the simpler aspects will 
be glossed over  as they are adequately  covered  in the MACSYMA Reference Manual (ref. l), and 
as we may assume that all MACSYMA users are mewha t  familiar with  them. 

2. Evaluation-Free  Expressions 

W e  begin by looking at "evaluation-free"  expressions,  in  which  names stand for themselves. 

( C l )  FACTOR(XA2-YA2); 
( D l )  - ( Y  - X )  ( Y  + X )  

T h e  basic idea in the  above example is clear  to the MACSYMA user. We wish to factor  the 
polynomial x2-y2 over  the integers, so we type  in the m m a n d  line shown at ( C l ) ,  obtaining  the 
answer at (Dl ) .  X stands for Itself and Y stands for itself. 

1. Implicit  Assignment 

Now, we decide to expand  the result (Dl). We may m e  

(C2) EXPAND(D1); 

or more usually 

This  work was supported, In part, by the United States Energy  Research and Development 
Administration  under Contract Number E(11-1>3070 and by the National Aeronautics and Spaa 
Administration  under  Grant  NSG 1323. 
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(C2) EXPAND(%); 

obtaining 

2 2  
x - Y  

In  this case, we know that D l  or X do not stand for themselves, but  rather  that  they  both 
refer to  the expression -( Y-X)( Y+X); D l  because MACSYMA implicitly  labelled that  expression 
with "Dl", and X because in MACSYMA it refers to the "previous" expression or  computation. 

4. Evaluation 

It is important to  be  clear  on the process  by which the command lines ( C l )  and (C2) were 
handled.  The& command  lines were evaluated, meaning that in order  to  determine the 
expressions FACTOR and EXPAND were  to  operate  on, their arguments, the expressions XA2-YA2, Dl ,  
or X were d d t c d  (and simplified) first, and  this means that  the  variables or names in  them 
were cvducrted one time. Emhat ion of names means that if a name has been ,implicitly or 
explicitly  assigned a value, that we obtain that value If a name has not been assigned a value, 
the evaluator  just  returns the name  itself. 

5. Explicit  Assignment 

We know that we can mplicitly assign a value to a name wlth the use of : (colon). So, if 
we wish to  hold on  to a polynomial, say x2+x+y, and invent a name of out own for it, we can 
tPPC 

(C3) POLY 1 : X*E+X+Y; 
2 

Y + X  + x  

we know that POLYl and 03 are the same in the sense that they  both refer  to  the same expression, 
Y+X2+X We also note that even though X and Y have no  assigned values  (are  "unbound?. and 
thus  evaluation produced no changes in our polynomial, that it has been reordered by the 
simplifier. Lastly, D3 being an imfllkUly arslped name goes on the LABELS list, while POLYl 
being  an explicitly asstgned name goes on the VALUES list,  which perhaps is named somewhat 
confusingly.  (These lists have many  uses as noted in the manual.) The following  should be c k r :  

(C4)  POLY1-2+X; 

(D4) 
2 

Y + X  - x  
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I 
0. MACSYMA Options 

We can also use explicit assignment to reset the value of a MACSYMA option. A 
MACSYMA o p m  is  simply a name that  has been initially  assigned a value by MACSYMA, and 
which  directs  the  performance of MACSYMA a certain way  by its current setting. Thus, if we 
wish to see the computation time elapsed in evaluating command  lines, we may type 

(cs TIHE :TRUES 
time= 1 msec. 
(C6)  FACTOR(X"3+YA3); 
t h e =  90 msec. 

2 2 
(D6) ( Y + X ) ( Y  - X Y + X )  
(C7)  1IHE:FALSES 

When we reset a MACSYMA option, even if we  reset it back  to its initial value. it goes on  the 
MYOPTIONS list. 

( C 8 )  [ LABELS,VALUES,HYOPTIONS]; 
(De) [[Ce, 07,  C7, D6, C6, DS, CS, 04, C4, 03, C3, 02, C2, 

D l ,  C l ] ,  [POLYl],  [TIHE]] 

7. The EV Command 

Often. we only wish to  reset the value of a MACSYMA option temporarily, say, for a single 
amputation. We may do this as follows: 

(C9) SIN( X)%COS( X )  ,EXPONENTIALIZE; 
%I x - X I  x X I  x - %I x 

! %I (%E - %E 1 (%E + %E 1 
(09) - """"""""""""""""""""" 

4 

This  sets the  value of the MACSYMA option EXPONENTIALIZE, normally FALSE, to TRUE only 
during  the evaluation of the expression sin x cos x, thus causing the  trigonometric  expression 
to be converted  to  exponential form.. 

First, let us note that (C9) as given above is an easy way for typing in 

(C9) SIN(X)%COS(X),EXPONENTIALIZE:TRUE; 

T h e  latter form is also acceptable, but  the former abbreviated variant is available  for  many 
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MACSYMA options, and may  also be introduced by the user by DECLAREing a  variable as an 
EVFLAG (see the  manual, p. 120). 

We also note that ( C 9 )  is an abbreviated syntax for  a call to the EV command, and could 
have been  given  as 

( C 9 )  EV( SIN( X)xCOS( X ) ,  EXPONENTIALIZE) ; 

EV is by far  the most frequently used  command in MACSYMA. The above  example on the  face 
of it looks very simple, and indeed, in most instances EV gives the expected result  in a 
straightforward manner.  Unfortunately, as we shall see later on in this  paper, EVs many variants 
which lead t s  id great usefulness, are also the reason for its  complexity, in understanding  it  and 
in how it is handled by MACSYMA. 

8. Sinple Level of Evaluation 

Let's  now assign to X the value of Z 

W e  know what  typing in x2-y2 does: 

( C 1 1 )  XA2-YA2; 

z 

2 2  
2 - Y  

Let us now request the value of  02: 

(C12) D2; 

( D l 2  1 x - Y  
2 2  

We notice that  the  value of D2 has not  changed  even though X has now been assigned a value 
This  is  because MACSYMA ordinarily evaluates  expressions  (in this case 02) only one tim and 
docs  not  reevaluate expressions even If doing so would  result in further change. 

9. Multileveled  Evaluation . .. . 

One can request evaluation until no further change takes place by using  the INFEVAL 
("infinite  evaluation") flag of EV, as follows 
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(C13) D2,INFEVAL; 

( D l 3 1  
2 2  

z - Y  

In  designing MACSYMA, we chose  to ordinarily evaluate expressions  only one  time as this 
gives  the user much more  control over hidher expressions  in that helshe can control the  number 
of times evaluation is to take place. In almost  every case this is not an  important issue as 
variables  appearing In expressions are usually either unbound (stand for themselves) or are 
bound  to expressions containing variables all of  which are unbound. Thus, in almost every case, 
it would  make no  difference if we evaluated  variables only one time or attempted to  evaluate 
t h h  more  than once. 

However, suppose the user has an expression  which is labelled, say, L1, which contains  one 
or more Occurrences  of the variable A, and that A in turn has been assigned as  value a large 
expression.  (One way  of accomplishing this easily is by assigning to L 1  before  assigning  to A) 
Then,  thanks  to  the evaluation scheme  described  above, the user can play around  with  the 
expression L 1 , i . i  use L 1  in his/her command  lines,  without fearing  that a large expression will be 
plugged in for A before the user  wants this to  occur. 

(As another example, when the user  typed D2; at ( C l Z ) ,  the user  may have only wanted to 
see 02 displayed again, rather than wanting additional computation to take place at that  point 
Or, when the user  types VALUES; at MACSYMA, the user  wants  to see the  names of the  variables 
that  have been assigned to, rather than their values.) 

When  the user  wants this plug-in to L1 to take place, this may be done simply with 
MACSYMA by typing any of the following  command-lines: 

EV(  L1) ; or L1,RESCAN; or L1, INFEVAL; 

The first two are equivalent, and take advantage of the fact that calling EV causes the  expression 
L1 to be evaluated  one  extra time, i.e.  twice. Thls is obviously the reason the  flag is named 
"RESCAN". (The reason for this extra evaluation will be gone into further below, when EV is 
taken up again.) 

The  above example, however, is actually  somewhat artificial. If the user wanted the  above 
effect, it is more usual to either postpone  assigning to A until that assignment is needed, or to  use 
the SUBST comqand when  needed  to substitute in that large expression for A However, one 
circumstance  in which a sltuation similar to that above occurs is when using the SOLVE command, 
as In the following: 

(C14)  KILL( X)$ 

(C15) SOLVE(XA3+X+C,X); 



(€15) I 

2 
WRT(27 C + 4) 

C 1/3 

2 
(E15 - -) 

We note  that in order to keep the solutions E17,  E18, and E19 to the cubic equation  somewhat 
smaller  than they otherwise. mlght be, the label E16 is automatically asslgned by SOLVE to a 
subexpression common to all three solutions. The label E15 is also generated as  an  auxiliary 
label. Thus, we gain somewhat  in the size of displayed  expressions at the  expense  perhaps of 
sane convenience in manipulating the expressions. 

Now, let us look at what might be seen  by some as  a problem  with MACSYMA's evaluation 
and simplification scheme. Suppose we have 

(C20)  SIN(X)+COS(X); 
(020 1 COS( X )  SIN( X )  

(C21) EXPONENTIAL1ZE:TRUE~ 

(C22)  DIFF(D20,X); 

" 



Note  that  the EXPONENTIALIZE flag has been  reset in the middle of a computation. T h e  result 
obtained  in D22 (which, by the way, is  equivalent  to COS2( X)-SIN2(X)) at  first  sight may be 
surprising  to  the MACSYMA user. We see that even though the EXPONENTIALIZE switch has 
been set to TRUE via C21, that 022 still has S I N S  and COS'S in it! This can be seen to  be a result 
of MACSYMA's single level  evaluation and simplification  scheme in its interaction with the  rule 
for dlfferentiation of products. Those parts of the resuit  which are  generated by O I F F  are 
scanned  and converted  into'exponentials, whereas the unrescanned subexpressions are  unchanged. 
The user can obviously  obtain  the probably desired  result, 1.c. a fully exponmtialized  expresston, 
by aus ing  a r m n  to take place, e.g. by 

X I  x - X I  x X I  x - X I  x 
%I (%E - %E ) ( X I  %E - X I  %E 1 - """""""""""""""""""""""" 

4 

(C24)  EV(D22);  
X I  x - X I X 2   X I  x - X I X 2  

(%E + %E 1 (%E - %E 1 

4 4 
(024 1 """""""""" + """"-""""--- 

(C25)  EXPONENTIAL1ZE:FALSES 

(C25 resets EXPONENTIALIZE back  to its default value.) 

T h e  results D23 and 024 are  different  for reasons  explained in the section  on EV below. 

The  single level evaluation and simplification  scheme  gives the user the  extra  flexibility 
and control desipble in certain  circumstances. Also, manipulation of expressions  is  faster, as 
expressions  are not  ordinarily rescanned  unless  specifically  requested by the user. (An  exception 
to this is in MACSYMA's rational function package,  where, in order for  algorithms  to  work 
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correctly, it may be necessary for expressions  to  be  consistent  with the  current environment.) An 
implementation  which automatically rescans expressions  whenever flags such as EXPONENTIALIZE 
are reset since the last time the expressions were  scanned is possible, although  cumbersome, and it 
would remove some level of control from  the user. 

10. The EV Command Expla&d 

We  have seen several examples of the versatility of the EV command above. T h e  EV 
command is used to contrd the environment In which an evaluation andlor simplification are to 
take place. The  general syntax is 

meaning  that  the expression exp is to be evaluated and simplified in the  environment  given by 
the  remaining  arguments, the aref. For example, noting (C9)  above 

we see that  the intention is that the expression SIN(X)+COS(X) be simplified, 1.c transformed, in 
the  environment where EXPONENTIALIZE is TRUE. 

To see how this  affects evaluation, we consider the  example 

2 
x + 1  

10 

T h e  expression X (or D26) is to be evaluated in the environment wRere X has value 3, giving 10. X 
has  value 3 while evaluating X (026) irrespective of any vahe X might Rave in the  moutside 
world". Also, X will revert to its "outside  world"  (global) value when evaluation of the call to EV 
in C27 is completed.  (By the wag, the syntax X:3 may also  be  used for X33 here.) 

Now, jet us see &st how the evaluation of the call  to EV in C27 takes  place. First, the  name 
X is evaluated, giving $+I, thereby obtaining the expression EV is to work on. In  general, names 
appearing in the  first argument to EV are evaluated  one  time at this stage.  Usually, these  names 
are labels  which point to (whose  values are) the expressions EV is to work  on. The evaluation (of 
the name X) will 'not take place in a case Dike EV(X2+1,X=3); where the  name (X) is the left hand 
side of an  equatim or assignment.  Obviously, the global value of X is not wanted  in this case. 

Next, X is bound to 3, and  the expression X2+1 is evaluated in this  environment,  giving IO. 
So, we note  that  the original expression X was evaluated & i.e. one extra time. 
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Using  this! information, we can  analyze how the command  lines (C23) EV( DIFF(  020, X) ) ; 
and (C24)  EV( 022)  ; are handled. In the case  of C23, first  the values of DZO (which is 
COS( X ) f l I N ( X ) )  and of X (which  is X) are retrieved. Then,  the resulting expression 
DIFF(COS(   X)d IN(X) ,X)  is evaluated, which  means,  since EXPONENTIALIZE is TRUE and since 
the evaluation of arguments takes  place before DIFF is called, that COS(X) and SIN(  X), are 
converted to exponentials before the differentiation is carried out. Thus, we see that 
EV(  DIFF(  D20, X )  ) ; is equivalent here to DIFF( EV( D20), X )  ;. In the case  of C24, first  the  .value 
of D22 is retrieved, which is an expression  containing  both SIN'S and COS'S and  exponentlals. 
Then,  this expression is evaluated, which  in this case,  since EXPONENTIALIZE is TRUE, simply 
causes  the Occurrences of .SIN( X )  and COS( X )  to  be  converted  to exponentials. 

Noting  the  above analysis, the examples in the manual  following the description of the 
SUBST command should be  clear. There, the differences between sdstitution as performed by the 
SUBST command and binding as performed by EV, as well as the differences in the  order in which 
and  extent to which evaluation takes  place are illustrated. (The arguments in a call to SUBST are. 
of course, evaluated before substitution  takes place.) 

We  have seen above how EV may  be  used  to affect evaluation. We have also seen the  use 
of  the INFEVAL flag of EV to cause  repeated  evaluation of an expression until no  further  change 
takes place.  Now, we will briefly mention other flags of EV which  may be used to affect  how 
evaluation  and simplification takes  place. 

Especially  when we use EV to plug in  solutions  obtained by SOLVE, eg. 

(C28) XA3+X+C,E19,RATSIMP; 
2  2 

108  E15 - 27 C - 4 
( D28 1 """""""""" 

108  E15 - 54 C 

we  may wish one more evaluation than normal  to  take  place, in this case to  eliminate the E15. 
This  may be done with the INFEVAL flag of EV, but if we wish to control the  number of extra 
evaluations (usually, only one will be necessary), this may be done with the EVAL flag of EV. 

(C29) XA3+X+C,E19,EVAL,RATSIMP; 
(029 )  0 

In fact,  one  extra evaluation will take place for each  mention  of the EVAL flag. EV finds  that E19 
evaluates to an equation that is  used to obtain a value for X The RATSIHP flag is a so-called 
EVFUN which  is used  to obtain the simplification we desire, by composing it around the first 
argument, 1.e. C29 is quivalent to 

I 

(C29) RATSIMP(XA3+X+l),E19,EVAL; 

I .. 



(EXPONENTIALIZk, used above, is called an EMLAG. It is a true fhg ,  used to affect  simplification 
of Mgonomaric  hnctions.) 

There is also a NUHER flag to EV which is used to obtain numerical, i.c floating  point, 
answers  where possible. Egg. 

((230) SIN(l/2)+SQRT(l+%I),RECTFORH,NUMER; 
(030 1 0.45508987 %I + 1.57810968 

Sometimes, eg. when the NUWER effect of EV is desired, but  the extra  evaluation  done by EV is not, 
the NOEVAL flag may be used  to indicate that substitutions rather than  evaluations are to be used 
where necessary. (An example of the use of NOEVAL is given later.) EV will also use substitutions 
rather  than binding when the left hand sides of equatlons in its latter arguments are non-atomic 
E%. 

(C31) 2~IN(X)"2+2*COS(X)"2,COS(X)"2=l-SIN(X)"2,EXPAND; 
(031 1 2 

EV also plays a role in MACSYMA's nounlverb scheme in converting  nouns  like 'D IFF 
rderivative")  into  verbs like DIFF (liiifferentiate"), as noted in the manual. 

11. Program Binding 

This section  discusses the  binding of names to values  in function calls and  the  handling of 
BLOCK variables. We proceed by considering  an  example. The following function  definition for 
NYTAYLOR defines  a very  limited Taylor series  capability. 

(C32) HYTAYLOR(EXPR,VAR,POINT,HIPOUER):= 
BLOCK(CRESULT1, 

RESULT:  SUBST(POINT,VAR,EXPR), 
FOR 1:1 THRU  HIPOWER 

DO (EXPR: DIFF(EXPR,VAR)/I, 
RESULT: RESULT+(VAR-P0INT)"I 

fiUBST(POINT,VAR,EXPR)), 
RETURN(RESULT))S 

(C33) HYTAYLOR(SIN(X),X,A,3); 
3 2 

COS(A) (X - A )  SIN(A)  (X - A )  
(D33) i -  --------------- - --------------- + COS(A) (X  - A) + SIN(A)  

I' 6 2 

The  definition  for HYTAYLOR has  four names, EXPR,  VAR, POINT, and HIPOWER, which are 
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I called the "formal  parameters" of the function  definition. They are bounc d in turn  to  the  values ! of the  argumend  or "actual parameters" of the function a l l ;  in the case of (C33), to SIN(X)  , X, 
A, and 3, respcitively, (X and A are unbound) when the call is handled.  When the body (right 
hand  side of the  function definition) of HYTAYLOR is  exited  upon  completion, these bindings are 
undone,  and EXPR, VAR, POINT, and HIPOWER again take on whatever values  they may have 
had  prior  to  the call. We also note that EXPR is assigned a new value each time the W statement 
bps .  This, of  course,  causes no difficulties. 

The  definition also has  a local BLOCK variable RESULT. Being a BLOCK variable,  it is 
treated as unbound upon entering the BLOCK, and in this case, in the  first  actual  statement of the 
BLOCK, it is  assigned to. RESULT is  reassigned in the body of the DO statement, and,  noting  the  last 
statement of the BLOCK, its final value is actually the value returned by the call to HYTAYLOR 
And,  like  the  formal parameters of the definition, when the BLOCK is  exited, RESULT takes  on 
whatever  value it may have had outside the BLOCK. 

(We note that we can  use this last fact to temporarily  reassign the  value of a MACSYMA 
option, as in the following example for teaching MACSYMA a possible simplification rule ô o + 
1. Here, we want simplification turned off while the rule is being set up to  avoid  getting an  error 
message. 

(C34) O^O; 
0 

0 has been generated 

(G35) ~~LOCK([SIHP],SIHP:FALSE,TELLSIHP(OAO,l)); 
rule  dlaced on 
(035) [#RULEI,  SIHPEXPT] 

Lastly, thd  definition  has a local DO variable L I is given an initial  value of 1 in the 
definition.  This is the value I has  the  first time through the body  of the DO. Each  successive 
time  through  the body of the DO, the value of I is incremented by 1. And, just as with BLOCK 
variables, when the DO statement is exited, I takes on whatever value it may have  had  outside  the 
DO. 

The above example  exhibits no  real  difficulties.  When a function call is made, variables 
are  bound to  certain values. The values  these  variables had prior to  these bindings  are placed on 
a list, and when the body of the function, BLOCK, or DO statement is exited, these prior  values are 
retrieved  and  the variables are reassigned to them. 

But, let us !exhibit a case that doesn't work 50 well. Consider 

(C37) F(X):=SIN(X)+XS 

119 



- SIN(X) - X 
This  is surely the answer we expected.  We  note that X was bound to -X during  the  evaluation of 
the body of the definition for F. But, what if 

(C39)  F(X):=EV(SIN(X)*X,NlMER)S 

0.97942555 

SIN(X) + X 

T h e  intention of the user  is to obtain numerical  answers  in cases like C40. But, notice what 
happened In evaluating  the command  line for C41. Variables in EVs first  argument are 
evaluated twice, and X evaluated twice gives -(-X) or X, not the -X  the user probably  intended. 

One way to get around  the problem In this casc Is to use the NOEVAL flag to EV. 

(C42) F(X):=EV(SIN(X)+X,NUHER,NOEVAL)S 

Note  that SIN is handled by the simplifier, rather than by the evaluator. 

In general, however, when EV is used as above in the body  of a function definition, a better 
and sometimes necessary  solution  is  to  name  one’s local program variables (Le. function, BLOCK, or 
DO variables) differently  from one’s  symbolic variables (the variables appearing  in one’s actual 
expressions). E.g. if one expects that %X will not appear in one’s expressions (or in that of a user 
of one’s  programs!), then the following will work. 

(C44) F(XX):=EV(SIN(%X)+XX,NUMER)S 

Problems like the  above occur rarely in using MACSYMA We  are  thinking about 
solutions  to it. It Is discussed in reference 2 and a p i b k  solution via a change In 
implementation of MACSYMA is proposed there. 
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12. Single-Quote, and Quote-Quote 

Single-quote (’) and quote-quote (”) are two operators  which affect  the  evaluation of 
names  (and of other forms) in essentially  opposite ways. A complete  discussion  of these operators 
is given in section 3.2 on Evaluation in the MACSYMA manual, and  that discussion will not be 
repeated here. Essentially,  preceding a variable by a singlequote prevents an  evaluation  from 
taking place; while preceding a variable by a quote-quote  causes an  extra  evaluation and 
simplification to take place. The effect of  single-quote  is at evaluation time, while that of quote- 
quote is at parse time. Quotequote is  often used to  cause reevaluation of a C-label. 

One interesting use  of  single-quote is when  using the INFEVAL flag of EV. Suppose  one  has 
an expression  named EXPR which one wishes to repeatedly evaluate until no  further  change takes 
place. Suppose, however, that EXPR contains a variable, say X, which one would prefer to retain 
as a name in the expression, even though X is  now bound. One simple way of doing  this is as 
follows. 

EV( EXPR,  INFEVAL,X=’X) ; 

This  assigns to X the value of X during the “infinite“ evaluation of EXPR, thus  causing X to 
remain  unchanged  in  the process. 

(By the way, using singlequote, of course, offers another solution to our problem above, eg. 

( C 4 6 )  F(X):=EV(’(SIN(X)+X),NUMER)S 

13. Other  Issues 

T o  keep this  paper reasonably  sized, only the evaluation of atomic variables was discussed. 
Thus, many other evaluation issues  were  not  mentioned. For the sake of completeness, a list of 
these omitted issues is given here: Other evaluation-forms, e.g. compound statements, the colon- 
colon ( )  operator, LAMBDA notation, APPLY and MAPping, 60 and RETURN, predicate  evaluation, 
passing  function names into programs and the evaluation of function names, passing  array  names 
into programs, the evaluation and simplification of SUM and PRODUCT, the  noun-verb scheme, 
subscripted variables and functions, running interpreted  (normal) functions vs. running  translated 
or compiled functions, and debugging what the evaluator has done to you. Many of these issues 
are discussed at length in the manual, or may  be the subject of future papers. 

I wlsh to thank Joel Moses for coaxing me into writing this paper, Ellen Lewis for her 
helpful assistance, and all members of the  Mathlab  Group  and others at M.I.T. and elsewhere for 
our many discussions,  agreements, and disagreements on the s u b F  of evaluation - a hotly 
cantested ISSUC! ! 
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13 

THE VARIETY O F  VARIABLES IN MATHEMATICAL EXPRESSIONS 

Joel Moses 
Laboratory for Computer Science, MIT' 

T h e  methods of evaluating mathematical expressions in a symbolic mathematical system 
differ  from system to system. We show that classical  computer  science evaluation approaches  are 
inadequate  for  this task. The  problem is that one is mixing two worlds - the world  of mathematics 
and the world of programming. An approach which separates these two worlds is  indicated, and 
various  alternatives  to  it  are indicated. 

Consider  the evaluation of the following' pair of statements in a  programming  language 
such as FORTRAN or PL/I. The statements are written  in MACSYMA syntax. 

After  the  first statement has been evaluated, the variable 1 will have  the  value 1 stored in 
a cell reserved for y. In evaluating  the second  statement, C2, the value of y is obtained  from  that 
cell, a constant 2 is  added to it, using integer addition , and the result  is stored in the cell reyrved 
for  x. This  process of looking up values in  cells  temporarily  reserved for variables is equivalent  to 
the usual method of evaluation of variables employed in most programming  languages. 

Now consider a slight variation on the two statements  above: 

Suppose  that y has no value at the time the  first statement  is reached. What is the  value 
to be given  to x? Different languages will have  different results. Some might  automatically store 
some  starting value, say 0, for all variables. Others may discover the problem in the compiler and 
give  an  error message.  In an algebraic manipulation system such as MACSYMA, neither of these 
actions occurs. The  result stored in the cell reserved for x is the expression y + 2. This is obtained 
in  the following  manner. The identifier y is  encountered and  the cell reserved for i t  is examined. 
Th i s  yields the  information  that y has  no value at this time. Thus the result returned for y is the 
expression y itself. Such  an action cannot be taken by an algebraic language which does  not have 
a symbolic  expression as a legal data type, and it is one thing which  makes algebraic  manipulation 
languages  differ  from  other languages. Next the constant 2 is evaluated as usual. T h e  addition 
is handled  differently. Since we no longer have numbers only, numerical addition becomes 

8. This  work was supported, in part, by ERDA contract Number E(l1-1)-3070 and NASA Grant 
NSG 1328. 
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simplification of sums. The  simplifier may  use numerical addition,  but in this case cannot, and 
thus  returns  the expression y + 2 to be stored  in the cell for x. 

Now consider the second statement, C2. The evaluation done  here is quite  normal,  that 
is, a constant 1 is stored in the cell reserved for y, Consider the  value  for x after  this  point, 
however.  Either x has  the old value of y + 2 or else it has  the  value 3, which utilizes the newly 
obtained  value of y. That there is an issue here is due solely to the  fact  that  the  variable x has a 
value  involving  the symbol y. In the usual algebraic language, if x depended on an old numerical 
value of y, and then y's value changed, no one would expect x's value to change  automatically. 

Let us consider the alternatives for the value of x again. The value y + 2 is easy to get, 
because  that is exactly what is stored  in the cell reserved for x. We claim that users of algebraic 
manipulation systems want to get the  value.3 most  of the time. There  are several ways  of getting 
that  value  for x. The  rest of this  paper will discuss  such approaches, and  the  difficulties  that  they 
engender. 

T h e  basic idea of the alternative approaches is to re-evaluate the  value of a variable. 
T h u s  in  MACSYMA  the command: 

(C3) x; 
will return y + 2, but 

(C3') EV(x); 
will return 3. 

T h e  EV function will, in effect, evaluate the expression y + 2 for x. Since y now has  the 
value 1, simplifying 1 + 2 will yield 3. Thus the MACSYMA user  can in this case choose either of 
the  alternative values for x. The EV command is insufficient in handling more complex cases, 
however.  Furthermore, experience indicates that the value the user  would normally want  to see is 
3, and  thus  extra work should be required for getting the y + 2 rather  than  the 3. as is now the 
case. 

A simple  example, where EV  fails to give the desired value, is shown below: 

Consider  the possible values for x: Using the usual algebraic  evaluation  scheme, x 
evaluates  to y + 1. Using EV(x), we  would  get I + 3  after simplification. Our user probably  wants 
to see w + 6. We could get that by calling EV twice, or EV(x,EVAL), but that simply exposes the 
problem with EV,  that  one may need  to  hold its hand until one gets the  value  one  desires. T h e  
key to  getting w + 6 automatically is to consider another evaluation strategy; namely a Markovian 
or infinite  evaluation strategy. 
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T h e  basic idea  behind  infinite evaluation is  to  keep evaluating the results until  there is 
no change. T h e  process ends when one obtains a constant or a  variable which has not yet been 
given a value.  Such a strategy has recently  been  introduced into EV with the INFEVAL mode. 
Thus,  EV(x, INFEVAL) would  yield w + 6 in the example above. 

There  are two basic problems with the  infinite evaluator strategy. It is not the  strategy 
you want when dealing with usual programming variables. Moreover, when it is clear that you 
want  something like infinite evaluation, it is not  precisely infinite  evaluation that you want. We 
shall  deal with the latter, and easier, issue first. 

Consider a situation which might occur  when one uses substitution of variables a 
number of times in a problem: 

What  are  the possible values for x? The usual evaluation strategy will yield f (y ,z ) .  
EV(x) will  yield an expression in u and V. EV(x,  INFEVAL) will yield an  expression in values p 
and q. Suppose you wanted to see x in terms of t and J. This request, which is not unreasonable, 
is  hard to satisfy in general using the strategies we have discussed. There is an easy solution, 
however. This is to make t and J temporarily appear to have no value, and  then  infinitely 
evaluate x .  We call the role that t and J play in this case  shadow variables. Shadow  variables are  
variables which have known values, but are temporarily  considered  to  be atomic. 

Shadow variables  are, in a sense,  already in use in MACSYMA in various ways. When 
solving  cubic  or  quartic equations, certain intermediate results are generated and  given E labels. 
The   f ina l  result is given in terms of these E labels. The reason for using the E labels is to  keep 
the expression relatively small. We claim that  the E labels are acting as  shadow  variables for  those 
intermediate expressions they  possess as values. Unfortunately, there is no easy  way to keep the E 
labels  from  being evaluated on  command. An expression containing them, when evaluated  using 
EV, will substitute  the values for  the E labels. The shadow variable scheme, when implemented, 
would allow one to introduce shadow variables and specify  exactly  when their  values are to be 
shown. There  are yet other  situations in MACSYMA  where a similar need for  shadow  variables 
shows  up. MACSYMA’s constants RE and XPI have numerical values associated with them  which 
are revealed when one  evaluates an expression with,  say, EV(expression, NUMER). Thus  %E and 
%PI may be said  to  be  shadow variables. Similarly the functions SIN and COS are  shadowing 
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their  numerical counterparts. Thus EV(SIN(l), NUMER) calls the "value"  of the  SIN  function  in 
order to  obtain a numerical result. 

In the  above we have considered evaluation of mathematical expressions  without dealing 
with  the companion  operation,  that is, simplification. Since these two operations  tend to get 
confused, we would like to indicate a possible distinction. We like to consider evaluation  as a 
relatively  straightforward, well-defined, and simple operation whose basic job is to replace 
variables  and  functions with arguments by their "values". Simplification, on the  other  hand is a 
less welldefined operation which does not  usually deal with programming  concerns  such as  
variables  and  their values, but  rather with  equivalence transformations on the  mathematical 
obpcts themselves. We would like the result of evaluation to be unique. We know' that  the  results 
of  simplification are often not so well defined and  different users will want different results. 

It  turns  out  that a classic way to implement simplification algorithms is with a Markov 
algorithm, Le., infinite evaluation. Since we indicated that  infinite  evaluation  might  be of use in 
evaluation,  it is not  surprising  that one algebraic manipulation system, SCRATCHPAD, has  opted 
for  having only an  infinite evaluation scheme. This is reasonable only as long as  one  avoids 
writing  subroutines  and stops using variables in the usual programming sense. In such a case, one 
can  get  into unexpected  difficulties, with one of the simplest of them shown below: 

Consider  the  value of f(x + 2) called for in C2. In MACSYMA, using  the  usual 
evaluation strategy, you would  get x + 3. But with infinite evaluation for all variables you will get 
an infinite loop, since the x occurring in the expression x + I in the  definition of f(x) forces one to 
keep evaluating its value. SCRATCHPAD prevents the user from defining  functions in the  usual 
way, but  this is clearly unsatisfactory in general. 

Infinite evaluation  thus  has  a drawback in that it allows infinite loops. T h e  possibility 
for  looping may be essential when dealing with  most Markov algorithms. But  mathematicians do  
not  evaluate expressions that way! When x depends on y and y depends on x that leads to a system 
of  equations  to be solved and not one to be evaluated or simplified. Evaluation of mathematical 
expressions  requires a finite number of substitutions and  no loops are allowed. We  shall call 
"finite  evalution"  the process  which evaluates without bound, but which checks for loops and  thus 
avoids  infinite loops. We believe that  infinite evaluation has been in vogue in certain  symbolic 
systems due, in  part, to a confusion between simplification and  evaluation. Simplification 
algorithms, if implemented as Markov algorithms will, in fact, require loops! If a loop is found in 
finite  evaluation, we shall assume that evaluation stops and an error message  is given. 

Another  approach  that  has been  taken  is  to  recognize that some variables will be 
evaluated once and  others infinitely,  and to force the user  to  choose the mode by a  declaration or a 
change in the spelling of the variable's name. An approach which relies on declarations is 
essentially the one taken in REDUCE. In addition to our desire for a distinction between finite 
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and infinite  evaluation  and  for a shadow variable capability, we eschew the  declaration or  the 
spelling  approach because one does not want  users of interactive systems to make  declarations 
unless they’re absolutely required, as successful interactive systems such as APL and LISP have 
clearly  indicated.  In  addition,  the declaration approach is unnecessarily restrictive, since  it does  not 
normally allow a variable  to  be used in both the usual or finite  evaluation modes in the  same 
subroutine,  for example. 

Hence  our goal is  to indicate an evaluation strategy that 1) gives the user the  usual 
strategy when he wants  it for a given variable, 2) gives him the  finite evaluation  strategy  when it 
is more appropriate  and (3) allows him to switch from one mode to  the  other while requiring 
hardly  any declarations. This particular  feat of  magic appears possible when we make  the 
following observations: 

1) Variables used inside subroutines are usually intended for  programming  objectives 
and not as symbolic data objects.  Users of such variables will usually want them to be  evaluated 
just once. 

2) Variables used  in an interactive step-by-step  mode,  with the exception of labels, are. 
usually intended  as symbolic data objects.  Users of such variables will usually desire  them  to be 
evaluated finitely. Labels, such as MACSYMA’s Ci and Di labels are not data objects. T h e  values 
of  labels will usually be desired to  be evaluated finitely, however. 

If  we take these observations to heart, then we would evaluate all variables  inside 
subroutines  just once, and all variables occurring in  step-by-step (top level) ca!culations finitely. 
We  could allow for exceptions by declaration, but such declarations will rarely be necessary. Yet 
this doesn’t solve the problem. The basic  dilemma is that inside a given subroutine  one  could 
have  the identifier x representing a local variable (which  is  to  be evaluated  just once for its value) 
and implicitly have a data object containing the variable x (which  is  to be  evaluated  finitely for its 
(usually  different) value). 

Before I describe a proposed solution, let  me recall  some remarks made to me by the late. 
famous computer scientist, C. Strachey, in 1965. Strachey  said that  mathematicians never really 
understood  the concept of a variable. The variables in mathematics are clearly constants. It is 
computer scientists who were the  first to deal with and appreciate variability in mathematical 
objects. 

I was deeply impressed by  Strachey’s  comments and to my sorrow I have  learned how 
misleading  they were. Mathematicians, physicists and engineers, I have concluded, have used a 
much  richer concept of variable  than‘ computer scientists have ever dreamt of. Since  symbolic and 
algebraic  manipulation systems are essentially the only  computer  systems to attempt  to  deal  with 
mathematics in the way it is usually dealt with,  they have been  most hurt by the  interpretation of 
‘variables in  vogue  in computer science. In part, computer  scientists have been overly enamored by 
variability of our variables (e.g.. x : x + I), and  have only  lately learned that  there is much to be 
gained in ease of understanding by restricting variability. In part, and  this  is a major  point of the 
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present  effort,  variables in computer science have not  shown  much variety of interpretation. T h e  
reason  is largely that  the  data objects in vogue in computer science  (i.e., numbers) do not possess 
much  structure. 

Getting back to  the present subject, we note that one solution is to recognize that  there 
may be several  different Variables  with the same name at the same time throughout a computation. 
Many  languages  already allow one to  use thesame identifier for both a function and a variable, 
since the usage is so very different.  Others might let one use array names which are  the  same as 
variable names. Again the usage differentiates them.  In mathematics it  is common to play such 
games, some would call them puns, depending on context  to give  sufficient  information regarding 
the  type of the  variable intended and its mode of interpretation. In our  situation, we claim that 
there  is no acceptable solution unless  each variable can  essentially have two different values,  a 
regular  one  and a symbolic one. At any given  time, the value chosen  is a function of the 
interpretation assigned to the variable. The remaining questions are largely of how one 
determines  what interpretation to assign. 

We  are,  therefore, led  to  propose the following evaluation strategy: 

Rule 1. A variable used  in the top  level,  step-by-step  mode  uses its symbolic value,  unless 
a declaration is made to do  the contrary. The symbolic value is then evaluated  finitely. 

Rule 2. A variable used inside a subroutine uses  its regular value which is not further 
evaluated, unless there is a declaration made  to do the contrary. 

Rule 3. A label used at  the top  level  stores  its value in  its regular  value cell. The  value 
of a label  is  further evaluated finitely. 

Switching modes, an issue we made  much  of earlier, could be accomplished with EV 
using  the following rule. 

Rule 4. In a subroutine, EV of a programming variable  first  evaluates  using the 
variable’s  regular value. The  result  is  then evaluated finitely, using only the symbolic values for 
any variables.  Should  a  variable given to EV not have a regular value or be declared symbolic, its 
symbolic  value (which always exists) is  used and evaluated finitely. 

We believe that such rules allow for the diversity of usage of variables in symbolic and 
algebraic  manipulation systems that users  expect. Since the scheme above  has Lot  yet been 
implemented, we unfortunately do not have practical experience as yet to indicate its acceptance in 
such a context, but we hope  this situation will be  remedied  soon. 

We shall now discuss various approaches which are closely related to the  proposal  above. 
T h e  first  is  that instead of having two value cells for each variable,  one would achieve  largely the 
same  purpose by automatically renaming one .of the variables. For  example, any  variable 
occurring  inside a subroutine  and not  declared to be symbolic  could be renamed, for  example, by 
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automatically  attaching  the symbol 9. to the name. Thus, the symbolic and  programming  variables 
would  be  distinct  and  the values would  not  clash. The communications between the two modes 
would  be  handled by EV still, but slightly differently. For example, suppose we communicate the 
expression %+I into a subroutine which  would  like  to  assign different  values  to I. Inside  that 
subroutine, we might use the variable J, and then perform SUBSTITUTE (J, 'I, expression). 
Here, 'I will indicate that we mean the symbolic variable I, rather  than the  programming  variable 
I. 

Another  approach, which is closer  to  what the FORTRAN-based (e.g., FORMAC)  rather 
than  the LISP-based systems have attempted is to  disallow assignment to symbolic variables and to 
force users  to  simulate the Markov algorithm evaluation by explicit substitution, Thus if you wish 
to  substitute 2 for 9 in an expression, you explicitly  make the substitution or similarly indicate i t  
with EV(expression, 9 - 2). This forces the user  to separate his mathematical and  programming 
worlds  and could avoid some confusions. It does appear to force the user  to be more  explicit in his 
evaluations, which may get tiresome. It also  necessitates another mechanism for  dealing  with 
shadow  variables  and possibly  even  with  labels for expressions. 

CONCLUSION 

This paper discusses various distinctions which  can be made regarding  evaluation of 
mathematical expressions: regular evaluation vs. infinite evaluation vs. finite  evaluation,  regular 
variables vs. mathematical  variables vs. shadow variables vs. labels, simplification vs. evaluation 
vs. solution of equations. We claim that the unsatisfactory state of evaluation  strategies in  
symbolic systems is due to insufficient use of such distinctions in the past. Yet we can  claim to 
have only  begun  the discussion about such distinctions and  the  various  mechanisms for 
implementing them in a human engineered manner. 

This paper resulted from discussions that  have been going on in the  Mathlab  Group  for 
the  past year. Not surprisingly,  a number of positions on evaluation have  arisen.  We  shall 
mention only two here. In a companion paper, Jeffrey Golden defends  MACSYMA's current 
evaluation strategy. This strategy has changed somewhat in the past  year  with the  introduction of 
the  INFEVAL mode in EV. Another view  is  held  by David Barton. He  maintains  that 
mathematicians  hardly  evaluate expressions.  Usually  they  restrict the  range of solutions with side 
conditions (e.g., let x2 = a in ...) until only one result  is  possible. He also maintains  that  assignment 
to mathematical  variables  should  appear syntactically different  from  assignment to programming 
variables.  Substitution also replaces evaluation in  many  cases  in his scheme. The  approach of this 
paper may be viewed as a compromise  between  such  views. 

We wish to acknowledge the usefulness of discussions  with David  Barton  and  Jeff 
Golden, as well as with Michael Genesereth, Barry Trager,  and  Richard Zippel. 
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RATIONAL APPROXIMATION TO e-x WITH NEGATIVE REAL POLES 

E l i z a b e t h   C u t h i l l  
David W. Taylor Naval Ship  Research  and  Development  Center 

Th.is n o t e   d e s c r i b e s   a n   a p p l i c a t i o n  of MACSYMA t o   t h e   g e n e r a t i o n  of an 
expans ion   in  terms of Laguer re   po lynomia ls   to   ob ta in   approximat ions   to  e-x 
on [0,  m) of t h e  form 

P m 

(1 + -1 x m  
m 

Here Pm is a polynomial of degree m-1 in   x .   These  approximations are compared 
with  those  developed by Saff  , Schgnhage,  and'  Varga [ 3 ] .  T h e i r ' s  are optimum 
Chebyshev approx ima t ions .   In   pa r t i cu la r ,   Tab le  3 con ta ins  a comparison oi 
t he  maximum e r r o r s   i n   t h e  Chebyshev  sense  showing  the  superior  performance of 
the   approximat ions   in  [ 3 ]  when t h i s  norm i s  used.  Table 4 con ta ins  a compari- 
son of t h e  least  squa res   e r ro r s .   I n   such  a comparison,  the  approximations 
developed i n   t h i s  p a p e r  are s u p e r i o r .  

Kaufman and Taylor [ 4 ]  cons ider   approximat ions   to  e-x of  the  form 
D 

(l+B1x) (1+B2x) ...( l + B  x )  m 

where B 1 ,  ..., Bm are p o s i t i v e  real  numbers. I n   t h i s   n o t e  w e  a l so   cons ide r   t he  
expansion  of e-X(l+Blx).:.(l+Bmx) i n  terms of Laguerre  polynomials.  The 
f i r s t  few  terms of such  an  expansion are der ived  with MACSYMA. 

INTRODUCTION 

I n   t h e  few  months t h a t  w e  have  been  working  with MACSYMA, w e  have  found 
t h a t  i t  provides   us   with a g r e a t l y  expanded c a p a b i l i t y   f o r   g e n e r a t i n g  and 
exploring  the  behavior  of a v a r i e t y  of   approximat ions .   In   th i s   no te  w e  d i s -  
cuss   one  such  appl icat ion  of  MACSYMA f o r   t h e   g e n e r a t i o n  of r a t i o n a l   a p p r o x i -  
mat ions   to  e-x on [ 0 ,  a) wi th   nega t ive  real  poles.   There  has  been  consider- 
a b l e   i n t e r e s t   i n   t h e  p a s t  few yea r s   i n , such   approx ima t ions   because   o f   t he i r  
importance  in   developing  and  analyzing  numerical   methods  for   solving  cer ta in  
systems of d i f f e r e n t i a l   e q u a t i o n s  [l, 21. 

I n   p a r t i c u l a r  , i n  a recent   paper ,   Saff  , Schb'nhage,  and  Varga [ 31 
developed a sequence   of   ra t iona l   approximat ions   to  e-x f o r  x on [0 ,  m) of t h e  
form 
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P m m = 1, 2 ,  ... 

(wi th  Pm a polynomial  of d e g r e e  m-1) which are optimum i n   t h e  Chebyshev norm 
a n d   c o n v e r g e   g e o m e t r i c a l l y   t o  e-X on [0, a). On c o n s i d e r i n g   t h i s   s e q u e n c e  of  
approximat ions ,  a n a t u r a l   q u e s t i o n  arises - how does  i t  compare t o   a n  
approx ima t ing   s equence   ob ta ined   by   u s ing   fo r  Pm t h e   f i r s t  m terms of t h e  
expansion of 

i n   L a g u e r r e   p o l y n o m i a l s ?   S u c h   a n   e x p a n s i o n   c a n   b e   g e n e r a t e d   a n a l y t i c a l l y .  
T h e   a v a i l a b i l i t y  of MACSYMA a l l o w e d   u s   t o   e a s i l y   o b t a i n   t h e   r e q u i r e d   e x p a n s i o n  
to   answer  some of o u r   q u e s t i o n s .  

A r e c e n t   p a p e r   o f  Kaufman and  Taylor  [ 4 ]  c o n s i d e r s  a more   genera l   form 
f o r   t h e   a p p r o x i m a t i n g   f u n c t i o n :  

P 

(l+B1x) (l+B2x) ... (l+Bmx) 
m m = 1, 2 ,  ... - ___ 

where   aga in  Pm is a polynomia l   o f   degree  m-1 i n  x and   t he  Bm are real  and 
p o s i t i v e .  They   prove   an   ex is tance   theorem  for   bes t   Chebyshev   approximat ions  
of t h i s  form t o  e-x on [ O , . a )  . T h e i r   n u m e r i c a l   r e s u l t s   s u g g e s t   t h a t   t h e  
b e s t   u n i f o r m   a p p r o x i m a t i o n   t o  e-x f r o m   t h i s  class has   on ly   one   po le   and  
f o r  m=2 they   prove   such  a r e s u l t .  Here w e  c o n s i d e r   t h e   f i r s t   f e w   a p p r o x i m a -  
t i o n s   o f   t h i s   t y p e   w h i c h   c a n   a g a i n   b e   g e n e r a t e d   u s i n g   t h e   a p p r o p r i a t e  number 
of terms of   an  expansion of  e-X(1+Blx)(l+B2x) ...(l+ Bmx) i n   L a g u e r r e   p o l y -  
n o m i a l s .   I n   t h e s e   e x p a n s i o n s  Pm depends   no t   on ly  on x bu t   on   t he   pa rame te r s  
B 1 ,  ...,%. Nearly optimum v a l u e s   f o r   t h e  B i  i n   t h e   C h e b y s h e v   s e n s e   f o r   t h e  
f i r s t  few  such  approximations are obta ined   and   compared   wi th   those   ob ta ined  
i n  [ 4 ] .  

RESULTS 

The f i r s t  case c o n s i d e r e d  i s  t h e   g e n e r a t i o n  of a sequence of approxima- 
t i o n s   t o  e-x of   the  form 

'm 

(1 + ")m m 

f o r  m = 1, 2 ,  ..., 10,   by a sequence  of  expansions of t he   fo rm 



where 

m-1 
c) 

i= 0 

00 

e (1+ ;> Li(x)  e-xdx. -X x m  
i ,m 

We do   no t   expec t   such   an   approx ima t ion   t o   behave  w e l l  f o r   l a r g e  m y  b u t   f o r  
small m w e  expec t  i t  t o  do   reasonably  w e l l .  T a b l e  1 c o n t a i n s   t h e   v a l u e s   o f  

Ai rn genera ted   by  MACYSMA f o r  m = 1, 2 ,  ..., 10.  T a b l e  2 c o n t a i n s   t h e  
eqd lva len t   po lynomia l s .   The   p rog ram.used   fo r   gene ra t ing   such   an   approx ima t ion  
o f   o rde r  m is  g i v e n   i n   F i g u r e  1. F i g u r e  2 shows t h e   e x e c u t i o n   o f   t h e   p r o g r a m  
o f   F igu re  1 f o r  m = 4 .  

Since   the   Chebyshev   approximat ions  are d e v e l o p e d   i n  [ 3 ]  and ( 4  ) g i v e s  
a w e i g h t e d   l e a s t   s q u a r e s   a p p r o x i m a t i o n ,  w e  expec t   cu r  maximum a b s o l u t e   e r r o r  
t o  b e   l a r g e r   t h a n   t h a t   o b t a i n e d   i n  [ 3 ]  f o r   a n   a p p r o x i m a t i o n   o f   t h e  same 
o r d e r .   T h i s  is  confirmed  by  Table 3 which   con ta ins  estimates o f   t h e  maximum 
e r r o r s   o n  [0 ,  a) f o r   t h e   a p p r o x i m a t i o n s   i n   T a b l e  2 and i n   R e f e r e n c e  [ 3 ] .  The 
r e l a t i v e   e r r o r   f o r   t h e   a p p r o x i m a t i o n   s e q u e n c e   p r e s e n t e d   h e r e   r e m a i n s   u n d e r  
c o n t r o l  somewhat l onge r   t han   fo r   t he   min imax   approx ima t ions  of [ 3 ] .  An 
estimate o f   t h e   i n t e r v a l   o n   w h i c h   t h e  re la t ive  e r ro r   r ema ins   unde r  10% f o r  
b o t h  sets of   approximat ions  i s  a l s o   g i v e n   i n   T a b l e  3 .  Note   t ha t   beyond   t ha t  
p o i n t   t h e r e  w i l l  i n   g e n e r a l   b e  less t h a n   o n e   s i g n i f i c a n t   f i g u r e   i n   t h e  
approximation.  

Table  4 con ta ins   we igh ted  l ea s t  s q u a r e s   e r r o r s   i n  two forms: 

and 

N o t e   t h a t  f o r  g i v e n  m and P MACSYMA c a n   p e r f o r m   t h e   i n t e g r a t i o n   i n  (6)  
e x a c t l y  . m y  
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The  approximations  given by ( 4 )  behave somewhat e r r a t i c a l l y   w i t h   r e s p e c t  
t o   t h e   e r r o r  norm (5) ,   bu t   they   behave   more   regular ly   wi th   respec t   to   the  
e r r o r  norm ( 6 )  used   i n   gene ra t ing   t he   approx ima t ion .  

For   the   genera l   approximat ing   form  in   express ion  (2) ,  
t h e   f i r s t   t h r e e   a p p r o x i m a t i o n s   t o  e-x of the   paramet r ized   form 

m- 1 
v 

i= 0 

where 

A i ,m =I e -X (l+Blx)  (1+B2x). . . (l+Bmx)Li(x)e-xdx 

0 

were g e n e r a t e d .   I n   p a r t i c u l a r ,   f o r  m = 1 ,  

B1+2 
A =  

0 9 1  4 

so t ha t   t he   app rox ima t ing   func t ion  is 

B, +2 

The e n t i r e  se t  of approximations  generated by vary ing  B goes   th rough  the  
po in t  x = .5 wi th  a va lue   o f   .5 .   S ince  [ e-s5 -. 5 I = l .1065.  . . , w e  have 
a bound on how w e l l  (1) can  perform  in   approximating e-x on [0 ,  m) f o r  any 
f i x e d   v a l u e  of B .  

From Table  3 we h a v e   t h a t   f o r  B1 = 1 i n  (lo), an estimate of   the  maximum 
e r ro r   i n   app rox ima t ing  e-x on [ 0 ,  a) is .25.  This  can  be  improved  to . l o 9  
by t ak ing  B1 = 2.435. 



For m = 2,  w e  d e t e r m i n e  

B ~ B ~ + B ~ + B ~ + z  
A =  

092  4 

so t h a t   t h e   a p p r o x i m a t i n g   f u n c t i o n   h a s   t h e   f o r m  

(B1B2-2)Z + B1B2+2(B2+B1) +6 

8(1+B1Z) (1+B2Z) 

A s  n o t e d   i n   T a b l e  3, when B - - B2 = . 5 ,  a n  estimate of t h e  maximum 
e r r o r   i n   u s i n g  (11) as a n   a p p r o x l m a t l o n   t o  e-x on [0,  -) is .033. It 
a p p e a r s   t h a t   t h i s   c a n   b e   i m p r o v e d   o n l y   s l i g h t l y   b y   c h a n g i n g   t h e   v a l u e s   o f  
B and B2. Kaufman and  Taylor [ 4 ]  show t h a t   t h e  optimum  Chebysilev  approxima- 
t l o n   t o  e-X of   the   form ( 2 )  w i t h   n e g a t i v e  rea l  p o l e s   h a s  B = B2. The  optimum 
approximation i n  t h e  Chebyshev  sense  which  they  determine Bas B = B2 = .52416 
and  has   an estimate f o r   t h e  maximum e r r o r   o n  [0 ,  a) of .02271. 

1 

1 

For m = 3 w e  d e t e r m i n e  
3B1B2B3+2(B B  +B  B  +B B )+2(B1+B2+B3)+4 

A =  1 2  1 3  2 3  
093 8 

3B1B2B3+(B1B2+B,B3+B2B3)-2 

8 AI3 - - -I_ 

- 

With t h i s  se t  o f   e x p r e s s i o n s ,  

B1 = .214 B2 = .27 B3 = .3 

o r  any   pe rmuta t ion   t he reo f   appea r s   t o   be  near optimum.  With t h i s  set of 
parameters   our  estimate f o r   t h e  maximum e r r o r  is .019 which  compares  with 
t h e   v a l u e   o f  .056 f rom  Table  2 f o r  B =B  =B =1/3 and .00805,  t h e   e r r o r  
estimate of Kaufman and   Tay lo r   ob ta ined  when B=B  =B  =B = .27127 i n  (2) 
and P w a s  de te rmined   to   min imize   the   Chebyshev  !io&. 3They d e t e r m i n e d   t h a t  
t h i s   v a l u e   f o r  B w a s  n e a r  optimum. 

1 2 3  

3 

F o r   c o n v e n i e n t   r e f e r e n c e ,  a t a b l e   o f   t h e   f i r s t   t e n   L a g u e r r e   p o l y n o m i a l s  
g e n e r a t e d  by MACSYMA is appended as F i g u r e  3 .  
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m 
" 

iT1 

i 1 2 3 4  

TABLE 1 

C o e f f i c i e n t s  A, - (See  Equation ( 4 ) )  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

3 
4 
- 13 

1 6  

7 
32 

- 

- 

6 1  
7 2  

7 
36  

1 
7 2  

" 

" 

- 

8 9 1  
1024 

359  
!048  

1 3  
i o 9 6  

1 8 3  
3192 

- 

- 

- 

- 

5 
, 

4433 
5000 

7 9 9  
5000 

- 77 
20000 

- 223 
10000 

- 5 5 1  
40000 

6 

37289 
41472 

1 2 1 9 1  
82944 

- 1 7 9  
20736 

- 895 
41472 

- 3919 
331776 

- 2833 
563552 

7 8 
I '  

1711167  61545067 
1882384  67108864 

64081  
~ 

1 7 0 3 4 6 9 1  
470596   134217728  

I 
- 4 5 0 6 1  - 3847297 

3764768  268435456 

- 38721  , -  10444889  
1882384  536870912 

- 7 6 3 1 5  - 9363467 
7529536 073741824 b 
- 11313  - 290279 

10118144  b294967296 

3374353 

9 10 

35347283 
38263752 

- 350659 
19131876  

- 1 0 6 1 7 1 1  
612220032 

310547 
2448880128 

487751  
1224440064  

323197 
1224440064 

2974181307 
3200000000 

715994377 
.6400000000 

- 1 1 0 2 0 3 7 9 9  
6400000000 

- 2 2 0 6 2 7 8 0 9  
12800000000  

-129582367  
102400000000  

. 12658197 
51200000000 

39102607 
102400000000 

90749869 
409600000000 

71643279  
819200000000 



3 
p1 4 

= -  

TABLE 2 
APPROXIMATING POLYNOMIALS Pm (See Equation (3)) 

7 z - 3 3  P2 - - - 
32 

Z2 - 32  Z + 152 
144 P3 .-  - 

61 Z3 - 523 ZL - 1878  Z + 16814 
p4 - 

- 
16384 

" 551 Z4 - 12384 Z3 + 73632 Z2 + 28896  Z - 966216 'P5 - 960000 

2833 z5 - 110015 z4 .+ 1480040 z3 - 7442760 Z2 + 288600  Z + 79611960 
'6 - 

- . .  

79626240 
. .. . 

P7 - - - (3771 z6 - 326804 Z5 + 9525750 Z4 - 120883040 Z3 + 621070920 Z2 
- 58785120 Z - 7221056400)/7228354560 

P8 - - - (3374353 Z7 - 161279391 Z6 + 1981437906  Z5 + 13968908310 Z4 
- 472304862120 Z3 + 3058703597880 Z2 - 190815090480 Z 
- 43270628481360)/43293270343680 

p9 = (323197  Z8 - 24586616  Z7 + 706666604 Z6 - 9122407392 Z5 
+ 37275042840 z4 + 284113381440 z3 - 2860087476960 Z2 + 61728145920 Z 

+ 49362418082880)/49369423380480 

plo - " (23881093 Z9 - 2478867747  Z8 + 104255443296 Z7 
- 2266707280992 Z6 + 26146314869472  Z5 - 126953976270240 Z4 
- 296150820215040  Z3 + 4937695894897920 Z2 + 1012259928960 Z 

- 99090082246700160)/99090432000000000 



TABLE 3. 

ERROR ESTIMATES 

m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Maximur 

Approximation 
For 

(31, ( 4 )  

.25 

.033 

.056 

.026 

.0135 

.0080 

-0011 

.0042 

.0059 

.0043 

Erro r  

From [ 3 ]  

.16 

.025 

.015 

.007  9 

.0031 

.0089 

.00019 

.000121 

.000070 

.000030 

" 

" 

I n t e r v a l   i n   w h i c h  relative e r r o r  
remains l e s s  

For  
Approximation 

(3) ¶ ( 4 )  

- 

[0,2.01 

IOY2.71 

LOY4.41 

[0,4.91 

[0,7.11 

[0,8.21 

[0,8.71 

[0,10.1] 

[0,12.5] 

than  10% 
Using  Approxi- 
mation  from 

[31 
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m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

4 ( 3 )  9 ( 4 )  

.136 

.0124 

.017  5 

,0082 

.00203 

.000118 

.000267 

.000138 

.0000375 

.00000214 

TABLE 4 .  

LEAST SQUARES ERRORS 

EktFmate of 
Expression ( 5 )  

Ior Approximation  of 

lRef e rence  [ 31 

. lo6  

.017 6 

.0105 

,0055 

.00214 

.000620 

.00013  7 

.000085 

.000049 

.0000207 
I 

t 
Estimate  of   Expression ( 6 )  
for  Approximation  of 

( 3 )  Y ( 4 )  

.259 

.043 2 

.03 00 

.0180 

.0060 

.00100 

.00054 

.000352 

.000125 

.000022 

Reference [ 3 ]  

.274 

.0552 

.04 51 

.03 28 

.0157 

.0059 

.00158 

.00126 

-00092 

.000466 



F I G U R E  1. - PROGFL4.M TO GENERATE Pm 

time:true; 
1Cnl(x,a>:=((2*n-l+a-x)/n)*l[n-l](x,a)-((n-l+.a)/n)*~[n-2](x,a); 
l[Ol(x,a):=l; 
1[1l(x,a):=?-x; 
fn(x,n):=(l+x/n)**n*exp(-x); 
for i:O thru m-1 do 

(li[il:ev(l[il(x,o),ratsimp), 

d i s p l a y ~ a ~ i ~ m l : e v ~ i n , x : O , r a t s i m ~ ) ) ) ;  
in:-inteyrate(li[i]*exp(-x)*fn(x,m),x)’, 

d i s ~ l a y ( ~ [ m l : e v ( s u m ( a [ i , m l * ~ i [ i ] , i ~ ~ ~ m - l ) , r a t s i ~ ~ ) ) ~  
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FIGURE 2. - EXECUTION OF PROGRAM  TO  GENERATE Pq 

'K 
(C11) m:4; 
TIME= 1 MSEC. 
(Dl11 

(C12) demo(e,l,dsk,elizc); 

(Cl3) T1ME:TRUE; 
TIME= 1 MSEC. 
(Dl31 

4 

TRUS 

'TC14) L[N](X,A) :=((2*N-l+A-X)/N)*L[N-l](X,A)-( (N-l+A)/N)*L[N-2](X 

TIME= 1 MSEC. 
, A ) ;  

2 N - l + A - X  
(Dl&) L (X, A) : =  - ---_--______-_ L (X, A )  

N N N - 1  
N - l + A  - """"_ L ( X ,  A) 

N N - 2  

TC15) L[OI(X,A):=l; 
TIME= 1 MSEC. 
(Dl51 L (X, A )  : =  1 

0 
- 
(C16) L[l](X,A):=l-X; 
TIME= 1 MSEC. 
(Dl61 L (X, A )  := 1 - X 

1 

TC17) FN(X,N):=(l+X/N)**N*EXP(-X); 
TIME= 1 MSEC. 

(Dl71  FN(X, N) : =  (1 + - )  EXP(- X) 
X N  

N 

TC18) FOR  1:0 THRU M-1 DO 
(LI[I]:EV(L[Il(X,O~,RATSIMP), 

DISPLAY(A[I,M]:EV(IN,X:O,RATSIMP))); 
IN:-INTECRATE(LI[I]*EXP(-X)*FN(X,M),X), 

891 
A 
0, 4 1024 

= "" 

359 
A 
1 ,  4 2048 

= "" 

13 
A = "" 
2, 4 4096 

183 

8192 
A 

3, 4 
= - "" 

142 



TIME=  9266 MSEC. 
(Dl81 

F I G U R E  2 .  - CONTINUED 

DONE 
- 
(C19) DISPLAY(P[M]~EV(SUM(A[I,MI*LI[I],I,O,M-1),RATSI~P))~ 

-3 2 
61 X -  - 523 X - 1878 X + 16814 

p = """""""""""""""- 
4 16384 

TIME= 40 MSEC. 
(Dl91 

TIME=  10392 MSEC. 
(D20 1 

DONE 

DEMO  TERMINATED 
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FIGURJ3 3 .  - TABLE OF LAGUERRJZ POLYNOMIALS GENERATED BY MACSYMA 
M = 10 

7 

(C15) L[NI~Z,A)~~((2*~-1+A-Z)/~~)*L[~~-l](~,A)-((~-l+~)/N)*L[N-2~(Z,A)~ 
- 
(C16)  L[O](Z,A):=l% 

(C17)  L[l](Z,A):=l-Z$ 
- 

- 
(C18) FOR I:O THR:J 1.1-1 DI) DISPLAY(LI[I]:EV(LCI1(Z,D),RATSI~P))~ 

LI = 1 
0 

LI = I - 2 .  
1 

3 2 
7 - 1 7 ,  + 1 9 7 - h  

LI - """""""""" 
3 6 

4 3 2 
2 -16 7 +72z - 1 6 Z + 7 4  

LI = """"""""""""""" 
4 34 

5 4 3 2 
7, - ?5 z + 200 7, - 500 7, + 600 7 - 130 

LI - """"""""""""""""""""" 
5 1 PO 

h 5 4 3 ? 
Z - 36 7, + 450 Z - 2490 Z + 5400 7. - 4370 '7 + 720 

LI = ............................ 
5 720 

7 h 5 4 3 2 
z - 49 7, + 852 z - 7350 z + a400 I, - 5 2 ~ 1  ? + ? v R n  7 - 5n40 

LI = - ---""""""""""""""""""""""""""""""""- 
7 5040 

8 7 5 5 4 7 
LI = (Z - 64 I ,  + 1565 Z - 18516 Z + 117500 Z - 776720 7. + 564490 Z 

2 

8 
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TIMING  FORMULAS  FOR  DISSECTION  ALGORITHMS 

ON  VECTOR  COMPUTERS 

W.  G. Poole,  Jr. 
College  of  William  and  Mary 

SUMMARY 

The  use  of  the  finite  element  and  finite  difference  methods  often  leads  to 
the  problem  of  solving  large,  sparse,  positive  definite  systems  of  linear  equa- 
tions.  Recently  the  one-way  dissection  and  nested  dissection  algorithms  have 
been  developed  for  solving  such  systems.  Concurrently,  vector  computers  (com- 
puters  with  hardware  instructions  that  accept  vectors  as  operands)  have  been 
developed  for  large  scientific  applications. In  reference 1, George,  Poole  and 
Voigt  analyzed  the  use of dissection  algorithms  on  vector  computers.  In  that 
paper,  MACSYMA  played a major  role  in  the  generation of formulas  representing 
the  time  required  for  execution  of  the  dissection  algorithms.  In  the  present 
paper  the  author  describes  the  use  of  MACSYMA  in  the  generation of those 
formulas . 

DISSECTION  ALGORITHMS 

When  finite  difference  or  finite  element  methods  are  used  for  approxi- 
mating  solutions  of  partial  differential  equations,  it  is  often  the  case  that a 
large,  sparse,  positive  definite  system of linear  equations, 

must  be  solved.  We  shall  assume  that  the  domain over'which the  differential 
equation  is  defined  is a square  region  covered  by an  n by n grid  consisting 
of  (n-1)2 2 small  squares  called  elements. It follows  that A is  an 
n2 by n matrix.  The  ordering  of  the  unknowns  at  the  grid  points  determines 
the  location  of  the  nonzero  components  of A and,  consequently,  the  storage 
and  time  required  to  solve  the  linear  system  by  Gauss  elimination. 

An ordering  of  the  unknowns  called  one-way  dissection  .is  due  to  George 
(see  ref.  2).  Referring  to figure 1, the  idea  of  one-way  dissection  is  first 
to  divide  the  grid  with m horizontal  separators.  The  unknowns  in  the  m+l 
remaining  rectangles  are  numbered  vertically  toward a separator  and  then  the 

This  paper  was  prepared  as a result of work  supported in part  under  NASA 
Contract No. NAS1-14101  at  ICASE,  NASA  Langley  Research  Center,  Hampton,  VA 
23665 and  in  part  by  Office  of  Naval  Research  Contract  N00014-75-C-0879. 
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separator  nodes  are  numbered.  The  problem  is  to  derive  formulas  for  storage 
and  timing  requirements  and  to  minimize  those  formulas  with  respect to m (see 
ref. 2). 

The second  dissection  scheme  is  called  nested  dissection  (again,  see  ref. 
2) and  has  been  shown  to  be  asymptotically osimal (see ref.3). The  idea  here 
is  to  divide  the  grid  with  both  horizontal  and  vertical  separators  as  shown in 
figure 2. Unknowns  in  regions 1 - 4 are  numbered  before  those on separators 
5 - 7. Each  of  the  regions 1 - 4 is a square  and  may  itself  be  dissected  using 
horizontal  and  vertical  separators.  Thus  the  idea  may  be  applied  recursively 
and,  in the  case n = 2k1, nested  dissection  will  terminate  after k-1 steps. 

Although  both  dissection  orderings  were  analyzed  in  reference 1, only 
nested  dissection  will  be  discussed  further  here  because  it is a more  important 
algorithm  and  the  generation of  its  timing  formula  was a much  more  formidable 
task. 

The  nested  dissection  algorithm  is  nontrivial  to  describe  in  detail. It 
was  first  developed  and  analyzed  with  scalar  computers  in  mind  by A. George  in 
the  early 1970's. The  first  attempts  at  obtaining a timing  formula  were  done 
by  hand  and  only  gave a description  of  the  asymptotic  behavior, O(n3). Later, 
the  first  few  terms  were  generated  by  hand.  Then  in  reference  3, A. George 
obtained  the  entire  formula  with  the  aid  of  ALTRAN. 

VECTOR  COMPUTERS 

The  existence  of  vector  computers, i.e., computers  with  hardware  instruc- 
tions  that  operate  on  vectors  rather  than  scalars,  raises  the  question  of  how 
effective  the  dissection  techniques  are  on  this  rather  new  class  of  computers. 
It is  assumed  that  these  computers  have  basic  vector  instruction  execution 
times  which  are of the  form 

where T,(j) is  the  total  time  for  the  vector  instruction *; S, is an over- 
head  time,  called  "start-up"  time; P* is  the  "per-result"  time  of  that 
instruction;  and j is  the  length  of  the  vector. 

The large  value  of S;t/P* on  currently  available  vector  computers  implies 
that  one  pays a significant  penalty  for  operation on short  vectors;  consequent- 
ly, one would  prefer  algorithms  which  permit  the  longest  possible  vectors  (see 
ref. 4 ) .  However,  both of the  dissection  algorithms  work  by  repeated  subdivi- 
sion  of  the  grid  until a minimum  operation  count  is  obtained.  It  is  this 
apparent  conflict  between  the  cost of using  shorter  vectors  and  the  correspond- 
ing  lower  operation  counts  that  was  studied  in  reference 1. 
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GENERATION  OF  FORMULAS 

In reference 1, George,  Poole  and  Voigt  were  interested in obtaining 
parameterized  versions  of  the  timing  formulas  for  the  dissection  algorithms on 
vector  computers.  Such  formulas were needed  in  order  to  study  the  effects of 
varying  several  parameters.  They  identified  nine  parameters  characterizing  the 
vector  computers: 3,start-up times  for  vector  addition,  multiplication,  and 
inner  product; 3 per-result  times  for  the  same  instructions;  and  3  scalar 
operations.  Furthermore,  there was  a  parameter, n, related  to  the  problem 
size  and  another, E, related  to  the  algorithm  which  the  user  could  vary  at 
liberty.  The  goal  was  to  choose R so as to  minimize  the  timing  formula  for 
a  given  set  of  computer  parameters  and a  given  problem  size.  Obtaining  the 
timing  formulas  was  useful in  several ways: 

With  the  formulas in  hand,  one could  study  the  effects  of  chang- 
ing  values  for  the  parameters. In a  hypothetical  sense  one 
could  try  to  optimize  subject  to  certain  side  constraints. In a 
very  practical  sense,  manufacturers  announced  changes  in  the 
parameter  values  several  times; 

There  are  several  options  in  the  implementation  of  the  dissec- 
tion  algorithms.  For  example,  one  can  use a  vector  inner 
product.  or a  vector  "outer  product"  version  (see  ref. 1). The 
choice  reduces  to  comparing the time  required  for a  vector  inner 
product  versus a  vector  addition  plus  a  vector  multiplication. 
Timing  formulas  permitted  analysis  of  such  options; 

Considerable  insight  into  the  vectorization  of  algorithms  was 
gained.  For  example,  average  vector  lengths  could  be  studied; 

Without  the  formula,  a  table  of  timing  values  for  particular 
choices  of  the  parameters  could  be  generated  by  executing a 
model  of  the  algorithm.  However,  the  coefficients in the  formu- 
las  could  not  be  generated. 

The  nested  dissection  timing  formula  was  generated in the  following  manner. 
The  execution  of  the  nested  dissection  algorithm  was  simulated  in  a  top-down 
fashion.  The  top  level,  level 1, involved  several  summations  of  which 

j -1 

i= 1 2i  2i 
c (2i - 2)20(n - zi + 1 4(n + 1) 

Y 9 4 )  

is  typical,  where 0 is  a  procedure  at  the  second  level.  Each  of  the  second 
level  procedures  called  several  third  level  procedures, e.g., 

THETA(Q,P,K) := CHLSKY(Q) + P LOWSOL(Q) + MODNES(Q,P,K) 
CHLSKY,  LOWSOL  and  MODNES  are  three  of  the  third  level  procedures  defined  to  be 
the  timing  formulas  for  simple  numerical  computations, e.g., 
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(5) 
SM SA 2 PM PA 

+ (DSR + _ _  - __ - ____ - --) Q - SM 
2 2 3 6 

is  the  timing  formula  for  the  factorization of a dense  linear  system.  These 
third  level  procedures were  formulas  for  factorization,  lower  solve  and  upper 
solve  of  dense  systems  and  banded  systems  and  matrix  modifications  of  the  form 

A : = A - U W  . T 

Finally,  the  bottom  level  consisted  of  the  parameters  which  characterize  the 
vector  computer. E.g., 

SA + Q PA 

is  the  time  for a vector  add of length Q. 

The  second  and  third  levels  each  consisted  of 10 to 15 modules  and  level 
4 consisted  of 9 instruction  parameters, 1 parameter  related  to  the  algo- 
rithm  and 1 related  to  the  grid  size  for  the  problem.  The top level  module 
contained  several MACSYMA sums  of  the  form 

sVM("(EV(((21-2)2)*(THETA((N-2 '~ l ) / (21) ,4*(N+l) / (2  I ) , 4 ) ) ,  
( 8 )  

EXPAND)) ,IylyJ-l) . 
This  is  the MACSYMA form  of  the  sum  in  eq. ( 3 ) .  The  entire  generated  formula 
consists  of  over 200 terms  and  can  be  found in Appendix B of  reference 1. The 
formula  was  checked  by  evaluating  it  for  several  sets of parameter  values  and 
comparing  the  results  to  execution  times of a FORTRAN simulation of the  algo- 
rithm.  The  one-way  dissection  formula  was  generated in a similar,  but  much 
more  forward,  manner. 

CONCLUDING REMARKS 

MACSYMA has  been  shown to.be of  considerable  value  in  the  study of  the 
performance of the  nested  dissection  algorithm  when  used  on  hypothetical  vector 
computers.  The  derived  timing  formulas  lead to an  understanding of the  effects 
of  varying  the  parameters  which  characterize  the  computers.  Options  in  the 
algorithm's  implementation  can  be  studied  as  well  as  the  extent  to  which  the 
algorithm  vectorizes. 
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FIGURE 1. - ONE-WAY DISSECTION  WITH  ORDERING OF 
UNKNOWNS INDICATED  BY  NUMBERS (m = 3). 

FIGURE 2. - ONE STEP OF NESTED  DISSECTION  WITH 
ORDERING OF UNKNOWNS INDICATED BY NUMBERS. 
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SYMBOLIC  CALCULATIONS  IN A FINITE 
DYNAMIC  ELEMENT  ANALYSIS 

Kajal K. Gupta  and  Edward W. Ng 
Jet  Propulsion  Laboratory 

INTRODUCTION 

Since  this  paper  is  addressed  to an audience  primarily  interested in sym- 

bolic  computations, we shall  briefly  describe  the  context  of  engineering 
mathematics  to  motivate  the  computational  aspect.  The  present  problem  is 

concerned  with  prestressed  membrane  elements  with  application  to  the  development 
of large  furlable  conical  spacecraft  antennas  whose  reflector  surfaces  are  made 
of  stretched  membranes  (Ref. 1). The  mathematical  aspect  involves  the  appli- 
cation  of  a  finite  element  method  to  approximate  the  membrane  deformation  as  a 

function  of  time. The phrase  'dynamic  element'  is  used  here  to  connote  time 

dependent  corrections  to  the  static  modeis  attacked  by  the  usual  finite  element 
method. The  general  strategy  and  overall  scope  of  the  present  application  is 
described  by  Gupta  (Ref. 2) and in the  following we shall  confine  ourselves  to 

the  computational  problems.  Throughout  this  paper  we  shall  use  capital  letters 

for  vectors  and  matrices,  and  lower  case  letters  for  scalars. We shall  describe 
in  detail  a  second  order  problem  for  which MACSYMA was  used  only  for  checking 

purpose,  and  then in brevity a fourth  order  problem  for  which  a  symbolic  system 
is  necessary. At.the end,  some  sample  output  is  displayed  to  indicate  the 

complexity  of  the  computational  problem. 

A SECOND  ORDER  PROBLEM 

For  the  simpler  problem we are  dealing  with  a  second  order  time  harmonic 

differential  equation in two  dimensions,  (x,y)  and  a  time  variable t: 

5 I 
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subject  to  boundary  conditions for  the  four  corners  of  each  rectangular  finite 

element,  say, (O,O), (l,O), (1,l) and (0,l): 

Here we are  simulating  a  thin  rectangular  membrane  of  thickness h, mass  per  unit 

area p and  uniform  tensile  force  per  unit  length ah, and  (a,b)  specified  the 

size  of  the  rectangle. The solution  is  constructed  from  a  second-order  ex- 

pansion  of  the  time  harmonic  problem,  with  natural  frequency W ,  i.e., 

where  A A and A are.vector functions  of  instantaneous  nodal  displacement  and 

also  of  the  frequency of such  motion,  and  QT is  a unit  vector, all these  vectors 

being  dependent  only on 5 and q. We have  no  formal  proof  that  such  expansion 

converges,  but  in  (Ref. 2)  it is  given  physical  arguments  and  empirical  evidence 

that  such  expansion  does  lead  to  dramatic  improvement  over  the  usual  finite 

element  approach.  Substituting  eq. ( 2 )  into  eq. (1) and  equating  like  powers 
of w render  the  following  equations: 

0' 1 2 

V ~ A ~ Q ~  = o 

o"A,  QT = G 

=o (51 
with  the  corresponding  boundary  conditions  that  A - 0 - [qL'q2A3Y q41 Y A1 = 0 and 
A = 0, where  the  above  symbol [ , ,] is  used  throughout  the  present  paper  for 
a  row  vector,  and  the  superscript T signifies  the  transpose  of  a  matrix  or 
vector. 

2 

At this  step we have  to  choose  certain  basis  functions  to  form  the 

solutions,  for  example, 

(lo j 
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where  these  coefficients  have  to  satisfy  the  boundary  conditions,  and P is  a 
particular  integral  that  satisfied  eq. (5). Once  a  set  of  basis  functions is 

picked, we  need  to  calculate  the A vectors  as  functions  of 5, rl and  the 
boundary  parameters  a  and b. 

The  next  step  concerns  the  application  of  the  principle  of  minimum  total 

potential  energy. In particular,  a  sufficient  condition  for  this  principle  is 
given  by  equating  the  lateral  strain  energy  and  the  kinetic  energy  of  transverse 
vibration,  i. e. , 

Substitution of eq. (2) into  eqs. (10) and (11) gives 

where  the K ' s  are  stiffness  matrices  and  the M's are  mass  matrices. The zeroth- 

order  terms  correspond to the  well-known  static  counterparts  in  the  usual 
finite  element  method  and  the  higher-order  terms  represent  dynamic  corrections. 
These  matrices  are  given  by 

Finally, we can  apply  the  above  expressions  to  eq. (9) and  obtain an 
equation of motion in the  form 
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This is  a quadratic  eigenproblem  and i s  to   be   so lved   numer i ca l ly .  The  main 

use  of a symbol ic   ca lcu la tor  is to   p repa re   and   s impl i fy   t he  matrices K ’ s  and 

M’s i n   t h e   f o r m   o f  FORTRAN s t a t e m e n t s   f o r   t h e   i n c l u s i o n   i n t o  a numerical  

program. The symbol i c   ca l cu la t ion   s t eps  may be summarized as fol lows:  

The v e c t o r s  [cl, c2,c3, c4] and [d d d d ] are computed  from t h e  

boundary  conditions.  
1’ 2’ 3’  4 

A and A are computed  from t h e s e  two vec to r s .  

The p a r t i c u l a r   i n t e g r a l  P i n   e q .  (8) i s  chosen. So f a r   t h e   c h o i c e  

has  been made from  an  ad  hoc  procedure.   In   the  next   sect ion w e  

sha l l   desc r ibe   an   a t t empt   t owards  a more sys temat ic   approach   for  

t h i s   s t e p .  

0 1 

From the   boundary   condi t ions   the   vec tor  [e e 1’ 2’e3’e4 ] can  be 

c a l c u l a t e d   i n  terms of [c c ] which i n   t u r n   g i v e s   t h e  

vec to r  A 

Once t h e  A ’ s  are determined, w e  need t o  compute t h e  matrices K 

and M t h rough   symbol i c   d i f f e ren t i a t ions   and   i n t eg ra t ions .  

The o u t p u t   h a s   t o   b e   s i m p l i f i e d   a n d   f o r m a t t e d   f o r   i n c l u s i o n   i n  a 

FORTRAN program. 

1’c2’c3’ 4 

2’ 

i j  

i j  

A FOURTH O R D E R  PROBLEM 

For a plate  bending  problem w e  are dea l ing   wi th   the   b iharmonic   equat ion  

Conceptually  the  approach is e x a c t l y   t h e  same as the  above  problem. The d i f -  

f e r e n c e   i n   s i z e ,  however, is two orders   of   magni tude.   There are now 12 
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boundary  conditions,  4 e a c h   i n   u ,  3 and &. Thus a l l  the   vec to r s   and  matrlces 

described  above are now of d imens ig is   12   igd   12 ,   respec t ive ly .  The a l g e b r a i c  

manipulat ion i s  most ex tens ive ,   and  a symbolic  system is  an   abso lu t e   necess i ty  

here.  

Fo r   t h i s   p rob lem  the  s i x  s teps   above   bas ica l ly   car ry   th rough,   wi th   the  

exception  of (iii) which  can  be somewhat hazardous. We s h a l l   i l l u s t r a t e   t h i s  

p r o c e s s   i n  some d e t a i l   h e r e .   F o l l o w i n g   t h e  same procedure  from  eq. (1) t o   e q .  

( 5 ) ,  w e  g e t ,   w i t h  D 8/86, D,, = 8 / h  5 

1 
' L e t  - 3 ( 6 , n )  be  a s o l u t i o n  of eq. (18), and l e t  P ( 6 , n )  be a p a r t i c u l a r   i n t e g r a l  B 
of (19).  Thus w e  have, 

L e t  

We can  formally  invert   the   above  equat ions by d e f i n i n g   t h e   a n t i d e r i v a t i v e s  as 

D and D-n. Combining eqs.  (20)  and  (21)  gives us -n 
6 rl 

To sa t i s fy   the   twelve   boundary   condi t ions  w& can  choose a s i m p l e   b i v a r i a t e  

cub ic   func t ion ,   v i z . ,  

I 

- 
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Then D P ( C , r i ,  = 0 for n > 3,  and   on ly  two terms remain i n  eq. (249 ,  i.e. 

a n d ,   s i m i l a r l y ,  

The last  s i m p l i f i c a t i o n  comes from DnH (5,rl) = 0 ,  n > 3 and (D D - D D ) * 
rl srl rls 

H ( S y n )  = 0 -  

So t h e   a b o v e   r e p r e s e n t s  a somewhat a d   h o c   p r o c e d u r e   t o   f i n d  a p a r t i c u -  

lar  i n t e g r a l ,   b u t   o b v i o u s l y   t h e   a n s w e r  i s  no t   un ique ,   because  w e  could  have 

r e v e r s e d   t h e   r o l e   o f  D and D a t  eq.  (23) a n d / o r  a t  eq.  (27). This   f reedom i s  

h o w e v e r   c o n s t r a i n e d   b y   t h e   p h y s i c s   o f   t h e   p r o b l e m   w h i c h   r e q u i r e s   c e r t a i n  

symmetry i n   t h e  matrices K ' s  and M's. 

5 rl 

SAMPLE OUTPUT 

On t h e   n e x t  two pages ,  w e  p r e s e n t  some sample   ou tput   f rom MACSYMA t o  

i n d i c a t e   t h e   c o m p l e x i t y   i n v o l v e d .  We p r i n t   t h e   v e c t o r s  A and A2 f rom  eqs.  ( 6 )  

and ( 8 ) ,  and A from  eq. (25). The matrices, however, are a b i t   t o o   u n w i e l d y  

t o   d i s p l a y   f o r   t h e   p r e s e n t   p u r p o s e .  The two d i f f e r e n t  A ' s  d e m o n s t r a t e   t h a t  

t h e   f o u r t h   o r d e r   p r o b l e m  i s  two orders   of   magni tude  more  complex  than  the  second 

o r d e r   p r o b l e m   ( t h e   v e c t o r s   b e i n g   o n e   o r d e r   a n d   t h e  matrices b e i n g  two o r d e r s ) .  

0 

0 

0 
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The two v e c t o r s  on th i s   page ,   g iven  by eqs.  (D5) and (D6) correspond  to  

A and A from eqs.  (6) and (8). 0 2 

.-, 

E ETA 

1 -:I 

c 

+ """ 7 :I 
L 
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The vector given below corresponds to A 0 from eq. (25). 
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SYMBOLIC  MANIPULATION  TECHNIQUES FOR VIBRATION 

ANALYSIS OF LAMINATED ELLIPTIC PLATES* 

C. M. Andersen 
The C o l l e g e   o f   W i l l i a m  and  Mary i n   V i r g i n i a  

Ahmed K. Noor 
The  George  Washington U n i v e r s i t y  

J o i n t   I n s t i t u t e   f o r  Advancement o f   F l i g h t   S c i e n c e s  
a t  NASA Langley  Research  Center 

SUMMARY 

A computat ional  scheme i s  p r e s e n t e d   f o r   t h e   f r e e   v i b r a t i o n   a n a l y s i s   o f  
l a m i n a t e d   c o m p o s i t e   e l l i p t i c   p l a t e s .  The scheme i s  based  on  Hamil ton's 
p r i n c i p l e ,   t h e   R a y l e i g h - R i t z   t e c h n i q u e  and  symmetry cons idera t ions   and i s  
i m p l e m e n t e d   w i t h   t h e   a i d   c f   t h e  MACSYMA symbol ic   manipulat ion  system. The 
MACSYMA s y s t e m ,   t h r o u g h   d i f f e r e n t i a t i o n ,   i n t e g r a t i o n  and s i m p l i f i c a t i o n   o f  
a n a l y t i c   e x p r e s s i o n s ,   p r o d u c e s   h i g h l y - e f f i c i e n t  FORTRAN code f o r   t h e   e v a l u -  
a t i o n   o f   t h e   s t i f f n e s s  and mass c o e f f i c i e n t s .   M u l t i p l e  use i s  made o f   t h i s  
code t o   o b t a i n   n o t   o n l y   t h e   f r e q u e n c i e s  and mode shapes o f   t h e   p l a t e ,   b u t  
a l s o   t h e   d e r i v a t i v e s   o f   t h e   f r e q u e n c i e s   w i t h   r e s p e c t   t o   v a r i o u s   m a t e r i a l  and 
geometr ic  parameters.  

INTRODUCTION 

Many o f   t he   boundary -va lue   p rob lems   wh ich   a r i se   i n   eng inee r ing  and 
phys ics  cannot  be s o l v e d   i n  a c losed  o r   ana ly t i c   fo rm.   There fore ,   numer ica l  
methods  are  necessary f o r   t h e i r   s o l u t i o n .   N e v e r t h e l e s s ,  we can  expec t   tha t  
some o f   t h e   s t e p s   i n   t h e   s o l u t i o n   p r o c e s s  will be s y m b o l i c   o r   a n a l y t i c   i n  
na ture .  Fo r  example, e a r l y   s t e p s   i n   t h e   s o l u t i o n   p r o c e s s  may i n v o l v e  
( a )   c a s t i n g   t h e   g o v e r n i n g   d i f f e r e n t i a l   o r   f u n c t i o n a l   e q u a t i o n s   i n  a more 
conven ien t   f o rm  fo r   so lu t i on   t h rough   rep lacemen t   o f   t he   f undamenta l  unknowns 
by new va r iab les   wh ich   a re   d imens ion less   o r  have o t h e r   d e s i r a b l e   p r o p e r t i e s ,  
and ( b )   t h e   i n t r o d u c t i o n   o f   a p p r o x i m a t i o n   f u n c t i o n s   o r   p e r t u r b a t i o n   e x p a n s i o n s  
and a regroup ing   o f   the   var ious   te rms.   Thus ,   the   so lu t ion   p rocess   can  be 
t h o u g h t   o f  as c o n s h t i n g   o f  a s y m b o l i c   ( o r   a n a l y t i c )  phase fo l l owed   by  a 
numerical   phase.  With  the a 
sometimes ca r ry   t he   symbo l i c  
v e n t i o n a l l y  done  and thereby  
t h e   c a l c u l a t i o n s .  

*Work supported  by NASA Lang 

d o f   compu te r i zed   a lgeb ra i c   man ipu la t i on - ,  we may 
phase o f   t h e   c a l c u l a t i o n   f u r t h e r   t h a n   i s  con- 
reduce  the   cos t   and/or   improve  the   accuracy   o f  

ey  Research  Center. 
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A case i n   p o i n t   i s   t h e   f r e e   v i b r a t i o n   a n a l y s i s   o f   l a m i n a t e d   c o m p o s i t e  
e l l i p t i c   p l a t e s   ( r e f s .  1 and 2 ) .  A p l a t e   i s  a f l a t  body whose t h i c k n e s s   i s  
small  compared t o   i t s   o t h e r   d i m e n s i o n s .   P l a t e s   a n d   o t h e r   s t r u c t u r e s   f o r m e d  
from carnpodLte m a t e & &  such  as   g raph i te   o r   boron   f ibers   imbedded i n  a m a t r i x  
of  epoxy o r   p o l y i m i d e   r e s i n s  h a v e   c o n s i d e r a b l e   i n t e r e s t   t o   t h e . a i r c r a f t  
i n d u s t r y   b e c a u s e   o f   t h e i r   h i g h   s t r e n g t h  and r i g i d i t y ,  easy   mach inab i l i t y   and  
l i g h t   w e i g h t .  These  compos i tes   a re   charac ter ized   by   ex t remely   h igh   tens i le  
s t r e n g t h   i n   t h e   d i r e c t i o n   o f   t h e   f i b e r s   b u t   r e l a t i v e l y   l o w   s t r e n g t h   i n   d i r e c -  
t i o n s   n o r m a l   t o   t h e   f i b e r s .  As a consequence, t h e   c o m p o s i t e s   a r e   t y p i c a l l y  
used i n   l a m i n a t e d   s t r u c t u r e s   w h e r e   t h e   o r i e n t a t i o n   o f   t h e   f i b e r s  changes  from 
lam ina   t o   l am ina .  The h i g h l y   a n i s o t r o p i c   b e h a v i o r   o f   c o m p o s i t e   m a t e r i a l s  
c o n s i d e r a b l y   c o m p l i c a t e s   t h e   a n a l y s i s   o f   t h e   s t r u c t u r e s   i n   w h i c h   t h e y   a r e   u s e d .  
An i n v e s t i g a t i o n   o f   t h e  dependence  of t h e   f r e q u e n c i e s   o f   v i b r a t i o n   ( a n d   t h e  
assoc ia ted  mode shapes) on the  var ious  geometr ic   and  laminat ion  parameters i s  
needed f o r   t h e   e f f i c i e n t   d e s i g n   o f   p l a t e s  made f rom  compos i te   ma te r ia l s .   Th i s  
r e q u i r e s   n o t   o n l y   t h e   e f f i c i e n t   e v a l u a t i o n   o f   t h e   f r e q u e n c i e s  and mode shapes 
f o r  a g i v e n   s e t   o f   p a r a m e t e r s ,   b u t   a l s o   t h e   e f f i c i e n t   c o m p u t a t i o n  of t h e  
d e r i v a t i v e s   o f   t h e   f r e q u e n c i e s   w i t h   r e s p e c t   t o   t h e   V a r i o u s   d e s i g n   v a r i a b l e s .  
Such d e r i v . a t i v e s   p r o v i d e   i n f o r m a t i o n   a b o u t   t h e   s e n s i t i v i t y   o f   t h e   f r e q u e n c i e s  
t o  changes i n   t h e   d e s i g n   v a r i a b l e s .  

The o b j e c t i v e s  o f  t he   p resen t   paper   a re   t o   deve lop  a computat ional  scheme 
f o r   t h e   f r e e   v i b r a t i o n   a n a l y s i s   o f   1 a m i n a t e d . c o m p o s i t e   e l l i p t i c   p l a t e s   w i t h  
clamped  edges  and t o   i d e n t i f y   t h e   m a j o r   a d v a n t a g e s   g a i n e d   f r o m   t h e   u s e   o f  
s y m b o l i c   m a n i p u l a t i o n   i n   t h e   s o l u t i o n   p r o c e s s .  The ma in   e lemen ts   o f   t he  
scheme i n c l u d e   ( 1 )   t h e   u s e   o f   t h e   R a y l e i g h - R i t z   m e t h o d   i n   c o n j u n c t i o n   w i t h  
H a m i l t o n ' s   p r i n c i p l e ,  (2 )  s i m p l i f i c a t i o n  o f  the   computa t ion   th rough  cons ider -  
a t i o n s   o f   v a r i o u s   t y p e s   o f   s y m m e t r i e s ,  ( 3 )  t h e   u s e   o f   t h e  MACSYMA symbol ic  
m a n i p u l a t i o n   s y s t e m   t o   g e n e r a t e   e f f i c i e n t  FORTRAN code,  and ( 4 )  m u l t i p l e   u s e  
o f   t h a t  code i n   t h e   d e t e r m i n a t i o n  of  both  f requencies  and  f requency  der ivat ives.  
Because o f   t h e   e l l i p t i c a l  shape o f   t h e   p l a t e s ,  MACSYMA i s   a b l e   t o   p r o v i d e  
s h o r t   e x a c t   a n a l y t i c   f o r m s   f o r  a- l a r g e  number o f   express ions   wh ich   wou ld  
o the rw ise   have   t o  be   approx imated  th rough  the   use   o f   numer ica l   quadra ture .  

MATHEMATICAL  FORMULATION 

F i g u r e  1 shows  an e l l i p t i c   p l a t e  and i t s   C a r t e s i a n   c o o r d i n a t e   s y s t e m .  
The z - a x i s   i s   n o r m a l   t o   t h e   f l a t   s u r f a c e s   o f   t h e   p l a t e ,  and the   x -  and y -  
axes l i e   i n   t h e   m i d d l e  
problem  domain i s  thus  

I n   t h i s   s t u d y  we t r e a t  
e l a s t i c i t v  Droblem. A 

p lane a1 ong t h e   p r i n c i p a l  axes o f   t h e   e l  1 ipse .  The 
s p e c i f i e d   b y  

t h e   p l a t e   v i b r a t i o n   p r o b l e m  as a three-d imensional  
f r e e   v i b r a t i o n  mode o f   t h e   P l a t e   i s   d e s c r i b e d  bv a 

f r e q u e n c y  k ( a c t u a l l y  an  angular   ve loc i , ty )   and by the   d isp lacement  " 

ampl i tudes Ui (X ly ,Z)  ( i  = 1,2,3). A p o i n t  i n  t h e   v i b r a t i n g   p l a t e  with 
e q u i l i b r i u m   p o s i t i o n  (x,y,z) will h a v e   t h e   p o s i t i o n  
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(x+ul(x,y,z)sinwt,  y+u2(x,y,z)sinwtY  z+u3(x,yYz)sinwt)  at time t. 

the  displacement compondnts U j  by 
The components ~i -(x,y,z)  of the  strain  tensor  are  defined i n  terms of 

E ~ ~ ( x , Y , z )  = 1 ( a i u j  + a . u . )  ( i , j  = 1,2,3) 
J 1  

where a1  = a / a x ,  a2 = a/ay and  a3 = a /az .  We group  the  six  strain compon- 
ents  into a vector  EI(xyy,z) ( I  = 1+6) by le t t ing  

€1 - €11 €2 - €22 €3 - €33 
- - - 

E4 = 2 €23 

We analogously  define a s t ress   vector   O~(x,y,z)  ( I  = 1+6) i n  terms of 
the  six independent components  of the  stress  tensor and assume the  stress- 
s t ra in   re la t ionship  is   l inear  and given by the  -constitutive  relation 

6 

We assume t h a t  c ( z )  i s  constant  within each layer b u t  can vary from layer 
t o  layer.  Furthe&? we assume t h a t  the  f ibers  are a1 1 parallel  t o  the x-y 
plane. As a consequence, the CI  J ( z )  form a symmetric matrix of the form 

Symme t ri c 

- 
The s t ra in  energy U and the  kinetic energy T are  given i n  terms  of the 
s t ra ins  and displacements by 



6 

I ,J=1 

c1 3 L 
T = E- 2 /'p(z.) [ui(x,y,z)] 2 dx  dy  dz 

where p ( z )   i s   t h e   d e n s i t y   o f   t h e   p l a t e   m a t e r i a l .   S i n c e  we assume t h a t  
p ( z ) ,   l i k e   [ c ( z ) ] ,   i s   c o n s t a n t   w i t h i n  each l a y e r   b u t  can   vary   f rom  layer  
t o   l a y e r ,   t h e   i n t e g r a t i o n s   i n   t h e   z - d i r e c t i o n   a r e   t o  be  performed i n  a p i e c e -  
wise  manner. 

The q u a n t i t y   r r ( u i )  = T - U i s   t o  be regarded  as a f u n c t i o n a l   o f   t h e  
d i sp lacemen t   f unc t i ons  U i  ( x , y , z ) .   H a m i l t o n ' s   v a r i a t i o n a l   p r i n c i p l e   s t a t e s  
tha t   u i (X ,y ,Z)   must   be   such  tha t   the   quant i t y  n ( u i )  i s  s t a t i o n a r y   w i t h  
r e s p e c t   t o   v a r i a t i o n s   i n   t h e   d i s p l a c e m e n t   f u n c t i o n s ,   i . e .  

6l-I = 0 ( 7 )  

where 6n i s   t h e  symbol f o r   t h e   f i r s t   v a r i a t i o n   o f  II. The v a r i a t i o n a l  
p r i n c i p l e   t h u s   g i v e s   r i s e   t o  a s e t   o f   e l l i p t i c   p a r t i a l   d i f f e r e n t i a l   e q ' u a t i o n s  
i n   t h e   u i   ( x , y , z ) .  However, r a t h e r   t h a n   e x p l i c i t l y   d e v e l o p i n g   t h e s e   d i f -  
f e r e n t i a l   e q u a t i o n s  we sha l l   adop t  a s l i g h t l y   d i f f e r e n t  approach. We a p p r o x i -  
m a t e   t h e   u i ( x , y , z )   i n  n b y   l i n e a r   c o m b i n a t i o n s   o v e r  a s e t  o f  approx imat ion  
f u n c t i o n s .  The c o e f f i c i e n t s  Qj ( j  = l+N)  which  appear i n  t h e s e   l i n e a r  
combina t ions   a re   de termined  f rom  the   requ i rement   tha t  

( i  = 1 + N )  

T h i s   r e s u l t s   i n  a l i n e a r   g e n e r a l i z e d   e i g e n v a l u e   p r o b l e m   o f   t h e   f o r m  

N N 
K - .  $ -  = u2 Mij $ j  

j = l  1J  J j=l 

where 
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I 

SYMBOLIC PHASE OF  COMPUTATION 

The f i r s t   s t e p   i n   t h e   s y m b o l i c  phase o f  computat ion i s   t o  approx imate   the  
displacements  u i (x,y,z)  i n   t h e   f u n c t i o n a l  n.  The boundary  condi t ions 

a long   t he   c lamped   edge   o f   t he   p la te   a re   au tomat i ca l l y   sa t i s f i ed   by   t he   use   o f  
a p p r o x i m a t i o n s   o f   t h e   f o r m  

Ui(XYY,Z) = c z $ m y n Y k  [ l - ( x / a ) ‘  - (y/b)’ ]  x y 
m n  

k m,n i 

where the  upper  limit o f  k i n   t h e  summation i s  one h i g h e r   f o r  i=l o r  2 
t h a n   f o r   i = 3 .  The number of terms  needed i n   t h e   e x p a n s i o n  ( 1 2 )  depends  on 
t h e   t h i c k n e s s   o f   t h e   p l a t e  as we1 1 as on t h e   a c c u r a c y   d e s i r e d   f o r   t h e   s o l u t i o n s .  
The $j o f  eqs. (8 )  through (10)  a r e   t h e   c o e f f i c i e n t s  $ m y n y k  taken i n  some 
a r b i t r a r y   o r d e r .  The symbol ic   phase  o f   the   computa t ion   can   p rowed as f o l   l o w s  : 

( 1  ) S e l e c t  a (new) p a i r   o f   i n d i c e s  i and j , fo r   wh ich   exp ress ions  
f o r  Ki. and Mij a re   des i red   (see   the   sec t ion   on  Symmetry 
Conside4at ions) .  

( 2 )  Set a l l  $k t o   z e r o   e x c e p t  $i and $ which  remain as  

( 3 )  Form t h e   t e r m s   o f   u k ( x y y , z )   ( k  = 1,2,3) which  depend  on Qi 

undef ined  (a tomic)   var iab les .  j y  

and $ us ing  eq.   (12) .  j 

j 

( 4 )  Compute t h e   t e r m s   o f   ~ ~ ( x , y , z )   ( I  = 1+6) which  depend  on $i 
and $ using  eq. ( 2 ) .  

( 5 )  E v a l u a t e   t h e   t e r m s   o f   t h e   i n t e g r a n d s   o f  U and T which  depend 
on $i Y $j u s i n g  eq. ( 6 ) .  

( 6 )   E v a l u a t e   t h e   i n t e g r a n d s   o f  Kij and M .  by d i f f e r e n t i a t i o n  

( 7 )  Evaluate Ki . and Mi . b y   p e r f o r m i n g   t h e   i n t e g r a t i o n s   o v e r  

(8)  Simp1 i f y  the  nonzero Ki and Mi and develop FORTRAN 

w i t h   r e s p e c t   t o   b o t h  $i and us in4 jeq .   (10 ) .  
j 

x,y  and z d i a   p a t t e d   m a t c h i n g .  

e x p r e s s i o n s   f o r  them. 

( 9 )  Go t o   s t e p  ( 1 )  un less   f i n i shed .  

I n   s t e p  ( 7 ) ,  t h e   i n t e g r a t i o n   w i t h   r e s p e c t   t o   t h e  z c o o r d i n a t e  i s  a compl ished 
s y m b o l i c a l l y   ( a n a l y t i c a l l y )   s i m p l y  by i n t r o d u c i n g  new v a r i a b l e s  Cf:? and 
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D(') defined by 

'IJ ('I = J h / 2  - h / 2  zR CIJ(z)  dz (1,J = 1 + 6 ;  R = 0,1 ,2  ...) 

and the  integration  with  respect t o  x and y i s  accomplished by the 
rep1 acements 

x -f a r cos(e) 

y + b r cos(e) 

followed by exact  closed-form  integration  in r and e .  The expressions 
produced fo r  K i  and Mi. in  step (8) are very  simple  since an M i  - 
expression  contajns a t  most a single  term, and a K i j  expression  congains 
a t  most three  terms. The  Mij are  linear  in  the D ( a )  and  the most 
general form for  the K i j  i s  

where X], x2 and X a re   l inear  combinations o f  the C (') with r a t ' o  a1 
number coefficients;  ?4y A and A are  integer  multipids o f  the C 7 eT : 
x7 i s  an integer;  and the F8RTRAN vapiables A, B, A B ,  A2, B2, A2B2 a&$ 
defined by 

A = a  B = b  A B = a b  

A2B2 = a b 2 B2 = b 2 2 2  A2 = a 

The symbolic phase ends when the FORTRAN code  has  been transferred t o  a local 
computer for  the numerical phase of computation. 

NUMERICAL PHASE OF COMPUTATION 

The f i r s t  goal of the numerical phase'of computation i s  t o  solve  the 
linear  generalized  eigenvalue problem (eq. ( 9 ) )  for  the  lowest few frequencies 
wk(k=l ,2, . . . ). To accomplish this  the numerical program evaluates 
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t h e  C [ J " ) ,  t h e  D") , t h e  FORTRAN v a r i a b  es o f  eq. ( 1 6 ) ,   a n d   f i n a l l y   t h e  
K i j  and Mij. Then the  e igenvalues  (wk) '   and  the i r   assoc iated  e igenvectors  
$j may be  determined  by  the  method o f  subspace i t e r a t i o n   , ( r e f .  3 ) .  

The second  goal o f   t h e   n u m e r i c a l  phase o f   c o m p u t a t i o n   i s   t o   d e t e r m i n e   t h e  
d e r i v a t i v e s   o f   t h e  Wk w i t h   r e s p e c t   t o  changes i n  geometry, f i b e r   o r i e n t a t i o n s  
o r   m a t e r i a l   p r o p e r t i e s .  The d e r i v a t i v e   o f   t h e   f r e q u e n c y  wk w i t h   r e s p e c t   t o  
t h e   p l a t e   a r e a  Tab (keep ing   t he   aspec t   ra t i o   a /b ,   t h i ckness  h and 
m a t e r i a l   p r o p e r t i e s   f i x e d )   i s   g i v e n   b y  

N (k )   a (Tab K.  .) 
- C $i 

TJ (k) 
a(Tab)  h,  a/b '9 

- i , j=l - -.___.___ 

h,  a/b 
i , j=l 

T h i s   e q u a t i o n   t a k e s   i n t o   a c c o u n t   t h e   f a c t   t h a t   e a c h  Mij i s   p r o p o r t i o n a l   t o  
t h e   a r e a   b u t   i s   i n d e p e n d e n t   o f   t h e   a s p e c t   r a t i o .  The d e r i v a t i v e  on  the RHS o f  
eq.  (17) i s   e v a l u a t e d   b y   u s i n g   t h e  FORTRAN code f o r   t h e  K i j  b t l t   w i t h  
FORTRAN v a r i a b l e s   o f  eq.   (16)  def ined  as  fo l lows: 

A = a/2 B = b/2 AB = 1 

A2 = a/b B2 = b/a A2B2 = 0 
(18)  

The c o m p u t a t i o n a l   e f f o r t   i n v o l v e d   i n   t h e   e v a l u a t i o n   o f   u s i n g  
eq.  (17) i s  c o n s i d e r a b l y   l e s s   t h a n   t h a t   r e q u i r e d   f o r   s o l v i n g   t h e  
e igenvalue  problem.  Note  that  it would be d i f f i c u l t   t o   e v a l u a t e   t h e   d e r i v a t i v e  
m a t r i x   i n  
W k  w i t h  

3 
ah 

eq.  (1  7)  by  conventional  numerica 
r e s p e c t   t o   t h e   t h i c k n e s s  h (keep 

1 techniques.  The d e r i v a t i v e   o f  
i n g  a and b f i x e d )   i s   g i v e n   b y  

T h i s   e q u a t i o n   i s   b a s e d  on t h e   f a c t   t h a t   t h e   r e p l a c e m e n t   o f  a by xa, b by 
Ab, and h by xh ( k e e p i n g   t h e   r e 1   t i v e   t h i c k n e s s e s  o f  t he   l am inae   cons tan t )  
r e s u l t s   i n  W k  be ing   rep laced  by  x- 9 W k .  The d e r i v a t i v e   o f   t h e   f r e q u e n c y  w 
w i t h   r e s p e c t   t o  a change i n   t h e   a s p e c t   r a t i o   a / b   ( k e e p i n g   t h e   a r e a  Tab an s 
th ickness  h f i x e d )   i s   g i v e n   b y  

a o -  
h,  ab 

i , j=l 
/ N  

( h  ,nab 

1 6,7 



where the summation i n  the denominator i s  the same as i n  eq.  (17). We now 
need t o  make the x1 and A6 terms o f  eq. (1 5 )  vanish  since  they do not 
depend on a/b. We accomplish th i s  by set t ing 

A = N b /2  B = - N b / ( 2 a )  A B = a b  2 

3 A 2 = N a b  B2 = - N b / a  A2B2 = 0 

where N i s  a very large number ( e .g . ,  N = 10 ) ,  and compensate for  the 
introduction of N by dividing by N af ter   the  summation indicated  in 
eq. ( 2 0 )  has  been carried o u t .  When the  derivatives of w k  with respect 
t o  area,  aspect  ratio and thickness  are k n o w n ,  one  can easi ly  determine  the 
derivatives of W k  with respect t o  a ,  b and/or any other  functions of 
n a b ,  a / b  and h .  

15 

Derivatives of W k  with respect t o  the  fiber  orientation  angles or mat- 
erial  properties may  be computed s imilar ly ,  b u t  for  these  cases  the FORTRAN 
variables of eq. ( 2 1 )  regain  their  original  definitions  (eq. ( 1 6 ) )  and the 
Xi ( i  = 1+6) are  replaced by their   appropriate  derivatives.  This kind of 
mu1 t i p l e  use of a 1 arge block of FORTRAN code i s  very  useful for  reducing  the 
length of the FORTRAN program a s  well as  the amount o f  symbolic  computation. 
Both are  further reduced by the symmetry considerations  discussed  in  the  next 
secti  on. 

SYMMETRY CONSIDERATIONS 

There are  three  types of symmetries which he1 p simp1 if,y our  calculations. 
These are  associated with a )  symmetry  of the [ K ]  and [MI matrices , b )  
rotation-reflection symmetry of the undeformed p la te ,  and  c )  symmetry of 
the   s t i f fness  and  mass coefficients with respect t o  interchanging  the  roles of 
a , b and the  subscripts 1,Z. 

Symmetry of the [ K ]  and [MI Matrices 

The f i r s t  type of symmetry i s  the symmetry of the [ K ]  and  [ M I  matrices 
under transposition, t h a t  i s  

M i j  = M .  
J i  

(see  eq. ( 1  0 ) ) .  The presence of t h i s  symmetry  means t h a t  we need symbolic. 
expressions  only  for  those K i  and M i  with i < j. 
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Rota t i on -Re f1   ec t i on  Symmetry o f   t h e  Undeformed P1 a t e  

The second  type o f  symmetry i s   t h e  symmetry o f   t h e   ( u n d e f o r m e d )   p l a t e  
i t s e l f .   V a r i o u s   r o t a t i o n s   o r   r e f l e c t i o n s  may leave   t he   boundar ies  and m a t e r i a l  
p r o p e r t i e s   o f   t h e   p l a t e   i n v a r i a n t   ( r e f .  4 ) .  For   ins tance,   by   our   assumpt ion  
t h a t   t h e   f i b e r   d i r e c t i o n s   a r e   p a r a l l e l   t o   t h e   p l a t e ,   r o t a t i o n s   o f   t h e   p l a t e   b y  
1 8 0 0   a b o u t   t h e   z -   a x i s   l e a v e   [ C ( z ) ]   i n v a r i a n t .  

A consequence o f   t h i s  symmetry ( t h e  symmetry  group i s   c a l l e d  C2 i n  
S c h o e n f l i e s  n o t a t i o n   ( r e f .  5 ) )  i s   t h a t   t h e r e   a r e   t w o   f a m i l i e s   o f   s o l u t i o n s  - 
t h o s e   w i t h  u = 1 and   t hose   w i th  u = -1 i n   t h e   r e l a t i o n s  

Equat ion   (23)   de f ines   the  minimum  symmetry e x h i b i t e d   b y   t h e   l a m i n a t e d   p l a t e s  
considered i n   t h e   p r e s e n t   s t u d y .  

The l a r g e s t  symmetry   group  which  can  leave  the  boundar ies  invar iant  i s  
the   g roup D2h. A p l a t e   w h i c h  has t h i s  symmetry i s   i n v a r i a n t   u n d e r   r o t a t i o n s  
by   180°   no t   on ly   a round  the   z -ax is   bu t   a round  the   x -   and  y -axes  as w e l l .  
F u r t h e r ,  i t  i s   i n v a r i a n t   u n d e r   r e f l e c t i o n s   i n   t h e   x - y ,   y - z  and  z-x  planes 
and   under   i nve rs ion   ( t he   ope ra t i on   wh ich   sends   t he   gener i c   po in t   ( x , y , z )  
t o   t h e   p o i n t   ( - x , - y , - z ) ) .   P l a t e s   w i t h  D2h symmetr,y  have e i g h t   f a m i l i e s   o f  
s o l u t i o n s  each  corresponding t o  one o f   t h e   p o s s i b l e   c o m b i n a t i o n s   o f  

= 21 i n   t h e   r e l a t i o n s  - u1 - 21 y o2 - 21, - 
O3 

u (x,y,z) = -0 u (-x,y,z) = 0 u (x,-y,z)  = -0 u (x,y,-z)  

u (x,y,z) = 0 u (-x,y,z)  = -0 u (x,-y,z)  = -u  u (x,y,-z)  

1 1 1  2 1   3 1  

2 1 2  2 2  3 2  

U3(XYY,Z) = olu3(-x’y,z) = 0 2 3  u (x,-y,z)  = u 3 3  u (x,y,-z)  

F o r   t h e   f o u r   f a m i l i e s   w i t h  o3 = - 1   t h e   m i d d l e   s u r f a c e   o f   t h e   p l a t e   ( t h e  
s u r f a c e   w i t h  z = 0)  i s  d e f o r m e d   w i t h   p l a n a r   m o t i o n s   o n l y .   I n   o r d e r   f o r  a 
l a m i n a t e d   c o m p o s i t e   p l a t e   t o   h a v e   t h e   f u l l  D2h symmet ry ,   t he   f i be r   ang le  
w i t h   r e s p e c t  t o  t h e  x - a x i s ,   e ( z ) ,   m u s t   t a k e   o n l y   t h e   v a l u e s  Oo and 90’ 
and  e(z)   must   equal   e( -z) .  

The group D2 ha.s t h r e e   s u b g r o u p s   o f   o r d e r   f o u r   w h i c h   c o n t a i n  C2 as 
a subgroup. I n  Sc k- o e n f l i e s   n o t a t i o n   t h e y   a r e   c a l l e d   C 2 h y  C2v and D2. 
Each  of   these  subgroups  correspond  to a poss ib le   p la te   symmet ry   h ighe r   t han  
the   m in ima l  C2 symmetry y e t   l o w e r   t h a n   t h e   f u l l  Dzh symmetry. P1 a t e s   w i t h  
any o f   t h e s e   s y m m e t r i e s   h a v e   f o u r   f a m i l i e s   o f   s o l u t i o n s .   P l a t e s   w i t h  symmetry 
‘2 h have e ( z )   e q u a l   t o  e ( - z )  and  have s o l u t i o n s   c h a r a c t e r i z e d   b y  
(a, u3)  = (I,I), (I , - I ) ,  (-I,I) o r  (-I,-I) i n  
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P l a t e s   w i t h  symmetry C2” have f i b e r   a n g l e s   o f  0’ and 90’ o n l y  and  have 
s o l u t i o n s   c h a r a c t e r i z e d   b y  (ol  , a 2 )  = ( 1   , l ) ,   ( 1 , - 1 ) ,   ( - 1 , l )   o r   ( - 1   , - 1 )   i n  

u1 (X,Y,Z) = - 0 p 1  (-X,Y,Z) = O2U2(X”YYZ) 

U2(XYYYZ) = 01u2(-x ’y,z)  = -o2u2(x’-y,z)  

U3(X’YYZ) = 01u3(-x ’y,z)  = 03u3(x”y,z) 

P l a t e s   w i t h  symmetry D2 a r e   i n v a r i a n t   u n d e r   r o t a t i o n s   b y  180’ about   the  
x-, y- and  z-axes  and  thus  have 

e ( z )  = - e ( - z > ;  -90’ < e 2 90’ (27 )  

Fo r   t hese   p la tes  we l e t  

where 

Then the   so lu t i ons   a re   cha rac te r i zed   by   (o l ,   02 )  = (1  , l ) ,  (1  , - l ) ,   ( - 1 , l )   o r  
( -1  , - I )  i n  

w i t h  (01 , 0 2 )  replaced  by  ( -01,  -02) i n   t h e   c o r r e s p o n d i n g   r e l a t i o n s   f o r  UT. I f  any  two o f   t h e  eqs. (25) ,  (26)  and (30) ho ld   s imu l taneous ly   t hen  
eq. ( 2 4 )  must  hold. On t h e   o t h e r  hand,  eq. (23 )  i s  a consequence o f  
eqs. (25 )  , ( 2 6 )   o r  (30)  separa te ly .  

S o l u t i o n s   l a c k i n g   t h e   a p p r o p r i a t e  symmetry a r e   p o s s i b l e   o n l y   i n   t h e  
( u n l i k e l y )   e v e n t   t h a t   t h e   e i g e n v a l u e s   f o r  members o f  two d i f f e r e n t   f a m i l i e s  
o f   s o l u t i o n s   c o i n c i d e ,  i n  w h i c h   c a s e   t h e   s o l u t i o n s   a r e   l i n e a r   c o m b i n a t i o n s   o f  
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symmetric solutions. The presence of families of  solutions  with  different 
symmetries means t h a t  w i t h  the  choice of a proper  ordering of the $i the 
[ K ]  and [MI matrices have a block diagonal form with one block fo r  each family 
of  solutions T. Tha t  i s  , n may be written  as 

n = z n  
T 

T 

where nT contains  the $i associated w i t h  the symmetry T. This resul ts  i.n 
replacing a large problem by two, four  or  eight (depending on the symmetry 
g roup)  smaller subproblems. For each of the  subproblems,  the  expansion i n  
eq. ( 1 2 )  i s  adjusted t o  match the  desired symmetries. 

Symmetry  of Stiffness and  Mass Coefficients With Respect t o  
Interchanging  the Roles of a,b and the  Subscripts 1 , 2  

The third  type of  symmetry is  related  to  the  observation t h a t  when given 
a physical  plate we  may analyze i t  in two different  ways - w i t h  the semi-major 
axis of the  plate along the  x-axis o r  along the  y-axis. The two ways are 
equivalent b u t  resul t  i n  interchanging  the numerical values f o r  a* and b 
and  for  some of the  material  properties C I J ( Z ) .  Let Kij and Ki * be  com- 
ponents  of  the stiffness  matrices  (before  the  partitioning of  eq. ( 4 1 ) )  for  
the same physical problem as  formulated  in $he two different  ways.  While i t  
i s  n o t  true  in  general t h a t  Kij  equals K ; J ,  i t   i s   t r u e  t h a t  fo r  each pair  
of  indices i , j  there  corresponds a pair  , j I such t h a t  Kij = K T I j l  ; 
thus 

Thus , while  Kij and Ki I . I d o  n o t  necessarily have the same numerical value, 
they do have essent ia l ly  $he same algebraic form, and the FORTRAN code used 
t o  evaluate Kij can serve t o  evaluate  Kiljl  as  well. The relation  turns 
o u t  t o  be even stronger  for  the [ M I  matrix  since 

The f i r s t ,  second and third  types of symmetries interact  with each other  in 
the  following way. Either  all  the index pairs i , j  in  the block of the [ K ]  
matrix  associated w i t h  symmetry T correspond to  index pairs i l , j l  in  the 
block h a v i n g  a different  symmetry T I  o r  they a l l  correspond t o   i ' , j '  i n  
the same block. For the former  case  the FORTRAN code generated t o  find  the 
solutions w i t h  symmetry T can be used to  find  the  solutions with symmetry 
T I  as we1 1 .  For the   l a t t e r  case  the  relations ( 2 2 )  , ( 3 2 )  and (33)  together 
serve  to reduce the FORTRAN code needed for  symmetry T t o   l i t t l e  more than 
ha1 f that  needed when considering  eq. ( 2 2 )  alone. For this  case  the code i s  
executed once and the  incomplete [ K ]  and [ M I  saved. Then the code i s  executed 
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a second  t ime  w i th   var iab les   in te rchanged as i n  eq. (32) and the   two  se ts  o f  
matr ices  are  merged.  The i n t e r a c t i o n s  o f  t h e   t h r e e   t y p e s   o f  symmetry a r e  
summarized i n  Table 1 f o r   t h e   f i v e  symmetry  groups o f   i n t e r e s t .  The symmetry 
c o n s i d e r a t i o n s   d i s c u s s e d   i n   t h i s   s e c t i o n   a p p l y   e q u a l l y   w e l l   f o r   t h e   d e t e r m i -  
n a t i o n   o f   t h e   d e r i v a t i v e   m a t r i c e s   i n  eqs. (17) ,  (19)  and (20) .  

TABLE 1. - INTE-RAGTIONS AMONG THE FIRST, SECOND AND THIRD TYPES OF SYMMETRIES 

- __ - ~" . ~~ . . . - . . - .  

Symmetries i n t e r r e l a t e d  
by  eqs. ( 2 2 ) ,  (32)  
and  (33) 

". . . .  
Symmetry Symme t r y  Symmetries f o r   w h i c h  
Group o f  Parameters, [ K ]  and [ M I  a r e   s i m p l i -  
P1 a t e  T f i e d  by  eqs. ( 2 2 ) ,  (32)  

and (33)  
.~ - ~ ~ ~ "  ". . " .  - - 

c2 (0) ( U Y  ( - 1 )  

'2 h 

D2 h 

. " 

( 1  3-1 Y1) - (-1 ,1 J ) ;  
( 1  , - I  ,-1) - ( - 1 , l  , -1)  

NUMERICAL  RESULTS 

Numer ica l   resul ts   have been ob ta ined   f o r   modera te l y   t h i ck   l am ina ted   p la tes  
w i t h  symmetry D2.. For  the  case  01 = 02 = 1, we u s e   t h e   f o l l o w i n g   v e r s i o n   o f  
eq. ( 1 2 )  which  takes  eq.   (30)   in to   account :  
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where 

Th is   app rox ima t ion  scheme r e s u l t s   i n   m a t r i c e s  [ K ]  and [ M I  hav ing  d imension 
110   by   110   and   requ i res   t he   genera t i on   o f  3541 FORTRAN s t a t e m e n t s .   S i m i l a r  
app rox ima t ion  schemes a r e   u s e d   f o r   t h e   o t h e r   f a m i l i e s   o f   s o l u t i o n s .   T y p i c a l  
r e s u l t s   a r e  shown i n   f i g u r e  2. These r e s u l t s   a r e   f o r   e i g h t - l a y e r e d   p l a t e s  
w i t h  h = b/10  and f i b e r   o r i e n t a t i o n s   A w i t h   r e s p e c t   t o   t h e   x - a x i s )   w h i c h   a r e  
a l t e r n a t e l y  e and - e ,  where e = 45 . The m a t e r i a l   p r o p e r t i e s   a r e   c h o s e n  
t o  be t h o s e   t y p i c a l   o f  a h igh-modulus  graphi te-epoxy  composi te .   F igure 2 
shows t h e   v a r i a t i o n   w i t h   t h e   a s p e c t   r a t i o   a / b   o f   t h e   l o w e s t   f r e q u e n c i e s  and 
o f   t h e   d e r i v a t i v e s   o f   t h e s e   f r e q u e n c i e s   w i t h   r e s p e c t   t o   t h e   f i b e r   o r i e n t a t i o n  
ang le  e. 

CONCLUDING REMARKS 

The ma jo r   advan tages   o f   us ing   symbo l i c  man 
a n a l y s i s   o f   l a m i n a t e d   c o m p o s i t e   e l l i p t i c   p l a t e s  

i p u l a t i o n   i n   t h e   f r e e   v i b r a t  
a r e  

1 ) The a c c u r a t e   a n d   r e 1   i a b l e   s y m b o l i c   e v a l u a t i o n   o f  1 arge  numbers 
o f   d e r i v a t i v e s  and i n t e g r a l s  

2 )  The c o n c i s e   f o r m   o f   t h e   r e s u l   t i . n g  FORTRAN e x p r e s s i o n s   f o r  Ki 
and Mi 

3)  The ease of   implement ing  symmetry  concepts 

4)  The s i m p l i c i t y   o f   e v a l u a t i n g   t h e   f i r s t   d e r i v a t i v e s   o f   t h e  
f r e q u e n c i e s   w i t h   r e s p e c t   t o   t h e   d e s i g n   v a r i a b l e s  

The m u l t i p l e  usage o f   t h e   l a r g e   b l o c k s   o f  FORTRAN code  generated  by 
MACSYMA a l l o w s   t h e   c a l c u l a t i o n   o f   f r e q u e n c y   d e r i v a t i v e s   w i t h   n o   e x t r a   s y m b o l i c  
e f f o r t  and  very l i t t l e   e x t r a   n u m e r i c a l   c o m p u t a t i o n .  O f  course ,   the   symbol ic  
auuroach  would be useless  were i t  n o t   f o r   t h e   f a c t   t h a t   t h e   o u t p u t   i s   i n   t h e  
fokm o f  FORTRAN statements  which  need  never 
on  such a l a r g e   q u a n t i t y   o f   d a t a   w o u l d   s u r e  
v e r y   d i f f i c u l t   t o   r e c t i f y .  

be keypunched. Manua 

i o n  

1 o p e r a t i o n s  
l y  i n t i o d u c e   e r r o r s   w h i c h   w o u l d  be 

The major   d isadvantages   a re  

1 )  The l a r g e  amount o f  FORTRAN code  needed t o   o b t a i n   a c c u r a t e   n u m e r i c a l  
r e s u l t s  

2 )  The r e l a t i v e l y   l o n g   s y m b o l i c   c o m p u t a t i o n   t i m e s  
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3)  The s low speed o f   t r a n s f e r r i n g   d a t a   f r o m   t h e   s y m b o l i c  
p rocess ing   compu te r   t o   t he  number processing  computer 
when the  two  computers  are  not   on  the same network 

Severa l   ex tens ions   o f   the   p resent   work  come t o  mind, such  as  studying 
p l a t e s   w i t h   o t h e r   b o u n d a r y   c o n d i t i o n s  and o ther   geomet r ies .  Shapes r e q u i r i n g  
n u m e r i c a l   q u a d , r a t u r e   f o r . t h e   x - y   i n t e g r a t i o n  may a l s o  be i n v e s t i g a t e d .  The 
v a r i o u s   i n t e g r a l s   r e q u i r e d   c a n  be i d e n t i f i e d ,   i s o l a t e d  and  ass igned  var iab le  
names t h r o u g h   t h e   u s e   o f  symbol m a n i p u l a t i o n  much as t h e   z - i n t e g r a l s   a r e  
t r e a t e d   i n   t h e   p r e s e n t   s t u d y .  The techn iques   used   he re in   a re   app l i cab le   t o  a 
w i d e   v a r i e t y  o f  o ther   boundary-va lue  problems.  
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Fiv. 1. ClamFed  laminated elliptic nlate. 
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1 dw 

w de 

0 '  I I I I 

1.0 1.5 2.0 2.5 3.0 

a/ b 

-.6 I._ I I I 

1.0 1.5  2.0  2.5 3.0 

alb 

Fiq. 2. Effect of a/b on w and wde  for clamped eight-layered  elliptic 
plates  with D2 symmetry and fiber  orientations a1 ternately +45' 
and -45'. h/b = 1/10; EL/ET 40; vLT = 1/4;  G /E  = 3/5; 

2 1 dw 

2 2 LT  T 
GTT/ET = 1/2; m0 = (ETh ) / ( ~ b  >. 
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OBSERVATIONS ON APPROXIMATE  INTEGRATIONS 

Edward W. Ng 
Jet Propuls ion  Laboratory 

Extended  Abstract 

I n  this p r e s e n t a t i o n  w e  explore  a class of i n t e g r a t i o n   s t r a t e g i e s  that 
f a l l   i n  between t h e  two extremes of  symbolic  integration  and  numerical   quadra- 
ture ,   which are, respec t ive ly ,   a imed at t h e  computer   generat ion  of   answers   in  
the  form of exact   expressions  and  numerical   values .  We s h a l l   f i r s t   d i s c u s s  the 
theo re t i ca l   advances   i n   symbol i c   i n t eg ra t ion ,  as m o t i v a t i o n   t o  the fol lowing,  
then   examine   th ree   major   contex ts   o f   appl ica t ions   wi th   a t tendant  case s t u d i e s ,  
and f i n a l l y   e x p l o r e   f o u r   p o s s i b l e   t y p e s   o f   s t r a t e g i e s   f o r   a p p r o x i m a t e   i n t e -  
g r a t i o n .   I n   p a r t i c u l a r  we s h a l l  comment on t h e   f e a s i b i l i t y  and  adequacy  (or 
inadequacy)  of MACSYMA fo r   imp lemen t ing   t hese   s t r a t eg ie s .  

We b e g i n   w i t h   t h e o r e t i c a l   d i s c u s s i o n s .   I n  this aspec t  w e  have  discerned 
two major   paradigms  of   s t ra tegies ,   which w e  l abe l   t he   "pa t t e rn - recogn i t ion  
paradigm"  and the  "problem-solving  paradigm".  These  labels,   though  far  from 
p e r f e c t ,  are chosen   to   ind ica te   the   emphas is   on ly .   In   the   former  class w e  
include,  for  example,   Risch's  algorithm,  (Ref.  1) and  Moses' new approach  based 
on extension  operators   (Ref .  2) .  We b e l i e v e   t h e s e   s t r a t e g i e s   t o   b e   p a r t i c u l a r l y  
cha rac t e r i zed  by t h e   s e a r c h  of a l g o r i t h m i c   a b i l i t y   t o   r e c o g n i z e   t h a t   c e r t a i n  
expres s ions   o r   ope ra to r s   be long   t o  some s p e c i f i e d  class of  such. The  problem 
solving  paradigm i s  o b v i o u s l y   i n h e r i t e d   f r o m   h e u r i s t i c   s t r a t e g i e s  of a r t i f i c i a l  
i n t e l l i g e n c e .   I n   t h i s  la t ter  class we i n c l u d e ,   f o r  example, Wang's d e f i n i t e  
in tegra t ions   (Ref .  3)  a n d   o u r   e l l i p t i c   i n t e g r a t i o n s   ( R e f .  4 ) .  A l l  t h e s e  
t h e o r e t i c a l   s t r a t e g i e s   s u f f e r   f r o m   p r a c t i c a l   l i m i t a t i o n s  of one  kind  or   another .  
Notably among t h e s e  are t h e   m u l t i v a r i a t e   f a c t o r i z a t i o n   p r o b l e m ,   t h e   o p t i m a l  
s e l e c t i o n  of input  vis-a-vis output  class o f   exp res s ions   and   i n t e l l i gen t   cho ice  
of c o n t o u r s   f o r   d e f i n i t e   i n t e g r a t i o n .  The op t ima l   s e l ec t ion   needs   pa r t i cu la r  
e l abora t ion   he re .  Take f o r  example t h e   i n t e g r a t i o n  of r a t i o n a l   f u n c t i o n s .  It 
is e a s y   t o   d e v i s e   a n   e f f i c i e n t   a l g o r i t h m   t o   d e c i d e   i f  a g i v e n   r a t i o n a l   f u n c t i o n  
c a n   b e   i n t e g r a t e d   i n  terms of r a t i o n a l   f u n c t i o n s .  But  such  algorithm would be  
of ex t r eme ly   l imi t ed   i n t e re s t   because  it would r e t u r n  a negat ive   answer   for  
most input   express ions ,   such  as something as s imple as  l/(x+l).  The a d d i t i o n  
of one 'new' func t ion   ( l oga r i thm)   i n   t he   ou tpu t  class dramat ica l ly   expands   the  
problem-solving  horizon. On the  other   hand,  w e  o b v i o u s l y   c a n n o t   c a r r y   t h i s   t o  
t h e   o t h e r  extreme of choosing a l a r g e  number of new func t ions ,  les t  t h e   r e s u l t  
be   next   to   wor th less .  All t h e s e   d i s c u s s i o n s ,  however, f o r c e   u s   t o   c o n s i d e r  
w h a t  w e  mean by ' u se fu lness '  of an   ou tpu t   exp res s ion ,   wh ich   i n   t u rn   l eads  US t o  
cons ider ing   th ree   major   contex ts   o f   appl ica t ions .  

A t  t h i s   Labora to ry  w e  have been  associated  with  an  applied  mathematics 
group  which   provides   consul ta t ion   and   suppor t   to  a d i v e r s i t y  of engineers  and 
s c i e n t i s t s .   A l t h o u g h   o u r   p i c t u r e  i s  s t i l l  somewhat l imi t ed ,  it does  give  us  an 

177 



i nd ica t ion 'o f   t he   ma jo r   con tex t s   i n   wh ich   i n t eg ra t ion   t oo l s  are considered  neces- 
s a r y   o r   u s e f u l .  The f i r s t  is the usua l   explora tory   contex t ,   where  a s c i e n t i s t  
o r  eng inee r   encoun te r s   i so l a t ed   i n t eg ra l s   wh ich   he   needs   t o  tackle. Here he  
t y p i c a l l y  wants c losed   fo rm  so lu t ion ,   bu t   o f t en  settles f o r  an approximate 
answer. The need  here is based on t h e   m o t i v a t i o n   t o  "do something  with"  the 
r e s u l t ,   t h a t  is, t o   e i t h e r   s t u d y  i ts  dependency  on some parameters  o r  on some 
other   mathematical   operat ions.  The  second  context  revolves  around  multiple 
i n t e g r a t i o n .  Here t h e   g o a l  is usua l ly   numer ica l   eva lua t ion ,   bu t   one  i s  i n t e r -  
e s t e d   i n   r e d u c i n g   t h e   d i m e n s i o n a l i t y   o f   i n t e g r a t i o n  as much as poss ib le ,   .because  
mul t ip l e   quadra tu re  is c o s t l y   b o t h   i n  computing time and  accuracy.  The  third 
contex t   concerns   mul t i -parameter   s tud ies ,   where   the   in tegra l   depends   on  a 
number of   parameters ,   thus  making n u m e r i c a l   r e s u l t s   d i f f i c u l t ,   i f   n o t   i m p o s s i -  
b l e   t o   i n t e r p r e t e .  For  example, i f   t h e   i n t e g r a l  is  a func t ion  of s ix   parameters ,  
t h e   n u m e r i c a l   r e s u l t  would r e q u i r e  a s ix-d imens iona l   t ab le   o r   s ix-d imens iona l  
hype r su r face   t o   r ep resen t .   I n  a l l  these   con tex t s  of a p p l i c a t i o n s ,   c u r r e n t  
t e c h n o l o g y   f o r c e s   a n   i n v e s t i g a t o r   t o   t a k e   e i t h e r   a l t e r n a t i v e  of t h e  two ex- 
tremes of numer i ca l   ve r sus   ana ly t i c   r e su l t s   (w i th  some e x c e p t i o n s   t o   b e  
mentioned later). It i s  f a i r   t o   s a y   t h a t  most "real l i fe"   p roblems are non- 
e l e g a n t   i n   n a t u r e   a n d   f o r   w h i c h   a n a l y t i c   r e s u l t s  are d i f f i c u l t  and   un l ike ly   t o  
come by.  For  example, a polynomial   of   5th  degree whose c o e f f i c i e n t s  are 
der ived   f rom  da ta   o r   o ther   computa t ions  are u s u a l l y   i r r e d u c i b l e   o v e r   t h e  
in tegers .   . In   mos t   non- t r iv ia l   a lgor i thms of i n t e g r a t i o n   t h i s   f u n d a m e n t a l  
l f m i t a t i o n  i s  o f t e n   f a t a l ,   b e c a u s e   t h e y   i n v o l v e ,   i n   o n e   f o r m   o r   a n o t h e r ,   p a r t i a l  
f ract ion  decomposi t ion  which  depends  on  factor izat ion.  All t h e s e   d i s c u s s i o n s  
p o i n t   t o   t h e  need  of a compromising  approach  between  the extremes of  numerical 
and exact integrat ion.   Such  an  approach ( l e t  u s  c a l l  i t  approximate   in tegra t ion) ,  
i s  r e s o r t e d   t o  by s c i e n t i s t s  and e n g i n e e r s   i n   i s o l a t e d   i n s t a n c e s ,   b u t   h a s   n o t  
been  invest igated as a p o s s i b l e   g e n e r a l   p u r p o s e   t o o l   i n   t h e   s e n s e  of a quadra ture  
scheme o r  a symbol ic   in tegra t ion   a lgor i thm.  The i m p o r t a n t   p o i n t   t o  stress i s  
that the  approximate  approach i s  i n t e n d e d   t o   y i e l d   a n   o u t p u t  that i s  a n  ex- 
p r e s s i o n ,   r a t h e r   t h a n  a t a b l e  of numbers.. 

A t  t h i s   s t a g e  we have examined four   b road   ca tegor ies  of such  approximate 
schemes. The f i r s t   c o n s i s t s  of the  approximation  of   the  integrand by a set of 
bas i s   func t ions   such  as polynomials   or   spl ines .   There  have  been some i s o l a t e d  
app l i ca t ions   u s ing   such   approx ima t ion ,   fo r   i n s t ance ,   i n   f i n i t e   e l emen t   ana lys i s .  
One example is g i v e n   i n   t h e   p a r t i c u l a r   i n t e g r a t i o n   o f  mass and s t i f f n e s s  
matrices g iven   in   (Ref .  5).  Here t h e   i n t e g r a n d ,   a f t e r  a sequence of symbolic 
manipulat ions,  i s  made up  of a matrix of b ivar ia te   po lynomia ls   which  are r e a d i l y  
i n t e g r a t e d .   I n  a more general   vein,   Andersen  (Ref.  6) d e s c r i b e s   t h e   v a r i e t y  of 
i n t e g r a t i o n s   f o r   t r i a n g u l a r  and q u a d r i l a t e r a l   f i n i t e   e l e m e n t s .  

The  second  approach may b e   l a b e l l e d   i n t e r p o l a t o r y  scheme. Here t h e   s p i r i t  
is a n a l o g o u s   t o   t h e   d e r i v a t i o n  o.f quadrature  schemes. i .e.,  by  approximating 
the   i n t eg rand  by some ' in t e rpo la t ion   fo rmula   and   t hen   i n t eg ra t ing  term by term. 
An example  can  be  cited  from  Filon  quadrature  (Ref.  7 ) .  Here the   i n t eg rand  i s  
of the  form f (x)s ico(ax)   where sic0 i s  e i t h e r   s i n e   o r   c o s i n e .  The i n t e g r a t i o n  
i n t e r v a l  i s  subdiv ided   in to  n segments  and f (x) i s  i n t e r p o l a t e d  by a quadra t i c  
i n   e a c h  segment t o   f i t   t h e   m i d p o i n t   a n d  two endpoin ts   o f   tha t   segment .  The 
in t e rpo la t ed   expres s ion   can   t hen   be   i n t eg ra t ed   ana ly t i ca l ly .   S imi l a r   t echn iques  
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can  be  applied  to  other  types of functions.  As pointed  out by a referee, 
in te rpola t ion   ac tua l ly   can   be  viewed as a special case of approximating i n  
terms of a bas i s ,  i t  being  the  Lagrange  polynomials  associated  with  the inter- 
pola t ion   po in ts  and  having an i n t e g r a l   e r r o r   c r i t e r i o n   s u b j e c t   t o   e x a c t   f i t  a t  
these  points .  

The third  approach is  based on a reduction of transcendence of t h e   i n t e -  
grand. T e r m w i s e  i n t eg ra t ion  of approximations of the  integrand by power o r  
asymptotic series is a well-known  example i n  this   category. '   This   s t ra tegy 
amounts to  an  approximation  of  the  integrand by a polynomial. However, one  can 
also  approximate  the  integrand by a rat ional   funct ion.   For  example, t a k e   t h e  
exponential of a polynomial.  For a proper  range  the  exponential   can  be 
approximated by a ra t iona l   func t ion ,   bu t   there  is  a n   a s s o c i a t e d   d i f f i c u l t y  
here, namely, that the   r a t iona l   func t ion   cons i s t s  of polynomials  of  high  degrees, 
and tha t  some kind of telescoping  procedure need  be app l i ed   i n   o rde r   t ha t   t he  
i n t e g r a t e d   r e s u l t  is manageable. An example w i l l  be  presented to  d e t a i l   t h e  
advantages and disadvantages of such a s t r a t egy .  

The last approach is t o  compute t h e   i n t e g r a l  by quadrature  and  then 
approximate  the  answer  by,  for  example, some basis  functions.   This  approach 
can  hardly  be  considered  under  the  umbrella of i n t e g r a t i o n   ( i t  is more of a 
curve o r  s u r f a c e   f i t t i n g  problem). I n  a paper  on practical   approximations 
(Ref. 8) the  author   gives   an example on the  approximation of an   in tegra l .  The 
bas ic   idea  w i l l  ca r ry   th rough  to  a more general  problem  where  quadrature  can 
be  used  instead. We s h a l l  comment on the   p ros  and  cons of t h i s  approach. 

I n   t h e   o r a l   p r e s e n t a t i o n  w e  sha l l   p rovide  a concrete example f o r  each 
approach and d i s c u s s   t h e  MACSYMA re l evance   t o  each. Though w e  do not  have a 
coherent  theory  behind  each, w e  b e l i e v e   t h i s   i n v e s t i g a t i o n  i s  a modest 
beginning  of  approaches  of  practical  significance. 
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LISP: PROGRAM IS DATA 

A  HISTORICAL  PERSPECTIVE ON MACLISP 

Jon L White 
Laboratory  for  Computer  Science, M.I.T.* 

ABSTRACT 

For over  10  years,  MACLISP  has  supported  a  variety of projects  at M.I.T.'s Artificial  Intelligence 
Laboratory,  and  the  Laboratory  for  Computer  Science  (formerly  Project  MAC).  During  this  time,  there 
has  been  a  continuing  development of the  MACLISP  system,  spurred in great  measure  by  the  needs of 
MACSYMA  development.  Herein  are  reported, in a  mosiac,  historical  style,  the  major  features of the 
system. For each  feature  discussed,  an  attempt will be made to  mention  the  year of initial development, 
and  the  names of persons or projects  primarily  responsible  for  requiring,  needing, or suggesting  such 
features. 

INTRODUCTION 

In 1964,  Greenblatt  and  others  participated in the  check-out  phase of Digital  Equipment 
Corporation's new computer,  the  PDP-6.  This  machine  had  a  number of innovative  features  that were 
thought  to  be  ideal  for  the  development of a list processing  system,  and  thus i t  was  very appropriate  that 
the  first  working  program  actually run on the  PDP-6 was an  ancestor of the  current  MACLISP.  This 
early  LISP  was  patterned  after  the  existing  PDP-1 LISP (see  reference l ) ,  and  was  produced by using 
the  text  editor  and  a  mini-assembler  on  the  PDP-1.  That  first  PDP-6 finally found  its way into M.I.T.'s 
Project  MAC  for use by the  Artificial  lntelligence  group  (the A.1. group  later  became  the  M.I.T. 
Artificial  Intelligence  Laboratory,  and  Project  MAC  became  the  Laboratory  for  Computer  Science). By 
1968,  the  PDP-6 was  running  the  Incompatible  Time-sharing  system,  and was soon supplanted by the 
PDP-IO.  Today,  the  KL-I 0, an  advanced version of the  PDP-10,  supports  a  variety of time sharing 
systems, most of which are  capable of running  a  MACLISP. 

MACSYMA  (ref. 2)  grew  out of projects  started o n  the  7090 LISP 1.5, namely  Moses' SIN 
program  and  Martin's  MATHLAB. By implementing  the  Project  MAC  Symbolic  and  Algebraic 
manipulation  system in LISP,  many  advantages  were  obtained. Of particular  importance  were 
(i)  a  basic  data  convention  well-suited  for  encoding  algebraic  expressions,  (ii)  the  ability  for  many 
independent individuals to  make  programming  contributions by adhering  to  the  programming  and  data 
framework of LISP,  and (iii) the  availability of a  good  compiler  and  debugging  aids in the  MACLISP 
system.  As  the  years  rolled  by,  the  question was asked  "What  price  LISP"?  That is,  how  much faster 
could the  algebraic  system  be if the  advantages  brought by the  LISP  system  were  abandoned  and  an 
all-out effort was made in machine  language?  Moses  has  estimated  that about  a  factor of two could  be 
gained  (private  communication),  but  at  the  cost of shifting  much of the  project  resources  from  mathe- 
matical  research  to  coding  and  programming.  However,  that loss  could  have  been  much  larger  had  not 
MACLISP  development  kept  pace,  being  inspired  by  the  problems  observed  during  MACSYMA 
development,  and  the  development of other  projects in the  A.I.  Laboratory.  The  most  precarious  strain 
placed o n  the  supporting  LISP  system  by  MACSYMA  has  been its sheer  size,  and  this  has  led to new 
and  fundamental  changes  to  MACLISP,  with  more  yet  still  in  the  future.  Many  times,  the  MACSYMA 

*During  the  calendar  year  1977,  the  author is located  at  the IBM Thomas  J.  Watson  Research  Center, 
Yorktown  Heights, NY 10598. 

181 



system  was  not  able to utilize  the  solution  generated  for one of its problems,  due  to  the familiar trap of 
having  already  too.  much code invested  in  some  bypass  solution;  but  there  has  generally  been  an 
interchange of ideas  amongst  those  groups  using  MACLISP  at  the A.I. Lab  and  LCS,  and  another  group 
may  have  received  the  benefit of an  idea  born  by  MACSYMA  needs. 

Because  the  system  is  still  evolving  after  a  decade of development,  it is useful to think of it  as  one 
big  piece of data, a program still  amenable  to  further  critical  review  and  emendation.  Below  are 
presented  some of the  developments of this  past 10 years,  with  a  little  bit of explanation  as to their 
significance  and  origin. 

HOW  WE  GOT  TO  WHERE  WE  ARE 

Clever  Control  Features 

In  1966,  Greenblatt  suggested  abandoning  the  a-list  model  for  program  variables,  and  returning  to  a 
standard  save-and-restore  stack  model  such  as might be  used by  a  recursive FORTRAN. This  was  the 
first  LISP  to  do so, and  a  later  LISP  developed  at  Bolt,  Beranek,  and  Newman  (BBN)  in  Cambridge 
used  a  model whereby  storage  for  program  variables  was  dynamically  allocated on the  top of a  stack. 
Both  stack  models  could  achieve  a  significant  speed-up  over  the a-list  models,  but at a  cost of limiting 
the use of FUNCTION  (see  ref. 3) .  The BBN LISP  later  became  INTERLISP  (ref. 4), and  currently 
has  a  stack  model  with  the  same  function  capabilities  as  the a-list model. In 1975,  the  PROGV  feature 
was added  and is apparently  unique  to  MACLISP.  PROGV is essentially PROG,  except  that  the list of 
variables is not  syntactically  present,  but  rather is computed  as  an  argument  to  PROGV;  previously, 
about  the  best  one  could  do  was  to call EVAL (or APPLY)  with  a  dynamically-constructed  LAMBDA 
expression. 

In 1969,  Sussman,  noticing  features of the  MULTICS  operating  system,  demanded  some  similar 
features  for  MACLISP:  asynchronous  interruption  capability,  such  as  alarmclocks,  job-console  control 
keys,  hardware  faults,  interprocess  communication,  and  exceptional  process  conditions  (chiefly,  errors). 
Many  LISP  systems  now  permit  the  user  to  supply  functions for handling  standard  LISP  errors,  and 
provide  for  some  mechanism  at  the  job-console  to  interrupt  the  system,  putting it into  a top-level-like 
loop called BREAK.  MACLISP  permits  interruption  capability on any  character of the  input-console 
keyboard;  the  user  may  designate  any  function to be run when  a  particular  key is typed.  To  some 
degree,  these  features  appeared  concurrently  in  INTERLISP,  but  especially  the  stackframe  and 
debugging  facilities of INTERLISP  inspired similar ones  in  MACLISP. In mid-1976,  MACLISP could 
finally give an  interrupt  to  the  user  program on several  classes of hardware-detected  conditions:  access 
(read or write)  to  a  specific  address,  attempted  access  to  non-existent  address,  attempted  write  access 
into  read-only  memory,  parity error, and illegal instruction.  Furthermore,  some  operating  system 
conditions could  trigger  special  interrupts:  system  about to shut  down in a  few  minutes,  and  console 
screen  altered by system.  Evident  from  the  development of LTSP-embedded systems  was  the  need  for  a 
NOINTERRUPT  facility, which  could protect  user-coded  processes  from  an  accidental,  mid-function 
aborting  such  as might occur  during  an  asynchronous  interrupt.  Steele  designed  and  implemented  the 
current  scheme in late  1973. 

Sussman’s  development of MICRO-PLANNER  (ref. 5 )  required  some  more  capabilities for 
intelligent,  dynamic  memory  management;  and  thus  White, in 1971,  introduced  programmable  parame- 
ters  for  the  garbage  collector - a  minimum  size for  each  space,  a maximum  allowable,  and  a  figure 
demanding  that  a  certain  amount  be reclaimed (or found  free)  after  a  collection.  Then in the  next  year 
came  the  GC-DAEMON  mechanism,  whereby  a user function  is  called  immediately  after  each  garbage 
collection so that it can  intelligently  monitor  the  usage of memory  and  purposefully  modify  the 
memory-management  parameters.  Baker,  who  has  recently  done  work on concurrent  garbage  collection 
(ref.  6),  has  produced  a  typical  storage  monitor using the  MACLISP  mechanisms  (ref.  7). 
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Sussman's  later  development of CONNIVER  (ref. 8)  showed  the  need  for  a  sort of non-local 
GOTO, as  a  means of quickly  aborting  a  computation  (such  as  a  pattern-matching  data-base  search)  that 
had  gone  down  a  wrong  path.  Thus  in  1972  White  devised  the  CATCH  and  THROW  facilities 
(THROW  provides  a  quick,  non-local  break-out to a  program  spot  determined  by  CATCH),  and 
implemented FRETURN  as  a  means of an  impromptu  "THROW"  out of any  stackframe  higher  up  than 
the  current  point of computation  (this is especially  effective if an  error  break  occurs,  and  the  user  can 
supply  by  hand  a  correct  return value for  some  pending  subroutine  call  several  levels  up  the  stack).  In 
1975, Steele  coded  the  EVALHOOK  feature,  which  traps  each  interpretive  entry  to  EVAL  during  the 
evaluation of a ,  piece of code;  this  permitted  users  to  write  debugging  packages  that  can  effectively 
llsingle-step''  through  an  evaluation. 

The  embedding of advanced  programming-language  systems  in  LISP,  such  as  MACSYMA, 
MICRO-PLANNER,  CONNIVER,  and  LLOGO  (ref.  9)  required  a  means of insulating  the  supporting 
system  (written  as  LISP  code)  from  the  users  code  (written in the new experimental  language).  Sussman 
and  White  noticed  that  the  action of INTERN was  primarily a  table  look-up,  and  they  implemented  this 
table  (in  1971)  as  a  LISP  array,  which  array is held  as  the value of the  global  variable  OBARRAY. 
Thus  a  user  can  change, or even  LAMBDA-bind,  the  INTERN  environment. Similarly, the  action of the 
programmable  reader could be  controlled by  exposing  its  syntax  and  macro  table  as  the value of the 
global  variable  READTABLE, which  was done in  1972. In 1975,  the  MAPATOMS  function  as  found in 
INTERLISP was implemented  for  quickly  applying  a  function to all the  objects  on  a given OBARRAY. 
All these.  embedded  systems  wanted  to  have  better  control  over  the  LISP top-level and  break-level 
loops; so in 1971  two  features  were  added:  1)  ability  to  replace  the top-level ar,d break-level  action 
with a  form of the user's choice,  and  2)  a  facility to capture  control  after  a  system-detected  error  has 
occurred  but  before  re-entry  to  the  top level. At  first,  the  error-break  permitted  only  exiting by quitting 
out back to  top level, but  later  these  breaks  were  such  that  many  errors  could  be  corrected  and  the 
computation  restarted  at  the  point  just  prior to the  error  detection. By early  1975, it was  noted  that 
many  applications  wanted  to  alter  what might  be  called the  default  input  reader  and  the  default  output 
printer;  the  former  because  their  code files  were written with many  macro  and  special  facilities,  and  the 
latter  because of the  occurrence of circular list structure.  Thus  the  two  variables  READ  and  PRINI, if 
non-NIL, hold a  user-supplied  function  for  these  operations. 

1 / 0  Facilities 

In 1968,  White  proposed  a  programmable,  macro-character  input  reader,  and by the  summer of 
1969,  the  reader was in operation.  Since  that  time,  some  other  LISPS  have  added  certain  special 
features  to  their  readers,  such  as  inputting 'A as  (QUOTE  A), or as in INTERLISP,  permitting  the  user 
to change  the  meaning of break,  separator,  and  escape  characters;  but  to  the  author's  knowledge  none 
have  any  user-programmable  macro'  facility, nor so wide a  range of parsing  options  as  does  MACLISP. 

The  PRINT  function of MACLISP  has  remained  relatively  neglected  over  the  years;  but in 1973 
Steele  implemented  the  PRINLEVEL  and  PRINLENGTH  facilities  as  inspired by the  INTERLISP 
PRINTLEVEL facility. LISP  has  always  had  the  notion of "line length",  such  that if more  than  a 
specified  number of characters  were  output  without  an  intervening  newline  character,  the  a  newline  was 
automatically  inserted  by  the  system  (this  was  especially  practical in the  days  when  model 33 Teletypes 
were  the  main  terminal  used,  and  the  operating  system did not  take  care of preventing  too  long  a  line). 
MACLISP  allowed  an  override  on  this  automatic  insertion  feature,  but in 1,976 Steele  modified  this 
facility so that,  even  when  not  overriden,  it would not  insert  the  generated  newline  character in  the 
middle of some  atom.  Along  with  the  macro-reader in 1968,  White  installed  dynamically-variable  base 
conversion for fixnums, so that  any  base  between  2  and 36 could  be  used;  for  what  it's  worth,  Steele 
extended  this  for  roman  numerals  also  in  1974. 

. "_ ~~~ 

Of course  the  macro  functions  are  written  in  LISP,  what else! 
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The  problem of "perfect"  output  for  floating-point  numbers  on  the PDP-10 has  apparently  not  been 
solved in any  other  system.  That is,  given the  more-or-less  standard  input  algorithm  for  base  conversion 
from  floating-point  .decimal  numbers  (dfpns) to  floating-point  binary  numbers  (bfpns),  construct  an 
output  conversion  algorithm  such  that 

i)  every  representable  bfpn  is  converted  to  a  shortest  dfpn,  and 
ii) if e is a  representable  bfpn,  and  e* is its  dfpn  image by the  output algorithm,  then  the  input 

In  1972,  White  devised  and  installed in MACLISP  an  algorithm  that  was  more  nearly  ''perfect''  than  any 
other  known  to  the  author or to persons of his acquaintance;  and  in  May  1977  White  and  Steele 
improved  that  algorithm so that  they  think it is "perfect''  (a  proof of which is forthcoming).  Most  other 
algorithms will increase  the  least-significant  bit of some  numbers  when  passed  through  the  read-in  of 
print-out  cycle  (see  reference 10 for  a  possible  explanation of why this  problem is so hard).  Golden 
anticipates  MACSYMA's usage of this  capability,  "perfect"  print-out, if i t  indeed is truly so. 

algorithm  applied to e*  produces exactly e. 

Inspired by LISP  1.6  (ref. 1 l ) ,  a  preliminary  version of a  multiple 1 / 0  scheme was  coded  up by 
Stallman in 197 1. Prior to this,  MACLISP could  effectively READ  from  at  most  one file at  a time,  and 
PRINT  out  onto  at  most  one file at  a  time;  furthermore,  there  were no provisions for 1 / 0  other  than  the 
ASCII  streams implicit in READ  and  PRINT.  That preliminary  version  was  abandoned in early  1973, 
and  a  decision was  made to  copy  the  design of the  MULTICS  version 1 / 0  (which  had  been  developed 
rather  independently).  This  scheme,  coded by Steele  and  ready  for use early in 1975,  has  been  termed 
"Newio''.  It  has  since  been  undergoing  continuing  check-out  and  development  up until now,  and in 
January  1977  became  the  standard  MACLISP on  the  ITS  versions,  although we have  not  yet  made  the 
necessary  modifications to  the  TOPS-10  version. 

Between  1967  and  1971,  the A.1. Lab Vision Group,  and  MACSYMA  Group  saw  the need for  a 
faster  method of getting  compiled  LISP  subroutines off disk storage  and  into  a  running  system. Back 
then,  the  compiler would produce  a file of LAP  code, which  would be  assembled in each  time it  was 
required.  The  first  step in this  direction was taken in 1969 when  White  devised  a  dynamic  array  space, 
with automatic  garbage  collection.  Then  White  and  others  worked  out  a  relocatable  format  for disk 
storage  such  that the  load  in  time  could  be  minimal;  Steele  and  White  implemented  this  scheme  between 
1972  and  1973, called FASLOAD.  Golden  reported  that  the  time  to  load in all the  routines  comprising 
the  then-existing  MACSYMA  dropped  from  about  an  hour  to  two  minutes;  continuing  MACSYMA 
development  certainly  required  this  FASt  LOADing  scheme.  Closely  following in time  was  the 
AUTOLOAD  scheme,  whereby  a  function  that  was  not  part of the  in-core  environment,  but  resident in 
FASL  format on disk,  would be FASLOADed in upon  first  invocation. 

Arithmetic  Capabilities 

Perhaps  the  most  stunning  achievement of MACLISP  has  been  the  method of arithmetic  that  has 
permitted  FORTRAN-like  speed  from  compiled  LISP  code.  In  1968,  Martin  and  Moses,  foreseeing 
future  needs of MACSYMA,  demanded  better  arithmetic  capabilities  from  MACLISP. In 1969,  Martin 
changed  the  implementation of numbers so that  FIXNUMs  and  FLONUMS  consumed  only  one  word, 
rather  than  three - that is, the  LISP  1.5  format was abandoned  and  numbers  were  implemented merely 
as  the  pointer  to  the  full-word  space cell containing  their  value.  Such  a  scheme had  already  been 
accomplished,  partially, in other  LISPS.  After  that  change in the  interpreter had  been  completed,  some 
new  functions  were  introduced  for  type-specific  arithmetic: 

for fixed point: + - * / 1+ 1- 
for  floating  point: +$ -$ *$ /$  1+$ 1-$ 
for  either  (but  not  mixed): = < > 

Later,  more  functions  were  added,  such  as  fixed-point  square-root,  and greatest-common-divisor. The 
fixed-point  functions would be  an  automatic  declaration  to  the  compiler  that all arguments  and  results 
would be  fixnums,  and  that all arithmetic  can  be  modulo  235;  similarly,  the  flonum  functions would 
specify  the use of floating  point  hardware in the  compiled  code. 
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At  the  same  time,  Binford  suggested  installing-  separate full-word stacks  for  FIXNUMs  and  for 
FLONUMs,  and  interpreting  these  stack  addresses  as  the  corresponding  type  number.  Then  White 
proposed  eliminating  the  discontinuity  in  FIXNUM  representation  caused  by  the  INUM  scheme,.so  that 
open-compilation of numeric  code  would  need  no  extra,  interpretive-like  steps to  extract  the numerical 
value  from  a  LISP  number;2  White  also  designed  a  scheme for using the  number  stacks,  interfacing 
compiled  subroutines  with  one  another  and  with  the  interpreter.  The  redesign of number  storage,  and 
the  design of a  numeric  subroutine  interface, was for  the  purpose of permitting  the  compiier  to  produce 
code similar to  what  a PDP-10 FORTRAN compiler  could  produce on essentially  numeric  program^.^ 
Work  then  began  on  the  compiler  to  take  advantage of all  this,  and  a  preliminary  version  for  arithmetic 
code was operational by late  1971,  under  the  care of Golden  and  Rosen  who did most of the  early 
coding.  Rosen  and  White  developed  optimization  in  the  compiler  during  1972,  and  White  continued  this 
work  through  the  end of 1976.  In  1974,  White  and  Steele  extended  the  array  data  facilities of 
MACLISP  to  include  FORTRAN-like  arrays of fixnums  and  flonums so that  the  compiler  could  optimize 
array  references in numerical  code;  see  Steele's  paper  describing  the  current  output  available  from  the 
compiler  (ref.  13). 

Early  along in MACSYMA  development,  Moses  and  Martin  saw  the  need  for  variable-precision 
integer  arithmetic,  and  thus  the  BIGNUM  functions were born, with  most  algorithms taken  from  Knuth 
(ref.  14).  During  1972  and  1973,  Golden  suggested  the need in MACSYMA  for  some of the usual 
transcendental  functions, like SIN,  COS,  natural  logarithm  and  anti-logarithm,  and  arc-tangent  (these 
were  adapted  from  some  rational  approximations originally developed by White in 1967); for CCD, 
HAULONG,  HAIPART,  and  improvements  to  the  the  exponentiation  function  EXPT;  and  for  the 
ZUNDERFLOW  switch, which permits  interpretive  arithmetic  routines  to  substitute  a  real  zero  for  any 
floating-point  result  that  causes  a  floating-point  underflow  condition. By combining  the  binary  and 
Lehmer  algorithms  from  Knuth  (ref. 15). Gosper  produced  a C C D  algorithm  early in 1976 which runs 
much faster on bignum inputs.  Also, in 1976,  a  feature was added  to  the  interpretive  floating-point 
addition  and  subtraction  routines  such  that if the  sum is significantly  less  than  the  principal  summand, 
then  the sum is converted  to  zero;  the  variable  ZFUZZ holds a  scale-factor  for this feature, which is 
still  considered  experimental  (LISP370  has  a more pervasive use  of a similar feature in all  floating-point 
arithmetic  and 1 / 0  functions). 

Randomness  has  always  been  a  property of MACLISP,  having had a  linear-shift-register  RANDOM 
number  generator  since  early times. This  generator  produced  a maximally-long sequence, was extremely 
fast,  and  moderately  acceptable  for most  applications.  However, i t  failed  the correlated-triples  test,  and 
when i t  was used to generate  random  scenes  for  display on the LOGO Advent  color  projector. it 
produced  some very  nice  kaleidoscopic  pictures; so in late  1976,  a  modification of Knuth's Algorithm A 
(ref.  16)  was'coded by Horn. 

Ancillary  Packages 

A  number of ancillary  functions  have  been  coded in LISP,  mostly by persons  who  were  LISP  users 
rather  than  system  developers,  and  are  kept  stored in their  compiled,  FASL  format  for  loading in when 
desired. In 1970, Binford coded  a  small,  but  powerful,  subset of the  INTERLISP  in-core  editor  as  a 
LISP  package,  but  this  was  later  recoded in machine  language;  a  more  extensive  version of the 
lNTERLZSP  editor  has  been  coded by Gabriel in 1975. In 1970, Winston  designed  and  coded INDEX, 

*MACLISP, by inspecting  the  numerical  value of a  number  coming  into  the  FIXNUM-comer,  supplies  a 
canonical,  read-only  copy  for  fixnums in the  range of about  -1000.  to +2000. This  significantly 
reduces  the  number of new cells required by running  arithmetic  code,  without  significantly  slowing 
down  the  operations.  Currently,  no  similar  action is taken  for  FLONUMs. 

3The generally-accepted  opinion in 1968,  and  indeed in some  quarters up  until 1973, was  that  LISP is 
inherently a  hundred  times  slower  on  arithmetic  than is FORTRAN.  Fateman's  note in 1973  effectively 
rebutted  this  opinion  (ref.  12),  but in 1969 it tonk  faith  to  go  ahead with  this plan;  only  Martin  and 
the  author  had  a  clear  resolve  to  do so then. 

~. .. ~ - " - .  ~~~~ ~~ 
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a  package  to  analyze  a  file of LISP programs  and  report  on-  certain  properties  therein.  During  1972, 
Goldstein  replaced  an  existing,  slow  pretty-printer  (called  GRIND)  with  a  programmable  pretty-printer 
(ref. 17),  and  Steele  spruced-up  an  existing  TRACE  package  to  have  more  features.  After  the  Newio 
scheme  became  operational,  two  packages  were  coded  for  the  fast  dumping  onto  disk  and  retrieval 
therefrom of numeric  arrays,  and  a  FASDUMP  package  was  implemented  for  MACSYMA  that  could 
quickly and efficiently  store list structure  on disk (Kulp had  a  hand  in  developing  this  package,  but  it 
may no longer  be in use).  Many of these  user-supplied  packages  now  reside on a  disk area  called 
LIBLSP, which  includes  a FORMAT  package  by  White  for  printing  out  numbers  under  control of a 
format  (such  as is used in FORTRAN), a  package  for  reading  and  printing  circular list structures, 
various  debugging  packages  and  s-expression  editors,  and  many  others. 

In 1973  Pratt  was  continuing  work on a  "front  end''  for  LISP,  CGOL  (ref.  18), which he  had 
begun at  Stanford  University in 1971,  and he  had  it  generally  operational a t  a  number of sites by 1975. 
It exemplifies  the Pratt  operator-precedence  parser  (now  used  at  the  front  end of MACSYMA),  and  has 
some of the  character of MLISP  (ref.  19).  However,  the  CGOL-to-MACLISP  conversion is dynamic  and 
fast,  and  furthermore,  an  acceptable  inverse  operation  has  been  implemented, so that  one  can  effectively 
use  this ALGOL-like  language while  still retaining all the  advantages of MACLISP  (fast  interpreter, 
good  compiler,  many  debugging  aids,  ,etc.).  It is not  at all impractical to replace  the  MACLISP  default 
reader  and  printer with CGOL's  (see  notes on READ  and  PRINl in the  last  paragraph of "Clever 
Control  Features''  above), so that  CGOL  may be  properly  thought of as  an  alternate  external  syntax  for 
LISP.  See  reference  7  for  a  practical  example - one  particular  GC-DAEMON  function  for  MACLISP, 
coded in CGOL. 

MIDAS,  the  A.I.  Lab's  assembly-language  system  for  the  PDP-IO,  cooperates with MACLISP  to 
the  extent of being able to produce  a  FASL  format file.  A number of these  ancillary  packages  have  thus 
been  coded in machine  language  for  greater  efficiency.  In mid 1973,  Steele  coded  a  version of 
Quicksort (ref 20) which is autoloadable  as  the  function  SORT; in 1976,  after Newio  became  stable, 
Steele  coded  a  file-directory  query  package  (called  ALLFILES),  and  designed  a  package  for  creating  and 
controlling  subjobs  (tasks)  in  the  ITS  time-sharing  environment  (called  HUMBLE). Using the  HUM- 
BLE package,  Kulp  and  others  interfaced  the  text  editor TECO with  MACLISP,  for  increased  program- 
mer  efficiency in debugging  and  updating  LISP  programs.  Kulp  and  others  had  proposed  a  text- 
processing  system  suitable  for use with  a photo-composer  to  be  written in MACLISP  and using these 
features,  but this has not yet  been  realized.  With  the ALARMCLOCK facility for  periodic  interrupts, 
and  HUMBLE  for  driving  sub-tasks,  MACLISP is fully equipped  for  becoming  a  time-sharing  system. 

Export  Systems 

Martin's  desire  to  be  able  to  use  MACSYMA on the  MULTICS  system led to  the  start of a 
MULTTCS version of MACLISP,  begun in late  1971 by Reed;  after  this  was fully operational in 1973, 
Moon,  who had  worked  on  it  wrote  the  now-extinct  MACLISP  Reference  Manual  published in March 
1974  (ref.  21).  Although  there  has  been little use of MACSYMA on the  MULTICS  version, it was 
successfully transplanted  there;  several  other  extension  systems  developed on the  PDP-10 version  were 
also  successfully tested on the  MULTICS  version,  such  as  LLOGO  and  CONNIVER. 

In the  summer of 1973,  the  MACLISP  system was extended  to  permit  its use on TOPS-10,  DEC's 
non-paged  time  sharing  system.  Much  help on this  development  has  come  from  members of the 
Worcester  Polytech  Computation  Center,  and  from  the  resources of the  Computer  Science  department of 
Carnegie-Mellon  University. The  impetus  for having  a TOPS-10  version  came  from  many  academic 
institutions,  where  students  with  interests  in  artificial  intelligence  had  been  intrigued by MICRO- 
PLANNER  and  CONNIVER  and  their  applications,  and had wanted  to  experiment  with  these  systems 
on their own PDP-10s.  Later,  as  M.I.T.  graduate  students  and  professors  moved  to  other  universities, 
they  took with  them the  desire  to use MACLISP,  rather  than  any of the  other  available  LISP  alterna- 
tives. The major  difficulty  in  export to these  other  institutions  has  been  their lack of adequate  amounts 
of main memory - few  places  could  even run the  MACLISP  compiler, which requires  65+K.  At  one 
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time Moses  had  a  desire  to  export  MACSYMA  through  this  means,  but this has  not  proved  feasible. 
Even for the  KI-10  and  KL-10  processors, which  have  paging  boxes, the  TOPS-10  operating  system 
does not give user  programs  sufficient  control  over  the  page-map;  consequently,  this  version of 
MACLISP is to  some  degree less efficient in its  memory  utilization. 

The  TENEX  and  TOPS-20  operating  systems should be  able  to  support  the  TOPS-10  version of 
MACLISP,  under  a  compatibility  mode,  but  there  has  been  some.  difficulty  there. In 1971,  a  specially 
tailored  version of MACLISP  was  run  under  the  TENEX  system,  but  this  version  died  out  for  lack of 
interest. If future  interest  demands  it,  there  should  be  no  trouble  in  getting  almost  the  full  range of 
MACLISP  features  found  on  the  ITS  version  to  be  implemented in a  TOPS-20/TENEX version.  In 
1976  Gabriel  adapted  the  TOPS-10  version  to  run  on  the  Stanford A.I. Laboratory  operating  system, 
and  there is currently  an  increasing  body of users out  there. 

Revised  Data  Representations . 

A  major step was  taken in 1973  when  the  long-awaited  plans  to revise the  storage  strategy of 
MACLISP  saw  the light. A plan  called  Bibop  (acronym  for  Blg  Bag Of Pages),  inspired in part by  the 
prior  INTERLISP  format,  was  designed by  White,  Steele,  and  Macrakis;  and this was coded by Steele 
during  the  succeeding  year.  The  new  format relieves the  need  for  a  LISP  user  to  make  precise  alloca- 
tions of computer  memory,  and  permits  dynamic  expansion  of'each  data  space  (although  only  the  array 
storage  area  can  be  dynamically  reduced  in  size). In 1974,  numeric  arrays  were  added,  and in 1976  a 
new data type  called  HUNK  was  added  as  a  s-expression  vector  without  any of the  overhead  associated 
with  the  array  data  type.  Steele's  paper in these  proceedings (ref. 22) gives a detailed  account of how 
the  current  storage  picture  looks inside MACLISP. 

Especially MACSYMA,  as well as Winograd's  SHRDLU  and  Hewitt's  PLASMA  systems,  needed 
the  efficiency  and  versatility of these new formats.  The  concept of "pure  free  storage"  entered  the 
picture  after  Bibop  became  operational:  this is list and  s-expression  structure  that is essentially  constant, 
and which can  be  removed from the  active  storage  areas  that  the  garbage  collector  manages.  Further- 
more, it  can  be  made  read-only,  and  shared  among  users of the  same  system; in MACSYMA,  there  are 
myriads of such  cells,  and the  consequent  savings is enormous.  Thus  the  incremental  amount of memory 
required  for  another  MACSYMA  user  on  the  system  starts  at  only  about 45K words! 

The  Compiler 

Greenblatt  and  others  wrote  a  compiler  for  the  PDP-6 lisp, patterned initially after  the  one  for  7090 
LISP  on  CTSS.  This  early  attempt is the  grandfather of both  the  current  MACLISP  and  current 
LISP  1.6  compilers.  However,  optimizing  LISP  code  for  the  the  PDP-6  (and  PDP-IO) is a  much  more 
difficult  task  than i t  might  first appear  to be,  because of the  multiple  opportunities  provided by the 
machine  architecture.  That  early  compiler  had  too  many  bugs  to  be  really  useful,  but it  did provide  a 
good,  basic  structure  on which  White began in 1969  (joined by Golden in 1970)  to  work  out  the  plans 
for  the  fast-arithmetic  schemes  (see  ref.  13).  The  LISP  1.6  compiler  has  apparently  not  had so 
thorough  a  check-out  and  debugging  as  the  MACLISP  compiler,  since its reputation is unreliability. The 
INTERLISP  compiler  was  produced  independently,  and  seems  to  be  quite  reliable;  but  comparisons  have 
shown  that  average  programs  compile  into  almost twice as  many  instructions  through it than  through  the 
MACLISP  compiler. 

Ad-Hoc  Hacs 

As  the  number of new  and  interactive  features  grew,  there  was  observed  need  for  a  systematic  way 
to  query  and  change  the  status of various of the  operating  system  and  LISP  system  facilities. We  did  not 
want  to  have  to  introduce  a  new  LISP  primitive  function  for  every  such  feature  (there  are  scores!), so 
thus  was  born  in 1969 the  STATUS  and SSTATWS series. The  first  argument  to  these  functions  selects 
one of many  operations,  ranging  from  getting  the  time of day  from  a  home-built  clock,  to  reading  the 
phase of the  moon,  and  to  setting  up  a special TV terminai  line to  monitor  the  garbage  collector.  Later, 
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in  1975,  the  function  SYSCALL  was  added  as  a  LISP  entry  into  the  time-sharing  system's  CALL  series 
of operations. (See reference  23  for  information  on  the ITS system.) 

Between  1970  and  1972,  the  demands of the A.I. Lab Vision group  necessitated  the  installation of 
a  simulated TV  camera,  called  the  FAKETV,  along  with  a  library file of disk-stored  scene images. A 
cooperative  effort  between  the Vision group  and  the  LOGO  group  led'  to  the  design of a Display-slave 
- a  higher,  display-orientated  language  for  use  with  the  Lab's 340 Display  unit  using  the  PDP-6 as  an 
off-line  display  processor.  Goldstein,  because of his interest  in LLOGO  (ref.  9),  participated in the 
initial  design  along  with Lerman  and  White;  the  programming  and  coding  were  done by the  latter  two. 

In 1973,  terminal-input  echo  processing  (rubout  capability) was enhanced,  and  cursor  control was 
made  available to  the  user  for  the  existing  display  terminals.  When  the A.T. Lab began using the 
home-built TV terminal  system,  Lieberman  coded  a  general-purpose  display  packages in LISP  for  use on 
the TV display buffer.  When  Newio  became  available in 1975,  Lieberman  and  Steele  showed  examples 
of split-screen  layouts  usable  from  LISP,  and in 1976  Steele  showed  how to code  a  variety of "rubout" 
processors in LISP.  Furthermore,  Newio  permitted  extended  (12-bit)  input  from  the  keyboards 
associated with these  terminals. 

In 1973,  MACLISP  copied  a  feature  from  LISP  1.6  for  improving  facilities in linkage  between 
compiled  subroutines - the  UUOLINKS  technique. All compiled-  subroutine  calls  are  done  indirect 
through  a  table, which contains  interpretive  links  for  subroutine-to-subroutine  transfer.  Under user 
option,  these links may be  "snapped"  during run  time - that is, converted  to  a single PDP-10  subrout- 
ine  transfer  instruction.  A  read-only  copy is made of this  table  (after  a  system  such  as  MACSYMA is 
generated) so that i t  may  be restored  to its unsnapped  state  at  any  time.  The  advantage of this is that, 
normally,  subroutine  transfers will take  place in one or two  instruction  executions,  but if i t  is desired  to 
debug  some  already  compiled  subroutines,  then  one  need  only  restore  the  interpretive links  from  the 
read-only  copy. 

Inspired by MACSYMA's  history  variables,  MACLISP  adopted  the  convention in early  197  1  that 
the  variable "*"  would  hold the  most  recent  quantity  obtained  at  top level. 

In 1973,  White  coded  an  s-expression  hashing  algorithm  called SXHASH, which has  been useful to 
routines  doing  canonicalization of list structure  (by  hashing,  one  can  greatly  speed-up  the  search  to 
determine  whether or not  there is an s-expression  copy in a  table EQUAL to  a given  s-expression). 

To  accommodate  the  group  that  translated  the  lunar  rocks  query-information  system  from 
INTERLISP  to  MACLISP,  the  convention was established in 1974  that  car[NIL]=cdr[NlL]=NlL.  This 
seems  to  have  been widely accepted,  since i t  simplifies  many  predicates of the  form 
(AND X (CDR X )  (CDDR X ) )  into  something like (CDDR X). 

WHERE  DO  WE GO FROM HERE? 

The  major  problem  now  with  MACLISP,  especially  as  far  as  MACSYMA is concerned, is the 
limitation  imposed by the  PDP-10  architecture - an  18.-bit  address  space, which after  overhead is 
taken  out, only  leaves  about  180K  words  for  data  and  compiled  programs.  Steele  discusses  some of our 
current  thinking on what  to  do  about this in his paper  (ref. 22) of these  proceedings,  under  the  section 
"The  Address  Space  Problem".  Since  the  LISP  machine of Greenblatt  (ref. 24) is such an  attractive 
alternative,  and is even  operational now in 1977, we will n o  doubt  explore  the possibilities of incorporat- 
ing into  PDP-IO  MACLISP  some of its  unique  features,  and in general  try  to  reduce  the  differences 
between  them. For the  future of MACSYMA, we foresee  the  need  for  new, primitive data  types  for 
efficient use of complex  numbers  and of double-precision  floating-point  numbers. We anticipate  also  the 
need  to  have  a  version  efficiently  planted  in  the  TOPS-20  system. 
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LISP: DATA IS PROGRAM 

A  TUTORIAL IN LISP 

Jon L  White 
Laboratory for Computer  Science, M.I.T.* 

ABSTRACT 

A  novel  approach  at  teaching  LISP to a  novice is herein  developed.  First,  the  abstract  data  format 
is presented,  emphasizing  its  real  structure  and  its  machine  implantation.  Then  the  technique of writing 
programs in the  data language,  and of "interpreting"  them, is presented.  Illustrative  features  are  drawn 
from  various  extant  LISP  implementations. 

INTRODUCTION 

The design of LISP  as  a  programming  language was  based on the  desire  for  a  practical  implementa- 
tion of recursively  defined  subroutines  capable of operating  on  data of arbitrarily  complex  structure. 
This  paper will develop,  partly  from  a  historical  point of view and  partly  for  the  benefit of a  program- 
ming  novice,  the  requirements  placed  on  the  data  implementation,  and  the  usefulness of the  data 
structure to symbolic  computation.  A  self-contained  and  motivating  data  presentation  for  the  novice  has 
not  been  adequately  handled  elsewhere, as previous  works  invariably  define  a  classic logical language of 
well-formed-formulae  over  a  character  alphabet - an  approach  which  does  not  relate well to  the 
structured  nature of LISP  data,  and which cannot  provide  the  basis  for  explaining  one of the  primary 
data  predicates: EQ. In  addition,  the  goal of embedding  the  programming  language  into  the  data 
language,  and  achieving  efficient  interpretation  therein, will be  discussed.  LISP is unique in that  a 
simple data  operation will take  an  expression of the  data  language  and,  leaving  its  structure  intact, 
extend it to be  an  applicable  function in the  programming  language.  This is essentially  the  ability  to 
create  LAMBDA  expressions  dynamically  (and,  where  appropriate,  to  create  FUNARG  expressions,  and 
to compile functions  at  run  time).  It is not  expected  that  this  paper will be  sufficient for a novice 
actually to learn  how to program  in  LISP,  but it should  provide  a  good,  basic  understanding of the 
concepts involved. 

THE DATA 

Its  Structure 

In  many  programming  languages,  the data  are essentially  "flat"  objects. In FORTRAN,  the  basic 
datum is an  integer (or floating  point  number), limited in information  content  to  some  fixed  number of 
bits,  and  the  basic  arithmetic  operators  are  not  thought of as  decomposing  an  integer  into  sub-parts. 
Even  the  notion of a  vector of numbers is quite  "flat1'  since  the  components of such  a  vector  are  not 
themselves  considered to be  sub-vectors,  but merely  numbers.  In  languages  which  provide for  character- 
string  processing,  there is a  similar  "flatness1',  with  'number'  replaced  by  'character',  and  'vector' 
replaced by 'string'. Just  as we  would not  want  each  program  variable  to  be  restricted  to  one  kind of 
data, similarly we would not  want  our  most  general  type of composite  data  to  be  restricted  as  to  the  type 

*During  the  calendar  year 1977, the  author is located  at  the  IBM  Thomas J .  Watson  Research  Center, 
Yorktown  Heights, NY 10598, and  wishes to acknowledge  members of the  LISP370  project  as  having 
contributed  to  the  development of ideas in this  paper. 
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of subcomponents  it  may  have.  Another  problem in these  languages  is  that  the  program  variables  must 
often  be  restricted  to  data of a  particular  size - FORTRAN  integer  variables  being implicitly  limited  by 
the  word  size of the  supporting  machine,  FORTRAN  vectors  (and  vector  variables)  requiring explicit 
compile-time  dimensioning of sizes,  and  PL/I  string  variables  being  limited  analogously by  explicit 
program  declaration. 

One goal of LISP is to remove  the  limitations of llflatnessll  and  size  from  the  data  objects  and  their 
corresponding  variables;  e.g.,  typeless  variables  are  permissible in LISP,  and  the  transition  from 
hardware-supported  integer  arithmetic  (modulo,  say, 235.) to infinite-precision  integer  arithmetic  need 
not  concern  the  programmer  .(except  for  the  question of computation  cost). For the  data  to be of the 
most  general  structure,  its  components  must  not  be  restricted  as to type; in short,  the  data  should  be 
defined  recursively.  Two  obvious  features of structured  data  sets  are: 1 )  that  at  least  some of the  data 
structures  have  more  than  one  component  (otherwise,  there would  be no structure!),  and 2) that  without 
any real loss of generality  it is sufficient  to  have  only  binary  structures,  since  there is a  natural,  easy 
embedding of any  other  into  these. 

LISP  has,  for  its  basic  non-atomic  data,  objects of two  components which are  decomposed by  the 
functions  CAR  and  CDR,  and which are built  up by the  function  CONS.  These  functions  represent, in 
an  abstract  sense,  the  necessary  operators  defined  over  a  structured  data  set - CONS being  mnemonic 
for  the  construction  function,  and  the  other  two,  subcomponent  accessors,  being  named  after  a  particular 
feature of the  architecture of the IBM 704 on which the  first LISP system was  implemented.  In  fact, 
actual  machine  architecture  has  deeply  influenced  LISP  design, for one goal of LISP  was  to  become  a 
useful  programming  language.  Thus,  a  first  step  was  to  assign  a  logical  record of memory  (that is, some 
finite  number of bits  easily  accessible by the  supporting  hardware)  to  hold  a  data  object; we call  such a 
block of memory  a  "cell",  and use the  machine  address of the cell as  a  handle  for  the  object. An 
address used this way will variously be called  a  "pointer" or ''name" of the  stored  object. Half of the 
bits in the cell (or  thereabouts) hold the  first  part of the  pair,  accessed by CAR, and  the  other half hold 
the  second, or CDR,  part.  Computer  architecture  intrudes  at  this  point,  in  that  the  computer word is 
often  chosen  as  the unit of memory  for  a cell,  partly  because of economy in memory  utilization  and 
partly  because of a  computer  instruction  repertoire which  permits  easy  decomposition of data  stored  this 
way. This  has  been  true  for  almost all PDPlO LISPS, and  quite a few  IBM360 LISPS, but LISP370 (an 
experimental LISP at IBM's Research  Center) uses a  double  word  for  each cell, and  the  MULTICS 
MACLISP  takes  four  words  per cell. At  first, this storage  method  seems to invalidate  the  goal of not 
limiting the  size of a  data  object to a  fixed  bound,  but  this is not  nearly so serious  as it may seem,  since 
the parts of a cell are  interpreted  as  names  for  other cells;  thus a  data  object is thought of as a  graph, 
consisting of all the  cells and links reachable  from  a given pointer by CAR  and  CDR. 

In  the  world of algebraic  manipulation,  any  reasonable fixed  allocation  for  the  maximum  size of 
integers will prevent  most  simplification  algorithms  from  working.] For this  reason,  most  good  LISP 
systems  provide  for  variable-precision  integer  arithmetic,  often by embedding  the  parts of a  long  integer 
into  one of the  other complex data  structures.  However,  the maximum  size of a  data  structure is limited 
by the  total  number of names  available for nodes of the  conceptual  graph which it  represents,  and this 
name  space is limited  by the  number of bits in a  half-cell.  At  the  outset of LISP  development,  large 
computers  had up to  32K  words of main  memory,  and  this  was  thought to  be  larger  than  any  program 
would ever  need;  however,  applications  soon  came  up  requiring  many  times  that  number of LISP  cells 

An  llunreasonablell size  allocation  would  be  one in which only a few  hundred  integers could  fit in main 
memory at  one time. The  default  allocation  for  most  languages is one  computer word  per  integer, 
because  there is generally  built  into  the  hardware  the  circuitry  for  quickly  doing  arithmetic on one- or 
two-word  cells. One  can  only  go so far in attempts  to  speed  up  arithmetic  with  larger  and  larger 
circuitry, as  the work of Winograd  shows in references 1 and 2. Another  approach  at  increasing 
speed  has  been  to  analyze  numerical  algorithms,  trying  to  separate  out  the parallel parts so that 
duplicate  arithmetic  units  may  carry ou t  the  subcomputations in parallel;  the  ILLIAC-IV has much 
circuitry  involved in the  latter  approach. 
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- MACSYMA is a  particularly  good  offender in this  regard.  An  early  LISP at  the IBM Research 
Center  had  only  a  16-bit  address  space,  and  was soon "choked"  to  death by SCRATCHPAD  the  current 
system,  LISP370,  has  a  24-bit  address  space  in  a  completely  revised  design.  This  size  seems  optimistic 
now (24 bits, of which three  are  the  byte  address  within  a cell, leaving  room for  addressing  2M  cells), in 
that  2 million 64-bit  doublewords  is  probably  more main  memory  than  most  computers  are likely to have 
directly  addressable  during  the  next five or so years,  but we  have  been  wrong  about  this in the  past. 
The  danger of biting off too  many  bits  for  the  address  space is that  each cell  would then  require  more 
and  more  words  for  storage,  and  thus  with  a  bounded  amount of main  memory  fewer  and  fewer cells 
could be held  therein. Of course, 2<number Of address bits> is  a  real  upper  bound,  even in a virtual- 
memory  machine  with  a  much  smaller  amount of real  memory.  Sometimes,  it is possible to  segment.  the 
data  and  process it in  two or more  passes so that  it  need  not all be directly  addressable  at  once,  but  the 
familiar  "intermediate-expression  swell" of algebraic  manipulation  shows that this  can  not  serve  as  a 
general  solution.  Again,  it would  be  possible to extend  the  name  space  beyond  actual  address  space by 
treating  each  name  as  an  address in an  extended  secondary-storage  space;  however,  except for  very 
limited  applications,  this  would  slow  down  operations  drastically. The  costs of computer  memories  are 
still decreasing,  larger  and  larger  address  spaces  are  becoming  more  feasible,  but  the  finiteness  bound is 
still there. Even  though we have  bumped  into  the  top of that  bound  several  times, it  should  not  be  too 
frightening;  an  excellent  article by Knuth  puts  "finite"  into  proper  perspective  (reference 3) .  

A  data  object, graphically represented  as in figure 1 ,  can easily and  directly  be  translated  into 
computer memory by assigning each  node of the  graph  a new cell,  and  labelling each  directed  edge with 
the  address of the  translated  node  that it points  to.  Stored in a cell, then, would  be  the two  addresses 
found on the  edges  leading  out of the  corresponding  node. In order to get  these data "off the  ground", 
certain  structures  are  designated  as  atomic,  that is, not  decomposable by (there  are no  sub-parts 
accessible  by)  the  functions  CAR  and  CDR.  Atomic  objects  can be denoted  graphically  as  a  string of 
alphabetic  characters  (from  a  computer  alphabet such as ASCII or EBCDIC), and in figure 1 they  are 
enclosed in rectangular  rather  than  round  boxes.2  The  collections of atomic  and  non-atomic  data  are 
called  "s-expressions", which is short for "symbolic  expressions". 

Atoms - Symbols 

Atoms  are in fact  structured  objects  (but  not in the  general  sense  described  above),  and  their 
sub-parts  are  obtained by specialized  accessor  functions.  Because of the  varying  potential  for  efficiency 
of representation  and  operation,  there  are  generally  several  classes of atoms in a  LISP  system,  distin- 
guishable in their  memory structure.  A  most  important  one of these will be  called an  "atomic  symbol", 
or merely SYMBOL, and  each  has  a  place in its structure  for  storing  (i)  a  pointer to  a list of associated 
properties, ( i i )  a  pointer to a  binding cell when  the  symbol is being  used  as  a  program  variable, ( i i i )  a 
string of alphabetic  characters  for  denoting  the  object o n  input-output,  and  possibly  other  parts 
depending on the  implementation.  Item  (iii)  has  been  historically  called  the  print  name,  but  now 
generally  acronymized  as PNAME  (pronounced  pea-name),  and  provides  the  output  routine  with  a quick 
method of generating  a  sequence of characters  corresponding  to  that  object. An  input  routine,  when 
given a  string of characters,  could, by  taking  new  cells of storage,  construct  a  symbol with that  string  as 
PNAME. But more  often, i t  is desired  to  use  the  PNAME  sequence  as  an  external,  address-free 
reference  to  a  specific  symbol,  a  canonical  symbol  with  that  PNAME, so that  pre-existing  properties 

2 0 u r  use of rectangular  and  round  boxes is an  inversion of the  convention  found in other  presentations, 
e.g.  Weissman's "LISP 1.5 Primer''  (ref.  4),  and  the  "LISP 1.5 Programmers  Manual''  (ref. 5). This 
is by  design,  partly  to  emphasize  that  the  structure in the  boxes,  rather  than  their  shape, is the 
important  thing;  but  also  two  other  advantages  occur: 1) the  PNAMEs of atoms, which can  be  quite 
long, have  a  box  shape  more  suitable to  their  typography,  and 2) there is a  fuller  separation  between 
the  older  notation, which prompted  one  to  think of s-expressions as well-formed-formulae  over  a 
character  set,  and  the  notation in this  paper, which  only  begrudgingly admits of the linearized  print 
form. 
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attached  to  that particular  object may be easily accessed. - the  PNAME  thus serving as a kind of 
''key". The  standard  input  routine  for  LISP,  generally called .READ,  constructs s-expressions by parsing 
an input  stream of characters;  but in particular, when it  parses  a  string into  a  PNAME, it uses a  function 
INTERN  to  locate  the canonical  symbol with that  PNAME;  INTERN,  in  turn, accomplishes  this by 
keeping a table  (called the OBARRAY, or  the OBLIST) of all  canonical  symbols,  creating new ones  as 
the  need  arises.  Some  implementations do not  permit the  creation of any  symbols  except  the  canonical 
ones, so that  no  two distinct symbols would have the same PNAME; but in others  not so strict,  the 
terminology "uninterned  atom" is used to mean  a  symbol not  entered  (and  hence  not  "canonical")  on 
the  current  OBARRAY.  The  importance of an  external,  address-free  reference will be  seen  as this paper 
develops  the  presentation of the LISP data language as  a programming language: atomic symbols are 
used as names  (in  the  informal  sense)  for  system  subroutines,  for user-defined subroutines,  for program 
variables,  and  for  a  few specially recognized constants. 

Atoms - Numbers 

The desire  to use machine hardware  arithmetic  instructions,  and to economize on storage, has led 
LISP .to introduce  the class of atoms called FIXNUM  (and, in most systems,  FLONUM  also).  The 
programming language provides  basic'predicates  for  testing  whether  a given object is an atom of numeric 
type,  the most general  such being NUMBERP, and most LISP systems support  a  variety of numeric data 
types with associated type-specific predicates in order  to accommodate programming needs  (some LISPS 
also provide a basic predicate  to  test  whether  an  object is an atomic  symbol, such as SYMBOLP in 
MACLTSP and  LITATOM in INTERLISP,  but some others  do  not - the programmer  resorting to  a 
compound  form like "atom[x]h-numberp[x]"). A fixnum,  for  example,  has  a word in which a number is 
stored in the usual computer  notation  (say, 2's complement in a  36-bit  word); numeric operations will 
now be facilitated.  but  the  output  routine will have to go through  some  base-conversion process to 
produce  the  digit-string that  one would like to  see  for  that  number. On  the input side of the  question,  a 
digit-string can be evaluated assuming a  particular radix notation,  and  a new cell (or cells, if a multiple- 
precision  integer is indicated)  allocated  for  storing  the  incoming  number.  At  this  point,  a  certain 
ambiguity is evident  concerning  the  input  parser: should a  string of characters, all of which are decimal 
digits, be converted into  a fixnum, or into  a symbol with that  string  as  PNAME? As a  convention, such 
a  string would be  input  as  a fixnum (or flonum if the  sequence also had  some  character recognized by 
the  parser  as  a  floating  point  indicator),  and  another  convention is established  for  escaping  the special 
significance that  the  parser might apply  to  particular  characters. In MACLISP, the character / is used  in 
prefix of any character  that might otherwise  cause  the  parser  not to include that  character in the 
PNAME of a  symbol.  For  example, 

1729 
could be read in as  a  fixnum, the least integer  expressible as the sum of two  cubes in precisely two 
different ways, whereas 

/ I  729 
would be read in as a  symbol with four  characters in its  PNAME.  There  are  no systemic properties 
associated with a  number other than its numerical value, so there  seems  to be no need to try to identify 
a  canonical  storage  location  for  a given value (but some systems do canonicalization, of varying degrees, 
in order  to  reduce  storage  utilization). 

Lists 

The  general  data  structures of LISP are  then built up over the field of atomic objects with the 
construction  function  CONS.  The basic non-atomic  object, because of the way it is constructed  and 
stored, is called by some persons  a  "cons'' cell, by others  a  "pair",  and by many others  a  "list" cell. As 
a  function,  CONS is anti-commutative in that if el  and e2 are  unequal,  'then  CONS[el,e2]  and 
CONS[e2,elJ  are also unequal.  Graphically, this is seen in figure 1 in that  the edges emanating from a 
node  have  a  definite  left-hand  and right-hand orientation; also evident is the binary nature of CONS, in 
that each non-atomic  node  has precisely two edges emanating  from it (and  each  atomic node has  none). 
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The external,  linearized  representation of a  non-atomic  object; called its  "print  representation", is a 
modification of a  fully-parenthesized  notation. The full notation is easily described: let e l  and e2 be  any 
two  data  objects,  and let el*  and e2* be their respective print  representations. Then a data  object 
constructed  from el  and e2, that is by CONS[el,e2], will have  the  print  representation 

(el* * e2*) 
It is generally convenient to think of the pair cell as holding a list, even  though  this is only an  interpreta- 
tion in the mind of the beholder: the  CAR  part of a  pair  is  the  first  element of the list, and  the  CDR 
part is the tail of the list with the first  element removed. Ostensibly, by successive applications of the 
CDR  function, some atom will be  reached;  by  convention, we desire this atom to  be  the symbol  NIL, 
and  elevate it to  the  status of the null list, i.e., the list with no elements. Many  LISP  systems will permit 
list operators  to work with lists terminating  in some other  atom,  but by fixing on this  conventional use of 
NIL, the following simplification can  be made  for the print  representation: 

(i) 

(ii) 

Figure 

Instead of (el* . NIL), 
we  will print (el*) 
Suppose  there is a list 1 which prints  as 

then, for 1' = cons[eo,r], instead of 

we  will print (eo* el* e2* . . . en*) 
2 shows  a  graph  for  a data  structure,  as in figure 1, with the  two possible print  representations 

(el* e2* ... en*), 

(eo* . (el* e2* ... -en*)), 

printed below it.  Note,  also,  the  several  common  references  to  the boxes for the symbols ABC and NIL, 
and  the  duplication of the boxes for  the fixnum 35; see how the  graph  more  directly  shows  the 
canonicalization that has  taken place for  the  input of symbols and  the  duplication  for input of numbers. 

THE PROGRAMS 

What kind of operations might one want to  do in this data world? McCarthy's classic paper, 
"Recursive Functions of Symbolic Expressions  and Their Computation by Machine, Part I"  (ref. 6, one 
might say  the  grandfather of LISP papers), is a good start  at answering this question.  Both it and  the 
LISP 1.5 Programmer's Manual indicate that  the elementary  operations  CAR, CDR,  CONS (discussed 
above  as being the  requisite  operations  needed  over any binary structured  data  set),  and  the  elementary 
predicates  ATOM, EQ, along with the mathematical  notions of functional  composition,  conditional 
expression,  and recursive definition  comprise  a  sufficient means to build up any computable  function  on 
this  data d ~ r n a i n . ~  This  collection of primitive functions  and  functional  schemata is minimal in that  no 
one  part can be derived from the  others  alone.  (The  two  points, sufficiency and minimality, have been 
proven by Mike Levin, one of the  early  originators of LISP). Of course,  in  real usage, many more 
functions  are  added  for the convenience of the  programmer;  part of the  job of a LISP system implem- 
enter is to  choose  a  reasonable  set of basic, system-supplied functions - not so large as  to bloat the 
computer's memory, and  not so small as  to unduly cramp  the programmer. 

Historically, the  development of LISP  as we know it today, was quite  accidental. Originally, it was 
assumed that various functions could be  defined  and  written  down with some mathematical rigor, using a 
more-or-less standard  mathematical  notation which  was called the  Meta-language  (see  refs. 5,6) .  Then 
from  this  presentation,  one would compile the algorithm into a machi'ne language  program, with 
subroutines holding their data  and exit addresses on a  stack in order  to provide for recursive operation 

31t is interesting to  note  that  the paper  (ref. 6), while laying the  foundation of a good non-numeric data 
structure for  computers (symbolic  expressions), at  the same  time  has  had  a  profound effect  on  the 
development of program  schema, namely the way in which programs are put  together  from compo- 
nents.  Conditional  expression  and memory operation  are required in any non-trivial programming 
world; but  McCarthy, by emphasizing functional composition and recursive definition,  injected  a bit 
of mathematical common-sense into  the world of sequential programming. 
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- hardly  the  interpretive  LISP  we  know  today!  In  any  programming  project,  the  task of getting 
programs  into  the  computer  always  becomes  more  difficult  as  time  goes  on  (and  time  has  a  notorious 
infamy  for  always  going  on), so someone  had  the  bright  idea of transcribing  programs,  not  into  machine 
language,  but  into  the  data  language  already  defined,  namely  s-expressions, so that  they  could  be 
automatically  translated  into  machine language.. The  first  mechanical  compiler was, of course,  written in 
machine  language,  but it was  not  very  successful  (needless to  say,  subsequent  compilers  were  written in 
LISP).  Then,  one of the  programmers  associated  with  the  original  LISP  project  had  the  bright  idea of 
making an s-expression  evaluator, which  could interpret  these  encoded  programs,  and  hence,  through 
EVAL,  the  LISP  interpreter was born. 

That single  idea has  had  enormous  consequence  on  the  development of the fields of list processing, 
artificial  intelligence,  and  symbolic  manipulation.  Although  some  other  languages,  such  as  APL,  permit 
the  dynamic  evaluation of computed  expressions, in none save  LISP is the  programming  language so 
thoroughly  embedded  into  the  data.  In  no  other is there  the  smooth  naturalness with which LISP 
programs may dissect,  analyze,  report  upon,  review,  "dress-up",  synthesize,  emulate,  and compile other 
LISP  programs. 

Functions,  Functional  Composition,  and  QUOTE 

What,  then, is the  transcription  scheme?  It is really quite  simple.  First, we note  that  most  LISP 
systems  have  at  least  the  characters of the  6-bit  ASCII  alphabet,  which is 26 uppercase  letters, 10 digits, 
some  punctuation  marks,  and  the usual assortment of special  characters  found on most typewriters or 
teletype  machines.  Then,  a  variable or function is represented by the  symbol of the  corresponding 
PNAME;  numbers  stand  for  themselves,  that is they will be  transcribed  directly;  functional  application is 
shown  as  a list of the  function  and all its  arguments in order;  functional  composition is shown as list 
composition;  the  elementary  operations  are  represented by the  atomic  symbols  CAR,  CDR,  CONS, 
ATOM,  and EQ; and  some of the basic  arithmetic  operators  are  implemented with  mnemonic  names in 
prefix  notation  (instead of writing ' ' x + ~ + 2 . 3 ~ ' ,  we would  write in prefix  notation  "plus[x,z,2.3]").  As 
an example  illustrating  all the rules  mentioned so far, we would transcribe 

5=[log  sin(x+z+2.3)] 
into  a list printable  as 

(TIMES 5 (LOG (SIN (PLUS X Z 2.3)))) (1) 
If all our  functions  were  defined  only  over  numbers,  then  the  intent of such  a  program,  coded in list 
structure, is clear:  add  together  the  numeric  values of the  variables x and z and  the  number  2.3,  take  the 
trigonometric sin of the  result,  then  the  natural log of that,  and  finally multiply  by 5 .  But some of our 
functions  are  defined  over lists as well as  other  objects,  and  the  question  arises  as  to how the  argument 
for such  a  function is obtained. For example,  suppose we want  to  print  out  the list (PLUS X 3), and 
suppose  coincidentally  that  the  variable X has  the value 7. Then  what  does 

(PRINT  (PLUS X 3))   (2)  
do as a program? By the  above  rules, it should  print  out  the  number 10. How  then  are we to indicate 
that we  want  to  print  out  the list (PLUS X 3)?  It  becomes  necessary  to  add  a  rule in the  transcription 
scheme that  overrides  the  notation for functional  composition - for this purpose, we use the  atom 
QUOTE in  the  first  element of a list to  indicate  that  the  second  element is not  a  sub-program,  but  rather 
is to  be  taken  directly  as  data  without  any  interpretation.  Line  (2)  above would  print out  the  number 7, 
whereas 

(PRINT  (QUOTE  (PLUS X 3)))  (3) 
would print  out  the  desired  list,  (PLUS X 3).  Line  (2)  could  be  a  transcription of the  expression 
"print[x+3]",  whereas  line  (3) could be  that  for  "print['(PLUS X 3)"''. 

There  are  several  kinds of overrides  to  the  functional  composition  rule,  to  be  discussed in turn 
below.  Because of the similarity of structure - namely,  an  atomic  symbol  at  the  first  element of a list 
- many  persons  have  begun  referring to  these  overriders  as  ''functions"  also;  but  they  should  more 
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properly  be viewed as  parts of the  syntax of the  programming  language  LISP. In LISP 1.5, they  are 
called  "special  forms".  In  particular,  they  represent  the  realization in LISP o f  some of the  abstract, 
universal concepts  found  in  any  practical  programming  language; e.g., COND,  PROG,  SETQ,  DEFINE. 
LISP  further  has  QUOTE  as  just  discussed,  and  LAMBDA - the  former to distinguish data expressions 
from  programs in which the  data might be  embedded,  and  the  latter  to  distinguish  programs  from  some 
data in which they, in turn, might be  embedded.  At  this  point,  it  must  be  stressed  that  these  rules  and 
conventions  comprise  part of the programmatic interpretation of LISP data  expressions;  other,  radically 
different  interpretations  are  possible, e.g. without  QUOTE, or without  PROG  and  SETQ,  but  they  are 
generally  less  usable. 

Program  interpretation  also implies an  importance  to  the  sequence in which the  sub-computations 
are  carried  out. If there  were  no memory cells in a  computer,  nor  any side-effects during  computation, 
then  the  order of evaluation of the  sub-parts of a  program  would  be  irrelevant.  For  example,  what 
difference would  it  make  if, in computing  "(x+3).(y-5)",  the  sum  were  performed  after  the  difference 
calculation?  Logically,  none;  but if while computing  the  difference "y-S", some  action is taken  that 
changes  the value of the  variable x, then  probably  a  different final product would  result. The normal 
rule  for  LISP  program interpretation is left-to-right  order of evaluation,  beginning  with  the  first  element 
of the  list.  This  first element,  corresponding  to  some  function to be applied, is inspected  for  a basic 
function  definition, or for  one  supplied by the  programmer  (which may involve  recursion  through  the 
i n t e r ~ r e t e r ) ; ~  and  then  the  first  argument to  the  function is calculated  according  to  the  program  part in  
the  second  element of the  list;  and  then  the  third,  and so on. Finally,  the  function is invoked  with  the 
corresponding  arguments.  The special  forms PROG  and  SETQ  do  not  come  under  this  normal rule. 
PROG  corresponds  to  the  sequential  nature, with GOTOs, of FORTRAN  programs;  and  SETQ 
corresponds to the  notion of assigning a new value to  a variable while releasing the old  value.  Because 
of lack of space,  these  features will not be further discussed in this paper. 

Predicates  and  Conditional  Expressions 

Predicates  operate  on  data  to  produce  one of two  values - true or false. In the LISP  world, we let 
the  symbol  NIL  encode  the value false and  T  encode true. However,  as  a  convenience, we allow  any 
non-NIL value to be  returned by a  predicate,  and in so doing  interpret it as true. Furthermore, we 
remove  NIL  and T from  the  collection of possible  program  variables,  considering  them as  constants 
which stand for themselves  just as  numbers  do. 

The  elementary  predicate  ATOM is a  function which is true  for  terminal  nodes of the  graph- 
structured  data  (the  items in rectangular  boxes in figures 1 thru 3) ,  and  false  for  cons cells. It is 
apparent  that  the  domain of ATOM  on which it is false is precisely the  domain of s-expressions on 

4Normally,  the  identity of the  function, or sub-program,  to  be  applied is evident  upon  "inspection", in 
that i t  will be an  atomic  symbol  with  some  direct  functional  property.  What  happens  when  this is not 
the  case  has  never  been clearly  defined - notice,  for  example,  the  discrepancy  between  lines 18-19 
and line 20  on page 71 of the  LISP 1.5 Programmer's  Manual  (ref. 5); and  reference 6 has  an  even 
more  confusing  bug at  the  corresponding  spot of the  definition of EVAL.  Most  LISP  systems  make 
one evaluation of the  first  element,  then  evaluate all the  remaining  elements  once in order  to  obtain 
the  arguments,  and  then begin a  process of re-evaluation of the  result  from  the  first  element until  it is 
directly  discernible to  be  a  function.  There is no  problem  unless  some  relevant  memory  location is 
changed,  such  as  happens in the  following  example.  First,  note  the  shorthand  convention of writing 
'exp instead of (QUOTE exp). 

((SUBST 3 'N  '(PROG2  (SETQ X (PLUS X N))  'DIFFERENCE)) 
X 
Y) 

In  this  case, by evaluating  the  first  element successively  twice, one  gets  a result  different  from  that 
obtained by the  order of evaluation  just  mentioned  above. 
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which CAR  and  CDR  are applicable.  Atoms which are.  interpretable  as  numbers  are  stored in computer 
memory  in  such  a  way as to  require  specialized  functions  and  predicates,  for  the  purpose of achieving 
efficiency  in  numeric  operations; e.g., NUMBERP,  FIXP,  FLOATP,  GREATERP,  and numeric-e.qua1. 
In MACLISP,  and  some  others,  many  new  numeric  functions  and  predicates  have  been  introduced 
generally  having  shorter  names,  such as > as  a  less  general  form of GREATERP, = for  (exact)  numeric 
equal, + for  addition  restricted  to  fixnums, +$ for  addition  restricted  to  flonums,  and so  on.5 

The  predicate  EQ,  a  function of two  arguments,  is  a  test  for  pointer  identity;  let us see  how  this 
works.  In  figure 3, two  lists L1  and  L2  are  shown  graphically  along  with  their  print  representation (in 
L2,  the  edges  are  not  shown  as  extending all the way to  the  rectangular  boxes  for  atoms, merely because 
of the  complexity of drawing  too  many  intersecting  lines).  Suppose  for  example  that  the  top  node of L1 
is stored in a  cons cell at  computer  address  0129,  and  L2  at  3724.  Let x,  y, z  be  program  variables  such 
that x =L1, y = L2, and z = L1.  This  means  that  the  variables  hold  some  pointer  to a cons cell - the 
bits of x and  z would correspond  to  the  decimal  number  129,  and  those of y to  3724. But  a  LISP 
system interprefs this pointer  according  to  its  data  classification;  thus  ATOM is false for  each of the 
variables,  and  each  would be  printed  out  as 

(LIST  (QUOTE FOO)) 
Now, E Q  is frue of [x,z], but false of [x,y]  and  [y,z]  because x and  z  hold  the  same  pointer,  but x and y 
are  different  pointers  corresponding  to  isomorphic  structures. 

Of course,  not all functions,  even  over  the  domain of numbers,  are  smooth  and  "analytic"; 
discontinuities of various  sorts  can  be  introduced by conditional  expressions.  Let  DELTA  be  defined  as 
a  function of x and  n  as  follows:  1 if x>n, -1 if x<n,  and 0 otherwise.  This  conditional 
expression  would  be  transcribed  into  LISP  as 

(COND  ((GREATERP  X-N)  1)  (4) 
((LESSP X N)  -1) 
(T 0 ) )  

As with QUOTE,  COND is a  special  form in the  programming  language,  and  indicates  that  a  sequence 
of sub-lists  follows,  each  sub-list  consisting of one  or  more  expressions.  The  first  elements of the 
sub-lists  are  evaluated in sequence  order  until  the  first  one  that  comes  up  not false is found;  the 
remaining  elements of that  sub-list  are  then  evaluated  and  value of the  last  element  (which might  also 
incidentally  be  the  first) is taken  as  the  resulting  value  for  the COND expression. In addition  to  the 
"discontinuity" which the  conditional  expression  introduces,  there is a  noticeable  programmatic  feature, 
namely that of selective evaluation.  Not all of the  predicates  are  evaluated,  but  only  those  which, in 
sequence,  turn  out  to be false, up until the  first  one  that is [rue. Obviously,  COND may be  thought of 
as  a  compound  predicate; so are OR and  AND,  whose  definitions  are in accord with ofle's intuitive 
notion.  It may be helpful to  see  corresponding  code for OR and  AND in terms of COND: 

To round  out  the logical connectives,  NOT  operates  as  truth-value  inversion.  Both  (NOT x) and 
(NULL x) operate  the  same  as  the  expression  (COND (x NIL)  (T)). 

" 

5LlSP  systems which have  introduced  novel  data  types  generally  have  introduced  functions  and 
predicates  with  restricted  domains in order  to  operate  efficiently  on  them.  This is one way of 
extending  LISP. 
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Defining  Functions - 
The  expression (4) above is almost  a  definition  for  a  function  ''delta'',  but  it is not  symmetric  in  the 

two  variables  x  and n; if you  were to write  (DELTA 3 5), you would want  to  know  whether X would 
hold 3 and N 5, or vice-versa. The  symbol  LAMBDA is a  special  form to indicate  that  a  function is 
being  defined  from  an  expression,  by  specifying  the  order in which the  variables of the  expression  shall 
correspond  to  the  incoming  arguments.  Rewriting (4) as  a  functional  expression,  we  get 

(LAMBDA (X N) ( 5 )  
(COND  ((GREATERP X N) 1 )  

((LESSP X N) -1)  
(T  0))) 

Now (5) is an expression that  can  be applied to [3,5] and'result in -1 ,  but  when  applied to [7,2] results 
in 1 .  The  syntax  permits us to write  this  expression  directly  in  the  functional  position of a list intended 
for  program  interpretation: 

((LAMBDA (X N)  (COND ((> X N) 1) ((< X N) - 1 )  (T 0 ) ) )  3 5) 
However,  for  convenience of writing, we might  like to  define  DELTA  as  a  function  name  corresponding 
to  the  functional  expression (5); in  the  case of recursive  definition,  there is no  choice  about  the  matter, 
we must  start  out  with  some  function  name so that we can  write  down  the  definition using that  name. 
Consider  the classic case,  defining  the  factorial  function. 

(LAMBDA (N)  (COND ((= N 0) 1 )  (T  ( *  N Cfact-continualion (- N 1 ) ) ) ) ) )  
At  the  point  where fact-continuation occurs, we  would  like another  copy of the  entire  functional 
expression  substituted, so that  the  computation  could  be  carried o n  recursively. Rather  than  extend  the 
notation  to  encompass cyclic structure, or to infinite  sub-structure, we fiild that using a  symbol  as  a 
name  for  a  function  being  defined  solves  not  only  this  problem, but  also  that of conciseness.  Thus  the 
factorial  definition  becomes: 

(DEFINE  FACT  (LAMBDA  (N) (6) 

(T ( *  N (FACT (- N 1 ) ) ) ) ) ) )  

Function  definition is generally  realized in .a  LISP  system by executing  a  program  that places a 
property on the  property list of the  symbol which is the  function  name;  DEFINE (or DEFUN in 
MACLISP) is a  special  form which causes this to happen.6  Evaluating (DEFINE  FOO exp)  will cause 
an  attribute-value pair to  go on the  property list of FOO - the  attribute  name is EXPR,  and its 
corresponding value is exp. The  interpreter  can  then quickly  recognize FOO  to be  a  function  name by 
accessing  its  EXPR  property,  and  substituting  the  LAMBDA  expression so obtained for the  name. In 
the  case of machine-language  subroutines,  a  starting-address is stored  under  the SUBR attribute,  and, 
after  the  arguments  are  obtained,  the  interpreter  can  quickly  despatch  control off to  the  relevant 
location. In such a LISP,  one  needs  only  the  ability  to read-in  lists and to evaluate  them  after read-in in 
order  to  add  subroutines (or programs, if  you will) to  the  system.  The  so-called  "top level" of a  LISP 
system is basically a  loop: 

(COND ((= N 0) 1) 

A:  print(eval(read0)) 
go  A 

From  this we can  see  the  importance of INTERN  to  the 'input READ  function: it is necessary  that  both 
instances of "FACT" in (6) above  be  read in as pointing to the  same  atomic  object  (and  not merely to 
atoms with the  same  PNAME),  and  the  same  holds  true of the  three  instances of "N".  Thus it is that 
one programs in LISP,  and  interacts with LISP  environment. 

~~ 

6There  are  LISP  systems  that  do  not  use  the  property list for  function  definition,  but  instead  use 
whatever  mechanism  implements  the  assignment of a value to  a variable.  This  approach is adequate, 
although it means  that  one could  not use a  symbol  both  for  a  variable  name  and  a  function  name. 
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A  Useful  Example 

Let us consider  a  definition of an  "equality"  predicate  EQUAL  defined  over all the  data  types 
mentioned in this  paper,  such  that  two  s-expressions  are  printed  out in linear  format  the  same way if and 
only if they  are  EQUAL. For numbers,  the  numeric  equality  predicate is used;  for  symbols, 
SAMEPNAMEP  and for lists,  the  definition is recursive  over  the  CAR  part  and  the  CDR  part. 
Historically,  EQUAL  was  defined  before  any  consideration  was  given  to  multiple  copies of atomic 
objects all  with the  same  PNAME;  hence  EQ was  generally  used  instead of SAMEPNAMEP;  because if 
two  symbols  were  stored in different  locations  then  they  necessarily  had  different  PNAMEs.  As  far  as 
the  author  knows, all LISP  systems still use EQ  here,  and  this is considered  satisfactory. 

(DEFINE  EQUAL 
(LAMBDA (X  Y) 

(COND  ((EQ X Y)  T) 
((ATOM X)  
(COND  ((NOT  (ATOM Y))  NIL) 

((AND  (NUMBERP X) (NUMBERP Y ) )  (= X Y))  
((OR  (NUMBERP X) (NUMBERP Y))  NIL) 
(T  (SAMEPNAMEP X Y)) ) )  

((ATOM Y) NIL) 
((EQUAL  (CAR X) (CAR Y))  (EQUAL  (CDR X) (CDR Y))) 
(T  NIL))))  

I t  would be instructive for the  reader  to  consider this  example  line by line to verify how it works.  Note 
carefully  that  EQUAL  does  not  define  "graph-isomorphism",  but  rather  a  concept  that  has  come to be 
called  ''access-equivalence".  Two  structures  are  said to  be  access-equivalent (or EQUAL) if any  access 
chain (a  sequence of CARS  and  CDRs,  for  LISP) leading to  an  atomic  object in one  structure  also  leads 
to  the  same  atomic  object in the  other.  See  figure  4 for a  graphic  presentation of twa  structures  that  are 
EQUAL but  not  isomorphic. 
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ABSTRACT 

The  internal representations of the various MacLISP data  types  are  presented 
end  discussed.  Certain  implementation  tradeoffs  are  considered.  The  ultimate 
decisions  on  these  tradeoffs  are  discussed in the  light  of  HacLISP's  prime 
objective of being an efficient high-level language for the  implementation of  large 
systems  such  as MACSYMA. The basic strategy of  garbage collection  is  outlined, 
with  reference  to  the specific representations involved. Certain  "clever  tricks" 
are  explained  and  justified.  The  "address  space  crunch"  is  explained  and some 
alternative  solutions explored. 

INTRODUCTION 

MacLISP  is  a version  of LISP which is used  not only as  a  user  application 
language  but  as  a  systems programming language, supporting such  systems  as  MACSYMA 
and  CONNIVER. As such, it has been carefully designed with speed as  one  of  its 
ma jot- goals.  Generality, ease  of use,  and debuggability have not been  neglected, 
but  speed  of  compiled  code has been the primary consideration. This is a  departure 
from  the  traditional  view of LISP as a friendly and general  but slow  and  clumsy 
language. 

The  representations of data objects-in MacLISP have undergone  a  continuous 
evolution  towards  this  goal.  When  MacLISP  was  first  created,  the  data 
representations  were  designed  for  simplicity and compactness  at  the  expense of 
speed.  Since  then  there have been at least  two major revisions, each  to  speed  up 
compiled  code  and  simplify the processing of the data. Here we  discuss  the  current 
implementation  on  the  PDP-10  (MacLISP  also  runs on Multics,  and  on  the "LISP 
machines"  being  constructed at the HIT Artificial Intelligence  Laboratory). We 
shall  contrast it with  previous  MacLISP  implementations  and  implementations  of 
other  LISP  systems, and  discuss  some  of the design decisions  involved. 

ORGANIZATION OF THE PDP-10 

The  data  representations in HacLISP have been carefully  designed to  take 
full  advantage  of  the  PDP-10 architecture. A full  understanding  of  the  design 
decisions  involved  requires  the  following  minimal  knowledge  of  the  PDP-10 
instruction set. 

The  PDP-10  operates on 36-bit words. Memory addresses designate  words,  not 
bytes,  and  are 18 bits  wide; thus  two addresses can fit in one word. There  is a 
class  of  instructions  which manipulate half-words; for example, one  can  store  into 
half  of a  memory  word and  either not affect the other half or set  the  other  half to 
all  zeros or all ones. 

The  PDP-10  has 16 accumulators, each 36 bits wide. All  but  one  can  be  used 
for indexing;  all  can  be used  as  stack pointers; all can be used  for  arithmetic. 



The accumulators can a l so  be referenced  as  the f i r s t  16 memory locations  ( though 
t h e y  are  hardware   reg is te rs  and n o t  ac tua l ly  memory l o c a t i o n s ) .  . For   reasons  
e x p l a i n e d  l a t e r ,  MacLISP devotes   cer ta in   accumulators   to   specif ic   purposes .  
Accumulator 0 contains  the atom NIL. Accumulators 1-5 may conta in   po in te rs   to   da ta  
ob jec t s ;   t hese   a r e  used t o  pass arguments t o  LISP functions and return values  from 
them. Accumulators 6-10 a re   s c ra t ch   r eg i s t e r s ,  and a r e   g e n e r a l l y   u s e d   f o r  
arithmetic. Accumulator  11 is reserved  for a future  purpose.  Accumulators  12-15 
are used for  stack  pointers  to  the  four  stacks.  

Every  user PDP-10 instruction has the  following  format: 

~ - . . . . . - .. . . . . - - 

I opcode  address 1 
Each i n s t r u c t i o n   h a s  a 9 - b i t  operation code and a 4 - b i t  f i e l d   s p e c i f y i n g  an 
accumulator .  The e f f e c t i v e  memory address ( o r  immediate  operand) i s  uni formly  
computed by a d d i n g  to   the   18-b i t   address   f ie ld   the   conten ts   o f   the   accumula tor  
specif ied by the  4 - b i t  index f i e l d   ( a  zero index  f i e l d  means  no indexing) .   I f  t h e  
i n d i r e c t i o n  b i t  "@I' is s e t ,  then a word is fetched us ing  the computed address and 
t h e  process   i t e ra ted  on t h e  address,  index, and @ f i e l d s  of  the  fetched word. I n  
t h i s  way t h e  PDP-10 allows  multiple  levels of indirection w i t h  indexing a t  each 
step.  

HACLISP DATA TYPES 

MacLISP current ly   provides  t h e  user w i t h  the   fol lowing  types  of  da t a  
o b j e c t s :  

FIXNUM Single-precision  integers. 
FLONUM Single-precision  floating-point numbers. 
BIGNUM In tegers   o f   a rb i t ra ry   p rec is ion .  The s i z e  of an i n t e g e r  ar i thmetic  

r e s u l t  is limited  only by the amount of storage  available. 
SYMBOL Atomic symbols, which are used i n  LISP as   i den t i f i e r s  b u t  which a r e   a l s o  

manipulable  data  objects. Symbols have value c e l l s ,  which can contain 
LISP o b j e c t s ,  and  property l i s t s ,  which a r e  l i s t s  u s e d   t o   s t o r e  
information which  can be accessed  quickly  given  the atom. Symbols are 
wr i t ten   as  strings of l e t t e r s ,  d i g i t s ,  and other  non-special   characters.  
The s p e c i a l  symbol NIL is used t o  terminate l ists  and t o   d e n o t e  t h e  
logical  value FALSE. 

LIST The t r a d i t i o n a l  CONS c e l l ,  which has a CAR and a CDR which are  each LISP 
objects .  A chain of such c e l l s  s t rung  together by t h e i r  CDR f i e l d s  is 
ca l led  a l ist ;  the CAR fields  contain  the  elements  of  the l i s t .  The 
spec ia l  symbol NIL is i n  the CDR of the   l as t   ce l l .  A chain  of l ist ce l l s  
is wri t ten by w r i t i n g  the CAR elements,  enclosed i n  parentheses. A non- 
NIL nan- l i s t  CDR f i e l d  is written preceded by a dot.  An example  of a 
list is (ONE TWO THREE),  which has three  elements which are a l l  symbols. 
I t  is made up  of three list c e l l s  t h u s :  
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car  

ONE TWO THREE 

ARRAY Arrays  of one t o   f i v e  dimensions,  dynamically a l loca t ab le .  
HUNK Shor t   vec to r s ,   s imi l a r   t o  LIST cel ls   except  t ha t  they  have  more.than  two 

components.  This  data  type is  f a i r l y  new and is.stil1 experimental .  

POINTERS 

I n  MacLISP, as i n  most LISP systems,  the u n i t  of da ta  is t h e   p o i n t e r .  A 
p o i n t e r  is typ ica l ly   represented   as  a memory address, w i t h  the  components  of  the 
d a t a   o b j e c t   p o i n t e d   t o  i n  the memory a t   tha t   address .  The r e a s o n   f o r   t h i s  is t h a t  
LISP d a t a   o b j e c t s  have  varying  sizes, and i t  is desirable   to   manipulate  them i n  a 
uniform  manner. Numbers, f o r  example, may occupy varying numbers of  words,  and it 
is no t   a lways   f eas ib l e   t o  p u t  one a s  such into  the  accumulators. A p o i n t e r ,   b e i n g  
o n l y  18 b i t s ,   c a n   a l w a y s   f i t  i n  one   accumula to r   r ega rd le s s   o f   t he   s i ze   o f   t he  
o b j e c t   p o i n t e d   t o ;   m o r e o v e r ,  i t  requi res   on ly  18 b i t s   f o r   o n e   d a t a   o b j e c t   t o  
con ta in   ano the r ,   s ince  i t  need actually  only  contain a p o i n t e r   t o   t h e   o t h e r .  

Given a p o i n t e r ,  it i s  necessary t o  be ab le   to   de te rmine   what   k ind   of  
o b j e c t  is being  pointed  to.  There a re  two a l te rna t ives :  one can e i t h e r   h a v e  a 
f i e l d   i n   e v e r y   d a t a   o b j e c t   s p e c i f y i n g  what type of object  it is ,  or encode  the  type 
informat ion  i n  the   po in te r   to   the   ob jec t .  The l a t t e r  method e n t a i l s  an a d d i t i o n a l  
cho ice :  one  can either  adjoin  type  information  to  the memory address  ( i n  which 
case it t akes  more b i t s   t o   r e p r e s e n t  a pointer) ,  o r  arrange it  so t h a t   t h e   t y p e  i s  
impl ied  by t h e  memory addres s   i t s e l f  ( i n  which case  the memory m u s t  be p a r t i t i o n e d  
in to   d i f f e ren t   a r eas   r e se rved   fo r   t he   va r ious   da t a   t ypes ) .  MacLISP h a s   g e n e r a l l y  
used t h i s  l a s t   s o l u t i o n ,   p r i m a r i l y  because of the  half-word  manipulation f a c i l i t i e s  
o f   t he  PDP-10. Two memory addresses will f i t  i n  one word w i t h  no e x t r a  b i t s  l e f t  
over. (Cont ras t  t h i s  w i t h  an IBM 370, which has  32-bit words and 24 -b i t   add res ses ;  
on t h i s  machine  one would use  32-bit  pointers,  encoding  type  information i n  t h e  
extra e i g h t   b i t s .  ) T h i s  is extremely  useful  because a l i s t  c e l l  w i l l  f i t  i n  one 
w o r d ;   t h e   l e f t   h a l f  can contain a pointer   to   the CAR and t h e   r i g h t   h a l f  a p o i n t e r  
t o   t h e  CDR. 

The method MacLISP presently  uses  for  determining.  the  type  of a d a t a   o b j e c t  
i nvo lves  u s i n g  a data type   t ab le .  The 18-b i t  address  space (256K words)  of t h e  
PDP-10 is d iv ided   i n to  segments  of 512 words. A l l  ob jec ts  i n  the same segment are 
of t h e  same da ta   type .  To f ind  the  data   type of an object  given its address, one 
t a k e s   t h e   n i n e   h i g h - o r d e r   b i t s  of  the  address and uses them t o  i ndex   t he   da t a   t ype  
t a b l e   ( c a l l e d  ST, f o r  Segment Table).   This  table  entry  contains  an  encoding  of  the 
d a t a   t y p e   f o r   o b j e c t s  i n  the  corresponding segment: 

B i t  0 
B i t  1 
B i t  2 
B i t  3 
B i t  4 
B i t  5 
B i t  6 
B i t  7 

0 i f  atomic, 1 otherwise. 
1 i f  l i s t  c e l l s .  
1 i f  fixnums. 
1 i f  flonums. 
1 i f  bignums. 
1 i f  symbols. 
1 if ar rays   (ac tua l ly ,   a r ray   po in te rs ;  see below). 
1 i f   v a l u e  cel ls  f o r  symbols. 
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B i t  a 1 i f  number s tack  (one  of   bi ts  2-3  should  also be set) .  
B i t  9 is c u r r e n t l y  unused. 
B i t  10 1 i f  memory exists, but is not used f o r  data. 
B i t  11 1 if memory does  not exist. 
B i t  12 1 i f  memory is pure (read-only). 
B i t  13 1 i f  hunks. 
Bits 14-17 are c u r r e n t l y  unused. 
Bits 18-35 ( t h e   r i g h t   h a l f )   c o n t a i n  a po in t e r   t o   t he  symbol 

represent ing  the data  type,  namely  one of LIST, 
FIXNUM, etc.  The symbol RANDOM is used f o r  segments 
containing no standard MacLISP data objec ts .  

The encoding is redundant to  take  advantage  of the PDP-10 i n s t r u c t i o n  set  and t o  
o p t i m i z e   c e r t a i n  common operat ions.   There is an, i n s t r u c t i o n   w h i c h   - c a n  t e s t  
s e l e c t e d   b i t s  i n  a half-word  of an accumulator and s k i p   i f  any are se t .  T h u s ,  one 
can  test  for a number by t e s t i n g   b i t s  2, 3,  and 4 together .  B i t  0 ( t h e   s i g n   b i t )  
is 1 f o r  l i s t ,  hunk,  and  value  cell   segments  (non-atoms) and 0 f o r  a l l  o t h e r s  
( a toms) .   Th i s   s aves  an in s t ruc t ion  when making the  very common t e s t  for   a tom-ness ,  
s ince   one   can  use t h e  skip-on-memory-sign ins t ruc t ion  instead of  having t o  fe tch 
t h e  table  e n t r y   i n t o  an accumulator. The r i g h t  half  of a table  entry c o n t a i n s  a 
p o i n t e r   t o   t h e  symbol  which the  MacLISP function TYPEP is supposed t o   r e t u r n   f o r  
objects o f  t h a t  type. Thus,  the TYPEP function need on ly   ex t r ac t  the r i g h t  h a l f  o f  
a t ab le  e n t r y ;  i t  does  not  have t o   t e s t  a l l  the b i t s  i n d i v i d u a l l y .   F i n a l l y ,  t h e  
system a r r a n g e s   f o r  a l l  t h e  symbols t o  which a t a b l e   e n t r y   c a n   p o i n t   t o  be i n  
c o n s e c u t i v e  memory l o c a t i o n s  i n  one  symbol  segment.  Since these symbols   have  
c o n s e c u t i v e  memory address ,   the   r igh t   ha l f  of a t a b l e   e n t r y  can be u s e d   t o   i n d e x  
d i s p a t c h   t a b l e s  by type.  For  example, the EQUAL funct ion,  which determines  whether  
two L I S P   o b j e c t s  a r e  i s o m o r p h i c ,   f i r s t   c o m p a r e s   t h e   d a t a   t y p e s   o f  i t s  two  
arguments;  i f  t h e  data types match,  then it does an indexed jump, indexed  by t h e  
r i g h t   h a l f   o f  a Segment Table entry,  to  determine how t o  compare t h e  two o b j e c t s .  

By way of c o n t r a s t ,   l e t  us br ie f ly   cons ider   the   s torage   convent ion   former ly  
used  by MacLISP. Memory was par t i t ioned  into  several   cont iguous  regions,   not  a l l  
o f  t h e  same s i z e .  The lowest  and h ighes t   addresses   o f   each   reg ion   were  known 
( u s u a l l y   t h e  low address  of one region was one more than   the   h ighes t   address   o f  t h e  
r e g i o n   b e l o w  i t ) .  To determine  the  data   type  of  a p o i n t e r  i t  was n e c e s s a r y   t o  
compare  the  address   to   the  addresses  of a l l   the   boundaries   of  the r e g i o n s .   T h i s  
was somewhat f a s t e r   t h a n   t h e   c u r r e n t   t a b l e  method i f   o n l y  one o r  two comparisons 
were needed ( a s  in  'determining  whether a pointer   pointed  to  a number, s i n c e   t h e  
number   reg ions  were cont iguous) ,   bu t   s lower  i n  the  g e n e r a l   c a s e ;   f u r t h e r m o r e ,  
t h e r e  was no  convenient way to   d i spa tch  on the  data  type.  On t he   o the r   hand ,   t he  
table  method requires space   for   the   en t i re  512-word table ,  even i f   o n l y  a small 
number  of  segments  are  in  use.  (There is  another 512-word t a b l e   f o r  use by t h e  
garbage c o l l e c t o r ,   t h e  GC Segment Table (GCST), which doubles t h i s  pena l ty . )  The  
dec id ing   advantage   o f   the   t ab le  method is t h a t  i t  permits dynamic expansion  of t h e  
s to rage   u sed   fo r   each   k ind  of  data. The region method r equ i r e s  a l l  l ist  c e l l s ,  f o r  
example, t o  be i n  a contiguous  region; once t h i s  region is  f ixed ,   t he re  i s  no easy 
way t o  expand i t .  Under t h e   t a b l e  method,  any cu r ren t ly   unused   s egmen t   can   be  
p r e s s e d   i n t o   s e r v i c e   f o r  l i s t  c e l l s   m e r e l y  by changing i t s  t a b l e   e n t r y .  An 
a d d i t i o n a l   b o n u s   o f   t h e   t a b l e  scheme is  t h a t   t h e   s p a c e  r equ i r ed  f o r   t h e  
i n s t r u c t i o n s   t o  do a type-check is small, and so it is of ten   wor th-whi le   to   compi le  
s u c h   t y p e - c h e c k s   i n - l i n e   i n   c o m p i l e d   c o d e   r a t h e r   t h a n   c a l l i n g  a t y p e - c h e c k i n g  
s u b r o u t i n e .  

I n   p r a c t i c e  new da ta  segments a re   no t   a l loca ted  randomly, b u t  f r o m   t h e   t o p  
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of memory down. As new pages of memory are needed they are acquired  from t h e  time- 
s h a r i n g  system and used f o r  segments (on t h e  ITS system, the re  are two segments per 
page). Compiled  programs are loaded  start ing i n  low memory and  working u p ;  t h u s  
be tween  the   h ighes t  program loaded and the  lowest data segment a l l o c a t e d  there is a 
big  h o l e   i n  memory, which is eaten away from both  ends as required.  T h i s  h o l e  has 
been w h i m s i c a l l y  named " t h e  BIg Bag O f  Pages"  from  which new ones  a re  drawn as 
needed;  hence t h e  name "BIBOP" f o r   t h e  scheme. (The TOPS-10 t imeshar ing  system 
provided  by DEC does  not  al low memory t o  be grown from the   top  down, bu t   on ly   f rom 
t h e   b o t t o m  up. When running  under t h i s  time-sharing system MacLISP has a fixed 
r e g i o n  for loading  programs,  and  allocates new data  segments  from  the  bottom  up. ) 

DATA REPRESENTATIONS 

List cel ls ,  as mentioned  above, are  represented as s ing le  words. The CAR 
' p o i n t e r  is i n  t h e  l e f t   h a l f  of  the word, and the CDR pointer  i n  t h e  r i g h t  h a l f .  

F i x n u m s  a r e  r e p r e s e n t e d  as s ing le   words  w h i c h  c o n t a i n   t h e  PDP-10 
r e p r e s e n t a t i o n   o f  the  number. As explained more f u l l y  i n  r e f e r e n c e  1, t h i s  
r e p r e s e n t a t i o n  permits a r i t hme t i c   t o  be performed e a s i l y .   I f  a p o i n t e r   t o  a fixnum 
is In   an   accumula to r ,   t hen  any a r i t h m e t i c   i n s t r u c t i o n  can access t h e  v a l u e  by 
indexing   of f   tha t   accumula tor  w i t h  a zero  base  address. 

Flonums are represented as s ingle  words i n  a manner s imi l a r   t o   f i xnums .  
Bignums each  have a s ing le  word i n  a bignum segment. The l e f t  h a l f  of t h i s  

word is  a l l  z e r o s   o r  a l l  o n e s ,   r e p r e s e n t i n g   t h e  s i g n  o f  t h e  number.  T h i s  
r e p r e s e n t a t i o n   o f  t h e  s ign  is compatible w i t h  t h a t   f o r  fixnums  and  flonums; t h u s  
t h e   s i g n   o f  any number  can  be t e s t e d  w i t h  t h e   t e s t - s i g n - o f - m e m o r y   i n s t r u c t i o n .  
(Bignums were formerly  represented  as  l ist  ce l l s   w i th   spec ia l   po in t e r s  i n  t h e  C A R ;  
t h i s  d i d  n o t  permit the compatibi l i ty  of s ign b i t s ,  and made it d i f f i c u l t  t o  t e s t  
for e i t h e r  numbers o r  l ists .)  The r i g h t  ha l f   po in ts   to  a l i s t  of   pos i t ive   f ixnums.  
which represent t h e  magnitude  of  the bignum, 35 b i t s  per fixnum, l e a s t   s i g n i f i c a n t  
b i t s  f i rs t  i n  t h e  l i s t .  A list is  used instead of a cont iguous  block  of   s torage 
fo r   bo th   ea se   o f   a l l oca t ion  and genera l i ty  of use. The l e a s t   s i g n i f i c a n t  b i t s  come 
first i n   t h e  list to   ease  the  addi t ion  a lgori thm. 

Symbols a r e   q u i t e  complex objects .  Each symbol has  one word i n  a symbol 
segment  and two words i n  ano the r  segment. The r i g h t  half   of t h e  one word p o i n t s   t o  
t h e  symbol's proper ty  list,  which is an ordinary l i s t ;  t h e  l e f t  h a l f  p o i n t s  t o  t h e  
two-word block.  These two words i n  turn are   l a id   ou t  so: 

I b i t s  I 0 
pointer  to  value  cell-  

~ _ _ _ _ ~  

.- - " . - - 

1 "args" proper ty   po in te r   to  p r i n t  name 
~ ~ - 

The " b i t s "  have  various  specialized  purposes.  The value c e l l  f o r  t h e  symbol is i n  
a v a l u e  c e l l  s e g m e n t .   N o t i c e .   t h a t  b i t s  13-17  of t h e  f i r s t  word a r e  z e r o ,  
s p e c i f y i n g  no indexing  or   indirect ion.  T h i s  permits an i n s t r u c t i o n   t o  i n d i r e c t  
through t h i s  word t o  get the  value of the symbol. Get t ing  the address of t h e  two- 
wqrd b l o c k   a l s o   t a k e s  an in s t ruc t ion ;  t h u s  one can ge t  the va lue   o f  a symbol i n  
t w o   i n s t r u c t i o n s .  The "args"   p roper ty  is used by t h e  MacLISP i n t e r p r e t e r  for  
checking  the number of  argument t o  a funct ion  ( for  symbols are a l s o  used t o   d e n o t e  
t h e  n a m e s   o f   f u n c t i o n s ) .  The  p r i n t  name is a list o f   f i xnums   con ta in ing  t h e  
c h a r a c t e r s   o f  t h e  symbol's name, packed f i v e   a s c i i   c h a r a c t e r s   t o  t h e  word. 
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The s p e c i a l  symbol NIL is not  represented i n  t h i s  manner. The a d d r e s s  of 
N I L  is zero .  T h i s  a l lows a p a r t i c u l a r l y   f a s t  check f o r  NIL; one  can use t h e  jump- 
i f - z e r o   i n s t r u c t i o n .   T h i s  is why accumulator 0 (which is a l s o  memory l o c a t i o n  0 )  
is r e s e r v e d   f o r  NIL. Accumulator 0 normally  contains  zero i t s e l f ;  i n  t h i s  way 
t a k i n g  CAR o r  CDR of NIL y i e l d s  NIL. T h i s  a l l ows   one   t o   fo l low a l i s t  by  CDR 
p o i n t e r s   t o  a predetermined  depth and not  have t o  check a t  each s tep  whether  one 
has r u n   o f f  t h e  end. ( T h i s  t r i c k  was borrowed  from InterLISP ( r e f .  2 ) .  ) Most 
f u n c t i o n s  make spec ia l   checks   fo r  NIL anyway, so t h i s  non-s tandard   representa t ion  
is not   harmful . .  PRINT, f o r  example, just checks f o r  NIL s p e c i a l l y  and just o u t p u t s  
"NIL" without   looking   for  a p r i n t  name. NIL does  have a property l i s t ,  b u t  i t  is 
n o t   s t o r e d  where it is i n  other  symbols; the  property list func t ions  m u s t  check 
f o r  NIL (which   t akes   on ly  one i n s t r u c t i o n  anyway). NIL has  no v a l u e   c e l l ,   a n d  
always e v a l u a t e s   t o  NIL. 

One might wonder why normal  symbols are   divided up i n t o  two pa r t s ,   and  why 
t h e   v a l u e  c e l l  is not  simply par t  of the two-word block. The answer is  t h a t  once 
c o n s t r u c t e d   t h e  two-word block  normally  does  not  change, and so may be p l a c e d   i n  
r ead -on ly  memory and shared between processes .   I f   several  HACSYHA p r o c e s s e s   a r e   i n  
use, t h i s   s h a r i n g  may ease  core  requirements by tens  of  thousands  of  words. 

To save  even more memory, symbols are  not  provided w i t h  va lue  c e l l s  u n t i l  
necessary   (most  symbols are   never   actual ly   given  values) .   Instead,   they are  made 
t o  p o i n t   t o  a "standard unbound" va lue   ce l l ,  which is read-only   and   conta ins   the  
marker  specifying t h a t  no value is present. When an attempt is made t o  write i n t o  
t h i s   v a l u e  c e l l ,  t h e   w r i t e  is  i n t e rcep ted  and a new va lue  c e l l  c r e a t e d   f o r   t h e  
symbol   i n   ques t ion .  

(Besides making p a r t s  of symbols read-only, MacLISP c u r r e n t l y   a l l o w s   f o r  
r e a d - o n l y  l ist  c e l l s ,  fixnums,  flonums,  and bignums.  These a r e  u s e f u l  f o r  
c o n s t r u c t i n g   c o n s t a n t   d a t a   o b j e c t s  which are r e f e r r e d   t o  by compiled  code b u t  n e v e r  
mod i f i ed ,  and f o r   p r o p e r t i e s  on property l ists  whose values  are n o t   e x p e c t e d   t o  
change  (such as func t ion   de f in i t i ons ) .  In cer ta in   cases ,   such as t h e   p r o p e r t y - l i s t  
modifying  rout ines ,   checks  are  made for   read-only  objects ,  and such  o b j e c t s  a re  
c o p i e d   i n t o   w r i t a b l e  memory i f   necessary   to   car ry   ou t   the   opera t ion .  T h i s  copying 
causes   t he   o ld   r ead -on ly  copy t o  be wasted from then  on, b u t  t h i s  is accep tab le  as 
such  copying is seldom  necessary i n  p rac t ice .  T h i s  s t r a t e g y  may be c o n t r a s t e d   t o  
t h e  approach  of  I n t e r L I S P   ( r e f .  Z ) ,  i n  w h i c h  an e n t i r e  page of  memory is made 
writable i f  an attempt is made t o  modify  any object  on t h a t  page. T h i s  approach is 
more  general  t h a n  t h a t  of MacLISP, bu t  i n  p rac t ice   t ends   to   reduce  t h e  s h a r i n g   o f  
pages  among processes ,   increasing  the  load on the  time-sharing  system.) 

Va lue   ce l l s ,   t hough   no t   p rope r ly  a AacLISP d a t a   t y p e ,   a r e   w o r t h y   o f  
d i s c u s s i o n .  They are s i n g l e  words,  containing a pointer  i n  t he  r i g h t  h a l f  and zero 
in t h e  l e f t  h a l f .  T h i s  appa ren t   was t e  o f  18 b i t s  i s  m o t i v a t e d  by  s p e e d  
c o n s i d e r a t i o n s .   C o m p i l e d   c o d e   o f t e n   r e f e r e n c e s   t h e   v a l u e  c e l l s  o f   g l o b a l  
variables.  S i n c e   t h e   l e f t  half of a va lue   ce l l  is  zero,  a t es t  f o r  NIL can be done 
w i t h  a s i n g l e   s k i p - i f - m e m o r y - z e r o   i n s t r u c t i o n ;  t h i s  is u s e f u l   f o r  switches.  
F u r t h e r m o r e ,  i f  a v a l u e  c e l l  is  known t o   c o n t a i n  a l i s t ,  t h e  CAR or CDR c a n   b e  
t a k e n   i n   o n e   i n s t r u c t i o n ,  u s i n g  a half-word in s t ruc t ion  w i t h  indirect  addres s ing ,  
because t h e  i n d e x   a n d   i n d i r e c t i o n   f i e l d s   a r e   z e r o ,   w i t h o u t   h a v i n g   t o   f e t c h   t h e  
v a l u e   i n t o  an accumulator f irst .  Similar ly ,  i f  a va lue   ce l l   conta i .ns  a number, t h e  
s i g n   c a n  be tested and t h e  value  (except  for bignums) accessed by us ing  indirect  
a d d r e s s i n g .  ( I t  should  be  noted  that  compiled  code  does  not  keep  local  variable 
values i n  va lue  ce l l s ,  but  uses even more clever   techniques  involving  s tacks.)  

Arrays  have a complicated  representation  because  they  can be o f   a r b i t r a r y  
size, and  m u s t  be a l l o c a t e d  as a c o n t i g u o u s   b l o c k   f o r   e f f i c i e n t   i n d e x i n g .   T h e  
so lu t ion   chosen  is t o  s p l i t  it i n t o  two parts: a Special  ARray cel l  ( c a l l e d  SAR. 

208 



not SAC, for  some  reason) in an array segment, and the block  of data. The  data 
itself  is  kept  just  below the  hole in memory, floating above  loaded programs.  When 
new  programs  are  loaded,  the  array  data is shuffled  upward in memory,  and  the 
special  array  pointers  are  updated.  Similarly,  when  allocating  a  new  array o r  
reclaiming  an  old  one it may be necessary to shuffle the array data. 

The  special  array pointer is two words: 

special  array 
pointer (SAR) 

”- 

bits 7 I 

I, 

for garbage collector 

dimension 
information I 

A complete  discussion of  the SAR contents and array access methods  is  beyond  the 
scope  of  this paper. Notice, however, that the Indirection and index  fields  are 
chosen  to  be 0 and 7 for the two SAR words. The first admits an indirection  for 
calling  the  array  as if it were a function, according to MacLISP convention;  the 
second  allows  indexing  off accumulator 7 for accessing the  data from  compiled  code. 
See  reference 1 for  a  fuller treatment of this. 

Hunks  are  like list cells, but  consist of several contiguous  words.  They 
are  always  a  power  of two in size, for convenience of allocation. Hunks  of  sizes 
other  than  powers  of  two  are  created by allocating  a  hunk  of  a  size  just  big 
enough,  and  then  marking some  of the halfwords as being unused by  filling  them  with 
a -1 pointer  (actually 777777). This was chosen because it never  points  to  a  data 
object,  and  because it  is  easily  generated with instructions  that  set  half- or 
full-words  to  all ones. It is time-consuming to  determine the  actual  size  of  a 
hunk,  since  one  must  count  the  number of unused  halfwords,  but  then  hunks  were 
created  as  an  experimental space-saving representation with properties  somewhere 
between  those of lists and arrays. 

GARBAGE COLLECTION 

Every so often  there comes a point when all  the space  currently  existing 
for  data  objects  has been allocated. At this point there  are two  alternatives: 
[ l ]  allocate  a  new  segment  for data objects of the type needed. 
[2] attempt  to  reclaim  space used by data objects which are  no  longer  needed  (by 
the  process  of  garbage collection). 
A study  by  Conrad  indicates that  the best strategy is to  do [2] only  if [l] fails 
because  one’s  address  space (2561: words, in this  case) is completely  allocated, 
PROVIDED that  one  has  the facility  to compact one’s data storage  and  de-allocate 

209 



s e g m e n t s .   ( R e f .  3)  Since  MacLISP c u r r e n t l y   h a s n ' t   t h e   a b i l i t y  t o  d e - a l l o c a t e  
segments ("once a fixnum,  always a fixnum"), t h i s  s t r a t e g y  must  be  modified.  One 
must  be caut ious   about   a l loca t ing  a new segment, since the   a l loca t ion   canno t  be 
u n d o n e ;   t h u s  MacLISP tries ga rbage   co l l ec t ion  first u n l e s s   e x p l i c i t l y   t o l d  
o t h e r w i s e  by t h e  programmer-, and then  a l locates  a new segment i f  g a r b a g e   c o l l e c t i o n  
fails  t o  reclaim enough space for   the   requi red  data type. 

Suppose,   for  example, t h a t  it is necessa ry   t o   a l l oca t e  a new list ce l l .  
The CONS f u n c t i o n   c h e c k s   t h e   f r e e l i s t   f o r   t h e  data  t y p e  "list c e l l " ;  i f  t h e  
f r e e l i s t  is n o t   e m p t y ,   t h e n   t h e   f i r s t   c e l l  on t h a t  l ist is used .  ( T h e r e  is a 
f reel is t  for each  data   type,  which cons is t s  of a l l   t h e   c u r r e n t l y  unused o b j e c t s   i n  
a l l  the   segments  for t h a t  data type,  s t r u n g  together  such t h a t  e a c h   o b j e c t   p o i n t s  
t o  the   nex t .   Th i s   can  be done  even for   ob jec ts  which o r d i n a r i l y  do n o t   c o n t a i n  
p o i n t e r s ,   s u c h  as fixnums and f lonums,   s ince   those   ob jec ts  are  l a r g e   e n o u g h  t o  
c o n t a i n  a t  l eas t  a s ing le   po in t e r .  There is a s e t  o f   f ixed   loca t ions ,   one   for   each  
da ta  type ,  wh ich   con ta in   po in t e r s   t o   t he   f i r s t   c e l l s  on the r e spec t ive  f r ee l i s t s . )  

I f ,  i n   ou r   example ,   t he  l i s t  c e l l   f r e e l i s t  i s  empty ,   t hen   t he   ga rbage  
c o l l e c t o r  i s  invoked.   Cont ro l led  by u s e r - s e t t a b l e   p a r a m e t e r s ,   t h e  garbage 
c o l l e c t o r  may dec ide   s imply   to   a l loca te  a new list segment (which i n v o l v e s   g e t t i n g  
a new memory page  from the  t ime-sharing  system,  altering the Segment Table, and 
adding   the   newly   a l loca ted   ob jec ts  t o  t h e   f r e e l i s t ) .   I f  it d e c i d e s   n o t   t o   d o   t h i s ,  
ar i f  t h e   a t t e m p t  f a i l s  f o r  any  reason,   then  the  actual   garbage  col lect ion  process  
is undertaken.  T h i s  involves   f ind ing   a l l   the   da ta   ob jec ts  which a r e  accessible t o  
t h e   u s e r  program. An objec t  is access ib l e   i f  i t  is poin ted   to  by compiled  code, i f  
p o i n t e d   t o   b y  a g loba l   va r i ab le  or in te rna l   po in te r  register ( such  as accumula tors  
1-5) ,  or i f   p o i n t e d  t o  by another   accessible   object .   Not ice   that  t h i s  d e f i n i t i o n  
is r e c u r s i v e ,  and so r e q u i r e s  a r e c u r s i v e   s e a r c h i n g   o f   a l l   t h e   d a t a   o b j e c t s  t o  
de te rmine  which are access ib le .  T h i s  searching is known as the mark phase  of  t h e  
g a r b a g e   c o l l e c t o r .  

Associated w i t h  each  data  object is a "mark b i t "  f o r .  use by t h e  garbage 
c o l l e c t o r .  A s  the  garbage  col lector   locates  each access ib le   ob jec t ,  it se t s  t h a t  
o b j e c t ' s  mark b i t .  For l is t  c e l l s ,  fixnums,  flonums, bignums, and h u n k s ,  these 
b i t s  are s t o r e d   i n  a part  of memory unre la ted   to   the  memory occupied by t h e  data 
o b j e c t s   t h e m s e l v e s .  For each 512-word segment there  is a "b i t   b lock"   o f  16 words,  
each   ho ld ing  32 mark b i t s .  The locat ion of the b i t  block is  found  by u s i n g   t h e   t o p  
9 b i t s  of t h e  address of the da ta   ob jec t   t o   i ndex  the GC Segment Table .  ( B i t  
b locks   t hemse lves   a r e   a l l oca t ed  i n  special   "bit   block"  segments;   thus b i t  b l o c k s  
are  t rea ted  in t e rna l ly   a s   ye t   ano the r   da t a   t ype .   Occas iona l ly   t he   obscu re   e r ro r  
message "GLEEP - OUT OF BIT BLOCKS" is p r i n t e d  by LISP i n  the  h i g h l y  i n f r e q u e n t  
s i t u a t i o n  where it cannot   a l loca te  a new b i t  block a f t e r   a l l o c a t i n g  a new segment 
which  needs a b i t  block.)  No b i t  blocks  are needed for symbols and special  array 
p o i n t e r s .  Recall t h a t   t h e   l e f t   h a l f  of a symbol word p o i n t s   t o  a two-word b lock .  
Since s u c h  a two-word  block i s  always a t  an even a d d r e s s ,   t h e  low b i t  o f   t h e  
p o i n t e r   t o  it is normally  zero. T h i s  b i t  is used d u r i n g  garbage   co l lec t ion  a s  t h e  
mark b i t  for t h a t  symbol.   Special   array  pointers have room i n  them for  a v a r i e t y  
of b i t s ,  and  one  of them is used a s  a mark b i t .  Value c e l l s   a r e   o n l y   r e c l a i m e d  
when t h e  symbol p o i n t i n g   t o  them is  reclaimed  (and  not  even t h e n ,  i f  compiled  code 
p o i n t s   t o   t h e   v a l u e   c e l l ,  which f a c t  is indicated by a b i t  i n  t h e  two-word symbol 
b l o c k   p o i n t i n g   t o   t h e   v a l u e   c e l l ) ,  and so they  require no mark b i t s .  

To a i d  t h e  garbage co l l ec to r  i n  the mark phase, t h e  GCST con ta ins  some b i t s  
wh ich   a l so   encode   t he   da t a   t ype   r edundan t ly ,  i n  a f o r m   u s e f u l   t o  t h e  mark ing  
r o u t i n e .  The b i t s  i n d i c a t e  whether  the  object must be  marked, and i f  so t h e  method 
o f   mark ing ;   t hey   a l so   i nd ica t e  how  many po in te r s   t o   o the r   ob jec t s  are c o n t a i n e d   i n  
t h e   o b j e c t  now being marked. 
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After r ecu r s ive ly   l oca t ing  and marking a l l  accessible cells ,  t h e  garbage 
c o l l e c t o r   t h e n   p e r f o r m s  a sweep phase, i n  which every data ob jec t  is examined,  and 
t h o s e  which  have  not  been marked are added t o  the appropriate  f r ee l i s t .  To a id  t h e  
sweep  phase,  each GCST ent ry   has  a f ie ld  by which a l l  entries for segments of t h e  
same data type  are l inked   toge ther   in  a list. In t h i s   n a y   t h e   g a r b a g e   c o l l e c t o r  
d o e s   n o t   n e e d   t o   s c a n  the e n t i r e  segment t ab le   l ook ing   fo r   en t r i e s   fo r   each  type.  
For each  segment,   the  garbage  collector examines  each data ob jec t   i n   t he   s egmen t  
and  its mark b i t ,  and adds the   ob jec t   t o  t h e  appropriate f r ee l i s t  i f  t h e  mark b i t  
is n o t  se t .  For symbols and arrays it a l so   r e se t s  t h e  mark b i t  a t  t h i s  time. ( B i t  
b l o c k s  are reset a t  the  beginning  of the mark phase.) 

If, i n   o u r  example, t h e  garbage  collection  process  has  not  reclaimed  enough 
list cel ls  (as determined by another  programmer-specified  parameter),  then it w i l l  
t r y  t o   a l l o c a t e  one o r  more new list ce l l  segments. I f ,  however, t h i s  causes t h e  
t o t a l  number of list ce l l s  t o  exceed  yet  another  programmer-specified parameter, 
t h e n  a "user  i n t e r r u p t "  is s ignaled,  and a function  writ ten by t h e  programmer steps 
i n .  In  MACSYMA, t h i s  funct ion is the one t h a t  typ ica l ly  informs you: 

YOU  HAVE  RUN  OUT OF LIST SPACE. 
DO YOU  WANT  MORE? 
TYPE  ALL;  NONE; A LEVEL-NO. OR THE NAME OF A SPACE. 

The  reason  for  a l l  these parameters is the  necessary  caut ion  descr ibed  above;  i f  
a l l  t h e   a v a i l a b l e  segments ge t   a l loca ted   as  l ist  c e l l  segments  (which  can e a s i l y  
happen  due. to   intermediate   expression  swel l ,  for example),  then  they  cannot be used  
for a n y t h i n g   e l s e ,  i n c l u d i n g  compiled  code. T h i s  is why, i n  MACSYMA, i f  you use up 
t o o  much list space,  you can ' t   load  up  DEFINT thereaf te r !  

Array data (as  opposed t o   t h e  SAR objec ts )  i s  handled by a special  r o u t i n e  
t h a t  knows how t o  s h u f f l e  them u p  and down i n  core  as  necessary.  When a new array 
is a l l o c a t e d ,  t h e  garbage  col lector  has the same dec is ion   to  make as t o  w h e t h e r  t o  
a l l o c a t e  more memory or   a t tempt   to   reclaim unused ar rays .  The dec i s ion  here is 
less c r i t i c a l ,  s ince  menory a l loca ted   for   a r rays  CAN be de-al located,   and so no  
programmer-spec i f ied   parameters   a re   used .   Array   da ta   on ly   goes   away when t h e  
cor responding  SAR is reclaimed by the  normal garbage co l l ec t ion   p rocess  (or when 
t h e   a r r a y  is e x p l i c i t l y  k i l l e d  by the  user ,  u s i n g  the *REARRAY func t ion ) .  

For the in t e re s t ed   r eade r ,   t he  format of  a GCST en t ry  is shown here: 

B i t  0 
B i t  1 
B i t  2 
B i t  3 
B i t  4 

B i t  5 

B i t  6 

Bits 7-12 

1 i f  da ta   ob jec ts  i n  t h i s  segment must  be  marked. 
1 i f  t h i s  segment contains   value  cel ls .  
1 i f  symbols. . 
1 i f  spec ia l   a r ray   po in te rs .  
1 i f  the  r i g h t  half  of t h i s  data   object   contains  a 
po in te r   ( t rue  of list, bignum, and hunk data objec ts ) .  
1 i f  t h e   l e f t   h a l f  of t h i s  data   object   contains  a 
poin te r  ( true of  l ist  and hunk ob jec ts  -- note  t h a t  
symbols  and spec ia l   a r ray   po in te rs   ge t   spec ia l   t rea tment ) .  
I t  is always t r u e   t h a t  b i t  4 is s e t   i f  t h i s  one is. 
1 i f  hunks ( i n  t h i s  case,   the ST ent ry  is used t o  
determine t h e   s i z e  of  the  hunk). 
a r e  unused. 

Bits 13-21 contain t h e  index  into GCST of the  next   entry w i t h  t h e  
same data type ,   o r   zero   i f  t h i s  is the l a s t  such  e n t r y .  
(Segment 0 never  contains  data  objects,  except NIL, 
which is t rea ted   spec ia l ly  anyway.) 
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Bits 22-35 conta in   the  h igh  14 b i t s  of the address of t h e  b i t  
block for  t h i s  segment, i f  any. 

Since b i t   b l o c k s  are 16 words  long,  the low four   b i t s   o f   t he   add res s  of  such a b i t  
b l o c k  are always  zero.  Thus the GCST entry  only  needs  to   contain  the  high 14 b i t s  
of t h e   a d d r e s s .  These 14 b i t s   a r e   r i g h t - a d j u s t e d  i n  the  GCST e n t r y   f o r   t h e  
convenience  of  a clever ,   t ight ly-coded marking algorithm. T h i s  a lgori thm  works 
rough ly  as fol lows:  
[a ]  S h i f t  t h e  address of the da ta   ob jec t   to  be marked r i g h t  by 9 b i t s ,  p u t t i n g   t h e  
low 9 b i t s   i n t o   t h e   n e x t  accumulator. 
[ b ]  Use the   h igh  9 address  b i t s  t o   f e t ch  a GCST ent ry   in to   the   accumula tor   ho ld ing  
t h e   h i g h  9 address b i t s ,  skipping on the s i g n  b i t  (whether   to  mark or n o t ) .  
[c]  Test b i t s  1, 2, 3 ( spec ia l   t rea tment ) ,  s k i p p i n g  i f  none are se t .  
[ d l  S h i f t  t h e  two   accumula to r s   l e f t  by 4 b i t s .  T h i s  b r i n g s  f o u r   o f  t h e  low 9 
address b i t s  back  into  the  f i rs t   accumulator ,  which together   with 14 b i t s  f rom  the  
GCST en t ry   y i e ld   t he   addres s   o f  a word i n  the b i t  block. The 5 b i t s  remaining i n  
the   second  accumula tor   ind ica te   the  bit w i t h i n  the word t o   u s e   a s   t h e  mark b i t .  
F i n a l l y ,   b i t  4 is brought   into  the s i g n  b i t  of the f i rs t  accumulator. 
[e]  Rotate  the  second  accumulator,   bringing  the 5 b i t s  - t o  t he  low end. 
[ f ]  Indexing   of f   the   f i r s t   accumula tor ,   fe tch   the  word of mark b i t s .  
[g]  Set a mark b i t  i n  t he  word, s k i p p i n g  i f  it was not already marked. ( I f  t h i s  
d o e s n ' t   s k i p ,   t h e n  we e x i t  the marking algorithm. I t  is n o t   n e c e s s a r y   t o   s t o r e  
b a c k   t h e  word of mark b i t s .  ) The b i t  is s e l e c t e d   b y   i n d e x i n g   o f f  t h e  s e c o n d  
accumula to r   i n to  a t a b l e  of  words,  each w i t h  one b i t  s e t .  
[h]   S tore   back  the word of mark b i t s .  
[i] Test t h e  s ign b i t  of t h e   f i r s t  accumulator ( b i t  4 of t h e  GCST ent ry) ,   jumping  
t o   t h e  ex i t  i f  no t  s e t .  
[ j] If b i t  1 is se t  ( b i t  5 of  the GCST ent ry) ,   recurs ive ly  mark t h e   p o i n t e r   . i n   t h e  
l e f t  h a l f .  If b i t  2 is set  ( b i t  6 of the GCST en t ry ) ,  mark a l l  t h e   p o i n t e r s   i n   t h e  
hunk. 
[ k ]   I t e r a t i v e l y  mark the   po in te r  i n  the r i g h t  ha l f .  

I have   taken   the   t rouble   to   ou t l ine   these   s teps   carefu l ly   because   mos t   o f  
them are  s i n g l e  PDP-10 ins t ruc t ions ,   carefu l ly   des igned  t o  perform two o r  three 
use fu l   ope ra t ions   s imu l t aneous ly .  The point is  tha t   t he   ca re fu l  design of t ab l e s  
and t h e  use  of  redundant  encoding  can  greatly  increase t h e  speed  of c r i t i c a l  i n n e r  
l o o p s .  ( I t  s h o u l d   a l s o  be men t ioned   t ha t   such   ca re fu l   t hough t   abou t   des ign  is  
u s u a l l y   w a r r a n t e d  only for c r i t i ca l   i nne r   l oops ! )  I should  also  mention t h a t  most 
of  t h e   c o n s t a n t s  which  have been mentioned i n  t h i s  paper ( b i t  numbers, s i ze s  of  
segments,   and so on)  are  represented  symbolically i n  the  tex t  of t h e  MacLISP code;  
one can change the s i z e  of a segment by changing a s ingle  d e f i n i t i o n ,  and t h e  s i z e s  
of f i e l d s  i n  GCST e n t r i e s ,   p o s i t i o n s  sf b i t s ,  and so on will be a d j u s t e d  by 
assembly-time c o m p u t a t i o n s .  I have  used  numbers i n  t h i s  p a p e r   o n l y  f o r  
c o n c r e t e n e s s .  

For   cer ta in   spaces   the  mark b i t s  a re   ac tua l ly   used   in   the   inver ted   sense :  
1 means  not  marked,  and 0 means marked. T h i s  al lows  the sweep l o o p   t o  t e s t  f o r   a n  
e n t i r e   b l o c k   o f  32. words a l l  being marked by t e s t i n g   f o r  a zero word of mark b i t s ;  
t h e   l o o p  can then just s k i p  over the block, and avoid tes t ing t h e  i n d i v i d u a l  b i t s .  
The t e s t  f o r  a ze ro  word is done while moving the  word i n t o  an  accumulator,  which 
h a s   t o   b e  done  anyway, and so is es sen t i a l ly   f r ee .  

212 



THE ADDRESS  SPACE PROBLEM 

One o f   t he   d i f f i cu l t i e s   cu r ren t ly   f ac ing  MacLISP is the   " l imi t ed"   addres s  
space   p rovided  by t h e  PDP-10. The a rch i tec ture  of the  machine i n h e r e n t l y  limits 
a d d r e s s e s   t o  18 b i t s ;  hence a s ing le  program cannot  address more than 256K words 
of memory. Combined wi th   the   fac t  t h a t  MacLISP does  not   present ly   a l low  for   de-  
a l l o c a t i o n   o f   d a t a  segments (or of loaded  compiled  code, f o r  t h a t  m a t t e r ) ,   t h i s  
s e v e r e l y  limits t h e   u s e   o f  memory. Some MACSYMA problems,   for  example, would 
r e q u i r e  much more than 256K of  programs and l is t  d a t a   t o   s o l v e ;   o t h e r s   r e q u i r e  
less t h a n  256K a t  any  one  t ime,  but  cannot be r u n  because of t h e   d e - a l l o c a t i o n  
d i f f i c u l t y .  

I t  is f a i r l y   c l e a r   t h a t  completely  solving  the  de-allocation  problem  would 
b e   m o r e   t r o u b l e   t h a n  i t  i s  wor th ,   and   wou ld   no t   s t ave   o f f  t h e  f u n d a m e n t a l  
d i f f i c u l t y   i n d e f i n i t e l y .  As both MACSYMA problems and MACSYMA i t se l f  grow i n  s i ze ,  
we w i l l  f ee l  more and more the  "address  space  crunch". The on ly   gene ra l  way t o  
s o l v e   t h i s  problem is t o   a r r a n g e   f o r  a bigger  address  space. 

There  a re  three s o l u t i o n s  which a r e   p r e s e n t l y  a t  a l l  r e a l i s t i c .  Two 
involve   cont inued  use of  the PDP-10 architecture,   but  modified i n  s e v e r a l  ways t o  
a l low  programs  to   access  more memory. These modifications may or may no t   be  made 
a v a i l a b l e   b y  DEC, and may or may not be r e t r o f i t t a b l e   t o   t h e  MACSYMA Consortium 
K L l O  processor .  The d i f fe rence  between the two schemes involves   the   dec is ion  as t o  
w h e t h e r  MacLISP da ta   po in t e r s   shou ld  s t i l l  f i t   i n t o  18 b i t s .  I f   n o t ,  there is 
i m m e d i a t e l y  a f ac to r -o f - two  memory pena l ty ,   s ince  l i s t  c e l l s  m u s t  be two  words 
i n s t e a d   o f   o n e .  However, t h e r e   a r e   a l s o  some t e c h n i c a l   a d v a n t a g e s   t o   s u c h   a n  
arrangement ,  as well as the  obvious  advantage  that l i s t  space  can become b i g g e r  
t h a n  256K. If po in t e r s   a r e   kep t   t o  18 b i t s ,  then a l l  LISP da ta  m u s t  f i t  i n  256K, 
b u t   a n y  amount of  compiled  code and  any number of arrays  could  be  loaded.  Both  of 
t h e s e  schemes  have  been worked out on paper t o  a grea t   ex ten t  by Guy L .  S t e e l e  Jr. 
and  Jon L .  White, t o  compare the i r   mer i t s  and to   p repare  for the p o s s i b i l i t y   t h a t  
one  of  them may be  needed.  Either scheme would require  a good dea l   o f  work ( a t  
l e a s t  o n e   t o  two man-yea r s )   t o  implement f u l l y  i n  bo th   the  i n t e r p r e t e r  a n d   t h e  
compi le r .  

The t h i r d   s o l u t i o n   i n v o l v e s  moving t o   a n o t h e r   m a c h i n e   a r c h i t e c t u r e  
a l t o g e t h e r .  T h i s  leaves open the  choice of machine. Few commerc ia l ly   ava i lab le  
machines are as conducive  to  the  support  of LISP as   t he  PDP-10, and it probably  
would   no t   be   p rac t ica l   to   under take  a completely new implementation. MacLISP does  
p r e s e n t l y  r u n  on Multics  (on a Honeywell 6180 processor),   but is ra ther   s low,   and  
t h e  Multics system is expensive and not  widely  available. The b e s t   b e t  i n  t h i s  
d i r e c t i o n  seems t o  be the LISP machine,  designed by Richard  Greenblatt ,  Tom Knight ,  
e t  a l .  a t  t h e  MIT Art i f ic ia l   Intel l igence  Laboratory.  The prototype  machine  has  
been   working   for  a number of  months now, and the  basic   sof tware is b e g i n n i n g   t o  
show s i g n s   o f   l i f e .  I t  is  not  inconceivable  that MACSYMA may be run   exper imenta l ly  
on it by summer 1977. The  LISP machine  has a 23-bit  address  space,  and  makes  more 
e f f i c i e n t   u s e   o f  i ts  memory than even the PDP-10. However, although it is much 
less expensive  than a KL10,  it is not  designed  for  time-sharing. 

The PDP-10 implementation  of MacLISP and  of MACSYMA w i l l  c e r t a i n l y   b e  
Useful  for a t  leas t  the   next   f ive   to   t en   years .   Af te r   tha t ,   on ly  time can t e l l .  

SUMMARY 

MacLISP is d e s i g n e d   t o   b e  an e f f ic ien t ,   h igh- leve l   sys tems  programming 
language ,   ra ther   than   pr imar i ly  an appl icat ions programming language. I t s  i n t e r n a l  
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organizat ion is a careful ly  chosen balance between useful  generali ty and spec ia l -  
case e f f i c i ency   t r i cks .  A thoughtful  choice of data and table  representations  can 
e x p l o i t  t h e  a r c h i t e c t u r e  of  the  h.ost machine to  gain  speed i n  c r i t i c a l   p l a c e s  
w i t h o u t  great  loss   o f   genera l i ty .  The use  of  symbolic  assembly  parameters can 
avoid  t y i n g  the   sys tem  to  a s ingle   r igid  format .  The g r e a t e s t   e f f o r t   h a s   b e e n  
expended on speeding up  type-checking,  access to  values i n  global  variables,  and 
garbage  collection,  since  these  are among the most frequent  of LISP operat ions.  
The address  space  crunch may eventually  force  yet  another  redesign i f  t h e  PDP-10 
architecture is retained. 
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ABSTRACT 

MacLISP provides a compiler which produces numerical code  competitive  in 
speed  with  some  FORTRAN implementations and yet compatible with  the  rest of the 
MacLISP  system.  All  numerical programs can be run under  the MacLISP  interpreter. 
Additional  declarations  to the compiler specify type information which  allows  the 
generation of optimized numerical code which generally does  not require  the  garbage 
collection  of  temporary numerical results. Array accesses are  almost as  fast  as  in 
FORTRAN,  and  permit  the use of dynamically allocated arrays of  varying  dimensions. 
Here  we  discuss  the  implementation  decisions  regarding  ,user  interface,  data 
representations,  and interfacing conventions which allow the  generation  of  fast 
numerical  LISP code. 

INTRODUCTION 
For  several  years  now  MacLISP  has  supported a compiler  which  produces 

extremely  good  numerical code. Measurements  made  by  Fateman  indicate  that  the 
generated  code  is  competitive with FORTRAN. (Ref. 1) Expressing such  numerical 
code  does  not  require  the use of special numerical language embedded  within  LISP, 
in  the  manner  that  some higher-level languages allow the user to  write  machine  code 
in  the  middle  of  a  program.  Rather,  all  numerical  programs  are  completely 
compatible  with  the MacLISP interpreter. The compiler processes the  interpreter 
definitions  along  with additional numerical declarations. These  declarations  are 
not  required;  omitting  them  merely  results in slower  compiled  code.  For 
convenience,  special  numeric functions are provided which carry  implicit  declared 
type  information  (such  as + and +$ for  integer  and  floating  point  addition, a s  
opposed  to PLUS), but the user need not use them to get optimized  numerical  code. 

CHANGES TO THE MACLISP LANGUAGE 

The  primary  change  to the MacLISP language, as  seen by  the  user,  was  the 
creation  of  numerical declarations for use by the compiler. A general  compiler 
declaration  mechanism  was already a part of the language, so adding  the  numerical 
declarations  was  not  difficult.  This  mechanism  involves  writing  a  MacLISP 
expression  beginning with  the word DECLARE and followed by various  declarations. 
Declarations  may  be global or local. Global declarations are written  by  themselves 
in a file,  and  affect  all  following  functions;  local  declarations  are  written 
w,ithin  the  text  of  a MacLISP function, and affect only the  scope  of  the  construct 
they  are  written within. 

The  simplest  new declarations are statements of  the  types  of  variables. 
Recall  that  MacLISP  has three basic numeric types: fixnum, flonum, and  bignum. 
These  are  (respectively) single-precision integers, single-precision  floating-point 
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numbers,  and  arbitrary-precision  integers.  Only  the  first  two  types  can be 
operated on directly  by hardware instructions, and so they  are  the  only  types of 
interest  to  the compiler. An example of a variable declaration: 

(DECLARE  (FIXNUM 1 J K) ;single-precision integers 
(FLONUM A Et FOO ZAP) ;single-precision reals 
(NOTYPE SNURF QUUX)) ;no specific type 

If a  variable is' always numeric but sometimes may hold bignums, it must  be  declared 
NOTYPE. The  default assumption is that a variable is  NOTYPE  (that is, may  contain 
any  MacLISP  data  object);  NOTYPE  declarations  are  primarily  useful  to  undo 
previous  numeric declarations. 

The  types  of  the  arguments  and  returned  values  of  functions  may  be 
similarly  declared: 

(DECLARE  (FLONUM  (CUBE-ROOT FLONUM) 

( F IXNUM ( FIBONACCI F IXNUM ) 

(NOTYPE (BETWEEN-ZERO-AND-ONE-PREDICATE FLONUM))) 

(INTEGER-POWER-OF-REAL FLONUM FIXNUM)) 

(LENGTH-OF-LIST NOTYPE)) 

This  declaration  specifies that CUBE-ROOT takes a FLONUM argument  and  delivers a 
FLONUM result,  that INTEGER-POWER-OF-REAL  takes a FLONUM and a  FIXNUM  and  delivers 
a FLONUM,  and so on. The types of the arguments could also be  specified  by  using a 
local declaration: 

(DECLARE  (FLONUM (CUBE-ROOT))) ;global declaration 

( DEFUN  CUBE-ROOT  (X) 
(DECLARE (FLONUM X)) ;local declaration 
(EXPT  X .333333333)) 

The  result  type  must  be specified by a global declaration, however,  and  declaring 
the  argument  types  globally also can help the compiler t o  produce  better  code f o r  
functions  which  call  the declared function. 

Arrays  may also be declared globally to the compiler. MacLISP  arrays  come 
in three  types,  which  are essentially FIXNUM, FLONUM, and NOTYPE. (There  are  other 
types  also,  but  these  do  not  concern us here.) The ARRAY* declaration  takes  a 
subdeclaration  specifying the array type; the subdeclaration in turn  specifies  the 
names of arrays  and  their dimensions. An example: 

(DECLARE (ARRAY"  (FIXNUM TUPLE 1 TABLE 2) 
(FLONUM VECTOR 1 MATRIX 2))) 

This declares  TUPLE  and  VECTOR to be one-dimensional arrays, and TABLE and MATRIX 
to  be a  two-dimensional arrays. (MacLISP arrays may  have up t o  five  dimensions.) 
If  the  values  of  the dimensions are also known ahead of  time, a  slightly  different 
form  may  be used: 

(DECLARE  (ARRAY* (FIXNUM (TUPLE 43) (TABLE 3 5 ) )  
(FLONUM (VECTOR 3) (MATRIX ? 1 7 ) ) ) )  

This declares  TUPLE  to  be of length 43, TABLE to be 3 by 5, and MTRIX  to  have 17 
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columns and an  unknown  number of rows. Note that  " 7 "  can be used t o  denote an  
unknown dimension  value; even par t ia l  dimension information can help  the  compiler 
t o   op t imize  array accesses. 

The u s e r  can wr i te   a r i thmet ic  code u s i n g  t h e   t r a d i t i o n a l  names PLUS, 
DIFFERENCE, TIMES, and QUOTIENT; these f u n c t i o n s  work  on any k i n d s  of numbers ,  
even b i g n u m s ,  and  admit mixed-mode a r i thme t i c .   In   t he   p re sence   o f  t y p e  
dec la ra t ions ,   t he   compi l e r  may be ab le   to  deduce that  the  arguments are always 
flonums,  for  example,  and produce  hardware i n s t r u c t i o n s   f o r   f l o a t i n g - p o i n t  
arithmetic. The user can also use  the FIXSW and FLOSW declara t ions   to  t e l l  t h e  
compiler t h a t  such  "generic"  arithmetic will always involve  only  fixnums or only  
f lonums . 

As a convenience  to  the  user,  however, several   vers ions  of  t h e  common 
arithmetic functions  are provided: 

generic 
PLUS 
DIFFERENCE 
TIMES 
QUOTIENT 
REMAINDER 
GCD 
GREATERP 
LESSP 
EQUAL 
EXPT 

fixnum only 
+ - 
s 
/ /  
\ 
\\ 
> 
< - - 
A 

f lonum only 
+% 
-s 
*$ 
//s 

> 
< 
A$ ( f ixnum exponent) 
- - 

(The division  functions  are  writ ten  as "/ /" instead of "/" because R / n  is a MacLISP 
escape  character . )  The functions i n  the  last  two columns are  completely  equivalent 
t o   t h o s e  i n  t h e   f i r s t  column, except that  they convey additional  type  information 
abou t   t he i r  arguments and resul ts .  (An exception is  that  the fixnum-only func t ions  
do not   check  for   overf low,  so i n  a s i tua t ion  where, f o r  example, 100000000  and  
100000000 were multiplied  together, TINES would produce a bignum, whereas * would 
overflow and produce a not-very-meaningful f i x n u m .  The flonum-only functions  do 
no t   check   fo r   ove r f low  e i the r ,  whereas  the  generic  functions  give an e r r o r   f o r  
overflow, and e i t h e r  an error  or zero f o r  underflow.) 

CHANGES TO THE HACLISP  IMPLEMENTATION 

I n  order  that  the  arithmetic machine instructions migh t  be used d i r e c t l y  on 
MacLISP numeric  data  objects, i t  was necessary t o  modify MacLISP t o  use a uniform 
r e p r e s e n t a t i o n  f o r  fixnums and f l o n u m s .  Before  the  fast-ari thmetic  scheme  was 
implemented, MacLISP, l i k e  many other LISP systems, used two r ep resen ta t ions   fo r  
s ingle-precis ion  integers .  One represented  the  integer as a poin te r   to  a mach ine  
word con ta in ing   t he   va lue ,  i n  the same manner as  f loating-point  numbers  were 
represented. The other encoded the  value i n t o  the   po in te r   i t se l f ,  u s i n g  p o i n t e r  
va lues  which were otherwise  worthless  because  they  pointed a t  code instead of data 
o b j e c t s .  The motivat ion  behind  the  ear l ier   dual   representat ion was t o   a v o i d  
allocating  storage  for  small   integer  values,  which are  frequently  used.  (InterLISP 
h a s   f o r   s e v e r a l   y e a r s  "open-compiled"  arithmetic  functions  as s i n g l e  machine 
i n s t r u c t i o n s .  (Ref. 2 )  Unfortunately, it s t i l l  has a d u a l   r e p r e s e n t a t i o n   f o r  
i n t e g e r s ;  as a resul t ,  before  adding two numbers it m u s t  c a l l  a r o u t i n e  which  
determines a t  run-time  the  representation of each number and converts each i n t o  a 
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f u l l  machine word representa t ion .  Compiled InterLISP  code  also calls  a similar 
r o u t i n e   f o r   f l o a t i n g - p o i n t  numbers, not  because  of m u l t i p l e  r e p r e s e n t a t i o n s ,   b u t   i n  
order t o  perform  error-checking as completely as the  interpreter does.   This  run-  
time checking   des t roys   any   advantage   ga ined  by o p e n - c o m p i l i n g   t h e   a r i t h m e t i c  
i n s t r u c t i o n s . )  

The po in te r   encod ing  was  removed from MacLISP f o r   t h e   f a s t - a r i t h m e t i c  
scheme,  and a l l  numbers are now uniformly encoded a s   p o i n t e r s   t o  f u l l  machine  words 
w h i c h   c o n t a i n  t h e  mach ine   r ep resen ta t ions   o f   t he   va lues .   In   o rde r   t o   avo id  
a l l o c a t i n g   s t o r a g e   f o r   f r e q u e n t l y  used  small  integers, there are seve ra l   hundred  
words   o f  memory containing  consecutive  small   integer  values,   and small i n t e g e r s  are 
created by making a p o i n t e r   t o  one  of  these standard l o c a t i o n s ,   r a t h e r   t h a n  
a l l o c a t i n g  a new word f o r  each  use of a small   integer.  (MacLISP does   no t   a l l ow  the  
words   u sed   t o   con ta in  numbers t o  be  modified i n  the way In te rLISP  a l lows   us ing   the  
SETN p r i m i t i v e  ( r e f .  2 ) .  so t h e r e  is no d i f f i c u l t y   i n   s h a r i n g   s u c h   w o r d s .  I n  
fac t ,  these   sma l l   i n t ege r   l oca t ions   a r e  even shared among a l l  t h e  MacLISP p r o c e s s e s  
in   t he   t ime- sha r ing   sys t em by making them read-only.) 

While a r i t h m e t i c  on bignums cannot be  compiled as s t anda rd  a r i t hme t i c  
machine   ins t ruc t ions ,   the i r   representa t ion   has  been chosen to   pe rmi t  s i g n  t e s t s  t o  
be open-compiled. A bignum is a poin ter   to  a word which has   the   s ign   of  t h e  bignum 
i n   t h e   s i g n  b i t  ( and  i n   f a c t   t h e   e n t i r e   l e f t   h a l f ) ,  and a p o i n t e r   t o  a list o f  
fixnums  (which  represent  the  magnitude) i n  the r i g h t  h a l f .  Thus a l l  numbers are 
p o i n t e r s   t o  words which  contain  the  s ign of the number i n  t h e  s ign  b i t ,  and  such 
f u n c t i o n s  as MINUSP can  always be compiled as s ingle  machine i n s t r u c t i o n s .  

In   o rde r   t o   p re se rve  the uniformity of t he   func t ion -ca l l i ng   i n t e r f ace ,  it 
was decided t h a t  a l l  arguments t o   func t ions  must be v a l i d  MacLISP data o b j e c t s .  On 
t h e   o t h e r   h a n d ,  i t  is no t   des i r ab le   t o  have t o  "number cons"  out  of f ree  s t o r a g e ,  
w i t h   t h e   g a r b a g e   c o l l e c t i o n   o v e r h e a d   t h a t - i m p l i e s ,  i n  o r d e r   t o  pass numbers t o  
f u n c t i o n s .  The so lu t ion  used was to   introduce two ex t r a  pushdown lists ( s t a c k s )  
cal led t h e  fixnum  and fPonum p d l s .  The storage i n  these  p d l s  appear   to   have f i x n u m  
or f lonum da ta  t y p e ,  b u t  t h e y   a r e   a l l o c a t e d   a s   s t a c k s   r a t h e r   t h a n  as garbage- 
c o l l e c t e d   h e a p s .  These s t acks  can be used t o  hold  temporary  numerical  values  and 
t h e  v a l u e s  o f  PROG va r i ab le s  which have been dec lared   to  be numeric, b u t  they  can 
a l s o  be used t o   a l l o c a t e  pseudo-data  objects  compatible w i t h  MacLISP's s t a n d a r d  
number r ep resen ta t ion .  A po in te r   t o  a fixnum p d l  loca t ion  is i n d i s t i n g u i s h a b l e  
from  an  ordinary  f ixnum  for most purposes; it is a p o i n t e r   t o  a f u l l  machine word 
conta in ing   the   numer ic   va lue .  A typ ica l  code  sequence r e su l t i ng  from  compiling 
(FOO (+ A 5 ) )  is: 

;assume accumulator '1 has  the  pointer  value of A i n  it 
MOVE 7 , (1 )   ; ge t   t he  machine word f o r  A into  accumulator 7 
ADD1 7 , 5  ;add 5 t o   t h e  machine word 
PUSH FXP, 7 ;push  r e su l t i ng  word i n t o  fixnum p d l  
MOVE1 l , ( F X P )  ;copy  fxp  pointer  into argument accumulator 1 
CALL  1,FGO ; ca l l   f oo  
SUB F X P , [ l , , l ]  ;remove  pushed word from  fixnum pdl 

To the func t ion  FOO the  pointer  passed i n  accumulator 1 has   the  precise   format  of a 
MacLISP i n t e g e r :  a p o i n t e r   t o  a machine word containing the in teger   va lue .   Note  
t h a t   t h e   v a l u e  of t he   va r i ab le  A may i t s e l f  have  been such a "pdl   number";   the  
MOVE i n s t r u c t i o n  would move the machine word value  into  accumulator 7 whether  it 
was a p d l  number or an  ordinary fixnum. 

One o f   t h e   d i f f i c u l t i e s  of  using  stack-allocated numbers is t h a t   t h e y   h a v e  
a d e f i n i t e  l ifetime; on re turn  from the   func t ion   they   a re   passed   to ,   they  are de- 
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a l l o c a t e d  and no longer exist. By the time  they are  de-allocated,  there must  be no 
more p o i n t e r s   t o  t h a t  word access ib le   to   the   user  program, or e l s e   s u b s e q u e n t  
references might see a wrong value  because  the p d l  word was re -a l loca ted   for  some 
other  purpose.  

To overcome t h i s  d i f f icu l ty   the  notion of safety was developed. A copy of 
a poin ter  is s a f e  i f  it can be guaranteed that  the copy will become inaccess ib le  
before  what i t  poin ts   to  is de-allocated  if  the  pointer i n  f a c t   p o i n t s   t o  a p d l  
number. Alternatively,  a use  for a pointer is safe i f  that  use  doesn't require a 
safe pointer .  The fast-ari thmetic compiler  does some complex a n a l y s i s   t o  determine 
what   s i tua t ions  are safe.  Some standard  conventions for   safety:  
[ l  J A pointer  i n  a global  (special)  variable may have an indef in i te   l i fe t ime,   and  
so p u t t i n g  a p o i n t e r  i n  a global   var iable  is unsafe. I t  f o l l o w s   t h a t  s u c h  a 
v a r i a b l e  may not  contain a pointer  to a p d l  number, since we cannot  guarantee  such 
a p o i n t e r   t o  be safe .  Consequently, any pointer  actually  obtained from a g l o b a l  
v a r i a b l e  is safe. 
[ Z ]  Consing a pointer   into a list c e l l  (or us ing  RPLACA t o  p u t  a poin te r   in to   an  
e x i s t i n g  l ist  c a l l )  is s imi la r ly   unsafe .   Poin te rs   ac tua l ly   occur r ing  i n  l i s t  
structure must  therefore be guaranteed  safe. 
[3] I t  is not  possible  to  return a p d l  number as  the  value of a function, because 
there  would  be no r e tu rn   t o   t he  code t o  de-allocate i t .  Therefore r e t u r n i n g  a 
p o i n t e r  from a funct ion is  unsafe, and a l l   p o i n t e r s   a c t u a l l y   r e t u r n e d   f r o m  
funct ions  are safe .  
[ 4 ]  Passing a pointer   as  an argument t o  a function is safe;   therefore p d l  numbers 
( u n s a f e  po in te rs )  may be passed as arguments t o  functions. A l l  function  arguments 
are t h u s  potentially  unsafe.  They may be passed on down to   other   cal led  funct ions,  
b u t  may not be returned or otherwise used as i f  they were safe.  
[SI P d l  numbers may be pointed t o  by ordinary  compiled  local   var iables .  Such  
loca l   va r i ab le s  may or may not have unsafe  values,  depending on where the   va lues  
came from. The compiler m u s t  guarantee  that when the  value of a l oca l   va r i ab le  is 
used  e i ther   the  value is safe  or the use is safe. 

Suppose we wrote a function such as: 

(DEFUN ZAP ( A )  (CONS A ' F O O ) )  

We are p u t t i n g  the argument A I n t o  a l ist  c e l l  (an  unsafe  use), b u t  the  argument A 
i s  a l so   (po ten t i a l ly )   unsa fe .  In t h i s  situation  the compiled  code mus t  create  a 
safe copy  of  the  unsafe  pointer. The compiled code therefore  uses a rout ine PDLNMK 
( " p d l  number  make")  which  checks for a p d l  number and makes a copy by doing a 
number cons i f  necessary. That is, if the  pointer  given t o  PDLNMK is a l r eady   s a fe ,  
it is  r e t u r n e d  as is; b u t  i f  it is unsafe, a s a f e  copy is made w i t h  t h e  same 
value.  The compiled code for  ZAP would look l ike t h i s :  

MOVEI 2,'FOO ; p u t  constant n foon  i n  accumulator 2 
JSP T,PDLNMK ;make sure accumulator 1 has a safe  pointer 
JCALL 2,CONS ; c a l l  CONS 

If A is not  a p d l  number, PDLNMK does no th ing ;  b u t  i f  it is, PDLNMK replaces  t h e  
p o i n t e r  i n  accumulator 1 w i t h  a freshly  allocated f i x n u m  w i t h  t h e  same value as t h e  
p d l  number. In t h i s  way a safe  value w i l l  be passed to   the  CONS function. (The 
convention  about  function arguments  being potentially  unsafe  has an exception i n  
CONS, so t h a t  CONS i t s e l f  need n o t  always perform PDLNMK on its arguments. The 
compiler knows about t h i s  exception, and guarantees  that anyone who cal ls  CONS w i l l  
p rovide  safe  arguments. I n  p rac t ice ,  arguments  passed t o  CONS o f t e n  can b e  



guaran teed  safe by  compile-time  analysis, and it saves time n o t   t o   h a v e  CONS u s e  
PDLNMK. ) 

Notice t h a t  one  consequence  of  the  use  of PDLNMK is t h a t  two numbers which 
are a p p a r e n t l y  EQ ( i . e .  t he  same pointer)  may not  be i f  the compiled  code  has t o  
make a copy.  For example, consider t h i s  code: 

(DEFUN LOSE (X) 
(SETQ G X )  
4 E Q  X G I )  

I 

The r e s u l t  o f  t h e  EQ t e s t   c o u l d   b e  NIL, even  though t h e  g l o b a l   v a r i a b l e  G 
a p p a r e n t l y  i s  assigned  the same pointer   as  was passed t o  LOSE as an argument. If 
an u n s a f e   p o i n t e r  is passed   t o  LOSE, G will rece ive  a s a f e   c o p y   o f   t h a t   v a l u e ,  
which w i l l  no t   be   the  same pointer ,  and so the EQ t e s t  w i l l  f a i l .  ( T h i s  is a n o t h e r  
r eason  why  MacLISP does  not  have a SETN primit ive;   s ince  the  compiler   can make 
c o p i e s   o f  a number without  warning,  conceivably SETN might  modify  one  copy  of a 
number b u t   n o t   t h e   o t h e r ,  w i t h  anomalous r e s u l t s . )  

Recall t h a t  one unsafe  use of a pointer is re turn ing  it as the va lue   o f  a 
f u n c t i o n .  We would l i k e   f o r  numeric  code n o t  t o   eve r ,have   t o  "number cons",  b u t  we 
c a n n o t   r e t u r n  a p d l  number from a function. The s o l u t i o n   t o  t h i s  dilemma is t o  
a l l o w   n u m e r i c - v a l u e d   f u n c t i o n s   t o  have two e n t r y   p o i n t s .  One is t h e  s t a n d a r d  
MacLISP e n t r y   p o i n t ,  and i s  compatible w i t h  the  standard MacLISP ca l l ing  sequence; 
ca l l i ng  t h e   f u n c t i o n   t h e r e  will produce a MacLISP poin ter   va lue ,  which  w i l l  i n v o l v e  
a number cons i f  the   va lue  is  i n  f a c t  numeric. The o ther  is a s p e c i a l   e n t r y   p o i n t  
which is non-standard,  and can  only be used by compiled  code  which knows t h a t   t h e  
cal led func t ion  is numeric-valued.  Entering a numeric func t ion   there  w i l l  d e l i v e r  
a machine word i n  accumulator 7 instead of the  s tandard  pointer  i n  accumulator 1. 

In   o rde r   t o   u se  t h i s  special   call ing  sequence,  both t h e  ca l l ed   func t ion   and  
t h e  c a l l i n g   f u n c t i o n  m u s t  be  compiled w i t h  dec la ra t ions   spec i fy ing  t h a t  t h e  ca l led  
f u n c t i o n  is numeric-valued. The compiler will then  compile  the cal led f u n c t i o n  tu 
have  two e n t r y   p o i n t s ,  and the   ca l l ing   func t ion   to  use the non-standard  numeric 
e n t r y   p o i n t .  

The e n t r y   p o i n t s   a r e   a c t u a l l y  implemented a s  two consecu t ive   l oca t ions  a t  
the   beginning   of   the   func t ion .  The f irst  is  the  s tandard  entry  point ;  i t  -merely 
p u s h e s   t h e  address  of a s p e c i a l   r o u t i n e  F I X 1  ( o r  FLOAT1,  f o r  a f lonum-valued  
f u n c t i o n )   o n t o   t h e   s t a c k ,  and then  fa l ls   in to   the  non-standard  entry  point .   The 
function  then  always  produces a machine number i n  accumulator 7. I f   t h e   f u n c t i o n  
is c a l l e d  a t  the  numeric  entry  point,  it w i l l  de l iver  its va lue   a s  a machine  word. 
If ca l led  a t  the  s tandard  entry  point ,   then on de l iver ing  the machine word it  w i l l  
" r e t u r n "   t o  FIX1, which  performs a "number cons" on t h e  machine  word, producing a 
normal  fixnum (or  FLOAT1, which produces a flonum), and t h e n  returns t o  t h e  cal ler .  

As an example, here   a re  two functions w i t h  appropr ia te   dec la ra t ions :  

(DECLARE (FLONUM (DISC FLONUM FLONUM FLONUM))) 

(DEFUN DISC ( A  B C )  
( -$  (*$ B B) (*% 4.0 A C ) ) )  

(DEFUN QUAD ( A  B C )  
(PROG ( D )  

(DECLARE (FLONUM D)) 
(SETQ D (DISC A B C ) )  
(COND ((MINUSP D )  (RETURN (ERROR)) )  
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The code  produced would look   l ike   th i s :  

DISC: PUSH P,[FLOATl] ; fo r  normal entry,  push address of FLOAT1 
MOVE 7,(2) ;numeric entry  point ;   get  machine  word f o r  B 
FMPR 7,7 ; f l oa t ing  m u l t i p l y  B by i tself  
MOVSI 10,(4.0) ;get  4.0 i n  accumulator 10 
FMPR 10,(1) ; f l oa t ing  m u l t i p l y  by A 
FMPR 10,(3) ; f loa t ing  m u l t i p l y  by C 
FSBR 7,lO ; f loa t ing   subt rac t   ac  10 from ac 7 
POPJ  P, ;machine word r e s u l t  is i n  ac 7 

Notice t h a t  DISC does  no number c o n s i n g   a t  a l l  i f  cal led a t  t h e   n u m e r i c   e n t r y  
p o i n t .  I t  does a l l  a r i thmet ic  i n  the  accumulators, and returns a machine  word as 
i ts  result. The code is remarkably  compact,  of the k ind   one   o rd ina r i ly   expec t s  
from a FORTRAN compiler.  

QUAD:  PUSH P, 1 
PUSH P.2 
PUSH  P,3 
NCALL 3,DISC 
PUSH FLP, 7 
JUMPGE 7,G0003 
MOVEI T,O 
CALL 16,ERROR 
JRST GO005 

G0003:  MOVEI l,(FLP) 
NCALL 1,SQRT 
FSBR  7,@-1(P) 
MOVE lo,@-2(P) 
FSC  10,l 
FDVR  7,lO 
JSP  T,FLCONS 

G0005: SUB P,[3,,3] 
SUB FLP,[  l,, 13 
POPJ P, 

;save A, B, and C on t h e  s t ack  
; to   preserve them across   the 
; c a l l   t o  DISC 
; c a l l  DISC w i t h  the same arguments 
;push  the   resu l t   on to  flonum p d l  
; jump if  value  non-negative 

; ca l l   t he  ERROR rout ine 
;go t o  GO005 
;get  a pointer   into flonum p d l  
; c a l l  SQRT w i t h  tha t   po in te r  
; f loa t ing   subt rac t  machine value  of  B 
; fe tch machine word value  of A 
; m u l t i p l y  by 2.0 ( u s i n g  " f l o a t i n g  scale") 
;divide  ac 7 by ac 10 
;perform a flonum cons 
;clean u p  the  s tacks 

;return  pointer  value i n  accumulator 1 

There  are severa l   po in ts   to   no te   about  QUAD: 
(1) I t  was n o t   d e c l a r e d   t o  be  numeric-valued. As a r e s u l t ,  when r e t u r n i n g  a 
number i t  mus t  do a number cons. Moreover, it does  not  have a numeric e n t r y   p o i n t .  
(2) Because DISC was dec lared   to  be numeric-valued, QUAD uses  NCALL i n s t e a d  of  
CALL t o  invoke i t;  NCALL en te r s  a t  the numeric en t ry   po in t .  The resul t  of DISC is 
expected in   accumula tor  7. Since QUAD needs to   u se  t h i s  r e s u l t   t o  pass t o  SQRT, it 
makes a p d l  number out  of t h i s  machine word. In t h i s  way func t ion   va lues   can  be 
made i n t o  p d l  numbers a f t e r  a l l  -- b u t  by t h e   c a l l e r  r a the r  t h a n  t h e  ca l led  
f u n c t i o n .  
(3) As an as ide,  t h e  compiler  makes some o t h e r   n e a t   o p t i m i z a t i o n s .  I t  u s e s  a 
JUMPGE i n s t r u c t i o n   f o r  MINUSP, because  the  value  to be t e s t e d  is in   an   accumula tor  
anyway. I t  takes advan tage   o f   t he   add res s   a r i t hme t i c   o f  t h e  PDP-10 t o   f e t c h  
machine words p o i n t e d   t o  by poin ters  on t h e  stack i n  one i n s t r u c t i o n .  It knows how 
t o  use   severa l   accumula tors   for   a r i thmet ic ,  and t o  arrange f o r   t h e   r e s u l t  t o  end  up  
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in the   cor rec t   accumula tor .  I t  expresses   the  mult ipl icat ion by 2.0 as a " f l o a t i n g  
scale" i n s t r u c t i o n ,  which i s  f a s t e r   t h a n   t h e   m u l t i p l i c a t i o n   i n s t r u c t i o n  i f  o n e  
operand is a f loa t ing -po in t  power of two. 

The representat ion  of   arrays i n  MacLISP was ca re fu l ly   r edes igned   t o   a l l ow 
f a s t  access t o  t h e m  by compiled  code,  again  taking  advantage  of t h e  p o w e r f u l  
address a r i thme t i c   o f  t h e  PDP-10. There are e s s e n t i a l l y  two kinds  of arrays:  s- 
expres s ion   a r r ays ,  whose  components may be  any safe   po in te rs ,  and  numeric a r r a y s ,  
whose  components must  be. a l l  fixnum  machine  words o r  a l l  flonum  machine  words. 

The MacLISP. ARRAY data  type is  a poin te r   to  a double word ( t h e  " s p e c i a l  
array p o i n t e r " )  which i n  t u r n  po in ts   to   the   a r ray   da ta .  The r eason   fo r  t h i s  is 
t h a t   t h e   p o i n t e r  m u s t  point  t o  a f ixed   p l ace   ( a s   a l l  MacLISP po in te r s  m u s t ) ,  b u t  
t h e  actual  array data may have t o  be sh i f ted  around by t h e  g a r b a g e   c o l l e c t o r   t o  
accommodate new storage  requests,   because  arrays are not  of a uni form  s ize .  When 
t h e  garbage c o l l e c t o r  moves t h e   a r r a y   d a t a ,  it u p d a t e s  t h e  t h e  c o n t e n t s   o f  t h e  
special  a r r a y   p o i n t e r ,  b u t  the spec ia l   a r r ay   po in t e r   i t s e l f  may remain i n  a f i x e d .  
p l a c e .  

In   exchange   for   the   f lex ib i l i ty  of  dynamically a l located  arrays,   however ,  
one  pays t h e  pr ice  o f   a lways   access ing   t he   a r r ay   da t a   i nd i r ec t ly   t h rough  t h e  
s p e c i a l  array poin ter .  T h i s  cost  is a l lev ia ted  by taking  advantage  of  addressing 
a r i t h m e t i c .  The  second word o f   e a c h   s p e c i a l   a r r a y   p o i n t e r   p o i n t s   t o  t h e  a r r ay  
data ,  which is ar ranged   l inear ly  i n  row-major order;  t h i s  second word fur thermore  
s p e c i f i e s   i n d e x i n g  by  accumulator 7. 

1 

GC information 
special array pointer   ,header  code array data 

c- 
dimension 1 .  
dimension 2 

dimension n + element 0 
element 1 

... 

u element Dl**. . .*Dn-1 

Compiled  code can a.ccess a numeric array datum by ca l cu la t ing   t he   l i nea r  s u b s c r i p t  
value in   accumulator  7 and then  using an indirect   fetch  through t h e  second word of  
t h e  special  a r ray   po in te r   for   the   a r ray .  The l inear   subscr ip t   va lue  is of   course  
c a l c u l a t e d  as 

( ... (J l  * D2 + 52) * D3 + 53 ... ) * Dn + Jn 

where t h e  N i  are the  dimensions of the  array and the Ji a r e   t h e   a c t u a l  s u b s c r i p t s .  
For  example, suppose tha t  accumulator 1 contains a po in te r   t o  a 3 by 5 by 13 fixnum 
array,  and that  accumulators 2, 3,  and 4 contain fixnum s u b s c r i p t s   f o r   t h a t   a r r a y .  
Then t o  f e t c h   t h e   d e s i r e d  datum this code would be used: 

MOVE 7 , (2 )  ; f e t c h   f i r s t   s u b s c r i p t   i n t o  ac 7 
IMULI 7,5 ;mult iply by 5 (second  dimension) 
ADD 7. ( 3 )  ;add i n  second subscr ipt  
IMULI 7 , 1 3  ;multiply by 13 ( t h i r d  dimension) 
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ADD 7, (4 )  ;add in third subscript 
MOVE 7,@1(1) ;fetch indirect through special array  pointer 

If the  number  of  dimensions  of  the array has been declared to  the  compiler  but  not 
the  values  of  the dimensions,  the compiler arranges to  fetch  the  dimension  values 
at run time.  This  is  easy because the array is arranged so that  negative  subscript 
values  fetch  the dimension information. (The LISP user is not supposed to  use  this 
fact,  but  only  compiled code.) The same example for a  three-dimensional  array of 
arbitrary  dimensions might  look  like this: 

MOVE 10,(2) 
MOVNI 7,2 
IMULI 10, @l( 1) 
ADD 7,(3) 
MOVNI 7,l 
IMULI lO,@l(l) 
ADD 10,(4) 
MOVE 7 , l O  
MOVE 7,@1(1) 

;fetch first subscript into ac 10 
;put -2 into ac 7 
;multiply by second dimension 
;add in second subscript 
;put -1 into ac 7 
;multiply by third dimension 
;add in third subscript 
;move into ac 7 for subscripting 
;fetch indirect through special array  pointer 

The  code  is  a  little longer  than before, but will work for  any  three-dimensional 
array. in general,  the compiler  tries  to minimize subscript computations. If the 
exact  dimensions  are  declared, or if some of the  subscripts  are  constant,  the 
compiler  will  do part or all of the subscript calculations at compile  time. 

For  s-expression arrays, the pointer data are stored two  per  word,  with 
elements  having  even  linear  subscripts in the  left  half  of  a  word  and  the 
succeeding  odd  subscripted elements in the right half of the word. The  compiler 
must  generate  code  to test  the parity of the linear subscript  and fetch  the  correct 
half-word.  Suppose that a pointer to a one-dimensional array  is in accumulator 1, 
and a  fixnum  subscript  is in accumulator 2. Then  the  following  code  would  be 
generated: 

HOVE 7 , ( 2 )  ;fetch subscript into ac 7 
ROT 7,-1 ;divide by 2, putting remainder bit in sign 
JUMPL 7,G0006 ;jump if linear subscript was odd 
HLRZ 3,@1(1) ;fetch pointer from left half 
JRST GO007 ;jump to GO007 

G0006: HRRZ 3,@1(1) ;fetch pointer from right half 
G0007: ... 
If the  compiler  can determine at compile time that the linear subscript  will  always 
be  odd  or  always even, it will simplify the code and omit the JUMPL,  JRST,  and the 
unused  halfword fetch. 

SUMMARY 

MacLISP  supports the compilation of numerical programs into  code  comparable 
to  that produced  by a FORTRAN  compiler while maintaining complete  compatibility 
with  the  rest  of  the  MacLISP system.  All  numeric  code  will  run  in  the  MacLISP 
Interpreter;  additional information  may be given to  the  compiler in the  form of 
declarations  to  help it generate the best possible code. If such  declarations are 
omitted,  the  worst  that  happens is that the code  runs slower. 



Compat ib i l i ty  w i t h  non-numeric functions was achieved by t h e   j u d i c i o u s  
c h o i c e  o f  a uniform  representat ion  for  LISP numbers  combined w i t h  a compat ib le  
s t a c k - a l l o c a t e d   r e p r e s e n t a t i o n   f o r  temporary  numeric  values  passed between 
func t ions .  The use  of  stack  allocation  reduces  the need f o r  garbage co l l ec t ion   o f  
numbers, w h i l e  the  uniformity of  representation  eliminates  the need f o r  most run- 
time rep resen ta t ion   checks .  One exception  to t h i s  i s  t h a t  t h e  use  of stack- 
a l l o c a t e d  numbers m u s t  be r e s t r i c t e d ;  t h i s  d i f f i c u l t y  is k e p t  i n  check by 
m a i n t a i n i n g  a careful   interface between safe and unsafe  uses, and analyzing t h e  
safety of pointers   as  much as possible  at  compile time. 

While  numeric  functions and non-numeric funct ions may c a l l   e a c h   o t h e r  
freely,  a spec ia l   in te r face  is provided for one numeric funct ion  to   cal l   another  i n  
such a way as t o  avoid  number consing. 

Arrays are   s tored i n  such a way that  they may be dynamically  allocated and 
ye t  a c c e s s e d   q u i c k l y  by compiled  code. T h i s  i s  a i d e d  by  t h e   r i c h  a d d r e s s  
ari thmetic  provided by the PDP-10. 

The philosophy  behind  the implementation is that  the  generali ty  of LISP and 
t h e  speed of optimized numeric code are, n o t  incompatible. A l l  t ha t  is needed is a 
well-chosen,  uniform  representation  for  data  objects  suitable  for  use by hardware 
i n s t r u c t i o n s ,  combined w i t h  a wil l ingness   to   handle   important   special  cases 
c l e v e r l y  i n  the compiler. 
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ABS TRACT 

The  problem of finding  closed  forms  for a summation  involving  polynomials 
and  rational  functions  is  considered. A method  closely  related  to  Hermite's 
method  for  integration  of  rational  functions  is  derived.  The  method  expresses 
the sum of a rational  function  as a rational  function  part  and a transcendental 
part  involving  derivatives  of  the  gamma  function. 

Section 1. Introduction 

Mathematicians  have  long  been  interested in finding  closed  form  expressions 
for  formal  summations. 

or 

n i n+l 
i 2n-l 

1 - = ~ - - - "  

i=l  2 

The  history  of  this  problem  is  dotted  with  the  names of the  giants  of 
mathematics;  names  like  Newton,  Euler,  Bernoulli  or  Boole.  Jordan  (ref. 1) 
gives a comprehensive  survey  of  this  field  of  mathematics. In  spite of the  many 
years  of  work  which  has  been  devoted  to  the  problem,  there  is  no  general  algo- 
rithmic  approach  to  finding  such  closed  forms.  Jordan's  book  is  more  like a 
cookbook  of  approaches,  rather  than a rigorous  algorithmic  treatment,  such  as we 
would  like  to  have  for  computer  applications. 

For  this  reason,  since  the  turn  of  the  century,  the  field  has  developed  in 
other  directions.  In  particular  the  areas of approximation  theory  and  numerical 
analysis  have  been  it's  progeny.  However,  the  need  for  finding  closed  forms  for 
sunmations  still  exists. It is  useful  for  large  portions  of  the  study  of  combi- 
natorics. So, it  would  be  nice,  if  the  problem  could  be  solved  algorithmically, 
with  the  aid  of  algebraic  manipulation.  This  paper  is  intended  to  lay  some 
ground  work  to  explore  parts  of  the  problem. 

One  reason  that  there  is  hope  for an algorithmic  solution, is'the remarkable 
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success   in   so lv ing   the   in tegra t ion   problem.  Work by   mathemat ic ians   l ike   Risch  
( ref-  2) , Moses ( r e f .  3) and many o thers   has   resu l ted   in   the   deve lopment   o f  
a l g o r i t h m s   f o r   f i n d i n g   c l o s e d   f o r m s   f o r  a l a rge   r ange   o f   i n t eg ra l s .  A s  Boole 
( r e f .  4 )  n o t e d   i n   h i s  work on d i f f e rences   ove r  a century  ago,   there  are s t r o n g  
pa ra l l e l s   be tween   t he  two problems.   In   th i s   paper ,  w e  shall explore  some of 
them  and use  the  methods  of   the  integrat ion  problem as a l i g h t   t o   g u i d e   o u r  way. 

To a la rge   ex ten t   the   p roblem of f ind ing   c losed   fo rms   fo r  summations  has 
b e e n   n e g l e c t e d   i n   t h e  work  of a lgebra ic   manipula t ion .   Johnson  ( re f .  5) con- 
s ide red   t he   ze ro   r ecogn i t ion   p rob lem  fo r   combina to r i a l  sums and  Gosper ( r e f .  6) 
considered  the  problem  of  automatically  economizing  summations.  Recently, 
Cheatham ( r e f .  7) descr ibed  a program  which a t t e m p t s  t o   f i n d  a closed  form  for  
summations  computed  by l o o p s   i n  a program,  and i n   r e f e r e n c e  8 Gosper  describes 
a method  based on c o n t i n u e d   f r a c t i o n s ,   f o r   f i n d i n g   s m a t i o n s .  

I n   s e c t i o n  (2)  w e  p re sen t  some n o t a t i o n  and p r o p e r t i e s  of d i f f e r e n c e s .  
Sec t ion  (3 )  ske tches   the  summation  of  polynomials.  Section ( 4 )  dea l s   w i th  
f i n d i n g   t h e   r a t i o n a l  p a r t  of a summation  of a r a t iona l   func t ion   and   s ec t ion  (5) 
b r i e f ly   cons ide r s   t he   t r anscenden ta l  p a r t .  

Sec t ion  2; Some Notat ion 

I f  w e  are presented   wi th  a d e f i n i t e  summation  and  asked t o   f i n d  i t s  c losed  
form: 

one way w e  can  approach  the  problem i s  t o   f i n d   t h e   i n d e f i n i t e  summation: 

x-1 
h(x) = 1 f ( i )  . 

i = O  

Then one   can   eva lua te   h (x)   to   ob ta in   g (n) .  

This b r i e f   s k e t c h   s i d e s t e p s   t h e   i s s u e  of  any s i n g u l a r i t i e s  which may o c c u r   i n  
the   func t ion   over   the   range  of  summation.  However, i t  does  point   out   the  impor- 
tance of t h e   i n d e f i n i t e   s u m a t . i o n ,   t h e   q u a n t i t y  w e  sha l l   be   concerned   wi th   here .  

I m p l i c i t  i n   o u r   n o t a t i o n   f o r   ( e q .   1 )  i s  t h a t  i t akes  on i n t e g r a l   v a l u e s  
between a and  b.  Therefore, i f  w e  t ake   the  f i r s t  d i f f e r e n c e  of h (x ) :  

we o b t a i n   f ( x ) ,   t h e   f u n c t i o n  w e  are t r y i n g   t o  sum. Conver se ly ,   i f  w e  apply   the  
i n v e r s e   d i f f e r e n c e   o p e r a t i o r  A - ’  t o  f (x) : 
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A-lf  (x) = h(x) 

we  obtain  the  indefinite  summation. 

This  leads  to  our first  parallel  between  summation  and  integration: we can 
obtain  an  expression  for  the  summation  by  anti-differencing  the  function;  much 
in  the  way  one  obtains  an  integral  by  anti-differentiation.  Also,  the  study  of 
differences  lead’s  to  the  understanding  of sums, much in the  way  differentiation 
is  the key to  integration.. 

The  anti-difference  is  unique  up  to  the  addition  of  functions  whose  first 
difference  is  zero.  Examples  of  such  functions  are: 

a) cons  tan  ts 

b) functions  with  period 1 e;g. sin(?rx). 

Since  the  beginning  of  the  study  of  differences;  it  has  been  convenient  to 
1 employ an operator  notation  to  express  equations. We  shall  use  the  notation 

employed  by  Jordan  (ref. l), which  is  fairly  standard.  The  common  and  most 
useful  operators  are: 

a)  the Shift  Operator E : Ef  (x) = f(x+l) 

b) the  Difference  Operator A :Af(x) = Ef(x) - f(x) 

c) the  inverse  difference  operator A - l  : A-’ f (x) = 1 f (i) 
x-1 

i=O 

We  will  use  the  inverse  difference  operator A-] to  represent  the  quantity 
we  wish to  compute,  to  avoid  any  confusion  between  it andany bounded  sums  which 
will  be  expressed  by  the  sumnation  operator C .  Occasionally,  we  shall  extend 
the  notation  by  indicating  the  variable  involved  in  the  difference  and  the  length 
sf the  difference: 

i.e.: Bf(x,y) = f(x+h,y) - f(x,y). 
h 

Normally  x  will  be  understood  from  the  context  and h=l, and so this  extra  embel- 
lishment  will  not  be  necessary. 

In  modern  terms  operators a)  and b) are  derivations  on  an  extension  field 
F(x,xl, ..., xn)  over some  ground  field F(x). Using  these  derivations  Cohn  (ref. 
9) constructs  a  Difference  Algebra  much  like  Ritt’s  (ref. 10) Differential 
Algebra.  However,  Cohn is more  concerned  with  the  larger problem,of systems  of 
difference  equations,  rather  than  the  simple  linear  difference  equation  (eq. 2) .  

Properties  of  Differences: 

The  following  properties  can  be  simply.derived  from  the  definition  of 
differences: 

PI)  Akf(x) = kAf (x) , keF 



P 4  

A ( f  (x)+g(x)) = Af (x)+Ag(x) 

It  is  the   s l igh t   d i screpancies   be tween  these   p roper t ies   and   the i r   ana logous  
ones i n   d i f f e r e n t i a l   a l g e b r a ,   t h a t   p r e v e n t s   d i r e c t   a p p l i c a t i o n  o f  i t s  r e s u l t s  and 
m e  tho  ds . 

Sect ion  3. Sums o f  Polynomials 

The s i m p l e s t  form  of  function w e  might  want t o   s u n  i s  a polynomial: 

In   t he   ca se  of d i f f e r e n t i a l   a l g e b r a ,   t h e   i n t e g r a l  is  e a s i l y   o b t a i n e d   s i n c e :  

( 3 )  D x n = n x  n-1 

There fo re ,   t he   i n t eg ra l  i s  cons t ruc t ed  by a n t i - d i f f e r e n t i a t i o n .  However, d i f -  
fe rences  of  powers do not  have  such a concise  form: 

n-1 n- i 

i = O  
Axn = 1 (:I x . 

Thus expressing a func t ion  as a sum of  powers is  n o t  a convenient  form i n   d i f -  
f e r e n c e   a l g e b r a .   I n s t e a d ,   t h e   f a c t o r i a l   f u n c t i o n s  are used: 

( 4 )  Cxln = x(x-l)(x-2) .. . (x-n+l) 

The d i f f e rence   o f  a f a c t o r i a l  is: 

This   has   the  concise   form of (eq.  3) and so i s  a b e t t e r   r e p r e s e n t a t i o n .  
convert  a po lynomia l   t o   t he   f ac to r i a l  form  using  Newton's  formula,  which 
sses a f u n c t i o n   i n  terms of i t ' s  h ighe r   d i f f e rences :  

We can 
expre- 
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,, . .. . . ... . . . . - . .. . .. . .. 

where  f(x) i s  a polynomial  of  degree n. The h ighe r   d i f f e rences   can   be  fourid 
us ing  a d i f f e r e n c e   t a b l e   a f t e r   e v a l u a t i n g   t h e   p o l y n o m i a l  a t  t h e   p o i n t s  
x=O,l,.. . ,n.  Now: 

n Cxli 
(7) f ( x )  = 1 i! f i  

i=O 
and so: 

eg: To compute g(x) = A-l(3x3-2x+1) = A-lf(x) 

The d i f f e r e n c e   t a b l e  is: 

0 1 1 1 8   1 8  

1 2 19 36 

2 2 1  55 

3 76 

To conver t   f rom  f .ac tor ia1   representa t ion   to  power r e p r e s e n t a t i o n  w e  can  expand 
t h e   f a c t o r i a l   f u n c t i o n s   u s i n g   t h e i r   d e f i n i t i o n s .  

Cxl, = x 

$XI2 = - -x + -x* 1 1 1 
2 2 

3CxI3 = 6~ - 9x2 + 3x3 

,CXl4 = - -x - -2 - -3 + 4 3 9 21 9 3 
2 4 2 4 

To ta l   g (x )  = 2x - 13% - -x3 + -$$ 3 
4 2 
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Sec t ion  4 .  Sums of Rat iona l   Funct ions  

The n e x t   l a r g e r  class of  problems is  sums o f   r a t i o n a l   f u n c t i o n s .  I n  i n t e -  
g r a t i o n ,   t h e s e  are approached  using Hermite's method  which  performs a p a r t i a l  
f ract ion  decomposi t ion  of   the  funct ion.  Moses ( r e f .  3) desc r ibes   t h i s   p rocess .  
The pa r t i a l  f r ac t ion   decompos i t ion   b reaks   t he   r a t iona l   func t ion   i n to  a sum of 
r a t i o n a l   f u n c t i o n s  whose  denominators are powers   of   square  f ree   factors   of   the  
or iginal   denominator .  Then us ing   i n t eg ra t ion -by-pa r t s   t he   i n t eg ra l   can   be  ex- 
pressed  as a r a t i o n a l   f u n c t i o n   p o r t i o n  and a t ranscendefi ta l   por t ion  which is a 
sum of  logarithms. 

We s h a l l   f o l l o w   t h i s  me thod ,   w i th   s l i gh t   mod i f i ca t ions ,   t o   de r ive  a ra- 
t i o n a l   p o r t i o n  of t he   suma t ion   and  a t r anscenden ta l   po r t ion .  The match  of  the 
two methods i s  c l o s e  enough t h a t  w e  can   descr ibe  i t  as Hermite Sumat ion .  

Remembering from  sect ion 3 t h a t  powers are no t   n i ce   fo rms   fo r  summation, 
w e  de f ine  a f a c t o r i a l   o p e r a t o r  on a func t ion:  

( 9 )  cf (X) 1, = f (x) * f  (x-1) *f  (x-2).  . .f (x-k+l) f o r  k>O . 
We can   ex tend   th i s   opera tor  by no t i c ing :  

I f  w e  d e f i n e   [ f ( x ) l  = 1 and assert tha t   (10)  is  a n   i d e n t i t y   t h e n   s u b s t i t u t i n g  
k=O w e  ge t :  0 

( 1 1 )   [ f ( x ) l  = 
1 

-R Cf (x+a) 1; 

We w i l l  c a l l   t h e   v a l u e  of k o r  R i n   e q u a t i o n s  9 and 11, t h e   f a c t o r i a l   d e g r e e  of 
funct ion,   because  of  i t s  pa ra l l e l   t o   t he ' "power"   deg ree .  We now proceed  to  
examine t h e   d i f f e r e n c e s   o f   f a c t o r i a l s .  

AEf R (x) 
- - 

C f  (x+R+l)l,+l 

No t i ce   t ha t   t he   f ac to r i a l   deg ree  i s  decreased   ( resp .   increased)  by 1 on d i f f e r -  
e n c i n g   f a c t o r i a l s   ( r e s p .   r e c i p r o c a l   f a c t o r i a l s ) .  

S h i f t  Free Decomposition: 

I f  w e  are given a product  of  functions w e  can  decompose i t  i n t o  a product 
of fac tor ia l   func t ions .   Suppose   our   p roduct  i s  of  the  form: 



S = a = b - c  

where  a,b,c are mutual ly   re la t i i te ly   pr ime  and Ea=b.  Then: 

ES = (Ea)*(Eb)*(Ec)  = b(Eb)*(Ec) 

and GCD(S,,ES) = b 

so  w e  can   d iv ide   ou t  b and a from S and  form: 

S = cbl,-C . 
Applying t h i s  method r epea ted ly  w e  can  put  a p roduc t   i n to   t he  form: 

... 
where t h e   i n d i v i d u a l  S are s h i f t - f r e e .  Given a r a t i o n a l   f u n c t i o n  w e  can  per- 
form a s h i f t - f r e e   p a r t l a l   f r a c t i o n   d e c o m p o s i t i o n :  i 

and a l s o  a comple t e   sh i f t - f r ee   pa r t i a l   f r ac t ion   decompos i t ion .  

Th i s   comple t e   sh i f t - f r ee   pa r t i a l   f r ac t ion   decompos i t ion  is  completely  analogous 
t o   t h e   s t a r t i n g   p o i n t  of the  integration-by-parts  phase  of  Hermite's  method. 
It can  be computed i n   t h e  same way the  complete   square  f ree  p a r t i a l  f r a c t i o n  
decompos i t ion   fo r   i n t eg ra t ion  is done (see  eg.   Horowitz   ref .  11 o r  Ym 
re f  . 1 2 ) .  We can  a lso  deduce  ( f (x+k)  A f ( x + l ) )  = 1 i f f   ( f  (x+k) f ( x + l ) )  = 1. 

This w i l l  be t r u e  i f  w e  have  performed a k-shif t - f ree   decomposi t ion  of   f (x) .  
k-1 

Shif t   Independence:  

We can test i f  a func t ion  is s h i f t   f r e e   u s i n g   t h e  GCD construct ion  above.  
However t h i s   d o e s   n o t   e l i m i n a t e  a l l  t h e  cases. Consider: 

Our GCD tes t  w i l l  say  S(x)  is  1 - s h i f t - f r e e   w h i c h   m i g h t   l e a d   t o   e r r o r s   i f  w e  
assume i t  is  k - s h i f t - f r e e   f o r  a l l  kEZ. We might c a l l  s u c h   f u n c t i o n   s h i f t  de- 
pendent   s ince  i t  is  not   3 -sh i f t - f ree .  We can tes t  f o r   s h i f t   i n d e p e n d e n c e   u s i n g  
the   fo l lowing  method: 

1)  Form S (x+k)  where k i s  a new v a r i a b l e .  
S (x+k) = &+( 2k+3) x+(k2+3k) . 

2) Compute t h e   r e s u l t a n t   w i t h   r e s p e c t   t o  k: 
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R e s  (S(x+k),   S(x))  = R(k) 
Res (x2+(2k+3)x+(k2+3k) , x2+3x) = -k4-9k2 

3) Test f o r   i n t e g e r   r o o t s  of  R(k);   these w i l l  d i s c lose   any   k ' s   w i th   non- t r iv i a l  
GCD'S of t h e  form. 

GCD (S(x) E S ( x ) ) .  k 

i .e. :  k=0,+3.  Choose:  k=+3. 

4 )  Apply S t i r l i n g ' s  Method t o   c o n v e r t   t h e   r a t i o n a l   f u n c t i o n   i n t o  a f a c t o r i a l  
denominator. i . e .  mult iply  top  and  bot tom by  (x+l)(x+2)  to  obtain 

A(x) = (x+l)  (x+2) 
s (x) cx+3 14 

5 )  Proceed as before .  

Summation by Par t s  

From proper ty  P3)  of d i f f e rences  w e  can   deduce   t he   ru l e   fo r  summation-by- 
p a r t s  : 

(17) A (u*Av) = u-v  - A CEv  Au] 
- - 

We can   apply   th i s   to  a t y p i c a l  term i n   o u r   c o m p l e t e   s h i f t - f r e e   p a r t i a l   f r a c t i o n  
decomposition. 

F i r s t  w e  can  apply  the  extended  eucl idean  a lgori thm  to   f ind B , C  such   tha t :  

(18) B f i (x+i- j+l)  + c A f (x+i - j )  = 1. 
j -1 

This  can  be  used  to  expand  the term f u r t h e r  as: 

A (x) Ai . C . A  f (x+i - j )  A . Bf(x+i-j+l)  
A-l  

i , j .  . - , - I  Y J  J - 1  
+ A-1 iyJ 

f (x+1) 1 [ f i (x+i )  I j  
J 

Cfi(x+i) 1 
(19) 

D . A  f (x+ i - j )  

Applying  summation  by p a r t s  t o   t h e   f i r s t   t e r m   o f  eq. 19,  

(20) 
- - -D + A-' ( AD ) 

I f .   ( x + i - l )  I j-l Cf(x+i) 1 j-l 
1 

The second terms of (20)  and (19) and  any terms of f a c t o r i a l   d e g r e e  j-1 i n   t h e  
comple te   sh i f t - f ree  pa r t i a l  f rac t ion   decomposi t ion ,  can  be combined t o g e t h e r   t o  
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give  the  next  term  of  the  iteration: 

The  same  method  can  be  applied  again.  Continuing in this  way we eventually  ob- 
tain an expression  for  the  indefinite  sum  of  a  rational  function as a  rational 
function  plus  an  indefinite  summation of terms  with  shift-free  denominators  of 
factorial  degree 1. 

An  Exanple  of  Hermite  Summation: 

We wish  to  compute: A-1 - A 
B 

where : 

” A -  - (x2+3x+3) 
B  x4+2x3-3x2-4x+2 

First we put  B  into  a  shift  free  form: 

EB = x4+6x3+9x2-2 

and 

GCD(B,EB) = (x2+2x-1> 

A - ( x2+3x+3) and so - - 

Next we perform  a  complete  shift-free  decomposition  on - * 
A 
B .  

B  Cx2+2x-1I2 
- 

- -  A -(3xi-5) 
+ -1 - = -  ‘ + F .  

B  [x2+2x-13, I [x2+2x-1] 1 D 

Now  we  want to  put - into  a  form  suitable f o r  summation  by  parts.  Since C 

E-l(x2-2x-1> = ~ ~ - 2 .  D 

- -  C - GA(x2-2) + H (x2-2) 
D Cx2+2x-l12  Cx2+2x-1I2 

Since  (x2-2)  is  shift  free: 

(A(x2-2) , (x2-2)) = 1 

and  therefore we can  employ  the  extended  euclidean  algorithm  to  solve  the 
equation: 

-(3~+5) = S(2~+1) + T(x2-2) 
= -(x+l)  (2x+1) + 2(x2-2) 
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So is of t h e  form: 

" c - -(x+l) (2x+1) + 2(x2-2) 
D Cx2+2x-l12 [x2+2x-112 

-(x+l)A(x-2) + 2 
Cx2+2x-1I2 Cx2+2x-1I2 

Now w e  perform  summation by p a r t s   t o   o b t a i n :  

and so:  

x+l - 
[x2+2x-11 )=E- 

Sect ion  5: The Transcendental  Pa r t  

= D * l o   g r  (x+2) = Dm log(x+l)  I' (x+l) 

Therefore   the sum of a nega t ive  power of (x+l) is: 

A - 1  1 -  (-1) m-l - 
(m-1) ! $,(x) - (x+l) m' 

The func t ions  Ijl (x) are a l s o  known as the  polygamma func t ions .  m 

We can now expand the   remainder   o f   our   ra t iona l   func t ion   in  terms of i ts  
roo t s :  . 



" 

1 k a 
i - =  

B(x) i=l (x-bi) j ( i )  

where j ( i )  i s  t h e   m u l t i p l i c i t y   o f   t h e   r o o t .  

Using  the +m f u n c t i o n s   t h e   i n d e f i n i t e  summation  of  remainder of t he   r a t ion -  

a l  func t ion  is: 

The func t ions  + p lay  a r o l e  similar ' t o   l o g a r i t h m s   i n   t h e   i n t e g r a t i o n  of 

r a t i o n a l   f u n c t i o n s .  I conjec ture :  
m 

a)  The func t ions  Q (x) are t r anscenden ta l   w i th   r e spec t   t o   t he   g round  m 
f i e l d  F(x). 

b) If b .  are t h e   s h i f t - f r e e   r o o t s  of a polynomial  then JI (x-b.)   are  
1 j ( i )  1 

a lgebra i ca l ly   i ndependen t .  

I f   t hese   s t a t emen t s  are t rue  then  one  could  argue,  much as Hermi te   d id   for  
i n t e g r a t i o n ,   t h a t   t h e   r a t i o n a l  and   t ranscendenta l   par t s   o f  a summation are 
unique. 
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I '  

Indefinite Hypergeometric Sums in MACSYMA* 

R. Wm. Gosper,  Jr. 
XEROX Palo Alto Research Center 

ABSTRACT 

We preoont 8 MACSYMA function which, given tho summand 

finds g(n),  the "indefinite sum", within an  additive  constant, provided  that g(n4 
n. We then havo tho identity 

.l)/g(n) is a rational function Q If 

(B ) 

Examples: 

2 11'4" 2 (mt1)(63m4t112m3+18m2-22m+3)4m 
n=O - (:) = m( - 3 )  , 

( h ) !  (81rn2+261rn+300) (3m+Z)! 9 
n! (ntl)! (rl+2)! 27" 40m! (rntl)! (m+2)! 27'" - 2 

e 

The algorithm moks a "teloscoping  function" [ ( I I )  satisfying 

(func) 

whence, from (8) and (C), 

(voila) 
n = p  

From (A) and (C) i t  can be  shown  that f ( n )  is a rational  function if g(n+l)/g(n) is. Our algorithm determines f 
as a finite continued fraction whose terms  are polynomials in 11. We await either a mathematical proof of its 
effectiveness, or alternatively, an  example  on  which it fails, to determine whethor it is I decision procoduro, 
or  merely a useful but fallible heuristic. 

*This work was supported, in part, by the National  Science  Foundation,  and  was fostered by 
the hospitable and unfettered environment at the Stanford Artificial Intelligenco Laboratory. 
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Sums  and  Summands,  Range  and  Domain 

If g(n+l)/g(n) is a rational function  of n, then g(d, and therefore a, = Ag(n), is r constant timot a product of 
n tonsecutivo values  of  some rational function. We shall call such  functions "hypergoomotric tormt". Wo 
believe our algorithm finds all inverse differences which  have  this  form,  thus performing indofinito oummation 
on generalized hypergeometric series. 

Of course,  not all finite products of rational functions  sum to  functions of the same typo, just as not ail rational 
functions integrato to rational functions.  One  might  ask, therefore,  whether  precluding higher functions from 
the answer g(n)  might thwart our  algorithm  the  way precluding logarithms, oft.,  would thwart an integration 
algorithm. The  answer is yes, but not nearly as badly. I t  appears that among tho frmilirr highor functions, 
only the polygammas*  of certain linear arguments  have first differencos in the form of hypergoomotric torms. 
This paucity of  functions  applicablo to the expression of indefinite sums is due to fho lack of a discroto 
analogue to the chain rule, and  has the unfortunate  consequeno  that 8 givrn sum is loss likoly  to havo r 
closed form than is an integral of similar complexity. In particular,  the  only hypergromotric series whoso 
indefinite sums are facilitated by polygammas are those with rational summands.  Should it bo needed, a fairly 
simple partial fractions algorithm can  sum rational  functions as polygammas, at least  when it is clear how to 
adequately factor the summand's  denominator.  (Polygammas in the  summands might bo handiod using 
summation by parts,  but  not in the  algorithm  under  discussion.) 

It is a little surprising that  the  rational summands  which require polygammas are invariably special casos of 
hypergeometric summands  which are amenable to our MACSYMA sum  function,  e.g. 

will simplify  no  further ($* is  the  trigamma  function), yet this  sum is the  special  case x 3 0 of 

Here the telescoping  function was f ( n )  = n 2 / x 2  - 1. (We also used the  factorial reflection' formula, 
x !  ( -x ) !  = nxls in nx.) In general,  the  telescoping  function f ( r d  = -I/Can yields the identity 

rn 

Letting E + 0, we have  an arbitrary sum as the limit of a product over the  same range  (which is clear from 
considering the  expansion of the product  through  the O ( 0  terms.)  When an is  rational in n, we can always 
express this product and the summand as hypergeometric  terms prior to taking  the limit. Thus, for another 
example of the sum of reciprocal squares,  use a,, = l/n2 (and, for convenience, replace t by t2): 

(The value r(2) = n2/6 is  evident i f  rn + 03 before C 0 . )  

*derivatives of log r(z) 
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Unfortunately,  the  current algorithm is not a decision procedure for the expressibility  of  indefinito 
hypergeometric sums in closed form. The top level procedure heuristically bounds the complexity of  the 
telescoping function f, to prevent the main iteration, when given an impossible problem, from  plunging  down 
an endless continued fraction. Another as yet nonrigorous aspect of the main iteration: i t  uses a rathor 
shortsighted,  "greedy" algorithm to determine the successive term polynomials,  and wo haw  yot  to show that 
it will  never need to backtrack when solving the functional  equations  which arise from serios. (If necessary, 
backtrack could be installod, but  it might be very costly in cases which turn out inexprossiblo in cloood form.) 

The Algorithm 

The only significant problem is to solve the rational functional  equation 

(func) 

which is rational when g(n+l)/g(n) is. Because  we  have  no boundary  condition to satisfy, equation (func) is 
easier to satisfy than a first  order linear recurrence with polynomial coefficients. In fact, if f(n) is a solution, 
then so is f(n)+c/a,, c arbitrary. Thus if the summand an is rational, then there is a continuum of rational f 
satisfying (func), differing only in the "constant  of  summation" c that they add to the sum 8. 

If f is a rational function, then the quotients from Euclid's algorithm  (using polynomial division) form'the  terms 
of  its continued fraction: 

Our MACSYMA algorithm successively determines pl,  p!, . . . , with the proviso that no p i  be constant for i > 
1, so as to guarantoo  the uniquonoss  of the represontatlon. 

Since the  term  ratio an+l/an is I rational function, we can write it as P(n)/Q(n), whoro P and Q aro 
polynomials. Then f must satisfy 

In. particular,  this  relation holds for  large n, where f ( n )  3 p,(n). We thus "greedily" detormino pI as tho 
polynomial approximation to f which most nearly satisfies (1  1, that is, the polynomial which  minimizes tho 
degree  of  the lefthand side. We then substitute p l ( d  + l/f2(n) for f ( n ) ,  SO that we can recursively detormin. 
the  rest  of f s  continued fraction as f2, the solution of the new  functional equation 

2.3 9 



We write this equation in the form 

(2ndform) A(n)f2(a)f2z(lwl) + B(n)f2(n)  + C(n)f2(n+1) + D(w) = 0 , 
where A, B, C, and D are polynomials.  Then  we "greedily" seek the polynomial p2 which, in place of fi,, 
most nearly satisfies (Zndform). We proceed in this way, replacing 

until we either  find a pk(n) which exactly satisfies  our  equation, or we conclude that no colution oxisto. 
Fortunately,  further substitutions of the form (subst) lead to no equations more compticatad than (2ndform). 

Worked Example: we seek 

in closed  form. Equation (func) becomes 

or  

In order to determine the first polynomial of f ' s  continued  fraction,  we must first detormine the  degree of 
that polynomial. We do this by replacing 1 with the "polynomial" estimate p,(n)  = an'tO(n'"l), q to be 
determined. Suppose p 0 .  Then (f 1 ) becomes 

implying a = 0, meaning that q was too large. So q must be 0, and  thus p 1  must bo a constant a, making (f 1 ) 

to be  solved  for f2. Again, if we estimate f 2  by p 2 ( d  = anq t O W 1 ) ,  (f2) becomes 
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Now 9 must be positive sinco we have forbidden pi to be constant for i>l. But  if p 1  than 2g+l > q+z,. 
forcing u to be 0, which is oquivalent to reducing q. So q 4 ,  and the rbovo bocomes 

which  identically vanishes if 6 = 2. Thus we  have  found  the  solution 

1 1 
/ ( I d  - - 2 + 5 I1 

t -  
r-2n 

" 

r 

whenco, by 

(voila) 

we get 

(This example was suggested by D. Knuth.) Incidentally,  Euler, (refs. 1, 1 a), had the special case m = 00 of 
(voila) in 1753, but he  didn't get much mileage out of it. Chrystal (ref. 2) gives (voila) within 0 change of 
variables, but  still underestimates its generality. He credits Euler in "Nou. Comm. Petrop., 1760", but I can't 
locate this. 

In certain cases where the continued fraction fails to terminate quickly, it is possible to deduce the  general 
formula  for  the i th  term.. With this you can tell if and  when  the fraction will terminate, and in any case get an 
interesting identity. Consider, for example, 

which oncompasses the Taylor series of many useful  functions, e.g. 

(1-X)P 

In (1-x) 
" 

X 

arctan x 
X 

arcsin x 
rJ1-r2 



First off, 'we not. that  equation  (voila) has arbitrary upper and lower limits on Ih. rum. Wm oxplojt thi8 
degroo of froodom by shifting tho summation  index by c-1, so that (2F1) bocomoc 

which, if we replace a-c by b, eliminates a parameter from the summand.  (Summing for n2c-l means for n - 
c-1, c,  c+1, ... regardless of whether c is integral or even real.) 

Equation (func) now  becomes 

Experience indicates  that,  having  determined pi in the form (An + B)/C,  say, we  should cloar out tho 
denominator C by  writing 

before going on to determino lj+l, This will usually  lead to simpler coefficionts in tho lrter polynomirlg, Our 
solution will then begin 

bZ 
(b-l)x 1 ( I - r ) n  - bx + 1 + 

(~-z)II - (6-112 + 2 + 2(&-2)r 
(l-z)n - (b-2)r + 3 + - 3 ( b - 3 ) ~  

and, in general, the i th equation 

which in turn yields the i+lst equation 

for R3. Finally, since a0 = 1 and (if the series converges) an -f 0, 

. . . _._ . 
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By the  ormo mothod wo crn also ortablish 

m + 2 - x +  
m + 3 - r +  - 3 x  

which, for rn = 0, gives a nice continued fraction for 6'. 

Messy Details 

I have glossed over  three problems that arise in determining the successive  polynomials, nrmoly, what 
degree polynomial to choose,  how  many coefficients must be solved for at once,  and what to do about 
multiple solutions. 

1 ) The  polynomial degree: 

The MACSYMA algorithm basically chooses the largest integer q such that whon an0 is substituted for f i (n) in 
the  expression 

more than one of the  four lefthand terms is of maximal degree in 11. When there is such a largest q,  the 
coefficient of the highest power of 11 will contain at least two different powers of a, so that tho coefficiont 
can be eliminated with a nonzero choice of a. But on the first term (i = l),  A(n) - 0 and C(n) - D(n), and it 
can  happen that deg (B(n)+C(n)) < deg (B(n)-C(n)),  i.e. B(n) and C(n) have the forms 

respectively. Then, sinco dog (fj(rt+l)+jj(n)) - deg (B(n)-C(n)) + 1, thero is no largost q mooting  our 
condition. In this cas., we estimate f l ( r t )  - anq + b r ~ q - ~  + O(~tq-~) ,  and the quantity wo aro trying to rnnihilrto 
becomes 

Here  we can zero  the high order coefficient with  either of two choices: q = -(d,+d,)/c or  q - 1. The 
program  heuristically chooses the larger of  these, provided it is an integer, on tho thoory that thoro lo 8 
good chanco of lator detormining that a - 0, should the choico prow wrong. But this  rorroning is 
questionablo in light  of  tho functional equation 

The two solutions of this oquation are evidently 



but only  the second solution is a rational function.  Thus,  any attempt to find  the first solution will  rasult In 
nontermination. Yet the erroneous choice  of p , ( n )  = n105 reduces the lefthand side of (loser) to  degree 107, 
while  the  correct choice p,(n) = 0 only reduces it to degree 210. Our  meek  excuse is that in problems  arising 
from sums we  never encounter such products as (j(n+l))2jOd, which  appears in (loser). (Robert Maas helped 
construct  this oxample). 

At the  end  of  the next section, we give an  example where the heuristic succeeds in  retroactively  detormining 
that  the  high coefficient is 0, but very nearly requires backtracking to do it. 

2) The need to consider more than one coefficient at a time: 

The  aforementioned (tricky) case, in which  the  exponent becomes involved in the coefficients, is  the source of 
another, less serious annoyance. In this case,  and this alone, it is necessary i o  determino each coefficient  of 
p 1  in terms  of the next lower one.  Consider  the sum 

which  determinos the functional equation 

In the  notation of the preceding discussion, c = 1, d B  = 1, d ,  - -3, and  thus q - 2. Now suppose wo 
estimated f(n) as an2 + bn + 00). Then  we  would  have 

(T - 6 - 1)n2 .t O(n) = 0 . 

Had we  merely estimated f ( t d  by an2, we  would  have erroneously determined Q on the assumption that b was 
0, and then gone on to determine that 6 was, in fact,  nonzero.  Since a’s value  depends on b’s, this  incorrect 
value  of Q would fail to annihilate the term, leaving that job for b.  If c is expended on the  linear term, i t  
happens that the constant term remains unvanquished,  and the continued fraction process will  plunge  down an 
almost certainly bottomless hole.  This  would be a shame,  since the equation could have been  solved with  the 
first term: 

Sa 

This, incidentally,  provides 

In principle,  it is never necessary to solve  simultaneous  equations, even in this worst case. It is  merely 
necessary to determine each coefficient in terms of the as yet undetermined succeeding coefficient, and only 
in those cases where B(n)+C(n) has lower degree than B ( d - C ( n ) ,  and only for the first polynomial. In 
practice, our algorithm invokes MACSYMA’s LINSOLVE linear system package, mainly for  its automatic back 
substitution. 
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Incidentally, the only way that a coefficient could  depend on tho noxt two coofflclontr would bo if tho 
functional  oquatlon containod throo distinct invocation8 of f ,  ray P(n-11, Jh), and f(n+l). 

Vory occasionally, rn oquation for (I coefficient can  have  no  solution81 Thir hrpponr whilo summing 

(weirdo) 

which  requiras  the solution of 

Proceeding as before, we would again find q = 2 and estimating ! by an2 + 611 + O(11, we would doterminm 
that a = -2-26. Then estimating f = -2(6+l)n2 + 6n + c + O(n"), we  would determino b - (16c+1)/3. But this 
le'aves the equation 

and there is no way to choose c to annihilate  the coefficient of n, since it depends on the next continued 
fraction  term  rather than on c. It is unsafe to choose c arbitrarily, since our nonrational summand precludes 
the "constant of summation", so we must  postpone the determination until  after  determining that the second 
continued  fraction  term is (-16n+36c+13)/3,  which  leaves us the lefthand side 

-3 (4c + 1)  ((18Oc+45)1z - 3 2 4 ~ '  - 117c + 16) . 

Our patience is rewarded, for the determination c = -1/4 terminates  the problem, but with  the  ironic  result 
that 6 = 4/3 and u = 0, SO that the choice q = 1, which is always  available in such  cases,  was correct  after all. 
(See the  first sentence after equation (tricky).) Incidentally, we  have determined 

and thus 

3) Multiple  roots when determining a coefficient: 

If f ( n )  is a rational function with rational coefficients,  we can be sure that no irrational  coefficient wi l l   rr iso in 
its continued fraction. I t  is therefore reasonable to hope  that in solving a functional equation for such a 
continued fraction, no nonlinear equation need be solved.  This  hope is Bubstrntirlly  fulfillod, but  for a couplm 
of glitches. For oxample, in establishing the identity 
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wo would detormino tho toloscoping function to be 

10(C2-10)1t - c3 + 
C' 

( C 2 - l O h  + c 

whero c is the  arbitrary "constant  of  summation'' which we get when thm  summand it rational. But  our 
algorithm is not smart enough to leave c,  (which is also the coefficient of no in p3(n)), undetermined, and the 
consequences of this greed can be annoying. To determine the linear coefficient in p3, en is  substituted  for 
f3(n) in the  current (i.e. the third) equation, resulting in a polynomial of the form a(lO-a)n' + O(n3), which 
determines a = 10. But then,  when  we go to determine c by estimating f3Ct11 as 1011 + c, wo find  we have I )  

polynomial of the  form (c2-10)n2 + O(n). In other words,  the  choice a = 10 "fortuitously" annihilated the cubic, 
as well as the quartic term. Ordinarily, the  only  quadratic  equations  we oncounter aro of the  degenorato 
form a(k-e) - 0, which occur whon we are determining the high coefficient of  each pi after i = 1. If choosing 
a (or any lower coefficient) annihilates only one'term of the expression being reduced, then  tho  next term 
cannot be quadratic in the coefficient below a. This is because  squares of coefficients of f can only come 
from  the f(tt)f(n+l) term of the functional  equation,  but here the first quadratic  instances  of each coefficient 
come two  powers of n apart. But when two or more powers of n disappear with one choice of coefficient, 
we  may be  left  with a nondegenerate quadratic  equation for the next coefficient. 

Greedily  pursuing our example,  then, we find c = m, which makes our continued fraction  for f an 
indeterminate form. 
found  by  the  groedy 

Although MACSYMA 

Either by performing the algorithm or taking  limits,  we find that tho  continuod frrction 
algorithm iE actually one term shorter: 

11 1 1 
3 

10n + Jm + 
1 

J m n 2  - n 

solves quadratic  equations as readily as linear ones, the introduction of surds into  the 
computation can  consume  valuable  time and storage,  especially if it happens more than once, or  involves  large 
expressions containing symbolic  parameters. If the original sum  was rational and involved no surds, yet a 
surd arises in  the course of the solution, it is probably always  safe to arbitrarily replace  this surd by 0 o r  
anything else convenient, but until this  step has been  mathematically justified, it should be taken only  when 
the  greedy approach runs out of time or storage. 

The quadratic final term of the above  continued fraction illustrates another conjecture which, if  true,  would 
simplify the solution algorithm. We note  that in converting a rational function to a continued fracfion  with 
Euclid's algorithm, most remainders are of degree one  less  than the corresponding divisor, and, consequently, 
the next  partial quotient is linear. But if some remainder is "fortuitously" two or more powers less than the 
divisor,  then  the next quotient will be quadratic or greater. Recall that  on the term preceding the quadratic 
(and last) term  in our example,  we were "fortuitously" able to annihilate three polynomial terms with  two 
degrees of freedom. We therefore conjecture that the degree of a given polynomial is  simply 1 + however 
many fortuitous annihilations occurred during the determination of the previous polynomial. 
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Knowing When to Quit 

How many terms of a continued fraction should  we  computo bofore rolinquiohing hop. of its tormination? I 
can only  offer what ceoms to be a safe  and reasonable bound,  namely 1 + tho sum of tho magnitudos of tho 
integer roots, zi, of the resultant of P(n)  and (7(n+r) with respect to n, whoro P(n) and Q(n) aro tho 
numerator and donominator of the term ratio an,l/an, and multiple roots  aro to be woightad by thoir 
multiplicitios m;. This represents.al1 of the possible integer shifts of tho denominator with  rospoct  to tho 
numerator which resht  in one or more cancellations. 

Possible  Extensions 

Trigonometric sums might be handled by a process  which first converts to complex exponential notation, then 
replaces some power of e2iz by the "base" 9 ,  thus forming a basic, or q analog hypergeometric sum. Then 
we would apply the existing MACSYMA function to the corresponding ordinary hypergeometric, and form tho 
q analog of the result, if we got one.  This is, however, highly speculative, and, in any evont, would bo 
unlikely to find such  fancy telescoping functions as f(n) = -1-cos 2%, which provides tho identity 

X 

sin 2% 

Just as with  definite integration, the problem of definite (typically infinite) summation is complicated by  tho 
bewildering  variety of  techniques  available. One especially  promising  technique historically precedes and 
generalizes  the method described in this paper (ref. 3). To see the relation  between  the methods, we  point 
out another way of looking at the telescoping function f ( / r ) ,  that is, as the "splitting function" determining  the 
proportions  into which the nth  term of a series be partitioned, prior to combining the loft  portion  of each 
term  with  the  right  portion of the preceding term. Writing I,, for f(n), we  have 

up + up+* + . . . + a 9 = (-fp+l+fp)ap + (-fp+l+l+fp+l)ap+, + . . . + (-fq+l+f )a 
9 0  

which  yields equation (voila) upon the satisfaction of  (func). But suppose it is not possiblo to annihilate tho 
quantity 

Then  we will have only succeeded in creating a new series whose terms aro u, time8 tho old ones. But if IC, 
is reasonably simple and numerically small, it might  be  possible  to iterate this splitting procose indofinitoly, so 
that in the limit,  all of the  original terms are multiplied by 0. When the various edgo offectr  aro  takon  Into 
account, this process  yields many interesting identities, such as 



Sometimes, the edge  effects involve limits which have  thus far eluded analysis, whereupon we  invoke a 
nonrigorous technique which involves interpreting finite products over noninteger ranges. This results in 
conjectural  identities such as 

2F1[-a2 'G1 ; %] = 2.3' COS n(~t I /~ )  , 

Al l  of these  conjectural formulas can be proven for countably many  values  of their parameiers, and they  have 
withstood extensive numerical testing at other values, but  they remain tantalizingly uncertified. 

Before the next MACSYMA Users'  Conference, we  hope to report on a partial implementation of a systom for 
definite summation I 

Late  Developments 

Kevin Karplus of Stanford has been developing a roughly parallel set of MACSYMA functions, so as to  
effectively double  the rate of algorithmic experimentation. Discussions with him led me to discovor that 

is an out-and-out counterexample to the greedy algorithm, since the correct telescoping function is 

while the polynomisl which most nearly satisfies  (func) is 

As a result, I patched the algorithm to only determine q of its qt1 undetermined coefficients on non terminal' 
terms  where 9 > 1, thus treating all such  cases in the manner  of  (weirdo;.  This seemed to repair  the 
problem, at the cost  of  exhausting list storage  capacity  on certain cases that  had formerly  worked. 
Fortunately,  on 20 April 1977, all of  this kludgery was rendered obsolete when I found a decision procedure 
for  this problem. (A discrete analog to the Risch algorithm for indefinite integration.) The proceglure is 
simpler, and  makes better use  of  Jeff  Golden's recently installed FUNMAKE and SUBST(LAMBDA( ... 
capabilities, and,  as a result, runs ten to fifty times faster than the continued fraction algorithm. For thoso 
most interested, the details will be available in a handout  at the  conference. 

Here  follows  the  transcript of a short demo of both algorithms. 

(C1) l oad f i   l e (bo the r ,?> ,dsk , rug )S  

BOTHER SUM15 DSK RUG b e i n g  I oaded 
load ing   done  
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(C21 bothersum((-l)fn/nf~lnl~lm)l~cfdepth:~: 
TIME= 11585 MSEC. 

M 
"" "_ N 
\ (- 1) 

/ 2 
===e: N 
N - 1  

> """ 

(C3) %cf: 
TIME- 0 MSEC. 1 

"""""""""""""""""""" - 1 
1 

"""""""""""""""""" - N 
2 

"""""""""""""""" - N 
4 

"""""""""""""" - N 
6 

"""""""""""" - N 
9 

"""""""""" - N 
12 

"""""""" - N 
16 

"""""" - N 
1 

--MORE-- 
- - - - - - - - - N 

(03 1 ....................... 

2 

Old version fails (correctly) to find a closed  form, but finds a nice  continued fraction for f((n), which it stores 
in %CF. Binding %CFDEPTH to an integer overrides the heuristic depth limiter. 

(C4) l o a d f i  le(nusum,?>,dsk,share)S 

NUSUM 19 DSK SHARE ... loaded 

(C5 1 n T 3 ~ 3 T n :  
TIME= 3 MSEC. 
(05 1 

3 N  
N 3  

(C6) nusum ( X ,  n, 0, m) ; 
TIME= 1209 MSEC. 

3 2 M 
3 ( 4 M  - 6 M  + 1 2 M - 1 1 ) 3  3 1 1  

(D6) """"""""""""""" + "" 

8 8 

New version (decision procedurr) does an easy case. 



3 2 3 3 2 2 
- 3 ((27 B - 216 B + 549 B - 4 4 0 )  M + (81 B - 486 B t 945 6 - 600) M 

3 2 3 2 M 
+ (81 B - 216 B t 153 B - 38) M + 27 B + 81 B - 144 B + 52) 3 (M + l ) !  

(C9) unsum ( X ,  m )  : 
Ti ME= 3005 flSEC. 

3 f l  
fl 3 f l !  

-""""""" 
M + B  
/===\ 

- ! !  
! ! ( 3 1  - 2 )  
! !  

I = A  

New version does (I tougher case. UNSUM (backward difference) then check it. 
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MODULAR  POLYNOMIAL  ARITHMETIC  IN  PARTIAL  FRACTION 
DECOMPOSITION* 

S. K. Abdali 
B. F. Caviness 
A. Pridor 

Rensselaer  Polytechnic  Institute 

ABSTRACT 

Algorithms  for  general  partial  fraction  decomposition  are 
obtained  by  using  modular  polynomial  arithmetic.  An  algorithm 
is presented  to  compute  inverses  modulo  a  power  of  a  polynomial 
in  terms  of  inverses  modulo  that  polynomial.  This  algorithm  is 
used  to  make  an  improvement  in  the  Kung-Tong  partial  fraction 
decomposition  algorithm. 

INTRODUCTION 

The  partial  fraction  decomposition  (pfd)  of  rational  func- 
tions  constitutes  an  important  step  in  some  symbolic  inteqration 
algorithms  (Horowitz  ref. 1). Such  a  decomposition  is  frequently 
needed  also  in  electrical  network  theory  and  control  theory  (e.g., 
Kuo ref. 2,  Hsu  and  Meyer  ref. 3). Consequently,  a  number  of pfd 
algorithms  dealing  with  the  general  and  the  important  special 
cases  (only  linear or quadratic  factors  in  the  denominator  of  the 
rational  function  being  decomposed)  have  appeared  in  the  liter- 
ature  (see  references  in  Kung  and Tong, ref. 4). These 
algorithms  fall  into  two  categories:  those  based on applying  the 
extended  Euclidean  algorithm  (see  Knuth  ref. 5) and  those  based 
on  solving  linear  systems of equations.  Prior  to 1969 ,  the pfd 
algorithm  most  widely  implemented  in  symbolic  computation  sys- 
tems (e.g., Engelman's  MATHLAB  ref. 6, Moses'  SIN  ref.  7) was one 
of  the  former  type  and  dated  back to Hermite  (ref. 8). Horowitz 
(ref. 11, however,  discovered  a  faster  algorithm  of the latter 
type.  The  latter  type  algorithms  require  solving  n  linear 
equations  in  n  unknowns,  where  n  is  the  degree  of  the  denominator 
in  the  rational  fraction  to  be  decomposed. Thus in  the  general 
case, they  require  O(n3)  operations  using  classical  elimination 
methods, or  O(n2-81) operations  using  Strassen's  method (ref. 9 ) .  
In special  cases,  the  best  bound is 0 (n2).  But quite  recently, 

*Research  partially  supported  by  National  Science  Foundation 
Grant  MCS-7623762. 
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Kung  and. Tong (ref. 4 )  have  given an O(n log  n)  algorithm  which 
is again  based on the  extended  Euclidean algorithm. 

2 

This paper  uses. the  notation  of  modular  polynomial  arith- 
metic  to  derive  pfd  algorithms. This formulation  brings out the 
similarities  between  the  general  pfd  algorithms  and  the  well- 
known  technique  of  pfd  by  substitution  for  non-repeated  linear 
factors  (e.g.,’Kuo ref.2). The Kung-Tong  algorithm is then 
easily  derived as an  adaptation  of  the  general  algorithm  for  fast 
computation.  An  algorithm is presented  to  obtain  inverses 
modulo  powers  of  a  polynomial  in  terms of inverses  modulo  that I 

polynomial.  This is used  in an improvement to Kung-Tong  algor- 
ithm,  which  improvement  although  asymptotically  minor,  is be- 
lieved to be  of  practical  value  in  symbolic  computation  systems. 

PRELIMINARIES 

Throughout  this  paper,  polynomials  are  assumed  to  be  uni- 
variate  with  coefficients in some  given field. 

Let B be  a  fixed  polynomial. As  usual,  the  relation 
congruence  modulo B and  the  binary  operation  mod - on  polynomials 
are  defined  by 

X E Y  (mod  B) iff,  for  some  polynomial Q ,  X = QB + Y. 
X mod B = Y, where X Y  (mod B) and  deg  (Y) < deg ( B )  . 
Let  A be  a  polynomial  relatively  prime  to B. Then  it  is 

well-known  (see, e-g., Herstein  ref. 10) that  there  exist  unique 
polynomials X, Y  satisfying 

AX + BY = 1 , deg (X) < deg ( B ) ,  deg  (Y) < deg  (A). (1) 

Accordingly we have  the  following: 

Definition 2.1 (Inverse  and  division  modulo  B.  Defined  only  if 
the  denominator  is  relatively  prime  to B.) 

(a) A mod B = X where AX 1 (mod  B)  and  deg  (X) < deg  (B) 1 

(b) - mod  B = (A- (- mod  B))  mod  B A 1 
C C 

Definition 2.2 (‘-?:-*mcated  polynomial  quotient) 

LA/g = (A - (A  mod  B) ) / B  . 
We  use  M(n) , D(n) , F (n) to denote  (an  upper  ,bound  on)  the  number 
of  operations  needed, re;:yectively, to multiply  two  polynomials 
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of degree'n,  divide  a  polynomial of degree  2n  by one of degree n, 
obtain  polynomials X and Y of (1) when  given  A  and B with  max 
(deg  (A), deg (B.) ) = n. We  assume  that  the  following  convexity 
conditions  are  satisfied. 

aM(n) 5 M(an) , a - > 1 

CM(ni) 5 M(Cni) , n  i  integer 
CF (ni) - < F (xni) , ni  integer. 

It is  reasonable  to  require  such  conditions  as  they  are  satisfied 
by the  bounds  M(n)  and F (n) f o r  all  existing  algorithms.  Similar 
conditions  are  usually  assumed,  for  example, by Aho,  Hopcroft, 
and  Ullman  (ref. Il), Kung  and  Tong  (ref. 4 ) .  

PARTIAL  FRACTION  DECOMPOSITION  PROBLEMS AND SIMPLE  ALGORITHMS 

Following  Kung  and  Tong  (ref. 4 ) ,  we  define  three  problems 
related  to  partial  fraction  decomposition. 

1) General  partial  fraction  decomposition ( P F )  Problem. 

Let Q1, ...,Q be  pairwise  relatively  prime  polynomials  of k 
degree nl, ..., nk,  respectively.  Let Rlf...,R be  positive 
integers  and  let P be  a  polynomial  such  that 

k 

2 )  Problem P1.: (Special  case  of  PF  with Ri = 1, 1 - < i - < k.) 
Given  pairwise  relatively  prime  polynomials  R1, ... ,Rk, 

and  the  polynomial  P  such  Ehat 

deg  (P) < deg 
i=l 
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3) Problem P2:  (Special  case of PF with k = 1.) 

obtain the polynomials C1,...,CR satisfying 
Given  polynomials P, Q such that deg (P) < deg (Q 1 ,  to R 

R -  
" - 1 3 , deg (C.) < deg (Q), 1 < j < R . 
Q R  J Q' 

( 3  1 - - 
j=1 

It is  well  known (e.g., Horowitz  ref. '1) that  the  poly- 
nomials  to  be  determined  in  the  above  three  problems  all  exist 
and  are  unique. 

Using  the  modular  polynomial  arithmetic, we can  now  state 
simple  algorithms  for  solving  problems P1 and  P2. 

Algorithm 3.1 To solve  PI. 
for  i 4 1 to k do - - - 

P ci - - mod R . i 

The algorithm  is  derived by multiplying  both  sides  of (2) by 
Ri  and  reducing  each  side  modulo  Ri. 

Remark  Note  the  similarity  with  the  algorithm  that  works  by 
substitution  in  the case of non-repeated  linear  factors  (ref. 2). 
If  Ri = x - a, then  according  to  that  algorithm one would  obtain 
C. by substituting  a  for x in  the  fraction  after  cancelling x - a 
from  the  denominator.  That is, 
1 

Ci - - (T!: evaluated  with x = 
7 

m o d x - a .  

x - a  

Algorithm 3.1 is  thus  a  straightforward  generalization  of  that 
approach  replacing  substitutions by evaluation  modulo  a  poly- 
nomial. 
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Alaorithm 3.2 To solve P2. 
begin P' + P;  
for j + R downto 1 do 

begin 
C 4 P' mod Q; 

- - 

j 
P' 4 LPVQJ 
end - 

end 
The PF problem  can now be  solved  by  cascading  solutions  of 
- 

P1 and P2: 
Algorithm 3.3 (Horowitz  ref. 1) To solve PF. 

begin 
1 compute  Ri f Qi " , i = 1, ..., k; 
2  solve  problem P1 for P/ fiRi , obtaining C which 

satisfy  (2) : 

3 solve  problems P2 for  the  fractions  Ci/Qi I i=l, ... ,k; 

i 
i=l 'i 

end 

The above  algorithm  lends  itself  to  fast  computation,  and 
will  be  discussed  further  in  section 5 .  We  close  this  section 
with  another  useful  algorithm  which  requires  computing  inverses 

modulo  Qi  only,  not  Qi - 
Algorithm 3 . 4  To solve PF. 

" 

Ri 

begin 
D f P ;  E +  fi Q:i ' 

i=l 
for  i + 1 to k do - - - 

begin 
n 

E 4  

F +  

for - 

E/Q ; i 
- mod Q : 1 
E  i 
j +,ti gownto 1 __ do 
begln 

'ij 
D f (D - Pij*E)/Qi 
end 

XI  

+ (D*F) mod  Qi; 

- 
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COMPUTATION OF INVERSES  MODULO A POWER OF A  POLYNOMIAL 

1 R 

where  A is relatively  prime  to B and  deg  (A) < R deg (B). By 
applying, say, the  Extended  Euclidean  Algorithm  directly, we will 
need O(F(R*deg (B)) operations.  We  describe  below  an  alternative 
method  in  which  use  is  made  of  the  inverse  modulo  B  only. 

In this section, we consider the computation of x mod B , 

Lemma 4.1 Let A, B be  relatively  prime  polynomials  and  let 

xi A 
1- i = - mod B for each  i > 0. Then 

= (X. + Xi(l - AX.)) mod B a) Xi+j 
i+ j 

3 3 

b) X2i = (Xi a (2 - AXi) ) mod B . 
These  relations  (with j = 1) are used  below  to  compute -mod B 

2i 

1 2 
A 

in  a  manner  reminiscent of the  binary  algorithm  for  exponen- 
tiation  (Knuth  ref. 5). 

Algorithm 4.1 Computation of - mod B 1 R 
A 

begin 
1 

X1 f 2 mod B; D -+ 1 - AX1 ; 

while u > 1 do - 
begin 
u f 4 2 ;  
q + v +  
C + C  : 
Z .+ Z ( 3  - AZ)mOd C; 
z f 22; 
if q = 1 then 

begin 
v -f. v - u; 
C + CR; Z f (Xl + 2D)mod C; 
z + z + 1; 
end 

__ end; 

2 
u; 

- 

- . - .- . . .. -. . .. . . re ku.ri1 z ; 
end - 

The correctness of the above  algorithm  follows  from  the  fact 
that  after  execution of each  line,  it is the  case  that  zu + v =R, 
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0 < v < u, 2 = Xz, C = B , and  u  varies  through  consecutive  de- 
creasing  powers of 2 from  about R at entry  to 1 at exit  (where 
v = 0). 

Theorem 4.1 Algorithm 4.1 computes x mod B in 

Z 
- 

1 R 

O(F (deg (B) ) + (log R ) M ( R  deg (B))) operations. 

FAST ALGORITHMS FOR PARTIAL  FRACTION  DECOMPOSITION 

We  now  turn to the  adaptation  of  the pfd methods  for  fast 
computations,  the  resulting algorithm  being essentially  that  of 
Kung  and  Tong  (ref. 4 ) .  In addition to the notation  in  the 
statement  of  the  general PF problem, we use two  other  symbols: 

'max 
n = n  + ... + n  

= max (El,..., 

' 1  k *  

'k) - 

Lemma 5.1 Lines 1 and 3 of  Algorithm 3 . 3  can  be  executed  in 
0 (M (n) ) and 0 ( (log Rmax) O M  (n) ) operations respectively. 

The analysis of Line 2 of  Algorithm 3 . 3  is  more  involved. 
This  line  requires  the  execution  of  Algorithm 3.1, i.e., the 
computation of 

Writing R '  for fi Rj , we have 
j=1 

ci - - R' - i E m o d  Ri mod  Ri . 
Ri \ Ri 

- mod R = 
- mod  Ri 

R '  

i 
The  computation of all  of R mod  Ri  is  not  easy  to  arrange  for  a 

fast algorithm.  Instead,  let us introduce  the  new  quantity 
k 

R =  x g .  
j=1 j 
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k 

Now R mod Ri = c 
j=1 

since  each  term in the  last  summation  is  a  multiple of R . Hence 
from ( 2 1 ,  we .get 

i 

P mod  Ri 
'i = ( R  mod  Ri ) mod Ri 

(This  result,  derivable so readily in terms of  modular arithmetic, 
has  a  more  intricate  proof in  Kung and  Tong (ref. 4 ) )  That is, 

By  using  a  binary  splitting  technique,  Kung  and  Tong  (ref.  4)  show 
how  to  obtain  all  of  P mod  Ri  and R  mod  Ri  in 0 ( (log k) *M(n) ) 
operations. For th.e inverse  part we may  use  Algorithm 4.1. Hence 
by Theorem 4.1 and the  assumptions on the bound  F(n), we obtain 

Lemma 5.2 All of the inverses  in ( 5 )  can be  computed  in 
F ( E )  + O (  ( log  tmax) * ~ ( n )  operations. 

Now we have 

Lemma 5 . 3  Line 2 of  Algorithm 3.3 can be  executed  in 
F (n) + O (  ( log  Emax) -M(n) ) + O (  (log k) *M(n) ) operations. 

Theorem 5 . 1  The general PF  problem can  be  done  in 
F(n) + O((1og Rmax)=M(n)) + O((1og k)*M(n))  operations. 

The original  Kung-Tong  algorithm  requires  F(n)  instead of 
F(n) as the  first  term.  Recall  that  n = CniRi,  while  n = Ini. 
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A  NEW  ALGORITHM FOR THE INTEGRATION OF EXPONENTIAL 

AND  LOGARITHMIC  FUNCTIONS* 

Michael  Rothstein 
Universidad  Simon  Bolivar 

ABSTRACT 

A  new  algorithm for symbolic  integration of functions  built 
up  from the rational  functions by repeatedly  applying  either  the 
exponential  or  logarithm  functions  is  discussed.  This new al- 
gorithm  does  not  require  polynomial  factorization  nor  partial 
fraction  decomposition  and  requires  solutions of linear  systems 
with only  a  small  number  of  unknowns.  It  is  proven  that if this 
algorithm  is  applied  to  rational  functions  over  the  integers,  a 
computing  time  bound  for  the  algorithm  can  be  obtained  which  is 
a  polynomial  in (1) a bound on the  integer  length  of  the  coeffi- 
cients,  and (2) the  degrees,  of the numerator  and  denominator  of 
the rational  function  involved. 

INTRODUCTION  AND  SOME  NECESSARY  CONCEPTS 

In  this  paper we discuss  a new algorithm  for  symbolic  inte- 
gration  of  rational  functions  of  logarithms  and  exponentials  ob- 
tained  (roughly  speaking)  by  repeatedly  applying  the  logarithm 
and  exponential  functions  to  rational  functions  in the integra- 
tion  variable.  No  restriction  is  placed on the  constant  field, 
except  that  arithmetic in this  field  be  recursive,  and  that  no 
functional  expression  obtainable  from  our  expressions  above by 
addition,  subtraction,  multiplication  and  division  be  a  new 
constant. 

As many  authors  have  done  in  this  area  (see  a  complete  his- 
tory of the  subject  in  ref. 1) we shall  use  the  notation  and 
concepts  described by Risch (ref. 2). In  particular  we  shall  work 
with  differential  fields of the  form 

*Work  supported  in  part  by  National  Science  Foundation  Grant 
MCS76-23762  (to Rensselaer  Polytechnic  Institute)  and  by 
Grants  GJ  32181 and  MCS76-15035  (to  University  of Utah). 



and  each en is a  monomial  (logarithmic or exponential)  over 

We  shall  also  say  that Fn is a  Liouville  extension  of  Fi (i < n) 
in this  situation. 

Our  algorithm  will  require the existence  of  algorithms  to 
perform  arithmetic  in K, and also,  algorithms  for  the  usual 
arithmetic  operation  defined on the  domains Si = Fi-l[eil  and 

= {p/ei, P E Si and R E Z } ,  like  addition,  subtraction,  multi- Ei 
plication,  and  division  (for  elements  of S obtaining  a  quotient 
and a  remainder). 

R 

if 

Finding  gcd's  (greatest  common  divisors)  of  elements  of S i 
can be  done  by  applying  Euclid's  algorithm.  Notice  that  this  gcd 
is  always monic. For Eir we define  the  gcd  of  two  elements  f  and 
g by pointing out that we can find P and Q  in  Si  such  that  gcd 
(P,B.) = gcd (Q,O.) = 1 and  for some  integers j, m, we have  that 

1 1 

We  shall  also  require  algorithms  for  finding X and Y in S i 
such  that AX + BY = C with  deg X < deg B for  given A ,   B ,  C in Si 
with  gcd ( A , B )  = 1. We  shall  refer  to  these  equations  as  univari- 
ate  polynomial  equations (U.P.E.'s). 

Finally, we will need  the  abi1,ity  to  compute  the  resultant 
of  given  elements A ,  B of  Si[a]  (where a is some  indeterminate 
over S.) with  respect  to Oi. We  shall  denote  this  function by 
Res ( A , B ,  Oil. 

1 

Now  some  more  definitions: 

a)  Given  a  non-zero  element 
unique P, Q  in^ S such  that P/Q = m 

f of Fm (m - < n)  there  exist 
f, gcd  (P,Q) = 1 and Q is  monic. 

We  shall  call P the  numerator  (denoted by  num f) and Q  the  denom- 
inator  (denoted  by  den f) of f. Let us also  define  num 0 = 0 and 
den 0 = 1. 

b)  We  shall  say  that  f  in  Fm  is  a  proper  element  of Fm if 
f = 0 or  deg  (num f) < deg  (den f) and  also, if em is  exponential 
over Fm-l, then Om does  not  divide  den  f.  This  implies  that  all 
square  free  factors  q  of  den  f  satisfy  gcd(q,q') = 1. 
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C) If f is a  proper  element  of Fm,  we shall  say  that  f  is 
normal  (in Fm) if den f is square-free  (equivalently, if gcd 
(den f, (den  f)') = 1). 

d)  Let  Dm  denote Em  if €Im = exp u, u E F  otherwise m-1' 
Dm - - Sm. 

Notice  that  all  these  definitions  are  valid  with  m = 0 and 
F-l = K. 

ALGORITHM  OUTLINE 

We shall  now  discuss  the  operations  done by our  algorithm 
when  presented  with  some  integrand f ( z )  E Fn.  Let Q = num f, 
R = den f and, by a  division  process,  obtain P1, T  in Sn such 
that 

Q = P R + T , d e g T < d e g R , o r T = O .  1 
If On is  not  exponential  over  F  we  now  have  to  compute n-1' 

jl and . 
Otherwise,  let  R = 8 R R1  in S gcd  (R1,On) = 1, and solve 
the U.P.E. 

j 
n 1' n' 

T = 8iT1 + R1T2 

for  T1, T2, with  deg  T1 < deg R1 (and  deg T2 < j ) .  

We  then  have  to  compute 

and  thus, we have  succeeded in decomposing  our  integral  into 
integrating  an  element of Dn and  integrating  a  proper  element of 
Fn. 

To integrate  elements  of Dn, we employ  a  method  similar  to 
one described by  Risch  (ref. 2 )  with  the  following  changes: 
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a) In  the  logarithmic  case, the algorithm  invoked  re- 
cursively  is  the  algorithm  described  herein  instead  of  Risch's. 
A special  purpose  algorithm  is  also  discussed  in  reference 1, 
pp. 46-49.  

b) In the  exponential  case, we use  a  different  algorithm 
to  solve  the  resulting  differential  equation  for  X 

X' + u'X = T 

with X ,  u, T in Fn - 1, where  exp  (u) is a  regular  monomial  over 
Fn-l. 

This  algorithm  will be  described  in  section 3. 

To integrate  proper  elements  g  of Fn we use  an  algorithm 

described  by D. Mack  (ref. 3) which  yields 

where  h2  is  normal  in  Fn.  Our  algorithm  to  find sh2 will be 
described  in  section 4. In  section 5 we will  present  a  comput- 
ing time  analysis  for  the  rational  function  case. 

SOLVING A SPECIAL  CASE OF A  DIFFERENTIAL  EQUATION 

In this  section  we  will  present  a  method  for  solving  the 
differential  equation 

X' + VX = T (1) 

for  X  in Fn, assuming  that v, T are  in Fn, and  that  exp(Jv)  is 

a  regular  monomial  over F (sv),  where .k, if not  in  F  is 

elementary  over F . Thus, X, if it  exists, is unique. 
n n' 

n 
(The  reason  for  not  requiring .fv to  be  in Fn is  that  this 

algorithm  will  be  invoked  recursively  and  under  those  circum- 
stances, we cannot  guarantee  that $v be in Fn, even  though  our 
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other  conditions  will apply.) 

In  order  to  find X, let 

V 1 and v = -  T = -  T1 
v2 T2 

with  vl, TI in Dn, v2, T2 in Sn, where,  if e n  is exponential  over 

Fn- 1 (Dn = E n ) then en rv2, and BnfT2. We will  also  require 
that  gcd (v,,v2) and  gcd (T1,T2) = 1 and  that  v ,T2  be  monic. 2 

Let  us  further  factor 

v1 = v  v  and T 1 = T T  
- A  A 

in  such  a  way  that  v, T E Sn  are  monic, gcd (;,T2) = gcd  (v2,?) 
= 1, v ,  ? are  in  D  and  every  square-free  factor of v 

(respectively '?) divides T (respectively  v2).  We can  then  prove 
that  gcd (7,;) = gvd ( T , T )  = 1. 

A A  

A 

n 

A 
2 

Now,  let  pl,...,pk  be  a  square-free  basis  for v, T ,  v2, T 2 .  
h A  

Assume  each p is  monic,  obtaining i 

T 
- 

T =  k 

where  the  bi,ci  are  integers  with  bi # 0 if ci = 0. 

It  can be shown  that X can  then be  represented  uniquely 
as 

X 
- 

x =  k with 2 E Dn n PXi " 

i=l I 



if we assume 
# 1). 

We will 
these values 

k 

now find the x , as follows: If we substitute i 
of X, v, T in (l), we obtain 

k k 

j=1 
j#i 

- i=l i=l 
” 

+ v x  - T - 

fipTi+l 

i=l 

I f  bi # 1 we notice that xi = c - max  (b ,l). Otherwise  (for i  i 
bi = 1).we can  have p dividing the numerator of this  expres- 

sion. But  this can happen  if  and  only  if 
0 

i 
0 

gcd  [pi 9: (G n pii i=l 

a  -b 

0 

i#io 

where  a = max  (b ,I) and a is the  smallest  non-negative  integer i  i 
such  that  the  expression  in  parenthesis  times  belongs  to S . n  n 

But  this is true if  and  only  if 

k 
a -b i i  a a 

Res  (pi I n - xi enp; r 9 ) = 0. 

i=l i=l 0 0 0 
n 

i#io 

Since  this  is  a  polynomial  equation  in xi , we  can  check  whether 

our  root is an  integer  (bigger  than  c - 1) and  solve fo r  it; 
0 

i 
0 
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otherwise we set x - 1. 
0 

We  then  obtain an equation of the  form 

with A, B, e,  in Dn.  If On is  exponential  over F we can do 
a  similar  computation  to  find an equivalent  equation  with x, 6 ,  
e ,  2 in Sn. Thus, assume A, B, e,  2 are in Sn. In order  to  find 
2, we now  do  the  following  analysis: 

n-1 

- 

We  can  assume  that gcd (A, E) = 1, since  otherwise,  let 
g = gcd (A, E ) .  Then  gle  (otherwise  no  solution  exists)  and we - - 
obtain  the  equivalent  equation - X '  + - X = - . A -  B -  C 

g g 

We  have  three  different  cases: 

i)  deg x = 0 and  deg > 0. 

In  this case, either = 0, (so that fi = 0) or deg E > 
deg e ,  so that  no  solution  exists,  or  deg E deg  and we can 
find  the  leading  coefficient  of 2, (since  deg A X '  < deg B X) 
arriving  at  an  equation  of  the  form 

" " 

with  deg e < deg e ,  so that we can  solve  it  recursively. 
ii)  deg = deg = 0 . 
Since, by assumption,  our  solution, if it  exists, is unique, 

we obtain  that  deg = deg  and  a  set  of  equations  of  the  form 
(1) but  with v, T, X in F We  then  enter  our  algorithm 

recursively,  noting  (though  not  trivially) that these  equations 
satisfy  the  same  conditions we had  before, w i t h  respect  to v. 

n-1' 

iii)  deg f i  > 0. 

I II 
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In this case, we point out that if we let % = QA + R ,  

(deg R < deg z) and  substitute, we obtain 
= X x' + B X = A ( Q ' A  + Q ( A '  + E) + R ' )  + BR . - -  

Thus if we solve  the UPE 

YE + Z B  = for Y and Z 

with  deg Z < deg X, we must  have  that Z = R, and Q must  be  the 
solution  of the equation 

It is very  important  to  note  that  (iii)  should  be  applied 
afteg  computing  a  bound on deg x and  noting  that  deg Q < deg X - 
deg A .  If  we  obtain  that  deg  Q < 0, then  there  is  no  possible 
solution.  Note  that  after  the  first  time we apply  (iii),  no  com- 
putation on the  bound of X is  required,  since  this bound  is 
already  known.  Finally,  the  first  time we apply  (iii), we compute 
a bound on deg X using  methods  described  in  reference 2. 

INTEGRATION OF NORMAL  ELEMENTS OF Fn 

In  this  section we will  present  a new algorithm  for  finding 
the  integral  of  a  normal  element of Fn. The algorithm is justi- 
fied  and  explained  in  the  following: 

Theorem 1. 

Let  f be  normal  in Fn, P = num f, Q = den f. Let  r(a) = 

resultant ( P  - aQ',Q,en).  Then $f is elementary  if  and  only if 
all  the  roots  of r(a) are  constants, if  and only if r(a> = s t(a) 
with  t(a) E K [ a ]  and s E Sn. 

Theorem 2. 

Using the same  notation  as  in  Theorem 1, if f is elementary, 
let  clr...,c  be  the  roots of r(a)  and  vi = gcd (P - ciQ',Q). 
Then 

m 
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i)  If 0 is  logarithmic  over F or n = 0, then n n-1 f=Pc - .  V! 

i v2 
1 

i=l I 

Vi 
ii) I f  en = exp, (w), w E F then  f = 2 ci(r - n.w') n-1' 1 

i=l i 

where  n = deg vi . i 
Theorem 3 .  

Using  the  same  notation as in the  two  previous  theorems, 
if f  is  elementary,  then  r(a)  (and t(a)) define  the  least  degree 
extension  of  the  constant  field,  necessary  to  express  the  integral 
of f .  This  theorem  answers  affirmatively  the  open  problem  asked 
by Risch on page 171 of  reference 2, and  generalizes  a  result  of 
Trager  (ref. 4 ) .  For  proofs of these  statements, we refer  the 
reader  to  reference 1. 

COMPUTING  TIME  ANALYSIS  FOR THE RATIONAL  FUNCTION CASE 

In this  section, we will  present  a  computing  time  analysis 
of  this  algorithm  for  the  rational  function  case.  First if P 
is  a  polynomial  with  integer  coefficients, 

P = 2 a.x , we define i 
1 

i=O 

Now, we define  F(m,n,d)  as  the  class of functions P/Q, with 
P, Q relatively  prime  univariate  polynomials  over  the  integers, 
max (lPl,lQl) 1. d , deg  P - < m , deg Q - < n . 

We  shall  use the definitions  and  notation  for  dominance  and 
codominance  used,  for  example, by Collins (ref. 5). 

Then, we have  the  following  theorem. For f E F(m,n,d), the 
time  required by the algorithm  described  herein  is  given by 

(m,n,d) < n L (an) + n L (kn) 8 2  6 3  
T~~~~ - 
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2 + max (m + 1 - n, O)nL (6)  + 1 
(if we assume  that the norm of any of the  partial results except 
the  resultant,  is  also bounded by  d) where L (d) = log2 (d) + 1. 

Proof: We  have  two  cases  to  consider. 

(a) m > n , and - 

(b) m < n . 
If m < n, we  do a  quotient-remainder  operation,  and  then we 

continue  with D. Mack's  algorithm  and the algorithm  described  in 
section 4. We  then  have  the  following  computing  times. 

The quotient-remainder  operation  requires  constant  time. 
D. Mack's  algorithm  requires  time  n  L(nd) as proven  in  reference 
3 .  

5 2 

The algorithm  in  section 4 requires  time  dominated by: 

i)  nL(d)  to  compute Q' 

ii)  nL(d) to compute P - aQ' (deg P < n) 
3 iii)  n  L(d)  to  compute  R = resultant (P - aQ' ,Q) ., 

(We  point out that  degaR < n, and  its  norm  is  bounded by  (2n)ld 2n 
2nd2n - 

- 
- < 2n - (2dn) 2n and thus L (norm R) - < nL (an) ) . 

iv)  n8 + n  L (norm  R) + n  L  (norm R) < n  L  (an) + n  L  (dn) 
to  compute  the roots of R (as given  in  private  communication  from 
G.E. Collins  assuming  number  of  roots = n). 

6 2  3 3  8 2   6 3  

v) n(n  L(d) + nL (dl)  to compute gcd ( P  - c.Q',Q) for 2 2 
1 - < i - < n  (assuming  there  are  n  distinct  roots of &>.  

Adding  these  times,  it  is  clear  that  the  time  to  compute 
the  roots  of  R  dominates  all  other  computing  times, and we obtain 
the  desired  result  that  the  computing  time  for  the  algorithm 
in  section 4 is dominated by 

n L (dn) + n  L  (dn) . 8 2   6 3  

Finally, if m > n, the  time  to  compute  the  quotient-remainder 
is  given by  (m + 1 - n)nL2  (d)  and the  time  to  compute  the  integral 
of  the  polynomial  part  (by  the  classical  method) isgiven by 
(m + 1 - n)L  (a). 2 
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If we add all these  computing  times w2 obtain  the  result 
that we quoted at the beginning. 

Note: The bounds on the time  to  compute the resultant and 
the norm  of R were  obtained  from  reference 5. 

CONCLUSIONS 

We  have  shown that for  rational  functions  integration in 
finite  terms  can  be  done  in  time  bounded by a  polynomial in the 
size of the  input, if  part of that  size  is  the  degree. 

In  the  general case, we conjecture  that  the  computing  time, 
for  the  case  where  the  number o.f monomials  is  fixed,  yields  a 
polynomial  in  the  same  sense as above. (No better  bound  can  be 
obtained,  as  shown by the  example sx e dx.) , This  conjecture, 
though,  implies  that  the  computing  time of any  algorithm  for 
symbolic  integration  is  at  least  exponential  in the number  of 
monomials  in  the  integrand. 

n x  
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SUMMATION OF RATIONAL  EXPONENTIAL  EXPRESSIONS 

IN CLOSED FORM 

Jar Moses* 
and Jacques Cohenm 

ABSTRACT 

A program is described which provides, whenever possible, symbolic closed form 
solutions  to  summations of rational exponential expressions, i.e.,  of the type 

x =u 

where  the F’s are polynomials in x. The program is based  on a decision procedure recently 
developed by M. Karr.  The decision procedure consists of determining if the  resulting  sum is in 
itself a rational  exponential,  and,if so, generating that expression. The paper  first  reviews  some of 
the classical techniques summarized by G. Boole for attempting to find closed forms  for  the given 
type of summations. Karr’s method is then informally presented. His method not only provides a 
decision procedure  but also appears better  suited for computer implementation than  the classical 
techniques.  Several  examples of the program’s  use are provided. 
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Ustr Aids for MACSYMAO 

by 
V. Ellen  Lewis 

Laboratory for Computer Science 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

1. SUMMARY 

T h e  aids  available to the MACSYMA  user are described, from the printed manual,  primer, 
and system introduction to the various on-line sources of help. This is a tutoria! paper  which is, in 
fact, a "user aid" itself. 

2. PRINTED MATERIAL 

When a new user requests information about MACSYMA,  he  is sent a standard  package 
consisting of the MACSYMA Reference Manual, the "MACSYMA Primer", and  the  "Introduction 
to ITS for the MACSYMA user." These three documents  comprise the  printed  documentation for 
MACSYMA  and  are intended to provide enough information to a prospective user to  permit  him 
to (1) determine  whether or not MACSYMA  can help him solve his problem, and (2) get started 
using  MACSYMA 

2.1. The MACSYMA Reference  Manual 

T h e  Reference  Manual is, of course, the most  complete document dealing with the 
MACSYMA System. It describes all the functions, commands,  switches and  options available in 
the system. Most serious MACSYMA users will want  to have one for reference. It has  indices of 
functions  and switches, as well as detailed information dealing with programming and  the  internal 
operation of MACSYMA. It is updated approximately every 12 to 18 months. In  between 

0. This  work was supported, in part, by the United States Energy Research and  Development 
Administration  under Contract Number E(ll-1)-3070 and by the National Aeronautics and  Space 
Administration  under  Grant NSG 1328. 
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revisions,  information  about new features is available on-line  in the  file HACSYH;UPDATE Y""'. 

2.2. The "Introduction to ITS" and the "MACSYMA Primer" 

T h e  "Introduction to ITS for the MACSYMA user" attempts to explain to those whose 
primary purpose in using the computer  is  using MACSYMA how to  cope  with the  time-sharing 
system (ITS) on  which MACSYMA runs. This is at best a stop-gap measure, but an essential one 
for the moment, because MACSYMA runs on a "research"  system. The assumption is that the 
person using the computer wants  to have access  to  any part of the operating system at all times. 
For a programmer  this is a "feature"  (an advantage), but for  a user this can be a distinct 
disadvantage. The "Introduction to ITS" is intended  to offset this disadvantage. 

The  MACSYMA Primer is a brief  description of  some  of ,the commonly  used features of 
MACSYMA By  use  of a number of examples, it demonstrates MACSYMA's syntax and  gives a 
short "cook  book  recipe" for how  to  use MACSYMA. 

Using these two  documents, a potential  user  can  establish a connection to the  computer, and 
get  started  using MACSYMA. 

3. T H E  ON-LINE AIDS 

MACSYMA is a system  with a lot  of built-in  expertise. Once the user has gotten himself 
connected to it, it is reasonable to  hope that MACSYMA can offer information about itself should 
the user  desire it and respond  to  simple  user  queries. 

3.1. The PRIMER 

For the novice user, or other users  who  want  some instruction in a  particular aspect of 
MACSYMA, there is the on-line  Primer. This is  conceived as an interactive educational tool 
which leadsathe user through some  sample  calculations.  It  allows the user  to  type commands, but 
intercepts them for checking before they  reach MACSYMA's evaluator. If a command is typed 
correctly, it is passed  on  to the evaluator and MACSYMA handles it exactly as if it had been typed 
in  from top level MACSYMA. If a command is not  correct, the Primer tries to identify the source 
of the  error  and  give  the user an appropriate error message. The command is not  passed on to 
MACSYMA and  the user is asked  to T r y  again." Thus the user  gets "hands on" experience 

#. This file may be printed  out with the command :PRINT MACSYH;UPDATE )<carriage return> at 
DDT level 
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typing  actual MACSYMA commands but in a controlled situation where he will be introduced to 
the complexities of the system without having to flounder around. 

T h e  command to start up the Primer Is PRIMER( ) ;." This will print  out a brief introduction 
and offer a choice of subjects to learn about, thus: 

( C l )  PRIMER(); 

Hello.   Please  terminate your  responses wi th  a ;. What would you 
l i k e   t o  go over?  (Select   the number of t h e   s c r i p t  you would l i k e  t o  s e e . )  
INTRO i s  a general  introduction  for  people who have  never  used MACSYMA or 
t h i s  PRIMER before.  
1 - INTRO 
2 - SIMPLIFICATION 
3 - SCRATCHPAD 
4 - SYNTAX 
5 - ASSIGNMENT 
6 - F I L I N G  
7 - MATRICES 
8 - SHARE 
9 - E X I T  

These topics are called scripts because their interactive nature makes them closer to dramatic  scripts 
than to  narratives. The  user selects a script by typing its number (or  its name) followed by a  semi- 
colon. (INTRO is the introductory script and should  be run by  new users.) There is a "standard" 
introduction consisting of the INTRO script (which  inserts the SYNTAX script), the SIMPLIF ICATION 
script,  and  the so-called SCRATCHPAD scripttf'). These scripts lead one to the next, with an  optional 
ordering  offered. Additional scripts are available on MATRICES, F I L I N G  (the  various  kinds of 
disk  files and how to use them), and ASSIGNMENT (how  to define  functions and assign variables). 
Scripts will eventually  be  added dealing with EVALUATION, program wrizing, and (in the  spirit of 
self explanation) User Aids. Some of the information on the SHARE directory may also  be  printed 
out  in  the  Primer, by selecting the SHARE script,  which offers  a further selection of file  names to be 
printed. T h e  PRIMER command may also be given a script name as an  argument, e.g. 
PRIMER(  MATRICES) ;, and it will then run that script. 

T h e  user is moved around  from script to  script in the  Primer  depending on how he  answers 
the "yes or no" questions the  Primer asks: 

o. This  is called a "function of no arguments",  since  MACSYMA 
inside parentheses. 

w. SCRATCHPAD is meant to imply the ability to  "fiddle"  with 
connection with another manipulation system is intended. 

functions  take their  arguments 

MACSYMA  expressions. No 



Do you need help with MACSYMA syntax? 

YES ; 

Other  script switches are accomplished by the primer printing  out the list  of scripts again and 
allowing the user  to select a script or to exit. (Also at any point the user may type control-uparrow, 
the MACSYMA "quit" character, and exit back  to  top  level MACSYMA). 

The user will be  invited to try out  the various commands as they are  explained, e.g. 

Here i s  a simple example o f  the use o f  SUBST. The numerator o f  
t h i s   e x p r e s s i o n   i s  equal t o  1 f o r  a l l  X,  but  the MACSYMA s i m p l i f i e r s  will 
n o t   s i m p l i f y  it d i r e c t l y .  

(C2) (S1N(X)"2+COS(X)"2)/(XA2+39); 
2 2 

S I N  ( X )  + COS ( X )  
(D2)  """"""""- 

2 
x + 3 9  

There  are  three ways t o  use SUBST on t h i s  example: 
One cou ld   subs t i tu te  1 f o r  SIN(X)^P+COS(X)"Z 
One cou ld   subs t i tu te  l-SIN(X)^E f o r  COS(X)"Z 
O r  one could  subst i tu te  l-COS(X)^Z f o r  SIN(X)"E 

The f i r s t  way i s  more d i rec t ,   bu t  i n  more complex examples  where 
t h e   s i n  squared  plus cos  squared i s  deeply  entwined  with  other  elements 
of   the  express ion  the second o r   t h i r d  way would be necessary. P i c k  t h e  
way you l i k e   b e s t  and simpli fy  the  expression  by  using SUBST. 

The user may then  perform  the indicated operation, or if he is not sure how to proceed (or  has 
tried once or twice and been unsuccessful), he may type NO; and  the  Primer will show him how to 
do it: 

(C3) NO; 

Q.K.  I'll do it for you. 
(C3) SUBST(l,SIN(X)^2+COS(X)"2,%); 
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1 """_ 
2 

x + 3 9  

3.2. The HELP Command 

T h e  casual MACSYMA user frequently wants  to do one task, invert  a  matrix  or  solve a 
differential  equation,  for instance. The advanced user  sometimes needs to know one  thing  like 
what switches affect a particular command. That is  to  say, there are specific questions  users have, 
which  fit  into two general forms: 

1. How do I <do something> ? 
2. What  are  the <arguments,  switches> for <command> ? 

O f  course, the user could ask a knowledgeable  user  these questions, or look them up in the 
Reference  Manual,  but this is not always  convenient. So the HELP( ) ;  command has been 
implemented. The  HELP( ) ; command starts up a small "natural language" subsystem which  can 
understand English in a flexible but limited  way.  Sentences it cannot understand are  returned 
with  the constructions or words the system  does  not undertand pointed out, so the user may 
rephrase  his question. This HELPer is the beginning of the ADVISOR subsystem which will 
ultimately  take  the place of the communication  with human advisors for most questions (see ref. 1). 

Basically, this subsystem will be able to understand and reply  to questions of the two forms 
stated  above: "How do I ,?" and "What are the - for ,?" The flexibility of the system permlts, 
for  instance, the two  questions: 

1. How do you append two  lists? 
2. How db I make one list out of  two  lists? 

by recognizing  that they are both requesting information about  the APPEND command. Questions 
of the  form 

"How can I integrate D3?" 

can also be  handled, since the subsystem has access to the rest  of the user's MACSYMA and  can 
find  out what D3 is, even replying "I'm sorry, MACSYMA cannot integrate <expression>." should 
that be the case. 
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To exit from the  HELPer, type BYE. 

3.3. Options, Describe, and Example 

3.3.1 Opt i ons 

Users sometimes need to ask a more general sort of question, like "What can I do with  a 
matrix?"  or  "What  kinds of operations can I perform on trigonometric functions?" T h e  
OPTIONS( ) ; command was  conceived for this purpose. 

OPTIONS( ) ; starts up the "Options Interpreter".  Note that OPTIONS may take  the  name of a 
command or a general topic (e.g. MATRICES,  SIMPLIFICATION,  FACTOR)  as an  argument. 
The effect  of OPTIONS( ) ; is 

(C4) OPTIONS( ) ; 

OPTION  FASL DSK MACSYII being  loaded 
load ing  done 
OPTIONS i n t e r p r e t e r  (Type "EXIT;" t o   e x i t . )  
1 - INTERACTION 
2 - DEBUGGING 
3 - EVALUATION 
4 - LISTS 
5 - MATRICES 
6 - SIMPLIFICATION 
7 - REPRESENTATIONS 
8 - PLOTTING 
9 - TRANSLATION 

. 

This list of topics is the top of a branching hierarchical structure like an  inverted  tree  which 
organizes  the names of MACSYMA commands and switches by topic or function. A portion of 
the tree looks  like this: 
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INTERACTION DEBUGGING EVALUATION LISTS MATRICES S IMPLIF ICATION 

A 
EXPANSION FACTORING T R I G  

/\ 
MAXPOSEX (SI MAXNEGEX ( s  ) 

T h e  Options  Interpreter uses the same mechanism for moving around in this tree that  the  Primer 
uses for script selection, thus  referring back to the printout  from OPTIONS( ) ;, the user types a 
number followed by a semi-colon  to  sef the things under a particular topic (a "node" in the tree). 
For example: 

( C 4 )  OPTIONS( ) ; 
OPTIONS i n t e r p r e t e r   ( T y p e   " E X I T ; "  t o  e x i t . )  
1 -  
2 -  
3 -  
4 -  
5 -  
6 -  
7 -  
8 -  
9 -  
6; 
1 -  
2 -  
3 -  

INTERACTION 
DEBUGGING 
EVALUATION 
L ISTS 
MATRICES 
SIMPLIFICATION 
REPRESENTATIONS 
PLOTTING 
TRANSLATION 

EXPANSION 
FACTORING 
TRIG 

Continuing  further 

1; 
1 - EXPAND ( C )  
2 - RATEXPAND (C,S)  

A command will have  the symbol ( C )  after it, a switch will have  the symbol (S), and a variable 
W i l l  have (V). Continuing down the tree, if the user selects "I", the EXPAND command, M ACSY M A 
prints out: 



1;' 
1 - MAXPOSEX ( S )  
2 - MAXNEGEX (S)  

showing  the switches which affect  that command. If the user  selects "1" at  this point, the MAXPOSEX 
switch, MACSYMA prlnts  out 

no o p t i o n s  

indicating  that  he  has reached the bottom  of the tree. To move  back up,  perhaps to check out  the 
RATEXPAND command, the user  types 

back; 
1 - EXPAND ( C )  
2 - RATEXPAND (C,S) 

and  the system moves him back up to the next higher level. To exit from  the OPTIONS Interpreter, 
type ex 1 t ;. 

3.3.2 D e s c r i b e  

T h e  OPTIONS command allows the user  to  select a command or  a small set  of commands. 
T h e  user  can  then check the command in the manual or use the DESCRIBE command to f ind  out 
what  it  does exactly, and what arguments it  takes. DESCRIBE takes a command name or  a switch 
name as an argument  and  prints out  the section of the manual which explains  the  command or 
switch.* DESCRIBE.works within OPTIONS, taking the number of the command: 

1 - FACTOR ( C )  
2 - GFACTOR ( C )  
3 - FACTORSUM ( C )  
4 - GFACTORSUM (C)  
5 - SQFR ( C )  
6 - PARTITION ( C )  
DESCRIBE( 1) ; 
FACTOR(exp) f a c t o r s   t h e   e x p r e s s i o n  exp conta in ing  any number of 

v a r i a b l e s   o r   f u n c t i o n s ,   i n t o   f a c t o r s   i r r e d u c i b l e  over 
t h e   i n t e g e r s .  

~~ 

0. O f  course, this is only as good as the latest  version of the manual, and might  be out of date if 
new  features  have been added. 
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Or DESCRIBE can  be used directly from top level MACSYMA: 

(C5)  DESCRIBE(FACT0R); 
FACTOR(exp) factors  the  expression  exp  containing  any  number of 

variables  or functlons, into  factors  irreducible over 
the integers. 

( 0 5 )  . DONE 

3.3.3 Exampl e 

T h e  EXAMPLE command fits very  closely  with DESCRIBE. It also takes a command as an 
argument  and gives examples of  how that command may be used, and  the sort of output it gives. 

(C6) EXAMPLE(FACT0R); 

EXAMPL 2 DSK  DEMO being loaded 
loading  done 

(C7)  FACTOR&& FACTOR(2^63-1); 

2 
7 73  127  337  92737  649657 

- 
(C8) FACTOR(ZA2*(X+2*Y)-4*X-8*Y); 
(D8)  ( 2  Y + X )  (Z'- 2 )  (Z + 2 )  

Since  the EXAMPLE command is actually a demonstration (see DEMO command below), i t  prompts  the 
user with a - at  the left margin after each  command  line  is  processed, so the user may type a 
space  to see the  next command line, or control-uparrow to "QUIT" out of the EXAMPLE. 

m m  

9.4. Demonstrations,  and  the DEMO Directory 

Another way a user tan  find  out'how various MACSYMA functions work and get an idea 
of how MACSYMA can be used on real  problems is to run some of the  demonstrations which are  
contained  in  the DEMO directory. 
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T h e  directory may be listed at system top level (DDT level)* and  the  files  loaded  into 
MACSYMA with the DEMO command, e.g. 

(C9)  DEMO(NDEMO,FILE,DSK,DEHO); 

4. USER SPECIFIC INFORMATlON 

All the user aids discussed thus far have been for getting information about  the system. I t  is 
sometimes necessary for a user to get information about his own functions  or  the  current  state of 
his MACSYMA 

4.1. Information  about User-Defined  Functions and Variables 

4.1.1 DISPFUN and GRIND 

Suppose  the user has defined a function F(X), for instance: 

( C l O )  F(X) :=XA2+2*X+l; 

( D l 0 1  F(X) := X + 2 X + 1 
2 

T h e  user  can  redisplay this function using the command DISPFUN( F) ; 

(C11)  DISPFUN(F); 
2 

(D11)   F (X)  := X + 2 X + 1 

In this way he can check the correctness of the definition, or review it. 

If the function  the user had  defined is a BLOCK statement, e.g. 

( C 1 2 )  MYTAYLOR(EXPR,VAR,POINT,HIPOWER):=BLOCK([RESULT], 
RESULT: SUBST(POINT,VAR,EXPR),FOR 1:1 THRU  HIPOWER 
DO (EXPR: DIFF(EXPR,VAR)/I,RESULT: RESULT+(VAR-POINT)"I* 
SUBST(  POINT,VAR,EXPR)), RETURN( RESULT))$ 

e. : L I S T F  DEMWcatriage return> 
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just  displaying it may not be very helpful, especially if the user is trying to "debug" it. T h e  
command GRIND(G);  can be used and will display the function G with the  various  parts of the 
BLOCK statement  indented properly so their structure can be more  easily seen, for example: 

(C13)  GRIND(HYTAYL0R); 
HYTAYLOR(EXPR,VAR,POINT,HIPOWER) :=BLOCK([RESULT], 

RESULT:SUBST(  POINT,VAR,EXPR), 
FOR I THRU HIPOWER DO 

(EXPR:DIFF(EXPR,VAR,l)/I, 
RESULT:RESULT+(VAR-POINT)AI*SUBST(POINT,VARDEXPR)), 

RETURN(RESULT))S 
( D l 3 1  DONE 

Using GRIND on a function like F ( X )  above (which fits on one line) produces the  one  dimensional 
representation in which the function was input, although in general it might  be equivalent bu t  
slightly  re-arranged. 

( C 1 4 )   G R I N D ( F ) ;  
F(X):=XA2+2+x+1S 
( D l 4 1  DONE 

1.1.2 PROPERTIES and ARRAYINFO 

T h e  command PROPERTIES takes a function or a  ,variable as an  argument,  and  prints  out  the 
things MACSYMA knows about it, e.g. that it is a function. For example: 

(C15)  PROPERTIES(HYTAYL0R); 

PROPFN FASL DSK MAXOUT being loaded 
loading done 
( D l 5 1  [FUNCTION] 

(C16)  PROPERTIES(GR1ND); 
(016) [SYSTEM FUNCTION] 

T h e  command ARRAYINFO takes the name of an array  as  an  argument, and will print  out the 
information  about  the array: whether or not it is declared and its dimensions. 



4.2. INFOLISTS 

INFOLISTS is a list  of the lists of information MACSYMA maintains  about the user’s 
MACSYMA state. Typing INFOLISTS; will produce the following output: 

(C17)   INFOLISTS; 
(D17)  [LABELS, VALUES, FUNCTIONS, ARRAYS, MYOPTIONS, PROPS, ALIASES, 

RULES,  GRADEFS, DEPENDENCIES, FEATURES] 

EV( INFOLISTS)  ; will produce a list  of the things in  each of the lists. The lists maintained  are: 

LABELS - T h e  line labels in the current MACSYMA which have been assigned, that is all C-lines, 
D-lines, and E-lines. 

VALUES - All the variables  the user has assigned a value to explicitly with the : operator, by 
variable name. 

FUNCTIONS - All the  functions  the user has defined with the :- operator, except subscripted  (array) 
functions. 

ARRAYS - All arrays  and matrices,  declared and undeclared, and all array  functions. 

HYOPTIONS - All the MACSYMA options (switches) the user has  changed. 

PROPS - Any atoms which have properties such as atvalues, matchdeclares, or properties  specified 
by the DECLARE function. 

ALIASES - T h e  user’s  own abbreviated names for quantities, e.g. ALIAS(  INTEG,  INTEGRATE) sets 
up INTEG as a short spelling for INTEGRATE. 

RULES - Any simplification rules or pattern matching rules the user has  defined  using the 
TELLSIMP, TELLSIMPAFTER, DEFMATCH, or DEFRULE commands. 

GRADEFS - Those  functions  for which the user has defined derivatives. 

DEPENDENCIES - The functional dependencies declared by the user with the DEPENDENCIES or 
GRADEF command. 

FEATURES - Special mathematical or other properties of functions. Three  are built  into 
MACSYMA: INTEGER, EVEN, and ODD, but the user  can add others. 
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4.3. Tracing and Debugging Aids 

The TRACE function accepts the names of functions as arguments, and will print  out 
information each  time the functions being traced are called, e.g. 

(C18)  TRACE(MYTAYL0R); 

MTRACE FASL DSK  MACSYM being loaded 
loading  done 
(018) [MY TAY  LOR J 

Th i s  permits  the user to  make a better  guess as to  where  his function is not behaving  as  he 
expects. 

T h e  UNTRACE function is the complementary function which removes the  trace from 
functions (e.g., UNTRACE(MYTAYL0R);). UNTRACE(); will remove tracing from all functions. 
TRACE( ) ; will print  out a list of all functions being  traced. 

(C20)  TRACE(); 
(D20)  

(C21)  UNTRACEO; 
( 0 2 1 )  

[ MYTAY LOR] 

[MYTAYLOR] 

There is a switch which helps the user  keep  track of what variables  he has  assigned values 
to. This  is SETCHECK.  SETCHECK may be set (using the : operator) to a list of variables, and 
MACSYMA will print  out a message any tlme an assignment is made to one of those  variables. 
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There are a few other  debugging aids, which are explained in the  manual in the section on 
Debugging Functions. 

5. FINALLY, T H E R E  ARESTILL PEOPLE! 

Finally,  should  the user find these various aids inadequate, there are still human  advisors 
around to whom he can put his questions. These human advisors are MACSYMA's best "User 
Aid", and  the user is encouraged to  contact  them  with his problems. This can be done  within 
MACSYMA by using the SEND command, e.g. 

(C22) SEND("H0W DO I INVERT A MATRIX?");  

Notice the quotation  marks, they are  part of the command. This will send a message to one of the 
MACSYMA helpers  who is logged  in at the time. Alternatively, the user desiring  help  can  exit 
from MACSYMA with a control-2 and use the DDT command :SEND to contact a particular 
person", or in cases of desperation,  the : LUSER command.'>> 

6. REFERENCES 

1. Cenesereth, M. R.: "An Automated Consultant for MACSYMA". 1977 MACSYMA User's 
Conference, NASA CP-2012,1977 (paper no. 30) of this compilation. 

0. See  the "Introduction to ITS for MACSYMA Users" for details 

00. Once  again, see the "Introduction to ITS.." 
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Abstract 

The Difficulties of Using MACSYMA and the  Function of User Aids':' 

Michael R. Genesereth 

Center for Research  in Computing Technology 
Harvard University 

Laboratory for Computer Science 
Massachusetts Institute of Technology 

T h e  difficulties of using a computer system to help solve a problem can be divided  into 
learning  difficulties, resource knowledge difficulties, and communication difficulties. T h e  
purpose of this  paper is to explore the  nature  and manifestations of these difficulties in 
MACSYMA  and to explain the function of user aids in dealing with them. A learning  difficulty 
arises  whenever a system  is  too large or too  complex  to understand fully. A resource knowledge 
difficulty arises  whenever a user is unable to  solve  his  problem due to a  deficiency in thls 
understanding. A communication difficulty is due to a  difference between the  primitive  objects, 
actions, and relations of a user's  problem and those provided by the system. The  importance of 
this distinction lies in the way each difficulty is handled: learning difficulties by primers,  lectures, 
tutors;  resource knowledge difficulties by manuals, information networks, consultants; 
communication  difficulties by bringing  the system closer  to the user's  needs. In all cases, the 
optimal assistance can be provided by an aid that maintains and uses an explicit, internal "model" 
of the user's state of knowledge, his goals, and his "plan" for achieving ttiem. 

Introduction 

Consider a scientist trying to  solve a mathematical  problem  with the  aid of an  algebraic 
manipulation system like MACSYMA. If he were  to  solve the problem by hand,  he would 
personally  have  to  grapple with the problem  itself and all the subproblems that  arise. By using 
MACSYMA, he can delegate many subproblems and thereby save time and  effort.  However, to 

a This  work was supported, in part, by the United States Energy Research and  Development 
Administration  under Contract Number E(ll-1)-3070 and by the  National  Aeronautics and  Space 
Administration  under  Grant NSG 1323. 



do so, he must (1) understand  the relevant portions of MACSYMA, (2) be  able  to  remedy any 
difficulties  that  arise  from a deficiency in this  understanding, and (3) expend the  additional 
effort necessary to communicate to  MACSYMA the essential details of his  problem.  In  general. 
when a person employs any tool to help solve a problem, he is trading  off  the  effort  required for 
these  three tasks  in  return for  the tool's powerful or unique abilities at solving  his  problem. 

T h e  purpose of this  paper is  to explore the  nature and manifestations of these  tasks  in the 
context of MACSYMA  and to explain the function of user aids in facilitating  their  execution. 
People sometimes complain that MACSYMA  is difficult to understand or  to  control, and  they 
usually  cite  specific properties  of  the system as primarily responsible, e.g. too many  commands,  too 
hard to specify  subexpressions. In all cases,  these complaints are  attributable to increases  in the 
difficulty of one  or more of the  above tasks. Difficulties encountered in acquiring an initial 
understanding of a system will hereafter be  called learning  difficulties;  problem solving 
difficulties  resulting  from a deficiency in this understanding will be called resource knowledve 
difficulties;  and  difficulties in communicating to the system the essential details of a problem and 
in  retrieving a comprehensible result will be  called communication difficulties. T h e  importance 
of  this  distinction lies in the way each difficulty can  best be handled. All three  difficulties  can be 
lessened by improving MACSYMA itself.  However, learning  difficulties can also be  treated by 
tutorial  aids,  and resource knowledge difficulties by "user-initiative" information  sources. I t  will 
be argued  that in all three cases the ultimate aid is one that maintains and uses a "model" of the 
user's problem  and his "plan" for solving it. 

T h e  analysis presented here is  concerned  only  with difficulties  arising from  the use of 
MACSYMA;  it does not consider those arising  from ill formulated or partially formulated 
problems.  Such  problems  are not  uncommon, e.g. a scientist will occasionally engage in algebraic 
manipulation  without a precise goal because he wants the  insight that comes from  writing  his 
result  in  different forms. Although the paper does  mention in general terms the  constraints on 
MACSYMA's  design, it does not consider specific implementational .or mathematical difficulties. 
e.g. address space problems, the representation of derivatives. 

A learning  difficulty arises when a system  is too large or its primitives too complex for  a 
new  user  to  understand fully. MACSYMA, for example, has  over 350 commands and 200 
switches, and  the behavior  of many commands like TRIGREDUCE cannot  be simply described. 
Learning  difficulties  are best countered either by simplifying the system or by providing  tutorial 
aids like  primers  and lectures. 

A  resource knowledge difficulty arises when the user finds himself unable to proceed 
further in  solving  his problem due to a deficiency  in his knowledge of MACSYMA. He  might 
not, for  example,  be  able to remember the name  of the command for  putting a sum of quotienEs 
over a common denominator  (COMBINE). Or, he  might be unaware of a  command's 
dependence on the setting of some variable, e.g. EXPAND and  MAXPOSEX. Or,  he  might  get 
an incorrect  answer  due to a programming mistake but not  know where in his derivation  he  went 
wrong.  Resource knowledge difficulties  are best  treated  by user-initiative information sources. e.g. 
manuals,  information networks, and consultants. 
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A communication  difficulty results from a difference b’etween the objects,  actions, and  
relations of the user’s problem and those provided by the system. The  difference may be  either 
simple or complex. A “simple” difference is  eliminated  by defining  the relevant concepts. For 
example, MACSYMA can represent a matrix and compute and solve its characteristic  polynomial, 
but It knows  nothing  about eigenvalues. The user  with a matrix eigenvalue  problem  may either 
cal i  the  appropriate commands one by one or define  a function. A “complex” difference  results 
when  there  is  no homomorphic  mapping between the primitives of the user’s problem and  their 
representation in MACSYMA. For example, a user  may  want to write an expression as (V/C)*. 
but  MACSYMA insists on writing V2/C2. The most straightforward solution to  communication 
difficulties is for  the system designer to bring  the system’s primitives closer to  those of the user. 

It  is  important to keep in  mind a basic distinction between learning and  resource 
knowledge  difficulties on the one  hand  and communication difficulties  on the  other. A 
communication  difficulty results from  the difference between the  expertise  required to solve the 
user’s problem  and  that provided by the system. A learning or resource knowledge difficulty is 
due to  the user’s misunderstanding of the system, no matter how appropriate  the system is to the 
problem  at  hand. A communication difficulty varies inversely  with the system’s expertise and 
would  exist  even if the user understood MACSYMA perfectly. Learning  and resource knowledge 
difficulties  vary directly with the complexity of that portion of the system appropriate to the 
user’s problem  and  are otherwise independent of the problem. 

T h e  advantage of a  large algebraic manipulation system like MACSYMA over a smaller, 
sparer system like REDUCE is that MACSYMA has more mathematical knowledge built  in. As a 
consequence, the user is not forced to  communicate as much mathematical knowledge to the 
system, and it is even possible that the system offers expertise with which the user  himself is 
unfamiliar.  The’disadvantage is that MACSYMA can be more difficult to understand and  to 
use. In  other words, the communication difficulty is.drastically decreased for increased learning 
and  resource knowledge difficulties. 

One  advantage of numerical computation over symbolic manipulation is that  the  former 
can sometimes succeed where the latter fails -- many  problems are  amenable only to  numerical 
techniques. This is unfortunate because graphs  and tables alone do not offer  as much structure 
as closed form  or even series solutions. The inadequacy of numerical solutions can be viewed as a 
communication  difficulty in which the answers are not as readily interpretable in the user’s terms. 
Thus,  when  both numerical computation and symbolic manipulation are  applicable,  the  latter  has 
the  advantage of more comprehensible results and,  due to the decreased communication difficulty, 
may actually  be  more  efficient in terms of user  time. 

In  providing  the optimal assistance for each of these three types  of difficulties,  one  feature 
is common, namely the importance of a model for the user’s goal and his plan for  achieving it. 
In  order to  provide information tailored to the user’s need, the tutor  or  consultant  must know 
what  the user knows and what he is trying to  do. If MACSYMA were able  to  keep  track of the 
structure of the user’s  session  (why he is doing what he is doing), it could choose defaults  and 
disambiguate  input in a way that is  not now possible. The automatic user aids of the  future -- 
tutors, consultants, and apprentices -- will  very  likely maintain and use such models. 
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This  paper deals with the three types of difficulties in turn. The  first section describes 
MACSYMA's tutorial  aids, discusses their strengths, and suggests some improvements. T h e  
second section classifies and explains  the observed manifestations of resource knowledge 
difficulties by way of an explicit model  of the "typical" MACSYMA user and  describes 
MACSYMA's provisions  for dealing with  these difficulties. After listing the  requirements for  
communication  .with MACSYMA, the  third section outlines its current  capabilities for  easing 
communication  difficulties  and suggests several improvements that would further  reduce  their 
degree. The  fourth section states in very general terms why MACSYMA has developed as it has. 
The   f ina l  section describes  the state of implementation of the suggestions made in the  paper, 
indicates some  shortcomings of the model  used  in  section 2, and  argues  that  the  difficulties  of 
using a computer system  need  not  be prohibitive if adequate user aids  are  provided. 

1. Learning  Difficulties I 

A learning  difficulty arises when a system  is  too large or its primitives too complex for  a 
new  user  to  understand fully. The effect of having too  many commands and switches is that  the 
user  cannot remember all the capabilities available and  the details of each; there is just  too  much 
information. A mnemonic naming scheme is one way MACSYMA tries to counter this  difficulty. 
Obviously, a good naming scheme should be unambiguous, systematic, prescriptive, and 
designative of the command's exact function. 

Mnemonic  naming is the best way to  help a user  recall the name of a  command or switch. . 
However,  the best way to help him remember the  range of capabilities available is to provide a 
conceptual  framework  for those capabilities. A primer is a user aid that supplies information 
from a fixed syllabus. This facilitates the learning process  by structuring  the  material to be 
learned. MACSYMA has a small hard copy primer (ref. 1) that is supplied to all new users. 

T h e  best way to help  a user  remember the details of a command's use, e.g. its arguments. 
options,  side effects, is practice. MACSYMA also has an interactive primer  (ref. 2) in which the 
user  participates by solving test problems under its auspices (via  the PRIMER command). T h e  
advantage is that  the user is forced to  try out what he has learned immediately after  he  learns it. 
T h e  user's solution is checked for mistakes by specialized analysis functions  supplied by the 
primer's  author. 

In the  future,  this analysis and maybe  even the invention of examples may be  automated. 
T h e  work reported  in  (refs. 3, 4, 5, 6) suggests a possible implementation. The  MACSYMA tutor 
would  maintain a model of the user's  knowledge of MACSYMA based on the  material  already 
presented  to  him  and a model of the task he was given; and it would obtain  through  analysis of 
his  actions  and statements a model of his plan for solving the problem. It would examine  these 
models  in an attempt to recognize any tutorial "issues" (ref. 4) in its syllabus and,  finding  one, 
would  generate  the  appropriate correction. The construction of such a tutor,  however, has  not yet 
been seriously  considered. 



One  other tutorial  approach is the traditional lecture and problem set discipline. T h e  
M A C S Y M A  staff yearly offers  a six  lecture  mini-course at M.I.T., and  there  are  plans to 
videotape these lectures for general circulation. 

T h e  disadvantage of a tutorial aid is that  the information provided is not tailored  to the 
user’s current problem. While  a full  presentation may  be  best in the long run, some users  may  not 
have  the time  or  patience to consult such an aid before tackling their problem. 

2. Resource  Knowledge Problems 

T h e  MACSYMA user  typically has a mathematical  problem he is trying to solve and 
approaches M A C S Y M A  for its powerful abilities at algebraic manipulation. T h e  domain in 
which  the problem is expressed (here mathematics) is  called the task environment, and  the user 
typically knows a good deal  about it. This knowledge is represented in figure 1 as  the box labeled 
T. He also has a model of MACSYMA’s abilities (M) and  maintains  a  dynamic model for the 
state of his  current MACSYMA (m). In solving his problem, the person uses this knowledge to 
map his problem  from  the task environment to MACSYMA, solve the  resulting MACSYMA 
problem,  and  interpret  the result. For example, he represents his equations as a matrix,  inverts  it, 
and reads  off  the solutions. In executing this procedure, he implicitly generates and  follows a 
plan P, Le. a goal-subgoal tree that he  believes will solve  his problem. This view  of the user’s use 
of MACSYMA leads to the configuration in figure 1. 

n I 
I 1 T 

m 

I P 1 
Fig. 1 - A  MACSYMA user’s data structures 

A resource knowledge difficulty arises when a user  is unable to proceed further in solving 
his problem  due  to a deficiency in his model  of MACSYMA (M). When  this  happens, the  user 
must  either  strike  out  at random or consult one of the  information sources available to him. 
Difficulties  due to errors in the user’s  model  of his task environment (T) are not treated  here, 
though they  often arise. One might, for example,  balk at seeing an  imaginary  solution  when 
trying  to  find  the intersection of two  circles, until one realizes that  the circles do not intersect. 
Difficulties  due to deficiencies in the user’s  model  of his current MACSYM A (m) stem from 
deficiencies in M or T and  are dealt with in part by improving communication of MACSYMA’s 
state  to  the user as described in section 3. 



In analyzing resource knowledge difficulties, several questions naturally  arise. Is there any 
way to bound  and classify the sorts of difficulties that can befall the user? Of what use are user 
aids in dealing with these difficulties? This section presents some data on the  information  needs 
of users  experiencing resource knowledge difficulties and  explains  this data by way of a model of 
the "typical" MACSYMA user. 

2.1 Observed  Information Needs of MACSYMA  Users 

One  of MACSYMA's strongest user aids is its staff of human consultants, available  on-line 
to help users with resource knowledge difficulties. During  the last three years, the  author  has 
served as a MACSYMA consultant and recorded  many of these consultation sessions. During  the 
same  three years, Profs.  Corry,  Martin, and Stolovitz have  offered  a course on "knowledge-based 
systems" at  M.I.T. in which one of the requirements  is the solution of a  MACSYMA  problem and 
an analysis of the resulting protocol. The analyses  were supposed to indicate which information 
sources were consulted and why. The author also had the  opportunity to read  many of these 

' analyses. 

An examination of the  data obtained from such consultations and protocol analyses reveals 
that in using MACSYMA, people  perceive the need for  five general classes of information. 

(1) T h e  user  needs to know the name of a command or technique to do some task. I f  he were to 
phrase  his need as  a question, he  would  ask  "How do I do ... ?" This is called a H O W D O  
need. 

(2) He  needs to know a command's  prerequisites, arguments, postrequisites, etc. He would ask 
"What  are  the ... of ... ?". A WHAT need. 

(3) He needs to check his beliefs about MACSYMA. He would  ask "Is it the case that ... ?". An IS 
need. 

(4) He needs  a  procedural  explanation of  how a command  works or  a result was obtained. H e  
would ask "How did MACSYMA do ... ?". A HOW need. 

(5) MACSYMA  has returned  an unexpected  result, and he can find  nothing  wrong  with  his 
derivation.  He needs sufficient information to pinpoint and correct the misconception 
underlying his  erroneous expectation. He would  ask  "Why is it that ... ?" A WHY need. 

Of course,  the syntax  the person uses  need  not correspond to  these five categories,  only the 
underlying question. For example, "Can you  tell  me  how to invert  a  matrix?"  means "How do  I 
invert a matrix?"  and a complaint of "Dl3 is  positive!"  means  "Why  is Dl3 positive?". 
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2.2 A Model for  the Typical" MACSYMA User 

T h e  analysis presented here assumes that in solving his problem the user acts in accordance 
with a standard,  high level planning algorithm. This algorithm is  best represented as a  "state 
and transition augmented network" (called SATAN) in which the states represent problem 
solving commitments and  the transitions are augmented by predicates and problem  solving actions 
(accesses and updates to M, m, and P). For the present discussion, however, the  full  network 
described in  (ref. 6) may be simplified to the flowchart in figure 2. 

n 

+ 
A I F i n d  method to   achieve  goal  I 

B S a t i s f y   P r e r e q u i s i t e s  1 

ct S e t  up  Arguments 

D Run method  and  update  model 
I 

I Check R e s u l t  I 

c d  .b 
Fig. 2 - A flowchart for  the "typical"  user's planning strategy 

T h e  initial goal is the solution of the MACSYMA  version of the user's problem. . In  
processing a goal, the problem solver either selects a "canned"  method (a "template") or  develops 
one especially from  the facts about  the objects and relations involved. The  method  chosen  may 
be a single command or  a  high level program with commands and  other  goals  as  steps (a 
"procedural net"). In processing these subgoals, the problem solver generates yet other  procedural 
nets  until a level is reached containing only  MACSYMA  commands. Thus,  the  normal  operation 
of the problem  solver implicitly generates a hierarchical goal-subgoal tree, the root of which is the 
user's  ultimate  goal  and  the  fringe of which  is his MACSYMA solution. At any  given  level, the 
problem  solver may insert  additional goals  to achieve prerequisites or check results. It  may also 
transform  the  plan, omitting or rearranging steps, in order to optimize it. This step is not shown 
in figure 2. This means that  the goal  "tree"  may in fact become a directed acyclic graph. It is 
important  to remember that  the plan need  not  be explicit, i.e. the user  need not be conscious of 
his plan;  the essential point is that the user acts as if he were following a plan. 
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During  the  planning process, the user forms expectations about  the results of his  plan. 
When  he checks these results, however, he may discover a discrepancy between these expectations 
and  the  facts (a bug manifestation). This discrepancy may be due  either to a  simple planning  or 
execution mistake, e.g. a sign error, or  to a more significant deficiency in M, m, or T (called a 
misconception).  However,  the point in  his plan at which the misconception had its effect  (the 
locus)  may  not be immediately apparent. If so, the user  must pinpoint the locus in order to 
uncover  the misconception. In debugging his plan, the user  is assumed to operate in accordance 
with a standard,  high level debugging algorithm. Like the  planning  algorithm,  this  algorithm is 
also best  described as  an augmented network. However, for  the present purposes, it can be 
simplified to the flow chart In figure 3. 

Q 
F I Correct  Misconception I 

Repair  Plan 

Fig. 3 - A flowchart for the "typical" user's debugging  strategy 

It is when the user finds himself unable to perform  any of the steps in  the  planning or 
debugging procedures  due to  a lack  of knowledge about MACSYMA (deficient M) that a 
resource  knowledge  difficulty becomes manifest. 

(1) A HOWDO need arlses in box A of the  planning algorithm. 

(2) WHAT needs  arise in boxes B, C, D. 

(3) An IS need can  arise in any box, but most often in debugging. 

(4) T h e  user may be  unable to identify  the locus of a misconception  in box E of the  debugging 
algorithm  and  therefore experiences a HOW need. 

(5) He may be  unable to find  anything wrong  with his plan, Le. he needs help in either  box E or 
F. This is a WHY need. 

According to this mechanistic model  of MACSYMA problem solving, a resource knowledge 
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difficulty  is viewed as the user's inability to make a transition from some problem solving  state, 
and the  kind of difficulty  that arises identifies the offending state. The  importance of having 
such a m d e l  is that it explains how resource  knowledge difficulties arise  and sets a neatly 
specifiable  bound  on  the types  of difficulties  and thereby on the types  of assistance that user aids 
must  provide. 

2.3 T h e  Function of User Aids 

, In  order  to  deal with the difficulties listed  in  section 2.1, system designers often  provide a n  
array of user  aids. 

T h e  most common aid is the system's reference manual. MACSYMA's manual is avaiiabte 
both  in  hard copy and on line (via  the DESCRIBE command). The function of a manual is to 
provide  quick, reference to the  facts  about  a command or variable,  given its name. Thus,  a 
manual effectively satlsf ies WHAT needs and many IS needs. 

Also common is the system's trace capability. MACSYMA  allows a user to trace  all function 
entries  and  exits  (the  TRACE command) as well as  the settings of variables (the SETCHECK 
variable). T h e  purpose of tracing is  to help the user discover the locus of the  misconception 
underlying  his  bug manifestation,  and  therefore it  helps meet HOW needs. 

A less common user aid is the "inverted manual", or information network. MACSYMA's 
version of this is available via the OPTIONS command. An information network is essentially a 
thesaurus of commands indexed by category and is primarily intended to help the user find  the 
commands  applicable to a  particular task.  Its primary effect is to answer HOWDO questions. 

WHAT,  HOWDO,  and IS problems can  be dealt with  directly by an  information  source 
with  no sensitivity to the user's purposes or state of knowledge. A WHY  or HOW problem, 
however,  often calls for  different answers to different people in different  situations. Such a 
problem  arises when a misconception gives rise  to a bug manifestation, and its treatment  calls for 
providing  the user with enough information to  correct the misconception. A source able to 
provide  just  this  information  and no more  must have  a model of the user's state of knowledge 
(MI, his model of the current MACSYMA (m), his goal (T), and  his plan for  achieving it  (P), and 
it  therefore must  be considerably more sophisticated than  the  other,  user-independent aids. A 
consultant is an information source that seeks  to improve the user's  model  of the system in  "user- 
initiative" mode. Consultation is a method  widely  used in computer centers for  coping  with WHY 
and  HOW questions, and MACSYMA's consulting staff has proved to be its most effective  user 
aid. A consultant can deal with all five kinds of problems and  provide  information  tailored to 
the user's need and level of understanding. Armed  with the consultant's advice, the user can 
often  surmount  his difficulty and continue solving his problem. 

Unfortunately,  human consultants are a scarce resource and quite' expensive. And, as 
MACSYMA is exported  and its user  community  grows,  even more consultants might  have  to be 
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provided. For this reason, work has begun on the construction of an automated  consultant.  called 
the Advisor. This  program should be able to  converse  with the user in English about a difficulty 
he has encountered  and  provide advice tailored to his need. The  MACSYMA  Advisor  is a 
program  distinct  from MACSYMA with  its own separate data base and expertise. However, for 
convenience  the  program can be called  directly from MACSYMA (via the HELP command) and  
can access the user's data structures. As currently implemented, the Advisor deals  only  with the 
"straight line" or nested use  of MACSYMA commands and not loops or  user-defined  functions. 
For a concrete example of the Advisor's performance, one should see the  abstract  printed in these 
proceedings. As with the proposed MACSYMA tutor, the MACSYMA advisor relies heavily on 
its partial models of the user's state of  knowledge, his goal, and his plan for  achieving it. 

3. Communication Difficulties 

A communication  difficulty is the result of the  difference between the  primitive  objects, 
.actions,  and relations in the u.ser's problem and those provided by the system. Thus,  the  degree 
of such a difficulty is a function of both the user's  problem and  the system's expertise. Although 
a resource  knowledge  difficulty can  be thought of as  a communication difficulty,  the  concern here 
is with  those  difficulties  that remain even  when the user's  model  of MACSYMA is complete. 

T h e  difference may be  either simple  or  complex. A simple difference is eliminated by 
defining  the relevant concepts. For example, MACSYMA  can represent a  matrix and  compute 
and solve  its  characteristic polynomial, but it  knows nothing  about  eigenvalues. However,  the 
user with a matrix  eigenvalue problem may educate, MACSYMA  simply  by defining a function 
that calls the  appropriate commands. The disadvantage of a "conservative" system (ref. 7) is that 
the user  must convey large  amounts of knowledge  in this  form. A complex difference  results 
when  there is no homomorphic  mapping between the primitives of the user's problem and  their 
representation in  MACSYMA. For example, a user may want  to write an  expression as (V/C)2, 
but  MACSYMA insists on writing V2/C2. Or, a user may define  his  operators by the  identities 
they  satisfy,  but  MACSYMA insists  on function definitions  and  unidirectional  replacement  rules. 
T h e  disadvantage of a "radical" system (ref. 7) is that its  "model"  of algebraic manipulation is in 
some  domains too narrow and rigid to  accommodate the full  range of models possessed  by users. 
Some recent work on reformulating problem descriptions expressed in the user's language  in 
terms of a system's model of the domain is reported in (ref. 8). However, no such capability is yet 
available in  MACSYMA, and so the user must translate his problems into  MACSYMA's  terms. 
Fortunately,  MACSYMA is, within limits, a diverse system offering  both  radical  representations 
where  applicable  and a  flexible general representation otherwise. 

T h e  communication task  consists of breaching the distance between the user's problem and 
the  appropriate system  model . The necessary information that must be conveyed to the system 
includes: 

(I) input expressions, constraints, and domain-dependent expertise, e.g. inequalities, order 
truncation  information, physical arguments 



(2) operations  to  be performed, e.g. solving an equation, showing two expressions equal 

In evaluating  the  degree of the  input communication difficulty, the two  most important issues a re  
the  amount of material that must be presented and  the degree of flexibility  in order  and  format 
of its presentation. The  information  that must be retrieved from MACSYMA includes: 

(3) form of the solution, e.g. "expanded in Z" 

(4) information  about MACSYMA's state, e.g. values of switches 

Furthermore,  the user might want an explanation of  how the result  was obtained. If the system's 
model is  similar to the user's, the explanation should be quite simple, e.g. integration by parts; if 
the  technique used is very different,  the explanation might be more complicated, e.g. explaining 
the whole  Risch  algorithm. Recent  work reported in (refs. 6, 9, 10) indicates how a system could 
be made to  explain its behavior. 

3.1 Present  Capabilities in MACSYMA for Facilitating Communication 

Occasionally, a user may  want  to update  or verify his model  of the  current  MACSYMA 
(m). For  this purpose, MACSYMA has  a full  set  of information commands and  variables. These 
differ from  the commands mentioned in section 2 in that they provide information  about  the 
state of the user's particular MACSYMA and not about MACSYMA in general. These  sources 
fall  into two categories: finding information  about an object given its name, e.g. DISPFUN. 
DISPRULE, and  PRINTPROPS,  and  finding  the names of all objects having a given  feature, 
e.g. VALUES,  FUNCTIONS, GRADEFS, etc. The sources available are listed in (ref. 2) and 
described in detail in (ref. 11). 

Very  often MACSYMA produces large, unwieldy  results affording little insight.  In a 
recent  paper  (ref. 12). David Stoutemyer discusses a package  written  in MACSYMA  to extract  the 
"qualitative"  features  of  an expression, e.g. its  sign behavior, convexity or  concavity,  zeros, 
periodicity, etc. For users as interested in the qualitative behavior of an  expression as its symbolic 
details,  this package  should be of great value.  It attacks the communication problem through 
item (3) of the  above list. 

T h e  idea  behind a specialized "application package"  is to convert MACSYMA  into an  
expert in a given  domain and thereby lessen communication difficulties. A good example is 
MACSYMA's explicit tensor manipulation package. Another example is the  forthcoming 
TRANSLATE helper that will lead the user by the  hand  through  the  translation and  compilation 
process. T h e  tensor package  brings with it much  knowledge that  the user would otherwise have 
to communicate himself. The TRANSLATE helper guides the user's activities according to a 
model of the translation process and thereby saves problem solving effort on the  part of the user. 
In this  manner, these packages convert MACSYMA  in  limited domains  from its normal 
"operator-based"  mode  into a "model-based"  system. 
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3.2 Suggested  Improvements to MACSYMA 

When a person 'chooses to employ any tool to help him solve a  problem,  even if he  has a 
complete model of how it works, he must expend the  effort necessary to specialize the too l  (e.g. 
define  functions in  MACSYMA, build jigs for a woodworking machine), and  transform  his 
problem  into an amenable  form, (e.g. represent Iris linear equations as a matrix). Obviously,  some 
tools are better  suited  to a given problem than others. Among computer systems, two extremes 
stand  out, namely the  expert problem solver and  the  programming  language. 

An expert is an  agent with language, knowledge, and  abilities  tailored to a particular 
domain  and  able to solve any reasonable, appropriate problem without outside guidance, e.g. a n  
electronic  circuit  analysis  program like SCEPTRE. Assuming the  expert is flexible  about  input 
and does  not employ too alien a model, the user  need  only describe his  problem,  then  sit  back and 
wait for  the answer. Communication difficulties, among others, are minimal. In fact,  item (4) 
above is completely unnecessary. 

T h e  approach of programming language designers is  to provide some computational 
primitives  useful to the user in writing code  to  solve his problem. Usually, the  user  must 
contribute  his own problem solving skills in writing the code. The meaning of a primitive is 
usually  independent of the use to which  it  is put, e.g. COEFF works the  same  whether  the 
problem is solving a quadratic  or computing syzygies. The lower the "level"  of the  primitives, 
the  greater  the simple  differences between the user's  world and  the system's but  the  fewer  the 
complex  differences. 

MACSYMA is primarily a programming language, albeit a very high level one,  with  only a 
few  expert question-asking submodules, e.g. the tensor package. One could imagine,  though, a 
system  somewhere between these two  extremes.  It  would  keep track of the user's goals and  actions 
and terminology  and would  use this information to facilitate input  and try to  solve his  problem 
using a mechanical  problem solver able to take advice from the user at crucial  points. Th i s  
possibility  is discussed further below. 

Several of the ideas presented in this section are concerned with the conception of 
mathematical knowledge as a body of proEramminp;  rules, implemented in MACSYMA as  
variable  values,  function definitions, TELLSIMP rules,  etc., rather  than  as a set  of mathematical 
definitions  and constraints. A rule in MACSYMA  consists of (I) an  identity and (2) a n  
application procedure. An identity is always interpreted as  a  unidirectional  replacement  rule, i.e. 
whenever an expression matches the left hand side of an identity, it is replaced by the  right  hand 
side  and  never  the  other way around. The match procedure is for  the 'most part "local". 
Although  global conditions can be tested in the predicates constraining the  variables of a 
TELLSIMP rule, the properties of the expression enclosing the  one  being  matched cannot  be 
easily checked.  And, most significantly, there is no sensitivity to the user's goal or  plan,  no  overall 
direction  to  decide when a replacement rule should be made and when bypassed in order, for 
example,  to  achieve a cancellation or prevent an infinite loop. 
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There  are various types of application procedures.  Some rules are  applied  at only a single 
level, e.g. XTHRU,  MULTTHRU. Others  have automatic recursion built  in,  e.g. 
TRIGEXPAND,  LOGCONTRACT, TELLSIMP rules. The application  is in ail  cases 
deterministic,  despite  the possibility of a non-unique match  between the  pattern and  the 
expression, e.g. matching  X+Y to A+B+3. 

When a user complains that MACSYMA is too hard to control , he is usually referring to 
its lack of selectivity in the automatic, recursive application of evaluation or  simplification  rules. 
MACSYMA  provides automatic recursive application to save the user the  drudgery of applying a 
large body of system-defined and user-defined rules by hand.  However, the  user  may 
occasionally  want a rule to be applied nonuniformly, e.g.  when evaluating only certain  derivatives 
in an  expression  after plugging in values for some variables. Or, he may want  a rule  applied  in 
reverse.  Due to MACSYMA's unidirectionality, this requires that  a second rule be  defined,  which 
can  result in an  infinite loop. In using automatic, recursive rule application, the user is 
sacrificing  the  effort necessary  to control MACSYMA  to eliminate the  drudgery of applying  the 
rules  himself. 

In  order to avoid  the complications that can arise from  the user's ignorance of the  rules 
used by the  general simplifier  and commands like INTEGRATE, these rules should  be  made 
explicit  and controllable. This suggestion has already been  realized in the realm of trigonometric 
simplification, where all rules are named and can  be activated or  deactivated by the  setting of a 
switch.  It would be  convenient if the "," syntax at top  level MACSYMA could be extended to 
activate rules for  one line's duration just as it is  now  used to define  substitution rules. With  this 
syntax  one would be  able to say, for example, D4,X=2,Z2=4,SINRULEI,EXPONENTJALIZE. 
This  suggestion is in keeping with the view  of the "," syntax as an "environment  setup" command. 

More generally  what is  needed is a better structuring of simplification rules. It is doubtful 
that a user would define rules for the internal use of heuristic commands since their  operation 
usually is too complex to describe. Therefore, complex commands like INTEGRATE  should 
deactivate all potentially conflicting user  rules until their work  is done. One way  of implementing 
this  that would offer  other desirable  features is in the  form of "environments": sets of rules, 
variable  bindings, function  definitions, declarations, and assumptions that can be "shallow 
bound".  A  primitive  form of environment structuring is already available in MACSYMA 
through  the context mechanism. As with  contexts, environments should be  hierarchically 
structured.  It would then  be possible for the environments for certain domains, l ike gravitation 
theory  and  continuum mechanics, to share  the knowledge of common subdomains like tensor 
manipulations, while remaining distinct from conflicting domains like Newtonian physics. 

Another improvement would be the ability to add properties to expressions as well as 
variables. It is currently possible  to declare partial information about  variables, e.g. 
DECLARE(N,INTEGER); however one cannot declare similar information  about  expressions 
even  though  it  might be useful for later manipulations. For example,  in integrating a n  
expression,  the user might make an assumption about  the sign of a variable  that could be used by 
the  LIMIT command at a later time. The  new MACSYMA internal  representation together  with 



MACSYMA's high level data base system (ref. IS) should be able to represent such information 
quite easily. Furthermore, it should allow the user  to  tell MACSYMA the semantic significance of 
expressions, e.g. that GOVIM is a convection  term, and to define semantic rules to prevent 
combining semantically incompatible terms,  e.g. adding apples and oranges. This ability. is 
available now only in the restrictive form of the "invisible boxes" generated by the TBOX 
command. 

Perhaps  the most ambitious suggestion  is  to transform MACSYMA from  the 
programming  language  that it is  now into a more intelligent, problem solving' system, a  sort of 
"mathematician's apprentice". The essential  idea behind this proposal is for  the system to 
maintain  and use information  about  the user's goal and his plan for  achieving it. MACSYMA's 
syntax, while  remaining  the same, would no longer denote fixed,  pre-defined operations  but 
would  serve  rather only as a convenient language for communicating the  mathematical operations 
the user  wants  performed.  With  this view, a command or syntax could  mean different  things in 
different situations.  For example, COEFF might mean RATCOEF in solving  a quadratic but  
have its current  definition in finding polynomial solutions to a polynomial equation;  or F in 
.DIFF(F,X) might mean the variable F if F has a value or the  function F if it has a function 
definition. T h e  input would be interpreted on the basis of not  only the command line but also 
the user's plan.  Similarly, the application of a rule would depend on  not only the rule's pattern 
but also some notion of its use  in achieving the user's  goal. Where  the system  is unable to decide 
which of several  interpretations  the user prefers, it  could inform him of the  options rather  than 
choosing a default  as it does now. The essential  idea again is  to observe and use the  structure of 
a user's session with MACSYMA to help ease his communication requirements. T h e  
implementation of such an apprentice could  rely at  the  start on the  programming  apprentice 
technology  described in (ref. 14). 

Even if an apprentice were available, the user  would  still have to direct most manipulations 
of  expressions. One frequently occurring type of manipulation is the application of several  rules 
to  some  subpart of an expression. The SUBSTPART command  was implemented for rhis 
purpose.  However,  the use of SUBSTPART requires a careful count of parts to  select the desired 
subpart; if afterward  the user  wishes  to  apply another  transformation, he must supply the  part 
specification  again;  and of course all the intermediate expressions are saved. A better alternative 
is the use of a two-dimensional editor, a mechanism  whereby the user is given  control of a 
moveable "window" around  an expression  which  he  can zoom in on the desired subexpression 
using  simple "up" and "down"  commands,  apply as many rules as he  likes, then zoom out  again to 
find  the overall expression suitably modified. Such an editor would be much less tedious than 
the  current SUBSTPART mechanism and would avoid the accumulation of unwanted 
intermediate results. A primitive 2D editor was programmed for MACSYMA by Richard  Bryan 
but  never released due to the inefficiency of the 2D display routines; with the  current 
implementation, however, an efficient editor could be implemented. 

In  the long  run  the best  solution  to the subpart specification problem and  the  expression 
input problem is the  graphics tablet.  Technology has developed to the  point  where the 
recognition of hand-written expressions is feasible (refs. 15, 16). The remaining  problem i s  
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inefficiency; however, with the advent of non-timeshared computers such as  the LISP machine 
(ref. 17), the necessary  processing  need  not be prohibitive. A less extreme alternative is the use of 
a light  pen  for 2D editing with keyboard input. A user  could  type  in his  expressions on  the 
keyboard  but move his window and cancel  terms using a light pen. The disadvantage of either 
of  these proposals  is the limited availability of tablets and devoted processors at present. T h e  
LISP machine could, however, make the idea of "MACSYMA  in a briefcase" a reality in a decade 
or so. 

4. M ACSY MA's Evolution 

People sometimes complain that MACSYMA  is difficult to understand or  to  control, and 
they usually cite specific properties of the system as primarily responsible, e.g. too many 
commands, too hard to specify subexpressions. These properties are not inherently difficulties 
but  rather  give rise to difficulties when the system is applied to certain tasks or by making  the 
system difficult to understand  or to  use. 

Such properties are not the results of poor  design  decisions. Rather, they are  the best 
efforts of an active group of programmers to satisfy the conflicting goals of program  modularity 
and efficiency and satisfaction of the user's  needs (ref. 7). The resolution of this conflict is 
considerably  harder  for algebraic manipulation systems  like MACSYMA than  for  more 
traditional  programming languages. Most other programming language  designs in a  sense 
"define"  the world in which they operate. MACSYMA's  goal  is  to  match as closely as possible a 
world that Is already  defined, namely  mathematical manipulation as used in  textbooks and on 
thousands of blackboards and notepads. Although  some  people  say the  constraints  can and 
should  be  changed, with the  current goal, they cannot be,  even for  a particularly elegant or well- 
structured design. 

MACSYMA must  also satisfy the often conflicting  needs of a  diverse user community. 
Many capabilities in MACSYMA were  originally  implemented  to satisfy a  particular need. AS 
new  users  required  analogous capabilities for other classes  of expressions and in different 
environments,  the capabilities had to  be  suitably broadened or  refined. Viewed historically. 
MACSYMA is an excellent example of  evolutionary programming. It is reminiscent of the 
progress of "normal science"  described by Thomas  Kuhn  (ref. 18) in which a theory,  or 
"paradigm", is repeatedly patched to repair its  weaknesses until it is supplanted by a  cognitively 
cleaner  descendant. The  growth of MACSYMA  has led  some people  to believe that  the new 
paradigm can be  achieved only by avoiding  the creation of  new commands or by implementing 
simpler,  more  understandable evaluation algorithms. However,  complexity in MACSY M A has 
usually resulted from  the attempt to satisfy the conflicting needs of different users; if a new 
symbolic  manipulation  paradigm does arise, it will have to take these differing needs into  account. 
T h e  MACSYMA of the  future will have to maintain an explicit, internal "model" of the user's 
goals and of his "plan" for achieving them. 

305 



5. Commentary 

One of the purposes of this  paper is  to  suggest  some research projects  oriented toward 
minimizing  the  difficulties of using a complex  system like MACSYMA. Some of these  projects 
are already underway. The  MACSYMA Advisor  is scheduled for limited release this  summer. 
T h e  new rationa.1 function representation is already partly implemented. The  other  projects a re  
mentioned  here to indicate some directions in  which MACSYMA might  go and to solicit 
implementation  ideas  and comment on their value. 

T h e  model for  the "typical"  MACSYMA  user  presented in section 2, on which the  analysis 
of resource  knowledge problems is based suffers two major deficiencies. The first is that it says 
little about  domain  dependent expertise. A sophisticated MACSYMA user probably  mentally 
employs  specialized  procedural strategies and representations. The former  are  approximated by 
the templates in M; the latter are not dealt with at all. The model  was designed to explain  the 
performance of novice users as observed in several dozen protocols of MACSYMA  usage; 
protocols of more  advanced users were  not  included. The second major deficiency is that  the 
model  does not take  learning  into account. There is no sensitivity to  how the user comes by his 
misconceptions. Also there is no information that could  be  used to determine how a  consultant 
could best  teach  a  point. .It might, for example,  be expedient to lie about  something to make a n  
explanation  as simple as possible. These  are several theories of learning in the  literature  (refs. 19, 
20) that could be used in this  regard. 

T h e  contributions of this  paper  are (!) its statement of the distinction between the  various, 
essentially  "orthogonal" types of difficulties of using a tool  to help solve a  problem and (2) its 
explanation of the  function of user aids in meeting  these difficulties,  resulting in its proposal for  
more  advanced  aids based on this explanation. A learning difficulty  arises when a system is t o o  
large or its primitives too complex for a new  user  to understand fully. A resource knowledge 
difficulty can arise whenever one is faced with a problem solving situation in a  domain  which 
one  does not fully understand. The lack  of knowledge  may be incidental, as it is when the 
domain or  device is fairly simple but time constraints make it impossible for  the user to learn  all 
that is necessary (e.g. wsing a calculator or  oscilloscope). O r  it may be essential, as  when  the 
domain is very complex and the user  can't  possibly  learn everything (eg. MACSYMA or  business 
oe law). Furthermore,  the need  is acute for computer  systems  like MACSYMA in which the level 
of  commands is so close  to the level of the task environment that  the user is apt to confuse a 
simply defined  procedure (like COEFF) with  its mathematical counterpart  (here  coefficient) that 
ie at best approximates. A communication difficulty can arise  whenever  a system's designer 
cannot provide every  intended user with expertise tailored  exclusively  to his need. MACSYMA's 
knowledge based approach to algebraic manipulation drastically reduces communication 
difficulties;  and by transforming MACSYMA from  a  programming language  into a 
mathematician's  apprentice, these difficulties might be even further reduced. Although  the 
knowledge based approach engenders increased learning and resource knowledge difficulties. 
these  difficulties need not be prohibitive, if adequate user aids - tutors and  advisors -- are  
provided. 
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An Automated  Consultant for MACSYMA" 

Michael R. Genesereth 

Center for Research in Computing Technology 
Harvard University 

Laboratory for Computer Science 
Massachusetts Institute of Technology 

Consider a person trying to  solve a problem  with a computer system he does  not fully 
understand. And assume that,  although he has encountered a  difficulty due to his lack of 
knowledge, he is unwilling to learn more about the system than is  necessary to solve the  problem. 
T h e  simplest way for him to acquire just the information he needs and  no  more is to consult an  
expert.  Then,  armed with the expert's advice, he may surmount the  difficulty and solve the 
problem. A  consultant is an information source that seeks  to improve the user's model of its 
domain in  "user-initiative" mode. Consultation is a method  widely  used  in computer  centers as 
well as in  domains like business, law, and medicine. Unfortunately, human  consultants are  a 
scarce resource and  quite expensive. 

T h e  purpose of this  paper is to propose as an alternative an automated consultant, as 
exemplified by an "advisor" for  the algebraic manipulation system MACSYMA. Such a program 
should  be  able to converse with  its  user  in  English about  a  difficulty he  has  encountered and 
provide  information tailored to his need. The MACSYMA Advisor is a program  distinct from 
MACSYMA with its own separate  data base and expertise. However, for  convenience  the 
program  can  be called directly from MACSYMA and can  access the user's data  structures 
contained  therein. The  Advlsor described here deals only  with the "straight-line" or nested use of  
MACSYMA commands and not loops or user-defined functions. 

T h e  implementation of the Advisor  relies heavily on an explicit, internal "model" of the 
user's state of knowledge, his goals, and his "plan" for achieving them. As a result, i t  can provide 

8 This  work was supported, in part, by the United States Energy Research and  Development 
Administration  under Contract Number E(ll-1)-3070 and by the  National  Aeronautics and  Space 
Administration  under  Grant  NSC 1323. 

(This .article is an extended  abstract of a  paper to be published in the proceedings of the  Fifth 
International  Joint Conference on Artificial Intelligence.) 
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more precise  answers  to a larger class of information needs than  traditional user aids,  such as 
manuals,  information networks, and simple question-answering programs. 

As a concrete  example of the Advisor's performance, consider a scientist trying  to  solve a 
matrix  eigenvalue problem  using MACSYMA, as illustrated in figure 1. An advisor  episode is 
the connected fragment of discourse between a user and  the Advisor that begins  when the user 
types HELP() in  MACSYMA  and  ends when he bids the Advisor goodbye. Each  episode  can 
have  any  number of subepisodes. A subepisode begins when the user asks a  question and  ends 
when  the Advisor considers itself done. During a subepisode the Advisor may ask the  user 
questions  and expect answers; however, further questions  by the user are ignored. In the  protocol 
the  first  episode contains two subepisodes; the others one each, as  marked. 

(Cl) (M[1,1]:2*Z,M[1,2]:Z,M[2,1]:2~Z-3,M[2,2]:Z-3)% 
; The user  tries  to  input his  matrix by directly assigning  to  elements. 
; Unbeknownst  to  him,  this  results in the creation of a n  array  named M. 
; In C2, he checks M and E n d s  that  his  attempt  failed. 

(C2) M; 
(02) n 

(C3) HELP()% . 
"""""""""""""""""""""""""""""""""""" 

Advisor: Speak up! 

iA User: How do I construct a matrix? 

Advisor: Use MATRIX  or  ENTERMATRIX. 

User: What  are  the arguments to MATRIX? 

IB Advisor: The  rows of the matrix being constructed. 

User: Bye. 
"""""""""""""""""""""""""""""""""""" 

(C3) M:MATRIX([Z*Z,Z],C3-Z*Z,3-Z]); 
c 2 2  Z I  

(03) c 1 
C 3 - 2 Z   3 - 2 1  

; H e  enters his matrix.  Note  that the signs of two of the elements 
; are  dvferent  from before. 

(C4) (M[l,l]-X)*(M[2,2]-X)-H[l,Z]*H[Z,l]; 
(04) ( Z - X - 3 ) ( 2 Z - X ) - Z ( 2 Z - 3 )  

; Here he tries  to compute the characteristic  polynomial. T h e  
; subscript  notation is used for  both array and  matrix access. When 
; a n  array  exists, it means  array  selection, else matrix.  Here i s  
; selecting  from  the array M not the matrix as he expects. 
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(C5)   SOLVE(D4) ;  
E r r o r  - more unknowns than  equations. 

; He tries to solve the polynomiai, but forgets to specvy the variable 
; to solve for. Not understanding the error message, he'decides to 
; solve it himself. 

( C 6 )   R A T S I M P ( D 4 ) ;  
2 

(06) ( - 3 X - 3 ) Z + X   + 3 x  

( C 7 )  (A:l,B:COEFF(D6,X,l),C:COEFF(D6,X,O))S 
; Intending to use the quadrutic formula, he picks out the coefficients 
; of 0 6 .  Unfortunately, by using  a "$", he doesn't see that the answer 
; he gets is not what he expects. 

( 0 8 )  0 
( C 8 )  (-B+SQRT(  B2-4*A*C) ) / (  2*A) ; 

0 

( C 1 0 )   H E L P (  )S 
"""""""""""""""""""""""""""""""""""" 

User: In line C7, I used COEFF to get the zeroth coefficient of D6. T h e  
real coefficient is -302, but MACSYMA returned O! 

Advisor: COEFF(EXP,  VAR,  POW) returns the correct coefficient of 
2 VARPoW in EXP only if EXP is expanded with  respect to VAR. 

Either expand first and then use COEFF or use RATCOEF. 

(C10)   B :RATCOEF(DG,X , l ) ;  

User: Ok, thanks.  Bye. 

(Dl01 3 - 3 2  

"""""""""""""""""""""""""""""""""""" 

(C11)   C:RATCOEF(D6,X,O);  
( D l 1 1  - 3 2  

( C 1 2 )  (-B-SQRT(B2-4*A*C))/(2*A); 
2 - SQRT(12 Z + (3 - 3 Z )  ) + 3 Z - 3 

2 
(012) """""""""""""""""- 

( C 1 3 )   E V ( D l Z . Z = l ) ;  
(013) - SQRT(3) 

; Here Le plugs  in a  value for 2 to check the eigenvalue. 
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(C14) HELP( )S 
""""""""""""""""""""""""""""""""""" 

User: Dl3 is wrong. 

Advisor: What were you trying to do? 

User: Find  the eigenvalues of M. 

Advisor: You  used the determinant  formula to compute the characteristic 
polynomial. You  used RATSIMP to simplify it. You used the  quadratic 
formula  to solve it to obtain  the eigenvalue. Am I right? 

User: Yes. 

Advisor: Did you intend the MII,Jl to  select  elements from  the  matrix M? 

User: Obviously. 

Advisor:  When an  array exists, the subscript notation means to select 
the  corresponding element from  the array. It works as matrix element 
selection only when no  array exists. Were you aware you had  an  array? ' 

User: No. 

Advisor: An array is automatically created  when an assignment is made 
to  an  unbound subscripted variable. Incidentally, to compute the 
characteristic polynomial of a matrix, you should use CHARPOLY. 

User: Bye. 
""""""""""""""""""""""""""""""""""" 

(C14)   CHARPOLY(M,X);  
2 

(Dl41 3 Z + X ( - Z - 3 ) + X  

(C15)  FACTOR(D14);  
( ~ 1 5 )  - ( X  - 3) (Z - X )  

; The  user  recomputes  the  characteristic  polynomial  and  tries FACTOR 
;from  the  result  of which the  roots  are  obvious. 

(C16) LOGOUT( )t  
Fig. 1 - Protocol of MACSYMA use and consultation 

T h e  examples in this protocol  were  chosen  to illustrate the most important of the Advisor's 
abilities. A full fist of the types of questions it  can answer follows. 



(I) "What is the .... of ... 7" Retrieval of a property of an ob&t or concept given its name, e.g. 
subepisode 1B. 

(2) "How do I do ... 7" Retrieval of a command or method given a description of the task to be 
performed, subepisode 1A. 

(3) "Is it  the case that ... ?" Evaluation of  predicates. 

(4) "Why is it  the case that ... ?" Ability  to pinpoint a deficiency in the user's understanding 
and  provide a precise answer, e.g. episodes 2 and 3. 

(5) "How does MACSYMA do ... I" Procedural explanation of a result or fact. 

O f  these, the questions  requiring  the most  sophisticated treatment are WHY and HOW. WHAT, 
HOWDO, and IS questions can be answered  directly,  with no consideration of the user's 
purpose or his  state of knowledge. A WHY or HOW question  calls for  different  answers to 
different people in different situations. The primary implementational contribution of this 
research is  its  technique for  handling such  questions and  the data structures it uses. 

Although  the  various  parts of the Advisor have all been implemented, as of this  writing 
they  have not yet been combined into a working  system.  Also, the present data  base is at  best 
meager. T h e  current timetable calls for its  release to the MACSYMA user community  this 
summer,  where if successful it will find heavy  use and  provide  valuable data  for  further 
Improvements. 

T h e  important contributions of this research are (1) its recognition of the need for a 
consultant in any  sufficiently complex domain'and an indication of the  nature of the user's needs, 
(2) a demonstration by design and partial implementation of the feasibility of automating  such a 
consultant, (3) the model debugging algorithm utilizing a  partial, explicit runtime model of the 
user and a partial plan for his behavior  and based  on an explicit design model. In general, a 
consultant is necessary whenever one is faced with (I)  a problem solving situation (2) in a domain 
one does not fully understand. The lack of knowledge  may be incidental, as it is when the 
domain or device is fairly simple but time constraints make it impossible for  the user to  learn  all 
that  is necessary (e.g. using a calculator or oscilloscope). O r  it may be essential, as  when  rhe 
domain is  very complex and  the user  can't  possibly learn everything (e.g. MACSYMA or  business 
or law). Furthermore,  the need  is acute for computer systems  like MACSYMA in  which the level 
of commands is so close to the level of the task environment that  the user is apt to confuse a 
simply  defined procedure (like COEFF) with  its mathematical counterpart (here  coefficient) that 
i t   a t  best  approximates.  It would be of interest  to  see whether an  automated  business or legal 
consultant could be constructed and how effective the techniques described here would be in those 
domains. 
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A MACSYMA COMPUTER-ALGEBRA  MOVIE  DEMONSTRATION 

David R. Stoutemyer 
University  of  Hawaii 

ABSTRACT 

The  compelling  excitment  of  using a powerful  interactive  computer-algebra 
system  is  hard  to  convey  without a  live  demonstration,  which  is  often  imprac- 
tical  because of the  size  or  location  of  an  audience.  However,  a  movie of a 
live  demonstration  is  probably  the  next  best  way  to  convey  the  impact  of  inter- 
active  computer-algebra  to an audience  of  newcomers.  Sound  projection 1 6 ~  
equipment  is  far  more  available  than  the  alternative  of  video  tape  equipment, 
which  suffers  from  marginal  resolution.  Available  from  national  educational 
film  libraries  and  from  the  developers  of  computer-algebra  systems,  such  films 
could  significantly  increase  the  awareness  and  utilization of this  under- 
utilized  resource. To this  end, I have  produced  a  10-minute  prototype 8mm 
sound  movie  MACSYMA  demonstration  to  show  at  this  conference.  While  not  of 
sufficient  quality  to  be  reproduced  as  a  distributed  16mm  film,  it  is  hoped 
that  this  prototype will  inspire  a  full-scale  effort  by  someone  with  more  cine- 
matographic  talent,  with  more  funds,  with  access  to  high  quality  photographic 
resources,  and  with  access  to  a  fast  terminal  with  high  resolution. 
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SOME MACSYMA  PROGRAMS  FOR  SOLVING 

DIFFERENCE  EQUATIONS* 

John Iv ie  
U n i v e r s i t y   o f   C a l i f o r n i a ,   B e r k e l e y .  

INTRODUCTION 

We d e s c r i b e   h e r e  a set o f   p r o g r a m s   t o   f i n d   c l o s e d - f o r m   s o l u t i o n s  
t o   l i n e a r   r e c u r r e n c e   r e l a t i o n s   ( o r   " d i f f e r e n c e   e q u a t i o n s " ) ,   n a m e l y  
equa t ions   o f   t he   fo rm 

ak  u(n+k) + ak-l u(n+k-1) + . . .+ a. u ( n )  = g ( n )  

w h e r e   t h e   c o e f f i c i e n t s  a are e i t h e r   c o n s t a n t s   ( t h e   c o n s t a n t   c o e f f i c i e n t  
c a s e )   o r   p o l y n o m i a l s   i n  n ( t h e   v a r i a b l e   c o e f f i c i e n t   c a s e ) .  i 

I would l i k e   t o   t h a n k   R i c h a r d   F a t e m a n   f o r   s u g g e s t i n g   t h i s   p r o b l e m  
t o  m e ,  as well a s   f o r  a l l  o f   h i s   h e l p   w i t h   t h e  MACSYHA system. 

CONSTANT COEFFICIENT CASE 

The C h a r a c t e r i s t i c   E q u a t i o n  Method 

We f i r s t   c o n s i d e r   t h e  homogeneous case, t h a t  i s  when g ( n )  = 0 i n  
equat ion  (1)   above.  By s u b s t i t u t i n g   x k - i   f o r   u ( n + k - i )   i n   e q u a t i o n  (1) , 
w e  o b t a i n  a p o l y n o m i a l   e q u a t i o n ;   t h e   s o l u t i o n   t o   t h e   r e c u r r e n c e   r e l a t i o n  
c a n   t h e n   b e   w r i t t e n  as a l i n e a r   c o m b i n a t i o n   o f   t h e   r o o t s   o f   t h i s   p o l y n o m i a l .  
A l l  o f   t h i s  i s  f a i r l y   e a s i l y   d o n e   b y   m e a n s   o f   t h e  MACSYMA "SOLVE" command. 

* This  work w a s  made p o s s i b l e  by access t o   t h e  MACSYMA system a t  M.I.T. , 
s u p p o r t e d   i n   p a r t   b y  ERDA unde r   Con t rac t  Number E(ll-1)-3070  and by 
NASA under   Grant  NSG 1323. 

T h i s  i s  a n   e x t e n d e d   a b s t r a c t   o f  a paper  t o  a p p e a r   i n   t h e  ACM Tran- 
s a c t i o n s  on Mathematical   Software . 



I n   t h e  inhomogeneous case, when t h e   r i g h t  hand s ide   o f   equa t ion  (1) 
is non-zero, w e  f i r s t   f i n d   t h e  homogeneous s o l u t i o n  as above,  and  then 
add t o  i t  a p a r t i c u l a r   s o l u t i o n  o f  equat ion  (1). T h i s   p a r t i c u l a r   s o l u t i o n  
i s  found by t h e  method of   undetermined  coeff ic ients ,   which  gives  a set 
o f   l i nea r   equa t ions   t o   be   so lved  via t h e  "SOLVE" command. In   ou r   ca se  
he re ,  w e  assume t h a t   g ( n )  i s  e i t h e r  a polynomial i n   n ,  a cons t an t   r a i sed  
t o  a polynomial  power, o r   s i n e   o r   c o s i n e   o f  a l i n e a r   f u n c t i o n   o f   n .  

This  method is  implemented  by  the "CHAR" port ion  of   our   programs,  
which are g iven   in   an   appendix .  

The  Method of  Generating  Functions 

This  i s  another  method f o r   s o l v i n g   c o n s t a n t   c o e f f i c i e n t   r e c u r r e n c e  
r e l a t ions .   Th i s  method f i n d s   t h e  homogeneous  and p a r t i c u l a r   s o l u t i o n s  
a t  once,   but is  s lower   i n   ou r   imp lemen ta t ion   t han   t he   cha rac t e r i s t i c  
equation  method. 

The b a s i c   i d e a   o f   t h i s  method is the  fol lowing:   def ine  the  gener-  
a t ing   func t ion   F(x)   o f   the   sequence   u(n)  as  

m 

Using   the   recur rence   re la t ion  ( I ) ,  w e  c a n   a r r i v e  a t  an   a lgeb ra i c   equa t ion  
f o r   F ( x ) ,  so tha t   F(x)   can   be   expressed  as a r a t i o n a l   f u n c t i o n   i n  x. 
We can  then rewrite t h i s   r a t i o n a l   f u n c t i o n   f o r  F(x) i n  terms of a pa r t i a l  
f rac t ion   decomposi t ion ,  so  t h a t   t h e   c o e f f i c i e n t s   u ( n )   i n  F ( x )  can  be 
i d e n t i f i e d ,  which g i v e s   t h e   s o l u t i o n   t o   t h e   r e c u r r e n c e   r e l a t i o n .  
(This   technique i s  very much l i k e  a d iscre te   Laplace   t ransform) .  
The main MACSYHA commands used   t o  do a l l  o f   t h i s  are  "SOLVE" and 
t l ~ ~ ~ ~ f v .  

This  method i s  implemented by t h e  "GENF" p o r t i o n  of  our  programs. 

VARIABLE COEFFICIENT CASE 

One method f o r   s o l v i n g   v a r i a b l e   c o e f f i c i e n t   r e c u r r e n c e   r e l a t i o n s  
i s  tha t   o f   exponen t i a l   gene ra t ing   func t ions .  We assume t h a t   o u r  gen- 
e ra t ing   func t ion   fo r   t he   s equence   u (n )  i s  of the  form 

m 

Y (x) = 1 u(n> x" / n! 

n= 0 
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Taking   success ive   der iva t ives   and   us ing   the   recur rence   re la t ion  ( l ) ,  w e  
o b t a i n   a n   o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n   f o r  Y(x). Expanding t h e   s o l u t i o n  
t o   t h e   d i f f e r e n t i a l   e q u a t i o n   i n  a Taylor  series, w e  see t h a t   t h e   n t h  
term of   t he  series i s  t h e   s o l u t i o n   t o   o u r   r e c u r r e n c e   r e l a t i o n  (1). 
This  method  can be  programmed u s i n g   t h e  MACSYMA commands "ODE2" and 
"POWERSERIES" . This   technique i s  implemented  by t h e  "VARC1" p o r t i o n  
of  our  programs. 

One major   problem  with  this  method i s  t h a t   t h e r e  may b e  no way t o  
f i n d  a c losed - fo rm  so lu t ion   t o   t he   d i f f e ren t i a l   equa t ion   wh ich  is obta ined ,  
o r   e v e n   t o   e x p r e s s  a c losed - fo rm  so lu t ion   i n  a "nice"  form. However, 
an   exp l i c i t   c lo sed - fo rm  so lu t ion  i s  a v a i l a b l e   f o r   f i r s t - o r d e r   r e c u r r e n c e  
r e l a t i o n s ;   t h i s  is  implemented  by "VARC2" i n   o u r  programs.  For  second- 
o rde r   r ecu r rences ,  a spec ia l   check  is  made fo r   t hose   t ha t   can   be   so lved  
i n  terms of Bessel f u n c t i o n s ;   t h i s  i s  given by "BESSELCHECK" i n   o u r  
program l i s t i n g s .  

TESTING THE PROGRAMS 

Using  our  programs, w e  were a b l e   t o   s o l v e  problems  and  examples 
taken  f rom  several   textbooks ( as g i v e n   i n   o u r  l i s t  of r e fe rences  ). 
The fol lowing i s  a small sample of some typical   problems:  

(C66)  CHAR(U(N+l)-U(N) ,(1/6)*Nf(N-1)*(N-2)+N-1,U,N,1, [ U ( @ ) = 1 ] ) ;  
3 2 

N N 23 N 7 

2 4  4 24 4 
(D71) U(N) = N (-- - -- + --" - - )  + 1 

(C72) CHAR(U(N+2)-2*U(N+l)+U(N) ,N**2,U,N,2,  [U(fll=O,U(l)=1]); 
2 

2 N  N 5  5 N  
(D77) U ( N )  = N (-- - - + --) + --- 

12 3 12 6 

( C 7 8 )  GENF(U(N+2)-U(N) ,2**N,U,N,2, [U(D)=l,U(l)=a]) ; 
N N 

(D84) U(N) = -- + "" "" 
2 2 ( -  1) 

3 3 
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(C12) VARC1(U(N+2)-(3"N+2)*U(N+1)+5*U(N) ,U,U,N,2, [U(C3)=0,U(l)=1]); 
(Dl21 A LINEAR COMBINATION OF B E S S E L  F U N C T I O N S  

Us ing   t he  7 7  problems  f rom  the   re fe rences   which  w e  t r i e d ,  w e  found 
t h a t  CHAR had   an   average   running  time of  585 msec., w h i l e   t h a t   f o r  GENF 
was 1113 msec. . T h u s ,   t h e   c h a r a c t e r i s t i c   e q u a t i o n   m e t h o d  is  much f a s t e r  
i n   o u r   i m p l e m e n t a t i o n   h e r e .  

CONCLUDING REMARKS 

A f t e r   t h i s   p a p e r  was w r i t t e n ,  w e  became aware of  a similar paper  by 
Cohen a n d   K a t c o f f   ( t o   a p p e a r   i n   T r a n s a c t i o n s  on Mathematical   Software) .  
Their   methods seem somewha t   more   gene ra l   ( t heydea l   w i th   sys t ems   a l so )  ; 
however,   our  programs are much s h o r t e r   a n d  seem t o   h a v e   f a s t e r   r u n n i n g  
times . 
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APPENDIX 

For  completeness,  we  give  here a listing O f  the  actual  MAcsyMA 
code  for  our  programs. 

/*THIS BLOCK ChECKS FOR A POLYNOMIAL IN N * /  

POLYP(G,N) :=BLOCK( [D,F,C], 
G:RATEXPAND(G) , IF FREEOF(N,G) THEN RE'I'URN(TRUE) , 
D:HIPOVi(G,N), F:TRUE, 

(C:COEFF(G,N,I),  IF  NOT(FREEOF(N,C)) THEN F:FALSE, 

RETURN (IS (G=0 AND  F) ) ) $ 

FOR I:D  S'I'EP -1 THRU 0 DO 

G:RATEXPAND(G-C*N**I)), 

/*THIS BLOCK CHECKS FOR A CONSTANT TO A POLYNOMIAL POWER*/ 

POLYINN(X,N) :=BLOCK( [B,E], 
IF INPART(X,O)="*" THEN 
RETURN(POLYINN(INPART(G,l) ,N) AND PoLYINN(INPART(G,2) ,Id)) 
IF INPART(X,O)#"**" THEN RETURN (FALSE) 
B:INPART(X,l), 
E:INPART(X,2), 

RETURN(POLYP(E,N)))$ 
IF NOT FREEOF(N,B) THEN RETURN (FALSE) 



/*THIS BLOCK  IMPLEMENTS THE  CHARACTERISTIC EQUATION METHOD*/ 

CHAR(E,G,U,N,K,IV):=BLOCK([GENSOL,HOMSOL,PARSOL,LOS,MULTIPLICITIES, 
H,V,L,SS,DISPFLAG], 
LOCAL(A,AA,B,R,M), 
DISPFLAG:FALSE, 

FOR 1:0 THRU K DO 
AA[IJ :COEFF(E,U(N+K-I)), 
H:0 ,  

H:H+AA(I]*U(N+K-I), 
FOR I :0 THRU K DO 

IF H#E  THEN  RETURN  ("ERRONEOUS  INPUT"), 

FOR I :0 THRU K DO 
H:SUBST(U**(K-I)  ,U(N+K-I) ,HI, 

MULTIPLICITIES:TRUE, 
LOS:SOLVE(H,U), 
FOR I : 1 THRU  LENGTH (LOS! DO 

M[I] :MULTIPLICITIES[I]), 
(R[I]  :LOS[I] ,, R[I] :RHS(EV(R[II) 1 ,  ' 

HOMSOL : 
SUM(SUM(A[I,J]*N**(M[I]-J) ,J,1,M[I])*R[I]**N,I,1,LENGTH(LOS)), 

IF G=O  THEN 
(V:[ I ,  
FOR I :1 THRU LENGTH  (LOS) DO 
FOR J:1 THRU M[I] DO V:CONS(A[I,Jl,V), 

FOR Q : O  THRU K-1 DO L:CONS(SUBST(Q,N,HOMSOL)=U(Q) ,L), 
L:[ I, 

S S  : EV  (SOLVE (L ,V) , IV) , 
RETURN(U(N)=(EV(HOMSOL,SS))) ) 

ELSE  IF  POLYP ( G  ,N) = TRUE  THEN 
(G:RATEXPAND(G), PARSOL:SUM(B[J]*N**J,J,0,HIPOW(G,N!!, 
FOR J :0 THRU K DO 
(L:0,  V:E, 
FOR I :0 THRU K DO 
(L:RATEXPAND(SUBST(N+K-I,N,B[J]*N**J) 1 ,  
V:RATEXPAND(SUBST(L,U(N+K-I) ,V)) ) ,  
V:RATSIMP(V) , 
IF V#0 THEN RETURN(V) ELSE PARSOL:N*PARSOL), 

FOR I:0 THRU K DO (L:RATEXPAND(SUBST(N+K-I,N,PARSOL)l, 
V:E, 

V:RATEXPAND(SUBST(L,U(N+K-I) ,VI)), 
L:[ I ,  

FOR 1:0 THRU  HIPOW(PARSOL,N) DO 
L:CONS(COEFF(V=G,N,I)  ,L), 
V:[ I ,  
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FOR J:O THRU  HIPOW(PARSOL,N) DO 
V:CONS (B [J] ,V) , 

SS:SOLVE(L,V) , 
PARSOL:EV(PARSOL,SS)) 

ELSE  IF POLYINN(G,N) = TRUE  THEN 
(PARSOL:Bl*G, 

(L:0, V:E, 
FOR J:O THRU K DO 

FOR I :0 THRU. K DO 
(L:SUBST(N+K-I,N,PARSOL), V:SUBST(L,'U(N+K-I) ,V) 1 ,  
V : RATSIMP (V) , 
IF  V#0  THEN RETURN(V) ELSE PARSOL:N*PARSOL), 

SS:SOLVE(V=G,Bl), 
PAHSOL : EV  (PARSOL, SS) ) 

ELSE  IF INPART(G,O)=SIN  OR  INPART(G,B) = COS THEN 
(PARSOL:B[l]*SIN(INPART(G,l)) + t3[2]*COS(INPART(G,l)).t 
FOR J:8 THRU K DO 
(L:0, V : E ,  
FOR 1:0 THRU K DO 
(L:EXPAND(SUBST(N+X-I,N,PARSOLI ) , 
V:EXPAND(SUBST(L,U(N+K-I) ,V))), 

V :TRIGEXPAND (V) , 
IF V#B THEN  RETURN (V) ELSE PARSOL:N*PARSOL) , 

V:E, 

V:EXPAND(SUBST(L,U(N+K-I) ,V) 1 ) ,  
FOR I:@ THRU K DO(L:EXPAND(SUBST(N+K-I,N,PARSOL)) I 

V :TRIGEXPAND ( V )  , 
LT: [SIN(INPART(G,l)) ,COS(INPART(G,l)) 1 ,  
FOR JJ:l THRU 2 DO 

L:l 1 , 

L:CONS(COEFF(V=G,LT[JJ]) ,L), 
V:[ 1 ,  

FOR J :1 THRU 2 DO 
V:CONS(B[J] ,VI, 

SS:SOLVE(L,V), 
PARSOL:EV(PARSOL,SSI) 

ELSE  RETURN  ("CAN'T BE SOLVED  IN  CLOSED  FORM  BY  PROGRAM"), 

GENS0L:HOMSOL + PARSOL, 
FOR 1:1 THRU LENGTH (LOS) DO 

V:[ I ,  

FOR J:1 THRU M[I] DO V:CONS(A[I,J],V), 
L:[ I ,  

FOR Q : 0  THRU K-1 DO 
L:CONS(SUBST(Q,N,GENSOL)=U(Q) ,L), 
SS:EV(SOLVE(L,V) ,IV), 
RETURN(U(N)=(EV(GENSOL,SS))))$ 
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/*THIS  BLOCK  IMPLEMENTS THE  GENERATING  FUNCTION METHOD*/ 

GENF(E,G,U,N,K,IV):=BLOCK([MULTIPLICITIES,L,V,SS,VV,LOS, 
NR,F,SOL,P,DISPFLAG], 
LOCAL(A,AA,B), 
DISPFLAG:  FALSE, 

FOR I:O THRU K DO 
AA[I]  :COEFF(E,U(N+'K-I)), 
H:0, 

FOR I:@ THRU K .DO 

IF H#E  THEN  RETURN ( " E R R O N E O U S  INPUT") , 
H:H+AA[I]*U(N+K-I), 

L:E, 
FOR I :ld THRU K DO 

L:SUBST( (F-SUM(U(J)*X**J,J,O.,K-I-l))*X**I,U(N+K-I) ,L), 

IF G=O THEN 
(S:SOLVE(L,F), 
F:EV(F,S) ) 

ELSE IF POLYP(G,N) = TRUE  THEN 
(G:RATEXPAND(G). , 
V:SUBST(X**K/(~-X)*COEFF(G,N,~) ,COEFF(G,N,~! ,GI, 
VV:RATSIMP(DIFF(~/(~-X) ,x)), 
FOR 1:l THRU HIPOW(G,N) DO 

(V:SUBS'I'(X**K*X*VV*COEFF(G,N,I) ,COEFF(G,N,I)*N**I,V), 
VV:RATSIMP(DIFF(X*VV,X)) 1 ,  

V:RATSIMP(V) , 
SS:SOLVE(L=V,F), 
F:EV(F,SS)) 

ELSE IF POLYINN(G,N) = TRUE AND HIPOW(INPART(G,2) ,N) < 2 THEN 
(Gl:(X**K)*(INPART(G,l)**COEFF(INPART(G,2) , N , O ! ) ,  
G2:l - X*(INPART(GI1)**COEFF(1NPART(G,2) , N , l ) ) ,  
V:HATSIMP(Gl/G2), 
SS:SOLVE(L=V,F), 
F:EV(F,SS)) 

ELSE RETURN ("CAN'T BE SOLVED IN CLOSED FORM BY PROGRAM"), 

MULTIPLICITIES:TRUE, 
LOS:SOLVE(NEWRAT(F) ,X), 
FOR I :1 THRU  LENGTH (LOS! DO 

(R[I]  :LOS[I],  R[IJ :RHS(EV(R[II!), 
M [ I] :MULTIPLICITIES [ I] 1 , 



V:[ I ,  
B:PRODUCT((l-R[I]*X)**M[I] ,I,l,LENGTH(LOS)), 
FOR I : 1 THRU  LENGTH (LOSl DO 
FOR J:l THRU M[I] DO 

P:SUM(SUM(P[I,J] ,J,l,Fl[I]) ,I,l,LENGTH(LOS)), 
(P[I,JJ:B*A[I,J]/(  (l-R[I]*X)**J), V:CONS(A[I,J] ,V)), 

L:. [ I I 

NF:HATEXPAND(NUM(F)/ABS(COEFF(DENOM.(F) ,X,Q))), P:RATEXPAND(P), 
FOR I:@ THRU HIPOW(RATEXPAND(B) ,X)-l DO 

SSS:EV(SOLVE(L,V) ,IV), 
L:CONS(COEFF(NF=P,X,I) ,L), 

SOL:SUM(SUM(A[I,J]*COEFF(DENOt4(F) ,X,0)/ABS(CoEFF(DENOM(F] ,X,Oll* 
BINOMIAL(J+N-1,N)*R[I]**N,J,l,M[I]) ,I,l,LENGTH(LOS)), 

RETURN(U(N)=(EV(SOL,SSS))))$ 

/*THIS  BLOCK FINDS  THE  NEW  POLYNOMIAL  ASSOCIATED TO F*/ 

NEWRAT(F)  :=BLOCK(  [HD,CP,DP], 
HD:HIPOW(DENOM(F) ,X), 
CP:COEFF(DENOM(F) ,X,HD), 
DP:SUM( (COEPF(DENOM(F)  ,X,I))/CP*X**I,I,O,HD), 
RETURN(SUM(COEFF(DP,X,HD-I)*X**I,I,0,HD)) ) $  

/*THIS  BLOCK  IMPLEMENTS  THE  VARIABLE  COEFFICIENT  METHOD*/ 

VARCl(E,G,U,N,K,IV):=BLOCK([V,VV,EQ,Y,CAUCHYSUM,FINSOL,SERSOL,DISPFLAG], 
LOCAL(A,B),DISPFLAG:FALSE, 

(A[I] :COEFF(E,U(N+I)), 
A[I] :RATEXPAND(A[I]), 
IF  POLYP  (A[ I] ,N)=FALSE  THEN  RETURN  ("CAN'T DO IT") l , 

FOR I :0 THRU K DO 

IF  K=2 AND (B:BESSELCHECK(E,Kl # FALSE)  THEN  RETURN(B), 
V : RATEXPAND (E) , 
FOR I:K STEP -1 THRU 0 DO 

FOR J:HIPOW(A[I] ,N) STEP -1 THRU 0 DO 
(V:RATSUBST(X**J*'DIFF(Y,X,I+J) ,N**J*U(N+I) ,V), 
V:RATEXPAND (V) ) , 

V:RATSUBST(Y,'DIFF(Y,X,0) ,VI, 
V : RATEXPAND (V) , 
IF POLYP(G,N) = TRUE  THEN 

(G:RATEXPAND(G)', VV:G, 
FOR 1:0 THRU HIPOW(G,N) DO 

VV:SUBST(X**I,N**I,VV), 
VV: %E**X*VV) 

ELSE  RETURN("CAN'T DO IT"), 

325 

I 



EQ : V-VV 
DEPENDENCIES (Y (X) ) , 
IF K=l THEN FINSOL:INITIAL1(SOL,X=0,Y=EV(U(0);IV)~ 
ELSE IF K=2 THEN FINSOLiIC(SOL,X=B,Y=EV(U(0) ,IV) ,'DIFF(Y,X)=EV(U(l)  ,IV) 
ELSE RETURN("0.D.E. CAN'T BE  SOLVED  AT  PRESENT  BY MACSYMA"), 

SERSoL:POWERSERIES(RHS(FINSOL) ,X,0), SERSOL:EXPAND(SERSOL) , 
IF ATOM(SERS0L) THEN RETURN("U(N)=0 FOR N > 0 " ) ,  
B:INPART(SEHSOL,l), 
B:EV(B,X=l), 
IF ATOM(B)=FALSE THEN B:SUBSTPART(N,B,4), 
RETURN(U(N)=((N!)*B)))$ 

SOL:ODE2(EQ=B,Y,X)', 

CAUCHYSUM:TRUE, 

/*THIS  BLOCK CHECKS FOR A BESSEL  RECURRENCE RELATION*/ 

BESSELCHECK(E,K) :=BLOCK(  [A,ANS], 
LOCAL (A) , 

FOR I :0 THRU K DO 
(A[I]  :COEFF(E,U(N+I) 1 ,  

IF NOT(INTEGERP(A[O])) THEN RETURN(FALSE), 
IF NOT(INTEGERP(EV(A[l]  ,N=0))) THEN RETURN(FALSE), 
IF NOT(HIPOW(A[l] ,N)=l! THEN RETURN(FALSE), 
IF NOT(INTEGERP(COEFF(A[l] , N , l ) ) )  THEN RETURN(FALSE), 
IF NOT(A[2]=1) THEN RETURN(FALSE), 
ANS: "A LINEAR COMBINATION OF BESSEL FUNCTIONS", 
/*EXACT DETAILS  ARE  OF  NO  SIGNIFICANCE,SINCE  WE ARE MERELY 

RETURN (ANS) ) $ 

AI11  :RATEXPAND(A[Ij)), 

DEMONSTRATING  THE  FEASIBILITY  OF  THIS APPROACH*/ 

/*THIS  BLOCK  IMPLEMENTS THE  FIRST  ORDER METHOD*/ 

VARCZ (E,G,U,N,K, IV) :=BLOCK ( [H  ,P,V,C  ,SOL] , 
LOCAL(AP,P), 

P: (-1) *COEFF(E,U(N)  )jCOEFF(E,U(N+l) 1 ,  
V:G/COEFF  (E,U ( N + 1 !  ) , 
S[J]  :SUBST(J,N,P), 
S[I]  :SUBST(I,N,P), 
P[N]  :PRODUCT(S[I] ,I,l,N-l), 
H[I] :SUBST(I,N,V)/PRODUCT(S[J] ,J,l,I-l) , 
Vl:SUM(H[I]  ,I,O,N), 

RETURN(U(N)=AP*P[Nl+P[Nl*Vl))$ 
AP:EV(U(O)-SUSST(O,N,V)  ,IV), 
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1. SUMMARY 

T h e  use of power series and truncated power  series  in the MACSYMA system for  algebraic 
manipulation is illustrated. Algebraic and  differential equations are solved using Taylor  series or 
asymptotic series. Deficiencies of the current scheme are noted, and remedies suggested. 

2. Infinite  Power Series 

T h e  general term "series"  is  used for at least  two different types of expressions in MACSY M A 
(ref. 1). A power series, informally, is an exact  representation of a function usually of one complex 
variable, f(z), sometimes requirlng  the summation  of an infinite  number of terms, where  the  power 
series may converge only for IzlcR, where R is the radius of convergence. Examples: 

exp(x)= sum(,xAl / l ! , l ,O, lnf ) ,   convergent   for  1x1 < I n f ;  

x+3~xA3=sum(a[l]~x^l,l,0,1nf) where a[1]=1,  a[3]=3, 

( o r  more compactly, x+3*xA3)  convergent f o r  1x1 < l n f ;  
a[O]=a[E]=a[j] = 0 324 

l / ( l - x )  = sum(xAl, l ,O,lnf)   convergent f o r  1x1 < 1; 

These  are power series expansions about x=& Translation to a point a 4 0 is trivially 
accomplished for a finite series:  x+30x3 =I> a3+a + (9>:ta2+1)C(x-a) + 9:ra:::(x-a)* + 3:::(~-a)~. For a 
function  f(t) analytic at  a finite point c, a linear transformation can be used to map  the  point c to 
the origin.  Expansion  about a pole  of f(z) in the complex plane is sketched in section 5. Such 
problems are examined in a mathematical context  in numerous texts of which references 2-3 are 
examples. 

0. T h e  work described herein was performed with the help of MACSYMA, which is supported,  in 
part, by the United  States Energy Research and Development Administration under  Contract 
Number E(ll-1)-3070 and by the National Aeronautics and Space Administration under  Grant N S C  
1323. 
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Power series as used in MACSYMA  need  not  consist  solely of non-negative exponents: 
exp(x)/x= sum(xi/(i+I)!,i,-l,inf). 

They need not consist solely  of integer exponents: e~p(x ) sx l /~  - sum(~~+~/~/i!,i,O,inf). 

T h e  existence of power series solutions to various types  of equations, (typically differential 
equations)  has been established,.(see. for example, ref. 3) but proofs, even if .constructive,  rarely 
provide a means  for expressing in closed form, in terms of some limited class of functions and 
forms,  the power series itself. By "forms" ye mean summations, products, or  integrals  with finite 
or infinite limits, or  derivatives of finite order of known functions. 

To be  more precise, in terms of finite presentation, a  univariate power series is a  triple: (x ,  
{Ik],{ak}). T h e  first item, x, is the independent variable (indeterminate) of the series, ( I k )  is a 
sequence of exponents,  and {ak) is a sequence,of coefficients. Usually the sequences are  infinite, 
and  therefore cannot  be represented in a computer by enumeration, but  rather by generation. It  
is convenient  to require that given some value from irk], say j, the corresponding k such that I k = j  
can be found:  this is the operation of finding out the coefficient of a  given power of x. 

MACSYMA produces power  series  via the POWERSERIES command in a closely related 
form.  The triple specified above is  only a slight generalization of the  representation: the 
summation  form used in MACSYMA devolves  down  to a subset of the integers, and  thus  the 
exponents  are a function of the index rather  than members of the  exponent set. 

Furthermore,  the MACSYMA default result for the product of  two infinite  series - 
surn(aioxi,i,O,inf) and sum(bioxi,i,O,inf) has the form surn(sum(a+>b 1 J  ->)xi+j,j,O,inf),i,O,inf) rather  than 
(with  CAUCHYSUM:TRUE) sum(sum(a.obk_. j 0  k)oxk,k,O,inf) in which the coefficient of xk is a 
finite sum. If the conversion to  "Cauchy  -style products were the only barrier,  then  there would be 
little  cause for alarm. Much more difficult is the generation of an explicit form  for  composition. 
Although implicit  forms, usually  recurrence  relations for  the sequence (ai), can be calculated, these 
do not  satisfy  our "finite closed form" restriction. 

J J" '  

Thus  while infinite power  series are a powerful mathematical construction, operations  on  them 
may lead  outside  the  domain of  series  with  explicit finitely generated terms. 

This  is not  to say this leads necessarily  to intractable problems:  on the  contrary, we can say the 
same  thing  about trigonometric or algebraic functions (square roots for example) since they  may 
lead  from  the finitely-generated rational numbers to algebraic or transcendental numbers. 

Nevertheless, if one is attempting to compute  with  power  series, it is useful to minimally ensure 
that  the  ratio test for convergence can be  computed for any power series expression: 
lim(an/an,p,inf) < inf, where an is the coefficient of x". The finitely-generated restriction gives 
one a good possibility for this, although it is not a necessary condition for  the power-series ratio 
test to be computable. 



3. Truncated Power  Series 

T h e  second type of series construction  in MACSYMA which  by and  large  ignores  questions of 
ultimate convergence, but  has considerable advantage in  terms of ease of computation, is the 
truncated power series (TPS- so called  in ALTRAN and SCRATCHPAD) or  the  “Taylor  Series” 
form in  MACSYMA. Since it  is unreasonable to  restrict our discussion to Taylor series (no 
negative exponents), and  the name used  in MACSYMA is primarily of historical origin, we will 
use the  phrase truncated power  series or TPS to  denote this type of expression. A T P S  is a finite 
subset of the coefficient-exponent pairs in a full power  series. The representation includes an 
indication of the  order of truncation which has been  imposed  by the user andlor  the system. In 
some cases the  order of truncation is altered by operations, which include all rational  operations 
(where  division by TPS with a zero  constant  term may  lead  to a  truncatedLaurent  series  with 
negative exponents). Additional operations such  as  power  series reversion, multivariate  expansions, 
a type of asymptotic expansion,  and extension  to  more  terms are described in the M A C S Y  MA 
manual  (ref. 1, also see ref. 4 for a more  detailed  discussion of univariate TPS in M A C S Y M A ) .  
Other  systems offering automated handling of TPS include ALTRAN and SCRATCHPAD (refs. 
5,6). Facilities are present in many earlier algebra systems for  handling “weighted variables”  but i t  
seems that only recently has  an appreciation developed for  the fact that these rudimentary  power- 
series  ideas  are easily generalized to operations such as inversion and reversion. 

We indicate in passing that asymptotically fast methods of computation on TPS  have been 
described by Brent  and  Kung (ref. 7), Kung  and Traub  (ref. 8). to replace the classical methods 
(see, for example, Lipson (ref. 9) or  Knuth (ref. 10)).  For the remainder of this paper we will be 
concerned with the use of TPS in the solution of equations, and  the  relative  rapidity of the 
algorithms  underlying  the methods will not  much affect the usefulness of the results. 

For our purposes, we choose  to  omit from the TPS repertoire a  number of the  more 
sophisticated  features. We consider a TPS to  be  identical  with a power  series  with the  change  that 
{Ik}, the set of exponents, is  necessarily finite (and a prefix of the  infinite set), and each operation 
on TPS must  preserve as many  terms in the answer as can  be guaranteed correct, given  the 
operand description. In some  cases additional assumptions are made.  For example,  given the TPS 
Y - I-x+ ..., then 1/Y - l+x + ._.. Yet if Y is in fact ... + 1 - x + ..., e.g. llx + 1 - x + ... then 1/Y = x - 
x 2 + ..., rendering even the constant term  incorrect. Thus we  will assume, except when explicitly 
stated otherwise, that all negative exponent terms are given. 

4. m e b r a i c  Equations  and Truncated Power  Series 

If we lay aside  cautions concerning the validity of expressing an unknown function as a TPS, 
we  can  often proceed to find  the coefficients in the series by substitution into  a defining  equation. 
W e  illustrate with examples of algebraic equations and  differential equations. Additional examples 
can be demonstrated  combining these two, or  adding  the operation integration. 

T h e  techniques in this section are not intended to be general prescriptions for all problems of 
this nature,  but to illustrate a common-sense approach which frequently is useful. 
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Consider the following irreducible cubic equation: 

T h e  three roots for L obtainable by  means  of the cubic formula  are, as expected, unwieldy. If 
we  assume  the existence of a solution L(e)=  sum(LLisei,i,O,inf) and try  to determine {LLij by 
substitution, we find  that setting to zero  coefficients of various powers of e in the  equation  result 
in inconsistencies (e.g. -1 = 0). A few  moments consideration of the  defining equa.tion suggests that 
such a series  does not exist, but  that if  we solve for L3, then a  cube root of the lowest term in e, 
(e1) will provide a basis for expansion. In fact, substitution of  e3 for e in the  original  equation  (or 
alternatively,  expansion of L in terms of the cubermt of  e), serves the  purpose precisely. 

Now that  the general  form  has been  chosen there are several levels of generality in which the 
coefficients may be found. 

, T h e  infinite power series approach, namely  to substitute power series forms  into the defining 
equation  and solve for  the  arbitrary coefficients in closed form a s  a  function of n,  the  index of 
dl3, would .be the most powerful. Unfortunately, MACSYMA cannot do this  automatically, 
although with  sufficient  prompting  part of the algebra can be accomplished. (It would be 
interesting  to completely characterize what  can  be done by mechanical means to find closed form 
solutions;  the result would be analogous to the Riscti integration algorithm.) 

Less  satisfactory,  but more to be expected considering the small  set  of solvable  recurrences, is 
the  derivation of a recurrence which  can be marched  to  any desired order. 

Yet  more likely is that a set  of equations can  be generated such that all LLi  up to some fixed i - N can be found.  Of course it  may happen that  the  defining equations for  the coefficients are  no 
more  tractable  than  the  original equation. This is certainly  possible for algebraic  equations but if 
we start with a differential equation we have  at least traded it for  an algebraic  problem. 

Elementary  arithmetical considerations suggest that polynomial equations of the  form  Ln- 
eo(lower order terms in L) = 0 have formal power  series solutions for L in terms of elln. In fact 
the  degree of the smallest non-zero term  can  be predicted. A complete procedure for such 
determinations  for algebraic expressions would  be interesting, but in general we must tackle rather 
difficult problems: The  computation of LLo  in L = sum(LLjsel,i,O,inf) given a defining  polynomial 
in L is  in  general  as  hard  as  (and may be the same as) finding an algebraic expression for L  itself. 
If e is  missing from  the equation, then trivially L- LLO 

Some  algebraic equations can be dealt with in a very powerful framework involving  "Newton- 
like"  iterations.  (ref. 8)  Rather  than use  these  somewhat  esoteric methods here, we will proceed on a 
more direct  path to specific examples. Section 7 treats Newton iterations briefly. T h e  results 
coincide when both  approaches  are appropriate. 

As an illustration of the algebraic substitution technique on the  example  given above, we 
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present  the following  dialogue with MACSYMA. The definition of the  function SOLVEALL is 
more complex than need be, perhaps, for this simple function, but it illustrates the "blind"  use of 
this substitution technique. In  this particular case, LLo is found  from  the  coefficient of eo, LLI is 

found from the coefficient of e3 (and is chosen arbitrarily to be one of the  three  rmts of LL?-1 = 

O), and LL2 through LL) are determined from  the coefficients of et through e6. While LL5 and 
LL6 appear  in  the equation,  their values are not determined because the  appropriate  coefficients 
are already zero. 

(Cl) EQ: LA3-E~( L+1); 
3 

(Dl 1 L = E ( L + l )  

(C2) DEFTAYLOR(H(E),SUM(LLII]~EnI,I,O,INF)); 
(02 1 CHI 

(C3) TAYLOR(SUBST(H(E),L,EQ),E,0,4); 
3 2 

(D3)/T/ LL + ( 3  LL LL - LL - 1) E 
0 1 0  0 

2 2  2 
4 (3 LL LL + 3 LL LL - LL ) E 

2 0   1 0  1 

2 3  3 
+ (3 LL  LL + 6 LL LL  LL + LL - LL 1 E 

3 0   2 1 0  1 2 

2 2 2 

4 0  3 1   2 0  2 1  
+ (3 LL LL + ( 6  LL LL + 3 LL ) LL + 3 LL LL 

4 
L L ) E  + . .  
3 

Note  that  the  first  three coefficients imply that LLo=O,  LL1=-1/3, and LLl=O simultaneously, 
clearly inconsistent. 

(C4) EQ3:SUBST(EA3,E,EQ); 

(D4) L - E  ( L +  1) 
3 3  

( C 5 )  RES:TAYLOR(SUBST(H(E),L,EQ3),E,O,6); 

(D5)/T/ LL + 3 LL LL E + (3 LL LL + 3 LL LL ) E 
3 2 2 2 2 

0 1 0  2 0  1 0  
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2  3  3 
+ (3 LL  LL , +  (6  LL LL - 1) LL + LL - 1) E 

3 0   2 1  0 1 

2 2 2 4 
+ ( 3  LL LL + (6  LL LL . +  3 LL ) LL + 3 LL  LL - LL ) E 

4 0  3 1  2 0  2 1  1 

2 2 2 

5 0  4 1   3 2  0 3 1  2 1  
+ (3  LL LL + ( 6  LL LL + 6 LL  LL ) LL + 3 LL  LL + 3 LL LL 

5 2 2 

2 6 0  5 1  4 2  ,3 0 
- LL ) E + (3  LL LL + ( 6  LL  LL + ' 6  LL  LL + 3 LL ) LL 

2  3 6 
+ 3 L L  LL + 6 L L  LL LL + L L   - L L ) E  + .  - .  

4 1   3 2 1  2 3 

T h e  value of RES above is the result of substituting a series into EQ3, the  same as EQ, but  
with E replaced by E3. We now define a fairly general program to solve for all the  coefficients in 
such a defining equation. The program below  is  not  asymptotically fast, since examples  can  be 
concocted for which it is O(n!) for n terms  desired. Iterative methods described in section 6 
provide  the potential for much faster construction of terms, yet the relative  simplicity of 
SOLVEALL below -- in not relying on how the equation was generated, is attractive. 

(C6) /* SOLVE EQ FOR CC[O] . CC[ LIM] AS REQUIRED TO MAKE EQ( X) ZERO. */ 
SOLVEALL(EQ,X,CC,LIM):= 
BLOCK([C,VARS,S,K], 
K:O, 
WHILE EQiO AND K<LIM DO 

(C:COEFF(EQ,X,K), 
I F  CIO THEN 

(VARS:LISTOFVARS(C), 
UNK:MINF,/* MINUS INFINITY */ 
FOR I I N  VARS DO 

I F  NOT(ATOM( I)) AND PART( I,O)=CC AND PART(I,l)>UNK THEN 
UNK:PART(I,l), 

/*PICK OUT HIGHEST INDEX */ 
/+ NO WAY TO HAKE COEFF. ZERO +/ 

I F  UNK = MINF THEN ERROR( "INCONSISTENT"), 

UNK : CC[ UNK 1, 

332 



S:SOLVE(C,UNK), 
I F  S =[ J THEN  ERROR( "INCONSISTENT") 

ELSE (IF REST(S)#[ 3 THEN PRINT 
("MULTIPLE SOLUTIONS: FIRST ONE CHOSEN"), 

UNK::RHS(EV(S[lJ)), /* ASSIGN COEFFICENT VALUE */ 
EQ:EWEQ))) ,  

K :K+l) )S 

( C 7 )  SOLVEALL(RES,E,LL,6); 
SOLUTION 

MULTIPLICITY 3 
SOLUTION 

LL = 0 
0 

X I  SORT( 3 )  + 1 
LL = - """"""" 

1 2 

( E 1 0  1 LL = 1 

MULTIPLE SOLUTIONS: FIRST ONE  CHOSEN 
SOLUTION 

1 

X I  SQRT(3) + 1 
LL = - """"""" 

2 6 

LL = o  
3 

DONE 

T h e  difficulty with multiple solutions for LLl can  be  nicely  resolved in MACSYMA as follows: 

Let w be a primitive root of w3-1 (i.e. a rmt of the irreducible factor of w3-l with  roots which 
generate  all distinct  cube roots of 1: wz+w+l),  remove  old  values  of LL. and  then set LL, to w. 
SOLVEALL then uses the given value for LLl, and proceeds to find  the  other  coefficients. By 
informing MACSYMA via TELLRAT and ALGEBRAIC about  the special properties of w, LL2 
come out nicely reduced. 

I -  



(C13)  (KILL(LL),TELLRAT(UV+W+l), 
/* W IS PRIMITIVE CUBE-ROOT OF 1 8/ 

LL[ 1 J:W, ALGEBRA1C:TRUE)S 

(C14) SOLVEALL(RES,E,LL,6); . 

SOLUTION 

MULTIPLICITY 3 
SOLUTION 

SOLUTION 

LL = O  
0 

LL = O  
3 

5. Differential Equations and Truncated Power  Series 

This section deals with an admittedly trivial differential equation as  an  illustration. We 
demonstrate  the types  of operations supplied by MACSYMA and how to  use them. T h e  
differential equation (assume right hand side is zero)  is  entered  on line C17, we remove the 
previous values for  the LL-array, and generate the TAYLORSOL as given below. 

(C17)  DE:DIFF(H(E),E,2)-An2*H(E); 
2 

d 2 
( D l 7 1  --- H(E) - A H(E) 

2 
dE 

( C 1 8 )  KILL(   LL)S 

(C19) DETAYLOR:TAYLOR(DE,E,O,6); 

(019) /T /  2 LL - LL A + ( -  LL A + 6 LL ) E + (-  LL A + 12 LL ) E 
2 2 2 2 

2 0 1 3 2 4 
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2  3  2  4 
+ ( - L L  A + 2 0 L L ) E   + ( - L L  A + 3 0 L L ) E  

3 5 4 6 

2 5 2 6 
+ ( - L L  A + 4 2 L L ) E   + ( - L L  A + 5 6 L L ) E  + . .  . 

5 7  6  8 

(C20) SOLVEALL(DETAYLOR,E,LL,7)8 

6 6 6  7 

0 1 

720 5040 

A L L E   A L L E  

+ -"""" + """"- + . . .  

. To check this result by "automatic"  means, we use MACSYMA's ODE solver,  which uses 
standard textbook recipes,  mostly drawn  from reference 11. These procedures solve many classes of 
first  and second order linear ordinary  differential equations. Anticipating a query about the value 
of "A", we specify A > 0 below. The answer is reformatted by simplification via RADCAN. and 
K1, K2 arbitrary constants are related  to LLo and LL1 arbitrary constants by the  simultaneous 
solution of the two linear equations for initial conditions. The result  is expanded  as a Taylor 
series to order 7 in E, where it is  seen  in line D32 to agree to that  order with TAYLORSOL 
generated earlier. 

(C28) ASSUME( A>O)S 

(C29) RADCAN(ODE2(DE,H(E),E)); 

DERIVD  FASL DSK MAXOUT being loaded 
loading  done 

- A E  2 A E  
(029) H(E) = %E (K2 + %E K1) 
(C30) /+ IMPOSE INITIAL CONDITIONS H(O)=LL[O], H'(O)=LLCll */ 
IC2(X,E=O,H(E)=LL[O],'DIFF(H(E),E)=LL[l]); 

335 



2 A E  
(LL A + LL ) %E LL A - LL 

- A E  0 1 0 1 
(031) H(E)  = %E (""""""-"""" + """""- I 

2 A  2 A  
(C32) TAYLOR(RHS(X),E,O,7.)-TAYLORSOL; 
(D32 ) /T/ o + .  . . 

We will return briefly to this example in the next section  when steps (C19) through (C27) are 
mathematically  reformulated  and simplified for the special  case of a  .regular solution to a  second 
order  linear  differential equation, expanded at the origin. 

6. An Introduction to Asymptotic Series 

This  section will necessarily  be  very  sketchy  since  asymptotic series are both complicated, and 
discussed  in great detail elsewhere.  (see (ref. 2) for example). 

Consider  the  function sin(l/x). It  is  not  possible  to construct a  Taylor series in ascending 
powers of x, since  there are  no derivatives at x-0. The fact  that  there is an essential singularity a t  
zero is a sufficient  barrier to  power  series expansion. However, for sufficiently large x. when I l x  is 
sufficiently small, sin(l/x)  behaves like l/x (sin(y) = y + ...). 

The notion of an asymptotic series is quite useful in the  approximation of functions.  Whether 
or not the series converges is not  necessarily important: just as we were willing to deal with a 
truncated power series, we can deal with a truncated asymptotic  series. MACSYMA is capable of 
producing some series from  defining expressions as illustrated below. 

(Cl) TAYLOR(SIN(l/X),X,O,5); 
E s s e n t i a l   s i n g u l a r i t y  encountered i n  

1 

X 
SIN( - )  

(C2) TAYLOR(SIN(l /X),[X,0,5,ASYMP]);  

(02)/T/ 
1 1  1 

X 3 5 
- - "" + """ + .  . . 

6 X 120 X 

Unfortunately, many of the most useful asymptotic expansions do not have such a simple 
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structure. For  example, instead of a series in descending  powers of x, we  may need a  series in 
powers of exp(x). A series which MACSYMA cannot "automatically" handle is  easily produced  via 
the  program given below. The reference to Olver is ref. 2 in the References. We do not define 
"irregular singularity"  or "rank", but  the interested reader may refer to ref. 2 for  background. 
Incidentally,  this  program is a demonstration of the brevity  possible in MACSYMA programs fo r  
non-trivial mathematical transformations. 

(C3) /* EXTENSION OF LG (WKBJ) APPROXIMATION FOR LINEAR 2ND ORDER 
ODE'S I N  THE NEIGHBORHOOD  OF  AN  IRREGULAR SINGULARITY. 
(SUBCASE: UNIT RANK AT INFINITY).  SECTION 7.1 I N  OLVER. 

(SOLVES 
W//+F(Z)*W/+G(Z)*W = 0 

6 IV ING  SPECIF IED NUMBER  OF  TERMS. ) 
*/ 

ODE701(FF,GG,WW,Z,TMS):= /* 7 0 1  ind ica tes   sec t ion  7.1 i n  Olver  */ 
BLOCK ( [ RHO], 
LOCAL(F,G,LAMBDA,MU,A,W), 

/*F[I] and G [ I ]  represent  terms i n  expansion o f  arguments 
FF and GG */ 
F[I]:~LIMIT(Z^I~(FF-SUM(F[J]/ZAJ,J,O,I-1)),Z,INF), 
G[I]:~LIMIT(ZAI~(GG-SUM(G[J]/ZAJ,J,O,I-l)),Z,INF), 
RHO:( 1/4*F[O]^Z-G[0 I)^( 1 /2 ) ,  
I F  RHO=O  THEN RETURN(ODE70103( ) ) ,  

/* lambda[ 0 1  and lambda[ 11 correspond t o  two 
/* SPECIAL CASE  OF SECTION 7.1.3 */ 

s o l u t i o n s   i n   s e r i e s .  Same f o r  mu[O], mu[l]. */ 
LAMBDA[ I ] :=- l /Z*F[O I+( -1)"I*RHO, 
MU[I]:=-(F[l]*LAMBDA[I]+G[l])/(F[O]+2*LAMBDA[I]), 
A[O,O]:/Kl,  A[O,l]:/K2, /* a rb i t ra ry   cons tan ts  */ 
A[S,I]:= 1/ (S*(F[O]+2*LAMBDA[I]))* 

(SUM((LAMBDA[I]*F[J+l]+G[J+l]-(S-J-MU[I])*F[J])*A[S-J,I], 
J, 1,s) 

+(S-MU[I])*(S-l-MU[I])*A[S-l,I]), 
W[I]:=XE^(LAMBDA[I]*Z)*ZAHU[I]~UH(A[S,I] /Z~S,S,O,TMS), 

RETURN(WW=W[l]+W[O]))S 

( C4 ) TESTF : ( 2*ZA2+2*Z+5)  /2^28 

( C 5 )  TESTG: ( 2*Z+3)/ZA2S 

( C 6 )  ODE70l(TESTF,TESTG,W,Z,3); 
/* s o l v e  ~ 2 ~ W ~ ' + ( 2 s z n 2 + 2 * z + 5 ) * n  +(Z*z+3)m = 0 */ 
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3 K1 5 K 1  25  K1 

2 2  2 3 
"" + "" - ""- + K 1  

8 Z  1 6 Z  
+ """""""""""" 

Z 

This  section is required for exercise 7.1.2 in Olver, so we proceed to fill in the "blank" in the 
above program namely program ODE'IOIOS. 
(C7)  /* OLVER SECTION 7.1.3 "T rans fo rma t ion   o f   Fab ry "  */ 
ODE70103():= 
BLOCK([F2,G2,NEWF,NEWG,ANS], 

F2:SUBST(ZA2,Z,FF), 
G2:SUBST(ZA2,Z,GG), 
NEWF:2*Z*F2-2*Z*F[O]-l/Z, 
NEWG:ZA2*(4*G2+F[O]A2-2*F[O]*F2), 
IF 2*G[ 1 ]=F[  O]*F[ 13 THEN 

/* REGULAR SINGULARITY AT Z=INF: CONVERGENT  POWER SERIES */ 
/*Method i n  Olver, Section 5.4, b u t  expand 
a t  i n f i n i t y .  See  below f o r  expansion a t   z e r o .  */ 

ANS:ODE504INF(NEWF,NEW6,W,Z,TMS) /* AT INF*/ 

ANS:ODE701(NEWF,NEW6,W,Z,TMS), 
ELSE 

RETURN(WW=SUBST(SQRT(Z),Z,RHS(ANS)*%EA(-F[O]*Z/2))))S 

( C 8 )  TESTF:E/ZS 

(C9) TESTG:-(1/4+5/16/Z)/ZS 

(C10) /*OLVER EXERCISE 7.1.2 */ 



K 1  SQRT( Z 1 K2 - SQRT( Z )  
( K 1  - ------, 1 %E ( - - - - - - - + K 2 )  %E 

SQRT(  Z 1 SQRV Z 1 
( D 1 0 )  W = - _ - _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _  + _-________------_--------- 

314 3 /4 
Z Z 

( C 1 1 )  /* T H I S  ANSWER HAPPENS TO BE EXACT. PROOF?  BELOW: at/ 

'DIFF(W,Z,2)+TESTFa'DIFF(W,Z)+TESTG*W,X,DIFF,EXPAND; 
( D l 1 1  0 

Another standard technique for series expansion is the  method of Frobenius. Here we dispense 
only with the case of roots of the indicia1  equation  which do not differ by an integer (or zero). 
The latter case requires separate, but fairly simple treatment. One example  is  worked on lines 
(C13>(C15). 

((212) /at OLVER  SECTION  5.4.1: REGULAR SINGULARITY. 
ASSUME WITHOUT LOSS OF GENERALITY EXPANSION  AT ORIGIN 
(METHOD  OF  FROBENIUS). */ 
ODE504(FF,GG,WW,Z,TMS):= /+Olver sect ion 5.4.1 */ 
BLOCK([DISCR,SD], 
LOCAL(ALPHA,F,G,A,Q,W), 

F[I]:~LIMIT((Z*FF-SUM(F[J]~ZnJ,J,O,I-1))/ZnI,Z,O), 
G[I]:~LIMIT((Zn2~GG-SUM(G[J]~ZnJ,J,O,I-1))/ZnI,Z,O), 
DISCR:(F[0]-1)"2-4*G[O], /* DISCRIMINANT OF INDICIAL  EQUATION */ 
SD : RADCAN( SORT( DISCR) ) , 
ALPHA[ I]:=(-F[O]+l+( -1)"I*SD)/2, /* QUADRATIC SOL. */ 
Q(X):=X*(X-l)+F[O]*X+G[O],  
WII]:=ZAALPHAII]*SUM(AIS,I]*Z"S,S,O,TMS), 
A[S,I]:=-SUM(((ALPHA[I]+J)*F[S-J]+G[S-J])*A[J,I],J,O,S~l)/ 

Q( ALPHA[ I ]+S),  
A[O,O]:'Kl,A[O, 1]:'K2, /*ARBITRARY CONSTS */ 
I F  INTEGERP(ALPHA[O]-ALPHA[l]) THEN ODE505010  /* ROOTS DIFFER 

BY INTEGER OR 0 at/ 
ELSE RETURN(WW= W[O]+W[ 13))s 

FF:%E*Z/ZS 
GG:-3*COS(Z)/Zn2S 
RATSIMP(ODE504(FF,66,W,Z,3)); 

2 SQRT(3) 3 
w = ( Z  ((176 SQRT(3) - 2 5 3 )   K 1  Z 
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2 
+ (108 - 117  SQRT(3) )   K1  Z + ( 7 2  SQRT(3) - 4 3 2 )   K 1  Z + 792  K1)  

3 2 
+ ( -  176  SQRT(3) - 253)   K2 Z + (117  SQRT(3) + 108)   K2 Z 

SORT( 3 1 
+ ( -  72 SQRT(3) - 432)   K2 Z + 792  K2)/(   792 Z 1 

To close this section, we  show  how  to  generate, in a rather  brief  program,  a Taylor series 
expansion we have seen before; the  solution to DIFF(H(E),E,2)-A2~)H(E)=0. 

( C 1 6 )  /+ EXPANSION I N  SERIES, ORDINARY POINT. 
ASSUME WITHOUT LOSS OF GENERALITY EXPANSION AT ORIGIN 
OLVER  SECTION  5.3.2 */ 
TAYSER(FF,GG,W,Z,TMS):= 

LOCAL(A,F,G), 
BLOCK([ 1, 

A[O]:'Kl,A[ 1]:'K2, 
A[S]:=-l/S/(S-l)*SUM(F[J~(S-J-l)~A[S-J-l]+G[J]*A[S-J-2],J,O,S-2), 
F[I]:=LIMIT((FF-SUH(F[J]~Z"J,J,O,I-1))/Z"I,Z,O), 
6[I~:=LIflIT((GG-SUH(G[J]*Z"J,J,O,I-1))/Z"I,Z,O), 

RETURN(W=SUM(A[S)+Z"S,S,O,THS)))S 

This is the same as D27 of the  previous section. 
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7. T h e  Use of Newton Iteration over a Power  Series  Domain 

A powerful technique for solving algebraic problems  is  pointed out in references 8 and 9. W e  
restate Lipson's theorem 3.1 (ref. 9) to justify the following  constructions. 

THEOREM: Let f(x) be a polynomial  with  coefficients in a power series domain  (series in t 
with  coefficients in F) D=F[[tll.  Let a in F be an  O(t) approximation to a root  of f(x) (i.e. x=a is a 
solution  to f(x)-0 when t-0). Furthermore, suppose that a satisfies f'(a) 4 0 when to0 (where  the 
prime indicates  differentiation with  respect  to  x) 

Then  the sequence of iterations xo=a, XI, .I computed according to 

is such  that Xk is an  o(t(Zk)) approximation to x. 

Reference 8 generalizes this result  somewhat by explaining how an iteration can be constructed 
for  a polynomial f(x) which does not  satisfy the condition on f'(x). This "Newton polygon" 
calculation will not be demonstrated here. 

We note in passing  that our earlier examples do not  satisfy the requirements of this  theorem. 

T h e  following protocol does not demonstrate the most efficient formulation of this iteration, 
since  one can concoct (as demonstrated in ref. 9) efficient Horner's rule evaluation of a  polynomial 
and its  first  derivative at a power-series point, and  furthermore,  the essential computations  can  be 
done by asymptotically faster methods (ref. 7). Yet,  since  one  is  much more likely to be interested 
in  the  first few terms of an expansion than any others, an O(n2) or slightly worse algorithm  for  n- 
terms is  not  objectionable. 

( C l )  /* NEWTON'S  METHOD FOR ROOT-FINDING OVER A POWER SERIES 
DOMAIN */ 
/a INPUTS: 
EX=  EXPRESSION I N  VARIABLES W AND T. EX=O WILL BE  SOLVED 

APPROXIMATELY 
FOR W(T) TO  ORDER N OR HIGHER. 

IS NONZERO. (THIS  CONDITION I S  CHECKED. ) */ 
AROOT IS A ZERO OF EX WHEN T=O, SUCH  THAT DIFF(EX,W)  WITH T=O 

NEWTONROOT(EX,W,T,N,AROOT):= 
BLOCK([DEX,S, I], 
DEX:DIFF(EX,W), 
/II CHECK I N I T I A L  CONDITIONS I N  NEXT I F  STATEMENT +/ 
I F  TAYLOR(SUBST(AROOT,W,EX),T,O,O)/O 

OR TAYLOR(SUBST(AROOT,W,DEX),T,O,O)=O 
THEN  RETURN(PRINT("N0T ABLE TO  EXPAND AT ", AROOT)), 



S:AROOT, 
FOR I:1 NEXT 2*1+1 WHILE I < = N  DO 

(S:RATDISREP(SUBST(S,W,S-TAYLOR(EX/DEX,T,O,I))), 
S:TAYLOR(S,TP0,2+I+l) /* PREPARE FOR NEXT ITERATION +/ ), 

RETURN(S))S 

(C2) /+ THE  FOLLOWING  EXAMPLES  ARE  TAKEN  FROH  REF. 9. */ 
/* PROBLEM 1. COMPUTE A SQUARE  ROOT OF A=1+T+2+T"2+3+TA3+ ... 
TO ORDER 8 ERROR. */ 

+ .  . . 
(C3) /+PROBLEM 2 .  COMPUTE A SOLUTION T0.A CUBIC a/ 

NEWTONROOT(XA3-2/(1-T)rX*1,X,T,7,1); 
2 3 4 5 6 

( 0 3 ) / T /  1 + 2  T - 6 T + 58 T - 622 T + 7506 T - 96822 T 

7 
+ 1307466 T + . . . 

(C4) /*PROBLEM 3 .  REVERT T=ATAN(X) TO FIND A SERIES FOR TAN(T) 
*/ 

NEWTONROOT(ATAN(X)-T,X,T,7,0); 
3 5 7 

T 2 T  1 7 T  

3 15 315 
(04 ) /T/ T + -- + ---- + --"- + . . .  



8. Comments on the Implementation 

Several notational problems seem apparent. If a TPS is displayed as Y - 1 + x + ..., does  this 
mean that Y - 1 - x is O(x2)? How  would the display differ if the  difference was O(x3)? T h e  
ellipsis  is  insufficient,  and 1 + x + O(x2), if  such is the case,  would resolve the question. This  
information  is  available internally, in  most  cases,  anyway. As pointed out by  R. Zippel  (private 
communication), how can one compute n in  sin(x)z+cos(x)2-1 - 0 + O(xn) ? A calculus of orders 
seems  to be the next  step in this direction: (l+O(x2))o(l+O(y)) = 1 + O(x20y),  not 1 + .... Addition and 
other  operations would have to be implemented, along with a careful treatment of the  asymmetrical 
use of this notation  on the left and  right  hand sides of equations. 

Another deflciency, not illustrated in this paper exists  in terms of the consistency of TPS 
operations in parts of MACSYMA. For example, matrix operations with TPS entries  forces a 
conversion  to a non-TPS form. In the process, information is  lost which can be.of  considerable 
benefit.  It  also  appears  that significant time savings may be possible by recognition of TPS 
matrices  as a special case: computing the inverse of a matrix of TPS entries can be  done in a 
variety of ways by matrix-wise series expansion, for example. 

T h e  implementation of infinite summations "SUM"s is currently in flux, because of important 
work due to R.W. Gosper (reported in this Proceedings). While it is  possible to solve the  equation 
(CI) as mentioned  earlier, to get a closed-form formula for LLn in finite terms, the  manipulation 
is not yet routine using MACSYMA. 

What is needed, minimally, is the capability of moving independent variables  both in and  out 
of  summations: assum(x',i,O,inf) <I=> sum(asxi,i,O,inf), changing  the  index:  xaosum(xl,i,O,inf) <==> 

sum(xi+a,i,O,inf) <=I> sum(xi,i,a,inf), taking terms out 'of  sums: sum(ai,i,O,inf) ==> ag+sum(ai,i,l,inf) 
or sum(ai,i,O,n) ==> sum(ai,i,O,n-I) + an. Suitable generalizations of these transformations,  plus a 
neat methodology for specifying which transformation to  use  where  would provide a basic facility. 
More  elaborate simplifications can  be programmed, but without this type of facility, the  lone  user 
has a difficult time. We  note'that thisproposed facility  is different  from  one which does  exist  in 
MACSYMA, namely the simplification of  sums  to  closed forms when  possible, mentioned in the 
previous  paragraph. 

9. Conclusions 

We hope we have given a sufficient, number both  of main-line and  incidental  comments 
concerning  the use of series, especially in MACSYMA, to illustrate the principal  well-understood 
approaches.  While  the details of derivation of these  methods, and  the  underlying  (sometimes quite 
sophisticated)  programming  and mathematical algorithms have not  been explained in this  paper, 
sufficient  information on these topics is available in the references. 

We  have deliberately  avoided discussion of methods for convergent or asymptotic  series 
approximations of integral equations, and transcendental equations. This is not because of lack of 
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material:  rather,  there is a wealth of material, especially  on integral approximation and  integral 
equation solution. The  work  of  Stoutemyer (ref. 13) originally in REDUCE  has been made 
available in  MACSYMA by Richard Bogen  (reported  in  these Proceedings). Early work by P a u l  
Wang (ref. 14) and Seth  Chaiken  at  MIT provide procedures for integral approximation by the 
methods of stationary  phase, steepest  descent, and other schemes. There  are a  growing  number of 
references  to work in other systems, principally REDUCE, FORMAC (ref. 15) and  ALTRAN along 
the lines of the more straightforward rational methods. These may  be identified through recent 
ACM  SIGSAM Bulletin listings of abstracts. We would  like to note the  interesting use of Taylor 
series  in a combined numericallsymbolic mode as in (refs. 16, I f ) .  The idea in these papers is to use 
symbolic  methods in a compiler as a technique for producing numerical approximation  programs. 
By separating  the two  passes, machine resources  can  be  optimized for the differing  requirements of 
symbolic and numerical routines. 

We hope  to classify, describe, and extend approximation work in a variety of areas,  including 
but not  limited  to the  areas explored in this paper, at a later time. pi number of researchers have 
examined simple  applications of the method of successive approximation  (Picard's method) in a 
symbolic  context. T h e  combination of this technique with  power  series  is  very promising. 

A  common question raised by the automatic solution of equations by series is: How do we know 
these  methods  produce a convergent series, or how can we find the  radius of convergence. T h e  
answer  to  both of these questions is:  we  use the same  methods that  mathematicians use by "hand"; 
there is very little magic in the automation of these  methods. They  are  for  the most par t  "formal" 
methods whose  convergence can be guaranteed only  by additional consideration of the  problem at 
hand. Indeed, some of the asymptotic methods will usually produce a  divergent series; this  does  not 
mean  the result is meaningless or useless,  since  such  series have  a wide  use in the  literature. 

Significantly  absent  from this  paper is a discussion of the validity of series solutions, and how 
to  diagnose  the  appropriateness of various approaches to solving algebraic or  differential 
equations by approximation. This problem is probably best  solved by practitioners in  each given 
area  who  are  familiar with particular approaches relevant in their special problem domains. T h e  
tools provided by MACSYMA, plus simple programs as outlined above  serve as early steps  toward 
more  useful cooperation between the applied mathematician and  the computer. 



REFERENCES 

1. MACSYMA Users Manual.  Lab.  for Computer Sci., Massachusetts Inst..Technol., 1975. 

2. Olver, F. W. J.: Asymptotics and Special Functions.  Academic Press, 1974. 

3. Wasow, W.: Asymptotic Expansions for  Ordinary Differential Equations. John Wiley and  Sons 
(Interscience), 1965. 

4. Zippel, R. E.: Univariate Power Series Expansions in Algebraic Manipulation.  Proceedings of 
the 1976 ACM Symposium on Symbolic and Algebraic Computation. Aug. 1976, pp. 198-205. 

5. Norman, A. C.: Computing with Formal Power  Series.  ACM Trans. on Math  Software, vol. I .  
no. 4, Dec. 1975, pp. 346-356. 

6. Brown, W. S., ALTRAN User Manual. Bell Telephone Lab Inc., 1973. 

7. Brent, R.; and  Kung, H. T.: Fast Algorithms for Manipulating Formal Power Series. Tech.  Rep., 
Computer Sci. Dep., Carnegie-Mellon Univ., Jan. 1976. 

8. Kung, H. T.; and  Traub, J. F.: All Algebraic  Functions Can be Computed Fast. Tech.  Rep.. 
Computer Sci. Dep., Carnegie-Mellon Univ., July 1976. July, 1976. 

9. Lipson, J.D.:  Newton's Method: A Great Algebraic  Algorithm. Proceedings of the 1976 A C M  
Symposium on Symbolic and Algebraic Computation, Aug. 1976, pp260-270. 

IO. Knuth, D. E., The  Art of Computer Programming, Volume 2: Seminumerical  Algorithms. 
Addison-Wesley Pub. CO., Inc., 1969. 

11. Boyce, W. E.; an d DiPrima, R. C.: Elementary Differential Equations. JohnWiley & Sons, Inc., 
1969. 

12. Nayfeh, A. H.: Perturbation Methods. John Wiley & Sons,  Inc., 1973. 

13. Stoutemyer, D. R., Analytical Solution of Integral Equations Using Computer  Algebra. UCP-34. 
Computer Sci.  Dep., Univ. of Utah,  June 1975. (to appear, ACM Trans on Math.  Software). 

It. Wang, P. S.: Application of MACSYMA to an Asymptotic Expansion Problem. Proceedings  of 
the 27th ACM Annual  Conference Volume 2, Aug. 1972, pp. 844-850. 

15. Hanson, J. N.: Experiments with Equation Solutions by Functional Analysis Algorithms and 
Formula Manipulation. J. Computer Physics,  vol. 9,1972. pp. 26-52. 

16. van de Riet, R. P.: The Automatic Solution of Partial  Differential  Equations by Means of 

345 



Taylor Series Using Formula-Manipulation  Methods. ACM SIGSAM Bulletin, no. 28. Dec. 
1973, pp. 33-36. 

17. Barton, D.; Willcrr, I. M.; and  Zahar, R. V. M.: Taylor Series Methods for Ordinary 
Differential Equations - An Evaluation.  Mathematical  Software. J. Rice, ed., Academic Press, 
1971, pp. 369-390. 



I 

POWER SERIES SOLUTIONS  OF 

ORDINARY DIFFERENTIAL EQUATIONS I N  MACSYMA* 

Edward L. L a f f e r t y  
The MITRE Corpora t ion  

INTRODUCTION 

A program has b e e n   d e v e l o p e d   w h i c h   e x t e n d s   t h e   d i f f e r e n t i a l   e q u a t i o n  
s o l v i n g   c a p a b i l i t y  of MACSYMA t o  power series s o l u t i o n s   a n d  i s  a v a i l a b l e   v i a  
t h e  SHAKE l i b ra ry .   The   p rog ram i s  d i r e c t e d   t o w a r d   t h o s e  classes o f   equa t ions  
w i t h   v a r i a b i e   c o e f f i c i e n t s   ( i n   p a r t i c u l a r ,   t h o s e   w i t h   s i n g u l a r i t i e s )   a n d   u s e s  
the  method of F r o b e n i u s .   P r o b a b l y   t h e   m o s t   i m p o r t a n t   d i s t i n c t i o n   b e t w e e n   t h i s  
p a c k a g e   a n d   o t h e r s   c u r r e n t l y   a v a i l a b l e   o r   b e i n g   d e v e l o p e d  i s  t h a t ,   w h e r e v e r  
p o s s i b l e ,   t h i s   p r o g r a m  w i l l  a t t e m p t   t o   p r o v i d e  a " c o m p l e t e "   s o l u t i o n   t o   t h e  
e q u a t i o n   r a t h e r   t h a n  an approx ima t ion ,  i .e . ,  a f i n i t e  number  of terms. T h i s  
s o l u t i o n  w i l l  t a k e   t h e   f o r m   o f  a sum  of i n f i n i t e  series. 

T h e  F roben ius   me thod   s t a t ed   s imply   he re  as a r e f r e s h e r   ( s e e   R e f .  1, p.189 
f o r  a more   comple te   t rea tment )  asserts t h a t   f o r  a homogeneous, l i n e a r ,  
d i f f e r e n t i a l   e q u a t i o n  of   the  form: 

y" + P(x>  y '  +Q(x) y = 0 (1) 

where P and (z are p o l y n o m i a l s   i n  X,  t hen  a t  the   o rd inary   po in t ,X=Xp,  a s o l u t i o n  
ex is t s  of the   form:  

INF 
"" "" 

\ N 

/ N 
Y =  > .  A X 

"" 
"" 

N = O  

where A and A are a r b i t r a r y   c o n s t a n t s   a n d  are t h e   v a l u e s  of Y(0) and Y'(0).  
0 1 

The  method f u r t h e r  asserts t h a t   f o r  a r e g u l a r   s i n g u l a r   p o i n t ,  X=Xs,  t h e  
s o l u t i o n  i s  t h e  sum of two l i n e a r l y   i n d e p e n d e n t   s o l u t i o n s :  

I -  

*. The  work  descr ibed i n   t h i s   p a p e r  w a s  begun  by B. K u i p e r s ' i n   1 9 7 3   a n d   t h e  
a u t h o r  is i n d e b t e d   t o   h i m   f o r   s e v e r a l   i d e a s   a n d  a t  least o n e   r o u t i n e .   I n  
a d d i t i o n ,   t h e   a u t h o r  wishes t o  acknowledge  the  encouragement   and assistance of 
J. P .   G o l d e n   t h r o u g h o u t   t h e   c o u r s e   o f   t h e   e f f o r t .  
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IN F 
"" "" 

\ R2 + N \ R 1  + N 
I N I N 

1J = 0 N = O  

Y =. K2 ( > B (R2) X ) + K 1  > A ( R l )  X 

"" "" "" 
"" 

where r l  and r 2  are t h e   e x p o n e n t s  of t h e   s i n g u l a r i t y .  

The re  are two spec ia l  cases: 

i )   r l = r 2 ,   i n  which   the  B ' s  are f o u n d   t o   b e  A' ( r l ) *   a n d   t h e   s e c o n d  
s o l u t i o n   c o n t a i n s  a l o g a r i t h m i c  term; 

and i i )   r l - r 2 = S ,  an i n t e g e r ,  i n  which   the  B ' s  are found   t o   be   ( r - r2 )   A ' ( r2 )  
a n d   t h e   s e c o n d   s o i u t i o n   c o n t a i n s  a l o g a r i t h m i c  term except f o r   t h e  
v e r y   s p e c i a l  case i n  which i t  i s  f o u n d   t h a t  some  one  of t h e  A ' s  ( i n  
a d d i t i o n   t o  A ) i s  a r b i t r a r y   ( s e e   r e f .  2 f o r  a p a r t i c u l a r l y  

c o m p l e t e   t r e a t m e n t  of t h i s   c a s e ) .  
0 

A t  t o p  l e v e l ,  a f t e r  a LOADFILE(SERIES,FASL,DSK,SHARE), the   p rogram i s  . 
c a l l e d  by the   s ta tement   Sf idIES(equat ion ,  y ,  x), where   "equat ion"  is  a second 
o r d e r   l i n e a r   o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n   a n d  "y" and "x1' are the   dependent  
a n d   i n d g p e n d e n t   v a r i a b l e s   r e s p e c t i v e l y .  (Of cour se ,   t he   dependenc ie s   be tween  
t h e   v a r i a b l e s   m u s t  b e  e s t a b l i s h e d   p r i o r   t o   t y p i n g   t h e   e q u a t i o n . )  

RATIONALE FOR COMPLETE SEKIES SOLUTIONS 

V i r t u a l l y  a l l  e l e m e n t a r y   c o u r s e s   i n   d i f f e r e n t i a l   e q u a t i o n s   i n t r o d u c e  t h e  
s t u d e n t  t o  t h e  power series method a t  a n  ear ly  s t a g e ,   a n d  many such   courses  
c o n t i n u e   t o   s o l v e   p r o b l e m s  by u s i n g   d i r e c t   s u b s t i t u t i o n  of t h e  power seLies 
i n t o   t h e   e q u a t i o n   a n d   d e t e r m i n i n g   t h e   r e c u r r e n c e   r e l a t i o n .   E v e n   i n   t h o s e  
i n s t a n c e s   w h e r e   t h e   s t u d e n t  i s  i n t r o d u c e d   t o   a p p r o x i m a t i o n   m e t h o d s   u s i n g   T a y l o r  
c o e f f i c i e n t s   t o   d e t e r m i n e  a r e c u r r e n c e   r e l a t i o n   f o r   e a c h  term i n   t h e   s o l u t i o n ,  
t h e  au tho r s   ( fo r   example ,  see r e f e r e n c e s   1 , 2 , 3 , 4 , 5 )   f r e q u e n t l y  w i l l  r e v e r t   t o  
d i r e c t   s u b s t i t u t i o n  so  t n a t   t h e   s t u d e n t  nay b e t t e r   u n d e r s t a n d   t h e   b e h a v i o r   o f  
t h e   v a r i a b l e s ,   a r . b i t r a r y   c o n s t a n t s ,   a n d  parameters of t h e   e q u a t i o n s .  

While   the  mathematician who i s  i n t i m a t e l y   f a m i l i a r   w i t h   t h e   t h e o r y   a n d  

* A ' ( r 1 )   d e n o t e s   t h e   p a r t i a l   d e r i v a t i v e  of A w i t h   r e s p e c t   t o  R e v a l u a t e d  a t  
r l .  



p r a c t i c e   o f   s o i v i n g   d i f f e r e n t i a l   e q u a t i o n s  may h a v e   n o   d i f f i c u l t y   r e c o g n i z i n g  
i n s t a n t l y   t h a t   c e r t a i n   f o r m s  are .  Bessel e q u a t i o n s ,   L e g e n d r e   e q u a t i o n s ,   o r  
hype rgeomet r i c s ,   t he   ave rage   ma themat i c i an   o r ,   more   impor t an t ly ,   t he   eng inee r  
who h a s   o n l y  a s u p e r f i c i a l   u n d e r s t a n d i n g   o f   t h i s   s u b j e c t  may n o t .   E a r l y   i n   t h e  
p u r s u a n c e   o f   t h i s   p r o j e c t ,  I c o n f r o n t e d  several advanced   degreed   mathemat ic ians  
w i t h   t h e   e q u a t i o n   ( l a t e r   f o u n d   i n   R e f .  6 ,  p. 97) :  

dY 
2 " 

d Y dX 
-" - " + Y = O  

2 x  
dX 

Unly  one of f i v e   e v e n   o f f e r e d  a t e n t a t i v e   i d e n t i f i c a t i o n  of t h i s   e q u a t i o n  
as a Bessel, and of t h e   f i v e ,  two p r o c e e d e d   t o   s o l v e  i t  by the  method  of 
ProDenius.   (The  above  equat ion w i l l  a l s o   b e   u s e d   t h r o u g h o u t   t h i s   p a p e r   t o  
i l l u s t r a t e  some  of t h e   i n t e r n a l s  o f   t he   p rog ram.   These   r e su l t s  w i l l  be  numbered 
( 4 a ) ,   ( 4 b ) ,   e t c . )  

Summar iz ing ,   t hen ,   t he   r eason   fo r   i nc lud ing   such  a c a p a b i l i t y   w i t h i n  
l.IACSYPk, w e  f i n d  i t  u s e f u l   f o r :  

a. t h e   s t u d e n t  who w i s h e s   t o   u n d e r s t a n d   t h e   t h e o r y ;  

b .  t he   ma themat i c i an   o r   eng inee r  who may f a i l   t o   r e c o g n i z e   t h e   p a r t i c u l a r  
form;  and 

c. t h e   t h e o r e t i c a l   m a t h e m a t i c i a n   w o r k i n g   o n   a d v a n c e d   f o r m s  who p r e f e r s  t o  
s t a r t  from bas ic  p r i n c i p l e s .  

THE 14ETHOD 

The f i r s t   s t e p   i n   t h e   s o l u t i o n   p r o c e s s  i s  t h e   d i a g n o s i s  of t h e   e q u a t i o n  
f o r   s i n g u l a r i t i e s .   W h i l e   o n l y   o n e   ( t h e   o n e  a t  which a s o l u t i o n  i s  d e s i r e d )  of 
t h e s e   s i n g u l a r i t i e s  is of concern t o  the   p rog ram  fo r   wha t  i s  t o   f o l l o w ,  i t  may 
b e   g e n e r a l l y   u s e f u l   f o r   t h e   u s e r   t o  know a t  w h a t   p o i n t s   t h e   e q u a t i o n   p o s s e s s e s  
p o l e s  of one   so r t   o r   ano the r .   The   p rog ram  uses   S tou temyer ' s  
ZEROSMJDSINGULARITIES r o u t i n e   b e c a u s e   o f  i t s  g e n e r a l i t y ,  e.g., i t  w i l l  f i n d  
p o l e s  of l o g ( x ) ,   t a n ( x ) ,  e tc . ,  as w e l l  as polynomials .  

T h e   i n d i c i a 1   e q u a t i o n  is  computed  from: 

2 
R + ( P  - 1 ) K + Q  = O  

0 0 
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2 
Y ( 0 )  = L i m  (xP(x ) )   and   Q(0 )  = L i m  (x  (Q(x)) 

x=>o x=>o 

S o l v i n g   t h i s   e q u a t i o n   f o r  K y i e l d s   t h e   r o o t s  r l  and   r2 .  From t h e s e   r o o t s ,  i t  
i s  determined  whether  tile f i n a l   s o l u t i o n  w i l l  c o n t a i n  a l o g a r i t h m i c  term, i .e . ,  
i f  r l  = r 2   o r  i f  r l  - r 2  = S ( a n   i n t e g e r ) .  In a d d i t i o n ,   t h e   v e r y   s p e c i a l  case 
i s  d e t e c t e d   i n   w h i c h   t h e   r o o t s   d i f f e r  by a n   i n t e g e r ,   b u t   t h e   s o l u t i o n   d o e s   n o t  
p o s s e s s  a l o g a r i t h m i c  term, i . e . ,  wherein: 

A = O  
i-1 

a n d   t h e r e f o r e ,   t h e   c o e f f i c i e n t  A i s  f i n i t e   a n d   a r b i t r a r y . .  
i 

A t  t h i s   p o i n t  i t  i s  t i m e  t o   b e g i n   t h e   d i r e c t   s u b s t i t u t i o n  o f   t he  series: 

INF 
"" "" 

\ N+R 

I 11 
Y =  > A X  

"" "" 

N = O  

(r=O f o r   a n   o r d i n a r y   p o i n t )   i n t o   t h e   e q u a t i o n   a n d   e v a l u a t e   t h e   d e r i v a t i v e s .  
The PIAC;SYr.IA POCJEKSERIES f u n c t i o n  i s  t h e n   u s e d   t o   d e t e r n i n e  a s i n g l e  series f o r  
t h e  e n t i r e   l e f t - h a n d  side of   the   equat ion .*For   our   example   (eq .   4 )   the  resul t  
i s  : 

INF 
"" "" 

\ R + I6 2 

I 16 I 6   I 6  
> A X  + ( A  R + ( 2 1 6 - 2 ) A  R 

"" 
"" 

I6 = 0 

2 R + I 6 - 2  
+ ( I 6  - 2 1 6 )  A ) X 

* While t h i s  i s  a f o r m   o f   o v e r k i l l   f o r   t h i s   o p e r a t i o n ,   t h e   r o u t i n e   c a n   h a n d l e  
t h e  j o b  and w i l l  b e  n e c e s s a r y   f o r  la ter  o p e r a t i o n s .  
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An i m p o r t a n t   f e a t u r e  of the   p rog ram is  the   rou t ine   wh ich   computes   t he  
r e c u r r e n c e   ' r e l a t i o n .   T h i s  is done by  removing  the  summation s ign and  by 
e q u a t i n g   l i k e   p o w e r s  of t h e   i n d e p e n d e n t   v a r i a b l e   t o   z e r o .  Some program 
s h o r t c u t s  are t a k e n  i n  t h i s   p r o c e s s ,   b u t  i t  is e s s e n t i a l l y  a r e p l i c a t i o n  of 
what is done by h a n d .   T h e   e x a m p l e   r e s u l t   l o o k s   l i k e   t h i s :  

2 2 R + N - 2  
(A K + 2 N A  R - 2 A  R + N  A - 2 N A  + A  > x  (4b 1 

14 N N N N N - 2  

T h e   r e c u r r e n c e   r e l a t i o n   w h i c h  is a v a i l a b l e   t o   t h e   u s e r  is e x p r e s s e d   i n   t h e  
form: 

A = f (N)  A 
N 14 -PI 

o r   f o r   s i n g u l a r   p o i n t s :  

A ( R )  = f (IJ ,R)  A 
IJ N -1.1 

i f  C-1, t h e r e  are  some adjustments   which  must  now be  made t o   t h e  rest of t h e  
s o l u t i o n . *  F o r  o u r   e q u a t i o n   t h e   r e c u r r e n c e   r e l a t i o n   b e c o m e s :  

A 
N - 2  

= - """""_"""" 
w (R + IJ - 2 )  (R + N) 

l n  some cases t h i s  i s  as f a r  as t h e   u s e r  may want t o   g o   i n   d e t e r m i n i n g   t h e  
s o l u t i o n   t o   h i s   e q u a t i o n .   I n   p a r t i c u l a r ,   i f   t h e   f u n c t i o n   o n   t h e   r i g h t - h a n d  
s i d e  of e q u a t i o n  (8) c o n t a i n s  more than   one  "A" term, n o   e a s y   s i m p l i f i c a t i o n  
method is ava i l ab le ,   and   t he   p rog ram  can   t hen   compute   on ly  a f i n i t e  number  of 
terms f o r  each of t h e   s o l u t i o n s   t o   b e   d e t e r m i n e d .   I n   t h e  s p e c i a l  cases, of 
c o u r s e ,   a p p r o p r i a t e   d i f f e r e n t i a t i o n  of t h e   r e c u r r e n c e   r e l a t i o n  i s  r e q u i r e d  
b e f o r e  t h i s  c a n   b e   d o n e   f o r   t h e   s e c o n d   s o l u t i o n .   I n  a l l  cases where   t he  
r e c u r r e n c e   r e l a t i o n  i s  e x p r e s s e d  as a s i n g l e  term i n  A ,  t h e   p r o g r a m   t h e n  
p r o c e e d s   t o   d e t e r m i n e  a c o m p l e t e   s o l u t i o n  as a n   i n f i n i t e  series. It i s  h e r e  
t h a t   t h e  s y s t e m  must   perform two i n t e r e s t i n g   f u n c t i o n s   w h i c h  w i l l  b e   d e s c r i b e d  
i n   t h e   n e x t   s e c t i o n ,  i .e . ,  d i f f e r e n t i a t i o n  of p a r t i a l   p r o d u c t s   a n d   t h e  

* These w i l l  n o t   b e   d e s c r i b e d   i n   d e t a i l   h e r e   f o r  l a c k  of space, b u t   s u f f i c e  i t  
t o   s a y   t h a t  some "A" va lues   mus t   be  set t o   z e r o   i n   t h e   s o l u t i o n ,   a n d   t h e  
exponen t s  of t h e   i n d e p e n d e n t   v a r i a b l e   m u s t   b e   a d j u s t e d   t o   r e f l e c t   t h e   m i s s i n g  
term . 
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s i m p l i f i c a t i o n  of p a r t i a l   p r o d u c t s * *   i n t o  factor ia ls  a n d   p o l y n o m i a l s .  

T h e   s p e c i a l  cases r l  = r 2   a n d  r l  - r 2  = 5 are h a n d l e d  by t h e  following 
r e l a t i o n :  

d I 
N I  

I 
N dK I e v a l u a t e d  a t  r l  

B =  """_ 

a n d   t h e   s o l u t i o n s  w i l l  h a v e   t h e   l o g a r i t h m i c   f o r m .   F o r   o u r   e q u a t i o n   w h i c h  is 
t h e  r l  - r2 = S = 2 case, t h e   f i n a l   s o l u t i o n   w o u l d   b e :  

Y = B  (- 
.O 

IHF 
"" K 2 K  "" 

\ (HARLJl(1, M) + HARil(1, M - 1 ) )  (- 1) x 
/ 2 K  

> """"""""_"""""""""""" 
"" 
"" 2 ( K  - l)! K! 
K =  1 

2 

IIJF INF 
"" K 2 - K  ""  "" 
"" K 2 K  
\ (- 1) x 1 \ (- 1) x 
/ 

K =  1 K =  1 

+ LOG(X)  ( > --------------___- ) + - ) + A  > """"""""" 

2 K  2 0 1  2 K  
"" 
"" 2 ( K  - l ) !  K! 2 ( K  - l)! K! "" 

"" 

* 

THE COMPLETE SOLUTION 

P r o o a u l y   t h e   u o s t   i n t e r e s t i n g   s e c t i o n  of t h e   p r o g r a m  i s  t h a t   w h i c h  
p e r f o r m s   t h e   t r a r i s f o r u a t i o n   f r o m   e q u a t i o n s   ( 4 c )   t o   ( 4 d ) .   T h i s   i n v o l v e s  

** The term " p a r t i a l   p r o d u c t s "  i s  u s e d   t o   d i s t i n g u i s h   t h e n   f r o m   c o m p l e t e l y  
f i n i t e   p r o d u c t s ,  i . e . ,  t n o s e   t h a t   c a n   b e   c o m p u t e d   b y   t h e   f u n c t i o n ,  PRODUCT, 
a n d   i n f i n i t e   p r o d u c t s .   A n o t h e r  commonly a c c e p t e d  term i s  " i n d e f i n i t e "  
p r o d u c t s .  

* T h e  U<ti  f u n c t i o n   a n d  i t s  product   ana log ,   FFF,  i s  d i s c u s s e d   i n   t h e   n e x t  
s e c t i o n .  
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e x p r e s s i n g   t h e   r e c u r r e n c e   r e l a t i o n  as a n   i n f i n i t e  series of p a r t i a l   p r o d u c t s   i n  
14, tile index ,   and  R,  t h e   g e n e r a l   e x p o n e n t   o f   t h e   s i n g u l a r i t y .   T h i s   m u s t   b e  
d i f f e r e n t i a t e d   w i t h   r e s p e c t   t o  K i n  t h e  two s p e c i a l  cases (eq. 9)  and   then  
s i m p l i f i e d .  

Two s l i g h t l y   d i f f e r e n t   a p p r o a c h e s  were t a k e n   t o   t h i s   p r o b l e m   a n d   c o d e   f o r  
b o t h   c u r r e n t l y  ex i s t .  The f i r s t ,   r e t a i n i n g   t h e  PRODUCT and SUM forms 
th roughou t ,  i s  deemed t o   b e   i n f e r i o r   a n d   w i l l . n o t   b e   d e s c r i b e d   h e r e ;   b u t  a 
package  does ex is t  which   can   handle  t h e  s i m p l e r   e q u a t i o n s   u s i n g   t h i s   t e c h n i q u e .  

In   work ing   w i th   t he   more   compl i ca t ed  cases, i t  was f o u n d   u s e f u l   t o   c h a n g e  
t h e   r e p r e s e n t a t i o n  of t h e   p a r t i a l   p r o d u c t s   t o   t h e  more   compact   " fac tor ia l  
f u n c t i o n "  (FFE') o f   Rainvi l le   ( see   Ref .   3 ,   pp   109-112) .  

FFF(exp,n)=exp(exp+l)  (exp+2).  . . (exp+n-1) n 2 1 

and FFF (exp, 0 )  =1, exp #O 

and   t he  famil iar  s p e c i a l  c a s e :  

F F F ( l , n ) = n !   ( 1   l a )  

This   metnod  has  a d i s t i n c t   a d v a n t a g e   i n   t h a t   q u o t i e n t s   o f  FFF's s i m p l i f y  
e a s i l y  and t h e  g r a d i e n t  of FFP w i t n  respect t o  a v a r i a b l e   f i r s t   a r g u m e n t  is 
s i m p l y  

d (FFF(exp ,n ) )  ""_ """" = HARM(exp,n) FFF(exp,n) 
d r  

where  IWM(exp,n) i s  t h e  p a r t i a l  sum  of the   harmonic  series:  

n 
"" 
"" 

\ 1 

I exp + k 
M I 4  (exp , n )  = > ""̂ " 

"" 
"" 

k = l  

a n d   t h e   s p e c i a l  case: 

W - l ( 1 , n )  = SUM(l/k,k, l ,n)  
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Simplification of factorial  function  quotients  is  accomplished  using  the 
following  algorithm: 

FFF(alph,nalph)/FFF(bet,nbet):= 

FFF(m+l,n-n)̂ (pow) 

FFF(min(alph,bet),abs(rho))*signum(rho) 
"""""""~""""""""""""- 

where : 
rho=alph-bet 
p o w = p o l y s i g n ( a l p h + n a l p h - b e t n e t )  
m=nin(alph+nalph-l,bet+nbet-1) 

and n=max(alph+nalph,bet+nbet)-min(alph+nalph,bet+n~et) 

thus  giving  nicer  looking  results.  More  importantly  it  allows  the  easy  removal 
of  the  troublesome  denominators  (see  Ref. 3 ,  p.44) which  occur in case ii) 
aDove  since 

FFF(r-r2,1) 

FFF(r+k-rZ,n) 
"-""""" 

simplifies by the above  algorithm to 

1 

FFF(r-rZ-l,l)  FFF(r-rZ+l,n-1) 
""""""""""""""" 

In addition,  the  compact  notation  for  FFF  and H A R M  may  lead  eventually  to 
automatic  recognition of  closed  forms by HACSYMA, or at  least  assist a user's 
visual  recognition  process. 

USER OPTIONS 

There are several  facilities  which  the  user  nay  control. In particular, 
he  may  control  the  point  around  which  the  solution  is  determined  by  setting  the 
variable POIldTEXPAiiD: [O] and the  maximum  number of  terms  to  be  computed in a 
finite series by setting  the  variable NUl4TEMlS: [51. The above  variables  have 
only  limited  use in the  program  currently.  However,  they  have  ultimately  a  more 
general use. In particular,  the POINTEXPAND flag  is  used  to  determine  whether 
the  equation  being processed-has singularities at  that  point. However, if  the 
variable  is  not zero, the  translation will not  be  made  to  the new point  and, 
therefore,  although  the  diagnosis will be  correct,  the  solution will not. 
NUMTERMS is used for computing a  partial  series  as  well  as  for  computing  the 
Taylor  coefficient  of  polynomials P and Q and  may  be useful in those  cases 
where  a  complete  solution  is  not  possible. 
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I n   a d d i t i o n   t o   t h e   a b o v e   o p t i o n s ,   t h e   u s e r  may set t h e   f l a g  VERBOSE1 
[FALSZ] t o  TRUE t o   o b t a i n   a u t o m a t i c   p r i n t o u t  of t h e   d i a g n o s t i c   i n f o r m a t i o n  
r e l a t i n g   t o   t h e   e q u a t i o n ,  i.e., t h e   r e c u r r e n c e   r e l a t i o n ,   t h e   l o c a t i o n   a n d   t y p e  
of s i n g u l a r i t i e s ,   a n d   t h e   r o o t s  of t h e   i n d i c i a 1   e q u a t i o n .   T h i s  may b e  
p a r t i c u l a r l y   u s e f u l   i f   t h e   r o u t i n e  is a t t e m p t i n g   t o   s o l v e   a n   e q u a t i o n   f o r   w h i c h  
i t  is n o t  now equipped,  i.e., i r r e g u l a r   s i n g u l a r   p o i n t s ,   c o n i p l e x   r o o t s ,  
equa t ions   o f   o rde r   h ighe r   t han   two ,  etc.,  o r   w h e r e   t h e   u s e r  is o n l y   i n t e r e s t e d  
i n  the d i a g n o s t i c s   r a t h e r   t h a n   t h e   c o m p l e t e   s o l u t i o n .  

THE FUTURE 

I n   o r d e r   t o   p r o d u c e  a program i n  a r easonab le   pe r iod   o f  time, c e r t a i n  
r e s t r i c t i o n s  were imposed  which  can,   wi th  varying  amounts   of   di f f . icul ty ,   be  
r e l a x e d ,   a n d   t h e r e  are some b a s i c   e x t e n s i o n s   w h i c h   m i g h t   p r o v e   v a l u a b l e   i n   t h e  
f u t u r e .  We w i l l  a t t e m p t  t o   e n u m e r a t e  some of t h e s e   h e r e .  It  shou ld   be   no ted  
t h a t   s e v e r a l  of t h e   i n t e r n a l   r o u t i n e s  were coded   w i th   t hese   ex tens ions   i n   mind ,  
i .e.,  c e r t a i n   d a t a  are now computed  which are n o t   u s e d   i n   t h e   c u r r e n t   p r o g r a m ,  
and   t hese  w i l l  b e   n o t e d   w h e r e   a p p l i c a b l e .  

Higher   Order   Equat ions 

The  metnod of F r o b e n i u s   r e a d i l y   e x t e n d s   t o   h i g h e r   o r d e r   l i n e a r  
d i f f e r e n t i a l   e q u a t i o n s   a n d  up t o   t h e   p o i n t  of d i a g n o s i s ,   t h i s   h a s   b e e n  
g e n e r a l i z e d .   T h i s ,   i n  t h e  a u t h o r ' s   o p i n i o n ,  i s  t h e  m o s t   v a l u a b l e   f u t u r e  
improvement  which  might  be  undertaken. It i s  r e q u i r e d   t h a t   t h e  n r o o t s  of  an 
n t h   o r d e r   e q u a t i o n  b e  computed, n a r b i t r a r y   c o n s t a n t s   b e   a l l o c a t e d ,   a n d  n 
s o l u t i o n s   b e   g e n e r a t e d .   E v e n   t h e  special  cases of r l  = r 2  ... = r n   a n d  r l  - 
r 2 , r 2  - r3, ..., rn-1 - r n  = S can b e  s o l v e d  by  t a k i n g  n d e r i v a t i v e s  of t h e  
r e c u r r e n c e   r e l a t i o n ,   a l t h o u g h   t h i s  may r e q u i r e  some thought  (see Ref.  3, p .  
1 2 u ) .  

Solut ion  Around  Points   Other   Than  Zero 

W h i l e   t h e   u s e r   c a n   e a s i l y   t r a n s f o r m   h i s   e q u a t i o n   i n t o   o n e   w h o s e   s o l u t i o n  
can b e  de te rmined   a round  zero  by t h e   t r a n s f o r m a t i o n :  

newX=X-point (15) 

i t  would b e  a t r i v i a l  matter f o r   t h e   p r o g r a m   t o   r e c o g n i z e  POINTEXPAND = 0 and 
perform t h e  t r a n s l a t i o n   a n d   r e t r a n s l a t i o n   f o r  him. 

Complex Roots 

An u n n e c e s s a r y   r e s t r i c t i o n   e x i s t s   i n   t h e   c u r r e n t   p r o g r a m   f o r  r l ,  r 2  
complex.  The r e s t r i c t i o n   c a n   b e   r e l a x e d   r a t h e r   e a s i l y  by  computing  the real  
p a r t s   o f  r l  and r 2  and   us ing   them  in  t h e  d i a g n o s i s   a n d   s o l u t i o n   o f   t h e   e q u a t i o n  
as f o l l o w s  : 
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RE(rl)>RE(r2)  

I r r e g u l a r   S i n g u l a r i t i e s  

A t  p r e s e n t   t h e   p r o g r a m  w i l l  n o t   a t t e m p t  a s o l u t i o n   a r o u n d   a n   i r r e g u l a r  
s i n g u l a r   p o i n t .  It may b e   p o s s i b l e   t o  a t t e m p t  c o n p l e t e   s o l u t i o n s   t o   t h e  
e q u a t i o n   a r o u n d   a n   i r r e g u l a r   s i n g u l a r i t y ,   b u t  some  work  must b e   d o n e   t o  
d e t e r m i n e   t h e   v a l i d i t y  of s u c h   s o l u t i o n s   ( s e e   R e f .  3 ,  p. 1 3 6 ) .  T h e r e  are,  
however ,   o the r   app rox ima t ion   me thods   fo r   t hese  cases which may b e   a d e q u a t e   i n  
view of t h e  w o r k   i n v o l v e d   t o   i n c o r p o r a t e   a n   e x t e n s i o n   t o   t h e   p r o g r a m .  

Convergence Tests 

A u s e f u l   f e a t u r e   c o u l d   b e   a d d e d   t o   t h e   p r o g r a m  a t  t h e   p o i n t  of g e n e r a t i o n  
o f   t h e   r e c u r r e n c e   r e l a t i o n  .or a f t e r   c o m p l e t i o n   o f   t h e   f i n a l   s o l u t i o n   w h i c h  
would  perform a tes t  fo r   conve rgence .   Th i s   wou ld   g ive   t he   u se r   impor t an t  
a d d i t i o n a l   i n f o r u a t i o n   r e g a r d i n g   t h e   r a d i u s  of c o n v e r g e n c e   a n d   v a l i d i t y   o f   t h e  
s o l u t i o n s   t h u s   o b t a i n e d .  

User Cueing 

I t  w a s  assumed i n  t h e  c o n s t r u c t i o n  of t h i s   c a p a b i l i t y   t h a t   t h e   u s e r   c o u l d  
s u b s t i t u t e   t h e   v a l u e s   f o r   a r b i t r a r y   c o n s t a n t s   a f t e r   t h e   s o l u t i o n  was o b t a i n e d .  
F o r   c e r t a i n   a p p l i c a t i o n s ,  i t  m i g h t   b e   d e s i r a b l e   f o r   t h e   p r o g r a m   t o   i n t e r r u p t  
i t s  e x e c u t i o n   t o  a s k  t h e   u s e r   f o r   t h e   i n i t i a l   v a l u e s   o f   t h e   d e p e n d e n t   v a r i a b l e  
and i t s  d e r i v a t i v e s .   I n   a d d i t i o n ,   w h e r e   v a r i a b l e  parameters are u s e d   i n s t e a d  
of c o n s t a n t s   i n   t h e   p o l y n o m i a l   c o e f f i c i e n t s ,  P and Q ,  the   p rogram  does   no t  
c u r r e n t l y  make a s s u m p t i o n s   r e g a r d i n g   t h e   r a n g e s   a n d  w i l l ,  f o r  example, produce 
s o l u t i o n s   i n  terms of f 4 1 N  (pa rame te r ,  . 0 ) and b l A X  (pa rame te r ,  0 ) .  The   u se r  
may, of c o u r s e ,   r e e n t e r   t h e   r o u t i n e   h a v i n g  made a s sumpt ions   abou t   t he  
p a r a m e t e r s .   ( S e e   t h e   f i n a l  example of t h i s   p a p e r . )  However, s i n c e   t h e s e  
r e l a t i o n s h i p s   c o u l d ,   i n   f a c t ,   c a u s e  a m a j o r   v a r i a t i o n   i n   t h e   s o l u t i o n  t y p e ,  i t  
would b e  d e s i r a b l e   f o r   t h e   p r o g r a m   t o   s e n s e   t h e s e   a m b i g u i t i e s   q n d   c u e   t h e   u s e r  
f o r   h i s   a s s u m p t i o n s   p r i o r   t o   f i n a l   d i a g n o s i s   o f   t h e   e q u a t i o n   a n d   i n i t i a t i o n   o f  
t h e   s o l u t i o n .  

Non-Homogeneous Cases 

A t  p r e s e n t   t h e   p r o g r a n   s o l v e s   o n l y  homogeneous l i n e a r   d i f f e r e n t i a l  
equa t ions   o f   t he   fo rm:  

Y"+P(x)Y'+Q(x)Y=O ( 1 7 )  

A n o t h e r   p a r t i c u l a r   s o l u t i o n  may b e   o b t a i n e d   f o r   e q u a t i o n s  of the  form: 

Y"+P(x)Y'+Q(x)Y=F(x) (17a) 

356 



p r o v i d e d   t h e   f u n c t i o n   o n   t h e   r i g h t - h a n d   s i d e   c a n   b e   e x p r e s s e d  as a power 
series. Sone   mod i f i ca t ion  w i l l  b e  r e q u i r e d   t o   t h e   p r o g r a m   t o   r e c o g n i z e   t h i s  
case as well as t o   i n s u r e   t h a t   t h e   r o u t i n e   w h i c h   c o m p u t e s   t h e   r e c u r r e n c e  
r e l a t i o n   d o e s   n o t   e n c o u n t e r   a n y   p r o b l e m s   i n   c o m b i n i n g   t h e   a d d i t i o n a l  series. 

Non-Polynomial   Coeff ic ients  

I f   t h e   f u n c t i o n s  P and Q c a n   b e   e x p r e s s e d   i n  terms of  power series, t h e n  a 
m o d i f i c a t i o n   o f .   t h e   p r o g r a m   c a n   b e  made similar t o   t h e  non-homogeneous case 
which   would   a l low  so lu t ion  by t h i s  method. Agai'n t he re   mus t   be  some  work  done 
t o   d e t e r m i n e   w h e t h e r   t h e   r o u t i n e s  w i l l  e n c o u n t e r   e x p r e s s i o n s   b e y o n d   t h e i r  
c a p a b i l i t y .  

CONCLUSION 

S e v e r a l   m o r e   e l a b o r a t e   e x t e n s i o n s  come t o  mind ,   bu t   t hey   r equ i r e   more   t han  
a mere m o d i f i c a t i o n  of t h i s   package .   The  f i r s t  w o u l d   b e   t o   i n c o r p o r a t e   t h i s  
c a p a b i l i t y   i n t o   t h e   c u r r e n t  ODE s o l v i n g   c a p a b i l i t y  of IUCSYMA s u c h   t h a t   i n  
s i t u a t i o n s   w h e r e  0 3 G  canno t   r ecogn ize  a p a r t i c u l a r   f o r m ,  i t  a u t o m a t i c a l l y  
a t t e m p t s  a power series s o l u t i o n .  N a t u r a l l y ,  c e r t a i n  tests s h o u l d   b e  made by 
UOE ( o r   a l t e r n a t i v e l y ,   b u i l t   i n t o   t h e  SERIES p a c k a g e )   p r i o r   t o   t h i s   a t t e m p t  
depend ing   on   t he   cu r ren t  s t a t e  of i t s  c a p a b i l i t y .  

A f i n a l   a n d   f a r  more ex tens ive   ven tu re   wh ich   has   been   sugges t ed   by   o the r s  
and i s  h i g h l y   e n d o r s e d   i n   t h i s   p a p e r  i s  t h e   e x t e n s i o n   o f  14ACSYMA's d i f f e r e n t i a l  
e q u a t i o n   s o l v i n g   i n t o   t h e  realm of s y s t e m s  of d i f f e r e n t i a l   e q u a t i o n s  similar t o  
t n a t  c u r r e n t l y   a v a i l a b l e   f o r   a l g e b r a i c   e q u a t i o n s   i n  LINSOLVE, SOLVE, and 
ALLSYS. T h i s  is a p ro jec t   wor thy  of s e r i o u s   c o n s i d e r a t i o n  by t h e  community a t  
l a r g e   a n d  w i l l  r e q u i r e  t h e  r e s o u r c e s  of  more t h a n  a s i n g l e   i n d i v i d u a l   s i n c e ,   i n  
o r d e r   t o  do i t  j u s t i c e ,  a l l  of t h e   d i f f e r e n t i a l   e q u a t i o n   c a p a b i l i t i e s   s h o u l d   b e  
examined f o r   p o s s i b l e   i n c l u s i o n   i n   s u c h  a system. 
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T h e   f o l l o w i n g   s e c t i o n   c o n t a i n s   e x a m p l e s   o f   s e v e r a l   o f   t h e  cases n o t e d  
above, i .e . ,  s o l u t i o n   a r o u n d :  

1. s i m p l e   o r d i n a r y   p o i n t ;  

2 .   o r d i n a r y   p o i n t   i n   w h i c h   o n e   o r   b o t h   s o l u t i o n s   t r u n c a t e   a f t e r  a f i n i t e  
n u m e r  of terms; 

3 .  r e g u l a r   s i n g u l a r   p o i n t   ( r l  - r 2  = S )  b u t   t h e   s o l u t i o n   d o e s   n o t   c o n t a i n  
a l o g a r i t h m i c  term; 

4 .  t h e   g e n e r a l i z e d   h y p e r g e o m e t r i c   e q u a t i o n   i n   w h i c h   t h e   u s e r  makes a n  
i n i t i a l   a s s u m p t i o n .  

N o t e   t h a t   i n   t h e  t ex t  w e  have   a l r eady  shown an   example  of t h e  l o g a r i t h m i c  case 
of 3 .  aDove  and t h e   r e a d e r  i s  d i r e c t e d   t o   t h e  SHAKE demo f i l e   f o r  a more 
complete  set of examples.  

(C6) DEPLLJDEl.lCIES(Y (X) ) ; 
(d6) 

(C7) / * o r d i n a r y   p o i n t s * /  

EQl:DIFF(Y,X,2)+3*X*llIFF(Y,X)+3*Y=O; 
2 

d Y  dY 
-" + 3 X - - + 3 Y = O  

2 dX 
dX 

(D7) 

(C8)  SEKIES(Z,Y,X); 
ILi F INF 
"" 1: 2 K + 1  "" K 2 K  "" "" 

\ (- 3 )  x \ (- 3 )  x 
(US) y = A ( > --------------- ) + A  > ---"""" 

1 /  3 K o /  K 
"" 
"" FFF(-, K)  2 "" "" 2 K! 
K = O  2 K =  0 

( C 9 )  /*Truncation  of a series term*/ 
E Q L :  ( 1+XA2) *DlFF ( Y  ,X,  2 )  -2&Y=O; 
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2 
2 d Y  
(X + 1) --- - 2 Y = O  

dX 
(C10) SEjSLJiS(%,Y,X); 

INF 
"" K 2 K + 1  "" 

2 \ (- 2 )  x 
(Dl 4) Y = A  (X + l ) - A  > """"""""""" 

0 1 /  K 
"" 
"" ( 2  K - 1 )  ( 2  K + 1) 2 
K = O  

(C42) /*roots  a positive integer-non-log case*/ 

EQ8:X*DIFF(Y,X,2)-(4+X)*DIFF(Y,X)+2*Y=O$ 

(C43) SEKIES(%,Y,X); 
114 F 
"" 
"" K 2 
\ X x x  

5 /  ( K  - 2 )  (K  - 1) K ( K  - 5)! 0 12 2 
(D22) y = 60 A ( > .......................... ). + A (-- + - + 1) 

"" 
"" 

K =  5 

(C25) /*The  generalized form of the  hypergeometric is:*/ 
HUl:X*(l-X)*UI~F(Y,X,2)+(GAI.1-(ALPHfBETA+l)*X)*DIF~(Y,X)-~PH*BETA*Y~~~ 

2 
dY d Y  

dii 2 
(D2b) -- (GAi.1 - X (BLTA + ALPH + 1) ) - ALPH Y BETA + (1 - X) X --- = 0 

dX 

(C27) /*since  we  already  know that SEKLES will  be  confused by the  paramet 
ers */ 
ASSUME (l-GAl.I>O)$ 

(C28) SEKIES(HYl,Y,X); 
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(D38) Y = A 
0 

IlJF 
"" K - GAM + 1 "" 

\ FFF(- GAM + ALPH + 1 , K)  X FFF(BETA - GAM + 1, K )  
( > """"""""""""""""~"""""""""""""- ) 
I FFF ( 2  - GAM, fo K! 

K = O  
"" 
"" 

INF 
"" "" K 
\ FFF (ALPH, K )  X FFF (BETA, K)  

+.I3 > """""""""""""" 

0 1  FFF(GAM, K )  K! 
-"- 
"" 

K = O  
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Radical Simplification Made Easy* 

Richard E.6. .Zippel 
Labamtory for Computer Sclence 

Massachusetts Instttute of Technology 

It is a  fortunate person who  has not  been  stymied by an algebraic manipulation 
system whlch was unable to manipulate fully the algebraic  numbers  and functions which 
occured'ln a problem.  Here  we see three distinct types of problems.  Some slmplifiers 
ere "gulllb.lelt  enough to  be coaxed Into erroneous  sequences of transformations such as: 

On the other hand, there are the %onservative" simplifiers which refuse to  reduce 
expressions  like 6- fi6 to zero.  This  concjervatism is at  least  partially  justified by 
the  sort of problems into which the guillbie  simplifier  can fall. The thlrd and final 
deficlency  in algebraic simplifiers (and the one  which  we will dwell on the most) may be 
descrlbed as the problem of the naive simplifier,  Typical of these  sorts  of problems Is: 

Admlttediy many users are  themselves  guilty  of  being  naive in this  sense (the  above 
Identity is not  really obvious), but for some reason  we don't seem willing tu accept this 
nalvetii on the  part  of out  systems. 

Some previous work  has been done  on the problem of slmpllflcation of  algebraic 
expresslons. S.L. Klelman {ref. ?) dld  early work  on the problem in  a more general 
context. Both B.F.. Cavlness (ref. 2) and R.J. Fateman (ref. 3) did work  on unnested 
radicals In thelr  theses and have written  a recent summary of their work (ref. 4). Our 
work generallzes all the  results on simpiiflcation  of radicals contained in these  two 
theses. For the sake of slmpliclty all the examples  given here are in  algebraic number 
fleids. However, the  results are fully general  and  depend upon'only the  characterlstlc  of 

* 
This work was supported, In part, by the United States Energy Research  and 

Development Administration  under  Contract Number E(11-1)-3070 and by  the National 
Aeronautics and Space  Administration  under  Grant NSG 1323. 
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ground field. 

. .  Basic  Defintttons 
We  will  need some mathematical  terminology in this discussion. If k Is a field  then 

t h e  field  of rational functions in a over k,  K = k(a ) ,  is  called an extension of k. If a is 
t h e  zero of some irreducible polynomial with  coefficients in k, p(x) ,  then K is  said to   be 
en algebraic  extension of k an,d a is said. to be algebraic over k. Otherwise K is a 
transcendental  extension  of k and a is transcendental over k. K is  a k vector  space of  
finite dimension if and  only if u Is  algebraic. .The degree of K over k ,  written [K : k ]  is 
finite when a is algebraic and in which  case is equal to the degree of p ( x ) .  If p ( x )  
consists  of  two terms, 1.e. p ( x )  = ax"+b, then K is said to be a radlcal  extension  of k.  A 
tower of fields Is said to be  radical  if each extension in the tower is radical. Generally 
a radlcal  f ield L over k is an extension of k for which there exists a  radical  tower of 
fields  between L and k. (Note that we differ from a common usuage of the term "radical 
extension" which refers  to a purely  inseparable  extension.) An element of a radical 
extension of k can always be  written In  terms of (possibly nested) radicals. 

. The work contained In this paper  comes  from the author's thesis  (ref. 6). The 
proofs of the theorems quoted in this paper  can be'found there. 

Gullible  and Conservative Radical Simplifiers 

The  problem into which the gullible  system fell, and which the  conservative  system 
avoided, can  be  characterized  by the following  transformation: &+a&. Assuming all 
square  roots  take  the same branch and ail occurrences of a single rat t ic i i  r e f e r  10 t l 1p  

same element (assumptions  which  will be malntained  throughout this  paper)  this 
transformation is valid If and  only if arg AB = erg A + arg 8. The. correct.  transformation Is 

fi-, ,l(argAB - w A  - a r s r ~ Y 2  

Thus we  have di(-l)(-l) = -J-"J"T= ( - l ) ( - l )  = 1 as desired. 

In general  this transformation takes the following form: 

C'A,A, ... A, ,i(argA ,... A, - argA, - ... - a r g A , I l r ~  1 '.. ,c. m 

Similar expressions are valid for logarithms but their consideration would take us a bit 
far afield.' It should be  noted  that for  algebraic functions there are other  techniques 
which may be useful. For instance, we  might want to know  under what  circumstances 

= a&, where A and 8 are  functions of x.  This  may be  a  valid  transformation for x 
In a certaln region, in which case restricting x to  that region may be  the  appropriate 



course  of action. 

From now on we shall assume that in implementing the techniques outlined  below 
sufficient  care  Is  taken  with regard to  the problems just mentioned.  This is  not  too 
difficult and we shall point out the one point at which care must be  exercised. 

Construction of the Bash 

Assume ' K  Is a radical extension of k of degree m. Then K is an m-dimension 
k-vector space. We propose to find a set of elements {a1, ..., a,} contained In K ,  
linearly independent over k, which  spans K.  Then ' ail the..eiements  of K may be 
expressed as: 

wlal + w2a2 + ... + w,a,, 

where  the o1 are elements of k. As an  example  consider K = k ( Z ,  &, &I, k =Q. We 
shall  see  that [ K  : k ]  = 4 but we have eight  candidates for the a,: 

l,&, a, 6, &&, &6, &6, &J5 6. 
Our algorithm will recognize 6 = Z&, thus  picking as a basis 1, fi, a, . f i &  A 

more llluminatlng example is provided by k = 0 < 6 ) ,  K = k ( f i .  6 + 2 6). Recognizing J" 
2(6 + 2 6 )  = (2 + &I2, 

we will use 1, fi as the basis elements  and let 

This technique is based on the foHowing result: 

Theorem: Let K = k(a l ' l f ,  ..., a, ' I r )  and let A = (x=alS1 ... a> I O s s , s r  and x i s  not a 

perfect rth power of an element of k } ,  then the degree of K over k is  the number of 
elements of A. 
It Is  clear  that [KE k ]  is bounded by  the cardinality of A since K contains the  set  of 
linear combinations of elements of k and r* roots of elements of A. The theorem says 
that ths elements of A are actually linearly  independent.  This is  precisely the  set  of 
basis elements for which we were looking. 

In the general problem we have radicals f l l 1 l r l ,  ..., fl,'l'n which we  adjoin to k. Let 

I be  the  least common multiple of the rI and let a1 = fl,'"r. So, K = k (a lllf, ..., an1"). 
Clearly. A, = {a,81 ... an% I O s  sI < I,} forms a group  under multiplication modulo u:~. Some 

of  the elements of A, may actually be perfect rth powers as elements of k.  Any such 

ele,ment generates a subgroup of elements  which  are perfect rth powers in k. Consider 
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the following example: 

Bx6x6 = 21 6 elements. 
we also  have 

let n=3 ,  r = 6  and  assume all the r, are also 6. A 1  has 

If we can determine that a12a: is a perfect  slxth power. then 

All are  perfect  sixth powers that Is, a,  Is a  perfect cube  and a2 is a perfect square. 
This reduces  the sine of A, by  a  factor  of 6. 

There are many techniques available for finding the "quotient group"  as it is called. 
We present one method  which is particularly suggestive in our particular  case. With 
notation as before,  the n a, are of  order r,. Let alml ...anmn be an element of A, which is 

a perfect rth power in k. Assu.me m, + 0. Let w = m l / ( r ,  - m l )  modrl, where the  ratio  is 
reduced  to  lowest terms In P (the rational integers) and then the division takes  place In 
the  finite fleld. Then 

(a2m2.,. a / n ) W  = (a ,'1 -ml IW = a ,m1 

and we have  reduced a,% order to m,. We also  know that 

(a2m2 ... anmny1'm1 = 1, - 

so we may repeat  the procedure with this new  smaller expression and obtain  further 
reductions. 

To Illustrate  this technique consider  our favorite example: 

J r k -  fi. 

We have a,  = 6 + 2 6, a2 = 2, k = Q(6). We are  looking for perfect squares. 6, is of 

order 4 and there are only 3 elements to check: dl  = 5.+ 2 6, a2 = 2, and u p 2  = 10 + 

4 6 .  a2 is obviously not,  a  perfect s.quare.  For a1 we have to work a  bit. Assume it 
was, 

6 + 2 6 =  (a  + b f i ) 2  = a2 + 0 b 2  + 2 a b 6  

where a and b must be rational numbers.  The resulting pair of equations must possess 
solutlons In rational numbers.  This leads to 

a4 - 5e2 + 6 = (a2 - 2) (a2 - 3) = 0 

which  plainly has no rational roots. Thus a,  is not a perfect square in Q ( 6 ) .  (An 

alternatlve manner of determining thls is to factor x* - a1 over Q ( 6 )  i f  an algebraic 
factoring algorithm is available.) By analogous  reasoning  we deduce that ala2 is a 



perfect square (which was pointed out earlier). Now  comes the dangerous part. 
taking square  roots wq  get 

Making the appropriate substitution in (1) we finally get 7 Afi (or &) as desired. 

By 

An 
inappropriate choice of  the root of unity at this step'wouldbe  the source of  Incorrect 
answers. 

A t  SYMSAC '76, Fateman  posed the following  problem  due to Shanks: 

J K Z Z E +  J I ~  - 2 ~ +  245s - 10,129 = J G Z S + ' G .  
The triply  nested radlcal Is not a square  as an  element of Q (m, j-), but as 

an element of ~(6, E, JiGTZEi) It is: 

16 - 2-+ 2466 -.lo&= (&+ J l l  - &I2. 
In the  next sectlon  we show  how to determine the fields In which to search  for perfect 
powers;  what  we conslder here is the resulting simplification  problem: 

JGTKG+J iTXZ=J i i i i T iZ .  (2) 

- Uslng the technlque just described,  we  have a1 = 1  1 + 2&, a2 = 1 1 - 2-, and a3 
22 + 24% alap = 6, which happens to be a perfect square  In k. This gives the  following 
reducllon: 

Jm = -A& Jn. 
Contlnuing, we  get 

a , a , = 2 4 2 + 4 ~ + 2 2 ~ + 4 ~ ~ = ( & + 1 1  +2&512. 

So finally 

Denesting Nested Radicals 

The fundemental concept in this section Is that of  nestlng,  and in  particular, what 
the nesting  level  of a field is.  Rather  than give the rigorous definition of  nesting  order 
(which would probably only serve to confuse the reader) we shall rely upon his intuition 

and the following examples.  The fields k(&'),),:k(a,&), k ( J a ) ,  and U ( J 3 )  
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are singly nested over. k;k, k,  and A(&) respectively. 'The next.  to  last  field is singly 
nested because It is contained in a field which  Is  slrrgiy nested (1.8. the  second field). 
Thus the nesting'  of  a  field Is roughly the minimal  amount of nesting  'needed to  express 
the most deeply  nested expression In the fleld over a particular ground fieid. We are 
not able to  compute the minimal nesting level of any field  but  we are able to prove the 
following theorem. 
Theorem: Let E be 8n dgebraic extension of k of nesting  level n and let L = €(a'''). If l. 
can be expressed wlth nesting level n then there is an  element /3 of a proper subf!eld of 
E such that aB Is a perfect rth power In K. 

As an example consider JS + 2 6. Then k .  = Q, E = Q(6). The only proper 

subfield of E is Q. Thus we have # = 2 or 3 since 2 (6 + 2 6 )  = (2 + f i ) 2  and 3 (5  + 2fi) 
= (3 + -6)'. In the general quadratic  case  we  have 

B ( p  + 4 = (a, + a , G 2 .  

Since do and fl are elements of a  field we, may  assume a, = 1 and we have the equations 

B p = a t + q ,  ~ 2 8 ,  

or /3* - 4flp + 4 q = 0. 
Sinae must be ratiqnal p2 - Q must  be a  perfect square. Letting d2 = p2 - q, we have ' A. 

the foilowing  classical formula: 

It is easy to  extend this technlque to arbltrary degree extensions of k. From a 
practical point  of view, however, the systems of equations can become quite  unwieldy 
when  the degree la much above 3. The 'author's thesis contains a number of  general 
formulas which  were derived in this manner, but  wlth quite a bit of work.  For Instance: 

Conclusions 

We have hoped to point  out that what  had  been  thought to have  been difficult 
problem, the simplification of nested radicals, is actually not very much mop  difficult 
than simplification-  of un-nested radicals. Of  the algorithms presented  only the 
de-nesting algorithm is really  very costly, and that algorithm is  really  not  necessary. Ail 
the  results mentioned here are either classical or direct corollaries of  classical  results. 
What we hope to have contributed is a novel  way of looking at classical mathematics. 

. .. . . . . JI 
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A CONSTRUCTIVE APPROACH TO 

COMMUTATIVE RING THEORY 

David A. Spear 

Massachusetts I n s t i t u t e   o f  Technology 

1. 1 NTROOUCT 1 ON 

We a r e   b u i l d i n g  , in  MACSYMA a  system f o r  Commutative Ring  Theory . 
The o b j e c t   i s   t o   d e t e r m i n e  how  much o f  the  theory o f  commutative r i n g s  

can   be  made e f f e c t i v e  , and t o   r e a l i z e  those  parts  of   the  theory  on 

a computer We adopt 2 basic  goals : 

(1) t o  prov ide   a  langu'age c a p a b i l i t y  . 
(2) t o   p r o v i d e  a  problem-solv ing  capabi l i ty  . 

O u r  m a i n   i n t e r e s t   i s  in so lv ing  r ing  theory  problems ; 

however i t  i s   c l e a r l y   d e s i r a b l e   t o  be able  to  express 

i n f o r m a t i o n  in a language  reasonably  close  to that o f   r i n g   t h e o r y  

We p resen t   he re   an   ou t l i ne   o f   t he  system  as we env is ion i t  

The  implementat ion  has  just  begun  and i s  proceeding  rap id ly  

but a s   o f   n o u   o n l y  a  smal l   part   of   the system i s  ready  for  use . 
2. ADMISSIBLE RINGS 

By a n   a d m i s s i b l e   r i n g  we mean a r i n g   u h i c h   i s   a l l o u a b l e  in  

our system . As the  system grous , the  c lass of admiss ib le   r i ngs  

Uill expand . Some axioms o f   a d m i s s i b i l i t y   a r e  : 
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(1) f i s  admissible (z denotes  the  integers) . - 
(2) I f  R i s  admissible so i s  R f X 1  . 
(3) I f  R i s  admissible and I i s  a f i n i t e l y  generated  ideal  of R 

then R / I  i s  admissible 

(4) I f  R i s  admissible and R i s  an in tegra l  domain 

then  the   quot ien t   f ie ld   o f  R i s  admissible . 
(5) I f  R and S are  admissible so i s  their  d i r e c t  sum . 
( 6 )  I f  R and S are  admissible so i s   t h e i r  tensor  product  (over Z) . 
(7) I f  R i s  admissible so i s  any f i n i t e l y  generated  subring  of R . 

The smal les t   c lass   o f   r ings   sa t is fy ing  these axioms ue s h a l l   c a l l  

the  e lementary  r ings . Thus we have 

(elementary  r ings) c (admissible  rings) 

I n i t i a l l y  , a l  I admissible  r ings will be elementary . 
Examples o f  elementary  r ings : 

2 112 
(1) Q [ X I  // [X - 2 1  ( t h e   f i e l d  Q( 2 1 1 

2 
(2) Z [ X I  // [X + 1 1  ( the   r ing   o f  Gaussian integers) 

2 7 2 3 4  
(3) Z [A,B,Cl  // [A B - C , A B C 1 

(4) Q [ X , Y l  // [X - Y 1 

5 
2 3  

I t should  be  apparent  that  the  elementary  rings form a large 

and i n t e r e s t i n g   c l a s s   o f   r i n g s  . 
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3. ALGORITHMS FOR ELEMENTARY RINGS 

B u i l t  i n t o   t h e  system are a co l lect ion  o f   a lgebra ic   a lgor i thms 

which uork in  any elementary r i n g  . Some o f  these  algorithms 

a r e   c l a s s i c a l   o t h e r s   f a i r l y   r e c e n t  , and some due to  the  author , 

are  apparent ly   neu . I n  developing  the system most o f  pur energy 

has  been  directed  touard  enlarging and .improving i t s  package o f  

a lgo r i t hms  . To g ive  an idea  of  the  strength  of  the system 

ue l i s t  some of  the  problems  which i.t i s  able  to  solve . 
Let R be  an  elementary  r ing and l e t  a , ... a E ' R  . 

1 n 

Lst I be  the  idea I o f  R generated  by the a and 1 e t  
i 

S be  the  subr ing  o f  R generated  by  the a . 
i 

(1) i dea l  membership . 
Given r c R decide whether or  not  r c I . 

(2) subr ing  membership . 
Given r c R decide whether or  not r E S . 

(3) sytyg i   es . 
Find a l l   s o l u t i o n s  x * ... x E R to  the  equation 

1 n 

a x +...+ a x - 0  
1 1  n n  

(4) a l g e b r a i c   r e l a t i o n s  . 
Find a l l  a lgeb ra i c   re la t i on8  betueen a ... a 

1 n 
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(5) p r i m e   t e s t  . 
Decide i f  I i s  a maximal ideal  

Decide i f  I i s  a pr ime  ideal  

Decide i f  I i s  a rad i ca l   i dea l  

( 6 )  dimension . 
Compute the  dimension  of R . (Krull dimension) . 
Compute the  transcendence  degree  of R over S . 

(7) i d e a l   i n t e r s e c t i o n  . 
Given   i dea ls  I and J compute t h e i r   i n t e r s e c t i o n  

( 8 )  i d e a l   c o n t r a c t   i o n  . 
Compute the   in te rsec t ion   o f   the   idea l  I with the  subr ing s . 

(9) units . 
Given r c R decide i f  r i s  a unit  i n  R . I f  SO , compute l / r  

(18) z e r o - d i v i s o r s  . 
Given r E R decide i f  r i s  a zero-div isor in  R . 
I f  so , f ind s c R , s z 0 , such that  r s - 0 . 

4. THE CANONICAL FORM 

The s o l u t i o n   t o  each of  the  problems  described above 

depends  on a fundamental  algori thm  for  expressing  ideals 

in a canonica l   form . This  a lgor i thm  appears  to have  been 

f i r s t  d iscovered by Buchberger  (ref. 1) . Simi la r   a lgor i thms 
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have  been  constructed  by Richman (ref. 2) ' Shtokhamer ( re f .  3) * 

and Lauer  ( ref .  4) . My own vers i  on * independent I y obtained * 

i s  o n l y   s l i g h t l y   d i f f e r e n t  from  Buchberger's ; houever the  d i f ference 

i s  c r u c i a l  - i t  i s  the  key  to  solving most o f  the problems l i s t e d  i n  

the   p rev ious   sec t i on  . The canonical form for  an ideal I i s  denoted 

IDEALBASIS (1)  . IDEALBASIS has been implemented by  David R. Barton . 
5. EXAMPLES 

We g i v e  some concrete examples i l l u s t r a t i n g  the use of  the  system : 

2 3  
a ~X,YI // [x - Y 3 

(C2) DOMAINP (R) : 

(C3) FIELOP (RI : 

(03 1 FALSE 

(C4) DIMENSION (R) : 

(04) 1 

(C51 I: IDEAL 1 [ X I  * R 1 : 

(C61 RADICALP ( I )  : 

(E6 1 
3 

Y e 1  

(E71 Y NOT e I 

(07) FALSE 

(C8)  RADICAL ( I  : 
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,.. ,, . .. . . .. .. ... . . - . ." . "~ 

2 
z [XI // tx - 21 

t C l 0 )  I t IDEAL ( t71 , R 1 ; 

(C111  PRIMEP ( I , R )  : 

(E121 (3 + X1 NOT e I 

(€13) (3 - X I  NOT a I 

(013) FALSE 

(C141 UNIT( 3 + 2 * X , R 1 : 

(E141 ( 3 + 2 X )   ( 3 - 2 X )  - 1  

(014) TRUE 

(015) P [X,YI 

(C161 I: IDEAL ([X"3 * Y"4 , X"2 * Y"61 , RI : 

(016) 
3 4  2 6  

[X Y , x  Y 1  

(C17) J: IDEAL ( [ X  * Y " 3  , X " 5  1: Y1 , R1 : 

(0171 

(C181 INTERSECTION (1.J) : 

(0181 

. 9  5 
[X Y , x Y1 

2 9  5 4  
I X  Y , x  Y 1  



(Dl91 Q [ X + Y  * X Y 1  

(I2201 MEMBER ( X"2 + Y"3 * S 1 : 

(D281 FALSE 

6. FUTURE PLANS 

Within the   nex t   year  * many improvements and add i t ions   to   the  

s y s t e m   a r e   l i k e l y  . For example * we p l a n   t o   a l l o u  R-modules 

i n t o   t h e  system . Algebra ic  Number Theory and Algebraic Geometry 

o f f e r   o t h e r   p o s s i b l e   d i r e c t i o n s   f o r   t h e  system . However much o f  

the g r o u t h   o f   t h e  system u i l l  be determined  by  the needs o f  i t s   u s e r s  . 
We uelcome  suggestions fo r  changes or  new features . 
A comple te   cur ren t   desc ip t ion   o f   the   R ing  Theory  System 

can  be  found  on  the MC f i I e : 

DAS: RINGS INFO 

T h i s  f i l e  a lso   con ta ins   desc r ip t i ons  o f  system commands , 

examples * and  o ther   in format ion  re levant   to   the use of  the  system . 
I would l i k e   t o  thank  David R. Barton for  hi5 excel lent   implementat ion 

o f  IDEALBASIS . I u o u l d   a l s o   l i k e   t o  thank  Alex P. Doohovskoy  and 

B a r r y  M. T r a g e r   f o r   t h e i r  encouragement  and for  many he lp fu l   suggest ions  . 

I 
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Reduction of the Equation for Lower  Hybrid Waves in a Plasma 

to a Nonlinear  Schriidinger  Equation* 
by 

Charles F. F. Karnoy 

Research Laboratory of Electronics and Plasma Fusion  Center, 
Massachusetts Institute of  Technology 

The equations describing the nonlinear  propagation of waves in an anisotropic p1asm.a are 
rarely exactly soluble.  However it is often possible to make approximations that reduce the exact 
equations into a simpler equation. In this paper we will describe  how MACSYMA  may be used to 
make such approximations, and so reduce  the  equation  describing lower hybrid waves into the 
nonlinear Schrijdinger equation  which is soluble by the  inverse scattering method (ref. 1). It  
should be pointed out here that we  have  not  used  MACSYMA to do the  whole  problem; rather 
MACSYMA is used at several stages in the  calculation  that  are otherwise done by hand. This is  not 
to say that MACSYMA could  not do the whole  problem, just  that there is a natural  division 
between calculations that are easiest  done by hand,  and  those that  are  easiest  done by machine. 

The equation describing the steady-state twodimensional electrostatic propagation of  lower 
hybrid waves in I homogeneous  magnetized  plasma is (refs. 2,3) 

where $ is the complex potential and x and I are  the  directions parallel and perpendicular to the 
magnetic field and the other quantities  are constants.  (The real potential is Re[+exp(-lwt)l, where 
o is the frequency of the wave.)  The significance  of  the  terms in equation (1) is as follows: The 
first  two terms (with coefficents, KL and lKlll) describe  the  linear,  cold, electrostatic response; 
they constitute a wave  equation and  have  solutions  which propagate along well defined rays (ref. 
4). The terms with coefficients a, 6, and c in equation (1) are  the corrections due to the  finite 
temperature  of  the plasma; the effect of  these  terms  is to cause the ray to disperse.  The terms 
on  the second line  (with coefficients a. and 8,) are due to the nonlinearity of the plasma; these 
terms arise because in regions  where the electric potential is high, the so-called ponderomotive 
force expels some of the plasma,  causing a change in the  dielectric properties of the medium. 

We wish to reduce equation (1) to a more  manageable  form.  To  do this we must decide 
what type of solution we are  looking  for. Since  we  are interested in situations where the 
nonlinear terms are perturbations to the  linear terms,  and  since wave-like solutions are known for 
linear problems, interesting solutions to consider  are  ones of the form 

%ock supported by US. Energy  Research and Development Administration (Contract 
E(l1-1)-3070) and by the National  Science  Foundation  (Contract ENG76 06242) 
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where  the wavenumbers kx and kz are  constants and the complex  envelope, 4, is  slowly  varying 
compared with the exponential. Since we  wish to treat the  nonlinear terms as a perturbation, we 
w e d  only consider the leading order contributions to these  terms.  Thus we can immediately 
simplify  the nonlinear terms  since  each derivative operator will  bring down either Ikz or 4kxr 
thus  they may be  written as 

where C is a constant.  The problem remaining is to reduce  the  complexity of the  linear terms. 
This we can do by saying that the  dispersion has only a weak effect on the solution (in the  final 
equation we will see that the nonlinearity and dispersion  are treated as being perturbations of  the 
same order). If we  neglect dispersion entirely, then I solution for 4 is 

MX, 2) = wz - V#X) ; (4) 

Le. the waves travel along  characteristics. We will treat the effects of both dispersion  and 
nonlinearity by letting 4 have an explicit x dependence; thus 

#x,  z) = Wz’, x‘)exp(ikz - lk,@ , (5) 

where I’ = I - vIx, x‘ = x. We order the dependencies in equation (5) as follows 

likd * lv8t3/az‘1 * la/ax’l, IlkJ * [a/az‘I . (6) 

n h i s  ordering  is not the only possible one; for instance  Morales  and.  Lee (ref. 2) considered the 
case where k, = kt = 0, and derived a modified  Korteweg-deVries equation.] 

Rather than using this ordering directly in equation (11, i t .  is  more  convenient to  treat  the 
more  general problem. So we re-write the  linear  terms in equation (11, to give 

L(s? az a LM + nonlinear  terms - o , 
where L is a polynomial, 

L(p, q) = KLp2 - IKJd + ap4 + b p 2 6  + cq4 - 
Now if L(a/ax, a/&) operates on equation (5) we may  make the  replacements 

a/hX + -I&# - V#a/aZ’ + a/&’ , a/aZ + ikz + . (9)  

We may then Taylor expand L about -I&, and lkz. This  is, of course,  most easily done on 
MACSYMA: 

( C 1 )  6RADEF(L(P,Q),Ll(P,Q),L2(P,O))f 
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Unfortunately MACSYMA has no notation for the derivative of a function with  respect  to  its 
arguments; thus we  use GRADEF to define L1 to denote the derivative of L with respect to  i ts  
first argument,  etc. 

(C5)  X ,  P~-XI*KX-ZEPS*V6*DZ1+ZEPSA2*DXl,Q~%I*KZ+ZEPS*DZl~ 
? 

(D5)   'L (DX1 ZEPS - DZ1  V6 ZEPS - XI KX, D Z l  ZEPS + XI KZ) 

Here  we have just written L( P,Q), substituted for P (- a/ax) and 0 (- a/az) using equation (9). 
In order  to incorporate the ordering information  implied by equation (6) we  have introduced the 
small parameter ZEPS (ZEPS is chosen rather than,  say, EPS, since MACSYMA will  treat it as the 
main variable in CRE forms.) DZ1 and DX1 are  used to denote a/&' and a/h '  respectively. 

( C 6 )  TAYLOR(X,ZEPS,O,E)S 

(C7)  LEXPAND:EV(X, L( -XI*KX,XI*KZ)=L, 
L l ( -XI*KX,XI*KZ)=Ll ,  
L2(  -XI*KX,XI*KZ)=L2, 
L11( -XI*KX,XI*KZ)=Ll l ,  
L12(   -X I *KX,XI*KZ)~L l2 ,  
L22(  -XI*KX,XI*KZ)=L22); 

2  2  2 2 2 
(D7) /R/  1/2 ( (DZ1  L11 V6 - 2 DZ1  L12  V6 + DZ1  L22 + 2 DX1 L1) ZEPS 

+ ( -  2 DZ1 L1 V6 + 2 DZ1  L2 )  ZEPS + 2 L) 

We carry out  the Taylor expansion  using TAYLOR, keeping  terms  up to ZEPS"2. The result, 
LEXPAND, is made more  compact by making the  functional  dependence  of L on KX and K Z  implicit. 

Since we are interested in the  balance  of the  nonlinear  term, equation (3, against the 
dispersive  part of the linear operator, L, we  demand that all but the ZEPS"2 term in D 7  vanish 
identically. (Note that the the ZEPS"2 term contains the  dispersive operator, # / W z . )  

( C 8 )  LEXPANDO:COEFF(LEXPAND,ZEPS,O); 
(D8) /R/  L 

The zeroth  order term is just L(-fk,, fk>. Setting it to zero 

L(-f&,, ik> 0 

just states that kx and kz must satisfy the  linear  dispersion relation 

(C9)  LEXPANDl:COEFF(LEXPAND,ZEPS,l); 
(DO) /R/ - DZ1 L1 V6 + DZ1  L2 

(C10)  SOLVE( LEXPANDl=O,V6) ; 

(10) 
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Setting  the  first order  term  to zero gives us the  expression for vg. We recognize E10 as the 
familiar expression for  the group velocity in a dispersive medium, 

(The subscripts p and q denote  derivatives.) 

( C 1 1 )  LEXPANDZ:COEFF(LEXPAND,ZEPS,Z); 

( D l l ) / R /  1/2 (DZ1  L11 V6 - 2 DZ1  L12 V6 + DZ1 L22 + 2 DX1 L1) 
2 2 2 2 

(C12) AA:COEFF(LEXPANDE,DXl); 
(012)/R/  L1 

(C13) BB:COEFF(LEXPAND2,0Zl,Z); 

(D13)/R/ 1/2 (L11 V6 - 2 L12 V6 + L22) 

Finally we have the  order ZEPS"2 terms.  Note that it has the form /la/&' + Ba2/az'*, where A 
and B are  given by (AA in Dl2 and BB in D13) 

2 

(All  the derivates are evaluated at p - -ikRt q = ikZJ If we  demand that the ZEPS? term balance 
the nonlinear term, equation (a), we obtain 

A@,' + €Mz'zl + = 0 . (13) 

I f  A is  pure imaginary and 8 and C are real (which  turns  out to be  the case) then equation (13) is 
the nonlinear Schrtidinger equation. 

The last task  is to evaluate  the  coefficients A and 8, for L given by equation (8). Again, in 
order  to get manageable  expressions,  we will do this  approximately.  This  time  we note  that  the 
coefficients, e, 6, and c are much  smaller than KL and Kn. Again  such manipulations are most 
readlily  performed on MACSYMA: 

(C14) L:KPERP*PA2+KPAR*~2+ZDTA*(A*P"4+B*P"2*~2+C*Q"4); 

(014) ( C  Q + B P Q + A P ) ZDTA + KPAR Q + KPERP P 

(C15)  (L1  :DIFF( L, P ) ,  
L2:DIFF( L,Q), 
Lll:DIFF(Ll,P), 
LlL:DIFF(Ll,Q), 
L22 :DIFF( L2 ,Q) , 

4 2 2  4 2 2 

_L -----..-- -... ... .._*I -.. ..I . . , ...,,,..,, , . , ,, , ,,... . ,,, , ,, , , ,,. , ,. ,,, . , I I I. 



VG:EV(RHS(ElO)))S 

Here we have defined L [see eq. (811 The smallness  of a, b, and c is implied by the small 
parameter ZDTA We have also defined the various  derivatives  of b and V6. The evaluation of A 
(AA) is straightforward. We Taylor expand AA to obtain  the  leading term. 

(C16)  AA:EV(AA,P.-XI*KX,Qt%I*KZ,EVAL); 

(D16)/R/ (2  XI B KX  KZ + 4 %I A KX ) ZDTA - 2 XI KPERP KX 

(C17)  M:TAYLOR(M,ZDTA,O,O); 
( D l 7 ) / T /  - 2 KPERP XI KX + . . 
1.0. 

2 3 

A = -2ikfL. 

We repeat  this  with 8 (BB). 

( C l 8 )  BB:EV(BB); 

(D18) /R/  ( ( 4  B C Q + ( 2 4  A C + 2 B C) P Q + (32 A B C - 2 B ) P Q 
2 8  2 2 2 6  3 4 4  

2 2 6 2  2 8  3 
+ ( 2 4 A   C + Z A B ) P  Q + 4 A   B P ) Z D T A  

2 6 2 2 4  
+ ( (4  C KPERP + 4 B C KPAR) Q + (8 B C KPERP + ( 2 4  A C - B ) KPAR) P Q 

2 4 2  2 6 
+ ((24 A C - B ) KPERP + 8 A B KPAR) P Q + (4 A B KPERP + 4 A KPAR) P ) 

2 2 4  2 2 2 2  
ZDTA + ( ( 4  C KPAR  KPERP + B KPAR ) Q + (6  C KPERP + 6 A KPAR ) P Q 

2 4 2 2 2 2  
+ ( B  KPERP + 4 A KPAR KPERP) P ) ZDTA + KPAR  KPERP Q + KPAR KPERP P ) 

2 2 4  4 2  2 6  2 
/ ( (e P Q + 4 A B P  Q + 4 A   P ) Z D T A  

2 2  4 2 2  
+ ( 2  B KPERP P Q + 4 A KPERP P ) ZDTA + KPERP P ) 

(C19)  BB:TAYLOR(BB,ZDTA,O,l); 
2 2  2 

KPAR Q + KPAR  KPERP P 2 4 
(D19) /T/  ~ ~ - - - ~ ~ - - ~ ~ ~ - ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~  - ((KPAR B - 4 KPAR C KPERP) Q 

2 
KPERP P 
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2 2 2 2   2 4  
+ ( 2  KPAR KPERP 6 - 2 KPAR A - 6 C KPERP ) P Q - KPERP B P .  ) ZOTA 

2 2  
/(KPERP P ) + . . . 
Note that we have  taken  the  Taylor  series expansion  of BB up to order ZDTA This is because the 
order ZDTAW term is proportional to the  order ZDTAV terms in L (see D14), and thus when we 
set L to zero [see  eq. (lo)] the leading  order  term will vanish (this is just a reflection of the fact 
that "cold" contributions to L, KLp2 - lK#, are nondispersive).  There are a number of ways of 
incorporating the fact  that L = 0 into 01% we  chose the following: 

(C22) BB:TAYLOR(BB,ZDTA,O,l); 
4 2 2  4 

( 3 C Q  + 3 B P  Q + 3 A P ) Z D T A  

2 
( 0 2 2   ) / T I  """"""""""""""""" + . . .  

Q 
(Note that indeed  the  coefficient of ZDTA'W is zero.) 

(C23)  BB:EV(BB,ZDTA~l,P=-%I*KX,Q=%I*KZ,FACTOR); 
4 2 2  4 

3 ( C  KZ + B KX KZ + A KX ) 
( 0 2 3  1 - """""""""""-""" 

2 
KZ 

(Here  we  have just substituted  for p and q.) Thus 

8 = - (ak, + bk, kz + ckz ) . 4 2 2  4 

&* 
Finally a scale transformation on 4, x', and z' in equation (13) yields 

(15) 

'VI. + v + 21v12v - 0 , f f  (16) 

a standard form of the  nonlinear  Schrb'dinger  equation. 

We could  have  saved some  steps in the MACSYMA computation  had  we worked with  the 
explicit form of L (014) right from  tho beginning.  l-bwever this  would  have  had the disadvantage 



of confusing  the two small parameters in the  problem (ZEPS and ZDTA). Also soma of the 
generality  of  the method would be lost. For  instance, a simple extension of the method outlined 
above to  include the effects of a third spatial dimension [which introduces a term, K L ~ 2 ~ / b f l  in 
eq. (113 is possible (ref. 5). This leads to an unusual generalization of the nonlinear Schtb'dingsr 
equation, 

iv + VlE - vm + 2 l V l S  = 0 . T (17) 

The procedure  presented  here was  suggested by the work of Newell and Kaup (ref. 61, who 
use a more  traditional multiple-time-scales approach.  The help of F. Y. F. Chu in preparing this 
paper  is  gratefully acknowledged 
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Ray Trajectories in  a  Torus: 

An Application of MACSYMA to a..Complex  Numerical  Computation* 
by 

John L. Kulp 

Research Laboratory of  Electronics and Plasma Fusion Center, 
Massachusetts Institute of Technology 

The study  of ray trajectories of plasma  waves in a toroidal geometry using MACSYMA .is  an 
example of how symbolic,  numerical, and graphical facilities can be used in concert to accomplish  a 
complex  computational goal. Computational features of this study which  are of particular 
significance  include:.  the  derivation of  code  (i,e. writing functions to generate program  fragments), 
the use  of array functions to simplify the specification of a numerical iteration scheme, and the 
graphical  presentation of the results. Mathematically, this study originates in the  solution of a 

linear inhomogeneous partial  differential equation in 3 dimensions by the method of characteristics. 
I t  is  possible to describe this equation compactly by using vector notation, and by  specifying  the 

spatial  variation of the coefficients in terms of intermediate parameters. However the 
transformation of the equation into a form amenable to solution is very tedious. 

This work is part of a study of the heating of plasmas by radio frequency waves occurring 
in controlled thermonuclear fusion research (ref. 1). The objective is to obtain a description of 
the r f  field  structure excited by a waveguide  located at the  edge  of a toroidal p'lasma confinement 
device. A steady-state, single frequency driven oscillation is assumed  and  an examination is macle 
of the  resulting spatial distribution  of fields. In the electrostatic approximation, the  electric 
potential  is  then  given  by 

V - K(r) V $(r) - D(V,r) $(r) = 0 

where r is a spatial  position  vector and K is a second  rank dielectric tensor. For the pararncter 
range  of  interest, this second order equation is hyperbolic, and its  'characteristic  surfaces 
$(r)-const can be  found  from the characteristic form,  D(V$,r)=O(ref. 2). This nonlinear first'  order 

equation can be solved by integrating V$ along  the characteristics of D(VlL,r) which  are rays in 

3-dimensions. Unfortunately, transforming to the coordinates given by V$ does not, in general, 
reduce  the  order of D(V,r) sirice it is a second order operator in 3 independent variab.les. Thus 
some additional assumptions are necessary to make the calculation of $ tractable. I f  there is a 

spatial  coordinate along which D is uniform, a Fourier decomposition of $ with  respect to that 
coordinate  is usually successful in reducing the number  of  dimensions  of the equation. However, 
this may be inconvenient  for  other reasons,  such as difficulty in applying  initial  conditions, .or in 

integrating  the  resulting Fourier spectrum. An alternative is to pursue  solutions in the WKB 
approximation  which have the. form, 

* Work  supported  by U.S. Energy Research andflevelopment Administration 
(Contract E(11-1)-3070) 
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and  where  IVlog& Q: IV$l is assumed.  The former  approach. has been  investigated  (ref. 3) for a 
straight  cylinder geometry. Here, the WKB approach is followed since it is  more  readily 
generalized (computationally) to models resulting in higher order equations. 

In the following sections, (1) a description of  the  method for  finding and JI is given, (2) the 
implementation of the calculation on MACSYMA is presented,  and (3) a sample  case is shown to 
illustrate  the display of results. 

WKB Solution Along the Characteristic Rays. 

Let k = V$. The characteristic equation D(k,r)-0 by itself is not sufficient to determine k .  
More  information can be  obtained by noting that 

dO(k(r),r) 
dr dk dr Ar .. - 0 is also implied so that - - = -- do dk dD 

Thus by  integrating along dD/&k we  can find k. The initial values of 2 components of .k are 

required (the third can be  found from D(k,O)-0). The rays  defined by the 'tangent vector r)D/Ak 
are  the  bi-characteristics of 0. Let s be  the  distance.  along the ray  from some starting  point and 
S = IdO/dkl. Then, the equations for determining \t become: 

(trajectory  equation) 

(Wave vector  equation) 

(phase equation) 

For  the  electrostatic equation, note that k .c)D/dk - 0, so the rays are lines of  constant 9. In 
wave  propagation terminology, dD/dk .is  in the direction of the group  velocity of the  'excited 
waves. 

To solve for 4, let $(r) = &r)eip(r) so thaf 

D(v,r)$ = D(v,~)&&JI = .&$D(~(v$) + V, r$ . 
Now D can be expanded 

which can be  integrated 

to first  order  in  V'(the WKB approximation) to obtain 
Y 

to give the usual WKB amplification factor 

TO solve  the equations for $, expressions for dD/dk and aD/& must be derived. Once 
obtained,  these expressions must be simplified with a goal  of getting an approximate  analytic 
result,  or  of  producing code which can  be numerically evaluated efficiently. The explicit r 
dependence  of D can be  represented 
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o(a, r) - D(V, a p , a , ( r ) , .  . *,a,$% co9cI~-  - -1 s 

where  the a;s are  physically convenient parameters  such as the imposed magnetic field 
components or plasma density and the c;s are constants characterizing the particular  situation 
being  studied (e.g. the r f  source frequency, or the peak  magnetic field amplitude). Let 
a - {ao, 0 , ' .  . .). Then &D/& can be computed  using the chain rule  for  differentiation, 

Note da/dr  is a 3xm matrix  which is fixed by the plasma configuration  being  studied and IS no1 
dependent  on  the plasma  model being used as reflected  in K (this dependence occurs in AD/h) .  

Implementation of the Ray Calculations on MACSYMA. 

The implementation of the calculation of ray  trajectories involves the following  steps: 41) 
calculate D in a form  where  its dependencies on k, and a, are explicit; (2). calculate the derivatives 
aD/&k and do/&, then  put them in. a form suitable for numerical evaluation; (3) use these 
derivatives  in an iterative scheme for solving dr/ds and dk/ds; ,and finally (4) present  the  results 

graphically. Once the rays have been found, 4 can  be computed by evaluating S(k,r), and $ by 
summing 61(1 along the  ray. Finally, a complete- solution i s  obtained by. superjmpos.ing solutions for 

the  different  initial values of k and r which characterize the  source of the excitation. This p a r t  o f  

the  solution  will not  be discussed  here. 

The derivation of D raises two  frequently encountered issues. First,  the order  of  the 
calculation must be considered so that the most simplification can be obtained at each step  with a 

minimum of  storage overhead. Second, it is often propitious to make certain  approximations 'on the 
resulting  form of D to avoid unwieldy expressions at later stages (i.e. when  computing  the 
derivatives and simplifying the results of differentiation). For the equation of interest  here,  D(k,r) - k K(r) - k, the above concerns motivate us to compute D by expressing K as simply as possible, 

(C2)  /* Vector   Index o f  Refract ion */  
KK : M A T R I X (  [ KKRR,  XIRKKRT,  -XI*KKRP 

-XI*KKRT,  KKTT,  
XI*KKRP,  KKTP, 

while  retaining  its basic symmetry. Once the matrix multiplications have been  carried out, and 

simplifications accomplished (in this case SCANflAP(  MULTTHRU, . . . ) suffices) the elements such 

as KKRR are  replaced by expressions such as: 

(C5)  /* Define  the  remaining  e lements of KK t h a t   a r e  needed. */  
KKRR : 1 - W P I E / ( l - W C I E )  - VPIE*AMU/(  1-WC12*AMUA2)S 
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Automatic  generation of appropriate  type  declarations  for  the  temporary  variables  would  make  the. 
translation  and  compilation  process  less tedious. Finally, as in any  such  automatic  scheme, ce r ta in  
numerical  problems  may  be  obscured  (like  the  cancellation of large  numbers) or part icular 
restructuring  optimizations  l ike Horner's rule may be  overlooked.  For  example,  consider  the 
subexpression  below: 

(C14) D10; 

(014) - . . . . . . . . . . . . . . . . . . . . . . . . . . .  + _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _  
2 2 2  2 2 

2 
2 W C I P H I  ( 1  - WCIPHI ) WPIE 2 WCIPHI  WPIE 

( 1  - WCIPHI  - WCITHETA ) 1 - WCIPHI - WCITHETA 

3 2 2 3 
2 AMU W C I P H I  ( 1  - AMU WCIPHI ) UP12 2 AMU WCIPHI .   WPIE - """"""""""""""""""- + """"""~""""-"""-- 

2 2 2 2  2 2 2 
( 1 - AMU (WCIPHI  + WCITHETA ) ) 1 - AMU ( W C I P H I  + WCITHETA ) 

This  expression  results  from a straightforward  calculation  of  the  derivatives.  An  obvious 
optimization  can  be  obtained as shown  next: 

( C 1 5 )  (E:SUBSTPART(FACTOR(PIECE),X,C1,2]), SUBSTPART(FACTOR(PIECE),E,[2,3])); 
2 2 

2 2 2  2 2 2 2 2  
( -  1 + WCIPHI + WCITHETA ) ( -  1 + AMU WCIPHI + AMU WCITHETA ) 

(C16) (E:PART(D15,1,1,1))*MULTTHRU(l/E,DlS); 
2 1 ( D I G )  2 WCIPHI  WCITHETA ( -  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 2 2  
( -  1 + WCIPHI + WCITHETA ) 

5 
AMU - """"""""""""""""""" ) WPIE 

2 2 2 2 2 .  
( -  1 + AMU WCIPHI + AMU WCITHETA ) 

I t  is not clear  how to apply  such  optimizations  automatically  on  large  expressions. In ,some  cases 
pattern  matching  and  part ial   fract ion expansions  can  be  applied  with some success  (this  approach 
was suggested by P. Wang  and is currently  under  investigation). At the  t ime  of  this  work, . t he  
OPTIMIZE command  was  extremely  inefficient  computationally,  but  has  since  been  rewritten by M. 
Genesereth  and is now  quite  fast.  Despite some of  the  drawbacks  mentioned  above,  the  use of 
OPTIMIZE  has  been  very  helpful in this application. 

The  implementation  of (3), the  iteration scheme for  integrating  (dr/ds,  dk/ds), is achieved by 

the use of .  array  functions.  Array  functions  have two important.  advantages  over  the usual. 



Here, U P 1 2  and WCIZ  .are parameters (a,%) and AMU is a constant. The number of a;s might vary 
between 3 and 10 depending on the plasma  model. Approximations can be  introduced by  
expanding in terms of, say, 1/A)IU, but  for this case it is not necessary. 

To accomplish (2) the calculation of derivatives of D, the matrix da/dr  is  entered ( i t  i s  
usually  rather sparse) and multiplied by a list of derivatives obtained by computing bD/Aai for 
each a,. Computing aD/ak and  thus laD/dkl is straightforward. Now, it is e.xpected that  applying 
FACTORSUM to various subexpressions may result in a simpler form (note, for ' instance, the 
common U P 1 2  term in KKRR above).  This is done by the command 

.SCANMAP(  LAMBDA( [ X ] ,  
BLOCK( Y 3 ,  Y:FACTORSUM( X ) ,  

EF Y=X  THEN  X ELSE Y )  ), .... ); 

where the I F  conditional assures the preservation of common subexpressions. 
One reason for doing step (2) on MACSYMA is that the matrix arith,metic involvcs a 

considerable amount of work i f  done by hand. But perhaps even more significant is t he  fac t  that' 
the MACSYMA command,  OPTIMIZE, can now be used to automatically generate a procedure BLOCK 

for evaluating  the expressions efficiently. The BLOCK generated by OPTIMIZE consists of a 

sequence of assignments of subexpressions to temporary, local variables. For  example, 

( C l )  F(A+B"E)+G(A+B"Z); 
.) 9 

[ Fi 1 O P T I M I Z E (  X )  ; 
F ( A  + BL) + G(A + B L )  

.) 

( D 2 )  
L 

BLOCK(CT2,   TO],  TO : B , Ti? : A + TO,  RETURN(F(T2)  + G ( T 2 ) ) )  

Using OPTIMIZE is a highly convenient way of accomplishing  the  famili.ar programing task of finding 
common subexpressions, and rewriting the expression in terms of a sequence of statements 
constituting an evaluation  "tree" of the subexpressions. Furthermore, the derivatives for the six '  

equations  being  integrated  (dr/ds and dk/ds) can be calculated in "parallel"  (sharing common 
subexpressions). The'BLOCK can be translated and compiled for  greater  execution efficiency. As 

might be expected, this optimization often significantly reduces the amount of code required  to 
evaluate an expression, leading to  both execution and storage'efficiency. A typical l ist of the 
derivatives  requires 45k words to store on disk (with the SAVE  command), and yet the procedure 
BLOCK generated  requires less than 3k words. A more useful comparison would  be obtained  by 
writing  on disk  using FASSAVE (which preserves co.mmon subexpressions) or STRINGOUT, but bo th  
of these run out of available memory  when applied to the original expression. 

There  are several problems with this method as it is currently implemented. A .typical 
BLOCK might  contain a total of 250 temporary variables, when, in fact, a data flow  analysis would 
show  that a  considerably smaller  number of temporaries is needed (i.e. they can be  reused). 
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DO-loop form  of specification. First, the order in which particular values of k / s )  or. ri(s) are 
computed does not have to be specified. They  are  computed as needed. This. makes .it much 
easier to modify a code since one does not have to be concerned with the order.of a 'sequence of 
command statements. Second, programs specified this way are highly modular so i t  is very simple 
to change one single array function  definition in the run time environment, i.e it has both  the 
advantages  of  a  function and  of  an array. 'The current  liabilities of array  functions are: they c a n  
use up more  storage if used where arrays would  not otherwise .be  used; in the  .current 
implementation,  references -(calls ' or  array accesses) to array functions are  not translated  or 
compiled  efficiently. 

As an example of how the computation of  one  element  of r is set up, consider the fo1lowin.g 
MACSYMA commands for implementing 8 predictor-corrector  iteration: 

6C' )  1 * Adams-Bashforth  Predictor  step. * /  
STEP: Y[ N-l]+55/24*DY[  N-l]-59/24*DY[  N-2 ]+37/24*DY[N-3]-9/24*DY[ N-4 IS 

ASTI!P: Y[N-1~]+9 /24*DY~N~+19 /24*DY[N- l ] -5 /24*DY[N-2 ]+1~24~DY[N-3~$  
CZ /* C o r r e c t o r   s t e  */ 

/* Example.,*[  
:="(SUBST([Y=R,DY=DRJ,PSTEP)); /* Predtc t  R[N]. "/  

(03 )  R . := R + 5 5 / 2 4  DR - 59 /24  DR + 3 7 / 2 4  DR 
N N - 1  " 1  N - 2  N - 3  

- 3/8 DR 
N - 4  

/*  Computes O R [ N ]  u s i n  R[N] .  * /  
/* Compute c o r r e c t e d  D R [ N j .  * /  /* Return OR[ N ] .  * /  
/*  Compute c o r r e c t e d  Rat41 * /  

( 0 6 )  DR := (DSTEP(N),  R : 3/8 DR .+ R + 19 /24  DR - 5 / 2 4  DR 
N N N . N - 1   N - 1  N - 2  

+ 1/24 OR , DSTEP(N) ,  DR ) 
N - 3  N 

The function DSTEP computes all the  elements of sr and sk in parallef. Note the ease with  which 
the  iteration scheme can be changed. I f  the array functions were to be compiled, terms like Y[ N ]  
would be replaced by ARRAYFUNCALL(Y,N) in the forms PSTEP and CSTEP. The derivation  of 
starting  points -is done separately. In this calculation,  each  element  of r, k, sr, sk, and a is.defir1ed 
as an array function. While saving elements of a is not essential to the integratio.n, i t  is usetul for 
subsequent calculations to know the trajectory through the parameter space given by a(s). 

it  should be pointed out that in using array functions, one is making a tradeoff  bctwecn 
programming convenience versus execution and storage efficiency. To what extent is the 
inefficiency  inherent  rather than implementation  dependent? The ordinary  implementation of  array 
functions  in MACSYMA suffers from excessive "number consing" (ref. 4) resulting  in a need  for 
large number spaces  and costly additional garbage collection. This problem was alleviated by C. 

390 



Karney,  who impleme.nted a new array function calling routine for the MACSYMA interpretcr (not 
yet installed)  which allows LISP  number arrays to be.  used with  array  functiohs. The main 
outstanding  difficulty is that array functions cannot  be referenced  efficiently. I n  principle 
however,  the check for  array elements being undefined should only  require one or  two machinc 
instructions; thus there is hope that subsequent  implementations. will 'have relatively  unimportant 
overhead associated with them. 

Display of the Ray  Trajectories. 

The graphical display of the ray trajectories employs a rather,extensive library package 0.f. 
graphics capabilities implemented by C. Karney,  called PLOT2.  The main significance of this 
package  is  that it interacts  with the MACSYMA environment, thus giving both MACSYMA .and PLOT2 
more  power than each would have by themselves.  The interactive  nature- of PLOT2 due to i t s  

residing  in MACSYMA is particularly advantageous for exploring the parameter space defined  by 
ab). This is done simply by entering a formula  depending  on  the parameters and calline PLOT2 on. 
it. Rescaling and changing view points  (in the case of 3-D plots) are very simple interactive 
operations. 

A sample ray  trajectory plot is shown in Figure 1. The outer ring is a top  view of the 
torus. The ray  starts at the right outside edge of this ring and circles around the torus  until  it 
hits the edge again.  The inner  circle is a projection of  the  minor crossection of the torus  into a 

single plane. The ray  plotting consists of plotting a template indicating the boundaries of the 

torus and the. sector marks followed by calls to PLOT2 using  the POLAR option. The template i s .  
computed once for each  change in aspect ratio and is displayed with REPLOT. 

I t  is important to note that the actual calculation of the rays is invoked by the plotting 
routine asking for the data in the arrays. Once the array functions and initial  conditions  have 
been specified,  the  array data can be extracted in any order by any other  routine  without- 
explicitly calling a main program to do the  computation.  For  instance,  one  may not  be directly 
interested  in  the  rays at all, but simply .in the auxiliary parameters, in which case referencing  them 
causes ttie  rays to be computed first. , 

Sum.mary; 

Space limitations do not permit a more thorough discussion  of how the  Capabilities 
mentioned  here are used in this continuing study. Several different model equations D, and a large 
number  of  different parameters are being investigated. The points to be emphasized are: ( 1 )  
MACSYMA is in some  sense evolving  into a "complete"  system where a user can formulate  his 
equations,  approximate and simplify them  symbolically, and i f  need be, study  solutions to them 
numerically and graphically  (the drawbacks being that some facilities are. not  implemented , 

efficiently  yet  or are  too awkward to use); (2) since MACSYMA is. a symbolic manipulation 
environment, it can have facilities to automate various well-defined steps in  the Creation of 
numerical  procedures; and (3) array functions are an effective way to implement numerical 
iteration' schemes with a degree of simplicity and flexibility  uncharacteristic of most numerical 
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programming  facilities. A major outstanding problem in generating expressions for nurnericat 
evaluation, is finding  effective  restructuring methods for obtaining expres'sions. which evaluate 
efficiently (i.e. minimizing multiplications). 
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APPLICATION OF MACSYMA  TO  FIRST  ORDER  PERTURBATION  THEORY 

IN  CELESTIAL  MECHANICS* 

John D. Anderson  and  Eunice  L. Lau 
Jet  Propulsion  Laboratory 

SUMMARY 

The  application of MACSYMA  to  general  first  order  perturbation  theory in 
celestial  mechanics  is  explored.  Methods of derivation  of  small  variations  in 
the  Keplerian  orbital  elements  are  developed.  As an example  of  the  methods, 
the  small  general  relativistic  perturbations on the  two-body  Newtonian  motion, 
resulting  from  the  rotation  of  the  central  body,  are  developed in detail. 

GENERAL  PROBLEM 

The  total  acceleration x on many  objects  in  the  solar  system  can be 
written  in  the  following  form. 

.. E 
- r = - - + a  

r 3 - P  

where  the  first  term  on  the  right  hand  side  of  the  expression  is  the  two  body 
acceleration,  and  the  second  term  is a  perturbative  acceleration,  assumed  small 
enough  that a first  order  perturbation  theory  is  adequate  to  describe  the 
motion.  The  zero  order  solution  to  equation (1) is  the  two  body'  solution 
(a = 0 )  which  yields  a  Keplerian  ellipse  with  constant  orbital  elements  (a, e, 
"J i, R ,  w).  

In this  paper we use  Gauss's  perturbation  equations  to  derive  time  varia- 
tions  in  the  Keplerian  orbital  elements  to  the  first  order  in  the  small  pertur- 
bative  acceleration.  In  terms of radial  R,  tranverse S, and  normal W compo- 
nents of a  the  variations  in  the  Keplerian  semimajor  axis a, the  eccentri- 
city  e,  the  mean  anomaly M, at  the  initial  time  epoch,  the  inclination  of  the 
orbit i, the  longitude of the  ascending  node 52, and  the  argument  of  the  perifo- 
cal  point w, are  given  by  the  following  set  of  equations  (ref. 1). 

-P , 

da - -(l-e ) (Re  sin v + S E) dt n  r 
2 

" 
2 -% 

* 
The  work  presented  in  this  paper  represents  one  phase  of  research  carried  out 

at  the  Jet  Propulsion  Laboratory,  California  Institute of Technology,  under 
NASA  Contract  NAS  7-100. 

395 



where 

- _  di - -(1-e w cos (v + w) 
dt na 

r 2 -% 
2 

dw r 

dt na e 
(1 - e [-R 2 cos  v + ~ ( 1  + -> sin  v - cos i - (7) 2 -% ' P 1 dR 

2 r  r dt 
- = -  

n = (u/a 1 

p = a ( l - e )  

3 %  

2 

r = ( z * -  r)' (10) 

and v  is  the  true  anomaly  in  the  polar  equation  for  the  Keplerian  ellipse. 

The  application  of MACSYMA to  the  solution of equations (2) through (7) 
proceeds  according  to  the  following  steps. 

Step 1. Evaluate  the  components R, S, and W of  the  perturbative  acceleration 
a .  
-P 

a * r  
7 -  

r R =  

The  magnitude of the  orbital  angular  momentum (r X I) is (p/p) , and  if W is 
defined  as  the  unit  vector  normal  to  the  orbital  plane  along  the  angular-momen- 
tum  vector,  then 

% 
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W = a   * W  
-P- 

- Step 2. Substitute R, S, and W  into  equations (2) through '(7) and  simplify. 

Step 3.  Multiply  the  six  time  derivatives  from  Step 2 by  the  common  factor 

dt r 

dv na 2 ( 1 - e )  

2 
" 

2 -% 
" 

Simplii-fy  the  results  to  obtain  expressions  daldv,  deldv,  dMo/dv,  dildv,  dR/dv, 
and  dwldv. 

Step 4 .  Integrate  the  six  derivatives  from  Step 3 between  the  limits  v  to  v. 
Simplify  the  results.  The  resulting  six  expressions  represent  the  variapions 
Aa,  Ae,  AFio,  Ai,  AR,  and Aw as explicit  functions  of  the  unperturbed  true 
anomaly v or  as  implicit  functions  of  time  by  means  of  the  Keplerian  relations 
between t and  v. 

Step 5. Obtain  the  secular  time  rate  of  change  of  the  Keplerian  elements  by 
evaluating  the  variations  from  Step 4 at v = 0 and v = 2 ~ r .  The  rates  are 

A given  by 0 

2Tr 
A = ba] 

s 2.rr 0 
( 1 7 )  

with  similar  expressions  for  the  other  elements. 

EXAMPLE 

In  order  to  illustrate  the  general  method, we select a  relativistic  pertur- 
bative  acceleration  that  arises  because of the  rotation o f  the  central  body 
(ref. 2) 

a = - h ( r - J ) r  61.1 +-(2XJ)r -5 21.1 -3  

- P C  2 -  - 2 -  - 
C 

where h = r X k is  the  orbital  angular  momentum,  and 2 is  the  spin  angular  mo- 
mentum  per  unit  mass  for  the  central  body. We  choose  the  equator  of  the  central 
body  as  the  reference  plane  for  the  orientation  elements  (i, R, w) of  the  orbit. 
Then,  the  spin  angular  momentum  is  along  the z axis  and 

The  unit  vectors P, Q in  the  orbit  plane,  where P is  directed  to  peri- 
focus,  as  well as thevector W  along h, are  defined by the  following MACSYMA 
statements. 

- - 
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(Cl) PX:COS(OMEGA)*COS(NODE)-SIN(OMEGA)*SIN(NODE)*COS(I)$ 

(C2) PY:COS(OMEGA)*SIN(NODE)+SIN(OMEGA)*COS(NODE)*COS(I)$ 
(C3) PZ : SIN (OMEGA) *SIN (I) $ 

(C4) QX:-SIN(~MEGA)*COS(NODE)-COS(OMEGA)*SIN(NODE)*COS(I)$ 
(C5) QY:-SIN(OMEGA)*SIN(NODE)+COS(OMEGA)*COS(NODE)*COS(I)$ 

(C6)  QZ:COS(OMEGA).*SIN(I)$ 

(C7)  WX:SIN(NODE)*SIN(I)$ 

(C8)  WY:-COS(NODE)*SIN(I)$ 

(C9) WZ:COS(I>$ 

where  the Eulerian angles i = I, R = NODE, and w = OMEGA are defined in  the 
usual sense. 

Now, the position - r and velocity 4 vectors  are  given by, 

where 

x = r cos v 

= r sin v 

w 

yw 

? = - (p/p> sin v 

* = (u/p>’ (cos v + e) 

% 
w 

yw 

The corresponding MACSYMA definitions  are as follows: 

(C30) XOMEGA: R*COS (V) $ 

(~31) yOMEGA:R*SIN(V)$ 
(C32) XOMEGADOT:-(M/P)**(l/2)*SIN(V)$ 
(C33) YOMEGADOT:((M/P)**(1/2))*(COS(V)+E)$ 

(C34) X: XOMEGA*PX+YOMEGAfcQX$ 
(C35)  Y : XOMEGA*PY+YOMEGA*QY$ 

(C36) Z:XOMEGA*PZ+YOMEGA*QZ$ 

(C37) DX:XOMEGADOT*PX+YOMEGADOT*QX$ 

(c38) DY:XOMEGADOT*PY+YOMEGADOT*QY$ 
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(C39) DZ:XQMEGADOT*PZ+YOMEGADOT*QZ$ 

We now d e r i v e   e x p r e s s i o n s   f o r  R, S ,  and W as given by equat ions   (12) ,  (131, 
and  (15) fo r   t he   pe r tu rba t ive   acce le ra t ion   o f   equa t ion  (18). 

F i r s t   o f  a l l ,  t h e  scalar product   of  r and (r X k) is  zero  by i n s p e c t i o n ,  
SO 

- 

The MACSYMA eva lua t ion  of t h e   t r i p l e  scalar product  and then  R proceeds as 
fo l lows  : 

((240) EMTERMATRIX(3,3) ; 

ROW 1 COLUMN 1 X; 

ROW 1 COLUMN 2 Y; 

ROW 1 COLUMN 3 Z; 

ROW 2 COLUMN 1 DX; 

ROW 2 COLUMN 2 DY; 

ROW 2 COLUMN 3 DZ; 

A ROW 3 COLUMN 1 0; 

ROW 3 COLUMN 2 0 ;  

ROW 3 COLUMN 3 J; 

MATRIX-ENTERED 

(C41) DETERMINANT ( X )  ; 
(C42) RATEXPAND(%) ; 

((243) RATSUBST(l,SIN(NODE)**2+COS(NODE)**2,%)$ 

(C44) RATSUBST(l,SIN(OMEGA)**2+COS(OMEGA)**2,%)$ 

(C45) RATSUBST(l,SIN(I)f~?;*2+COS(1)**2,%); 

(C46) RATSUBST (1, SIN (V) **2+COS (V) **2, X) ; 

(C50) FACTORSUM(D46) ; 
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(C51)  CAPR:2*M*%/R**4/C**2; 

(D51) 
2 COS(1) J M3/2 (E COS(V) 4- 1) 

C2  SQRT(P) R 

(C52)  RATSUBST(P/R,  l+E*COS (V) ,D5l) ; 
(C53)  CAF'R:%; 

(D53) 
2 COS (I) J M3/' SQRT (P) 

C R  2 4  

Because  a  r = 0, the  expression  for S from  equation (13) is  obtained  as 
follows : -P- 

(c55) CAPS:-R*CAPR*E*SIN(V)/P; 

(D55) - 2 E COS(1) J M3/2  SIN(V) 
C2 SQRT(P) R3 

The  final  component  of  a , normal to  the  orbit  plane, is obtained  by  form- 
ing  the  scalar  produ$t betwe3 W and a . First  of  all  we  obtain  the  triple 
scalar  product W (r X J) and then exluate W with  the  knowledge  from  the  two 
body  problem  that W * h = (up)$. The MACSYMA evaluation  follows. 

" 

" 

(C64)  ENTERMATRIX(3,3) ; 
ROW 1 COLUMN 1 WX; 
ROW 1 COLUMN 2 WY; 

ROW 1 COLUMN 3 WZ ; 

ROW 2 COLUMN 1 DX; 
ROW 2 COLUMN 2 DY; 

ROW 2 COLUMN 3 DZ; 
ROW 3 COLUMN 1 0; 

ROW 3 COLUMN 2 0; 

ROW 3 COLUMN 3 J; 

IL4TRIX-ENTERED 
(C65) DETERMINANT(%) $ 

(C66) RATSUBST(l,SIN(NODE)**2+COS(NODE)**2,%)$ 
(C67) RATSUBST(l,SIN(OMEGA)**2+COS(OMEGA)**2,%)$ 

(C68) RATSUBST(l,SIN(1)**2+COS(I)**2,%)$ 

(C69) RATSUBST(l,SIN(V)**2+COS(V)**2%); 
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FACTORSUM(D69) ; 

D77/SIN(I) ; 
TRIGREDUCE ( X )  ; 
%*SIN(I) ; 

RATS IMP ( X )  ; 
FACTORSUM( X) ; 

- SIN(I) J SQRT(M)  .(SIN(V + OMEGA) + E SIN(OMEGA)) 
SQRT (PI 

%*2*M/C**2/R**3; 

%+6*MkSQRT(M*P)  *Z*J*(l+E*COS  (V))  /C**2/P/R**4; 

FACTORSUM(%) ; 

-2 SIN(1) J M3l2  (SIN(V+OMEGA) - 3 E COS(0MEGA)  COS(V)  SIN(V) 

COS(0MEGA)  SIN(V) - 3 E SIN(0MEGA)  COS2  (V) - 3 SIN(0MEGA)  COS(V) 
SIN(OMEGA))/  (C2  SQRT(P)  R3) 

D89/SIN(I) ; 

TRIGREDUCE(%) ; 

FACTORSUM( %) $ 

%*SIN (I) ; 

CAPW: %$ 

Now that R, S, and W have been obtained, the variations in the elements 
can be derived from equations (2) through (7). The MACSYMA expression for 
de/dt in equation (3) is 
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(C4) SQRT(1-E**Z)*(CAPR*SIN(V) + CAPS*(R/P)*( (l+(P/R))*COS(V)+E))/N/A; 

We Perform some substitutions, and multiply by dt/dv to obtain de/dv as follows.. 

(C5) RATSUBST(P/A,  1-E**2 , X )  ; 
(C6) EUTSUBST(SQRT  (M/A**3)  ,N,%) ; 

Now multiply by  dtldv. 

(C7)  %*(R**2/SQRT  (M*P)) ; 

(C8)  FACTORSUM(%) ; 

(D8) -2 COS (I) J SQRT (M) (A E R2  COS  (V) + A E P R COS(V) - P R + A R 2 2 

- A P’) SIN(V)/ (A c P 2 3/2 R2) 

(C9)  RATSUBST (P/ (l+E*COS  (V) ) , R, %) ; 

(c10) RATSUBST(N,kA**(3/2) , SQRT(M) ,%I ; 

(C11) RATSUBST(A*(l-E**2),Py%); 

( D W  
2 COS(1) J N SIN(V) 
C2  SQRT(1 - E’) 

This is the final expression for de/dv. 

We w i l l  illustrate one more MACSYMA derivation of a variation by determin- 
ing  dR/dv  from equation (6) . 
(C41)  R*CAPW*SIN(V+OMEGA)  /N/A**2/SQRT  (1-E**2)  /SIN(I) ; 

(C42)  SUBST(SQRT  (P/A)  ,SQRT  (I-E**2 , X )  ; 

(C43)  %*(R**2/SQRT. (M*P)) ; 

043) 
J M SIN(V + OMEGA)  (3 E SIN(2 V + OMEGA) + 4 SIN(V + OMEGA) + E SIN(0MEGA)) 

A3/2  c2 p3/2  

( c 4 4 )  J*M/A**(3/2)/C**2/N/P**(3/2); 

(C45) D43/%; 
(C46) TRIGREDUCE (%) ; 

(C47)  FACTORSUM(%) ; 

(~47) -(4 cos(2 (v + OMEGA)) + 3 E COS(3 V + 2 OMEGA) +- E Cos(.V d- 2 OMEGA) 

- 4 E COS(U) - 4) /2 

(C48)  RATSTJBST(A*(I”Ej’(*2)  ,P,D44) ; 
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RATS'UBST (N**2*A**3 ,M, X) ; 
J N  

C ( 1 - E )  2  2  312 

RATEXPAND(D47) ; 

D50/2; 

RATEXPAND (%) ; 

2*%*D49; 

2 J N (-COS(2  (V f OMEGA)) - 3  E COS(3 V + 2  OMEGA) 
4 

-- E + E COS(V) + 1)/(C2(1 - E  2 ) 312) 4 

T h i s  is the  final  expression  for  dR/dv. 

A complete  listing  of  the  six  derivatives  follows. 

" da = 0 
dv 

de - 2n(1 - e ) cos i sin v dv  2 
2 -+ 

" 

C 

" d'o 2n 1 cos i cos v 
dv e 2  

- -  
C 

dR 
dv  2 
" - 2n(l - e ) -3/2 [I + e COS v - 1/4 e cos (v + 2 ~ )  

C (31) 
1 

dw - = -2n(l - e dv 

2 (' + 2e 
e cos v - 1/4 e cos(v + 2w) 

C 
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MACSYMA has  produced  expressions  which  can  be  integrated by in spec t ion .  
The s e c u l a r  rates in   the   e lements   fo l low  a lmost   immedia te ly .  

s i n  i Ci? = 2n ( 1  - e ) 2 2 -3/2 j- sin i 
6 2 

C 

( d i / d t ) s  = 0 

a = O  
S 

e = O  
S 

Mos = 0 

The p h y s i c a l   i n t e r p r e t a t i o n   o f   t h e s e   s e c u l a r   e x p r e s s i o n s  i s  t h a t   t h e  
pe r i foca l   po in t   r eg res ses   s lowly   fo r  sa te l l i t e  motions i n   t h e  same genera l  
d i r e c t i o n  as t h e   r o t a t i o n  of t h e   c e n t r a l  body,  and  advances  slowly  for  retro- 
grade s a t e l l i t e  motions. The l i ne   o f   nodes   o f   t he   o rb i t   a lways   advances  
slowly no matter what t he   va lue   o f   t he   i nc l ina t ion   ang le .  The s e c u l a r   v a r i a -  
t i o n s   c a n   b e   i n t e r p r e t e d   i n  terms of a s low  d ragg ing   o f   an   i ne r t i a l   coo rd ina te  
sys t em  by   t he   ro t a t ing   cen t r a l  body. T h i s   o c c u r s   i n   g e n e r a l   r e l a t i v i s t i c  mech- 
a n i c s ,   b u t   n o t   i n  Newtonian  mechanics  where the   angu la r  momentum o f   t h e   c e n t r a l  
body has  no d i r e c t   e f f e c t  on t h e   o r b i t a l   m o t i o n .  The d i f fe rences   be tween  the  
two t h e o r i e s  of motion are descr ibed   very  well by  the  example  of  this  paper.  
The r e s u l t s   a g r e e   w i t h   t h o s e   o b t a i n e d  by  Lense  and  Thirr ing  ( ref .  3 ) .  
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SYMBOLIC COMPUTATION OF RECURRENCE EQUATIONS 
FOR THE CHEBYSHEV SERIES SOLUTION OF LINEAR ODE'S* 

K.O. Geddes 
University  of  Waterloo, Waterloo,  Ontario,  Canada 

ABSTRACT 

I f  a l i n e a r   o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n   w i t h   p o l y n o m i a l   c o e f f i c i e n t s  
i s  conve r t ed   i n to   i n t eg ra t ed   fo rm  then   t he   fo rma l   subs t i t u t ion   o f  a Chebyshev 
series l eads   t o   r ecu r rence   equa t ions   de f in ing   t he  Chebyshev c o e f f i c i e n t s   o f  
t he   so lu t ion   func t ion .  An exp l i c i t   f o rmula  i s  presented   for   the   po lynomia l  
c o e f f i c i e n t s   o f   t h e   i n t e g r a t e d   f o r m   i n  terms of   the   po lynomia l   coef f ic ien ts   o f  
t h e   d i f f e r e n t i a l  form. The symmetries a r i s i n g  from m u l t i p l i c a t i o n  and in teg-  
r a t i o n   o f  Chebyshev  polynomials are e x p l o i t e d   i n   d e r i v i n g  a genera l   recur rence  
equation  from  which  can  be  derived a l l  of t h e   l i n e a r   e q u a t i o n s   d e f i n i n g   t h e  
Chebyshev c o e f f i c i e n t s .   P r o c e d u r e s   f o r   d e r i v i n g   t h e   g e n e r a l   r e c u r r e n c e  
equat ion  are  s p e c i f i e d   i n  a p r e c i s e   a l g o r i t h m i c   n o t a t i o n   s u i t a b l e   f o r   t r a n s -  
l a t i o n   i n t o  any  of  the  languages  for  symbolic  computation. The method i s  
a lgeb ra i c  and i t  can   t he re fo re   be   app l i ed   t o   d i f f e ren t i a l   equa t ions   con ta in ing  
inde termina tes .  

1. INTRODUCTION 

The most  widely  used  methods f o r  computing  the  numerical   solution  of  an 
o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n  (ODE), i n   t h e  fo rm  o f   e i t he r   an   i n i t i a l -va lue  
problem o r  a boundary-value  problem, are  d iscre te -var iab le   methods .   That  is  
t o   s a y ,   t h e   s o l u t i o n  is ob ta ined   i n   t he   fo rm  o f   d i sc re t e   va lues  a t  s e l e c t e d  
p o i n t s .  Methods f o r  computing  an  approximate  solution  in  the  form  of a con- 
t i nuous   func t ion   (u sua l ly  a polynomia l   o r   ra t iona l   func t ion)   have   rece ived  
some a t t e n t i o n   i n   t h e   l i t e r a t u r e .   P r o b a b l y   t h e   b e s t  known cont inuous-var iable  
method is the  Lanczos  tau-method  (ref.  1)  which is c l o s e l y   r e l a t e d   t o   t h e  
Chebyshev series methods  of  Clenshaw ( r e f .  2) and Fox ( r e f .  3)  f o r   l i n e a r  ODES 

* This   r e sea rch  w a s  supported by the  Nat ional   Research  Counci l   of  Canada 
under Grant A8967. 
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The  Chebyshev  method has   a l so   been   u sed   fo r  a f i r s t -o rde r   non- l inea r  ODE (refs. 
4 and 5) b u t   t h e  method t h e n   r e q u i r e s   i t e r a t i o n  whereas i t  is  a d i r e c t  method 
i n   t h e  case of l inear ODEs. More r e c e n t l y ,   t h e  Chebyshev series method has  been 
e x t e n d e d   t o   t h e   s o l u t i o n  of p a r a b o l i c   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   ( r e f s .  6 
and 7 ) .  

The most extensive  treatment  of  Chebyshev series methods i s  c o n t a i n e d   i n  
t h e  book by Fox and  Parker   ( ref .  8). The basic   approach is  series. s u b s t i t u t i o n  
followed by t h e   s o l u t i o n  of r e su l t i ng   r ecu r rence   equa t ions .  A l l  o f   t he   au tho r s  
treat  t h e  series s u b s t i t u t i o n  and gene ra t ion   o f   t he   r ecu r rence   equa t ions  as a 
hand c o m p u t a t i o n   p r i o r   t o   t h e   a p p l i c a t i o n   o f  a numerical   procedure  for   solving 
the   r ecu r rence   equa t ions .  However, e x c e p t   f o r   p a r t i c u l a r l y   s i m p l e   s p e c i a l  
cases, the   gene ra t ion   o f   t he   r ecu r rence   equa t ions  is  a t ed ious  and  error-prone 
hand manipulation  which  could w e l l  be programmed i n  a language  for   symbolic  
Computation. In   t h i s   pape r ,   p rocedures  are d e s c r i b e d   f o r   g e n e r a t i n g   t h e  re- 
c u r r e n c e   e q u a t i o n s   f o r   a r b i t r a r y - o r d e r   l i n e a r  O D E s  wi th   polynomial   coeff i -  
c i en t s .   The re  is no  need t o  restrict  t h e  method t o   f i r s t  and  second  order 
equat ions  as previous  authors  have  done.  Furthermore,   the method c a n   a l s o   b e  
appl ied  to   problems  containing  indeterminates   ( for   example,   indeterminate  
i n i t i a l   c o n d i t i o n s )  and to   e igenvalue   p roblems.  An a t t r a c t i v e   f e a t u r e  of t h e  
method is  t h a t   t h e   a s s o c i a t e d   c o n d i t i o n s  may be   o f   in i t ia l -va lue   type ,  
boundary-value  type,   or   any  l inear   combinat ion  of   funct ion and d e r i v a t i v e  
va lues  a t  one o r  more p o i n t s .  

The procedures  described  here  have  been  implemented  in  the ALTRAN lang- 
uage  ( ref .  9 ) .  Once the   recur rence   equat ions   have   been   genera ted   the i r  
so lu t ion   could ,   in   the   s tandard   case ,   be   accompl ished  by a numerical   proce- 
du re   r a the r   t han  a symbolic  procedure. However, i n   t h e   p o t e n t i a l l y   p o w e r f u l  
a p p l i c a t i o n   o f   t h e  method to   p roblems  conta in ing   inde termina tes  a symbolic 
so lu t ion   o f   t he   r ecu r rence   equa t ions  w i l l  sometimes  be  desired.  Therefore 
t h i s  second  phase  has  also  been  coded i n   t h e  ALTRAN language. The s tandard 
problem  without  indeterminates i s  obviously a p r ime  c a n d i d a t e   f o r  a hybrid 
symbolic/numeric  computational  procedure. I n  keeping   wi th   the   po ten t ia l   de-  
sire f o r  a symbolic   solut ion,  we restrict o u t   a t t e n t i o n   t o  a c lass   o f   p roblems 
f o r  which  the  trun'cated  Chebyshev series can  be  obtained by a d i r e c t  method. 
Thus w e  cons ide r   on ly   l i nea r  O D E s  wi th   po lynomia l   coef f ic ien ts .  Of course ,  
a l i n e a r  ODE whose c o e f f i c i e n t s  are r a t iona l   func t ions   cou ld   be   conve r t ed   t o  
one   wi th   po lynomia l   coef f ic ien ts  and t h e r e f o r e ,   i n   p r i n c i p a l ,   t h e  method can 
be   appl ied   to   any   l inear  ODE whose c o e f f i c i e n t s  are func t ions  which  can  be 
approximated w e l l  by r a t i o n a l   f u n c t i o n s .  

The method  assumes t h a t   t h e   s o l u t i o n  i s  d e s i r e d   i n   t h e   i n t e r v a l  [-1, 1 3  
(which  means t h a t  a s imple   t ransformat ion   of   var iab les  w i l l  be   r equ i r ed ,   i n  
general ,   before   applying  the  method) .  The truncated  Chebyshev series pro- 
duced by t h e  method i s  a near-minimax  polynomial  approximation  of  the  true 
s o l u t i o n   t o   t h e  problem.  This i s  b a s e d   o n   t h e   f a c t   t h a t ,   f o r   a n y   f u n c t i o n  
con t inuous   i n  [-1, 11 , t h e  minimax e r r o r   i n   t h e   t r u n c a t e d  Chebyshev series 
of  degree n is n e v e r   a p p r e c i a b l y   l a r g e r   t h a n   t h e   e r r o r   i n   t h e   b e s t  minimax 
polynomial  of  degree n (e .g .   re f .   10) .  The goodness of the  approximate 
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so lu t ion   ob ta ined   therefore   depends   on   the   ab i l i ty   o f   po lynomia ls   to   approx-  
imate t h e   t r u e   s o l u t i o n .  A more  powerful class of   approximating  funct ions is 
t h e   r a t i o n a l   f u n c t i o n s .  However, the  computat ion  of   near-minimax  ra t ional  
func t ions  would  be bes t   accompl i shed   i n   t he  form  of  Chebyshev-Pade  approxima- 
t i ons   ( r e f .   11 )   wh ich   r equ i r e ,  as a n   i n i t i a l   s t e p ,   t h e   g e n e r a t i o n  of  Chebyshev 
series c o e f f i c i e n t s .  Thus t h e  method d i s c u s s e d   i n   t h i s   p a p e r  i s  a bas i c  
bui ld ing   b lock  as w e l l  as a powerful method i n  i t s  own r i g h t .  

2 .  CONVERSION TO INTEGRATED FORM 

Cons ide r   an   o rd ina ry   d i f f e ren t i a l   equa t ion   o f   o rde r  V with  polynomial 
c o e f f i c i e n t s  : 

PJX> Y(v)  (x) + + P1(X) Y l (x) + P0(X> Y (x) = (x) (1) 

We w i l l  t empora r i ly   i gnore   t he  v assoc ia ted   condi t ions   which  would se rve  
t o   s p e c i f y  a unique   so lu t ion   of   (1) .  We seek a solut ion  of   the  form 

Y (x) = 1' ckTk(x) 
k= 0 

where t h e  p r i m e  ( ' )  i n d i c a t e s   t h e   s t a n d a r d   c o n v e n t i o n   t h a t   t h e   f i r s t   c o e f f i -  
c i e n t  i s  t o  be  halved  and  where T (x)   denotes   the  Chebyshev  polynomial  of  the 
f i r s t   k i n d  : k 

T (x) = cos   (k   a rccos  x). 

I f   t h e  series (2) i s  s u b s t i t u t e d   i n t o   t h e   d i f f e r e n t i a l   e q u a t i o n   ( 1 )   t h e n  

k 

the   l e f t   s ide   o f   (1 )   can   be   expres sed   i n   t he  form  of a Chebyshev series. By 
expressing  the  r ight-hand-side  polynomial   r (x)   in   Chebyshev  form,  w e  can 
e q u a t e   c o e f f i c i e n t s  on t h e   l e f t  and r i g h t   t o   o b t a i n   a n   i n f i n i t e  set of l i n e a r  
e q u a t i o n s   i n   t h e  unknowns c , c l , c ~ ,  ... ( r e f .  8 ) .  There w i l l  be  v addi t ion-  
a l  equat ions  der ived  f rom tfle a s s o c i a t e d   c o n d i t i o n s . )   T h i s   i n f i n i t e   l i n e a r  
sys t em  has   t he   p rope r ty   t ha t   t he   l ower   t r i angu la r   pa r t  i s  zero except f o r  a 
few  sub-diagonals  and i t  t h e r e f o r e  becomes f i n i t e   u n d e r   t h e   a s s u m p t i o n  
c k  = 0 (k > kmax), f o r  some chosen lanax. This   assumption  must   be  val id ,   to  
w i th in  some a b s o l u t e   e r r o r   t o l e r a n c e ,   i f   t h e   s o l u t i o n   y ( x )  i s  to   have  a con- 
vergent  Chebyshev ser.ies expans'ion.  Thus  one may s o l v e   t h e   l i n e a r   s y s t e m ,  
f o r   i n c r e a s i n g   v a l u e s   o f  lunax, u n t i l  some conve rgence   c r i t e r ion   has   been  
s a t i s f i e d .  

However, as is  n o t e d   i n   r e f e r e n c e  8, t he   l i nea r   sys t em is  much s i m p l e r   i f  
(1) i s  f i r s t   c o n v e r t e d   t o   i n t e g r a t e d  form.  This is because   the  series r e s u l t i n g  
from i n d e f i n i t e   i n t e g r a t i o n   o f  (2)  is  much s impler   than   the  series r e s u l t i n g  
f r o m   f o r m a l   d i f f e r e n t i a t i o n .   S p e c i f i c a l l y ,   f o r m a l   d i f f e r e n t i a t i o n  of (2) y i e l d s  
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r w  1 
y ' ( x )  = c '  C 2(2 i+ l )  c2i+l T2k (x> 1 k=O i=k  

w h i l e   i n d e f i n i t e   i n t e g r a t i o n  of   (2)   yields  

(where K d e n o t e s   a n   a r b i t r a r y   c o n s t a n t ) .  The end r e s u l t  i s  t h a t   i n   t h e   i n -  
f i n i t e   l i n e a r   s y s t e m   d e r i v e d   f r o m   t h e   i n t e g r a t e d   f o ?  of t h e   d i f f e r e n t i a l  
equat ion  (l), each   i nd iv idua l   equa t ion   con ta ins   on ly  a f i n i t e  number of terms. 
I n   t h e   o r i g i n a l   ( d i f f e r e n t i a l )   f o r m ,   e a c h   i n d i v i d u a l   e q u a t i o n   i n   t h e   i n f i n i t e  
l inear   sys tem is i t s e l f   i n f i n i t e .  Thus a v e r y   s u b s t a n t i a l   r e d u c t i o n   i n  com- 
p l e x i t y  i s  achieved by cons ider ing   the   in tegra ted   form.  The c o e f f i c i e n t s  are  
then   spec i f i ed  as  t h e   s o l u t i o n   o f  a f i n i t e   r e c u r r e n c e   r e l a t i o n   ( w i t h  non- 
c o n s t a n t   c o e f f i c i e n t s )   r a t h e r   t h a n   a n   i n f i n i t e   r e c u r r e n c e   r e l a t i o n .  

The d e r i v a t i o n   o f   t h e   r e c u r r e n c e   e q u a t i o n  i s  d e s c r i b e d   i n   d e t a i l   i n   t h e  
nex t   s ec t ion .  The fol lowing  theorem  gives  a formula  for  the  polynomial  co- 
e f f i c i e n t s   o f   t h e   i n t e g r a t e d  form  of t h e   o r d e r  v d i f f e r e n t i a l   e q u a t i o n  (l), 
i n  terms of   the   po lynomia ls   in   the   o r ig ina l   form.   This   formula   for   the  new 
polynomials i s  r e a d i l y   i n c o r p o r a t e d   i n t o  a p rogram  wr i t t en   i n   any   o f   t he  
computer  languages  for  symbolic  computation,  since  each new polynomial i s  
s p e c i f i e d   e x p l i c i t l y  as a l i nea r   combina t ion   o f   de r iva t ives   o f   t he   o r ig ina l  
polynomials  (and  the new r ight -hand  s ide  i s  obta ined  by i n t e g r a t i n g   t h e  
or ig ina l   r igh t -hand-s ide   po lynomia l ) .  An induc t ion   p roo f   fo r  Theorem 1 is 
g i v e n   i n   r e f e r e n c e  9 and is omit ted  here .  

Theorem 1: 

The o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n  (1) of   o rde r  v with  polynomial  co- 
e f f i c i e n t s  p (x) , . . . , po(x)  and  r ight-hand-side  polynomial r (x) is  equiva- 
l e n t   t o   t h e   I n t e g r a t e d   f o r m  v 

q0(x) Y(X> + jql (x)  Y ( X >  + .. * + 11 0 .  . /  q v W  Y(X> 
V 

= s (x) + Kv(x) 

where the   po lynomia l   coe f f i c i en t s  q (x) ,. . . , q (x) are g iven  by 0 V 



and  where  the  right-hand-side  polynomial  s(x) is  given by 

s ( x )  = // ... /r(x) . V 

I n  ( 5 )  - (7) t h e   n o t a t i o n  %(x)  denotes  an  arbitrary  polynomial  of  degree 
V - 1  a r i s i n g  from the   cons t an t s  of i n t eg ra t ion   and   t he   no ta t ions  

// . . . I f   ( x )  and  f(i)   (x) 
i 

d e n o t e   t h e   r e s u l t s   o f   a p p l y i n g ,   r e s p e c t i v e l y ,   i n d e f i n i t e   i n t e g r a t i o n  i times 
and f o r m a l   d i f f e r e n t i a t i o n  i times t o   t h e   f u n c t i o n   f ( x ) .  

3 .  GENERAL FORM OF THE RECURRENCE EQUATION 

For   an   o rd ina ry   d i f f e ren t i a l   equa t ion  of o rde r  V i n   t h e   i n t e g r a t e d  form 
(5) w e  seek a s o l u t i o n   i n   t h e  form  of t h e  Chebyshev series ( 2 ) .  S u b s t i t u t i n g  
( 2 )  i n t o   t h e   l e f t   s i d e  of (5) and  removing t h e  summation s i g n  and t h e  c out- 
s i d e   t h e   i n t e g r a l   s i g n s   y i e l d s  k 

m 

I n   o r d e r   t o   e x p r e s s  (8) i n   t h e  form  of ,a Chebyshev series (where  the  coeff i -  
c i e n t  of Tk(X) w i l l  be a l inear   combina t ion   of   c i ' s ) ,   the   po lynomia ls  
qo(x) , . . . ,qv(x)  are conver ted   in to  Chebyshev  form. Then the  fol lowing  iden-  
t i t ies ( r e f .  8) are appl ied :  

where, f o r   t h e  moment, w e  may assume t h a t  k is  " la rge  enough" i n  (9) and  that  
i is " l a rge  enough" i n  (10) to   avo id   non-pos i t i ve   subsc r ip t s .   Th i s  trans- 
forms (8) i n t o   t h e   f o l l o w i n g  form, f o r  k l a r g e  enough (i.e. n e g l e c t i n g   t h e  
f i r s t  few terms):  
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where t h e   c o e f f i c i e n t s  v (0 S i I 2h) are r a t i o n a l   e x p r e s s i o n s   i n  k a r i s i n g  
f rom  repea ted   appl ica t ions   o f  (9) and  (10)  and h i s  some p o s i t i v e   i n t e g e r .  i 

Then changing  the  indices   of  summation i n  
v e r t s   ( 1 1 )   i n t o  a Chebyshev series of   the  
f i r s t  few terms) : 

+ u c  + ... + u 
k ' IuOck-h 1 k-h+l 2hck+h1 

where   t he   coe f f i c i en t s  u2 (0 -< i -< 2h) are 

(11) , s e p a r a t e l y  i n  each term, con- 
fo l lowing   form  (neglec t ing   the  

r a t i o n a l   e x p r e s s i o n s   i n   k .  The 
f i r s t  few terms could   be lder ived   independent ly .   F ina l ly ,  by conve r t ing   t he  
r ight-hand-side  polynomial   in  (5) i n t o  Chebyshev  form, w e  are r eady   t o   equa te  
c o e f f i c i e n t s   a n d   s o l v e   f o r   t h e  c . ' s .  The coe f f i c i en t s   o f   To(x ) ,  ..., Tv-l(x) 
would not   be   equated   because   o f   $he   a rb i t ra ry  term \ (x )   appea r ing   i n  (5). 

. I n s t e a d   t h e   f i r s t  v equations  would come from t h e   a s s o c i a t e d   c o n d i t i o n s .  

The following  example w i l l  serve t o   i l l u s t r a t e .   C o n s i d e r   t h e  problem: 

(l+x ) y"(x) - y'  (x) + x y(x)  = 2-x 
2 2 

y(0) = 0;  y ' ( 0 )  = 1. 

The i n t e g r a t e d  form of (13) i s ,  from ( 5 )  - (7) ,  

( l+x ) Y(X) + I (-1-4~)   Y(X)  + II(~+x) Y(X)  2 

= x - (1/12)  x4 + K2(x). 2 

S u b s t i t u t i n g   ( 2 )   i n t o   ( 1 5 )  and   conver t ing   the   po lynomia ls   in to  Chebyshev 
form y i e l d s  



I 

where some cons tan t  .terms on t h e   r i g h t   h a v e   b e e n   a b s o r b e d   i n t o   t h e   a r b i t r a r y  
l i n e a r  term K2(x) .   Apply ing   the   ident i t ies  (9) and   t hen   (10 )   y i e lds ,   a f t e r  
much manipulat ion,   the   fol lowing form for  t h e   f a c t o r '  { 1 i n   ( 1 6 ) ,   f o r  k 
l a r g e  enough: 

{[8(k+2) (k+3)]-' Tk+3(x) + (1/4 - (k+2)-l + [2(k+l) (k+2)]-1)Tk+2(x) 

+ (-[2(k+l)]-l - [8(k+l)(k+2)]-l) Tk+l(x) + (3 /2  - [(k-1)  (k+l)]-l)Tk(x) 

+ ([Z(k-l)]-' - [8(k-1) (k-2)I-l) T k - l ( ~ )  

+ (1/4 + (k-2)-l + [2(k-l)(k-2)]-1)Tk-2(x) + [8(k-2)  (k-3)]-1Tk-3(x)1.  (17) 

To ob ta in   t he   gene ra l   coe f f i c i en t   o f   Tk(x )  on t h e   l e f t   s i d e   o f   ( 1 6 ) ,   t h e   i n d e x  
of  summation  must  be  changed s e p a r a t e l y   i n   e a c h  term of   the   fac tor   (17) .   For  
example, f o r   t h e   f i r s t   t e r m  

t h e   d e s i r e d  change  of  index is k + k-3,  which y i e l d s  

where  again w e  are neg lec t ing   t he  f i rs t  few terms 
changing  the  indices  of summation appropr i a t e ly ,  
(16)  becomes 

i n   t h e  series. Af t e r  
t h e   l e f t   s i d e   o f   q q u a t  

Z{[8k(k-1)]-1 c ~ - ~  + (1 /4  - l / k  + [2k(k-l)]-') c ~ - ~  
k 

+ (-[2k]-' - [8k(k+l)]-l)  c ~ - ~  + (3/2 - [ (k- l ) (k+l ) ] - l )ck  

f ([2k]-l - [8k(k-1) 1-l) ck+l + (1 /4  + l / k  + [2k(k+l) 1-3 ck+2 

+ [ 8k(k+l) 1-l ck+3 1 Tk(x) . 

ion  

Working o u t   t h e   f i r s t  few terms u s i n g   s p e c i a l  cases ( s e e   s e c t i o n  4) of 
i d e n t i t i e s  (9)  and ( l o ) ,  a n d   o b t a i n i n g   t h e   f i r s t  two equat ions   f rom  the  two 
as soc ia t ed   cond i t ions   (14 ) ,  w e  o b t a i n   t h e   f o l l o w i n g   i n f i n i t e  s e t  of l i n e a r  
equations  which  define  the  Chebyshev  coefficients of t h e   s o l u t i o n   f u n c t i o n  
Y(X) r 
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1 / 2  co - c2 + c4 - C6 + . . . 

c - 3c + 5c5 - 7c7 + . . . 1 3 

-5/24 c1 + 7/6 c2 + 3/16 c3 + 5/6 c4 + 1 /48  c5 

1 /48  c0 + 0 c1 - 17/96 c2 + 11/8  c3 + 7/48 c4 

+ 15/24 c5 + 1/96   c6  

1/96 c1 + 1/24  c2 - 21/160 c + 43/30 c4 + 11/96 C5 3 '  

+ 21/40 c6 + 1/160 ~j 

= o  

= 1  

= 11/24  (19) 

= o  

= -1/96 

The remaining  equat ions are obta ined  by e q u a t i n g   t o   z e r o   t h e   c o e f f i c i e n t   o f  
Tk(x) i n   ( 1 8 ) ,   f o r  k = 5,6 ,7 , .  .. . Note tha t   (19)  i s  a 7-diagonal  system 
s t a r t i n g  from the   fou r th   equa t ion .  

I n   g e n e r a l ,   t h e   d e s i r e d  Chebyshev c o e f f i c i e n t s   s a t i s f y  a (2h+l) - term 
l inea r   r ecu r rence   equa t ion  of the  form 

u c   + u c  + ... + u 0 k-h 1 k-h+l 2h 'k+h = o  (20) 

where   the   coef f ic ien ts  ui are r a t i o n a l   e x p r e s s i o n s   i n  k. Equation  (20) w i l l  
b e   v a l i d   f o r  k 2 h e x c e p t   t h a t   t h e   f i r s t  few right-hand-sides may be  nonzero 
depending  on  the  degree  of   the  r ight-hand-side  polynomial   in   (5) .  The va lue  
of h depends on t h e   o r d e r  v o f   t h e   d i f f e r e n t i a l   e q u a t i o n  and on the  degree  of 
the   l e f t -hand-s ide   po lynomia ls   in   the   in tegra ted  form (5 ) .  Each a p p l i c a t i o n  
of the   p roduct   formula   (9)   and   each   appl ica t ion   of   the   in tegra t ion   formula  
(10)   increases   the  value  of  h by one. Lower and  upper  bounds on h can  be 
r ead i ly   de t e rmined   f rom  the   o r ig ina l   o rde r -y   d i f f e ren t i a l   equa t ion  (1); 
namely, i f  maxdeg is  t h e  maximum of the   degrees   o f   the   l e f t -hand-s ide   po ly-  
nomia ls   in   (1)   then  

v 5 h 5 v + maxdeg. (21) 
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The f i r s t  V e q u a t i o n s   i n   t h e   i n f i n i t e   l i n e a r   s y s t e m  come from  the 
associated  condi t ions  and w i l l  b e   e q u a t i o n s   c o n t a i n i n g   a n . i n f i n i t e  number 
of terms. I f  h > V t hen   t he re  w i l l  fol low V-h "spec ia l"  cases of   the   genera l  
recur rence   equat ion   (20) ,   wi th   nonzero   r igh t -hand-s ides   in   genera l ,   resu l t ing  
f rom  equa t ing   t he   coe f f i c i en t s   o f   t he  terms TV(x) , . . . , Th-l(x).  The re- 
ma in ing   l i nea r   equa t ions   r e su l t   f rom  equa t ing   t he   coe f f i c i en t s  of Tk(x),  
k = h,  h+l, ... and w i l l  a l l  b e   i n   t h e  form  of  recurrence  equation  (20) 
excep t   t ha t   t he re  w i l l  be a few  more nonzero  r ight-hand-sides if 

where  s(x) i s  the  r ight-hand-side  polynomial   in   the  integrated  form (5 ) .  

4.  SPECIAL  CASES  OF THE RECURRENCE EQUATION 

The der iva t ion   of   the   genera l   recur rence   equat ion   (20)  as d e s c r i b e d   i n  
s e c t i o n  3 i s  n o t   d i f f i c u l t   t o  implement i n  a symbolic  language. We now 
consider   the  der ivat ion  of   the  "special"   equat ions  which  require   the  appl i -  
ca t ion  of  modified  versions of the  product   formula  (9)   and  the  integrat ion 
formula  (10). In other   words,  we  now want t o   c o n s i d e r  what  happens when w e  
drop  the  assumption  that  k i s  " l a rge  enough"  which w a s  assumed i n   t h e  de- 
r i v a t i o n  of equat ion  (20) .  

The product  formula  (9) is i n   f a c t   c o r r e c t   f o r  a l l  va lues  of k and j 
i f   t h e   s u b s c r i p t   k - j  i s  rep laced  by  Ik-j I . The in tegra l   formula   (10)   has  a 
s p e c i a l  form f o r   t h e   c a s e s  i = 0 and i = 1, namely 

where  an  arbi t rary  constant   of   integrat ion is implied.   These  special  cases 
could   be   incorpora ted   in to  a program fo r   gene ra t ing   t he   r ecu r rence   equa t ions  
b u t   t h e   c o s t  of de r iv ing   each   i nd iv idua l   " spec ia l "   equa t ion  would  be  approx- 
ima te ly   equa l   t o   t he   cos t   o f   de r iv ing   t he  one general   equat ion  (20) .   For-  
t una te ly ,   t he  form  of  the  special   equations  can  be  deduced  immediately  from 
t h e   g e n e r a l   e q u a t i o n   w i t h o u t   e x t r a  work .   Re fe r r ing   t o   t he   example   i n   s ec t ion  
3,   the   third  equat ion  of   (19)  arises f rom  equat ing   coef f ic ien ts   o f  T ( x )   i n  
the  t ransformed  form  of   (16) .   I f  we " b l i n d l y "   o b t a i n   t h e   l e f t - s i d e   c o e f f i -  
c i e n t  of  T2(x) by s e t t i n g  k=2 i n   t h e   g e n e r a l   f o r m u l a   ( t h e   b r a c k e t e d   e x p r e s s i o n  
i n   ( 1 8 ) )  w e  ob ta in   t he   equa t ion  

2 

1/16 c - ~  + 0 c0 - 13/48 c l +  7/6 c2 + 3/16 c3 + 5/6 c4 

+ 1/48  c5 = 11/24. 



I f   t h e   n e g a t i v e   s u b s c r i p t  is i n t e r p r e t e d   i n   a b s o l u t e   v a l u e  - i.e. i f  w e  
equate   wi th  c1 - t h e n   t h e   t h i r d   e q u a t i o n   o f  (,19) r e s u l t s .  Our t a s k  i s  
now t o   p r o v e   t h a t   t h i s   " r u l e "   h o l d s   i n   g e n e r a l .  

t h e  
u n t i  

The main p o i n t  i s  
de r iva t ion   and   t he i  
.1 t h e   f i n a l  s t e p .  

t h a t   n e g a t i v e   s u b s c r i p t s  may be   car r ied   th roughout  
.r i n t e r p r e t a t i o n   i n   a b s o l u t e   v a l u e  may be  postponed 
Theorems 2, 3, and 4 below  show t h a t   t h e  "special" 

cases of the  recurrence  equation  can  be  immediately  deduced  from  the  general  
recur rence   equat ion .   Proofs  of these   theorems  appear   in   re fe rence  9 and are 
omit ted  here .  The p r o o f s   r e q u i r e   c a r e f u l   a t t e n t i o n   t o   t h e  symmetries involved 
i n   t h e   t r a n s f o r m a t i o n s   a p p l i e d   t o   c o n v e r t  (8) i n t o   ( 1 2 ) .  

Theorem  2: 

I d e n t i t i e s  (9) and  (10) are v a l i d  when non-pos i t ive   subscr ip ts   occur  on 
t h e   l e f t  and / o r   r i g h t   i n   t h e   s e n s e   t h a t  T i (x)   represents   T l i l (x) .  

The following  simple  example w i l l  c l a r i f y   t h e   a p p l i c a t i o n   o f  Theorem 2. 
C o n s i d e r   t h e   d i f f e r e n t i a l   e q u a t i o n  

o r ,   i n   i n t e g r a t e d  form, 

S u b s t i t u t i n g   t h e  series (2 )   i n to   (24 )   y i e lds  

C '  ck {Tk(x) + JTk(x) 1 = 0 .  
k=O 

1 ?plying  formula  ( lo)   gives  

The t h i r d  term i n   b r a c k e t s  would c a u s e   t r o u b l e   i f  w e  eva lua ted  it f o r  k = 1 
but  w e  w i l l  never  do s o  because w e  do n o t   e q u a t e   c o e f f i c i e n t s  of T (x ) .  
Cont inuing  with  the  example,   the   next   s tep i s  t o  change  indices  of  summation 
i n  (26)   y ie ld ing  

0 

a, m 
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Equa t ing   coe f f i c i en t s  of Tk(x) on t h e   l e f t  And r igh t   o f   (27)   g ives   the  
genera l   recur rence   equat ion:  

For t h i s   f i r s t - o r d e r   d i f f e r e n t i a l   e q u a t i o n  w e  must   equate   coeff ic ients   of  
Tk(x) f o r  k 2 1. Theorem 2 g ives  a v a l i d   i n t e r p r e t a t i o n   t o  (26) f o r   e a c h  
va lue   o f   the   index  k bu t  we have   ye t   t o   p rove   t ha t   (28 )  i s  v a l i d  when, f o r  
example, k = 1. I n   t h i s  example,  examination  of  the  lower limits of  summation 
i n  (27) reveals t h a t  (28) is c l e a r l y   v a l i d   f o r  k 2 2.  The case k = 0 w i l l  n o t  
be  required.   For k = 1 (i.e.  equa t ing   coe f f i c i en t s   o f   T l (x ) ) ,   t he   midd le  
summation i n  (27)  has a f a c t o r   1 / 2   a s s o c i a t e d   w i t h   t h e   f i r s t  term i n  i t s  sum 
and t h e   t h i r d  summation w i l l  c o n t r i b u t e  two t e r m s   t o   t h e   c o e f f i c i e n t  of Tl (x) -  
namely,  the terms wi th  k = -1 and k = 1. Thus t h e   c o e f f i c i e n t   o f  Tl(x)  comes 
from  the  terms 

The s p e c i a l  form  of   the   recur rence   equat ion   cor responding   to  k = 1 should 
the re fo re   be  

1 / 2  co + c1 - 1/2   c2  = 0.  (29) 

But  (29) i s  p r e c i s e l y   t h e   r e s u l t  of s e t t i n g  k = 1 i n   t h e   g e n e r a l   r e c u r r e n c e  
equat ion  (28) .  

The fol lowing two theo rems   p rove   t ha t   t he   l e f t   s ide  of  the   genera l  re- 
currence  equation  (20) i s  v a l i d   f o r  a l l  k 2 1, i n   t h e   s e n s e   t h a t   n e g a t i v e  
s u b s c r i p t s  are t o  b e   i n t e r p r e t e d   i n   a b s o l u t e   v a l u e .   R e c a l l   t h a t   t h e   l e f t  
s i d e  of t he   gene ra l   r ecu r rence   equa t ion  i s  obtained by t ransforming (11) i n t o  
(12) . By Theorem 2 , the  range  of  the  index  of summation i n  (11) may be 
t aken   t o   be  0 t o  03 (wi th   t he   u sua l  "pr ime" on t h e  summation s i g n  as i n   ( 2 ) ) .  
Changing t h e   i n d i c e s  of  summation i n   t h e  terms of  (11)  transforms  (11)  into.  
the  form 

03  03 

C '  vo(k f k-h) c T (X) + C '  vl(k f k-h+l) c k-h k k-h+i k T (x) 
k=h  k=h-1 

+ ... + C '  ~ ~ ~ ( k  f k+h) ck+h Tk(x) 
k=-h 

where   t he   no ta t ion   v i (k  + f (k ) )   deno tes ,   i n   an   obv ious  way, an opera t ion   of  
s u b s t i t u t i o n   i n   t h e   r a t i o n a l   e x p r e s s i o n  vi. Co l l ec t ing  terms, (30) t akes  
the   gene ra l  form  (12)  where t h e  new r a t i o n a l   e x p r e s s i o n s   u i  are given by 
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Theorem  3  gives  a  symmetry  property of the  rational  expressions  v  and  then 
Theorem 4 uses  this  symmetry  property  to  prove  the  validity  of  the  general  re- 
currence  for k 2 1. In the  substitution  operations  appearing in Theorem  3,  the 
symbol " = " is  used in place  of  the  symbol f " in  order  to  emphasize  the 
fact  that  they  are  arithmetic  evaluations  in  contrast  to  the  change  of  indices 
occurring  in (30)  and  (31). 

i 

Theorem  3: 

The  rational  expressions  v (0 5 i I 2h) appearing-in (11) satisfy  the 
following  symmetry  property: i 

v. = v (k = - a ) ,  0 5 i 5 h 
1 2h-i 

for  any  value  of R. 

Theorem 4 :  

The  expression (12), which  defines  the  general  form of the  recurrence 
equation,  is  valid  for  values  of  the  index k 2 1 in the  sense  that  negative 
subscripts  are  to  be  interpreted in absolute  value. 

Finally in this  section,  we  mention  the  interpretation  of  the  term k=O in 
(12) which  would  be  required  in  equating  coefficients  of T (x). Of  course  for 
any  differential  equation (1) of  order v 2 1 the  coefficient  of  T (x} is  un- 
determined  because  of  the  constants  of  integration.  However,  the  method 
discussed  in  this  paper  can  be  applied  directly  to  a  differential  equation  of 
order 0: 

0 
0 

in  order  to  compute  the  Chebyshev  series  coefficients  for an explicit  rational 
function r(x>/pO(x). In this  case  the  coefficients  of T (x) on  the  left  and 
right  must  be  equated  for  all k 2 0. The  coefficient  of T (x) on  the  left of 
the  transformed  form  of  (32)  is  not  that  obtained  by  direc?  application  of  the 
general  expression  in (12): 

k 

u (k=O) c - ~  + u (k=O) c - ~ + ~  + . .. + ~ ~ ~ ( k = 0 )  ch. 
0 1 (33) 

Rather,  the  correct  coefficient of T (x) comes  from  the  last  h+l  summations  in 
(30)  and  it  is 0 

1/2 vh(k=O) + v (k=l)  c1 + . . . + vZh(k=h)  ch. '0 h+l (34 1 

Using (31) , (34) becomes 
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1/2  u (k=O)  c0 t- ~ ~ + ~ c k = O )  c1 + . . . + u2h(k=O)  ch. h ( 3 5 )  

Comparing ( 3 5 )  with ( 3 3 )  we see  that,  for  the  special  case k=O in (12),the 
terms  with  negative  subscripts  must  be  ignored  and  the  term in  c  must  have  a 
factor 1/2 associated with it. 0 

5 .  SPECIFI~CATION ~~ OF THE  PROCEDURES 

Procedures  for  generating  the  general  recurrence  equation (20) for  the 
differential  equation (1) are  .specified in  a pseudo-Algol  algorithmic  notation. 
Four  basic  "system"  functions  for  polynomial  manipulation  are  assumed: 

degree (P , x) - returns  the  degree  of  the  polynomial p in  the 

derivative  (p,x,n) - returns  the  n-th  derivative  of  the  polynomial p 
coefficient  (p,x,n) - returns  the  coefficient  in  the  polynomial p of 

substitute  (r,x,expr) - returns  the  result of substituting  the 

indeterminate  x 

with  respect  to  the  indeterminate  x 

the  n-th  power  of  the  indeterminate  x 

expression  expr  for  every  occurrence  of  the 
indeterminate  x  in  the  rational  expression  r. 

A  brief  description  of  each  procedure  is  given  followed  by  the  algorithmic 
specification. 

- Descriltion " of the  Procedures: 

(1) Procedure  generate-recurrence. 

Input  parameters: v, p 
Output  parameters: recurrence-equation,  h 

The  polynomials p (0 5 k v) in  the  differential  equation (1) are 
passed  into  the  procedure. It is  assumed  here  that  the  indeterminate in these 
polynomials  is x and  it  is  also  assumed  that  the  global  array  comb  has  been 
initialized  such  that 

k 

comb  (i,j) = ($ - 
The  indeterminate  arrays tk and  ck  are  assumed; tkG) is  used  to  represent  the 
Chebyshev  polynomial Tk+j(x) where k is  an  indeterminate  and ck(j) is used  to 
represent  the  term  c in the  general  recurrence  equation. k appears  only 
as  an  indeterminate k+j in these  procedures. On return,  recurrence-equation 
is the  left  side  of  the  general  recurrence  equation (201 and h is its 



"half-length" as defined  by (20). 

Each  pass  through  the  m-loop  adds  one  term  into  factor,  where  the  terms 
in  factor  are  defined  by  the  bracketed  expression in (81. The  first  part  of 
the mdoop converts  the  given  polynomials  into  the  m-th  polynomial of the 
integrated  form,  using  Theorem 1. Then  follow  procedure  calls  which  implement 
the  identities (9)' and (10). Finally,  the  appropriate  substitutions  are  per- 
formed  to  transform (11) into  (12) which  yields  the  general  recurrence 
equation. 

(2) Procedure  chebyshev-form. 

Input  parameters: p, degp 
Output:  the  Chebyshev  form  of p is  returned 

The  polynomial p of  degree  degp in the  indeterminate x is  converted  into 
Chebyshev  form. It is  assumed  that  the  global  array  xpower  has  been  initial- 
ized  such  that  the  e1emen.t  xpower(i)  is  the  Chebyshev  form  of  x**i,  using  an 
array  of  indeterminates t where t(j) represents T.(x). 

( 3 )  Procedure  product - tk-times. 
J 

Input  parameters:  p,  degp 
Output:  the  representation  of T (x)*p is  returned k 

The  polynomial p of degree  degp,  assumed to be  in  Chebyshev  form,  is 
multiplied  by  the  polynomial  T (x)  by applying  identity C9) to  each  term  of  p. 
The  indeterminate  arrays t and tk are  as  discussed  above. k 

( 4 )  Procedure  integrate. 

Input  parameters :. p, h 
Output:  the  representation of the  integral of p is returned 

It  is  assumed  that p is  a  linear  combination of the  elements 
tk(-h) ,..., tk(h) where  the  meaning  of  the  array tk is  discussed  above.  The 
integral of p is  computed  by  applying  identity (10) t6 each  term  of p. 

procedure  generate - recurrence (v,p,recurrence-equation,h) 

degp f degree (p ,x) 

q f chebyshev-form (p , degp) 

factor f product-tk-times  (q,degp) 

h f degp 

V 

V 
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for  m=l  step 1 until v & - 

+ Pv-m - (v-rn+l)*derivative(pv - m+lyxyl) 
sign + -1 

for  i=m-2  step -1 until 0 & - 

sign -+ -sign 

q f q + sign * comb(v-i,m-i) *~derivative(pv,_i,x,m-i) 

doend 

degp + degree (q,x) 

q f chebyshev-form (q , degp) 

term f product-tk-times  (q,degp) 

hnew f degp 

for  i-1  step 1 until  m - 

term -+ integrate  (term,hnew) 

hnew +- hnew + 1 
doend 

factor f factor + term 
h f max (h , hnew) 

doend 

recurrence-equation -+ 0 

for j = -h  step 1 until  h 

coef -+ coefficient  (factor, tk(j),l) 

coef f substitute  (coef,k,k-j) 

recurrence-equation -+ recurrenceequation + coef * ckC-j) 
doend 

- end of procedure  generate-recurrence 



procedure  chebyshev-form  (p,degp) 

newp f 0 

- for k=O step '1 until  degp do -~ 

newp + newp + coefficient (pyx, k) * xpower (k) 
doend 

return  (newp) 

- end of procedure  chebyshev - form 

procedure  product - tk-times  (p,degp) 

newp f 0 

- for j=O step 1 until  degp  do -____ - 

newp f newp + coefficient(P,t(j),l) *(tk(j) + tk(-j))/2 
doend 

return  (newp) 

- end  of  procedure  product-tk - times 

procedure integrate  (p,h) 

newp * 0 

- for j=-h step 1 until  h do -~ 

newp f newp + coefficient(p,tk(j),l) fc (tk(j+l)/(k+j+l>-(tk(j-l)/(k+j-1>)/2 

doend 

return  (newp) 

end of procedure  integrate . 
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6 .  . SAMPLE PROBLEMS 

Reference 9 contains  a  listing  of an ALTRAN  program  which  is an imple- 
mentation  of  the  procedures  in  section 5 and  also  includes an implementation  of 
a  method  for  solving  the  recurrence  equations.  The  program  will  accept 
problems  with  indeterminates  in  the  associated  conditions  and also with indet- 
erminates  in  the  differential  equation  itself.  The  solution of the  recurrence 
equations  is  by  a  method  of  backward  recurrence  which  obtains  a  solution  under 
the  assumption  c =O for k > kmax  where  kmax  is  specified. A strategy  could 
easily  be  implemented  for  updating kmax  until  some  desired  absolute  accuracy  is 
satisfied. 

k 

The  following  three  sample  problems  illustrate  the  application  of  the 
method. 

Problem 1: (Standard  initial-value  problem) 

y l  = y; y ( 0 )  = 1 

Value of kmax: 10 

Recurrence  equation  generated: 

Maximum  absolute  error  in  c (0 .g  k < 10): k 

.11 

Size of last  computed  coefficient: 

Problem  2:  (Complicated  boundary-value  problem) 

2 (l+x ) y" - y1 + xy = 2-x 2 

Y(0) = 1; yl (0) + 2y(l) - 1/2 y( - l )  = 0 

Value  of  kmax: 10 

Recurrence  equation  generated: 

1/8k(k-1) c ~ - ~  + (1/4 - l/k + 1/2k(k-l)) c ~ - ~  

- (1/2k + 1/8k(k+l)) c ~ - ~  + (3/2 - l/(k-1)  (k+l))  ck 
+ (1/2k - 1/8k(k-1)) c ~ + ~  + (1/4 + l/k + 1/2k(k+l)) c ~ + ~  

+ 1/8k(k+l)  ck+3 = 0 
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Size of last  computed coeffkient: 

c 10 = .34(1f5). 

Problem 3:  (Indeterminate  initial  conditions) 

2 (l+x ) y" - y' + xy = 2-x 2 

Y (0) = u p  y 1  ( 0 )  = u2 

Value  of kmax: 10 

Recurrence  equation  generated:  same  as  problem 2. 

Remark:  Each  c is a  bilinear  polynomial of the  form 

c = akul + bk p2 + dk , for  constants  a 
k 

k k7 bk7 dk 
Size of last  computed  coefficient: 

c = .45 p1 + . 20(10-5) v2 + .24 (lom6) , 10 
Summary  of  Timing  Statistics: 

The  following  table  gives  the  execution  times  for  these  three  problems on 
a  Honeywell  66/60,  where: 

T = time,  in  seconds,  to  generate  the  general  recurrence  equation; 

T, = time,  in  seconds,  to  solve  the  equations  for  c ( 0  5 k 5 10). 
1 

k L 

T1 T 
2 

Problem 1: 

73 160 Problem 3 :  

80 160 Problem 2: 

10 4 

" 
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sin(z)**2 + cos(z)**2 = 1 t 

David R. Stoutemyer 
Universi ty  o'f H a w a i i  

ABSTRACT 

This i s  a chronicle  of  manifold  attempts  _to  achieve tasteful automatic 
employment o f   t h e   i d e n t i t i e s  sin2: + cos2: 1 and  cosh2z -. sinh2z Z1, i n  a 
manner which t r u l y  minimizes the  complexity  of the  r e su l t i ng   expres s ion .  After 
descr ib ing  the disappointments  of  tr igonometric  reduction,  tr igonometric expan- 
s ion,   pat tern  matching,   Poisson series, and  Demoivre's  theorem, the   au tho r  
r evea l s  how he  achieved  his  goal  by the  method of  comparative  combinatorial 
s u b s t i t u t i o n s .  

INTRODUCTION 

It i s  no coincidence that  t h e   s p e c t r e   o f   t h e   i d e n t i t y  

2 2 -  s i n  x + cos x = 1 

i s  r a i s e d   i n  many papers  on  computer  algebraic  simplification,  such as 
re ferences  1, 2,  and 3. This i s  a well-known iden t i ty ,   w i th   e spec ia l ly  fre- 
quent   opportuni t ies   for  employment. The i d e n t i t y  

i s  perhaps   the   on ly   one   tha t   en joys   g rea te r   use .  However, t h e  former  does  not 
s h a r e   t h e   u n i v a r i a t e   b i n o m i a l   p r o p e r t y   o f   t h e   l a t t e r ,  making a profound  dif- 
f e r ence   i n  t h e  ease of  t h e i r  e f f e c t i v e   r o u t i n e   u s e   i n  computer  algebra. 

I d e n t i t y  (1) and i t s  hyperbol ic   counterpar t  

cosh x - s inh  x = 1 2 2 -  
( 2 )  

are mere ly   t he   s imp les t   ca ses   o f   an   i n f in i t e   s e t   o f   such   i den t i t i e s ,   bu t  I 
w i l l  confine my a t t e n t i o n   t o   t h e s e  two ident i t ies   because :  

1. To my knowledge,  none  of t h e   e x i s t i n g  computer  algebra  systems 
provides a t o t a l l y   s a t i s f a c t o r y   b u i l t - i n  employment, of  even these 
two i d e n t i t i e s .  

2. U n t i l   t h e s e  two i d e n t i t i e s  can be t r e a t e d   s a t i s f a c t o r i l y ,  why 
worry  about t h e   o t h e r s .  

'This work w a s  supported by National  Science  Foundation  gratlt MCS75-22893. 
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3. 

4. 

5 .  

I n  a c e r t a i n   s e n s e ,   t h e s e   i d e n t i t i e s  most concisely convey t h e  
cen t r a l   f ac t s   conce rn ing   t he i r   cons t i t uen t s :  The sine  and  cosine 
are  dependent, as are the i r   hyperbol ic  - counterparts.  - . . - . . The o ther  
t r igonometr ic   and  hyperbol ic   ident i t ies   are   par t ly-  mere reitera- 
t i o n s   o f   t h e s e   f a c t s .  

I conjecture   that   dramatic   opportuni t ies   for   these two i d e n t i t i e s  
far outnumber those   fo r  any o ther  two such  trigonometric o r  
hyperbolic  identities--perhaps  even a l l  of   the  other   such  iden-  
t i t i e s  combined. Many engineering  and  science  problems  uti l ize 
s in ,   cos ,   s inh,  or cosh ,   r a i sed   on ly   t o  modest  powers,  with  argu- 
ments t h a t   a r e  mere indeterminates,  such as 8, or a product  of 
simple  coefficients  and  indeterminates,   such as at or 2 ~ x .  For 
such  expressions,   appl icat ion  of   the few a p p l i c a b l e   i d e n t i t i e s  
o t h e r   t h a n   i d e n t i t i e s  (1) or ( 2 )  i s  most l i k e l y   t o   i n c r e a s e   t h e  
complexity  of  the  expression, as we sha l l   s ee .  

A f a i l u r e   t o   e x p l o i t   i d e n t i t i e s  (1) o r  ( 2 )  i s  more noticeable  than 
a failure t o   e x p l o i t  more e so te r i c   i den t i t i e s .   Uncomi t t ed  
computer-algebra  candidates  are  quick t o   n o t i c e  examples  where they 
can  outperform a computer-algebra  system.  Unfortunately, many  who 
might  enjoy  and  benefit from  computer a lgeb ra   a r e   sub jec t   t o   t he  
all-too-prevalent human tendency t o  summarily  dismiss new opportu- 
n i t i e s  on t h e   b a s i s  o f  a hastily-formed f i r s t  impression. However, 
perhaps  the  scoffer ' s   scorn i s  somewhat deserved. Is it not 
embarrassing  that  computer-algebra  systems  that  can do such  an 
elegant   job  of   factor ing and integrat ion  cannot   exploi t  one o f   t h e  
few iden t i t i e s   t ha t   t r i gonomet ry   s tuden t s  are l i k e l y   t o  remember. 

I was unconcerned  with  such  matters  until I f irst  suf fered  at t h e  hands 
of  sin2x + cos2x. It happened  during t h e   t e s t i n g   o f  a forthcoming more- 
general   tensor  version  of  the  vector  curvil inear-components  function  described 
i n  reference 4. To  make a long   s to ry   l e s s   l ong ,   t he  components o f   t h e  second- 
k ind   Chr is tof fe l  symbol a r e  computed  from those   o f   the   cont ravar ian t   met r ic  
tensor  and t h e   f i r s t - k i n d   C h r i s t o f f e l  symbol.  These i n   t m n   a r e  computed  from 
those o f  the  covariant   metr ic   tensor ,  which a r e   i n   t u r n  computed  from those  of  
the  Jacobian  matrix,  which  are computed  from the  t ransformation from curvi- 
l inear   to   rec tangular   Car tes ian  components.  During a l l  of  these  computations, 
there   a re   o f ' t en   oppor tuni t ies   to  employ i d e n t i t i e s  (1) and ( 2 )  when t h e  
coordinate  transformation  involves  trigonometric  and  hyperbolic  functions, as 
do many of   the   c lass ic   o r thogonal   curv i l inear   coord ina tes .   Actua l ly ,  
"obligations" i s  a more appropriate word than  "opportunities"  here,  because 
i f  a l l  such  opportunities were not  exploited as soon as they   a rose ,   the  compu- 
tation  frequently  could  not  be  completed  because  of  storage  exhaustion o r  
computing t imes   tha t  had  passed  the bounds of  decency,  with no end i n   s i g h t .  
The objec t ive  was t o  make t h e   e n t i r e  computation  automatic,  untouched  by 
human hands.   This  objective  necessitates a s i m p l i f i e r  which exp lo i t s  one or 
more in s t ances   o f   i den t i t i e s  (1) and ( 2 )   i n  a l l  of   the i r   gu ises ,wi th  
differ ing  arbi t rary  subexpressions as t h e  arguments  of the  tr igonometric  and 
hyperbolic  functions. 
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AN (EDITED) ACCOUNT OF THE AUTHOR'S  TRAVAILS 

Given a transformation  from  curvilinear  coordinates  81,82,. . . , 8, t o  
Cartesian  coordinates x1,x2, ...,cc,, with m . :  

it was d e s i r e d   t o  compute the  Jacobian  matr ix  A, with  elements 

From t h i s ,   t h e  components of   the  covariant   metr ic   tensor   are  computed as those 
of  the  matrix  product 

G = A A T .  

The desired  second-kind  of  Christoffel  symbol involves 
of the   der iva t ives   o f  G and the  inverse   of  G ,  but a general 
tr igonometric-hyperbolic  simplification w a s  already  evident 
expression ( 5 )  and  sometimes  even expression ( 4 ) .  

l i n e a r  combinations 
need for  automatic 
i n   t h e   r e s u l t s  o f  

O f  t h e  1 2  classic  orthogonal  coordinate  systems  reported,  the  coordinate 
transformations of  8 involve  e i ther   t r igonometr ic   funct ions,   hyperbol ic  
functions,  or both.   Relat ively  s imple  instances  o f  those 8 a r e  

Spherical  : 

x = r s i n  8 cos @, 
y = r s i n  8 s i n  $, 

z = r COS e; 
E l l ip t ic   Cyl indr ica l :  

x = a cosh u cos v ,  
y = a s inh  u s i n  V ,  

z = Z. 

General  use of  the   bu i l t - in   f rac t iona l -power   s impl i f ie r ,  RADCAN, w a s  
necessary  because 2 o f   t h e  12 reported  coordinate  transformations  involve 
square  roots and  because for vector   analysis   the  square  roots   of   the   diagonal  
elements  of G are computed. 

Using RADCAN alone, it required  2.2  seconds for spherical   coordinates  and 
1 . 4  s econds   fo r   e l l i p t i c   cy l ind r i ca l   coo rd ina te s   t o  compute G matrices that  
were  inadequately  simplfied. For example, some off-diagonal  elements  did  not 
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s i m p l i f y   t o  'zero i n   s p h e r i c a l   c o o r d i n a t e s ,   a n d   t h e   f o l l o w i n g   v a l u e s  were 
computed for i n  s p h e r i c a l   a n d   e l l i p t i c - c y l i n d r i c a l   c o o r d i n a t e s  
r e spec t ive ly :  11 

s q r t (   s i n  @ + cos +)P s i n  0 , 

a sqrt( cosh u s i n  v + s i n h  u cos V )  . 
2 2 ( 6 )  

(7 )  2 2 2 2 

RADCAiX a lone  i s  c l ea r ly   i nadequa te .  The lack   of   o f f -d iagonal   zero-  
r e c o g n i t i o n   h a d   p a r t i c u l a r l y   d i s a s t r o u s   e f f e c t s  on t h e  computed inve r se   o f  G 
and  on t h e  computed Christoffel   symbols.   Indeed, it o r t e n   l e d   t o   s t o r a g e  
exhaust ion or pat ience   exhaus t ion   dur ing   these   subsequent   ca lcu la t ions .  

A p e r u s a l   o f   t h e  MACSYMA manual sugges ts  TRIGREDUCE as the   obvious  
candidate  for  overcoming  these  problems,  and TRIGREDUCE can   i ndeed   exp lo i t   t he  
s y n t a c t i c a l l y  most   obvious   gu ises   o f   ident i t i es  (1) and ( 2 ) .  However, 
co r re spond ing   t o   exp res s ions  ( 6 )  and ( 7 ) ,  t h i s   t echn ique   gave  

i P sqr tCcos(28)  - 1 1  
s q r t   ( 2 )  Y 

i a sqr t   [cos(2v) ,  - cosh (2u) l  
s q r t   ( 2 )  Y 

us ing  10 .4  and 4.5 seconds  respect ively.   Apparent ly  TRIGREDUCE a l s o  combines 
products   o f   t r igonometr ic  or hyperbol ic   func t ions   in to   cor responding   func t ions  
of   mult iple   angles ,   which i s  more than 'we  want .   Other   coordinate   systems 
r e v e a l e d   t h a t  TRIGREDUCE a l s o  combines products   o f   such   func t ions   o f   d i f fe ren t  . 
arguments   into  such  funct ions of  sums, which i s  e v e n   l e s s   d e s i r a b l e   i n   o u r  
circumstances.  

This   sugges ts   fo l lowing  TRIGREDUCE wi th  TRIGEXPAND, t o  undo t h e s e  
undesired  mult iple-angles   and  angle  sums. TRIGEXPAND w i l l  not  expand 1 i n t o  
s in20  + cos20, so  w e  hope f o r  some n e t   s i m p l i f i c a t i o n  from th is   approximate ly  
i n v e r s e   p a i r .   T h i s   p a i r  was followed  by RADCAN, f o r  i t s  r a t i o n a l   a n d  
fract ional-power  s implif icat ion.   Al though t h i s  stratem helped   for  some 
coord ina te   sys tems,   cor responding   to   express ions  ( 6 )  and ( 7 )  t h i s   t e c h n i q u e  
gave 

r s q r t ( s i n  e - cos e + 1) 
s q r t   ( 2 )  

2 2 
Y 

a s q r t (   s i n  v - cos v + s i n h  u + cosh u) 2 2 2 2 

s q r t  ( 2 )  Y 

us ing  4.9 and 4 . 1  s econds   r e spec t i -ve ly .   C lea r ly   t h i s   s t r a t egy  i s  s t i l l  far 
from i d e a l .  

Undaunted, I n e x t   t r i e d   u s i n g   t h e   p a t t e r n   m a t c h e r  as fol lows:  

MATCHDECLARE (XTRUE, TRUE) $ 

TELLSIMPAFTER (SIN(XTRUE)f2 + COS(XTRUE)f2, 1) $ 

TELLSIMPAFTER (COSH(XTRUE)f2 - SINH(XTRUE)f2, 1) $ 
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T h i s   t e c h n i q u e   f a i l e d   t o   s i m p l i f y  some of   the   spher ica l -coord ina te   o f f -d iagonal  
elements t o   z e r o .  Also, cor responding   to   express ions  ( 6 )  and ( 7 )  , t h i s   t e c h -  
nique  gave 

r s i n  8 (12)  

(13) a . s q r t ( c o s h  u s i n  2, + s i n h  u cos 2,) 2 2 2 2 -  

The a t t e r n s  are evident ly '  unable t o   o p e r a t e   t o g e t h e r   t o   s i m p l i f y  
cosh 3 u sin2v + sinh2u C O S ~ V  t o   s i n 2 v  + sinh2u. .Also o ther   coord ina te   sys tems 
r e v e a l e d   t h a t  t h e  two terms o f   each   pa t t e rn  are not   t rea ted   symmetr ica l ly .  
Under the   i n t e rna l   o rde r ing ,   one   o f   each   pa i r  i s  conside.red t o   b e   t h e   " l e a d i n g  
var iable" ,   which  lends a bias towards  terms  of  one  type. For example, t h e  
express ion   s in2x  i s  t ransformed  to   l -cos2x .  

More despera te   then ,  I could  no longer   postpone  learning  about   Poisson 
series,  which are c a n o n i c a l   a n d   e f f i c i e n t .   I n   t h e   s u i t e  of MACSYMA Poisson 
func t ions ,  OUTOFPOIS seemed more appropr i a t e .  However, t h e   f i n e   p r i n t  
revea led  some s e r i o u s   r e s t r i c t i o n s   o n  t h e  al lowable  arguments   of   this   funct ion.  
Some, such as t h e  r e s t r i c t i o n   t o   t r i g o n o m e t r i c   a r g u m e n t s   t h a t  are l i n e a r  combi- 
na t ions   o f   i nde te rmina te s ,  w i t h  i n t e g e r   c o e f f i c i e n t s ,   a r e   f u n d a m e n t a l   t o   t h e  
na ture   o f   Poisson   se r ies .   Others ,   such  as t h e . l i m i t a t i o n   t o   s i n g l e - p r e c i s i o n  
i n t e g e r s  and  indeterminates   in   the  t r igonometr ic   arguments   with names chosen 
from t h e  set {U,V,W,X,Y,Z}, are concess ions   to   e f f ic iency   and  ease of  imple- 
m e n t a t i o n .   C l e a r l y   t h e s e   r e s t r i c t i o n s  are too   s eve re   t o   pe rmi t   d i r ec t   au to -  
matic  use  of OUTOFPOIS from w i t h i n   t h e   c u r v i l i n e a r   c o o r d i n a t e s   f u n c t i o n .  
Nevertheless ,  i f  Po i s son   s impl i f i ca t ion  d id  t h e  r i g h t   t h i n g ,  I was w i l l i n g   t o  
write a front-end f i l t e r  which  feeds OUTOPOIS only   those   por t ions   o f   an   expres-  
s ion  which,   wi th  indeterminates   temporar i ly  renamed appropr i a t e ly ,  meet t h e  
r e s t r i c t ions .   A l though  OUTOFPOIS does  not   perform  hyperbol ic   s implif icat ion,  
I w a s  w i l l i n g   t o   t a k e  what I could   ge t ,   and  I had hopes f o r   u s i n g  a t r i c k   s u c h  
as r e p l a c i n g c o s h   x w i t h   c o s ( i z ) .  However, b e f o r e   i n v e s t i n g  a l l  o f   t h i s   e f f o r t ,  
I t r i e d  renaming the   coord ina te   var iab les   manual ly ,   then   us ing  

TRIGSIMP( U )  : = 

(u :  FLATSIMP(U) , 

OUTOFPOIS(NUM(U))/OUTOFPOIS(DENOM(U))) $ 

Corresponding t o   e x p r e s s i o n s  ( 6 )  and ( 7 ) ,  t h i s   t echn ique   gave  

i s q r t ( 2 )  r sqr t   [cos(   2u)  - 1 1  
2 Y 

a s q r t [ ( s i n h  u - cosh u )  cos(22,) + sinh u + c o s h   u ] / s q r t ( 2 )  , 2 2 2 2 (15) 

us ing  3.5 and 2.1  seconds  respect ively.   Again w e  see t h a t   t h e   s i m p l i f i c a t i o n  
i s  t o o   d r a s t i c ,   i n d i s c r i m i n a t e l y   r e p l a c i n g   p r o d u c t s   a n d  powers o f   t r i gonomet r i c  
func t ions   wi th   t r igonometr ic   func t ions   o f   mul t ip le   angles   and  sums. This may 
be i d e a l  for series approximations t o   p e r i o d i c   s o l u t i o n s   o f   e q u a t i o n s ,  but it 
i s  no t   i dea l  for a l l  t r i g o n o m e t r i c   s i t u a t i o n s .  A lovely  answer  such as sin9X, 
f o r  example, w i l l  be c o n v e r t e d   t o   a n   e x p r e s s i o n   t r u l y   u g l y   t o   b e h o l d .  



Nevertheless ,  I t h i n k   t h a t   t h e  above-mentioned  front-end f i l t e r  would be 
worthwhile i n  many s i t u a t i o n s .  

A t  t h i s   p o i n t ,   c a s u a l   p e r u s a l   o f   t h e  manual was  r ep laced   w i th   an   i n t ens ive  
s tudy ,   which   revea led   tha t   us ing  EV( ..., EXPONENTIALIZE) w i l l  c o n v e r t   t h e  
t r i g o n o m e t r i c   f u n c t i o n s   t o  complex exponent ia ls ,   which can t h e n   b e   s i m p l i f i e d  
wi th  RADCAN, ar ter  which EV( ..., DEMOIVRE) converts   complex  exponent ia ls   to  
s ines   and   cos ines .  A f i n a l  RADCAN then  gives   any  spurious " i f f ' s  an  opportu- 
n i ty   t o   cance l .   Cor re spond ing   t o   exp res s ions  ( 6 )  and (71, t h i s   t e c h n i q u e  
gave 

i r s q r t { [ s i n ( 2 8 )  + i c o ~ ( 2 e > J   s i n ( 4 e )  + [ cos (28)  

- i s in (   28 )  ] C O S (  48)  - 2 s i n   ( 2 8 )  - i s i n ( 2 8 )  
2 

us ing  37 and 16.7 seconds   respec t ive ly .  

The mult iple   angles   were  unforeseen,  s o  I t r i e d   i n s e r t i n g  a TRIGEXPAND 
between t h e  DEMOIVRE a n d   f i n a l  RADCAN. Corresponding t o   e x p r e s s i o n s  ( 6 )  and 
( 7 ) ,  t h i s   t echn ique   gave  

6 5 2 4 r s q r t [   s i n  0 - 2 i cos 8 s i n  e + ( cos  e + 2 )   s i n  8 - 4 i 8 s i n  e 3 

( -  cos 8 + 4 cos 8 + 1) s i n  8 + 2 i c o s e  - 2 i cos 8 s i n e  - cos 8 4 2 2 5 6 
4 2 + 2 cos 8 - cos 83/2 , 

-24 6 224 5 4 

- 4 i e cos v s i n  v + [-e2' cos v + ( 2  e + 2)   cos  z, + e2'] s i n  v 
+ ( 2  i e2u cos v - 2 i e2u cos v )  s i n  v - e2u cos v 

+ (e4u + 1) cos v - e2u cos v) /2  

(18) 

a e sqr t{e2 '   s in  v - 2 i e cos v s i n  v + (e2u cos2u + e4u + 1) s i n  v 
2u 3 3 4 4u 2 2 

5 6 
4 2 (19) 

using  32.4  and  20.3  seconds  respectively.  

The MACSYMA pr imer   ( re ference  5 )  mentions a l l  of   the  above  techniques,  
except   using REALPART where I used DEMOIVRE, which  gives   equal ly   disappoint ing 
results f o r  t h i s   a p p l i c a t i o n .  

Resolved now t o   w r i t i n g  my own t r ig -hype rbo l i c ,   s imp l i f i ca t ion   func t ion ,  
I f irst  t r i e d   t h e   f o l l o w i n g :  



TRIGSIMP(U):= 

(u: RADcAN( u) , 
TRIGPOLYSIMP(NUM(U))/TRIGPOLYSIMP(DENOM(U))) $ 

TRIGPOLYSIMP(U):= BLOCK ( [ L ] ,  

Make a i i s t  L o f  all unique  subexpressions 
which  occur as t h e  arguments  of  both  sin  and  cos , with rn,n22, m n 

FOR X I N  L Do U: FXMAINDER(U,SIN(X)-+2+COS(X)+2-1), 

Perform a similar massage for   s inh  and  cosh,  

Corresponding t o   e x p r e s s i o n s  ( 6 )  and ( 7 ) ,  th rs   t echnique   g ives  

r s i n  0 , (20) 

i U Sqrt(C0S V - cosh U )  s q r t ( c o s  V + cosh U )  , (21) 

using  2.6  and  3.2  seconds  respectively.  

Within TRIGPOLYSIMP, using MTSUBST(l,SIN(X)+2 + COS(X)+2,u) ins tead   of  
REMAINDER (U,SIN(X)+2 + COS(X)+2-1),  and s i m i l a r l y   f o r   i d e n t i t y   ( 2 )   g i v e s  
v i r t u a l l y   i d e n t i c a l  results. 

A t  t h e  expense  of   missing  opportuni t ies   such as rep lac ing  1-cos x by 
s in2x,   checking  for   the  presence  of   both sinm  and cosn removed  most o f   t h e   b i a s  
present   in   the   pa t te rn-matching   a l te rna t ive .  A s  revealed  by  expressions  (20) 
and ( 2 1 ) ,   t h i s   t e c h n i q u e  does an adequate   job   for   these  two coordinate  systems, 
, though  sin2v + sinh2u i s  s l i g h t l y   p r e f e r a b l e   t o  cos2V - cosh2u f o r  computational 
and e s the t i c   r ea sons .  ( I  regard "+" as s l igh t ly   s imp le r   t han  "-". ) This   tech-  
n ique   a l so   d id  an adequate . job for t he   o the r   t e s t ed   coord ina te   sys t ems ,  so  it 
i s  n o t   c l e a r   t o  m e  now  why I looked  further.   Perhaps it w a s  because I knew t h a t  
the  technique w a s  s t i l l  t o o   d r a s t i c  f o r  many purposes.  For  example, a love ly  
answer  such as s in92  + cosgx i s  replaced by  an express ion   too   obscene   to  l i s t  here ,  

2 

A way t o   v e r y   n e a r l y   r e t a i n  symmetry and t o   a v o i d  an inc rease   i n   exp res -  
sion  complexity i s  t o  compare the   complexi t ies  o f  the   express ions   ob ta ined  
by r a t i o n a l l y   s u b s t i t u t i n g   l - c o s 2 x   f o r  $in2,, b y   r a t i o n a l l y   s u b s t i t u t i n g  
1-s in2x   for  C O S ~ X ,  and  by subs t i t u t ing   ne i the r ,   f o r   each   r e l evan t   spec ie s   o f  
x i n   t h e   e x p r e s s i o n .   N a t u r a l l y ,  similar comparisons are done for  cosh  and 
s inh.  For these  comparisons,   the leaFt complex candidate  wins,  with t i e s  
broken i n  an  arbitrary  asymmetric manner. The complexity  function  can  be 
designed t o   r e f l e c t   t h e   u s e r ' s   v a l u e  judgements. For s impl i c i ty ,  I def ined 
the  complexity as the   l eng th   o f   an   expres s ion ,   w i th   t he   l eng th   o f  a "ATOM 
as 1 and t h e   l e n g t h   o f  a complete  subexpression as 1 p l u s   t h e  sum o f   t h e  
lengths   o f   the   operands .  However, t h e   b u i l t - i n  LISP func t ion  ?STRING w a s  a 
faster length  measure, probably  because it i s  a compiled LISP func t ion   r a the r  
t han   an   i n t e rp re t ed  MAcsYMA funct ion.  
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The technique  then i s  t o   r e p l a c e   t h e  above TRIGPOLYSIMP wi th  a function 
t h a t  makes a set of  elements,  with  each element being, for a unique  argument 
x, a s e t   c o n t a i n i n g   s i n  x, cos x or both,  according t o  which o f  these  occur  
t o  at least t h e  second power.  Analogous elements are also included  for  cosh 
and sinh. Then, t he   appropr i a t e   subs t i t u t ions  are success ive ly   t r ied ,  
r e t a in ing  a t  each  s tage  the  expression  with  shorter   length.   Corresponding 
t o  expressions (6)  and ( 7 ) ,  t h i s  "comparative  sequential   substi tutions" 
technique  gave 

r s i n  8 , (22) 

a s q r t (  cosh u s i n  v + s inh  u cos 2,) , 2 2 2 2 

using 5.6 and 6.5 seconds  respectively.   Unfortunately  this  technique  misses 
opportunities  such as replacing a cos2u  sinh2v + a s i n  u cosh v by 
a(sin%+sinh%).  This example requires  replacing  cos2u by  1-sin% and  cosh2v 
by  1-sinh2 , but   e i ther   a lone  temporar i ly   lengthens  the  expression,   causing 
the  combination.to  be  overlooked. 

2 2 

This phenomenon suggests   t rying a l l  combinat ions  of   feasible   subst i tut ions,  
t ak ing   t he   sho r t e s t  o f  these  results.   Corresponding  to  expressions ( 6 )  and 
(7 )  , t h i s  '!comparative  combinatorial  substitutions"  technique  gives 

a s q r t ( s i n  v + s inh  u )  , 2 2 

O f  course  the computing  time would grow dramatical ly   with  the number of 
d i s t i n c t   s p e c i e s   o f   s i n  x, cos x, s inh  x, and  cosh x t h a t   o c c u r   t o  a t  
l e a s t   t h e  second  power,  but t h e  computing  timegrows  even more dramatically 
when less-than-optimally  simplified  expressions are used  for  subsequent 
ca lcu la t ion   of   the   Chr is tof fe l  symbol components. Also, the  combinatorial  
comparisons a re   o rganized   in  a manner t o   s h a r e  some comon  subst i tut ions 
between  candidates and to   e l imina te  some candidates  before computing a l l  of  
them -- s o r t  o f  a dep th - f i r s t   subs t i t u t ion  and  comparison.  Moreover, we a r e  
dea l ing   wi th   s i tua t ions  where there   a re   no t  many d i s t inc t   spec ie s .  If t h e  
combinatorial  growth w a s  wi th   respec t   to   the  number of  te rms   ra ther   than   the  
number of spec ies ,   th i s   a lgor i thm would be l e s s   p r a c t i c a l  for t h i s   t e n i o r  
appl ica t ion .  

O f  the   var ious  techniques,  I am happiest   wi th   this  l as t  one  of  comparative 
combinator ia l   subst i tut ions.  However, I expect  to  remain  content  only  unti l  
I s u f f e r  a t  t h e  hands  of  an example such as 

mess + 2 sec x - t a n  x , 2 2 

which  would  most es the t ica l ly   t ransform 

1 + mess + 
or  an  example  such as 

(mess + s i n  x 2 

t o  
2 sec x ; 

+ cos x) 2 1000 
Y 



which f o r  most purposes i s  bes t   r ep laced  by 

(mess + 1) 1000 

Thus, it might  be  useful t o   j u d i c i o u s l y   u t i l i z e  a l l  1 2  trigonometric  and 
hype rbo l i c   func t ions ,   t oge the r   w i th   an   i n s ide -ou t   u t i l i za t ion  of TRIGPOLYSIMP 
on all sums, r a t h e r   t h a n  merely the  top-level  numerator  and  denominator. 

CONCLUSIONS 

I have come t o   r e g a r d   i d e n t i t i e s  (1) and ( 2 )  as a b l e s s i n g   r a t h e r   t h a n  
a curse.  The abi l i ty   to   use  var ious  judicious  combinat ions  of   dependent  
tr igonometric  and  dependent  hyperbolic  functions  often  permits a far more 
compact  and understandable  answer  than i s  poss ib le  when such   s ide   r e l a t ions  
are not   present .  The u r g e   t o   c a n o n i c a l i z e   i n  a s t ra ightforward  fashion  can 
preclude some of   these   oppor tuni t ies .  It i s  poss ib le  and  sometimes necessary 
to   au tomat i ca l ly   exp lo i t   t he   t ypes   o f  non-canonica? s impl i f ica t ions   descr ibed  
here.  
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MATRIX  COMPUTATIONS IN MACSYMA 
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INTRODUCTION 

An important facility for a computer  symbolic  mathematics  system is matrix  computation. 
MACSYMA provides many  built-in  facilities for manipulating matrices. The  matrices may have 
numerical  or symbolic entries. This means  matrix  elements may involve indeterminates and 
functional expressions. Computations will be done exactly,  keeping  symbols as symbols. The 
purpose of this article is to describe  these matrix facilities,  to explain their use and  to  give  some 
idea as to the algorithms  or procedures  used. 

In section 2 the question of how  to form a matrix and how to create other matrices by 
transforming existing matrices within MACSYMA is addressed. Arithmetic and  other  computation 
with matrices is discussed in section 3. The user  control of computational processes through the 
use of OPTION VARIABLES is indicated in section 4. In sections 5 and 6 two algorithms 
designed specially for sparse matrices are given.  Section 7 compares the computing times of several 
different ways to compute the determinant of a matrix. 

FORMING AND TRANSFORMING MATRICES 

one  just types MATRIX ([A,B], [C,Dl).  If the matrix is large and  one wishes to type the entries  one 
at a time  then the command AENTER(m,n); can be used. The integers m and n are the 
dimensions of the matrix to be entered.  Sometimes the value of an entry can be expressed as a 
function of the row and column  indexes. In this case the command GENMATRIX  which 
generates a matrix from a MACSYMA array is useful. For instance, if an m x n matrix A is 
needed with 4, - i/j, one first defines an array B by BU,& 4J Then  the  command 
*This work was s u p p o r t e d  by ERDA c o n t r a c t  E l l - 1 - 3 0 7 0  and by NASA g r a n t  NSG 1323, 



CENMATRIX(B,m,n) will construct the desired matrix. The MACSYMA reference manual  (ref. 
1) contains a more detailed description of GENMATRIX. 

T h e  command AINDENT(m) produces an  m x m identity matrix; 
ADIACMATRIX(m,x) produces an m x rn diagonal matrix with each diagonal  entry x. 

MACSYMA provides several commands for taking a part  or  a  submatrix of an  esisting 
matrix. T h e  command  MINOR(A,i,j) produces a new matrix by deleting row i and column  j from 
A. ROW(A,n)  and  COL(A,n) give, as  a matrix, the nth row and column of . A  respectively. In 
general,  SUBMATRIX(i,, ... , i,, A, j , ,  ... ,jJ produces a matrix from A by deleting the rows i , .  ... 
i, and columns j,, ... ,j,,. The (i,j)th entry in a matrix A is  accessed  by typing A[i,jl. 

There  are also facilities for modifying or transforming a given  matrix. TRANSPOSE 
(A)  returns AT. ADDROW(A,R) produces a matrix which is equal to A with R appended  as  the 
last row. MATRIXMAP(fn,A) creates a new matrix of the same dimensions as A where  each  entry 
is formed by applying  the given  function f n  to  each  element  of A. The  function fn can  be a 
MACSYMA  function  or  a user defined  function. For example, if one  wants to make  a matrix of 
numerators of the entries of A one can do  MATRIXMAP(NUM,A). 

A user can change  the (i,j)tA entry of a matrix A, to x, say, by typing A[i.jl:x. Th i s  
change is made on A. If one wishes a new matrix then the  change  should be made  on a copy of A. 
COPYMATRIX(A) gives  a new matrix which  is a copy of A. 

As a rule, MACSYMA commands will  not alter existing expressions. There  are a  few 
exceptions to this  rule  and they are clearly indicated in the MACSYMA reference manual  (ref. 1). 
To emphasize  the effect  of  an expression-altering command we show the following example: 

(t :> 
Let a set of linear  equations EQl, ... , EQm in the variables X1, ..., Xm be  given. T h e  commands 
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COEFMATRIX(eqlist,varlist) and AUGCOEFMATRIX(eqlist,variist) are used to  produce  the 
coefficient  matrix  and augmen,ted coefficient matrix, respectively, where eqlist is IEQI, ..., EQml 
and varlist is [Xl, i.. ,Xml. 

MATRIX  COMPUTATIONS 

Between two matrices of the same dimension and between a scalar and a matrix  the 
arithmetic  operators +, -, *:e, t and / are used for an elementwise effect. Thus if 

then 

and 

T h e  usual  matrix multiplication uses the dot operator. Multiplying a matrix by itself a 
number of times is indicated by the operator tt. Thus 

x +yz x y + p  

zx+zw zy+w 

2 

AtT2 = A.A = ( *) 
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As an aside, we should note that these operations are not exclusively reserved for  
matrices: the  dot  and t T  operators are used for noncommutative multiplication and powers in 
general.  Computation involving noncommutative multiplication between variables  can be  done by 
declaring  the  variable NONSCALAR and using the dot operator. For example: 

(Cl) DECLARE ([A, Bl; N0NSCALAR)S 

(C2) (A + B)  . (A - B), EXPAND; 

A'2' + B.A - A.B - Bc2' 

Note  how  exponents resulting  from noncommu'tative multiplication are displayed. T h e  inverse of 
A is Att-1.  Among  these  matrix computations, the inverse is the most time consuming. The  esact  
inverse of a matrix whose entries are polynomials, rational functions and  other  functional 
expressions is 'often much larger  than  the matrix itself.  In  some  cases, moderately-sized symbolic 
matrices  (under 10 X 10, say) with not  very  complicated entries may have inverses  whose  size 
exceeds the maximum  store  available to MACSYMA. In other cases, the inverse is of reasonable 
size  but  the computation  runs  out of store at an intermediate stage. This diff icul ty ,  called 
intermediate expression swell,  is  common to many other symbolic computation processes: polynomial 
greatest-common-divisor calculation (CCD), factoring and  definite  integration,  just to name a few. 
T h e  challenge to algorithm designers is  to avoid or control intermediate  expression growth while 
keeping the  algorithms reasonably fast. In general, the best procedure to use is dependent  on the 
problem to be solved. There  are two different inversion procedures in  MACSYMA: a  basic 
Bareiss-type  Fraction  Free  Gaussian Elimination (FFGE) algorithm  (ref. 2) and  a special procedure 
for  sparse matrices. The  latter is a special feature in MACSYMA and will be  described  in the 
section,  "Inverse of Sparse Matrices." 

T h e  FFEG uses the usual Gaussian elimination  process which reduces the given  matrix 
co the identity by elementary row operations while transforming an identity matrix appended to the 
given  matrix to the desired inverse. However, in order to avoid computing with fractional  forms 
which  involves many costly CCD calculations, the elimination is made  fraction-free.  First each row 
is  multiplied by the least common multiple of its denominators. Then  the elimination is carried  out 
with cross  multiplication instead of division. Significant improvement in speed results from 
fraction-free  elimination. However, cross-multiplication adds to intermediate  expression growth. 

When  the FFGE has reduced a given matrix to upper  triangular  formi  the last diagonal 
element  is  equal to the determinant of the (rescaled) matrix. Therefore it is a1s.o a method for 
computing  the  determinant of a matrix. The command in MACSYMA using this  technique to 
calculate a determinant is DETERMINANT(A). There  are three  other ways to compute the  
determinant  also implemented in MACSYMA. These will be described in section 6. One  can  also 
obtain  the  triangular  form,  the echelon form (essentially the  triangular  form with the  first  entry of 
each row  normalized to I), the rank and characteristic polynomial of a matrix A by 
TRIANGULARIZE(A), ECHELON(A),  RANK(A), and CHARPOLY(A,x), respectively. 
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OPTIONS IN CONTROLLING  COMPUTATION 

Matrix computations can result  in  expressions  which are  rather  large  and  complicated. 
Therefore it is  important to carefully control the manner in which a given  computation is csccutcd. 
User  control  options  are provided in MACSYMA in the  form of OPTION  VARIABLE  or. 
SWITCH settings. There  are many SWITCHES in  MACSYMA. Each SWITCH may have two 
or more possible settings which affect the behavior of one or several routines conti-olled by the 
SWITCH. A  SWITCH is set,  like any other variable, by using the : operator.  For example, if 
RATMX:TRUE is done, then all matrix arithmetic will be done in CRE form (ref I).  In a fresh 
MACSYMA system, each SWITCH has a  default value or setting. RATMX  has  the  default  value 
FALSE, which  means MATRIX arithmetic will be done in general representation.  Vectors in 
MACSYMA can be represented as one-dimensional matrices. However it is often  convenient to 
represent vectors as lists. A list  V:[A, B, C] represents a row vector. To mix computation with lists 
and  matrices  one sets LISTARITH to TRUE. If A is a 3 X 3 matrix then V.A is a 1 S 3 matrix 
and A.V is a 3 X 1 matrix.  Setting  SPARSE to TRUE enables several routines specially designed 
for  sparse symbolic matrix computations to be activated. Other options control operatrons of 
scalar-matrix  arithmetic  and noncommutative operations. The available  options are described i n  
detail in the manual.  Efficient use  of these  controls comes  with experience  with a given 
application,  and experimentation. 

INVERSE OF SPARSE MATRICES 

T h e  question of whether the inverse of a given matrix will f i t  in the  available  memory 
space  to  MACSYMA depends on the size, the number of indeterminates and  the  number of zero 
entries in the  matrix. A matrix with many  zero entries is said to  be sparse. Sparse matrices  occur 
frequently in practice. One often-asked question in connection  with inverting  a  sparse  matrix  is 
how  to  order  the rows and columns to facilitate the computation. MACSYMA has  programs  for 
reordering rows and columns.  We present its algorithm here in more detail to provide the user 
with a deeper insight. 

If the  given matrix is sparse its inverse may also have many zero entries. One  obvious 
example of this situation is a  triangular matrix. Substantial computation can be saved if the  zero 
entries  in  the  inverse  are predicted so that they do not have to be computed. It has been shown 
that  this can  be  done if and only if the given matrix is  block reducible (ref. 3). Let Q b e   a n  n x n 
sparse  matrix. If there is a way of reordering rows and columns so that  Qbecomes 
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where Qij is a matrix of dimension ni  x ni, n l  + ... + n t  = n and if t > 1 then Q is reducible. 
Otherwise Q is irreducible. A fairly efficient algorithm is implemented in MACSYMA for 
computing 8" from ai;'. 8'' has  the same block structure as 3. To obtain Q-l from e-1 is just 
a matter of undoing  the row and column .permutations  that  transformed Q to 8. 

Now let us consider the means of obtaining  the desired block structure. A directed graph 
(ref. 3) g(Q can  be associated to the matrix Q This  graph has n nodes labeled 1 through n. T h e  
nodes  are linked by directed edges representing nonzero entries of Q An edge  from  node i to ~ 

node j represents  the nonzero entry qii. This edge is labelled qii. Only the  nonzero  entries of Q a r e  
represented in g(Q.  A sequence of edges leading from node i to j is  called a  path  from i to j. A 
subgraph is isolated if any  pair of nodes in the  subgraph are connected and  no nodes outside  the 
subgraph  are connected to any insider  such  isolated subgraphs  are called strong  components of 
g(Q. T h e  strong components of g ( Q  give rise  to the block structure of Q We  denote by SQ the 
number of strong components in g(Q. 

T h e  outcome of the above scheme  is dependent on the  given  order of the rows and 
columns of Q This means that  a permutation of the rows andlor columns may result in an 
associated graph with more strong components and  therefore lead to a refined block structure of 
Q For  example, if Q i s  given  as 

then g(Q looks like 
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which  has only one  strong component.  However, by interchanging  the  first and  third  rows of Q 
one  would  find t = 2. Indeed two is the maximum  number of blocks Q h a s .  As a matter of fact Q 
can  always  be  fully  reduced if nonzero elements are assigned  on the  main  diagonal  before 
constructing g(Q. 

DETERMINANT  OF  SPARSE  MATRICES 

There  are  four  different ways to compute a  determinant in MACSYMA. I f  R A T M X  is 
FALSE the  DETERMINANT command uses general  representation and a Bottom-Up  minor 
expansion  (BU) suggested by Gentleman and  Johnson  (ref. 4). T h e  BU  method  computes  all 
possible 2 x 2 minors in the last two columns (rows). Then all the 3 x 3 minors, etc. T h e  BU 
method was  also  programmed in LISP by Fateman to render  expressions in CRE  fo rm.   The  
command  using it is NEWDET. If RATMX is TRUE, then one of two methods is used by the 
DETERMINANT command  depending on the  setting of SPARSE. If SPARSE is FALSE, the  
FFGE method  mentioned  before is used. If SPARSE is TRUE, then a routine, TDBU. specially 
designed  for  taking  the  determinant of matrices with  many zero entries is called. 

W e  describe  the  TDBU  sparse  determinant  algorithm in more  detail,  since we believe i t  
to be one of the most efficient methods for this  purpose  currently  implemented on  a  symbolic 
mathematical  computer system. 

If the  given  matrix, Q, is reducible to a block triangular  form,  then its determinant is 
the  product of the  determinants on the main diagonal multiplied by 1 or -1, depending  on the row- 
column  reordering. Let us assume Q is sparse and irreducible. A  minor  expansion  method is 
employed  for  the  determinant. of Q It consists of a  Top-Down  analysis  phase and a Bottom-Up 
computation  phase. T h e  Top-Down  phase constructs a  graphical  structure of minors  needed to be 
computed  and  the  interdependence between these minors. This  avoids almost  all  unnecessary 
minors.  Then  the  minors needed are computed Bottom-Up so that  there is no  repeated 
computation.  The method  is  named TDBU (ref. 5). 

Let us illustrate  the  TDBU by an example. Consider  the 6 x 6 tridiagonal  matrix. 
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i B C O O O O  

' I A B C O O O  

O ' A  B C 0 0 

' = O O A B C O  

O O O A B C  

O O O O A B  

By the list ( i l ,  ..., ik) we denote  the  minor at the  intersection of the last k columns  and the 
rows i l ,  ip, ..., ik. Using the position of the nonzero  entries the  following  tree is constructed: 
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There  are  14 nodes  besides the root. However some of these  nodes  represent obviously 
singular  minors. If a singularity check is used which looks for  an  entire row or column of zeros i n  
a minor,  several  branches can be  cut from this tree. With signed  multiplier  labels attached to the  
branches  the  tree  structure now becomes the following: 

Therefore, only 8 minors need be computed. As the bottom-up computation  progresses 
minors no longer  needed  are  discarded. Thus the storage  required for  minors is  limited to slightly 
more than 'one  set of necessary i x i minors. 

T I M I N G  COMPARISONS 

Timing tests have been conducted for  the  three  different  methods  for  determinant 
computations:  the  fraction-free  Gaussian elimination (FFGE), the  bottom-up  minor  expansion 
(BU). and  the  TDBU. Two forms of sparse matrices are used: the  tridiagonal  (TRID)  and  the 
tridiagonal with a block structure (BLK). In the following tables an X indicates  running  out of 
core. T h e  timings  (including  garbage collection  time) are measured on  a DEC KL-IO. 

, 
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[ C + B  C + A  0 0 0 e 1  
[ 1 
E B + A  C + B  C + A  0 0 0 1  
[ 1 

' C  0 0 C + B  C + A  0 0 1  
c 1 
E 0  0 B + A   C + B   C + A  '0 1 
[ 1 
[ 0  0 0 0 C + B  C + A l  
E 1 
E 0  0 0 0 B + A   C + 8 1  

ELK 
01 MENS I ON 

6 
8 

10 
12 
14 
16 
18 
20 

' 22 
24 
26 
28 

FFGE 
1405 
5310 
17410 
43883 
104642 

X 
X 
X 
X 
X 
X 
X 

BU TOBU 
166 209 
684 356 
1523 863 
2952 1163 
5933 1584 
16763 2044 

X 3006 
X 3643 
X 4807 
X 6107 
X 7992 
X 9507 

time in milliseconds 
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[ C + B  C + A  8 8 0 0 1  
1 

[ B + A  C + B  C + A  0 0 0 1  
E 1 
c 0  B + A   C + B  C + A  0 0 1  
E 1 
E 0  0 B + A   C + B  C + A  0 1  
E 1 
E 0  0 0 B + A   C + B  C + A I  
E 1 
E 0  0 0 0 B + A   C + B l  

T R I O  
DIMENSION FFGE 

6 '1 563 
8 6949 
10 22750 
12 
14 
16 
18 
20 
22 
24 
26 
28 

57251 
140445 

X 
X 
X 
X 
X 
X 
X 

BU 
177 
710 
1281 
2760 
6099 
17307 

X 
X 
X 
X 
X 
X 

TDBU 
214 
758 
1446 
2114 
2970 
4739 
692 1 
9367 
12565 
17132 
231  38 
30319 

t ime  in. mi I I i seconds 
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Universi ty   of  H a w a i i  

ABSTRACT 

A MACSYMA program i s  descr ibed which  performs  symbolic  vector  algebra  and 
vector   calculus .  The program  can  combine  and s i m p l i a  symbolic  expressions 
including  dot   products  and cross   p roducts ,   toge ther   wi th   the   g rad ien t ,   d iver -  
gence,   curl ,  and Laplacian  operators .  The d i s t r ibu t ion   o f   t hese   ope ra to r s   ove r  
sums o r  products i s  under   user   control ,  as are var ious  other   expansions,   in-  
cluding  expansion  into components i n  any  specific  orthogonal  coordinate  system. 
There i s  a l s o  a c a p a b i l i t y   f o r   , d e r i v i n g   t h e   s c a l a r  or v e c t o r   p o t e n t i a l   o f  a 
vec tor  f i e ld .  Examples i n c l u d e   d e r i v a t i o n   o f   t h e   p a r t i a l .   d i f f e r e n t i a l  equa- 
tions  describing  fluid  flow  and  magnetohydrodynamics,  for 1 2  d i f f e r e n t   c l a s s i c  
or thogonal   curvi l inear   coordinate   systems.  

INTRODUCTION 

Vector  algebra  and  vector  calculus  enjoy  diverse  use  throughout  engineer- 
ing,   sc ience,  and  mathematics.  Vector  analysis  lends  conciseness that  o f t e n  
s impl i f ies   the   der iva t ion   of   mathemat ica l   theorems  and  the  statement  of phys- 
i c a l  laws. Vector   notat ion  of ten  c lear ly   conveys  geometr ic  or phys ica l   i n t e r -  
p r e t a t i o n s   t h a t   g r e a t l y   f a c i l i t a t e   u n d e r s t a n d i n g .  A t  one  extreme,  vector 
analysis   provides  a systematic  method fo r   de r iv ing  t h e  mathematical  statement 
of   physical  laws in   spec i f ic   o r thogonal   curv i l inear   coord ina te   sys tems.  A t  
another  extreme, vector   analysis   provides  a means o f   s t a t i n g  and  operating on 
these   phys ica l  l a w s  independent  of a coordinate  system,  free  from t h e  d i s t r a c -  
t i n g   d e t a i l s   o f   i n d i v i d u a l  components. 

However, many engineers   and   sc ien t i s t s  do not   use  vector   analysis  
f requent ly  enough t o  remain familiar w i t h  many o f   t h e   s p e c i a l   v e c t o r   i d e n t i t i e s  
t h a t  are sometimes c ruc ia l   t o   s imp l i f ' y ing   vec to r   exp res s ions .  Also, though 
systematic ,   the   expansion  of   vector   expressions  into  specif ic   or thogonal   curvi-  
l i n e a r  components i s  usua l ly ted iousand  f raught   wi th   oppor tuni t ies   for   b lun-  
ders.   Other  tedious  blunder-prone  operations  include  deriving  scalar or 
v e c t o r   p o t e n t i a l s  from  given  vector f ie lds .  T h i s   a r t i c l e   d e s c r i b e s  a computer 
program  which he lps  overcome these human f ra i l t i es  by  automating  these 
processes.  

*This work was supported  by  NatYonal  Science  Foundation  grant MCS75-22893. 
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The next   sec t ion   g ives  a br ief   demonstrat ion of t h e  program.  Subsequent 
s ec t ions   ou t l i ne   t he   unde r ly ing   ma themat i ca l   and  programming techniques ,   then  
summarize the  performance  for  more comprehensive  examples. 

A DEMONSTRATION 

The vector-analysis  package  contains  various  default   and  optional  simpll-  
f i c a t i o n s  for t h e  'dot   and  cross   products   together   with  the  operators ,  GRAD, 
DIV, CURL, and LAPLACIAN. The vector  operands may be   an   a rb i t ra ry   mix ture  of 
s imi la r - length   o rdered  l i s t s ,  r e p r e s e n t i n g   t h e   s p e c i f i c  componepts, t oge the r  
with  indeterminates   declared NONSCALAR, r ep resen t ing   t he   vec to r s  as a b s t r a c t  
en t i t i e s .  For example, t o   e s t a b l i s h  P, Q, F and G as v e c t o r   e n t i t i e s ,  we type  

(C3)  DECLARE( [P, Q, F, GI, NONSCALAR) $ 

Now, l e t ' s  a t tempt   to   p rove   the   fo l lowing   vec tor   ident i ty ,  where "-" 
represents   the   c ross   p roduct   opera tor :  

Evident ly   the  default s impl i f i ca t ions  are n o t   d r a s t i c  enough, so  we type 

(C5) VECTORSIMP(%),  EXPANDALL; 
(D5) O k O  

Now, l e t ' s  determine  the  expansion  of  an  expression  involving  vector 
d i f f e r e n t i a l   o p e r a t o r s :  

(~6) EXAMPLE:  LAPLACIAN(%PI*(S+H)) = DIV(3*S*P); 
%PI LAPLACIAN (S + H) = 3 DIV (P S )  

(C7) VECTORSIMP(EXAMPLE),  EXPANDALL; 
(D7) %PI LAPLACIh S + %PI LAPLACIAN  H = 3  DIV P S + 3 P * G R A E  S 

Suppose t h a t ' w e   w i s h   t o   f i n d   t h e   s p e c i f i c   r e p r e s e n t a t i o n  of t h i s  equation 
in   pa rabo l i c   coo rd ina te s .  To avoid  having t o  look up t h e   d e f i n i t i o n   o f  
parabol ic   coordinates  : 

( C9 ) BATCH(  COORDS ) ; 

(C10)  TTY0FF:TRUE $ 

(C13) /* PREDEFINED  COORDINATE  TRANSFORMATIONS : 
CARTESIAN2D,  CARTESIAN3DY 
POLAR,  POLARCYLINDRICAL, 
SPHERICAL,  OBLATESPHEROIDAL,  PROLATESPHEROIDAL, 

OBLATESPHEROIDALS&RT , PROLATESPHEROICALSQRT , 
ELLIPTIC,  ELLIPTICCYLINDRICAL,  CONFOCALELLIPTIC, 

CONFOCALELLIPSOIDAL, 
PARABOLIC,  PARABOLICCYLINDRICAL,  PARABOLOIDAL, 
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BlPOLAR,  BIPOLARCYLINDRICAL, 
TOR0 IDAL , 
CONICAL */ 
/* RESERVED COORDINATE VARIABLES AND PARAMETERS: */ 
LISTOFVARS ( COORDS ) ; 
(D13) [x, y, Z, R ,  THETA, PHI, E, U, v, F, W ,  G]  

( D l 4  1 BATCH DONE 

In   gene ra l ,   coo rd ina te s  are s p e c i f i e d  as a l i s t  w i t h   t h e  first element 
be ing  a l i s t  o f   t h e   t r a n s f o r m a t i o n   t o  a set o f   r ec t angu la r  Cartesian coordi-  
na t e s .  The remaining elements a r e   t h e   o r d e r e d   c u r v i l i n e a r   c o o r d i n a t e  
v a r i a b l e s  : 

( C l 5 )  PARABOLIC; 

F i r s t ' w e   u s e   t h e   f u n c t i o n  SCALEFACTORS t o   d e r i v e  a s e t   o f   g l o b a l   s c a l e  
f a c t o r s .  Then w e  u s e   t h e   f u n c t i o n  EXPRESS t o   e x p r e s s  i t s  argument i n   t h e  
corresponding  coordinate  system: 

( ~ 1 6 )  SCALEFACTORS( PARABOLIC) $ 

(ai) EXAMPLE: EXPRESS(EXAMPLE); 

3 ( ~  (S SQRT(V'+U ) Pv) + E ( S  Pu  S&RT(V + U ) ) )  d 3 2  d 2 2 

v2 + u2 
Al te rna t ive ly ,   t he   g loba l   s ca l e   f ac to r s   can   be   e s t ab l i shed  or changed  by 

supply ing   the   coord ina te   sys tem as a second  argument t o  EXPRESS r a t h e r   t h a n  
an  argument t o  SCALEFACTORS. 

Suppose t h a t  H depends  only  on U, t h a t  P depends  only  upon V, a n d   t h a t  S 
depends  upon  both U and V. To expand t h e  above de r iva t ives ,   t ak ing   advan tage  
o f  t h e s e   s i m p l f i c a t i o n s :  

((218) DEPENDS( [S,H],U,  [S,P],V) $ 

(C19) EXAMPLE, DIFF; 
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d2H 

(Dl9 = 3 ( S  S&RT(V: + U ) (z Pv) 
2 2 d  

v2 + u2 
s v Pv 

+ S Q R T ( V ~  + $1 pV + P SQ,RT(V 2 2  + U ) 
dV SQRT ( V2 + U2)  dU u 

+ s u Pu 
) / (v2  + u2) 

SQ,RT( V2 + U2) 

Now, suppose  that  w e  a re   g iven   the   fo l lowing   parabol ic -coord ina te  compo- 
nents  o f  a gradien t   vec tor ,  

( C20) EXAMPLE: [ ( 2*U*V**3+3*U**3*V) / (  V**2+U**2), 
(2*U**2*V**2+U**4)/(u**2+v**2)]; 

2 u v 3 + 3 u 3 v   2 u   2 2  v + U ]  4 
( D20 [ 2 2  Y 

v + u  2 2 v + u  
and we wish t o  d e t e r m i n e   t h e   c o r r e s p o n d i n g   s c a l a r   p o t e n t i a l   r e l a t i v e   t o   t h e  
p o t e n t i a l  at t h e   p o i n t  [O,O]: 

( c21) POTENTIAL ( EMMPLE ) ; 

(D21) u2 v SORT(V* + u2) 
There i s  an  analogous  function named VECTORPOTENTIAL t h a t  computes t h e  

vec to r   po ten t i a l   a s soc ia t ed   w i th  a g iven   cu r l   vec to r .  

TECHNIQUES 

Vector   a lgebra   has   an   in t r igu ing   s t ruc ture .   Bes ides   conta in ing   the   o rd i -  
na ry   s ca l a r   ope ra t ions ,   vec to r   a lgeb ra   has  two spec ia l   p roducts   wi th  somewhat 
bizarre properties.   Although  the  dot  and  cross  products are b o t h   d i s t r i b u t i v e  
wi th   r e spec t   t o   vec to r   add i t ion ,  and a l t h o u g h   s c a l a r   f a c t o r s   i n   e i t h e r   o p e r a n d  
may be  factored  out   of  t he  dot  and  cross  product: 

1. Vectors are not   c losed  under   the  dot   operat ion.  ( p - q  i s  a s c a l a r . )  

2 .  Vectors are c losed   under   the   c ross   opera t ion   on ly   in   th ree-  
dimensional  space,   the  cross  product  being  undefined  otherwise.  

3. The dot  product i s  commutative 

P-9 q o P ,  
but   the   c ross   p roduct  i s  anticommutative 

pxq -qxp 
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4. 

5 .  

6 .  

7. 

8. 

Neither is assoc ia t ive .  (pX( qxr)$( pxq)xr, whereas p-( q=r) and 
(p-q) - r  are inva l id .  ) 

Neither  has a mul t ip l ica t ive   un i t .   (There   does   no t   ex is t  a f ixed  
U such t h a t  for  a r b i t r a r y  p, UXp=p o r  pXU=p o r  U*p=p o r  p*U=p.) 

Both  admit  zero  divisors. (For a l l  nonzero p, 
PXP = 0 Y ( 3 )  

and t h e r e   e x i s t  nonzero q such  that  p-q=O). 

Both are  connected via ordinary  scalar   mult ipl icat ion,   denoted w i t h  
I 1  11 * , by  the   s t range   s ide   re la t ion  

px(qxr)  (p=r)*q-(  p*q)*r (4) 

The s t r u c t u r e  i s  even more complicated i f  we consider  dyadics, 
t r i a d i c s ,   e t c .  

.Vector calculus i s  equal ly   r ich  i n  comparison t o  i t s  scalar   counterpar t .  
Besides  containing  the  usual  derivatives,   vector  calculus  has  three  special  
d i f f e ren t i a l   ope ra to r s .  Although the  gradient,   divergence, and c u r l   a r e  
ou ta t ive   ( fo r  example,  grad(  constant*$) E constant*(  grad 4) ) and  addi t ive (for 
example,  grad($+$)Egrad $ +grad  $) :  

1. The gradient and  divergence  are  not  closed.  (The  gradient  of a 
sca l a r  i s  a vec tor ,  and the  divergence  of a vec tor  i s  s c a l a r . )  

2. Vectors   are   c losed  under   the  cur l   operat ion  only i n  three- 
dimensional  space,  the  curl  being  undefined  otherwise. 

3. Compositions of  these  operators  do not  generally commute, but   they 
do satism the   fo l lowing   ident i t ies  

cu r l (g rad  $1 0 , ( 5 )  
d iv (cu r1  p) o , ( 6 )  

c u r l (   c u r l  p) E grad( div p) + div(  grad p) . ( 7) 
Here denotes a sca l a r ,   t he   g rad ien t   o f  a vec tor  i s  a dyadic,  and 
the  divergence o f  a dyadic i s  a vector.  

4. When applied  to  various  products,  most of   these  operators   have 
expansions similar bu t   no t   i den t i ca l   t o   t he   o rd ina ry   de r iva t ive  
of an  ordinary  product: 

g rad(+  p)  p grad + + + div  p , ( 8 )  
div($ p) E (grad @)=p + + d i v  p , ( 9 )  

c u r l (  $ p) E (grad +)xp + $ c u r l  p , (10) 

grad( pxq) E (grad  p)xq + (grad q)xp , (11) 

div(pxq) z q * ( c u r l  p) + p=(curl 9) , (12) 
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grad(p.9) E (g rad  p ) * q  + (g rad  q1.P . 
For brevity, the   composi t ion  div g rad  i s  Often 
the   Lap lac i an   ope ra to r :  

Laplacian 4 E d iv   g rad  4 E V . 2 

The L a p l a c i a n   i n h e r i t s   t h e   l i n e a r i t y   o f   d i v  and   grad ,   toge ther  
wi th   the   fo l lowing   expans ion   for   p roduct   operands :  

Laplacian(@+) = 4 Laplacian $ + ~ ( ~ a p l a c i a n   $ ) ( L a p l a c i a n  $1 
+ I) Laplacian + . (16)  

For many physical  problems, symmetries or boundary  surfaces   encourage  the 
use   o f   o r thogona l   cu rv i l i nea r   coo rd ina te s   t ha t  are not   rec tangular   Car tes ian .  
For  example, t o r o i d a l   c o o r d i n a t e s  are most a p p r o p r i a t e   f o r  many c o n t r o l l e d  
fusion  problems,   and  oblate   spheroidal   coordinates  are most appropr i a t e  for 
some geophysical   problems.   In   such  instances,  it i s  of'ten  necessary t o  know 
' t h e   s p e c i f i c   p a r t i a l   d i f f e r e n t i a l   r e p r e s e n t a t i o n   o f   t h e   g r a d i e n t ,   d i v e r g e n c e ,  
c u r l ,  o r  L a p l a c i a n   i n   o r d e r   t o   d e r i v e   t h e   d i f f e r e n t i a l   e q u a t i o n s   p e r t a i n i n g  
t o   t h e   d e s i r e d   c o o r d i n a t e s .  

If the   o r thogona l   cu rv i l i nea r   coo rd ina te s  are denoted  by 81,82,...,0,, 
and a t r a n s f o r m a t i o n   t o  some rec t angu la r -Car t e s i an   coord ina te s  xl,x2,...,x 
with  m_>n, i s  given  by 

m y  

t h e n   c o o r d i n a t e   s c a l e   f a c t o r s  are def ined  by 

Otherwise   the   coord ina tes  are nonorthogonal. The func t ion  SCALEFACTORS 
a t t e m p t s   t o   v e r i f y   e q u a t i o n  (19), p r i n t i n g  a warn ing   t oge the r   w i th   t he   s imp l i -  
f i e d   l e f t - h a n d   s i d e  when it does  not  succeed i n   d o i n g  so. This   p recaut ion  
revea led   an   e r ror   in   the   a l leged-or thogonal   confoca l -parabolo ida l   coord ina tes  
l i s t e d   i n   t h e   r e f e r e n c e   t a b l e s   o f  two wide ly   used   vec tor -ana lys i s  texts! 
Computer a lgeb ra  i s  advisable  for checking  even when a published  "answer" i s  
ava i l ab le .  

Most of   the   c lass ic   o r thogonal   coord ina te- t ransformat ion   examples   o f  
equat ion (17) , involve   t r igonometr ic   func t ions   and/or   hyperbol ic   func t ions  
and/or   square roots. Thus, t h e r e  i s  a v i t a l  need   fo r   e f f ec t ive   t r i gonomet r i c ,  
hyperbol ic ,   and   f rac t iona l -power   s impl i f ica t ion   dur ing   the   eva lua t ion   of  
formulas (18) and (19). The b u i l t - i n  RADCAN func t ion   -p rov ided   t he  
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I 

fractional-power  simplification,  but it was necessary t o  develop a new 
trigonometric/hyperbolic s impl i f i e r ,   d i f f e ren t  frdm those   bu i l t - in .  Though 
c r u c i a l   t o   t h e  performance o f  t h i s   p o r t i o n   o f   t h e   v e c t o r  package, a suffi- 
cient ly   thorough  discussion  of   this  new s i m p l i f i e r  would lead  us   too far 
as t ray   here ,  so t h e   s i m p l i f i e r  i s  discussed  separately  in   reference 1. 

Let n 

Then, using  ordered l i s t s  t o   r e p r e s e n t   t h e  components of  a v e c t o r ,   t h e   g e n e r a  
formulas fo r   t he   g rad ien t  , divergence, and Laplacian are 

For n=3, the   genera l   formula   for   the   cur l  i s  

c u r l  p = I , (ae2(h3p3)  hl a - -(hF2 a 1 1 , 
ae3 

The symbolic d i f f e r e n t i a t i o n  and  algebra  necessary  for  evaluating 
formulas (18) through ( 2 4 )  i s  s t ra ightforward  but   tedious -- an i d e a l  computer- 
a lgebra   appl ica t ion .   In   fac t ,   a r te r   comple t ing   th i s   vec tor -ana lys i s  package 
I discovered t h a t  a package similar t o  t h i s  curvilinear-components  portion 
had already  been  writ ten by Martin S. Cole. 

It i s  sometimes d e s i r e d   t o  compute the   i nve r se   o f   t hese   d i f f e ren t i a l  
operations: Given a spec i f i c   vec to r   f i e ld ,   f i nd  .a f i e l d ,  i f  one e x i s t s ,   f o r  
which the   g iven   f ie ld  i s  the   g rad ien t  or cur l .  

If a given  vector p i s  theAgrEdiznt  of 2n  unknown s c a l a r   p o t e n t i a l  4, then 
denoting an a rb i t r a ry   po in t   by .8=(81 ,82 , . . . y~ , ) ,  - 
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0 

where @(g) i s  an  undeterminable  constant.  
A 

Succeszful  closed-form  computation  of  these  integrals may depend upon 
t h e  chosen 2 and t h e  chosen  order ing  of   the components of  S. The v a l i d i t y   o f  
t h i s  formula  depends  upon t h e  assumed exis tence   o f  a s c a l a r   p o t e n t i a l .  
Consequently, t h e   f u n c t i o n  POTENTIAL a t t empt s   t o   u se   d i f f e ren t i a t ion   and  s i m -  
p l i f i c a t i o n   t o   v e r i f y  any  candidate   constructed  by  this   formula.  

If a given  vector  p i s  t h e   c u r l   o f   a n  unknown three-dimensional  vector 
p o t e n t i a l  q, then  

where $ i s  an   a rb i t r a ry   tw ice -d i f f e ren t i ab le   s ca l a r   po ten t i a l .   Succesz fu l  
closed-form  computation  of  these  integrals may depend upon t h e  chosen 02 and 
83 toge ther   wi th  a well-chosen  cyclic  permutation  of  the components of  2. The 
va l id i ty   o f   t h i s   fo rmula  depends upon the  assumed exis tence   o f  a vector  
potent ia l .   Consequent ly ,   the   funct ion VECTORPOTENTIAL a t t empt s   t o   u se   d i f -  
f e r en t i a t ion   and   s impl i f i ca t ion   t o   ve r i fy   any   cand ida te   cons t ruc t ed   by   t h i s  
formula.  Formd.as  (25)  and  (26) are genera l iza t ions   o f   those   g iven   in   pages  
201-202 of   reference  2 .  For t h e  program, 2 i n   equa t ions  (25 )  and (26)  i s  
s p e c i f i e d  by the   g loba l   va r i ab le  POTENTIALZEROLOC, which i s  i n i t i a l l y  set 

A 

A 

t o  [o,o,. . . ,o]. 

MACSYMA has several b u i l t - i n  features which g r e a t l y   f a c i l i t a t e   t h e  imple- 
mentation  of  extensions  such as this   vector   package:  

1. The s y n t a x   e x t e n s i o n   f a c i l i t y  makes it easy   t o   i n t roduce  new 
operators,   such as "X" , GRAD, DIV,  CURL, and W L A C I A N ,  toget.her 
w i th   t he i r   pa r se   b ind ing  powers  and r e s t r i c t i o n s  on t h e i r   v a l i d  
operand  types. However, attempted  implementation  of GRAD, DIV,  
CURL, and LAF'LACIAN r e spec t ive ly  as DEL, DEL *, DEL X and DELf2 
caused   incred ib le   chaos ,   which   should   no t   be   surpr i s ing   to  
anyone who has   wri t ten  an  extendable   parser .  
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2. The d e c l a r a t i o n   f a c i l i t y  made it easy to   e s t ab l i sh   t he   au tomat i c  
outat ive and opt ional   addi t ive  propert ies   of  GRAD, D I V ,  CURL, 
and LAPLACIAN. The d e c l a r a t i o n   f a c i l i t y  a l so  made it easy t o  
supplement the   a lgebra ic   p roper t ies   o f   the   bu i i t - in   opera tor  " * "  
with  commutativity. 

3. A bui l t - in   f lag   permi t ted   defea t   o f   the   defau l t   assoc ia t iv i ty  
property o f  "*", and  another  built-in  flag  provided  optional 
d i s t r ibu t ion  of  ' I *" over "+" . A bui l t - in   f lag   a l so   permi t ted  
the  automatic  factoring  of  scalars from  dot  operands. 

4. The pattern-matching  automatic-substi tution  facil i ty made it 
easy t o  implement simplifications  such as transformations (3), ( 5 )  
and ( 6 ) .  

5 .  The procedure-def ini t ion  faci l i ty   together  w i t h  a bui l t - in   funct ion 
for  determining  the  parts  of  expressions made it poss ib l e   t o  imple- 
ment the  other  expansions  and  simplifications  without  recourse  to 
the  lower-level MACSYMA implementation  language. 

S impl i f ica t ions   tha t   a re   un l ike ly   to   en la rge  an expression, t h a t  do not drasti- 
c a l l y  change the  form of  an  expression, and t h a t   a r e   e a s y   t o  implement via 
declarat ion and automatic  pattern-matching  substitutions were made automatic. 
Examples include  the  use  of  transformations (l), ( 3 ) ,  ( 5 )  and ( 6 ) .  

Other  expansions,  such as expansions ( 2 )  , ( 4 )  , ( y ) ,  and ( 8 )  through (27)  , 
together   with  the employment of   addi t iv i ty  or d i s t r i b u t i v i t y   r e q u i r e  a s p e c i f i c  
request by the   user ,   v ia   the   func t ion  VECTORSIMP, together  perhaps w i t h  t h e  
appropriate   set t ing  of   var ious  global   var iables .  

It i s  expected t h a t  most users w i l l  wish t o  use  the  function VECTORSIMP 
wi th   t he   f l ag  EXPANDALL s e t   t o  i t s  default  value  of FALSE, request ing  only  the 
leas t   cont rovers ia l   expans ions ,   o r   se t   to  TRUE, requesting  nearly  every  pro- 
grammed expansion. However, fo r   t he   u se r  who needs f ine   con t ro l   t he re  i s  a 
hierarchy  of  f lags  permitt ing  individual  cqntrol  over each  of t h e  programmed 
expansions or over  various  logical  groupings  of  these. The f l ags   a r e  

EXPANDALL, 
EXPANDDOT, 

EXPANDCROSS, 
EXPANDDOTPLUS , 

EXPANDCROSSPLUS, 
EXPANDCROSSCROSS, 

EXPANDGRADPLUS, 
EXPANDGRADPROD, 

EXPANDDIVPLUS , 
EXPANDDIVPROD, 

EXPANDGFUID, 

EXPANDDIV, 
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EXPANDCURL 9 

EXPANDCURLPLUS, 
EXPANDCURLCURL, 

EXPANDLAPLAC IANPLUS , 
EXPANDLAPLAC IANPROD . 

EXPANDLAPLACIAN , 

The PLUS s u f f i x  refers t o  employing a d d i t i v i t y  or d i s t r i b u t i v i t y .  The 
PROD s u f f i x  refers t o   t h e  expansion  for an operand  that  i s  any  kind  of  product.  
EXPANDCROSSCROSS refers t o  expansion (41, and EXPANDCURLCURL refers t o  
expansion ( 7 ) .  EXPANDCROSS=TRUE h a s   t h e  same e f f e c t  as EXPANDCROSSPLUS= 
EXPANT)CROSSCROSS=TRUE, e t c .  Two o t h e r   f l a g s ,  EXPANDPLUS AND EXPANDPROD, have 
t h e  same e f f e c t  as s e t t i n g  a l l  s i m i l a r l y   s u f f i x e d   f l a g s   t r u e .  When TRUE, 
ano the r   f l ag  named EXPANDLAPLACIANTODIVGRAD, r e p l a c e s   t h e  LAPLACIAN opera tor  
with  the  composi t ion D I V  GRAD. For convenience  the  f lags  have a l l  been 
dec lared  EVFLAGS. 

Those who p r e f e r  a p l e tho ra  of f u n c t i o n s   t o  a p l e t h o r a   o f   f l a g s  are 
encouraged t o   d e f i n e  a corresponding set  of   funct ions  which  merely  local ly  
set  t h e   a p p r o p r i a t e   f l a g ,   t h e n   u s e  VECTORSIMP. Those who loa the   bo th  
approaches are free t o   i g n o r e  a l l  o f  t h i s .  

TEST  RESULTS 

A c ruc ia l   ques t ion  i s :  How compli'cated  can  problems  be,  for  the  various 
por t ions   o f   the   vec tor   package ,   before   exhaus t ing   the   ava i lab le  memory space 
or a reasonable  amount o f  computing time? Unfortunately,  the  answer t o   t h i s  
quest ion i s  very  problem-dependent ,   d i f f icul t   to   characterfze  concisely  and 
ob jec t ive ly .  However, t o   s u g g e s t  rough i n d i c a t i o n s ,   t h i s   s e c t i o n  summarizes 
a v a r i e t y  o f  t e s t  results. 

F i r s t ,   t o  t e s t  t h e  non-component s impl i f ica t ions ,   defau l t   s impl i -  
f icat ion,   fol lowed  by VECTORSIMP with EXPANDALL=TRUE, w a s  a p p l i e d   t o   t h e  
express ions   in   Table  1, taken from  pages 32-33, 6 0 ,  and 215 of  
re ference  2 .  

These  examples a l l  co r rec t ly   s imp l i f i ed   t o   ze ro ,   w i th   t he   excep t ion   o f  
case 6, which s i m p l i f i e d   t o  

-a=cx(  a=bxc*b-a*bx(  bxc) ) - (  a -bxc)  2 

A second  appl ica t ion   successfu l ly   annih i la ted   the  term containing bx(bxc) ,  and 
r ea r r anged   t he  f i r s t  term t o   g i v e  

a-   (a-bxc*b)xc-(   a-bxc) '  . 
a-bxc could   be   fac tored   ou t ,   c lear ly   revea l ing   tha t   the   express ion  i s  zero,   but  
t he   bu i l t - i n   s ca l a r - f ac to r ing -ou t  mechanism does  not  recognize  that  a=bxc 
is a s c a l a r   d e s p i t e  i t s  vec tor  components. 
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Regard ing   the   o r thogonal .   curv i l inear   components   por t ion   o f   the   package ,  
Table 2 r e p o r t s   t h e  times r e q u i r e d   t o  compute t h e   s c a l e   f a c t o r s ,   a n d  express 
t h r e e   p a r t i c u l a r   e x p r e s s i o n s   i n  a variety of   three-dimensional   coordinate  
systems. The first- express ion  i s  a n   e q u a t i o n   a r i s i n g   i n  magnetohydrodynamics 
g i v e n   i n   r e f e r e n c e  3: 

The second  expression i s  the  Navier-Stokes  equat ion  of  f l u id  mechanics: 

- = v Laplacian V - Vograd V av  
a t  

V + - grad div V - grad p 
3 P 

The t h i r d   e x p r e s s i o n  i s  a l l  but one term of  another  equation  from  magnetohydro- 
dynamics,  given i n   r e f e r e n c e  4 :  

- -  ek (grad  Ne)x(grad Ye) . 
e 'e 

The omit ted term w a s  2 
CLU-~(- r * ( c u r l  B)) , e 

4lT 

where r i s  a r e s i s t i v i ty   dyad ic .   A l though   t he   vec to r   package   fo r tu i tous ly  
r ep resen t s  t he  gradien t   o f  a v e c t o r  as a l i s t  of  d e r i v a t i v e s   o f  l i s t s ,  which 
can be i n t e r p r e t e d  as a dyadic ,   the   package w a s  not  designed t o  t rea t  dyadics  
i n   g e n e r a l .  The func t ion  EXPRESS expands  expressions  into  components  from  the 
i n s i d e   o u t ,  and  expansion o f  t he   cu r l   ope ra to r   r equ i r e s   an  argument tha t  i s  a 
l i s t  o f   t h ree   e l emen t s .  Thus, EXPRESS halts w i t h  an e r r o r  message when it 
t r ies  t o  expand t h e   o u t e r   c u r l   i n   e x p r e s s i o n  ( 3 0 ) .  

The d e f i n i t i o n s  of  t h e   c o o r d i n a t e   s y s t e m s   a r e   g i v e n   i n   r e f e r e n c e  5 .  A s  
i n d i c a t e d   i n  Table 2,  the  sca le - fac tor   computa t ion   depends   s t rongly   on   the  
complexity  of t h e  coordinate   system, whereas t h e   t i m e   r e q u i r e d   t o   e x p r e s s  
vector   expressions  does  not .  

To t e s t   t h e   f u n c t i o n  named POTENTIAL, the   fu l ly-expanded  grad ien t   o f   each  
of  the   expres s ions   i n   Tab le  3 w a s  de r ived   i n   t h ree -d imens iona l   r ec t angu la r  
Cartesian  coordinates .   Then,   with POTENTIALZEROLOC set as ind ica t ed ,  POTENTIAL 
w a s  app l i ed   i n   an   a t t empt   t o   gene ra t e   an   expres s ion   d i f f e r ing   f rom t h e  o r i g i n a l  
by no  more than  a cons tan t .  
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I n   c o n t r a s t ,  POTENTIAL w a s  a b l e   t o   v e r i f ' y   t h e   s o l u t i o n   f o r   t h e  similar 
case  3, which has .no   ang le  sum. 

CONCLUSIONS 

The examples   here   demonstrate   that   vector   analysis  i s  a f e a s i b l e  and 
worthwhile  supplementary  program  package  for a computer-algebra  system. 
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TABLE 1 

Case 

t 
2 

" 

4 

5 

7 

Default _ _ - ~  - " ~ - _ . _ _ _ _  

(d-a)=(b-c)+(d-b)-(c-a)+(d-c)=(a-b) 

(b-a)=(b-a)+(c+b) - (c -b)+(d-c)=(d-c)  
+(a-d)-(a-d)-(c-a)=(c-a)+(d-b)-(d-b) 
+(a+c-b-d)-(a+c-b-d) 

- " 

- ~ 

( a - b ) = ( k - - ) + ( b - c ) = ( k - 2 )  a+b b+c 

+ ( c - a ) * ( k  -7) c+a 0.03  

(a+b-c-d)-(a+b-c-d) - 
(a-b-c+d) (a-b-c+d)-4(  a-c) (b-d) 

(bxc)x(axd)+(cxa)x(   bxd)+(   axb)x(   cxd)  
+2(a=bxc)+d 1.3 

(axb )x (bxc ) - ( cxa ) - (a= (bxc ) )2  4.0 

(a-d)x(b-c)+(b-d)x( c-a)+( c-d)x(a-b) 
-2*(axb+bxc+cxa) 0.5 

0 .02  

~ 

VECTORSIMP 

0.3 

0.6 

0.3 

0.7 

4.8 

2.0 

0 . 6  
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TABLE 2 

t i m e  i n  seconds 

Coordinates 

I Scale  
Factors  

p a r a b o l i c   c y l i n d r i c a l  

rec tangular   Car tes ian  

p o l a r   c y l i n d r i c a l  

paraboloidal  

conical  

sphe r i ca l  

e l l i p t i c   c y l i n d r i c a l  

confoca l   e l l i p so ida l  

b i p o l a r   c y l i n d r i c a l  

ob la te   sphero ida l  

p ro l a t e   sphe ro ida l  

t o r o i d a l  

0.7 

0.8 
1 . 5  
3.4 

6.9 
7.4 
9.3 
17.8 
20.5 

21.8 

35.3 

57.0 

TABLE 3 

Eq. (28 )  

0.9 

0.8 
0.4 
0.9 

1.3  
0.8 

0.5 

1.1 

0.5 

1 . 2  

0.5 

0.5 

Eq. (29)  

0.9 

1 . 2  

0.8 

1 .3  
2.1 

0.8 

1 . 4  
2.5 

1.4 
1.0 

1 . 5  
1.6 

Cas e POTENTIALZEROLOC Expression 
time i n  
seconds 

1 [x=O, y=o, z=o] I 1.1 w 2 z  + (x3+-) y 

2 

5.9 [z=1, y=1, z=1] (x +y +z 1 - 3  

1 . 0  [ F O ,  y=o, z=ol x/ (y+z+l.) 4 

4.2 [x=O, y=o, z=o]  x s i n ( m ) e  3 

x s i n ( m b ) e  3 39+.rr z210g ( l + z )  

3 3y+.rrz2 log ( l+z 

11.2 [x=o, y=o, z=o ]  

. . ". . . . . . - . . . . . 

5 

6 1.1 [z=1, y=o, z=o]  loge(z +y 1 

2 2 2 -1/2 -112 
. .  - .  . . . . . "  .". . . ~ . .  . . "  . .  

2 2  

~ . . .  " .  
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A NATURAL WAY TO DO SPATIAL  LINEAR  GEOMETRY IN MACSYMA 

Juan Bulnes 
Stanford Artificial Intelligence Laboratory 

ABSTRACT 

A set  of  routines,  appropriate  for use as an interactive aid in 3-dimensional  calculations with 
planes,  lines  and  points  is presented. The mathematical language used is vector  calculus. T h e  
simplicity  with which  these  routines can be written in MACSYMA is quite  remarkable,  and  that is 
the  main reason  for  presenting them here. Because of the  natural way in which geometric intuition is 
mapped  into  them, they  can  serve  as  a model for an  interactive  computational  aid for architects. 

INTRODUCTION 

This  paper is concerned with the application of MACSYMA to 3-dimensional linear  geometry 
calculations. A number of routines  are presented which provide a designer with a most natural 
language  for  interacting with the system.  For example, the  designer may be an architect who has 
drawn  tentative  plans  for a structure which he wishes  to meet certain specifications regarding  shape, 
perspectives, etc.; his design having been driven by the outward shape  he  has in mind,  he may know 
the  exact  dimensions of some of the subsystems of his structure,  but  there may be  many  essential gaps 
in  his  knowledge  of how they fit together; also he may still be wondering  as to which of his  givens 
can  be used  as  initial  reference  and whether the rest  would then  be  under-,  over- or  uniquely 
determined by these. . O u r  routines  permit him to interactively explore  the  consequences of his 
decisions.  In  the  situation  envisioned,  the structure does  not have any curved  surfaces, although it  is 
possible  to  deal with them, with some extra work. 

T h e  mathematical  language chosen is three dimensional vector calculus and all surfaces are 
represented  parametrically. Thus a line is represented by a vector depending on one  parameter  and a 
plane by one that depends on two parameters. This is different  from  the  usual  representation  in 
analytic  geometry,  where a plane is represented by an equation in three  variables  and a line by a 
system of two  equations,  and where  the  variables X, Y and 2 stand  for  the  three  coordinates of a 
point.  In  our representation,  a  point is represented by an ordered  triple [a,b,cl and  our  parameters do 
not  represent coordinates. Thus  the vector [X,Y ,Zl  with three  free  parameters  represents the-entire 
3-dimensional space,  while [O,X,Ol represents  the y-axis, the  same  as [O,Y,Ol or CO,U,Ol. 

T h e  objects we are  dealing with are points, lines and planes. It seems handier to represent a n  
object  like a line by a vector with one  free  parameter rachet. than by a system of two equations.  It will 
be shown  that  this representation makes the  routines that compute  distances and  angles  extremely 
simple;  in  fact  they  are written in just  the language of vector calculus. 
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The  most important convention we have kept throughout is that  for any line the  free 
parameter will be named X and for any  plane the parameters will  be Y and 2. Thus,  computing  the 
intersection between  two planes can be done by renaming the parameters of one of them SO X and U, 
and then  solving the resulting system  of three equations for Y,Z and U; the solution will contain X 
and will therefore  be a line. 

While  the  above is a convention for the system we are building in MACSYMA, the following 
are conventions  for  the sake of this exposition only;  We shall use  lower  case letters a,b,c, ... to 
represent  numerical  quantities, as opposed  to parameters (however,  responses  typed back by 
MACSYMA will appear always in upper case). Thus we  may talk about the point [a,b,cJ, for 
instance; or  about some horizontal plane [Y,Z,a]. Upper case identifiers A,B, ..., Ll,L2, ... and 
PLI,PL2, ... will be used as arguments in the definitions of MACSYMA functions. But X,Y,Z,U will 
be reserved for  the parameter names. 

The  author wishes to acknowledge his debt to  Bill Gosper  who taught him how to use 
MACSYMA and substantially contributed to the system shown in the sequel. 

BASIC VECTOR CALCULUS IN MACSYMA 

Vector  addition, substraction, multiplication and division by scalars are  already built in 
MACSYMA. So is also the dot product. For  example: 

(C 1) Cal,a2,a3I+[bl,b2,b31; 
(D 1) [Bl + A1, B2 + A2,  B3 + A33 

(C2) a d b  l,b2,b33; 
(D2) [A B1, A B2, A B31 

((23) [al,a2,a3I.[bl,b2,b31; 
(D 3) A3  B3 + A2  B2 + A1 B1 

Thus the only basic operation that needs be added is the CTOSS product, also called vector 
product. The  following routine suggested by Bill Gosper  combines the MACSYMA functions 
DETERMINANT and MATRIX so as to write the cross  product in the very same way it is defined .. 
in textbooks. 

CROSS(A, B) :- DETERMINANT(MATRIX(K1, 0, 01, [O, 1, 01, 10, 0, I]], A, B)) 

Thus: 

Of course 0 4  would  make a more  efficient definition of the cross product. But Gosper’s 
routine is worthy of presentation for its  elegance,  because it illustrates the  capabilities of the 
MACSYMA language  and also for its additional merit that i t  follows the mnemocechnic rule by 
which  the definition is commonly  remembered. 
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FUNCTIONS FOR 3-DIMENSIONAL  LINEAR GEOMETRY 

Using  SOLVE in  addition to the basic set of operations  just  described, one can program a set 
of  useful  routines  for  using  MACSYMA  as an  interactive calculational aid, in a language  that  follows 
almost  verbatim a tutorial exposition of vector calculus. We  start with the  norm of a vector: 

NORM(A) := SQRT(A . A) 

T h e  distance between two points is the norm of the  difference vector: 

DISTANCE(A, B) := NORM(A - B) 

Vectors of  length  one  are useful for many purposes, for instance for  determining angles. The 
following  function, 

Passing a line  through two points: 

LINE(A, B) := A + X*(B - A) 

A n d  a plane  through  three points: 

PLANE(A, B, C) := A + Y*(B - A) + Z*(C - A) 

Getting  the  point of intersection of a line and  a plane: 

INTERSECTION(L,  PL) := EV(L,  SOLVE(L - PL, [X, Y, 23)) 

There  are  several ways to compute the intersection line between  two planes. O n e  possibility is 
the following  routine, suggested by Bill Cosper. 

PLANEINTERSECTION(PL 1, PL2) := 
BLOCK([INT],  INT : SOLVE(PL1- EV(PL2, Y = X, Z - U), [Y, Z, VI), EV(PL1,  INT)) 

T h i s  function works fine in most  cases; but when the  planes are parallel, SOLVE  fai ls   and 
gives  the message  "inconsistent  equations", and  that is what it should  do. The  same  happens  to 
INTERSECTION when the line and  the plane don't intersect. However, PLANEINTERSECTION 
fails  for  the following  pair of perpendicular  planes because of the asymmetry stemming  from  the.  fact 
that  we  solved  for  three  arbitrary  parameters out of the  four. 



(C5) PLANEINTERSECTION(CY,O,Z~,~Z,Y,ZI); 
INCONSISTENT EQUATIONS:(2) 

Switching  around Y and 2 in the  first  argument does not do any good, but,  curiously enough, 
doing  it with the second one does: 

(C6) PLANEINTERSECTION(1Y,O,Zl,[2,Z,Yl); 
SOLUTION 
(E61 u = o  
(E 7) Y = 2  
(E81 z = x  
(D8) 12, 0, x3 

By tracing SOLVE we find  the solution to the puzzle: 

(C9) PLANEINTERSECTION([Y,O,Zl,12,Y,Zl); 

INCONSISTENT  EQUATIONS:(2) 
1 ENTER SOLVE [[Y - 2, - X, Z - UI, [Y ,  2, UII 

What  has  happened is that the second equation says X = 0, but X is considered a coefficient 
because it is being solved for [Y,Z,Ul. Switching the second argument helps because we then  have U 
= 0, which is O.K. for a variable U. 

Failure of PLANEINTERSECTION due to the  above  situation is a rare occurrence; a more 
serious  problem of this  and  other routines is occasional numerical unstability. In the  next section  we 
shall discuss  some  modifications  that help with the latter; also we  will show how to construct a routine 
for  intersecting  planes  that  never fails unless the planes do not intersect. 

In  the rest of this section we shall use a function VCOEFF instead of the MACSYMA 
function COEFF. T h e  definition of VCOEFF will be given in the  next section, as we see  why 
C O E F F  does  not always work. 

T h e  following  function GRADVECT computes a vector of unitary length perpendicular to a 
plane. 

GRADVECT(PL) := UNITL(CROSS(VCOEFF(PL, Y ) ,  VCOEFF(PL, Z))) 

Similarly, the unitary vector pointing in the direction of a line. 

UNITDIR(L1NE) := UNITL(VCOEFF(LINE, X)) 

T h e  angle between two lines can be computed with help of UNITDIR. T h e  simplest way is the 
following. 

ACOS( UNITDIR(L1). UNITDIR(L2) ) 

However, is the referee suggested, it is  numerically preferable to use ATAN2 instead of ACOS 
or ASIN, as follows. 
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This  routine computes the correct  angle  modulo 2rt. In practical applications you would 
probably  prefer to compute angles  modulo IT, because  zegeated  use  of the cross product. makes it 

,difficult to keep track of the orientation of the different unitary vectors. Also angles are computed in 
radians,  but converting them to degrees  is  trivial. 

A function  for computing the shortest distance between  two  lines  is 

DISTANCEBETWEENLINES(L~, L2) :- 
ABS((EV(L1, X I 0) - EV(L2,  X I 0)). UNITL(CROSS(VCOEFF(L1, X), VCOEFF(L2, X)))) 

which  takes the vector from a random point on one  line  to a random point on the  other  one  and 
projects  it  onto  the vector perpendicular to  both  lines.  However  it fails when the lines are parallel, in 
which case the  appropriate procedure is  to take a random  point on the first line by an EV(L,X=O), 
and compute its distance to the other line  using  the  following function. 

DISTANCEFROMPOINTTOLINE(A, L) := 
NORM(CROSS(A - EV(L, X = O), UNITL(VCOEFF(L, X)))) 

Other useful functions are: 

DISTANCEFROMPOINTTOPLANE(A, PL) := 
ABS((A - EV(PL, Y 0, Z I 0)). CRADVECT(PL)) 

ANGLELINEWITHPLANE(L,  PL) := ABS(n/2 - ACOS(UNITDIR(L) . GRADVECT(PL))) 

T h e  names of these routines are self explanatory. The following one computes the  angle 
between two planes. 

SOLIDANGLE(PL 1, PL2) :I n - ACOS(GRADVECT(PL 1) . CRADVECT(PL2)) 

An interesting problem is passing through a point P a plane perpendicular to a line L. It  can 
be solved in the following way:  let the vector [X,Y,Zl represent a random point in 3-space; then 
[X,Y,Zl-P is a vector from P to a random point;  restricting [X,Y,Zl-P to being perpendicular  to L, we 
obtain an equation in X,Y,Z; solve it for X and substitute the solution into [X.Y,Zl; the  resulting 
vector  depends on Y and Z and represents the plane sought. The following routine  embodies this 
procedure. 

NORMALPLANE(P, L) := EV([X,Y,ZJ, SOLVE( ([X, Y, ZI - P) . UNITDIR(L), X )) 

But  this function, like PLANEINTERSECTION, may fail in some  cases; Le., if the  first 
coordinate of P is 0, it will return [X,Y,Zl. Fortunately the following simple modification makes it 
reliable. 

NORMALPLANE(P,  L) :I EV([X+Y-Z, X-Y+Z, -X+Y+ZI, 
SOLVE( ([X+Y-Z,  X-Y+Z, -X+Y+ZI - P) . UNITDIR(L), X )) 
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Similarly,  given a line L and a point P not  on L, we can- draw through P a line perpendicular 
to L and intersecting L in the following way. 

DRAWPERPLINE(P, L) := LINE(P, EV(L, SOLVE(LINE(P, L) . UNITDIR(L)))) 

However, if we  now want  to find the point of intersection of L with the  perpendicular drawn 
by DRAWPERPLINE, we often find that they do not  intersect. This is due to the  errors of 
numerical approximation:  the two lines may miss each other by  less than  a millionth of an inch. T h e  
second  argument to LINE in the function  definition of DRAWPERPLINE is supposed to determine 
on L the nearest  point to P; I have found that the following way  of using differentiation  to find  the 
closest point makes the function more  friendly. 

DRAWPERPLINE(P, L) := LINE(P,  EV(L,  SOLVE(DIFF( (P - L) . (P - L), X, I)))) 

In a similar way  we might continue defining functions for solving many kinds of geometric 
problems. But we shall leave our accounc here and discuss  some practical issues in the  next two 
sections. 

SOME HINTS ON MAKING THE SYSTEM  MORE  FRIENDLY 

The foregoing routines suffice for most  practical  calculations.  However,  you  may often want  to 
look at  the numerical values of your  points or lines. The following value serves to illustrate a 
problem associated numerical evaluation. 

(D10) ( 706351256145697026997480181  12244808857010 X 
+ 1666520868167951809628782280558541766013175 ) 

/ 1875956846519908260995774089014019351503416 

(C 1 1) %,numer; 
(Dl 1) 0.0 

To see what  has  happened, let us look at  its floating point representation, 

(C12) BFLOAT(D 10); 
(D12) 5.33061302535671 IB-43 (7.06351256145697B40 X + 1.66652086816’1952B42) 

T h e  solution to this and other problems is to use EXPAND. 

(C 13) EXPAND(D 10); 

(C14) 2,numer; 
(D 14)  0.037652852 X + 0.88835778 
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T h e  MACSYMA function COEFF offers  an  analogous  difficulty, as illustrated by the 
following case. 

x + 5  

7 
””” 

(C 16) COEFF(R,X); 
(D 16) 0 

(C 17) COEFF(  EXPAND(D15), X); 

This is the reason why we had to  use. a function VCOEFF instead of COEFF in the last 
section. Our  definition of VCOEFF is as  follows. 

VCOEFF(V,  X) :- MAP(LAMBDA(LL1, COEFF(EXPAND(L),  X)), V) 

In my own experience, the system  is quite friendly if one  keeps expressions in expanded  form 
and exercises extreme caution with floating point  conversions. In the use  of EVAL in the  routines, 
one may include the EXPAND argument throughout. When converting a value  using  numerical 
evaluation,  it is wise  to do it always in two  steps: first expand it and then evaluate it. Use of 
EV(Z,EXPAND,NUMER) won’t do any  good; you have to say: 

(INT:EXPAND(%),  EV(INT,NUMER)) 

As for  the  particular type of failure of PLANEINTERSECTION showed in the  previous 
section, it occurs so seldom that I have preferred to keep it as it is. However, the following routine 
will never  fail unless we encounter a plane whose twa.COEFFs are linearly dependent - which  could 
have been created by giving three colinear  points to the routine PLANE.  Also it will return NIL if 
the two planes are parallel. 

PLANEINTERSCT(P 1, P2) :- 

BLOCK([INT  I,INT2,INT3),  INT I:GRADVECT(P I), 

IF  MAX(INT2,  INTS) > 0 THEN 
INTB:ABS(VCOEFF(PP, Y). INTI), INTS:ABS(VCOEFF(PP, Z). INTI), 

INTERSECTION( IF INT2 > INT3  THEN EV(P2, Y-X, Z-0) ELSE EV(P2,  Y-0, Z-X) ,  P 1) 
+ X * UNITL(CROSS(GRADVECT(PP), INT 1)) 

ELSE  NIL ) 

This routine works  by first locating the coefficient of P2 whose direction meets PI at a steeper 
angle  and  taking a line on Y 2  in the direction of thar coefficient; the point of intersection of this  line 
with P 1 is then used as a starting point for the line of intersection of the two planes, which points  in 
the direction of the cross product of the CRADVECTs of the two planes. 
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THE  USE OF THE SYSTEM:  AN  EXAMPLE FROM APOLLONIUS. 

T h e  referees have expressed  the desire to  see  some examples of the use of the system described 
in  the  previous sections. Also  one of  them  raised the question whether there  are  problems  in  which 
the symbolic  capability of MACSYMA offers a clear advantage. 

To me, the main  advantage of the system is its flexibility. If you need to get started  on  some 
calculations of your  own, here you have an environment where you can compute things exactly as you 
want: Not  having  had much experience with other systems for this  purpose, I can’t give a 
comparative answer. I hope  that  the example shown below will permit the  experienced  user to  draw 
his  own conclusions. 

As for  the  question on the symbolic capability, my answer is a  qualified yes. I have  found 
examples  where it is useful; but in  many other cases I have  found it necessary to  force MACSYMA 
to stick  with  numerical,  approximated values. Thus I will make a case both ways. I hope  that  the 
example worked out  as well as  the problem of the  quarter cylinder mentioned below, will make  the 
reader  enthusiastic  about symbolic calculation. I can think of examples which make  much heavier 
use  of  this facility. On  the other  hand, I hope to temper the enthusiasm so that symbolic computation 
will not  be  abused, because the complexity of algebraic expressions grows extremely large  in  three 
dimensional  calculations  and in many cases they will blow up MACSYMA’s storage  capacity. 

For  example, consider the following two problems. First give yourself three  points P:[pl,p2,03. 
Q[q l,q2,01 and R:[rl,ri,OI, and compute the coordinates of the center C N T  of the  circumscribed 
circle  of  the triangle. Then let MACSYMA do a RATSIMP on 
DISTANCE(CNT,P)-DISTANCE(CNT,Q), and it will compute 0. Now give yourself four  points 
with  symbolic  coordinates in space and compute the coordinates of the center C N T  of  the 
circumscribed  sphere. You will get a  huge expression for each coordinate of CNT.  When I asked for 
RATSIMP(DISTANCE(CNT,q)-DISTANCE(CNT,P)), MACSYMA was not  able  to handle it. 

When  doing practical calculations, it pays  to  keep values stored in numerical form so as to 
minimize  the size of expressions. Granted chis, I have  found  that  a limited use of the symbolic 
capability  can  be very useful. For instance, consider the following problem. You want  to make a piece 
in  the  shape of a quarter of a cylinder that should be inserted between  two planes A, B that  are  not 
parallel,  and  the  axis of the cylinder is not perpendicular to either of the planes. T h e  planes, the 
radius  and  the  axis of the cylinder are given; so are also the planes F1, F2 of the two non  curved 
faces of the  quarter cylinder. You want to make your cylinder by rolling up a sheet of metal, which 
should be cut  for you on order. Then you  may use MACSYMA as follows. Define a line on the 
cylinder  depending on one parameter THETA;  THETA is the  angle that  the  plane  through 
LINE(THETA)  and  through  the axis makes  with  F1. You are interested in the  range 
OsTHETAsn12. Now you can compute the intersections IA(THETA)  and  IB(THETA), of 
LINE(THETA) with  A and B, respectively. Similarly let IR(THETA)  be  the  intersection of 
LINE(THETA) with some reference plane perpendicular to the cylinder axis. T h e  distance  on  the 
cylinder  surface  from  LINE(THETA) to the edge on F1, is THETA times the radius. With all  these 
functions of THETA,  you can now plot the shape of the sheet of metal, which you want  cut so that  it  
will fit  into your  structure.  It  cannot be overemphasized that for an application of this  nature,  it is 
convenient  to  keep  everything  but  THETA in numerical form. 
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Now let us look at a  sample problem. Presenting any practical application  in a short  paper  like 
this, I am forced to restrict MACSYMA’s output  to its shortest possible form. For  this  reason, I will 
make  use of the following  function. 

NUMVAL(A) := BLOCK([TMPI,  TMP : EXPAND(A),  EV(TMP,  NUMER)) 

(I am not  claiming  there  are  no better ways  of achieving  the same effect. Having written this 
section  after my paper was reviewed] I can only apologize if this way  of doing it is far  from optimal.) 

Now  consider  the following variation of the Apollonius’ problems: given two planes PL1  and  
PL2,  and two  points  A  and B, find  the center and  the  radius of a  sphere  through  A and B that  is 
tangent to PL1 and to PL2. We shall take some numerical values for  the  planes and  the points. 

(C19) P L 2  : PLANE([l,O,O], [2,1,01,  [2,1,61); 
(D 19) [ Z + Y +   l , Z + Y , 6 Z I  

(C20) A : [0,201201; 
(Dm LOl 20,201 

Let L O C l  be the locus of the  points  that are equidistant from A  and B. Let LOG2  and  LOG3 
be  the loci of the points  that  have the same distance to PL1  and to PL2. We use the  line of 
intersection of PL1  and  PL2, IL12, as an intermediate value. 

(C22) L O C l  : NUMVAL(  NORMALPLANE( (A+B)/2, LINE(A, B) )>; 
(D22) 11.33333333 Z - 21, 3.33333334 2 - 2 Y - 21, - 1.33333333 Z + 2  Y + 211 

(C23)  IL 12 : NUMVAL(PLANEINTERSECTION(PL 1, PL2)); 
(D23) 10.75 X + 1,  0.75 X, - 1.5 XI 

((224) L O C 2  : NUMVAL( EV(IL12, X=Y> + Z * ( GRADVECT(PL1) + GRADVECT(PL2) k 
(D24) 11.28445704 Z + 0.75 Y + 1, 0.75 Y - 0.12975651 Zl 0.57735026 Z - 1.5 YI 

(C25)  LOC3 : NUMVAL( EV(IL12, X - Y )  + Z * ( GRADVECT(PL1) - GRADVECT(PI-2) ) h 
(D25) [- 0.12975651 Z + 0.75 Y + 1, 1.28445704 2 + 0.75 Y ,  0.57735026 Z - 1.5 YI 

Intersecting L O C l  with LOC2 and with LOC3, we obtain two lines LOC4 and  LOC5, 
respectively,  on  which  such a sphere may exist. Of course it will exist in at most one of them, but we 
do not yet know  on  which one. 

((226) LOC4 : NUMVAL(PLANEINTERS2C T’,’ON(LOC 1, LOC2)); 
(D26) [- 0.87826’738 X - 27.657506,  0.914488+ X. .I- 2.8949957, - 2.2318895 X - 12.881254’71 



((227) LOC5 : NUMVAL(PLANEINTERSECTION(L0C 1, LOCqh 
(D2V [0.63169204 X - 1.08222031, 1.921 12805 X + 20.61 1853, 9.264817 - 0.97358996 X] 

Now we proceed to find out whether  there is any  point  on LOC4 or LOC5 that  has  the same 
distance to, say, A and PLI. 

((228) Q4A : NUMVAL(  DISTANCE(LOC4,A)tZ ); 
(I3281 6.5889733 X2 + 164.071367 X + 2138.6957 

(C29)  Q5A : NUMVAL(  DISTANCE(LOC5,A)tZ >; 
( D 2 9  5.0376453 X2 + 21.8869693 X t 116.789719 

(C30) Q41 : NUMVAL( DISTANCEFROMPOINTTOPLANE(LOC4,PL 1)T2 ); 
(D 30) ABS(1.26766976 X + 22.310988)2 

T h e  last line is typical of  some  of the minor problems  one frequently encounters. It is the  price 
one  has to pay for using a system of such  great  generality. It still  seems  much  less than  the  price  one 
pays  with more conventional systems. So we try again. 

(C3 1) Q 4  1 : NUMVAL( PART(DISTANCEFROMPOINTTOPLANE(LOC4,PL 1),1)T2 >; 
0331) 1.60698665 X2 + 56.56593 X + 497.78019 

(C32) Q51 : NUMVAL( PART(DISTANCEFROMPOINTTOPLANE(LOC5,PL1),1)72 ); 
(D 32) 0.8313226 X2 + 29.262555 X + 257.51048 

(C33)  REALROOTS(Q41-Q4A); 
(D 33) [ I  

(C34)  REALROOTS(Q5l-Q5A); 
(D 35) [E34, E351 

So we know there is no  such sphere on LOC4 but  there are two  of them  on LOC5.  Now we 
proceed to determine  their centers and radii. 

(C36) C N T l  : NUMVAL(EV(LOC5, E34)); 
(D 36) [- 4.2238372,  11.0574374,  14.10680721 

(C37)  CNT2 : NUMVAL(EV(LOC5, E35)); 
(D 37) i3.1670384, 33.534875,  2.715683341 

(C38)  RADIUS 1 : NUMVAL(DISTANCE(CNT1, A)); 
(D 38) 11.5125996 

(C39)  RADIUS2 : NUMVAL(DISTANCE(CNT2, A)); 
(D 39) 22.1804 1 
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Finally let us check for  the  sphere in CNTl whether it actually fulfills the  conditions  of  the 
problem. 

(C40)  NUMVAL(DISTANCE(CNT1, B)); 
0340) 11.5125997 

(C4 1) NUMVAL(.DISTANCEFROMPOINTTOPLANE(CNT 1, PL 1)); 
(D4 1) 11.5125996 

(C42) NUMVAL(DISTANCEFROMPOINTTOPLANE(CNT1, PL2)); 
(D42) 11.5125997 

Yes, it  does so! Also we have good reason to be happy with the  numerical  accuracy  of the 
answer.  Notice  the use of symbolic evaluation in the commands ((228) through ((232). 

CONCLUSION 

T h e  foregoing  routines  are useful for  interactive calculations of three  dimensional  linear 
structures.  They could provide a model for practical interactive systems for  architects and  other 
designers,  which could be  enhanced by the  addition of graphic facilities. Also they  shdw  how 
naturally vector  calculus  can be expressed in MACSYMA. 

It is plain  that  the same  approach can  be  used  to express a lot more of vector calculus in 
MACSYMA. Linear transformations  and  the like  can  be expressed most easily. O u r  use  of S O L V E  
could  have been handled also by LINSOLVE. But SOLVE can  also be used for  problems  involving 
curved surfaces.  Differential geometry can  be readily treated in this  manner too, using also the 
MACSYMA functions  for  differentiating  and integrating. 

Textbook problems in dynamics of solid bodies are typically expressed in  the  language  of 
vector  calculus. Thus  they can be naturally treated using this  approach. A fun  project  would be to 
work  out a course  in  rational mechanics with MACSYMA by using also its  ability  to solve 
differential  equations. 
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Varieties of Operator Manipulation 

Alexander  Doohovskoy 

Laboratory for Computer  Science 

Massachusetts Institute of  Technology 

Symbolic operator manipulation  began  when  program  (d,differentiate,verb)  was perceived as 
data (D,Derivative,noun). Although this realization took more  than 100 years (ref. 11, the  nineteenth 
century mathphysicists soon  developed this perception in three major  directions: direct and indirect 
methods for  the solution of differential equations,  calculus  of finite differences, and the  fractional 
calculus. 

We propose a change in MACSYMA syntax in order to accommodate the operator manipulations 
nocessary to implement  these  classical  symbolic  methods as well as their modern counterparts. TO 
illustrate  the  virtue and  convenience  of this syntax  extension,  we  show  how MACSYMA’s pattern- 
matching capacity can be used to implement a particular set  of operator identities due to  Hirota 
which can be used to obtain exact  solutions to nonlihear differential equations. 

What is an operator calculus? The usual  technical  meaning involves an isomorphism between  an 
algebra  of functions,  say of the form 

t(x) - C akxk 

and an algebra of  operators 

fm) - X akxk 

ruth that  pointwise multiplication of functions goes into operator  multiplication: 

rcxlgcx, ””-> f(Xk(X) 

1. This work was  supported, in part, by the  United  States  Energy  Research  and Development 
Adminlstratlon under Contrrct Number E(ll-1)-3070 and by the National Aeronautics and Spaco 
Admlnlrtratlon under Grant NSG 1323. 
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Th. isomorphism f(x) ---"* f(X) is also required to be linear. 

Basically, this mans that expressions involving the operator X can be manipulated algebraically. 
Oporator algebra thus bmcomes a tool  for finding  solutions to equations or studying their  structure. 
For example, consider the (linear) differential equation 

(p(D)Xf(t)) = dt) 

where p(D) is a polynomial in the operator D = d/dt over the coefficient ring K[t] . We might try to 
solve  this equation using various transform methods, for example, using the Laplace transform. This 
is the typical lndirect method"  which  consists of translating the original  problem into a 
corresponding problem in some "image  space", solving  there, and then transforming back. I f  g(t) = 
exp(t*),however, the Laplace transform of  the RHS does not exist. The "direct" methodpn the  other 
hand, deals with the original problem itself; one could  consider a factorization of the  operator 
polynomial 

and then return the answer in the form 

f(t) - (0-rI)~'-(D-r,)-#"((t)). 

The problem now is to give meaning to the inverse operators while preserving basic algebraic laws 
such as: 

k ing  a slightly  different language,  one  can  view the evolution of "operator techniques" * as the 
realization  that something  conceptually and computationally  useful  can be gained from imposing and 
studying  the  structure of the dual  algebra A* of  operators or functionals acting on some given 
algebra A. For example, A might be Q[xJ the ring of univariate polynomials over the rationals. 
Typically, one introduces I )  pairing 

< , >t A' X A ------ > R  

where R is some relevant ring of scalars.  The next  step is to define a product in the dual algebra. 
There  are various ways of doing this;  one  example is 

<LILpv> = 2 bin(n,k)  <Ll,xk> < L ~ , x ~ - ~ >  (1) 

The product  is commutative and  associative.  The  "evaluation"  map (usually called the augmentation) 

serves as the multiplicative identity in the dual  algebra of functionals acting on  univariats 
polynomials 

1. In some  cases functional composition  is also preserved under the map. 

2. Also known as symbolic methods,  symbolic  calculus, functional calculus, operator 
calculuspperational caIculus, functional  operations 
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L - r.L - L 

with tho product  ckfinod as in (1) above.  For  generalized functions with the pairing given by 

*Fa> - 1 F(xk(x) dx 

and with I product defined by convolution 

th. role of the identity  is played by the delta function. 

The duality  between the algebra and the  functionals d i n g  on it is made more explicit by 
defining the adjoint L* such that 

<YL*V> = <Ltulp 

It is  also possible to contemplate the meaning of  operations  applied to operators, such as the 
derivative  of an operator (element of the dual  algebra).  Suppose that A is  the  algebra of 
polynomials in one  variable, then one  meaning (refs. 2,.3) is  given by 

<L', p(x) > = <L# xp(x)> 

A more familiar meaning of the derivative of an operator is found in the context of  generalized 
functions (functionals) F acting on a suitable space  of test functions, +(th The pairing is  given by 

<F,+(tP - 1 F(t)  +(t) 

and in this case the derivative of the  functional F is  defined by 

(to  arrive at this one uses integration by parts and then  forgets). Of course the great virtue  of  this 
definition  is that  the meaning  of F no  longer  depends  on the meaning or existence of a derivative (in 
the  ordinary sense) for F. This is  very convenient for functionals F which are defined as a limit of a 
sequence of functions. Thus, the well-known  delta function(a1)  has a derivative which behaves as 

Wt-a),  +(tP = - +(a) 

These are just some of the mathematical  parallels  between "operator" methods applied to  the 
difference calculus as well as the differential calculus.  Rota (ref. 3) has refined  the essence of  these 
ideas into a very general theory of  operators which for example finally explains the somewhat 
mysterious umbral operator calculus  developed in classical invariant theory. In addition, it provides 
a neat  solution to the problem of computing  "connection" coefficients between various classes of 
polynomials. 

In what follows we attempt to Illustrate the variety of  applications  and  some of the common 
themes in various operator calculi  arising in pure and applied mathematics.. MACSYMA's pattern- 
mitching facility, together with the extended  syntax we  propose, is ideal for implementing these 
i&rr 
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2 W R A T m S  IN MACSYMA 

Let us examine some of  the MACSYMA programming  aspects of operator algebra. For example, 
suppose  we  are dealing with a linear  operator, L In MACSYMA, there are several ways of 
expressing  identities involving the operator L In order to say that L is linear,  we  must first  define I 
predicate  to recognize sums: 

SUMM(X):=IS(PART(X,B)I"+') 

We can then define a simplification rule by 

LET (L (SUM1 , L (FIRST tSUtl11 + L (REST (SUM1 I ,  SUMM, SUM) 

An alternative method is  to set  up a rule using  MATCHDECLARE  and  DEFRULE; in order to have 
the  identity applied automatically,  one can  use  TELLSIMP. Or, finally, one  can simply  say 

DECLARE (L , L I NEAR 1 

The exigencies of these methods  can be overcome with a little help from primers, advisors, etc. 
(refs. 4, 5). Of course the last  method is a response to the  programming  inconveniences of the  first 
two and also attests to the mathematical  importance  of the notion of LINEARity. Other basic ' 
algebraic  properties of operators and functions  which  have  been  subsumed under the DECIARE 
function include COMMUTATIVE,R-ASSOCIATIVE,L-ASSOCIATIVE, As an example, the  following 
MACSYMA command 

(C33) DECLARE(L,LIMAR,~,COTATIVE); 
(033 1 DONE 

has the following  effects 

Now consider the following simple identity 

~ l ip (x )  - p(x + ai) (1) 

defining a (linear) shift endomorphism Eli on  the  algebra  of univariate polynomials (over some 
convenient ring). How could we  express this identity in MACSVMA?  The problem is  that  we can't 
oven  write down the left-hand side of (1): 



(C2) (E^(AtI l ) )  (P()O); 
A 

I 
E 
NOT A PROPER FUNCTION - HQAPPLY 

The usual suggestion is  to break up the  operator E and  append a,i as a new operands to rn 
I. 

function E defined by 

E(p,x,a,ilr- p(x+atill 

This has the unpleasant  semantic  consequence  of destroying (at the user level) the unity rnd 
identity of the operator E ai and introduces an unnecessary syntactic restriction  upon a,i (recursively) 
forcing them to be atoms  since they now  appear as formal  parameters in a function definition. But 
we may not want to apply the operator immediately. 'Perhaps a little simplification 

(E~(E~(P)) = ( E ~ E ~ X P )  = ( E ~ + ~ x P )  

Will reveal  the  structure of interest to the user. That is, we may  want to look at the consequences 
Of the R-module structure given by 

Ea(p+q) - Ea(p) + Ea(q) 

(E~+E~xP)  = + E%) 

(E~*E~xP)  = E~(E~(P))  

- p 

This is simply an abstraction of  the axioms for a vector space over a field in which the mscalars" 
are allowed to be elements of a ring R 

It is this interplay between  different dgebreic structures which leads to  the mrthem8ticd 
power Of operutor calculi and to  the programming difficulties in their implementations. 

TO take full advantage of culculus of operators acting  on somd domain, one must respect the 
dgebr.iC structure of BDTH the operators and the domain. 

How can  we  enable the MACSYMA  user to use  compound expressions in the functional position? 
In the  current MACSYMA evaluation scheme,  when a compound expression occurs in the  functional 
position rnd is not an  atom or a subscripted function,  MACSYMA errs out with  the message as in the 
example above.  Instead, it is not unreasonable to return the original form with  the compound 
expression In the functional position simply  appended before the given arguments (with an 
"MQAPPLV"). With  this modification the following kinds  of  expressions  become possible in MACSYMA 

1. In our exrmple R is the associative rins; of shift operators E'. 
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Numbers and lists of them  can rct as operators: 

These two examples  suggest  that  the  user  can  use the new operator syntax to  conveniently 
define  the action of combinatorial  objects. For  example, in the study of  the  representations of the 
symmetric group, [1,2,3,3] might represent the cycle structure of a conjugacy class. Many other 
interesting discrete actions  arise from classical invariant  theory, differential geometry, and the 
difference calculus. 

.2.2 Identities for Nonrtoomic Operators 

Consider now the  iterates of a class of linear  operators  indexed in some  way: 

We would  like to say that all these  are  linear. One could of course DEClARE(LD(J,LINEAR)3and induce 
linearity for all the iterates. With symbolic  exponents  however, this is not possible.  Using the  new 
syntax, we may proceed as follows: 

(C611 MATCHDECLARE  (NNN, TRUE) 8 
K62l MATCWECLARE (UUU, TRUE) S 
K63l TELLSIHP ( (L CUUUl "NNN) (SUM), 

(L [ W U I  WNN) (FIRST (SUM) l + (L W U J  WNNl (REST (SlJt?) l 1 S 

Then, 18 I result, we obtain  the following automatic  simplifications: 

2. In future MACSYMAs one may be able to give meaning to such an expression directly  through a 
function definition. 

3. I f  and when DECLARE takes nonatomic  arguments 
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W o w  we give further examples of the new ryntm, involving  operator  forms  arising in difforontirl 
crlculus  rrtd in the  finite  difference crlculus. 

t 1 .1  1 . 2 1  
t I 
I D  D I 
t 2 . 1  2 . 2 1  

4012) 

1 
(""_ 1 (F) 
O + l  

(0 + 0 1 (F, GI 
K t  

D 
ZE 

4 3 2  
D D D  

(-- + -- + -- + D + 1) (FI 
21 6 2 
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3 NALUATICN AND SIMPLIFICATIOV OF WERATchp  FORMS 

Now that we can write down compound operator  forms in MACSYMA, we are faced with  the 
task of telling MACSYMA what they mean.  One convenient  way of doing this would be to attach 
properties  to  the non-atomic objects forming  the  operator part of an expression (the  ability to  
attach  properties  to non-atomic objects will soon be  available in MACSYMA). Naively, one might 
hope  to simply write a function definition of  the  form 

or use MACSYMA's pattern-matching facilities 

MATCHDECLARE(CFFF,GGG,XXX,TTTI,TRUE)S 

DEFRULE (NAtlEl , (0 CXXXI dl tTTTl1 [FFF,GGG), 26J CXXXI (01 FF  (FFF, TTT) , GGGI 1 S 

In either case, there are several ambiguities to be resolved. 

1. How is MACSYMA to recognize instances of the LHS?  What does the user mean when  he 
types  the function  definition? Does the user intend to specify a relation involving fixed mathematical 
constants DDo,D[T] or does  he intend to specify an identity involving the programming variables X,T 
? When using DEFRULE, one  uses  MATCHDECLARE to  restrict the sense of the variables used to 
describe  the pattern. 

2. Even if the LHS could be recognized unambiguously, the user  may still  be  forced to label  his 
gslmplificrtion'  rules since the same  LHS  may transform to distinct RHS's. For  example, 

or 
I (...g(opl,op2)...~ top) ( f l  

I (. . . (op1+0p2) . I (ev'al op f )  
t 0 0 (opl+op2) 0 0 0 1 (opl ( f  1 -"-> < 

The last example reflects  the possibility of making  choices involving the  order  of  simplification  and 
ovilurtion. 

These choices arise because  we mry have a relatively complicated (R-module) interaction 
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between tho  algebraic  structures  of  tho  operators and the  elements of the  domain  upon  which they 
act. 

I f  one  views  the  world of  (algebraic/MACSYMA)  expressions as made  up  of operatorsjprogrrms 
in Up applied to objects/data  in Dom, then  the  intertwining  of  simplification  and evaluation can be 
ropresonted/defined by the  diagram 

Op x Do. 
I 
I 
I 

evaluation I 
I 
I 
I 
V 

Ooa 

(eimp.1) 
"""""""""> Op x Doa 

I 
I 
I 
I evaluation 
I 
I 
I 
V 

""""""""", Do. 
eiap 

which  sometimes  commutes: 

evaluat Ion I 
I 
I 
I 
V 

i 

i 
1 evaluation 
I 
I 
I 
V 



(rirp.1) 
(0 0-1) f "-""""-""-""> (0'101 f 

I I 
I I 

evaluation I 
I 

I evaluation 
I 

I 
evaluation I 

I 

I 
I evaluation 
I 

9 v 
f (t) - f (8) """"//"""> f (t) 

r l r p  

which says that 

DD'lf # D%f 

I t  is clear that this  noncommutrtivity is an  impediment  to  the  development of an operational calculus. 
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4 SyMBOuC METMWS IN DIFFEKNTIAL C A L W S  

Historically, there have beon soveral approaches to the restoration of commutativity in the 
abovo  diagram Orw mathod is comoptually trivial. T h o .  diagram  can be made commutative by 
redeflniy the operand 

f(t) -"-> f(t) - f(0) 

to havo vanishing initial condition. One can also define  the inverse indefinitely by 

and t r o d  tho constants separately.  This  leads to the symbolic  calculus systematically developed by 
Murphy,Carmichael,Hargreave,Baole (ref. 6, 7) and others.  Together with  the Leibniz rule  for 
products ami the Taylor expansion  theorem,  the principal identities are  (ref. 8) 

F(D) orb) = ea(x) F(D + g'(x)) 

F(x + g'(D)) earn) = F(x) 

F(D2)  sinlcos (a x) - F(-a2)  sinlcos (a x) 

F(D2)  sinhlcoeh (a x) = F(-a2) sinhlcosh (a x) 

k i ng  the extended operator syntax  suggested  here,  one  can easily  implement these identities 
and  apply them to the solution of differential equations. We illustrate below some of the symbolic 
methods which can be used to deal with ordinary and partial differential equations. One advantage 
of these "direct'  methods as opposed to %direct"  transform methods is the minimization of  existence 
assumptions. 

There  are several methods  available in MACSYMA to solve differential equations (refs. 9,101. In 
this section we discuss the "direct" symbolic  method  applied to ordinary differential equations with 
constant coefficients. 

Let D be differentiation  with respect to t and  consider the differential equation 

(D + l)f - t3 

An operator approoch to the solution gives 



M action of the operators1 

f - t3 - M3 + D2t3 - $t3 + - 
f t3 - 3t2 + 6t - 6 

(often) yields substantial  dividends by clarifying  the  structure  of  the  problem and providing effective 
means of computation. 

Essentially we  have  used a Euclidean identity 

applied to the given function g(t) = t3 

[P(DwD) + R(D)k = g -----> P(DWD)g g 

since we arrange R(D)g = 0 (by making  the  degree R in D high  enough). We can then pick out .our 
solution as f - O(D)S. 

Now consider a slightly more  general differential equation  P(D)f = g (constant coefficients) 
where g may not  be a simple  polynomial. One can still look for  f directly by inverting P(D) 

f = P'l(D)g 

but the RHS may not  be  compactly  expressible  now. To remedy this one  can generalize the previous 
idea and look for a Q(D) such that 

O(D)g - 0. 2 

Then using the extended Euclidean  algorithm to look for A(D),  WD) such that 

o m  hopes that U(D) will be 1. If it is, then 

and we can  pick out the  solution as f = A(D)g. 

I f  UD) z 1, then 

[P(D)A(D) + B(D)CXD)] a = WD) g ; P(D)  LT'(D)A(D) g = g 

and we can  again  pick  out  our  solution IS f - r1(D)A(D) g hoping  that  the lower  degree of UD) will 
make it easier to invet't  than P(D). A(Dk may or may not be  simpler  than the  original  g to deal  with. 

1. This  simple  example is intended  only to help  specify the issue of interaction between the operator 
algebra and tho module of  functions 

2 this statement  (due to Robert  Feinberg)  formalizes what om does intuitively when solving 
'equations by "inspection" 
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Of course, idepomknt of  the Euclidean  algorithm, one might try  to find an operator L 2 ' s ~ ~ h  
that  an L1 can be found with the  property that 

p(D)Ll+ Lp I 

fhsn the solution can be obtained as above. 

As an example of  the economy  sometimes afforded by working directly with  the  differential 
operators, consider the following equation  (ref. 11) 

(D4 + 2x ' lS - X - ~ D ~  +Px% - 1Xf) = 0 

Uno can attempt a power series solution to this equation  (ref. 10); but another approach is to factor 
the differential operator as 

(D2 + x'lD + l X $  + x'lD - lXf) - 0 

Since tho  two factors commute,  one  can find a solution  of  the  form  f = f l  + f2 where 

(D2 + x ' b  + 1Xf1) * 0 , (D2 + x"D - 1Xfp) 0 

These simpler Bessel  equations then lead to the solution  of  the original problem: 

f = clJa(x1 + C ~ Y ~ ( X )  + c g J e ( i ~ 1  + c ~ Y ~ ( ~ x I  

Thus, by taking advantage of the operator algebra  instead of using brute force, one 'can 
discover or  preserve the inherent structure of a problem. Moses (ref.  12) has recently  elucidated 
this idea for algebraic  algorithmsi it applies  equally  well to operational methods in applied 
mathematics. 

4.3 Limw Put id  LXfforentid Equations 

As an example (ref. 13) consider the initlal-value problem 

I 



= f(x-at,y-bt,z-ct) 

using Taylor's  theorem in operator form. 

This  example  again illustrates  the  power and the economy  of the symbolic  method which takes 
.dvantage of the inherent algebraic structure of the problem  and returns a more  meaningful result. 

4.4 Nodinew Partial  Dfferentisl EQuations 

Recently, in looking for exact  solutions to nonlinear  evolution  equations, Ryogo Hirota  (refs. 14, 
15) has  developed a calculus  based  on the differential  operator3 

Using an appropriate substitution, one  can  express a given  equation in terms  of  such differential 
operators. The resulting forms  are  then  amenable to a perturbation  expansion  which  leads to the 
solution. 

Using this approach Hirota has  been  able to treat  the  modified  Korteweg-deVries  equation,the 
nonlinear Schrodinger equation,wave-wave  interactions,the  two-dimensional K-dV equations,and the 
two-dimensional  sine-Gordon equation. 

The differential operators (#) satisfy a number  of identities  which  are  used to repiace the 
usual partial derivatives with bilinear forms involving the new differential operators. For example, 

3. We use DIFFx to denote the partial derivative 
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(017) 

(018) 

PP1 
PP1 d AA1 

(0 ) (M1, 1) - ------- 
)(x1 PP1 

d X X l  

PF1  PF1 PF1 

xx1 xx1 
(0 1 (AA1, 881) L. (- 1) (0 1 (BB1, AA1) 

cc1 0 
xx1 

(031) (XE 1 (AA1  (XXl) ,  BB1 (XX l )  1 881 (XX1 - CC1)  AA1 ()OX1 + CC1) 

cc1 0 
cc1 OIFF X X l  

XX1  881 (%E 1 (BB1, AA1) 
(041 1 (%E )("-) * """""""""""" 

A A l  COSH K C 1  0 1 (AM,   AA1)  
xx1 

0 (BB1, A A l )  
BB1 X X l  

("-) - """"""" 
AA1 2 

xx1 A A l  

2 2 
(0 1 (BBl, AA1) BB1 (0 1 ( A M ,   A A 1 )  

BBl xx1 xx1 
A A 1  

(044) ("-1 - """""""" - """""""""" 
2 3 

X X l  xx1 AA1  AA1  

(047) 

2 

xx1 
(0 1 (AA1, AA1) 

LOG (An11 
X X l   X X l  

I """""""" 

2 
2 AA1 



I 

As on  example of t b  Hirota  method,  consider  the  two-wave interaction  described by the 
equations 

lo181 I 

(0182) 

F1 V1 + F1 - F1 F2 
X T 

F2  V2 + F2 - F1 F2 
X T 

where the waves F1 and F2 propagate  with  velocities V1 and V2. The substitution 

(C1031 EV(Dl~l,Fl=Gl/F,F2=G2/FI; 
G1 . G1 G1 G2 

(0103) (") v1 + (") I - ""- 
F F 2 

X T F 

(Cle5) EV (0182,Fl=Gl/F,F2=GZ/F) : 
62 62 G1 G2 

(") v2 + (") .) -"" 
F F 2 

X T F  

yields the equations  (using 042 here) 

(C106) APPLYl (Dl03,RUCEH71) ; 
V1 0 (G1, F) 0 (G1, F) 

X T G1 62 
(01861 """""" + """"_ = - "-" 

2 2 2 
F  F  F 

(C107I APPLYl (0185,  RULEH711; 
V2 0 (62, FI D (62, F) 

X T G1 62 

2 2 2 
(ole71 """""" + """"_ - ""- 

F F F 

Hirota now uses a perturbation analysis 

5 4 3 2 
(01881 F - F EPS + F EPS + F EPS + F EPS + F EPS + F 

5 4 3 2 1 8 

5 4 3 2 

5 4 3 2 1 
(OleSI G 1 - C  EPS + G  EPS + G  EPS + G  EPS + G  EPS 
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5 4 3 2 

5 4 3 2 1 
(0118) 62 - H EPS + H EPS + H EPS + H EPS + H EPS 

Upon substituting and equating like powers of e, one obtains  the following equations in the first few 
orders  of e: 

Surprisingly,  the  zeroth order solutions 

GI Gl(x-Vit) ; H i  - H~(X-V$) 

induce an exact solution in a relatively simple  way. All the  higher order equations are automatically 
satisfied if all  the higher order terms  are  chosen to be  zero and f i  satisfies the equations 

(01123 

(0113) 

F1 V1 + F1 = H 
X T 1 

FZ  V2 + F2 -G 
X T 1 

These have a general solution 

F1 = Ui(X - V i  T) + U2(X - V2 T) 

where (DIFFT+ V1 DIFFx)U2(X - V2 T) Hi(X - V2 T) 

(DIFFT+ V2 DIFFx)Ui(X - V i  T) - Gi(X - V i  T) 

and leads to the exact solution of the original equation 
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ABSTRACT 

Let X1.. .X denote a random vector  with  Gaussian  distribution  with n 
- 

mean vector m and correlation  matrix IR 
i i j '  

The exp l i c i t  computation of  moments of the  type 

i s  best done by expressing  the  usual powers i n  terms of  Hermite  polynomials 

Hn(x)  and  computing the  expectat ions.for   these i n  terns  of  multigraphs. 

(See ref. 1.) Computations similar t o   t h e s e  are common i n  quantum f i e ld  

theory  where:  on: = %($).  

Here we propose to   descr ibe   the   use  o f  MACSYMA for  dealing  with a much 

tougher  but  related  problem,  described below. 

If A i s  an n x n real matrix we want t o   f i n d   o u t  what information 

about A i s  contained  in   the  set   of  moments of   the random variable.  

Here E denotes an n x n matrix  each of whose en t r ies  i s  a Gaussian random 
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variable  with mean zero and some jo in t   cor re la t ion   mat r ix .  

In  the  case of independent  entries  with a common non-zero  variance 

t h e   r e s u l t  -- par t ia l ly   ob ta ined   us ing  MACSYMA i s  

Theorem. The  moments of  det(A + E )  determine  exactly  the  singular 

values of A and i t s  determinant. 

Crucial  for t h i s  work i s  t h e   p o s s i b i l i t y  of computing quant i t ies  

similar t o  (1) where  powers of Xi are   replaced by powers  of minors of 

the  matr ix  E .  We obtain some interesting  multigraph  expansions  but  the 

p ic ture  i s  s t i l l  far from  complete and a good deal of  extra  experimentation 

i s  needed. We an t i c ipa t e   t he  MACSY"A will be  quite  valuable  in  this  aspect 

of  our  work. 
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