
' MACSYMA Users' Conference

Held at
University of California
Berkeley, California
July 27-29, 1977

I

NASA CP-2012

TECH LIBRARY KAFB, NY

Proceedings of the 1977
MACSYMA Users’ Conference

Sponsored by

Massachuset ts Inst i tu te of Technology,
Universi ty of Cal i fornia at Berkeley,
NASA Langley Research Center

and held at Berkeley, Cali fornia
July 27-29, 1977

Scientific and Technical Information Office 1977

NA5A NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C.

FOREWORD

I The technical program of the 1977 MACSPMA Users' Conference, held a t
Berke ley , Cal i forn ia , from J u l y 27 to J u l y 29, 1977, c o n s i s t e d o f t h e 45
con t r ibu ted pape r s r epor t ed i n . t h i s publ ica t ion and of a workshop. The work-
shop was designed to promote an exchange of information between implementers
and users of the MACSYMA computer system and to he lp gu ide fu ture deve lopments .

The response to the c a l l f o r p a p e r s h a s w e l l exceeded the ear ly estimates
of the confe rence o rgan ize r s ; and the h igh qua l i ty and broad ra.nge of t o p i c s
of the papers submi t ted has been mos t sa t i s fy ing . A b ib l iography of papers
concerned wi th the MACSYMA system is included at t h e end of t h i s p u b l i c a t i o n .

We would l i k e t o t h a n k t h e members of t h e program committee, t h e many
r e fe rees , and t he secretarial a n d t e c h n i c a l s t a f f s a t t h e U n i v e r s i t y of
C a l i f o r n i a a t Berkeley and a t t h e L a b o r a t o r y f o r Computer Science, Massachuset ts
Ins t i tu te o f Technology, for shepherd ing the many papers through the submission-
to-publ ica t ion process . We are e s p e c i a l l y a p p r e c i a t i v e of t he bu rden . ca r r i ed
by .V. El len Lewis of M. I. T. f o r s e r v i n g as e x p e r t i n document preparat ion f rom
computer-readable to camera-ready copy for several papers .

This conference o r ig ina ted as t h e r e s u l t of an o rgan iz ing s e s s ion ca l l ed by
J o e l Moses of M . I . T . a t the 1976 ACM Symposium on Symbolic and Algebraic Comput-
a t i o n , a t Yorktown Heights , New York, i n August 1976. It owes i t s s u c c e s s t o h i s
cont inuing encouragements and effor ts , n o t t o m e n t i o n h i s i n t e l l e c t u a l and
p r a c t i c a l s k i l l s i n k e e p i n g t h e MACSYMA p r o j e c t t h r i v i n g .

We wish to acknowledge the kind cooperat ion of ACM, ACM-SIGSAM, t h e Elec-
t ronics Research Labora tory and the Department of Electr ical Engineering and
Computer Sc iences o f the Univers i ty of C a l i f o r n i a , t h e L a b o r a t o r y f o r Computer
Science of M . I . T . , NASA Langley Research Center, and the U.S. Energy Research
and Development Adminis t ra t ion.

We w i s h t o e x t e n d o u r g r a t i t u d e t o t h e S c i e n t i f i c a n d Technical Information
Programs Divis ion.of the NASA Langley Research Center for publ ishing these
proceedings.

Richard J. Fateman, General Chairman

Carl M. Andersen, Program Committee Chairman

iii

t

OFFICERS OF THE 1977 MACSYMA USERS' CONFERENCE

General Chairman:

Richard Fateman, University of Cal i forn ia , Berke ley

Program Chairman:

Carl M. Andersen, The College of William and Mary i n V i r g i n i a

Program Committee:

Mary Ellen Brennan, Aerospace Corporation, Los Angeles

Jo Ann Howell, Los Alamos Sc ien t i f i c Labora to ry , Un ive r s i ty of C a l i f o r n i a

John Kulp, Research Laboratory of E lec t ron ic s and Plasma Fusion Center,
M a s s a c h u s e t t s I n s t i t u t e of Technology

J o e l Moses, Labora to ry fo r Computer Sc ience , Massachuse t t s In s t i t u t e of
Technology

Edward Ng, Jet P ropu l s ion Labora to ry , Ca l i fo rn ia In s t i t u t e o f Techno logy

David Stoutemyer, University of Hawaii

E d i t o s i a l Committee:

Carl M. Andersen, The College of William and Mary i n V i r g i n i a

J e f f r e y Golden, Laboratory for Computer Sc ience , Massachuse t t s In s t i t u t e
of Technology

John N . Shoosmith, NASA Langley Research Center

Treasurer :

Michael Genesereth, Harvard Universi ty and Massachuset ts Inst i tute of
Technology

Local Arrangements:

Richard Fateman, University of Cal i forn ia , Berke ley

i v

PREFACE

Symbolic and algebraic manipulation enables one to do exact, symbolic
mathematical computations on a computer. To illustrate the difference between
numeric and symbolic processing, consider a computer program (in FORTRAN, say)
which, given the quantities A, B, and Cy can apply the quadratic formula to
approximate the, roots of the quadratic equation A*x**2+B*&C = 0. The
names A, By and Cy must of course correspond to numerical values at run-time.
This is because the program has been written to provide numerical processing.
If A had as its run-time value the expression "Q ,'I B had value "(-P*Q-1) , It and
C had value "P," the FORTRAN program would be useless. Nevertheless, by
applying the quadratic formula symbolically, the two roots
[-(-P*Q-l)?SQRT(P**2*Q**2+2*P*Q+1-4*P*Q)]/(2*Q) can be represented. By further
efforts, this expression can be reduced to the set of values (P, 1/Q). This
substitution (in this case, into the ,quadratic formula) and subsequent simpli-
fication are but two of the necessary operations in an algebra system. Some of
the more elaborate facilities that can be built up (and have been, in MACSYMA)
include partial differentiation, indefinite integration, inversion of matrices
with symbolic coefficients, solution of polynomial equations, and manipulation
of truncated power series. The range of capabilities can be seen in the papers
in this conference.

MACSYMA is a large symbolic and algebraic manipulation system which has
been under development at the Laboratory for Computer Science (formerly
Project MAC) of the Massachusetts Institute of Technology since 1969. The
system has more than quintupled in size since the first paper describing it
appeared in 1971. It is, by any measure, a rather large program, and this makes
it a challenging project from many points along the computer hardware-software
spectrum. Some papers on the LISP system in these proceedings address this
issue.

During the last several years, the community of users of the MACSYMA system
has grown at an increasing rate; and because of the wide geographical range of
the ARPA computer communication network of the Defense Communication Agency,
there are now users from Hawaii to Cambridge, England. Another contributing
factor in the growth has been the ability of Joel Moses and his staff at the
Laboratory for Computer Science to make available at relatively low cost the
most versatile of algebraic manipulation systems currently implemented. Another
is the synergistic effect of the community itself: where the output of one
person's program may be the input to the next person's, and where nearly
instantaneous feedback on features and repair of bugs are the rule rather than
the exception.

Many of the users of MACSYMA (including contributors to this conference)
are also using or have used other systems (ALTRAN, FORMAC, REDUCE, SAC-1,
and SCRATCHPAD, to name a few) with symbolic and algebraic manipulation
facilities. Many of the techniques are not specific to MACSYMA, but are alge-
braic manipulation contributions independent of particular system context. Thus
we view this conference as a collection of persons interested in advancing the
field of inquiry in l'symbolic and algebraic manipulation," and applying the
fruits of this inquiry to other areas. We believe the papers bear out this view.

V

I

U n t i l r e cen t ly , ma jo r fund ing fo r MACSYMA development has come from the
Advanced Research Pro jec ts Agency, Department of Defense, under Office of Naval
Research Contract N00014-70-0362-0006. More r e c e n t a d d i t i o n s t o t h e s p o n s o r s '
ranks have come from agencies whose own personnel and contractors have used
MACSYMA. These inc lude the U.S. Energy Research and Development Administration,
the Nat ional Aeronaut ics and Space Adminis t ra t ion, and the U.S. Navy. Combining
r e s o u r c e s t o p r o v i d e t h e u n i q u e f a c i l i t y of t h e MACSYMA Consortium, these
sponsors have provided an invaluable resource.

Richard J. Fateman
General Chairman

v i

Ament 87

Andersen 161

Anderson 395

IL

Avgoustis 21

Bogen 11. 75

Bulnes 461

Caviness 253

Char 53

Cohen 275

C u t h i l l 131

Doohovskoy 473

Fateman 43. 327

Fennel ly 97

Geddes 405

Genesereth 291. 309

Golden 1. 109

Gosper 237

Griinbaum 491

Gupta 151

Ivie 317

Karney 377

Kulp 385

Laffer ty 347

Lau 395

Lewis 277

Moenck 225

Moses 123. 275

Ng 151. 177

Noor 161

Pavelle 75. 97

Poole 145

Pridor 253

Rothste in 263

Spear 369

Steele 203. 215

Stoutemyer 315. 425. 447

Wahlquist 7 1

Wang 55. 435

Yun 65

Z i p p e l 361

.

CONTENTS

P R E F A C E . V

AUTHOR INDEX . vii

1. MACSYMA'S SYMBOLIC ORDINARY DIFFERENTIAL EQUATION SOLVER 1
Jeffrey P. Golden

2. A PROGRAM FOR THE SOLUTION OF INTEGRAL EQUATIONS 11
Richard A. Bogen

3. SYMBOLIC LAPLACE TRANSFORMS OF SPECIAL FUNCTIONS 21
Yannis Avgoustis

4 . AN IMPROVED ALGORITHM FOR THE ISOLATION OF POLYNOMIAL REAL ZEROS . . . 43
Richard J. Fateman

5 . FLOATING POINT ISOLATION OF ZEROS OF A REAL POLYNOMIAL VIA MACSYMA . . 53
Bruce W. Char

6 . PRESERVING SPARSENESS IN MULTIVARIATE POLYNOMIAL FACTORIZATION 55
Paul S. Wang

7. ON THE EQUIVALENCE OF POLYNOMIAL GCD AND SQUAREFREE FACTORIZATION
PROBLEMS . 65
David Y. Y. Yun

8. DIFFERFNTIAL FORM ANALYSIS USING MACSYMA 71
Hugo D. Wahlquist

9 . INDICIAL TENSOR MANIPULATION ON MACSYMA 75
Richard A. Bogen and Richard Pavelle

10. PURE FIELD THEORIES AND MACSYMA ALGORITHMS 87
William S. Ament

11. BLACK HOLES AND RELATIVISTIC GRAVITY THEORIES 97
A. J. Fennelly-and Richard Pavelle

12. THE EVALUATION OF ATOMIC VARIABLES IN MACSYMA 109
Jeffrey P. Golden

viii

1 13. THE VARIETY OF VARIABLES IN MATHEMATICAL EXPRESSIONS 123
Joel Moses

14. RATIONAL APPROXIMATION TO e-x WITH NEGATIVE REAL ‘POLES 131
Elizabeth Cuthill

15. TIMING FORMULAS FOR DISSECTION ALGORITHMS ON VECTOR COMPUTERS 145
W. G. Poole, Jr .

16. SYMBOLIC CALCULATIONS IN A FINITE DYNAMIC ELEMENT ANALYSIS 151
Kajal K. Gupta and Edward W. Ng

17. SYMBOLIC MANIPULATION TECHNIQUES FOR VIBRATION ANALYSIS OF
LAMINATED ELLIPTIC PLATES . 161
C. M. Andersen and Ahmed K. Noor

18. OBSERVATIONS ON APPROXIMATE INTEGRATIONS 177
Edward W. Ng

19. LISP: PROGRAM IS DATA - A HISTORICAL PERSPECTIVE ON MACLISP 18 1
Jon L White

20. LISP: DATA IS PROGRAM - A TUTORIAL IN LISP 191
Jon L White

21. DATA REPRESENTATIONS IN PDP-10 MACLISP 203
Guy Lewis Steele Jr.

22. FAST ARITHMETIC IN MACLISP . 215
Guy Lewis Steele Jr.

23. ON COMPUTING CLOSED FORMS FOR SUMMATIONS 225
Robert Moenck

24. INDEFINITE HYPERGEOMETRIC SUMS IN MACSYMA 237
R. Wm. Gosper, Jr.

25. MODULAR POLYNOMIAL ARITHMETIC IN PARTIAL FRACTION DECOMPOSITION . . . 253
S. K. Abdali, B. F. Caviness, and A. Pridor

26. A NEW ALGORITHM FOR THE INTEGRATION OF EXPONENTIAL AND
LOGARITHMIC FUNCTIONS . 263
Michael Rothstein

t

27. SUMMATION OF RATIONAL EXPONENTIAL EXPRESSIONS IN CLOSED FORM 275
Joel Moses and Jacques Cohen

ix

2 8 . USER AIDS FOR MACSYMA .
V. Ellen Lewis

29. THE DIFFICULTIES OF USING MACSYMA AND THE FUNCTION OF USER AIDS . . .
Michael R. Genesereth

3 0 . AN AUTOMATED CONSULTANT FOR MACSYMA
Michael R. Genesereth

3 1 . A MACSYMA COMPUTER-ALGEBRA MOVIE DEMONSTRATION
David R. Stoutemyer

3 2 . SOME MACSYMA PROGRAMS FOR SOLVING DIFFERENCE EQUATIONS
John Ivie

3 3 . SOME COMMENTS ON SERIES SOLUTIONS
Richard J. Fateman

3 4 . POWER SERIES SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS IN
M A C S Y M A .
Edward L. Lafferty

3 5 . RADICAL SIMPLIFICATION MADE EASY
Richard E. B. Zippel

3 6 . A CONSTRUCTIVE APPROACH TO COMMUTATIVE RING THEORY
David A. Spear

3 7 . REDUCTION OF THE EQUATION FOR LOWER HYBRID WAVES IN A PLASMA
TO A NONLINEAR SCHRODINGER EQUATION
Charles F. F. Karney

3 8 . RAY TRAJECTORIES IN A TORUS: AN APPLICATION OF MACSYMA TO A COMPLEX
NUMERICAL COMPUTATION .
John L. Kulp

3 9 . APPLICATION OF MACSYMA TO FIRST ORDER PERTURBATION THEORY IN
CELESTIAL MECHANICS .
John D. Anderson and Eunice L. Lau

4 0 . SYMBOLIC COMPUTATION OF RECURRENCE EQUATIONS FOR THE CHEBYSHEV
SERIES SOLUTION OF LINEAR ODE'S
K. 0. Geddes

4 1 . sin(x)**2 + cos(x) 2 = 1 ** .
David R. Stoutemyer

4 2 . MATRIX COMPUTATIONS IN MACSYMA
Paul S. Wang

277

29 1

309

3 15

317

327

347

361

369

377

385

395

405

425

435

X

4 3 . SYMBOLIC COMPUTER VECTOR ANALYSIS 447
David R. Stoutemyer

44. A NATURAL WAY TO DO SPATIAL LINEAR GEOMETRY IN MACSYMA 461
Juan Bulnes

45. VARIETIES OF OPERATOR MANIPULATION 47 3
Alexander Doohovskoy

46. PROGRESS REPORT ON THE DETERMINANT OF A RANDOM MATRIX 491
F. A. Griinbaum

BIBLIOGRAPHY . 493

xi

1

MACIS_YMA's_Symbolic Ordinary Differential Equation Solver *

Jeffrey P. Golden
Laboratory for Computer Science

Massachusetts Institute of Technology

ABSTRACT

This paper describes MACSYMA's symbolic ordinary differential
equation solver ODE2. Although available in MACSYMA for approximately three
years now, a paper describing how to use it had never previously been written. Also,
this paper showcases the code for this routine, which is of interest because it is
written in top-level MACSYMA language, and may serve as a good example of
programming in that language. Other symbolic ordinary differential equation
solvers are mentioned.

1. The ODE2 Package

MACSYMA's ordinary differential equation (ODE) solver ODE2 may be used for
symbolically solving elementary ODES of first. and second order. It consists primarily of a set of
routines based on techniques described in reference 1 for Moses' SOLDIER ODE program, and in
reference 2, which had been used until recently as the major textbook in M.I.T.'s introductory
O D E course 18.03. The ODE2 package was written primarily by an M.I.T. graduate student, Ben
Kuipers, as a term project in a seminar on algebraic manipulation taught by Richard Fateman in
the fall of 1972-73. It has since been maintained, modified, and improved by the author.

When the user calls the ODE2 routine, e.g. as follows:

(C 1) XA2s'DIFF(Y,X) + 3+X*Y = SIN(X)/X;

(D l 1
2 dY SIN(X)

x " + 3 x y """

dX X

(C 2) O D E 2 (X , Y , X) ;

0 This work was supported, in part, by the United States Energy Research anti Development
Administration under Contract Number E(ll-I)-3Cl70 and by the National Aeronautics and Space
Administration under Grant NSG 1323.

the ODE package ODER LISP USK SHARE (or ODER FASL DSK SHARE if the user is using
NEW10 MACSYMA) is automatically loaded in. Or, the user can load it in by typing e.g.
LOADFILE(ODER,LISP,DSK,SHARE);. For this example, after
in, the answer is obtained:

several out-of-core files are loaded

c - COS(X)
y = """""

3
X

We see from this example how ODE2 is used. Namely, it takes three arguments: an ODE
of first or second order (only the left hand side need be given if the right hand side is 01, the
dependent variable, and the independent variable. When successful, it returns either an explicit
or implicit solution for the dependent variable. C is used to represent the constant in the case of
first order equations, and K1 and K2 the constants for second order equations. An alternative
scheme, which has been suggested, of generating sequences of constants, e.g. K1, K2, K3, ..., so
that different solutions might use different "constants", has not yet been implemented. If ODE2
cannot obtain a solution for whatever reason, it returns FALSE, after perhaps printing out an
error message to the user.

T h e methods implemented for first order equations in the order in which they are tested
are: linear, exact - perhaps requiring an integrating factor, homogeneous, Bernoulli's equation,
and, a generalized homogeneous method described in reference 1.

For . second order: constant coefficient, exact, linear homogeneous with non-constant
coefficients. which can be transformed to constant coefficient, the Euler or equidimensional
equation, the method of variation of parameters, and equations which are free of either the
independent or of the dependent variable so that they can be reduced to two first order linear
equations to be solved sequentially.

In the course of solving ODES, several variables are set purely for informational purposes:
METHOD denotes the method of solution used e.g. LINEAR, INTFACTOR denotes any integrating
factor used, ODEINDEX denotes the index for Bernoulli's method or for the generalized
homogeneous method, and YP denotes the particular solution for the variation of parameters
technique.

Since the code is written in top-level MACSYMA language, it may easily be extended not
only by the author, but by other MACSYMA users as well. Indeed, there is much room for
extension and improvement. The basic approach used in ODEZ'is a pattern-directed one relying
heavily on the MACSYMA commands EXPAND, COEFF, FREEOF, DERIVDEGREE, HIPOW, and
SUBST, and on the MACSYMA pattern matcher DEFMATCH in checking for linearity. T h e basic
power of the routine comes from MACSYMA's advanced indefinite integration package (ref. 3)
and, of course, the INTEGRATE command is heavily used. Finally, basic restructurlng of
expressions is needed throughout, and for this RATSIMP is used heavily.

2

In order to solve initial value problems (IVPs) and boundary value problems (BVPs), the
routine I C 1 is available for first order equations, and IC2 and BC2 written by David Stoutemyer
for second order IVPs and BVPs, respectively. They are used as in the following examples:

(C 3) I C l (D 2 , X = X P I , Y = O) ;

(D 3)
COS(X) + 1

y = - "-"""-
3

X

(C 4) ' D I F F (Y , X , 2) + Y*'DIFF(Y,X)"3 = 0;

d Y dY 3

2 dX

2

(D 4) --- + y (") = 0

dX

(C 5) ODEZ(X,Y,X);
3

Y - 6 K l Y - 6 X
(07) ----------------- = K 2

3

(C 8) RATSIMP(IC2(D7,X=O,Y=O,'DIFF(Y,X)=2));
3

2 Y - 3 Y + 6 X
(09) - """""""" = o

3

(C10) BC2(D7,X=O,Y=l ,X=l ,Y=3) ;
3

Y - 1 O Y - 6 X
(D l 1 1 """"""-"- = - 3

(The jumps in the Iine-number in the above examples are due to "hidden" calls to SOLVE.)

In order to see more clearly which methods have been implemented, a demonstration file is
available. T o run it, the user may do DEMO(ODER, DEMO, DSK,SHARE) ; and follow the usual
prescription for running DEMO files as noted in the MACSYMA Manual (ref. 4).

The ODE2 package was used heavily in the work described by Richard Fateman in
reference 5, in David Stoutemyer's OPTVAR variational optimization package, available via the
SHARE file directory and described in reference 6, and in Stoutemyer's INTEQN integral

3

equation solver, implemented in MACSYMA by Richard Bogen, also available via the SHARE
directory and described in reference 7.

2. Other Symbolic ODE Solvers

Another program for solving ODES which uses a heuristic search approach, and is called
EULE, is described in references 8,9. Its author, Peter Schmidt of the University of Bonn, West
Germany, did not have access to a powerful algebraic manipulation system and integration
package such as with MACSYMA, so he was forced to implement his own simplification routines
and EULE does not solve the integrals generated in its solutions. EULE solves only ODEs of the
first order. However, Schmidt claims a high success rate in this area. EULE does handle a few
more first order cases than ODE2 currently does, e.g. Riccati equations, and EULE's heuristic
techniques may enable it to solve some "interesting" ODEs; however, the author believes that
ODE2 could handle all of these cases as well with at most a few more pages of MACSYMA code.
In fact, since the simplification and transformation capabilities of MACSYMA are so much more
powerful than those of EULE, in experiments run by the author it turned out that several ODES
which Schmidt claims required heuristics and substitutions of variables in EULE, were actually
solvabie in ODE2 by more elementary methods, e.g. integrating factors or the generalized
homogeneous method (which Is not used by EULE as such.) ODE2 is much more successful than
EULE in using methods that are implemented-in both. (It is interesting to note that ODE2's first
order methods, while not nearly as extensive as EULE's, only amount to 70 lines of MACSYMA
code. Of course, ODE2 has some second order methods as well, and these amount to 120 lines of
MACSYMA code. I think this data offers an interesting measure of the power of MACSYMA!
EULE which together with all of its components has been developed only for the purpose of
solving ODEs consists of about 8500 PL/I statements (ref. 8).) Schmidt tested .EULE using two
standard ODE tomes. A comparable test has not been done for ODE2.

Other methods for solving ODEs using MACSYMA have been or are being implemented.
Richard Bogen wrote a routine in the MACSYMA language for solving ODEs and systems of
ODEs using Laplace transforms. Its top-level routine is called DESOLVE and it is described in the
file SHARE ; DESOLN USAGE. It may be loaded into MACSYMA by
LOADFILE(DESOLN, LISP,DSK,SHARE) ;. DESOLVE may be used for initial value problems as well,
and it can handle some equations of greater than second order.

Edward Lafferty is working on a package written in the MACSYMA language for solving
ODEs in terms of power series. This work is described in reference 10. (Indeed, Ben Kuipers, the
primary author of ODE2, began a series solver as well for Fateman's course.)

One project that yet remains (and which is urged often by Dave Stoutemyer) is 'to merge
these three ODE solvers, using general analytical techniques, Laplace transforms, and series
methods, respectively, into one versatile ODE solver so that the user can get the power of all three
approaches in one routine.

I wish to thank Ellen Lewis for her helpful assistance.

4

APPENDIX

The MACSYMA code for ODE2 follows. (This code comes from the fiie JPG;ODER 27.
Certain less important sections have been omitted.)

/* The Ordinary Differential Equation Solver.
This package consists primarily of a set of routines taken from Moses’
thesis and Boyce & DiPrima for solving 0.D.E.s of 1st and 2nd order.
The top-level routines are ODEZ, IC1, IC2, and BC2. a/

ODE2(EQ,YOLD,X):=SUBST(YOLD,YNEU,ODE2A(SUBST(YNEU,YOLD,EQ),YNEU,X))S

ODE2A(EQ,Y,X):=BLOCK([DE,Al,AZ,A3,A4,Q],
INTFACTOR: FALSE, METHOD: ’NONE,
IF FREEOF(’DIFF(Y,X,Z),EQ)

THEN IF FTEST(ODEl(EQ, Y, X)) THEN RETURN(()) ELSE RETURN(FALSE),

T.HEN RETURN(FAILURE(MESl,EQ)),
IF DERIVDEGREE(DE: EXPAND(LHS(EQ)-RHS(EQ)),Y,X) # 2

Al: COEFF(DE,’DIFF(Y,X,2)), .

A2: COEFF(DE,’DIFF(Y,X)),
A3: COEFF(DE,Y),
A4: DE - Al*’DIFF(Y,X,Z) - AZ*’DIFF(Y,X) - A3*Y,
IF PRZ(A1) AND PRZ(A2). AND PRZ(A3) AND PRZ(A4) AND

FTEST(HOMZ(Al,AZ,A3,Y,X))
THEN IF A4=0 THEN RETURN(()) ELSE RETURN(VARP(Q,-84/Al,Y,X)),

IF FTEST(REDUCE(EQ,Y,X)) THEN RETURN(()) ELSE RETURN(FALSE))S

ODEl(EQ,Y,X):=BLOCK([DE,F,G,Q],
IF DERIVDEGREE(DE: EXPAND(LHS(E0)-RHS(EQ)),Y,X) # 1

THEN RETURN(FAILURE(MES1, EQ)),
IF LINEARZ(DE,’DIFF(Y,X)) = FALSE THEM RETURN(FAILURE(MESZ,EQ)),
DE: SOLVEl(DE,’DIFF(Y,X)),
IF FTEST(SOLVELNR(DE,Y,X)) THEN RETURN(Q),
IF FTEST(INTFACTOR(G, F, Y, X)) THEN RETURN(EXACT(WG, W F , Y, X)) ,

/* LINEAR2 binds F and G */
IF FTEST(SOLVEHOM(DE,Y,X)) THEN RETURN(Q),
IF FTEST(SOLVEBERNOULLI(DE,Y,X)) THEN RETURN(Q),
IF FTEST(GENHOM(DE, Y, X)) .THEN RETURN(Q) ELSE RETURN

PR2(F):=FREEOF(Y,’DIFF(Y,X),’DIFF(Y,X,Z),F)$

FTEST(CALL) :=IS(NOT((Q: CALL)=FALSE) 1s

SOLVEl(EQ,Y):=

(FALSE))$

5

SOLVEZ(EQ,Y):=BLOCK([DISPFLAG,EQl],
DISPFLAG:FALSE,EQl:SOLVE(EQ,Y),
IF NOT(LENGTH(EQl)=l) THEN RETURN(FAILURE(MES4,EV(EQl))),
FIRST(EV(EQ1)))S

MATCHDECLARE([F,G],FREEOF(X))S
DEFMATCH(LINEAR2 , F*X+G, X)$

/ a B&DiP, pp. 13-14 */
SOLVELNR(EQ,Y,X):=BLOCK([F,G,WI,

IF LINEAR2(RHS(EQ) ,Y) = FALSE THEN RETURN(FALSE),
U: %E^(INTEGRATE(F,X)),
METHOD: 'LINEAR,
RETURN(Y=W*(INTEGRATE(G/W,X)+'C)))S

/Ir B&DiP, pp. 34-41 */
INTFACTOR(M,N,Y,X):=BLOCK([Bl,B2,DMDX,DMDY,DNDX,DNDY,DD],

DMDX: RATSIMP(DIFF(M,X)), DMDY: RATSIMP(DIFF(M,Y)),
DNDX: RATSIMP(DIFF(N,X)), DNDY: RATSIMP(DIFF(N,Y)),
IF (DD: DMDY-DNDX) = 0 THEN RETURN(l),
IF OMDX-DNDY=O AND DMDY+DNDX=O THEN RETURN(l/(Mn2 + N"2)),
IF FREEOF(Y, (Bl: RATSIMP(DD/N))) THEN RETURN(%E^(INTEGRATE(Bl,X))),
IF FREEOF(X, (B2 : RATSIMP(OD/M)))

THEN RETURN(%E*(INTEGRATE(-B2,Y))) ELSE RETURN(FALSE))S

EXACT(M,N,Y,X):=BLOCK([A,B] ,
INTFACTOR: SUBST(YOLD,YNEW,Q),
A: INTEGRATE(RATSIMP(M),X),
B: RATSIMP(A + INTEGRATE(RATSItlP(N-DIFF(A,Y)),Y)),
METHOD : 'EXACT,
RETURN(B='C))S

/* B&DiP, pp. 43-44 */
SOLVEHOM(EQ,Y,X):=BLOCK(CQQ,Al,A2,A3],

Al: RATSIMP(SUBST(X*QQ,Y,RHS(EQ))),
IF NOT(FREEOF(X,Al)) THEN RETURN(FALSE),
A2: INTEGRATE(l/(Al-QQ),QQ),
A3: SUBST(Y/X,QQ,A2),
METHOD:. 'HOMOGENEOUS,
RETURN(RATSIMP('ClrX = XE"A3)))S

a

/at B&DiP, p. 21, problem 15 */
6

1 SOLVEBERNOULLI(EQ,Y,X):=BLOCK([Al,A2,N],
A l : COEFF(EQ: EXPAND(RHS(EQ)),Y,l),
N: HIPOW(RATSIMP(EQ-Al*Y),Y),
A2: COEFF(EQ,Y,N),
I F NOT(NUMBERP(N)) OR N=O OR NOT(EQ = Al+Y + A2sY"N) THEN RETURN(FALSE),
A l : INTEGRATE(Al,X),.
METHOD: 'BERNOULLI, ODEINDEX: N,
RETURN(Y 0 XE"A1 * ((l-N)*INTEGRATE(AZ*XE"((N-I)*Al),X) + 'C) A (I/(I - N)))) s -

/* G e n e r a l i z e d h o m o g e n e o u s e q u a t l o n : y0 2: y/x H(yx"n)
R e f e r e n c e : Moses' t h e s l s . */

GENHOH(EQ,Y,X):=BLOCK([G,U,N,Al,AZ,A3],
G: RHS(EQ)*X/Y,
N: RATSIMP(X*DIFF(G,X)/(Y*DIFF(G,Y))),
I F NOT(FREEOF(X,Y,N)) THEN RETURN(FALSE),
A l : RATSIMP(SUBST(U/X"N,Y,G)),
A2: INTEGRATE(l/(U*(N+Al)),U),
A3: RATSIMP(SUBST(Y*XAN,U,A2)),
METHOD: 'GENHOM, ODEINDEX: N,
RETURN(X = 'C*XEAA3))8

/+ Chain o f s o l u t l o n m e t h o d s f o r s e c o n d o r d e r l i n e a r h o m o g e n e o u s e q u a t l o n s %/

HOM2(Al,AZ,A3,Y,X):=
I F FTEST(CC2(A2/Al,A3/Al,Y,X)) THEN Q ELSE
I F FT€ST(EXACT2(Al,A2,A3,Y,X)) THEN Q ELSE
I F FTEST(XCCZ(Al,A2,A3,Y,X)) THEN Q ELSE FALSES

/+ BLDIP, pp. 106-112 */
CC21F,G,Y,X):=BLOCK([A,SIGN,RADPRODEXPAND,ALPHA],

I F NOT(FREEOF(X,Y,F) AND FREEOF(X,Y,G)) THEN RETURN(FALSE),
METHOD: 'CONSTCOEFF, RADPRODEXPAND: F,ALSE;
SIGN: ASKSIGN(A: FA2-4*G),
I F SIGN = ZERO THEN RETURN(Y 3 XE"(-F*XIZ) * ('Kl + 'KZSX)),
I F SIGN = POS THEN

RETURN(Y = 'Kl*XE"((-F+SQRT(A))*X/2) + 'KZ*%EA((-F-SQRT(A))*X/2)),
A: -A, ALPHA: X*SQRT(A)/2,
I F EXPONENTIALIZE = FALSE THEN

RETURN(Y %EA(-F*X/2) ('Kl*EXP(%I*ALPHA) + 'K2*EXP(-%I*ALPHA))))S
RETURN(Y a XEA(-F*X/2) * ('Kl*SIN(ALPHA) + 'K2*COS(ALPHA))),

/at B&DIP, pp. 98-99, p r o b l e m 1 7 %I

7

EXACT2(AI,A2,A3,Y,X):=BLOCK([Bl],
I F DIFF(Al ,X,2) - DIFF(A2,X) + A3 0

THEN B1: %E*(-INTEGRATE((A2 - DIFF(A l ,X)) /A l , X))
ELSE RETURN(FALSE),

METHOD : ’EXACT,
RETURN(Y +.’Kl*Bl*INTEGRATE(l/(Al*Bl),X) + ‘KZ+Bl))S

/rl B&DiP, pp. 113-114, p r o b l e m 16 #/

XCC2(Al,A2,A3,Y,X):=BlOCK([D,Bl],
I F A3=0 THEN RETURN(FALSE),
D: RATSIMP((Al*OIFF(A3/Al,X) + 2aA2#A3/A1)/(2*(A3/Al)A(3/2))),
I F FREEOF(X,Y,D) THEN 81: CC2(D,l,Y,Z) ELSE RETURN(FALSE),
METHOD: ’XFORMTOCONSTCOEFF,
RETURN(SUBST(INTEGRATE(SQRT[A3/Al),X),Z,Bl)))S

/* B&DiP, pp. 124-127. #/

VARP(SOLN,G,Y,X):=BLOCK([Yl,YZ,Y3,V4,UR],
Y1: RATSIMP(SUBST([/Kl=l,/K2=0],RHS(SOLN))),
Y2: RATSIMP(SUBST([/Kl=O,/K2=11,RHS(SOLN))),
WR: Yl*DPFF(YE,X) - YZ*DIFF(Yl,X),
I F WR=O THEN RETURN(FALSE),
Y3: RATSIMP(Yl*G/WR),
Y4: RATSIMP(YZ*G/WR),
YP: RATSIMP(YZ*INTEGRATE(Y3,X) - YhINTEGRATE(Y4,X)),
METHOD: ’VARIATIONOFPARAMETERS,
RETURN(Y = RHS(S0LN) + YP))S

/* M e t h o d s t o r e d u c e s e c o n d - o r d e r e q u a t i o n s f r e e o f x or y #/

REDUCE(EQ,Y,X):=BLOCK([Bl,QQ],
81: SUBST([’DIFF(Y,X)=QQ, /DIFF(Y,X,2)=QQ], EO),
I F FREEOF(Y.81) THEN RETURN(NLl(EQ,Y,X)),
I F FREEOF(X,Bl) THEN RETURN(NLE(EQ,Y,X)) ELSE RETURN(FALSE))S

/* B&DiP, p. 89, p r o b l e m 1 #/

NLl(EQ,Y,X):=BLOCK([DE,B,Al,A2,V],
DE: SUBST([/DIFF(Y,X)=V, ’DIFF(Y,X,2)=’DIFF(V,X)], EQ),
I F (B : ODEl(DE,V,X)) = FALSE THEN RETURN(FALSE),
d l : SUBST([V=’DIFF(Y, X) ,’C=’Kl], B) ,
A2: SOLV€Z(Al,’DIFF(Y.X)),
‘IF AZ=FALSE THEN RETURN(FALSE),
I F FTEST(ODEl(AZ,Y,X))

8

THEN (METHOD : 'FREEOFY. RETURN(SUBST('K2, 'C ;Q))) ELSE RETURN(FALSE))S

/rl B&DiP, p. 89, problem 2 a/

NL2IEQ,Y,X):=BLOCK([DE,B,Al,A2,YZ,VJ,
DE: SUBSf(['DIFF(Y,X)=V, 'DIFF(Y,X,Z)=V*'DIFF(V,Yb), Y=YZ], EO),
I F (B: ODEl(DE,V,YZ)) = FALSE THEN RETURN(FALSE1,
A l : SUBST([V='DIFF(Y,X),YZ=Y,'C='Kl], B) ,
A2: SOLVE2(Al,'DIFF(Y,X)),
I F AZ=FALSE THEN RETURN(FALSE),
I F FTEST(00E1(A2, Y, X))

THEN (METHOD: 'FREEOFX, R€TURN(SUSST('K2,'C,Q))) ELSE RETURN(FALSE))S

ICl(SOLN,XC,YC):=
EV(SOLN, C=RHS(SOLVEl(EV(SOLN,XC,YC),C)), RATSIMP)%

6C2(SOLN,XA,YA,XB,YB):=BLOCK([DISPFLAG,SINGSOLVE,TEMP],
DISPFLAG :FALSE, SINGSOLVE :TRUE,
TEMP: MAP(LAMBDA(CZZ1, EV(SOLN,ZZ,EVAL)),

SOLVE([EV(SOLN,XA,YA), EV(SOLN,XB,YB)], ['Kl,'KE])),
I F LENGTH(TEMP)=l THEN RETURN(FIRST(TEMP)) ELSE RETURN(TEMP))%

fC2(SOLN,XA,YA,DYA):=BLOCK([DISPFLAG,SINGSOLVE,TEMP],
DISPFLAG :FALSE, SINGSOLVE :TRUE,

TEMP: MAP(LAMBDA([ZZ], EV(SOLN,ZZ,EVAL)),
TEMP: LHS(S0LN) - RHS(SOLN),

SOLVE([EV(SOLN,XA,YA), SUBST([DYA,XA],
LHS(DYA)=-SUBST(O,LHS(DYA),DIFF(TEMP,LHS(XA)))

/DIFF(TEMP,LHS(YA)))],
C'Kl,'K21)),

I F LENGTH(TEMP)=l THEN RETURN(FIRST(TEMP)) ELSE RETURN(TEMP))%

FAILURE(MES,EQ):=(LDISP(SUBST(YOLD,YNEW,EQ)), DISP(MES), FALSE)%

M E S l : "NOT A PROPER DIFFERENTIAL EQUATION"%
MES2: "FIRST ORDER EQUATION NOT LINEAR I N Y'"S
MES3: "CANNOT DETERMINE SIGN OF CONSTANT EXPRESSION'S
HES4: "MULTIPLE SOLUTIONS TO FIRST PARTIAL PROBLEM"%

9

REFERENCES

1. Moses, J.: Symbolic Integration. Ph.D. Thesis, Massachusetts Inst. Techno!., Dec. 1967. (Also
available as Report MAC TR-47.)

2. Bogce, W. E.; and DiPrima, R. C.: Elementary Differential Equations. Second ed., John Wiley
& Sons, 1969.

9. Moses, J.: Symbolic Integration: The Stormy Decade. Commun. ACM, vol. 14, no. 8, Aug. 1971,
pp. 548-560.

4. The Mathlab Group: MACSYMA Reference Manual. Version 8. Lab. Comput. Sci.,
Massachusetts Inst. Technol., Nov. 1975.

5. Fateman, R.: An Approach to Automatic Asymptotic Expansions. Proceedings of the 1976
ACM Symposium on Symbolic and Algebraic Computation, Aug. 1976, pp. 365-371.

6. Stoutemyer, D.: Computer Algebraic Manipulation for the Calculus of Variations, the
Maximum Principle, and Automatic Control. ALOHA System Technical Report A74-5,
Univ. of Hawaii, Nov. 1974.

7. Bogen, R.: A Program for the Solution of Integral Equations. Proceedings of the 1977
MACSYMA Users’ Conference, NASA CP-2012,197’7. (Paper no. 2 of this compilation.)

8. Schmidt, P.: Automatic Symbolic Solution of Differential Equations of First Order and First
Degree. Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic
Computation, Aug. 1976, pp. 114-125.

9. Schmidt, P.: Maschinelle Symbolische Losung von Dlfferentialgleichungen 1 Ordnung und 1
Grades. Doktorgrades dissertation, Univ. Bonn, 1976.

10. Lafferty, E.L.: Power Series Solution of Ordinary Differential Equations. Proceedings of the
1977 MACSYMA Users’ Conference, NASA CP-2012, 1977. (Paper no. 34 of this
compilation.)

10

2

A PROGRAM FOR THE SOLUTION OF INTEGRAL EQUATIONS*

.Richard A. Bogen
Unive r s i ty o f H a w a i i

SUMMARY

This paper i s in t ended t o supp lemen t an a r t i c l e by Stoutemyer (ref. 1)
which describes a program f o r t h e s o l u t i o n o f one dimensional integral equa-
t i o n s . The program, f i r s t w r i t t e n i n REDUCE (r e f . 2) has been implemented
i n MACSYMA with several addi t ional techniques which are explained herein.
By u t i l i z i n g many methods, the program can obtain closed-form and series
s o l u t i o n s t o a l a r g e c l a s s o f l i n e a r and non-linear problems. One o f t h e
techniques deve loped , reduct ion to a d i f f e ren t i a l equa t ion , has no t p re -
v i o u s l y a p p e a r e d i n t h e ' l i t e r a t u r e i n t h e g e n e r a l form described i n this
paper .

INTRODUCTION

The interface between a person and a computer system may be considered
to t ake p l ace on many p o s s i b l e " l e v e l s " , as d i s t ingu i shed by t h e f a c i l i t i e s
most of ten used. In a symbolic mathematics system, e.g. MACSYMA, t h e r e a r e
system designers who work mainly i n LISP o f f e r i n g an in i t i a l s e t o f MACSYMA
func t ions . The a p p l i c a t i o n programmers i n t u r n u s e t h e s e f u n c t i o n s t o con-
s t r u c t o t h e r s which a re usefu l to the casua l users who need t o s o l v e some
par t icu lar p roblem by invoking a sequence of bu i l t - in func t ions . The ease
wi th which each leve l o f .user can accompl ish h i s t ask i s dependent on how
comple te and wel l -des igned the fac i l i t i es a re a t a l l lower l eve ls . Idea l ly
there should be no need for a u s e r a t one l e v e l t o program a t a lower level .
The arguments f o r u s i n g a pre-wr i t ten p rogram ra ther than wr i t ing one from
s c r a t c h a r e a s s t r o n g as those fo r u s ing a computer i n t h e f i r s t p l a c e as
opposed t o hand c a l c u l a t i o n ; i . e . it saves t ime and af fords l ess chance o f
making an error.

equat ions. MACSyMll a l r eady con ta ins rou t ines for so lv ing var ious k inds o f
a lgeb ra i c and o rd ina ry d i f f e ren t i a l equa t ions . In r e f e rence 1 , Stoutemyer
desc r ibes a program he wrote i n t h e REDUCE symbolic mathematics language
(r e f . 2) for so lv ing i n t eg ra l equa t ions . In o rde r t o make t h i s f a c i l i t y
a v a i l a b l e t o u s e r s o f MACSYMA, an implementation was begun i n July 1976..

Some o f t he mos t u se fu l p rog rams a r e t hose fo r so lv ing ce r t a in t ypes o f

" -~ - " - ."

- *This work was supporte-d by the Nat ional Science Foundat ion under
Grant No. MC575 - 22983.

1 1

Since comBleting this, we have discovered several new techniques and these
have been added to the program. This paper is intended to supplement the
work reported in reference 1 , so the emphasis here is on the new techniques
that are not described there. Following a discussion of these techniques an
outline of the program is given, some limitations are mentioned, and a com-
parison is made with the earlier REDUCE version. Finally some planned future
improvements are described. A demonstration is presented in the appendix.

TECHNIQUES

The types of integral equations considered by the program are those
reducible to the "quasi second-kind" :

and thel'first-kind":

where, for this paper, p(x) is the unknown function, x is the independent
variable, and u is the integration variable.

certain second-kind equations, two f u r certain first-kind equations, and
two usable for both types of equations. These are summarized in table I.
Since implementing these in MACSYMA, a further search of the literature
turned up two additional first-kind techniques.

integrands of the form:

The original REDUCE program contains five techniques applicable to

Kanwal (ref. 3) gives a generalization of Abel's method for singular

The solution is:

O t k t l

sin(krr) % lx h' (u)f(u)du P(X> = where h' denotes - dh
(h (x) - h(u))l-k du

12

Cochran (r e f . 4) g ives a me thod fo r l i nea r f i xed - l imi t f i r s t -k ind equa -
t ions with f inite-rank integrands. These have the form:

L e t t i n g t h e c o e f f i c i e n t o f q . (x) i n f (x) be c and assuming p (u) t o b e :
J j

the problem i s reduced t o t h a t of so lv ing t he n s imultaneous l inear equat ions:

j = 1 , 2 , . . . , n

f o r t h e %. This gives one so lu t ion . The r e s u l t of adding t o t h i s l i n e a r
combinatlons of functions orthogonal t o a l l o f t h e r k (u) g i v e s a d d i t i o n a l
s o l u t i o n s .

made avai lable . Stoutemyer proposed a general izat ion o f a method i n Goursat
(r e f . 5) for t ransforming any v a r i a b l e - l i m i t f i n i t e - r a n k i n t e g r a l e q u a t i o n
i n t o an o r d i n a r y d i f f e r e n t i a l e q u a t i o n . It i s appl icable t o b o t h f i r s t - k i n d
and second-kind equations. There are numerous methods for solving differen-
t i a l e q u a t i o n s and MACSYMA already possesses routines implementing some of
these methods . Consequent ly , th i s reduct ion s ign i f icant ly en la rges the c lass
of i n t eg ra l equa t ions f o r which exact solutions can be obtained. The method
i s remarkably simple. We a re g iven an i n t eg ra l equa t ion o f t h e form:

I n a d d i t i o n t o t he two techniques mentioned thus far, one other has been

Equation (1) t oge the r w i th i t s f i r s t n-I d e r i v a t i v e s w i t h r e s p e c t t o x gives
a s e t o f n s imul taneous equat ions l inear in the n unknowns R . (x) , j = 1 , 2 , ..., n.
Solv ing these equat ions and subs t i tu t ing for the R . (x) i n t h d nth d e r i v a t i v e
of equat ion (1) gives an o rd inary d i f fe ren t ia l equdt ion for p (x) which i s of
order n-I or n dependipg on whether the l e f t s i d e o f e q u a t i o n (1) was f (x) ,
f o r f i r s t - k i n d , or p (x) - f (x) , f o r s e c o n d - k i n d . I n i t i a l c o n d i t i o n s c a n b e
ob ta ined by s e t t i ng x=a i n equa t ion 6') and i t s d e r i v a t i v e s , t h e n s o l v i n g
success ive ly for p (a) , p ' (a) , ... , p (a) , where m i s n-2 or n-I as above.

13

We illustrate this technique with a non-trivial example. Consider:

-9x6 5x x2 2x
20 + 6 - '4 - - - x%$ (x) + xR2(x) 15 -

Taki'ng two successive derivatives gives:

4 2
R (x) = -9x + lox - 1 1 2

4 - 2x P(X).

Substituting this into equation (4) and re-arranging terms results in:

2x p'(x) + 5 p(x) = -9 x2 + 5

whose solution is p(x) = ex -'I2 + 1 - x . To solve for c we let x=l in
equation (3) and, noting that R (l)=R (1)=0, find that p(l)=O, which implies
c=o.

2

1 2

EXAMINATION OF THE PROGRAM

The program is invoked by the calling sequence:

IE&N(expression, unknown, technique, napprox, guess).

The first argument is the integral equation. Trailing arguments may be
omitted, in which case they will assume default values which are:

unknown - defaults to the first function encduntered in an
integrand which is unknown to MACSYMA.

14

technique - d e f a u l t s t o FIRST which causes a l l a p p l i c a b l e
t e c h n i q u e s t o b e t r i e d u n t i l one succeeds (see below).

napprox - d e f a u l t s t o 1 and represents the maximum number of
i t e r a t i o n s or a d j u s t a b l e c o l l o c a t i o n p a r a m e t e r s f o r an
approximate solut ion.

guess - d e f a u l t s t o NONE and r e p r e s e n t s t h e i n i t i a l g u e s s f o r
NEUMANN or FIRSTKINDSERIES t echn iques . I f NONE, t h e in i t ia l
guess will b e t h e v a l u e o b t a i n e d b y s e t t i n g a l l i n t e g r a l s i n
t he expres s ion t o ze ro .

The method used by the program is t o f a c t o r t h e f i r s t argument t o IEQN and
f o r e a c h f a c t o r c o n t a i n i n g a n i n t e g r a l t h e e q u a t i o n f f f a c t o r = 0" i s
a l g e b r a i c a l l y s o l v e d f o r t h e unknown i n te rms of the o ther par t s o f the
f a c t o r . I f a so lu t ion r e su l t s , t hen f l s econd-k ind f f t echn iques a r e t r i ed .
Otherwise the program t r ies "f i rs t -kind" techniques. These techniques are
l i s t e d below i n o u t l i n e form giving conditions under which they are appli-
cable. (The name of the technique, which can be used as the third argument
of IF,&N, i s c a p i t a l i z e d .)

Second-Kind Techniques
(Exac t)

Constant limits of integrat ion (Fredholm type)

A constant lower l i m i t and x as the upper l i m i t (Vo l t e r r a t ype)
F in i te - rank in tegrand - FINITEFLANK

I n t e g r a n d l i n e a r i n p (u)

F in i te - rank in tegrand - DIFFEQN (Conversion t o ODE)
Convolu t ion in tegra l - TRANSFORM (Laplace transform)

(Approximate)

Arb i t r a ry limits o f i n t e g r a t i o n
I n t e g r a n d l i n e a r i n p (u) - FREDSERIES
T h e r e e x i s t s a p o i n t a t which the limits are equal - TAYLOR
NEUMANN
COLLOCATE

First-Kind Techniques

(Exact) Constant limits o f i n t e g r a t i o n
I n t e g r a n d l i n e a r i n p (u)

Fini te-rank integrands - FINITERANK
A constant lower limit and x as the upper l i m i t

I n t e g r a n d l i n e a r i n p (u)
Abel ' s equa t ion - B E L
Convolu t ion in tegra l - TRANSFORM

Fini te-rank integrand - DIFFEQN

(Approximate)
Arb i t r a ry limits o f i n t e g r a t i o n

FIRSTKINDSERIES
COLLOCATE

15

I
I.

It is difficult to make an accurate comparison between the execution
times of the MACSYMA and REDUCE versions for several reasons. The PDP-10
processor on which MACSYMA runs is significantly faster and has more memory
space resulting in fewer'garbage collections. A l s o the REDUCE versions of
the SOLVE, INTEGRATE, and LAPLACE routines were interpreted rather than
compiled and REDUCE includes display generation times in its figures.
Consequently, the execution times for the examples given in reference 1 were
around 10 times the figures obtained when these examples were run on MACSYMA.

The text of the program was approximately 30% smaller on MACSYMA due to
the availability of more built-in functions. Naturally, the MACSYMA version
could handle more cases because of more comprehensive integration, equation-
solving, and transform routines.

At present, the major difficulty in using the integral equation solver
is the frequent exhaustion of available storage due to the loading of files
containing many auxiliary fun?tions which are not part of the initial system.
Indeed, a single problem may cause functions in a dozen such files to be
referenced. Once loaded, the space they occupy cannot be re-used even if they
are no longer needed. In this situation, the user can save relevant values,
load a fresh MACSYMA, and continue where he left off. If, however, all the
space was consumed in a single call to IEQN, because of attempting several
solution techniques, then the user should try separate calls for each one.
It is 'mlikely that this approach will cause difficulty since the principal
limitations of particular techniques arise not from space or time constraints,
but from the inability of some functions to handle certain kinds of arguments.
In particular, f o r linear integral equations the trouble spots are the inverse
Laplace transform, which is limited to rational functions, and the ordinary
differential equation solver which is limited to first and second order equa-
tions. Thus the corresponding cases of convolution equations containing non-
polynomial functions and of finite-rank integrals with rank greater than two
can only be handled by the approximate methods. For non-linear finite-rank
equations, solutions can be found only if corresponding non-linear differen-
tial equations or algebraic equations can be solved.

FUTURE TMPROVEMENTS

Aside from alleviating the problems mentioned in the previous section,
there are a number of ways in which the progrm could be extended. Eigen-.
analysis as well as testing existence and uniqueness theorems could auto-
matically provide useful information even when no solution can be determined.
Integral transforms such as those of FGurier and Mellin and the Wiener-Hopf
technique would enable the program to be used for some important integrals
with infinite limits. Finally, the program could be made to handle systems
of integral equations thus greatly extending its applicability. Incorpora-
tion of these techniques is under current investigation.

16

FEFEFENCES

1. Stoutemyer, D.: Analytical Salution of Integral Equations Using
Computer Algebra. Trans. Math. Software, June 1977.

2. Hearn, A.C.: REDUCE 2 Users’s Manual. Computational Physics Group,
Univ. Utah, 1973.

3. Kanwal, R.P.: Linear Integral Equations: Theory and Technique.
Academic Press, 1971.

4. Cochran, J.A.: The Analysis of Linear Integral Equations.
McGraw-Hill Book Co., 1972.

5. Goursat, E.: Integral Equations - Calculus of Variations, A Course in
Mathematical Analysis. Vol. 111, Pt. 2, Dove’r Publ. Inc, 1964.

17

APPENDIX - Illustrative Examples

(C1) 'INTEGRA!T'E(P(U)/(X**2-U**2)**(1/3),U,O,X)=X;

(c2) IEW(DI)sS
DEFAULT 2ND JRG , THE UNKNOWN : P (X)
DEFAULT 3FXl ARG, TECHNIQVE: FIRST
DEFAULT 4TH AFG, NUMBER OF ITEFLATIONS OR COLLOCATION PAF1AMETERS: 1
DEFAULT 5TH ARG, INITIAL GUESS FOR NElJMANN OR FIRSTKINDSERTES: NONE

2 SQRT(%PI) GAMMA(-)
6

1

x + c
[P(X) = -----, DIFFEQJ, , X = 1, P (X) = 1] 1 r

[3 X , FREDSERIES, 2
26 x I
-9" , NEUMANN, 25 APPROXIMATE 1

18

II II I I

TABLE I - ‘SUMMARY OF TECHNIQUES PREVIOUSLY REPORTED ON (i n r e f . 1)

- Name Form t o which app l i cab le Method

FINITERANK 2nd-kind, f ixed limits, Given p (x) = ” e x p r t l , d i s t r i b u t e

then r ep lace each i n t eg ra l o f
q . (x) r . (u , p (u)) by c . q . (x) where

c i s an a r b i t r a r y p a m . t o be

determined. This gives p(x)=g(x) .
Then so lve t he n simul. l in. eqns.

f i n i t e r a n k i n t e g r a n d s . i n t e g r a t i o n i n e x p r o v e r a l l Sums,

J J J J

j

b
J

r . (u , g (u)) du

f o r t h e c j = l , ... ,n.
j ’

1st o r 2nd-kind, r a n k - I , Special cases of the DIFFEQN
v a r i a b l e limits. method f o r a rank-I i n t e g r a l .

TRANSFORM 1st o r 2nd-kind, convolu- Take Laplace t rans . , so lve for
t i o n , v a r i a b l e l h i t s . t r a n s . o f p (x) , t h e n i n v e r t .

FREDSERIES 2nd-k ind , l inear . Given p(x)=f (x)+/K(x ,u)p(u)du ,

t h e s o l u t i o n i s p (x) = f (x) +

G(x ,u) f (u)du , where G(x,u) i s

TAYLOR

the quot ien t o f two i n f i n i t e
s e r i e s whose terms are found
from recu r rence r e l a t ions .

2nd-kind, var iable l i m i t . Given p (x) = f (x) + w (x , u , p (u)) d u E:)
f i n d a po in t c where a (c) = b (c) = c .
Expand p (x) - f (x) i n T a y l o r s e r i e s
about x=c by d i f f e r e n t i a t i o n .

mu”N 2nd- kind.
FIRSTKINDSERIES 1 s t -k ind .

COLLOCATE any

D i f f e r e n t i a t i o n 1 s t - k i n d , v a r . limit.

Make a guess fo r p (x) and i t e r a t e
us ing or ig ina l equa t ion .

Assume a p a r t i c u l a r form f a r p (x)
involv ing n a rb i t ra ry parameters .
S u b s t i t u t e i n e q u a t i o n and evalu-
a t e a t n values of x t o g e t a s e t
of s imul . eqns. to solve for pams.

D i f f e ren t i a t e g iven equa t ion some
number o f t i m e s t o s e e i f a 2nd-
k ind equa t i an r e su l t s .

19

3
SYRBOLI C LAPLACE TRANSFORMS OF SPEC1 AL FUNCTIONS *

Yann i s Avgoue t i s
Laboratory for Computer Science (formerly Project MAC)

~assachuee t ta I ns t i t u te o f Technology

ABSTRACT

A MACSYMA implementation of the Laplace Transform fo r Specia l Funct ions
i e described. The Generalized Hypergeometric Functions are used as a b a s i s f o r
the representat ion o f approx imate ly f i f ty Specia l Funct ions. Only a r e l a t i v e l y
m a l l number of formulas that general ly involve General ized Hypergeometr ic
Func t i ons a re u t i l i zed f o r t he i n teg ra t i on stage.

A sample o f ac tua l examples and t h e i r t i m i n g i s p r o v i d e d a t t h e e n d o f
the paper.

I I NTRODUCT I ON

We descr ibe a design for the Laplace Transform of Special Functions
which has been implemented in MACSYMA (ref. 1). I n our design we have employed
a p p r o x i m a t e l y a l l o f t h e f i f t y u e l l knoun Special Functions, knoun also as the
Functions of Mathematical Physics (ref. 21, (ref . 3) . I n designing the Laplace
Transform capabi I i t y , we have considered i t as p a r t o f t h e " d e f i n i t e
i n teg ra t i on " p rob lem and our design i s planned t o cover a s i g n i f i c a n t p a r t o f
d e f i n i t e i n t e g r a t i o n t h r o u g h i n t e r a c t i o n a t some la ter t ime with t h e o t h e r
I n t e g r a l Transforme, such as Hankel, Y, K, Fourier, Me1 tin, e t c .

One faces two main d i f f i c u l t i e s when deal ing with t h i s problem. F i r s t ,
d e f i n i t e i n t e g r a t i o n g e n e r a l l y i s a recursively unsolvable problem (ref . 4).
Second, the area of Special Funct ions is wel l known f o r i t s " c h a o t i c s t a t e "
(r e f . 5) .

Wang and Bogen have a lso worked on the problem o f d e f i n i t e i n t e g r a t i o n
(r e f . 6) and Laplace Transforma (ref. 71. However, they both were i n t e r e s t e d

rol This work was supported, in part , by ERDA contract Number E(11-1)-3878 and
NASA Grant NSG 1323.

21

, .

nainlu in Elementarg Functions. To the beet 07 our knouledge there has been no
o t h e r system designed for ang o f the in tegra l t rans forms o r de f in i te in tegra t inn
-for the Speci a1 Functions.

In our design ue take advantage o f the fac t tha t most o f t he Spec ia l
Funct ions can be considered as p8rticular instances of the General i zed
Hypergeometr ic Funct ion and therefore can be integrated, using the General ized
Hypergeometric Function representation, u i th a tab le cons i s t i ng o f ve ry f eu
formulas. A natura l consequence Is that the resu l t o f the in tegra t ion p rocedure
involves Generalized Hypergeometric Functions. Hence an a d d i t i o n a l s t e p i e
required to reduce the General ized Hypergeometric Functions into Special or/and
Elementary Functions.

I 1 THE GENERAL IDEA

we begin uith the def in i t ions of the General ized Hypergeometr ic
Func t ions (re f . 81, . (ref . 21, and the Laplace Transforms (ref. 91, (r e f . 18).

D e f i n i t i o n 1. We cal l the General ized Hypergeometric Function,
o therw ise known as the General ized Gauss function, the series

pFqtal,az ,..~,ap:b~,b~,....bq:zl (1 1

inf (al In(a2In .. (ap),, zn

n-0 (bl) ,,(b21n . . . (bqIn n!
.,E """""""""""""""

where a l , a2,.*., ap and b l , b2,...,bq are complex parameters, z i s a complex
v a r i a b l e . we a1 80 denote the above ser ies a8 pFq[al,a2,. . . ,ap: b l , b2,. . . , bq: zl .

or pFqt(a)z (b))z l o r s imp ly pFq(zl.

The s e r i e s pFq(z) sa. t is f ies the d i f ferent ia l equat ion

d d d d

dz dz dz dz
(Z --(Z -- + bl-1) (Z -- + b2 - 1) 0 . (Z -- + bq - 1)

d . d d

dz dz dz
- z(i -- + a l) (z -- + a21 ... (z -- + apl) - 8

D e f i n i t i o n 2. We c a l l the Laplace Transform of a real or complex

s,"f (t)e'Pt dt (3)

f u n c t i o n f (t 1 , d e f i n e d f o r a l l r e a l nonnegative values of t, the i n teg ra l

22

I f I t e x i s t s f o r 80.e values of the complex var iab le p. I t i s w r i t t e n L C f (t 1 1
and determines a function F(p); thus

The keg ideas in our derign, depicted in f i gu re 1, are

Stage 1. Represent the Special Functions, i f possible, a5 p a r t i c u l a r
instances o f the Genera l I r e d Hypergeometr Ic Function.

Stage 2. Prov ide a fa i r l y genera l fo rmula to in tegra te the resu l ts of
r t a g e 1.

Stage 3. Take the resul t of stage 2 i nvo lv ing a Genera l i ted
Hgpergeometr i c Function, and reduce i t to an elementary or/and Spec i a I
F u n c t i o n (81.

Hence, our design al ternates between two levels:

Level 1. The axpression involves Special or/and Elementary Functions.

Level 2. The expression involves Generalized Hypergeometric Functions.

Ue next proceed ,ui th a simple i I l us t ra t ion o f the above scheme.

I I l u s t r a t i o n

Given Input

uhere 13(.) i s a modif ied Bessel f unc t i on o f t he f i r s t k i nd (re f . 111, (r e f .
121, t he f o l l ow ing w i I I take place in each of the three stages:

Stage 1.

Because

Becauae

Stage 2.

I n t h i s etage ue in tegrate by ueing the fo l louing formula (ref. 13)

~mts-lmFnIal, ..., a m : r ~ , . ~ ~ , r n : ~ I t ~ k ~ e ~ ~ t d t (10)

s s+l S+k-l k l

k k k k
= r (s) p-sm+kFn (al,. . , a,,,, -, ---, . . . , -----e , rl, r2,. . . , rn: (- - I k~

u h i c h i s v a l i d f o r Re(s) > 0 , m+k e ,n+l, uhere k,m,n are integers.

Thus (9) becomes

,312
-- 1F1 t 1: 4: alp1
6P

(11)

Staae 3.

A t stage 3, ue apply to (11) the fo l lou ing "Kummer's t rans format ion"
(r e f . 2)

and (11) reduces to

We recognize that the ser ies in (13) i s an instance of an Incomplete
Gamma func t i on (re f . 21, because

1F11 a: a+l: -x1 = ax'a 7 (a,x) (14)

Therefore, (14) f i n a l l y becomes

24

I 1 1 THE GENERALIZED HYPERGEOMETRIC FUNCTION AND

THE FUNCTIONS OF MATHEMATICAL PHYSICS

As we have a lready ment i oned, ue have deal t ui th around f i f t y Spec i a I
Funct ion8 end our goal l a t o i n te rp re t them as p a r t i c u l a r i n s t a n c e s o f t h e
Genera I i zed Hypergeome tr I c Func t i on.

We have divided the set of the Special Functions into two major types.
The f i r s t type includes al l Special Funct ions that are d i rect ly t ransformed
through some r e l a t i o n i n t o a Generalized Hypergeometric Function, and the second
type inc ludes those funct ions that are expressed in terms o f other Spec ia l
Func t ions and u l t i m a t e l y are expressed in terms o f Spec ia l Func t ions o f the
f i r s t type. This i e the major object ive of the f i rst stage and i t has been
in f luenced by the tendency t o u t i l i z e and manipulate as few Specia l Funct ions as
i s necessary.

For example, the Bessel function of the f i r s t k ind Jv (z) be longs to the
f i r s t type and is automat ica l ly t ransformed in to a General ized Hypergeometric
F u n c t i o n t h r o u g h r e l a t i o n (8) .

The Hankel funct ion o f the f i rs t k ind, H,,~(z), i s expressed i n i t i a l l y
as a sum o f a f i r s t and second k i n d o f Bessel functions as i t i s shown in (16)

HV,1(z) - J,(z)+iY,(z) (16)

H e r e J v (z) i s a f u n c t i o n o f t h e f i r s t type, wh i l e Y,(z), a Besse l func t ion o f
t h e second kind, i s not. Yv(z) i s transformed in terms o f J,(z) as long as v
i s not an in teger through the re la t ion

Y,,(z) - (cos(v pi)J,(z) - J-,(z)) csc(v p i) (17)

Thus we have ul t imate ly expressed Hv,1(z1 i n terms o f t h e f i r s t t y p e f u n c t i o n
J,(z), which in turn can r e a d i l y be transformed i n t o a General ized
Hypergeometric Function. The case in which v i s an integer, Y, (z) i s considered
separa t e I y.

I n a s i m i l a r way we have considered products of Special Functions which
can be expressed as a single Generalized Hypergeometric Function. Thus the
p r o d u c t o f two Bessel functions "J,(z)*J,,,(z)" i s a p roduc t be long ing to the
f i r a t t y p e and i s transformed into a Generalized Hypergeometric Function through
t h e r e l a t i o n s (8) and (18)

t r: zlgF1 t 9; zl - 2F3 t r/2+e/2, r/2+e/2-1/2; r, s, r+s-1; 421 (18)

On the o the r hand, the product Iv(z)M,,,(z) ,where Iv (z) , K,(d a r e m o d i f i e d
B e s s e l f u n c t i o n 8 o f t h e f i r s t and second k ind, respect ive ly , be longs to the

25

sscond type and i s u l t ima te l y exp ress ib le in term8 o f f u n c t i o n s o f t h e f i r s t
type;for noninteger values of the index m.

I V LAPLACE TRANSFORMS

A design for the Laplace Transform algor i thm should incorporate two
major components: the in tegrat ion process, and the di f ferent Laplace Transforms
proper t i 8s.

we decided to form a table which contains as feu formulas as passible.
This s t ra tegy has the fo l lowing consequences:

1. The overa l l des ign o f the system becomes a lgor i thmic in the sense
t h a t the system works determinist ical ly and knows what i t can r e a l l y do and what
i t cannot, and does not waste t ime by t r y i n g d i f f e r e n t approaches.

2. The main burden and d i f f i c u l t y o f t h e problem s h i f t s from stage 2 t o
s tage 1 and especial ly stage 3, uhere we have to reduce the Genera 1 i zed
Hypergeometric Functions to some Elementary or/and Special Function(s1.

A's f a r a8 the Laplace Transforms propert ies are concerned, our general
p o l l c y c o n s i s t s o f a p p l y i n g them in stage 2, in the Generalized Hypergeometric
Func t i on l eve l . Hence, stage 2 can be divided into tuo substages.

Substage 2.1 U t i l i z e the Laplace Transforms properties.

Substage 2.2 Integrate.

Th is po l i cy changes only i n cases where such a postponment o f t h e
a p p l i c a t i o n o f t h e Lapla.ce Transforms proper t ies u n t i l stage 2, causes
i r r e p a r a b l e damage and f a i l u r e i n our scheme [f i g u r e 1). Therefore the Laplace
Transforms propert ies have been considered in two types. P r o p e r t i e s o f ' t h e
f i r s t t y p e can be applied in substage 2.1, independently o f what k i n d o f S p e c i a l
Function(s1 that the input expression contains. Thus, f o r example, a l l t h e w e l l
known proper t ies , such as the "scale property" (ref. 10)

Lte-atf (t1l - F(p+a) (191
b e l o n g t o t h e f i r s t type.

P roper t i es o f t he second type cannot be app l i ed a f te r s tage 1 f o r
cer ta in Spec ia l Func t ions and our scheme i s unable to proceed successful ly to
stages tuo and three. For example, the property

L [f (asinht)] - ~ J p (a u l g (u l du (28)

26

.

i on where 'Q(p) - L t f (til, cannot be applied after stage 1, for the Bessel funct
J0, as, in, f o r example,

Jg(asinht1 8-p' (21 1

s ince a f te r t he comp le t i on o f t he f i r s t stage ue get

a2
1; - -- sinh2tle-Pt

4

,Expression (22) cannot be integrated since our table does no t con ta in any
formulas with such functional arguments wh i l e i t i s t oo l a te t o app ly p roper t y
(28) .

The above msnt ioned example could be solved by two recurs ive ca t 1 s t o
our scheme (f i g u r e 1). F i r s t , by c a l l i n g the scheme as descr ibed for the
Lap I ace Transforms, and second by cal I ing the same scheme in uhi ch the Lap I ace
Transforms propert ies and In tegra t ion formulas have been subs t i t u ted with Hankel
Transforms propert ies and In tegra t ion formulas (re f . 9).

On a f i r s t examination, a program that can take the Laplace Transforms
o f approx imate ly f i f t y Spec ia l Func t ions would imply that qui te a b i g number o f
formulas would be necessary t o be incorporated in the table look-up .of our
second stage. I t turns out that relat ively very feu formulas are needed. Thus,
formula (16) has been appl icable to a large number of Specia l Funct ions (re f .
141, (re f . 21, (re f . 31, namely the Bessel Functions of the f i r s t and second
kind, both Modif ied Bessel Functions, the two kinds o f Hankel Funct ions, a lso
the St ruve funct ions, the Lommel functions, and the Ke lv in func t ions , the
Whi t taker , the e r ro r and both Incomplete Gamma functions, for almost a l l t h e
values o f t h e i r i n d i c e s and for l inear and quadratic functions of the argument.
Furthermore, in cooperat ion with general formulas of other Integral Transforms,
formula (10) cont r ibu tes in in tegra t ing composite functions I i ke JB(s inh t1 , as
we have already shown.

Current I y, our tab1 e look-up incorporates 8even formulas and our design
1.8 general ly capable of integrating expressions described in the two ca tegor ies
be I our

1. Special Funct ions of l inear or quadratic argument m u l t i p l i e d with

a. A rb i t ra ry powers of the argumenta

b. Trigonometric and exponent ia l funct ions of ! inear
argurnen t .

27

2. Products of tuo Special Functions of l inear or quadratic argument,
m u l t i p l i e d with the same k ind o f funct ions ue mentioned in t h e f i r s t c a t e g o r y .
?he Special Funct ions of th is category can be func t i ons o f on l y one o f t h e
f o l l o w i n g groups:

a. Any k ind o f Bessel, t lod i f ied Bessel, or Hankel
functions.

b. Orthogonal Polynomials.

c. Confluent Hypergeometric Functions.

However, t h e p o t e n t i a l i t y of keeping very feu formulas around in t h e
t a b l e o f o u r second stags would be of l imi ted va lue i f ue were u n a b l e t o
comp!ete successfu l ly the th i rd stage, to reduce the Generalized Hypergeometric
F u n c t i o n t o some Elementary or/and Special Funct ion(s).

In the reduction stage the Generalized Hypergeometric Function i s
reduced, i f t ha t i s poss ib le , t o some Elementary or/and Special Function(s1.
P r i o r i t y i s a tuays g iven f i r s t to those methods that reduce the Ser ies into
Elementary Funct ions and then t o those that reduce to the most common Spec ia l
Functions, such a8 error, Bessel etc . The e f f o r t in the reduc t i on s tage
increases as the number of the series parameters, and subsequently the p and q
vaJue8, Increase. I f the reduction i s unsuccessful then the series pFq(z) i s
re turned.

The reduction stage incorporates tuo phases. I n t h e f i r s t p h a s e
a lgor i thm8 independent of the values o f p and q of the ser ies pFq(z) a re
appl ied. I n the second phase special algorithms dependent on the parameters are
performed.

A surpr is ing ly usefu l ru le , incorporated in t h e f i r s t r e d u c t i o n phase,
la the fo l lou ing .

1 f a numerator parameter of the series pFq (z) exceeds by a p o s i t i ve
i n teger , say k. a denominator parameter, then the series pFq(z) can be expressed
ab t h e sum o f k+l p-lFq-l (2) 's.

28

To i I l us t ra ts ser ies sp l i t t ing , cons ider

t3 Jg(t1/2)2 e-Pt

a f t e r s t a g e s one and two have been completed, ue get

6p-4 3F3t 112, 1, 4: 1, 1, 1: p- '1 ' (24)

Now, a t stage three and a f t e r a t r i v i a l genera l reduct ion ru le , (24)
becomes

then applying our general "spl i t t ing" ru le, (25) reduces t o

6p-4 t 1F1 t 1/28 1: -p- l I - 312 p" 1F1 t 3/28 2: -p-l l (26)

+ 9/16 p-2 1F1[5/2: 3: -p-lI - 5/96 pe3 1F1 t 712: 4: -p"I 1

I n the ,second phase, reduct.ions are easy for the cases gF0(2), 0F1(z),
1Fo(z) , and the d i f f i cu l ty inc reases s ign i f i can t ly fo r h igher p 's and q's. We
have been mainly concerned with the Confluent Hypergeometric Function reduction,
1F1(z), and the Gauss Hypergeometric Functions, 2F1(z), that include, in
addi t ion to cer ta in impor tant Specia l Funct ions, the E lementary Funct ions. The
most important tools here are the d i f ferent t ransformat ions: l inear, quadrat ic,
e t c (r e f . 151, (re f . 21, (re f . 161, and the Cont iguous Funct ions Relat ions (ref .
17).

The di f ferent t ransformat ions (l inear, quadrat ic, etc) are performed as
soon as i t i s detected that the Generalized Hypergeomtric Function i s r e d u c i b l e
'lo some o ther ones and which are d e f i n i t e l y known t o be reduc ib le t o some
Special or Elementary Funct ions in one or more stepe. We c l a r i f y t h e a b o v e
ideas in a simple example, where a quadratic transformation i s a p p l i e d t o . a
Gause Hypergeometric Function.

29

Suppose we are g iven

2F1 [alpha-beta: gamma: argl - 2F1 [314, 5/4: 1/2: z21
uhere

beta - alpha = 5 / 4 - 3 / 4 = ,112

therefore the quadrat ic t ransformat ion

i s app l icab le . Hence, the fo l louing relat ion holds:

Upon a p p l i c a t i o n o f a s imple general reduct ion ru le, the r ight hand s i d e o f
express i on (31 1 becomes

and f i n a l l y , t a k i n g i n t o account the r e l a t i o n

express ion (28) reduces to

1 5

6 (1 + ~ 1 ~ ’ ~ 6(1-zI3/*
””-“” + ”-”“”

“Cont igu i ty ” has been also found useful and has been put in to use i n the
reduction of the Generalized Hypergeometric Functions.

D e f i n i t i o n . We c a l l two Generalized Hypergeometric Functions contiguous
i f they are a1 ike except for one pa i r o f parameters i n which they d i f f e r 1 x 1 a
u n i t y .

Thus the Hypergeome tr i c Function 2F1 [a, b: c: 21 i s con t i guous t o 2F1 Ia+1, b: c; zl
and obv ious ly to on ly f ive o thers. Any three of the contiguous functions can he
connected u i th a l inear re la t ion , the so cal led Cont iguous Funct ion5
(Recurrence) Relations. Such re la t ions are appl ied to a Genera l ized
Hypergeometric Function uhenever i t has been predetermined that the r e s u l t i n g
series can be reduced to Special or/and Elementary Functions.

G 1 von
1F1 t- -1/28 3/28 21 (35)

and ur ing the fo l low ing con t iguous re la t ion

(a-c+l) 1F1 tar c; 21 - a 1F1 [a+l: GI 21 + (c-1) 1F1 [a: c-1: 21 - 8 (36)

u. g e t
112 1F1 t 1/21 3/28 21 + 1/2 1F1 t -1128 1/28 21 (37)

where the f i r b t aer ien in i d e n t i f i e d ab an er ror and the second as an Incomplete
Gamma funct ion, namely

-114 irrl/z E r f (id4 - 1/2 P 2 (-I/z, -21 (38)

Simi l a r lu , the Hypergeometric Function

$1 t a, e+9/21 c; 21 (391

can be r'educed through successive use of the cont iguous re1 a t ion8 to the
f o l l o w i n g sum

(c-a-9/2) (c-a-7/2) (c-a-5/2) (c-a-3/2)

(c-Za-S/Z) (c-2a-7/2) (c-2a-5/21 (c-Za-3/2)
-_""""""""""""""-"~""" 2F1[a, a+1/2: c: 23 (40)

a (c-a-9/2) (c-a-7/2) (c-a-5/2) (1 4

(c-2a-11/2) (c-Za-9/2) (c-2a-7/2) (c-2a-3/2)
- 4 ~""""""""""""""--""""~"- zF1 t a+l, a+3/2: c: 21

a (a+l) (c-a-9/2) (c-a-7/21 (1 4
+ 6 -------------________________c__________-- 2F1[a+2, a+5/2: c; z]

(c-Za-13/2) (c-2a-11/2) (c-2a-7/2) (c-2a-5/2)

a (a+ l l (a+21 (c-a-9/21 (l-2I3 - 4 ""-_"""""""""""""""""-- 2F1 t a+3, a+7/2: c: zl
(c-2a-15/21 (c-2a-11/21 (c-Za-9/21 (c-2a-7/21

a(a+l) (a+2) (a+31(1-~14
+ """I"""""""""""""""""" 2F1 t a+4, a+9/2: c: 21

(c-Za-15/2) (c-Za-13/21 (c-2a-11/2) (c-2a-9/2)

we next notice that the parameters of each of the above Hypergeometric
S e r i e s a a t i s f y a s i m i l a r r e l a t i o n t o (23). Therefore a quadrat ic t ransformat ion '

i m a p p l i c a b l e t o each o f them, tha t u l t imate ly leads to t he f o l l ow ing sum o f
Legendre funct iona

(41 I

(c-a-9/2) (c-a-7/2) (c-a-5/2) Cc-a-3/2)
[""""""""""""""""""""-
(c-2a-9/2) (c-2a-7/2) (c-2a-5/2) (c-2a-3/2)

Pc -za - l ,~ -c ((1-21 - 1 4

a (a+l) (a+2) (c-a-9/2) - 4 """""""""""""""""""""
(c-Za-15/2) (c-2a-11/21 (c-2a-9/2) (c-2a-7/2)

Pc-2a-7, l - c ((1-Zl-14

a (a+l) (a+2) (a+3)

(c-2a-15/2) (c-2a-13/2) (c-2a-11/2) (c-2a-9/2)
+ --"""""-"""""-"""""""""- Pc-2a-9,l-c (1-2) -112)]

V I COMMENTS AND CONCLUSIONS.

The Laplace Transforms package i s r e l a t i v e l y f a s t , as
. examples in the appendix show. Furthermore, i t i s capable of quick

cases tha t i t cannot process.

t he ac tua l
I y r e j e c t i n g

The Laplace Transforms system l e capab le o f p rov id ing resu l t s f o r t he
u e l l known Specia l Funct ions l imi ted to essent ia l ly l inear and q u a d r a t i c
arguments. However, cases I i ke equation (21 1 , ment i oned ear 1 i er, or t h e
f o l l o w i n g one

t'l J l (a t - l I e-Pt (42)

a r e some o f those tha t the present Laplace Transforms implementation i s u n a b l e
t o p r o v i d e an ansuer, unless i t uill interact proper ly with o t h e r I n t e g r a l .
Transforms. We expect to generalize the syetem t o those other transformB in t h e
coming year.

C u r r e n t l y our system is able to solve approximatel ly 86% of t h e e n t r i e s
of the corresponding chapters of the Tables of Integral Transforms (The
Bateman's Manuscript Project). We expect t o be able to cover 314 o f the
remaining cases in the coming months by i nc reas ing t he capab i l i t i es o f ou r f i r s t
and t h i r d stages. Final ly, ue should add in favor of our implementation, i t s
c a p a b i l i t y t o I n t e g r a t e e x p r e s s i o n s t h a t a r e o n l y i m p l i c i t l y i n c l u d e d in
Bateman's Manuscript Project.

APPEND I X

T h i s i s a sample o f some actual examples of the Laplace Transform
system i n MACSYMA. "Def in te" i s the top func t ion tha t ca l l s the in tegra l
t ransforms, i t takes tuo arguments: the expression to be integrated
and t h e v a r i a b l e . and assumes l i m i t s o f i n t e g r a t i o n f r o m z e r o t o i n f i n i t y .

/* Lap lace t rans forms */
ASSUME(P > 0) :
(011)

(C12) T1ME:TRUES
TIRE- 1 MSEC.

(C13) /* Some "Conf luents".
"flIk,ml (z) " i s a Uh i t taker func t ion .
"GAMMAINCOMPLETE (a, b) 'I, and "GAMPlAGREEK(a,b)" are current names
f o r t h e I n c o m p l e t e Gamma funct ions: na,b) , and J(a,b). */
%EA(A*T) *TA2*ERF (TA(l /2))*%E"(-P*T) :
TIRE- 22 MSEC.

2 A T - P T
(013) ERF(SQRT(T1 1 T %E

(C14) DEFINTE (X . T) :

RPART FASL DSK MACSYM being loaded
l o a d i n g done
Is A - P pos i t i ve , negat ive , o r zero?

NEGAT I VE:

GAnRA FASL DSK MAXOUT being loaded
l o a d i n g done
TIME- 431 MSEC.
(014)

1 2 1
15 ("""""""- - """""""""""" + """""~"""""""- 1

1 1 312 2 1 512
SllRT (----- + 1) 7 (P - A) (----- + 1) 21 (P - A) (----- + 1)

P - A P - A P - A
"~""""""""""""""""""""""""""""""""""""~

7/2
4 (P - A)

(C15) T^(1/2)*GAMMAINCO~PLETE(1/2.A*T)*%E^(-P*T);
TIME- 632 MSEC.

1 - P T

2
(Dl51 GAMMAINCOMPLETE(-, A T I SQRT (T I %E

33

(C16) DEFINTE(X,T):
TIHE- 1586 HSEC.

(016)
- % P I 2 _""""""""""""" - """""""-"""""

312 A 312 3/2 A 312
2 (P + A) (1 - ----- 1 (P + A) (1 - ----- I

P + A P + A

(020)
2 2

"""""""""""""""""""

1 4

2
(P + -1

(c21) /* Some Bessel functs (b f ' s) . */ /* J I v l (2) . 1st kind o f b f ' s . */ /* YIv] (2) . 2nd kind o f b f ' s . * / /* H I v , l l (2) . 1st kind of the 3rd kind o f b f ' s (1st Hankel). */
/* HCv.21 (2 1 , 2nd kind o f the 3rd kind of bf's (2nd Hankel).*/

TA(-1/2)*J 101 (2*A*(1/2)*TA(1/2))*XE"(-P*T);
TIME- 16 MSEC.

- P T
J (2 SQRT(A) SQRT(T)) %E
e

(021 1 """"""̂ """"""""

SPRT (T 1

(C22) 'DEFINTE (X , T) :
TIME- 256 MSEC.

A - "-
A 2 P

SQRT(%PI 1 I (- - - I %E
0 2 P

SQRT (PI
(022 1 """"""""_""""

(C23) TA(3/2)*Y [11 (A*T)*%E"(-T):
TIME- 9 HSEC.

(023 1 Y (A T I T XE
312 - T

1

34

(C24) DEFINTE (X, T) :
T I E - 968 MSEC.

X I 1 3/4
15 X I SQRT(2) P (- ") (""" - 1) - 2, 112 A 2

A + 1
(024) --"-""""""""""""""""""""

2 2 2 2 1 / 4
8 SQRT(%PI) (A + 1) ((A + 1) - 1)

(025)
3/2 - P T

H (T I T XE
112. 1

4
2 2

P P

1 2 3
SQRT (2) SQRT(%PI 1 (-- + 1) P

2
P

I

(C30) DEFINTE (X , T I :
TIME- 295 MSEC.

1 1 5/2
3 SQRT(%PIl P ("""""--) SQRT(_- - 1) p

- 312. - 1 1 4
SQRT(1 - - - I P

2
P

(030) """""""""_""""""""""""""""""
16

(C31) Tn(5/2)*K 11/21 (T)*%E"(-P*T) :
TIME- 12 MSEC.

(031 1
5/2 - P T

. K (T I T %E
112

(C32) DEFINTE (X. T I :
TIME- 1761 MSEC.

35

4 1
(X I - 1) (X I + 1) SORT 12) SQRT (%PI 1 (-------------- + --------- I

1 3 2 1 2

2 2
3 (1 - "1 P (1 - "1

P P - """"~""""_""""""""~"""""""""""""~"
3

2 P

(C35) I [01 (2*AA(1/2)*TA(l/2))"2*%EA(-P*T):
TIME- 15 MSEC.

(035) I (2 SQRT(A) SClRT(T) 1 W
2 - P T

0

(C36) DEFINTE (%,TI :.
TIME- 944 MSEC.

2 A

(036)

"-
2 A P

I ("-1 %E
8 P """"""_

P

(C37) J 11/21 (T " (l / Z)) *Y [1/21 (Tn(1/2))*Wn(-P*T) :
TIME- 15 MSEC.

(037)
- P T

J (SPRT(T1) Y (SQRT(T1) %E
1 /2 1 12

X 3 8 1 DEF I NTE (X . TI :
TIME- 366 MSEC.

1 - -"
1 2 P

X I I ("-1 w
1/2 2 P

(0 3 8 1 - """"_""""_"
P

(C39) I [1/21 (T"(l /Z))*K11/21 (T"(l /Z))*%E"(-P*TI :
TIME- 15 MSEC.

(039) I (SORT (T I 1 K (SQRT(T) 1 %E
- P T

1 /2 112

(C40) DEFI NTE (X , T I :

TIME- 2938 MSEC.
1 1 "-

1 2 P 1 2 P
"-

%I %PI (X I + 1) I ("-I %E %PI (XI + 1) I ("-1 %E
112 2 P 112 2 P

(048) . - ____________________--------
4 P 4 P

1 1

1 2 P 1 2 P
"- "-

XI %PI (XI - 1) I (---I %E % P I (X I - 1) 1 ("-1 %E
1/2 2 P 112 2 P

+ """"""""_""""""" + """~""""""""""-
4 P 4 P

(C41) /* R e l a t e d t o b f ' s f u n c t i o n s . */ /* S t r u v e f u n c t i o n s . */
Tn(-1/2)*LSTRUVE 1-1/21 (T A (l / 2))*XE"(-P*T) :
TIME- 16 MSEC.

- P T
LSTRUVE (SORT (T I 1 %E

- 1/2
(041 1 """"""_""""""""

SQRT (T I

(C42) OEFINTE (X , T I :
TIME- 1196 MSEC.

(C44) DEFINTE (X , T I :
T I ME- 229 MSEC.

16 XI
(D44) - """"""""""-"

312 1 3/2 3
3 %PI (-- + 1) P

2
P

0245) /* Lommel functions. */
Tn(1/4)*S11/2,-1/21 (TA(1/2))*XEA(-P*T);
TIME- 15 MSEC.

(045) S (SQRT(T) 1 T %E
1/4 - P T

1/2, - 1/2

37

I 111l11lIII Ill1

IC461 DEFJNTE I%, T I ;
T1.E- 226 HSEC.

1

(046)

- "-
4 P

XI SQRT(W1) ERF(- 2 X I SQRT(P)) %E - """"""""""""""""""""
3/2

2 P

FKFERENCES

. ..

1. The Math1 ab Group: NACSYNA ' Reference flanual . Lab. Comput. ScI . ,
Haaeachuse t t a I ns t . Techno I. , Nov. 1975.

2.. Erde I y i , Magnus: and . Oberhe t t i ngm, T r i corn i : Hi gher Transcenden ta I
Func't ions. Bateman tlanuscr i p t Pro Jact - Volumes 1,2 and 3, tlcGraw-Hi. I I Book
Co. e '1953.

3. Hochatadt, H.: The Functions of Mathematical Physics. Interscience Publ . ,
1971 .
4. Wang, P. S.: The Undecidabi I i ty of the Existence of Zeros of Real
Elementary Functions. J. Assoc. Comput. flach., vol. 21, no 4, Oct. 1974, pp.
586-589.'

5. Vi lenk in , N. J.: Special Functions and the Theory o f Group R8preSentatiOnS.
Translat ione of Mathematical flonographs, vol. 22, American Math. SOC., 1968.

6. Wang, P. S.: Evaluat ion o f Def in i te In tegra ls by Symbol ic Manipulat ion.
Ph.0 Thesis, Massachusetts Inst. Technol.,. Oct. 1971. (A lso ava i iab le as TR-321

7. Bogen, R. A.: Automatic Computation of d i r e c t and inverse Laplace
Transforms using Computer Symbolic Mathematics. Proceedings of the l o th Hawaii .
I q t e r n a t i o n a l Conference on Systems Sciences, Jan. 1977, pp. 161-169.

8. Sla ter , L.: Generalized Hypergeometric Functiona. Cambridge Univ.' Press,
1966 .
9,. Sneddon, 1. H.: The Use o f In tegra l Transforms. McGrau-Hi I I Book Co. ,
1372.

10. Hladik , J: La Transformation de Laplace a p lus ie rs var iab les . Masson e t
Cie, 1969.

11. Watson, G. N.: A Treat ise on the Theory o f Bessel Functions. Cambridge
Univ. Press. 1952.

12. Tranter, C. J.: Bessel Functions. Hart Pub. Co.. Inc.. 1969.

,15. Abramowitz, M.: and Stegun, l rene A.: Handbook of Mathematical Functions,
Dover Pub I. 1 nc. , 1965.

16. Goureat, E. M.: Sur I ' e q u a t i o n d i f f e r e n t i e l l e l i n e a i r e a u i admet Dour
l n t e g r a l e l a eer l e hypergeometr ique. Ann. Sci . Ecole Norm. Sup. (2) , 16, 3-142.
1881 .

39

17. R a i n v i Ile, E. 0 . : The Contiguous Function Relations for ,,Fq- Bull.
American Math. SOC., vol , 51, 1345, pp. 714-723.

40

L e v e l 2 . G e n e r a l i z e d -f G e n e r a l i z e d
H y p e r g e o .
, F - u n c t i o n s F u n c t i o n s

H y p e r g e o . >
r

L e v e l 1. S p e c i a l
E l e m e n t a r y

a n d
S p e c i a l F u n F u n c t i o n s

F i g u r e 1.

41

I I l1l111ll11lll

4

AN IMPROVED ALGORITHM FOR THE ISOLATION OF POLYNOMIAL REAT., ZEROS*

Richard J . Fateman

Unive r s i ty o f Ca l i fo rn ia
Berkeley, C a l i f o r n i a 94720

SUMMARY

The Co l l in s -Loos a lgo r i thm fo r comput ing i so l a t ing i n t e rva l s fo r . t he
zeros o f an in teger po lynomia l requi res the eva lua t ion of po lynomia ls a t
r a t i o n a l p o i n t s . T h i s i m p l i e s t h e u s e o f a r b i t r a r y p r e c i s i o n i n t e g e r a r i t h -
met ic . This paper shows how ca re fu l u se o f s ing le -p rec i s ion f l oa t ing -po in t
a r i t hme t i c w i th in t he con tex t o f a s l igh t ly modi f ied a lgor i thm can make t h e
ca l cu la t ion cons ide rab ly f a s t e r and no less exac t . Typ ica l ly , 95% o r more
of the eva lua t ions can be done wi thout exac t a r i thmet ic . The p r e c i s e speed-up
depends on the re la t ive cos ts of t he arithmetic i n a given implementation.
Our implementation on the DEC KL-10 computer i s some 5 t o 10 times f a s t e r t h a n
t h e o r i g i n a l Univac 1110 implementation i n SAC-I. We are a b l e t o a t t r i b u t e
about a f a c t o r of t h ree improvement to t he MACSYMA machine and language, and
2.7-3.3 speed-up t o t h e a l g o r i t h m i t s e l f .

1. INTRODUCTION

Co l l in s and Loos (r e fe rence 1) ske t ch an a lgo r i thm, and p rov ide some
implementat ion detai ls for computing a set of i n t e r v a l s on the real l i n e
(a l , b l] , ...,(an ,bn] such t ha t each i n t e rva l con ta ins a s i n g l e o r m u l t i p l e
real zero of a polynomial P . The m u l t i p l i c i t y o f t h e i t h i n t e r v a l is a l s o
computed. This a lgori thm requires the exact evaluat ion of P and i t s der iva-
t i v e s a t r a t iona l po in t s . Fo r most of the algorithm, one i s a c t u a l l y
unconcerned about the value of P o r i t s d e r i v a t i v e s , s i n c e t h e s i g n (+l, 0, o r
-1) is su f f i c i en t t o de t e rmine whe the r P i s above, on, o r below the x -ax is .

The s i g n may be determined, as shown i n s e c t i o n 2 , by a procedure using
p r i m a r i l y f l o a t i n g - p o i n t a r i t h m e t i c ; i n case the s ign cannot be so determined,
e i t h e r h i g h e r p r e c i s i o n o r e x a c t r a t i o n a l a r i t h m e t i c i s used. It might be
tempting to dismiss this technique as being "machine dependent", and s o i t i s ;
however, the dependency is i s o l a t e d t o a s i n g l e f l o a t i n g - p o i n t v a l u e r e p r e -
s e n t i n g t h e maximum relat ive e r r o r i n t h e r e s u l t o f a f loa t ing po in t ope ra -
t i o n . We know of no computer f o r which t h i s number cannot be determined.

* The work desc r ibed he re in was performed w i t h the he lp o f MACSYMA which .is
s u p p o r t e d , i n p a r t , by the United States Energy Research and Development
Adminis t ra t ion under Contract Number E(l1-1)-3070 and by the National
Aeronautics and Space Administration under Grant NSG 1323.

43

In p l aces where exact va lues are computed i n ref. 1, w e are u s u a l l y
a b l e , t h r o u g h t h e u s e o f (p e s s i m i s t i c) f l o a t i n g - p o i n t i n t e r v a l a r i t h m e t i c
(r e f . 2) t o a v o i d t h e a t t e n d a n t c o s t o f exact a r i t h m e t i c . I n f a c t , m o s t o f
t h e r e l i a n c e on exact a r i thmet ic demonst ra ted i n t h e tests (d u p l i c a t i n g
t h o s e i n (r e f . 1)) is genera ted by exponent over f low ra ther than insuf f ic ien t
accuracy.

2. HORNER'S RULE WITH ERROR BOUNDS

n
Assume w e w i s h t o e v a l u a t e a polynomial p(z) = C a z

n- j

j =O j
a t a p o i n t z = x.

where Horner 's recurrence provides the b ' s :
j

bo = a.

b j = X bj-l + a j , j = 1 , 2 , .. . ,n-1

and bn = p(x)

Assume w e are us ing a r i t hme t i c sub jec t t o t runca t ion and round-o f f e r ro r .

Then f o r some small c o n s t a n t s , B j , t h e computed va lue o f b i s
j

b = (x bj-l (1 + B j l) + a .) / (l + aj)
j J

- (2.2)

(assume b-l E 0 f o r t h e f o l l o w i n g)

n n

j =O
p (z) = C a z n-j = C [(l + a .) b - x bj-l (1 +Bj-l)l z n-j

j j =O J j

n n-1

j =O
= C (1 + a.) b z - X C b . (1 + B.) z n- j n-1- j

~j j =O J J

Appl icat ion of (2 .1) provides , a t z = x

44

n-1

j=O
Thus the magn i tude o f t he e r ro r Ibn - p(x) [= I C b j (aj - P j) x

n- j
+ b,anl

Since [a . [, I 6 . [< E , E a u n i t i n t h e l as t p l a c e , (E = 2-27 on a 27-bi t base
J J -

2 mantissa machine such as t h e PDP-lo),

t h e b u l k o f t h e e r r o r i s - < 2 E C [b j [[XIn- '

n

j =O

The above ana lys i s , due to W . Kahan, can be extended t o complex va lues o f
x (r e f . 2 and 3).

We wish to ex tend the ana lys i s to inc lude approximat ion of x by a f l o a t i n g
poin t representa t ion , and approximat ion of each a b'y a f l o a t i n g p o i n t r e p r e s e n -
t a t i o n . j

That i s x = 2 (1 + a) , a = 2
j

(1 + Y j > .

An a l t e r n a t i v e t o (2 . 2) i s then

which becomes, analogous to (2.3) :

Fol lowing t he ana lys i s t o (2 . 4) y i e l d s

L

Thus the magn i tude o f t he e r ro r , neg lec t ing terms which a re products o f
two small terms i s bounded by $, t h e r h s of the equat ion be low:

b n - P(X)l L

T y p i c a l l y t h e i n t e g e r c o e f f i c i e n t s of p w i l l b e r e p r e s e n t a b l e e x a c t l y as

45

f l o a t i n g p o i n t numbers, as w i l l x (s i n c e x t y p i c a l l y is an exac t b ina ry
f r a c t i o n r e s u l t i n g f r o m b i s e c t i o n o f i n t e r v a l s w i t h b i n a r y f r a c t i o n e n d
p o i n t s) s o t h a t 6 and t he y w i l l f requent ly be zero .

j
It may be a rgued tha t w e have ca lcu la ted ^e imprec i se ly , bu t t he rh s o f

(2 .5 ') i s a sum o f p o s i t i v e terms and the e r ror involved can be shown t o b e a
second o rde r e f f ec t . Be ing pes s imis t i c , w e use 6E r a t h e r t h a n 56 a s a
c o e f f i c i e n t so as to be pos i t i ve o f bound ing tFie e r r o r .

. Thus i f w e w i s h t o f i n d t h e s i g n o f a polynomial p a t a p o i n t x, we
eva lua te $ (G) and 6 , t h e e r r o r bound. If e [p^(Gjt) [, then w e do n o t know the s i g n
d e f i n i t e l y . We can r e -eva lua te t o h ighe r p rec i s ion : how much higher can be
est imated f rom equat ion (2.5). I f p (x) = 0, w e w i l l have t o u se r a t iona l
a r i t hme t i c t o p rove i t; t h u s i f $(a) = 0, a d i r e c t t e s t . f o r z e r o u s i n g r a t i o n a l
a r i t h m e t i c would be needed.

3 . IMPLE3ENTATION

A f i r s t d r a f t o f t h i s p a p e r a n d a MACSYMA implementation were mentioned
i n a t a l k a t the SYMSAC conference, August, 1976 (ref. 4) . Since t ha t t i m e ,
P ro fes so r Loos was kind enough to supp ly an ALDES language vers ion of the
program descr ibed in (re f . 1). A f t e r c o r r e c t i n g a few typograph ica l e r ro r s
presumably no t p resent in the SAC-I program, i t w a s poss ib l e t o dup l i ca t e t he
r e s u l t s o f (r e f . 1) f a i r l y c l o s e l y . We were n o t a b l e t o a c h i e v e e x a c t l y t h e
same numbers of e v a l u a t i o n s , a s i t u a t i o n which w e b e l i e v e arises because
the SAC-I program d i f f e r s i n some re spec t s from t h e ALDES desc r ip t ion . Th i s
dup l i ca t ion was done by w r i t i n g i n MACSYMA's Algol-60-like language, followed
by semi-automatic translation to LISP, followed by compilat ion to machine
language.

Certain programs were a l r e a d y i n e x i s t e n c e i n MACSYMA, and did not have
t o b e programmed f o r t h i s a p p l i c a t i o n ; t h e s e i n c l u d e d some involved wi th the
de t ec t ion of f l o a t i n g p o i n t o v e r f l o w s . I n s t e p 4 below, one minor improvement
w a s achieved by a s imple 4 l i ne a s sembly l anguage a l t e r a t ion . Th i s amounted t o
1% i n t o t a l time. A l l o t h e r programming was done i n h i g h e r l e v e l l a n g u a g e s
such as LISP.

The MACSYMA implementation running on a DEC-KL-10 computer seems t o r u n
f a s t e r t h a n t h e SAC-I implementation on the UNIVAC 1110 by a f a c t o r o f 3 o r
more; t h i s , u s i n g t h e m o s t f a i t h f u l r e c r e a t i o n o f t h e a l g o r i t h m as seemed
appropr ia te . Computing a s t r i c t i s o l a t i o n l i s t for the 5th Legendre polynomial ,
L[5] required .74 seconds i n SAC-I , .128 seconds i n MACSYMA. For L[251 the
times were 35 and 11 seconds , r e spec t ive ly . An a t tempt to d ivo rce t hese
numbers from s t o r a g e a l l o c a t i o n time may make t h e comparison more r e l e v a n t : i f
SAC-I spends 1/3 of i ts time i n s u c h bookkeeping (a f igu re sugges t ed by P r o f .
Loos), and MACSYMA s p e n t 5 o f t h e 11 seconds i n LISP "garbage col lect ion" (gc)
by actual measurement, then the two systems compare a t 23 and 6 seconds
r e spec t ive ly . We s u s p e c t t h a t MACSYMA's h o s t s y s t e m h a s r e l a t i v e l y f a s t e r

46

mul t ip l e -p rec i s ion i n t ege r arithmetic, r e s u l t i n g f n tkese sfiorter ttmes.

Improvements t o the Collins-Loos algorithm proceeded i n several s t e p s .

S tep 1:

All computations of polynomial signs were attempted i n s ingle-prec is ion
f l o a t i n g - p o i n t a r i t h m e t i c , f i r s t . No exact va lues were computed except when
needed (equations 24 and 25 o f (r e f . l)) , when t h e e r r o r i n the f loa t ing-poin t
eva lua t ion was too h igh to de te rmine the s ign , o r an exponent over f low occurred
dur ing the s ign computa t ion . Note tha t some polynomials can never be evaluated
wi thou t ove r f low in s ing le -p rec i s ion because t he i r coe f f i c i en t s are t o o l a r g e
to be expres sed i n t he f l oa t ing po in t r ange . Fo r such cases we must use some
other technique: e9act ra t ional ar i thmetic , approximate unl imited-exponent
a r i t hme t i c such as MACSYMA's "b igf loa t" sys tem, o r some o ther a lgor i thm
e n t i r e l y . (The DEC-10 f loa t ing -po in t fo rma t spec i f i e s a 2 7 - b i t f r a c t i o n , & b i t
(excess 128) exponent , and l -bi t s ign. Ari thmetic is base 2 (not 8 o r 1 6) .)

For the same polynomial , L[25] , 93.7% of the ar i thmetic could be done in
s ing le -p rec i s ion f l oa t ing -po in t . The t i m e w a s reduced from 11 seconds to about
7.2 (2.5 i n g c) . A s no ted in (re f . l) , these po lynomia ls can be handled very
r ap id ly by a Sturm-sequence base root-f inder , and in fact MACSYMA's took 7.5
seconds (4.3 in gc) on this polynomial.

Inc identa l ly , the speed d i f fe rence be tween SAC-I and MACSYMA on Sturm-
sequences is a lso about 3: 1.

Step 2:

Computations were done i n s i n g l e - p r e c i s i o n i n i t i a l l y , t h e n i n m u l t i p l e
p r e c i s i o n when poss ib l e , o the rwise u s ing exac t a r i t hme t i c . The software
m u l t i p l e p r e c i s i o n (ref:4) removes the need to check for exponent over f low in
Homer ' s ru l e , bu t i ncu r s a h ighe r cos t t han t he b ina ry r a t iona l a r i t hme t i c
advocated by Collins and Loos, in some c a s e s . (I n f a c t , b i n a r y r a t i o n a l a r i t h -
met ic is very similar t o f l o a t i n g p o i n t a r i t h m e t i c , t h e d i f f e r e n c e b e i n g t h a t
t he " f r ac t ion" is of varying length, and is e x a c t . I f t h a t l e n g t h is small,
t h e f l o a t i n g - p o i n t a r i t h m e t i c w i l l be comparat ively more expensive. For L[30],
t h e " l o n g e s t " b i n a r y r a t i o n a l e n d p o i n t o f a n i s o l a t i n g i n t e r v a l a / b is only 8
b i t s l o n g i n a and b , s u g g e s t i n g t h a t f l o a t i n g p o i n t is a t a disadvantage here .)

For L[25] again, 93.7% of the ar i thmetic could be done in s ingle-
p rec i s ion , ano the r 4 .6% in mu l t ip l e -p rec i s ion , and on ly 1 .8% in exac t a r i t h -
met ic . Cons ider ing the fac t tha t L[25] cannot even be eva lua ted a t i ts
computed roo t bound (16) wi thout over f low in s ing le-prec is ion , th i s seems
f a i r l y i m p r e s s i v e .

Step 3:

It is p o s s i b l e t o e l i m i n a t e a l l exact computat lons within the scope of

47

t he a lgo r i thm by r ep lac ing t he t angen t cons t ruc t ion i n (r e f . 1) by a procedure
s u g g e s t e d i n t h e earlier d r a f t o f t h i s p a p e r r e q u i r i n g o n l y e v a l u a t i o n w i t h
r igorous e r ror bounds . It w a s hoped t h a t t h i s r e m o v a l o f a l l exact a r i t h m e t i c
would speed up the computat ion. The alternative o f u s i n g e s s e n t i a l l y t h e same
tangen t a lgo r i thm bu t w i th f l oa t ing -po in t i n t e rva l a r i t hme t i c , and when
necessa ry , exac t a r i t hme t i c was more successfu l . Al though i t w a s p o s s i b l e t o
reduce the number o f e x a c t e v a l u a t i o n s t o a very small number (e .g . , 20 of some
1300 for L[3OJ) , some o f t h e f l o a t i n g p o i n t m u l t i p l e p r e c i s i o n e v a l u a t i o n s were
s lower than exac t eva lua t ion a t a b i n a r y - r a t i o n a l p o i n t .

It a p p e a r s t h a t s i n g l e - p r e c i s i o n f l o a t i n g - p o i n t i n t e r v a l a r i t h m e t i c
near ly a lways i s s u f f i c i e n t , i n t h e tests suggested by Co l l in s and Loos. Most
decis ions can be made w i t h t h i s a r i t h m e t i c a n d i t is f a s t e r t h a n m u l t i p l e -
p rec i s ion . In t he t ab l e be low w e do no t t abu la t e t he mu l t ip l e -p rec i s ion
measurements. When a n i n t e r v a l c a l c u l a t i o n is i n s u f f i c i e n t l y p r e c i s e f o r a
dec i s ion , w e r eve r t momenta r i ly back t o exac t eva lua t ion fo r i so l a t ing i n t e rva l
computa t ion for tha t po lynomia l der iva t ive . A more e l abora t e a lgo r i thm would
use exac t eva lua t ion fo r r edo ing exac t ly t he smallest computa t ion t ha t f a i l ed ,
bu t w e d id no t choose t h i s t echn ique , because of algorithm complexity.

Step 4 :

Since so much of the computation is done i n f l o a t i n g p o i n t , w e sought to
decrease the t i m e s p e n t i n a r i t h m e t i c by open-compi l ing f l oa t ing po in t a r i t h -
metic in the one shor t p rogram implement ing Homer ' s ru le .

This is e a s i l y done i n MACLISP, bu t a t the expense of l o s s of overflow
de tec t ion . Four i n s t ruc t ions were inse r t ed i n t he compi l e r -gene ra t ed LAP
(LISP Assembly Program) code f o r t h e H o m e r ' s . r u l e p r o g r a m t o reset f l a g s a t
the beginning and a t the end tes t (once) for overf low in any of the operat ions.
The coe f f i c i en t s i n t he po lynomia l and i t s de r iva t ives were a l so conve r t ed t o
f l o a t i n g p o i n t , o n c e i n t h e main l o o p . I n case t h i s c o u l d n o t b e done because
of over f low, the o r ig ina l vers ion of the a lgor i thm w a s used for tha t po lynomia l
der ivat ive under considerat ion. These changes sped up the run-time considera-
b l y , to about 2 .3 seconds for L [251 (plus gc) . This i s 10 times fas te r than
the or iginal program running on the UNIVAC 1110, and 2.2 times f a s t e r t h a n o u r .
own vers ion of the Col l ins-Loos a lgori thm.

4 . EMPIRICAL TESTS

The tests i n t a b l e 1 are r ep resen ta t ive o f a l a r g e r c l a s s o f tests wi th
randomly generated polynomials, a t l eas t i n t h e r e l a t i v e t i m i n g o f t h e v a r i o u s
zero-finding programs being compared. Further comparisons , including addi-
t i o n a l work mentioned i n s e c t i o n 5, s h o u l d be forthcoming.

5. ANAZYSIS

By comparison with (ref. 1) , w e may add only a few items o f i n t e r e s t .

48

Since t he "worst case" for Qur a lgor i . t f im is s?milar t o tFie Collins-Loos worst
case, we can on ly observe tha t empir ica l ly , mos t ca lcu la t ions w e r e not "worst
case'' and could be done i n s i n g l e - p r e c i s i o n f l o a t i n g p o i n t . The major problem,
that of overf low, could be handled by more e l abora t e s ca l ing p rocedures , such
as ca r ry ing an add i t iona l word fo r t he exponen t . We d i d n o t p u r s u e t h i s . The
time f o r f i n d i n g a l l r ea l zeros of a tolynomial of degree n is l i k e l y t o be on
the average, under our algorithm, O(n) by t h e same arguments as i n (r e f . 1) .

We e x p e c t f u r t h e r p r o g r e s s i n t h i s area can be made i n two d i r e c t i o n s :
G iven t he i so l a t ing i n t e rva l s , it may be shown t h a t a Newton-i terat ion 's
convergence can be assured, us ing s tar t ing points developed f rom the strict
i s o l a t i o n l i s t of the second der iva t ive o f the po lynomia l o f in te res t ; a l so ,
t h e v a s t d i f f e r e n c e i n time f o r f i n d i n g t h e s e i n t e r v a l s v e r s u s n u m e r i c a l l y
approximating the roots i s d i s tu rb ing . S ince t he l i b ra ry p rog rams fo r
polynonial zero approximation using s tandard numerical procedures are an o rde r
of magni tude fas ter , i t seems r e a s o n a b l e t o o b t a i n a p p r o x i m a t i o n s i n t h i s way,
and t hen "p rove" t he l oca t ions o f t he ze ros , and t he i r mu l t ip l i c i t i e s a f t e r
t h e f a c t . Bruce Char, a Berke ley g raduate s tudent has worked 01, t h i s problem
us ing a s i m p l e t echn ique desc r ibed i n r e f e rence 5 . It is n o t c l e a r t h a t w e
could compute even the.one greatest-common-divisor calculation to remove
m u l t i p l e r o o t s i n less time than w e could f ind a l l i s o l a t i n g i n t e r v a l s f o r
t h e r o o t s by the numerical methods current ly avai lable . Char 's program
appears to be much f a s t e r t h a n t h e f u n c t i o n a l l y similar program descr ibed in
r e fe rence 6 . For example, the roots of the 13th cyclotomic polynomial are
i s o l a t e d by P i n k e r t ' s a l g o r i t h m i n 220 seconds on a PDP-10. Char ' s rou t ine
t akes less than 0.5 seconds on a PDP-10 (perhaps a model 4 times f a s t e r t h a n

desc r ibed he re , where f l oa t ing po in t y i e lds t o exac t ca l cu la t ion , bu t t h i s is
only when i t s i n t e r n a l c h e c k s d e m o n s t r a t e t h a t t h e i s o l a t i o n of a l l complex
r o o t s (c u r r e n t l y , of a rea l polynomial) has not been achieved.

, P i n k e r t ' s) . C h a r ' s r o u t i n e must sometimes defer to other methods such as

A s the p rogram cur ren t ly ex is t s , i t is faster than Sturm sequence
c a l c u l a t i o n s on most polynomials with few real roots , and thus should be used
in p l ace o f t ha t ze ro - f inde r , excep t when i t i s known i n advance that many
real z e r o s e x i s t . I Since the numerical programs are s o much f a s t e r , w e expect
tha t the usefu lness o f th i s p rogram is q u i t e r e s t r i c t e d , i n terms of the
t y p i c a l MACSYMA use r , t o t hose app l i ca t ions where mi sd iagnos i s o f a zero would
have special dire consequences in the course of a computation, and furthermore,
the polynomial is known i n a d v a n c e t o b e n u m e r i c a l l y d i f f i c u l t .

We are g r a t e f u l t o P r o f . W. Kahan f o r numerous d i scuss ions on t h i s t o p i c .

49

6. REFERENCES

1. C o l l i n s , G. E.; and Loos, R.: Polynomial Real Root I s o l a t i o n by
Dif fe ren t ia t ion . Proceedings of the 1976 ACM Symposium on Symbolic and
Algebraic Computation, Aug. 1976, pp. 15-25.

2. Adam, D. A.: A S topp ing Cr i t e r ion fo r Po lynomia l Root Finding. Commun.
ACM 10, no. 10, O c t . 1967, pp. 655-658.

3. Kahan, W.: Implementation of Algorithms, Parts I and 11, Tech. Rep. 20,
Dept. of Computer Science, University of California (Berkeley), 1973.
(Available from DDC as AD 769 24 .)

4. Fateman, R.: The MACSYMA 'Big Floating-point ' Arithmetic System.
Proceedings of t h e 1976 ACM Symposium on Symbolic. and' Algebraic Computation,
Aug. 1976, pp. 209-213.

5. Smith, B. T . : E r r o r Bounds for Zeros o f a Polynomial Based Upon
Gerschgorin's Theorems. J . Assoc. Comput. Mach. , vol . 17 , no . 4 (O c t .
1970) , pp. 661-674.

6 . P inker t , J . R.: An Exact Method for F inding the Roots o f a Complex
Polynomial. ACM Trans. on Math. Sof tware , vo l . 2, no. 4 (Dec. 1976),
pp. 351- 363.

50

n

5
10
15
20
25
30

SAC-1 UNIVAC
time* eevs

0.5 39
2.2 149
5.6 320

11.9 555
23.2 877
? ?

PDP-10 TRANSLATION
time * e evs

0.131 46
0.529 163
1 . 4 4 357
3.11 59 8
6.29 945

10.9 1326

FLOATING POINT
time* fevs eevs

0.129 45 7
0.485 162 9
1.15 356 1 2
2.16 597 1 6
4.14 944 63
7.57 1325 195

P L L PT/INT. ~ I T H
time* XeVs eevs

0.083 49 3
0.273 166 5
0.597 360 8
1 .03 601 . 12
2.81 856 117
7 . 3 1 875 388

*Multiply time i n seconds by 1 . 5 to include s torage reclamation time. T h i s r a t i o has been
est imated for SAC-1, and is t y p i c a l f o r MACSY'MA measurements (although actual time is highly
dependent on amount of system f ree s torage) . The column l a b e l l e d "eevs" ind ica t e s number of exact
evaluat ions, "fevs" f loat ing point evaluat ions.

The f i r s t column (n) is the degree. The next two columns are derived from reference 1. The
4th and 5th columns are times and counts for the PDP'10 translation of the Collins-Loos algorithm.
The 6 , 7 , and 8 columns d e t a i l t h e r e s u l t s of us ing f loa t ing po in t eva lua t ions , then exac t eva lua t ion .
The las t th ree columns i n d i c a t e t h e r e s u l t s when f l o a t i n g p o i n t , and f l o a t i n g p o i n t i n t e r v a l
a r i t hme t i c were used. The r e s u l t s i n t h e l a s t column could be improved for high degree polynomials
by a t tempt ing opera t ions in f loa t ing po in t ra ther than g iv ing up on a complete stage when an overflow
o r i n s u f f i c i e n t l y p r e c i s e r e s u l t i s encountered.

5
FLOATING POINT ISOLATION OF ZEROS OF A REAL POLYNOMIAL V I A MACSYMA

Bruce W. Char
Un ive r s i ty o f .Ca l i fo rn ia , Be rke ley

ABSTRACT

Given a square-free polynomial P of degree n wi th f loa t ing-poin t
r e p r e s e n t a b l e (real) c o e f f i c i e n t s , we would l ike to f i n d n d i s j o i n t
r eg ions , each con ta in ing a root of P. Exis t ing methods (ref. 1, 2) can
be slow because of t h e i r r e l i a n c e upon r a t i o n a l arithmetic. We propose
a faster technique which uses on ly f loa t ing po in t arithmetic. A MACSYMA
f u n c t i o n , BOUND, was wr i t ten which when given such a polynomial P ,
produces n complex d i s c s C [i] , each containing a t r u e root of P. After
comput ing t he d i sc s , BOUND determines i f they are a set of i s o l a t i n g
reg ions for t h e t r u e roots of P (i . e . t h a t no two of t h e C [i] o v e r l a p) .
The rout ine uses the Jenkins-Traub zero-f inding algorithm (ref . 3) -
MACSYMA’s ALLROOTS function- t o get approximations t o t h e ze ros , each
approximation becoming the c e n t e r of a d i s c . The r a d i u s of each C [i] is
based upon error bound r e s u l t s b y Adams (ref. 4) and %itn (ref. 5) .

BOUND runs i n time O(n2), w i t h a l l c a l c u l a t i o n s u s i n 2 t h e
s tandard f loa t ing-poin t arithmetic of t h e Decsystem-’0. As a compiled
MACLISP r o u t i n e , BOUND has been found to be 10 t o 100 times faster than
r a t i o n a l arithmetic r o o t - i s o l a t i n g t e c h n i q u e s i n SAC-I on the Univac
1110 and the Decsystem-10 by P inker t (ref. 1) and Col l ins and Akritas
(ref . 2) , on test polynomials of degree 15 or less. It should be noted
however, t h a t BOUND does no t allow t h e user t o s p e c i f y t h e s ize of t h c
zero-containing regions nor is it guaranteed t o f i n d i s o l a t i n g r e g i o n s
as the r a t i o n a l arithmetic methods are.. It may also break down due t o
underflow/overflow during intermediate computations on i l l - c o n d i t i o n e d
polynomials. A technique t o e x t r a c t t h e b e s t of both the r a t i o n a l and
f loa t ing-poin t arithmetic approaches would be to use t h e above proccdure
as a quick first a t t e m p t , r e s e r v i n g r a t i o n a l arithmetic for when thc
i n i t i a l method fa i ls .

We a n t i c i p a t e several devclopnents tha t will improve or extend
BOUND. Since t h e Jenkins-Traub algorithm and Adams’s and Smith’s
r e s u l t s work for polynomia ls wi th complex coef f ic ien ts , the addi t ion of
complex arithmetic t o IIACLISP w i l l allow BOUND t o be eas i ly ex tended t o
work i n that g e n e r a l case. Because t h e q u a l i t y of the zerof inding and
t h e rad i i of the C [i] w e in pa r t dependen t on t h e p r e c i s i o n of t h e
f loa t ing -po in t r ep resen ta t ion , BOUND would produce smaller r e g i o n s i f
implemented i n d o u b l e p r e c i s i o n . S t i l l be ing i nves t iga t ed are the
improvement of the e x i s t i n g error bounds, and development of‘ methods
t h a t can be appl ied to 2olynomials with non- ra t iona l coe f f i c i en t s .

53

REFERENCES

1. Pinker t , James R . : An Fxact Method for Finding the Roots o f a
Complex Polynomial. ACM Transac t ions on b t h e m a t i c a l Software,
vol. 2 , no. 4, k c . 1976, pp. 351-363.

2 . Col l ins , George E . ; and Akritas, Alkiviadis: Polynomial Real Root
Isolatio’n Using Descarte’s Rule of Signs. Proceedings of t h e 1976
ACE.: Synposium on Symbolic and Algebraic Computation. Association
of Computing Machinery, 1976. pp. 272-275.

3. Jenkins, 14. A . ; and Traub , J.F. : Zeros of a Complex. Polynomial.
Communications of’ t h e ACI.1, vol . 15, no. 2 , Feb. 1972, pp. 97-99.

4. Adms, Duane A . : A S topping Cr i te r ion for Polynomial Root Finding.
Communications of t h e ACM, vol’. 10, no. 10, Oct. 1967, pp.
655-658.

5. aith, Brian T. : Error b u n d s for Zeros of a Polynomial Based Upon
Cerschgorin’s Theorems. Journa l of t h e Association for ConFuting
Jkchinery , vo l . 17, no. 4, Oct. 1970, pp. 661-674.

54

PRESERVING SPARSENESS IN MULTIVARIATE POLYNOMIAL
6

FACTORIZATION

I . Paul S. Wang
Laboratory for Computer Science & Mathematics Department, MIT

INTRODUCTION

Working on heuristic programs for factoring polynomials over the integers, Claybrook has
come up with many fairly large multivariato polynomials. He has proposed ten of these
polynomials as test cases for any algorithmic app:roach to factoring (ref. I). Attempts were made to
factor these ten polynomials on MACSYMA (ref. 2). However it did not get very far with any of
the larger polynomials. At that time MACSSMA used an algorithm created by Wang and
Rothschild. This factoring algorithm has also been implemented for the symbolic manipulation
system, SCRATCHPAD (ref. 3) of IBM. A closer look at this old factoring alporithm (OFA) (ref.
4) revealed three problem areas, each of which contribute to losing sparseness and intermediate
expression growth. This study led to effective ways of avoiding these problems and actually to a
new factoring algorithm (NFA) (ref. 5). (ref 6).

T h e three problems are known as the extraneous factor problem, the leading coefficient
problem, and the bad-zero problem. These problems are examined separately in the following
three sections. Their causes and effects are set forth in detail. Then the ways to avoid or lessen
these problems are described.

T h e NFA has been implemented on MACSYMA. Its performance on the ten polynomials
proposed by Claybrook is tabulated in Appendix A.

AVOIDING EXTRANEOUS FACTORS

Consider factoring U(x, x? ..., xt) E Z[x, : cp ..., X,] which is primitive and squarefree. U is
reduced to a polynomial with only one variable by substituting selected integers for x2, ..., xt. Let
U(x) - U(x, u2, ..., ut). Factors of U are constructcd from the irreducible factors of U(x) by a kind
of Hensel process.

N nJ

An extraneous factor in this context is a univariate factor of U(x) over 2 which does not
lead to an actual factor of U(x, ..., x,), after multivariate p-adic construction. Consider, for example,

U(x,y,z) - (x y 2 1 3 , 4 3

If the evaluation y = z - I is made, then

u - (x , 1, 1) = (x3 + I) - (x2 - x + l)(x + 1).

Since U(x,y,z) is irreducible over 2, neither of the two univariate factors can lead to a real factor

55

I .

of U(x,y,z). They are all extraneous factors.

Obviously the cause of getting extraneous factors is unlucky points of evaluation. There
are three undesirable effects of having such factors i n the factoring process. Firstly, a
combinatorial search for true factors has to be done at the end of the factoring procedure.
Secondly, the multivariate p-adic construction often has to be carried out all the way to reach the
bound for the total degree, h, of U(x, x2, ..., xt) in x2, ..., xt , as opposed to reaching rh/rl. on the
average, if all T factors are not extraneous. Thirdly, the extraneous factors grow in size and
density as they go through the multivariate construction process, quite uninhibited by the size or
density of the given polynomial.

T o illustrate the growth phenomenon, let us continue the example where Fo(x) - x2 - x + I,
Co(x) = x + 1 and

where 5 is the ideal (y-1, 2-1).

T h e multivariate p-adic construction produces from Fo and Go polynomials Fi and Gi such
that

U f FiCi mod @+', 6)

where b is a prime or prime power bigger than the coefficient bound.

T h e first few Fi and Gi are shown below with 6-625.

F1 = 22 + X (-2 + 207Y - 1) + 211Y + X' + 1
GI = Z - 207Y + X + 1

FQ Z2 + X((207Y - I)Z - 278Y2 + 207Y - 1)

+ (2 - 203Y)Z + 2815Y2 + 211Y + X2 + 1

GQ = (1 - 20'7Y)Z + :>78Y2 - 207Y + X + 1

Therefore i t is clear that extraneous factors should be avoided if at all possible. T h e
approach taken here is to evaluate the given polynomial U(x, ..., x t) at several different sets of
points {u2, ..., ut] and to factor these resulting univariate images over Z. The set that gives the
minimum number of factors will be selected. This means that the requirement in OFA of getting
many zeroes and plus- or minus-one's as substitution values has to be relaxed. For the purpose of

56

avoiding extraneous factors the conditions on the (zits are: (1) degfi(x) = degU(x ,...,xt) in x and
(2) f h) is squarefree. If these ui)s are generated at random, then the probability of getting an
extraneous factor for any one set of uis is low.

T o use several different substitutions arid choose the should virtually eliminate the
possibility of the occurrence of extraneous factors. Experiments on the machine indicate that two
to three different substitutions will almost always suffice. Furthermore, the different univariate
factorizations can be matched for degree compatibility among the factors. This, of course, provides
additional information on the number of true factors.

Although one would like to use random evaluations, one would also like to use integers that
are small in size so that the coefficients of u(x) are not unnecessarily large. In the program, the
substitution sets are generated randomly modulo a prime which is increased in size for each new
set.

SOLVING THE LEADING COEFFICIENT PROBLEM

The given polynomial U(x, ..., x,) can be written for a selected main variable, say x , in the
form

u = vnx" + ... + v,

where Vi E Z[xz, ..., x t] . Vn z 0 is the leadirg coefficient. I n this paper, the term "leading
coefficient" always means that of the main variable, x. Some older factoring algorithms, for
example, (ref. 7), require a monic input. If Vn z 1 then the change of variable x = y/Vn is made
and the monic polynomial

is factored. An inverse transformation is required on the irreducible factors thus obtained. This
approach is impractical because coefficients of W are much larger and denser than those of U. In
OFA no such monic transformation is made. Insread, a leading coefficient recovery scheme is used.

In the multivariate case, the leading coefficient problem is caused by V n not being an

integer. Let f (x) = (x2 + I), g(x> = (x2+ x + 1) and 0 = f (x) g (x) over Z. In doing the multivariate p-
adic construction one computes the difference

R(x, ..., x r) = f(x)g(x) - U(X, ..., X J

If Vq is not an integer, then degree of R in x is 4, which is the degree of U in x. This means for

example one may get something like c(x) = 3x4 + 2x as the coefficient for, say, the (x2 - u2) term in
R. And the following congruence has to be solved

57

If deg(c(x)) < deg(f) + deg(g), there exist unique a and fi with deg(a) c de&) and deg(8) deg(f)
satisfying af + Bg = c. However, this is not the cilse for equation (I). In fact, one has

-5f + (3x2 - !!x + 5)g = c(x)
(3x 2 + 3x - 2)f + (-3x + 2)g = c(x)

and an infinite number of linear combinations of these two equations. Because a(%) and B(x) are
used to correct the factors and because the true factors and their homomorphic images are unique,
complications arise if a and 6 are nonunique. In OFA a unique selection is made based on the
condition deg(a) 5 deg(g), deg(8) < deg(f). However this choice can not be more appropriate than
the condition deg(a) < deg(g) and deg(0) <deg(f). In either case, the factors thus constructed are
only correct u p to units in the underlying coefficient domain of truncated p-adic polynomials in
x2, ... X,. Therefore they often are much denser than necessary. This also explains why correct
coefficients have to be recovered after the p-adic construction.

Dealing with the leading coefficient problem in the context of the polynomial greatest
common divisor computation, Yun (ref. 8) suggested that the leading coefficients of the given
polynomial or an easily computible divisor of it be "imposed" on the univariate factors for p-adic
construction. The solution to the leading coefficient problem here is to "predetermine" the correct
leading coefficients of the factors of U(x, ..., x,).

To do this, the leading coefficient of U(x, ..., x,), Vn, is factored over 2 first. Let

e l e2 @k V = F F n 1 2 ' " Fk
where Fi are distinct irreducible polynomials in Z[x2, ..., xtl . Some of the Fi's may be integers. Let
us assume that Vn # an integer, for the case is trivial otherwise. Let Fi = Fi(a2, ..., a,). The integers
(a2, ..., at] are chosen to satisfy the two conditions given in the previous section, and, for leading
coefficient distribution, the additional condition: For each nonintegral Fi, Fi has at least one prime
divisor pi which does not divide any i? ., j f i, or the content of g(x).

r-.J

rc,

J
Let u be the content of U(x) and u(x) = U/u. Now u(x) can be factored into distinct

n) N

irreducible factors over 2.
u(x) = U l i X) ... ur(x).

Assuming no extraneous factors, then U(x ,...,xt) has r distinct irreducible factors Gi(x, ..., x,), i = I , ...,I-.
Let Ci(x p . . , x r) be the leading coefficient of Gi, Ci = Ci(a2, ..., a,) and Gi(x,a2, ..., a,) = .uiui(x) where O i

is some divisor of u. T h e following lemma allows one to determine Ci(x2, ..., x,) up to integer
multiples.

N

Lemma If there are no extraneous factors then, for all i,j and m, F T divides Ci if and only if Fly
divides Ic(ui)u.

58

Proof If FTICi then ?y divides Ci = lc(ui)ui. On the other hand, if F T does not divide Ci then

with s . < m. Thus pm does not divide Ci which implies that Fy does not divide

rJ

~ ‘ 1 wsk
Fk J J

cu
Ci =F1 .e.

lC(Ui)U.

T h e readers are referred to &I for details of this leading coefficient distribution algorithm.
T h e process will be illustrated here by an example. Consider

2 2 2 2 2 2 2
U(X,Y,Z> = ((Y -2 >x + y - z * (4(y + z)x + xyz - 1) * (yz x + 3xz + 2 y) ,

Therefore, we have F1=2, F2=y, F3=z, F4=y + z and F5=y-z. The sets of integers {5,-12], {-l+,~?,j
and (-23,3j saLsfy thzthreeAequiremz1ts and al; ‘ive three factors Lor U(x). Let us use y- 5 a n d
z- -12. T h u s F1= 2, F2= 5, F3= -12, F4= -7 and j5= 17. Factoring U(x) = U(x,5,-12) one obtains
U (X > = 2UlU2U3
rJ

where

U, = 1 1 9 ~ ~ + 139,

= 28x2 + 6 0 ~ + I ,

and u3 = 360x2 - 1SX + 5.

Now 119 - -F4F5 gives C1 - -F4F5 - (z 2 2 - y). Similarly, C2 = 4(y + z). And 2:::360 = F2F32 implies
that C3 = yz2. These are correct leading coeffic;.ents of the true factors of u(x,y,z) up to integer
multiples.

drrl n J , d

COMBATTING THE BAD ZERO PROBLEM

d

From U(x) = f(x)g(x) over Z with f(x) and g(x) relatively prime, the multivariate p-adic
construction algorithm of OFA computes the difference

R(x ,... X J = f(x)g(x) - U(X ,... xt)

which is congruent to zero mod s, 2 = (x2 - aP..xt - at). Now R can be expressed in the form
R c ~ (x) (x ~ - ~ 2) + c ~ (x) (x ~ - “3) + ... + c,(x)(x, - at) + D(x,..,xt).

where the ui’s are the integers of evaluations and D E 0 mod 5. . T h e goal is to obtain the
coefficients cp(x), ..+(x). In other words, we need the coefficients of the linear terms in the power

2

59

series expansion of R at x2 = a2, ..., xt = at. In general, for the stage of the p-adic construction where

the residue is zero mod 2 but nonzero mod ?", the coefficients of the degree i terms in the power
series form of R will be needed. One way to do this is to substitute yi + ai for xi and work with
U(x,y2 + u2,...,yt + at) expanded. After the substitution, 5 becomes (92 ,...,ye) and obtaining

coefficients of terms in y2,...,yt of any degree is very easy. Furthermore modulo operations with 5 i

are simply truncations. -

However substitution and expansion greatly increase the size and density of U. For instance,
a term becomes (y2 + (y3 + a3lb (y4 + a4lc which has (a + l) (b +.l)(c + 1) terms when
expanded. The exponential growth is worst if all ai's are not zero. Hence the name "bad-zero
problem." This growth problem is so bad that the factoring program may run out of core for
moderately-sized polynomials.

Therefore, such substitution should not be made. If R a 0 mod 2, and R $0 mod 5 '+',
then the coefficient of (x2 - a$, for example, can be obtained by the formula

A typical term of degree i in R (x ,..., xt) looks like

1 t
e2 e

c (x) (x2-a2) . . . (x t - a t) , e +...+e = i.
t

To obtain c(x) one uses the general formula

e2 e
1 d ... - d R (x y ... Y X t > (3 1 t

e,! ... e: dx2 dx t x . = a
1 i

This method has no exponential expres:;ion growth problem. Polynomial differentiation
and evaluation being relatively inexpensive, it should be an improvement over the OFA which uses
substitution and expansion. Many polynomials that can not be factored by OFA because of storage
problems should be doable by this method. However, the number of possible terms in the form (2)
can be large, which means (3) may be computed many times.

In the worst case, i equals h, which is the total degree of U(x,x2, ... xt) in x2. ... x The number
of possible terms in the form (2) with e2 + ... + I ? ~ = h is then given by(h 4- t - t2)which is of

order o(h) I f h is much larger than t. However if there are no extraneous factors and if the
leading coefficients of the factors are correctly determined, then (i) the maximum degree of any
x., i = 2, ..., t in the factors are much less than h and (ii) the p-adic construction often need only be
carried out to i = [h/rl if there are I factors. Even so, experiments on the machine indicate that
many applications of formula (3) result in zero. In other words, too often we are looking for terms

t-2 ' t - 2

1

60

that are not 'there. The way to improve the situation is to do the p-adic construction variable-by-
variable instead of introducing all variables x2, ..., xt at once. Thus the actual factors of
U(x,x2,a3, ..., at) are constructed first. From these factors in two variables, the true factors of
U(x,x2x3.a4,...,at) are then constructed, etc. We shall not go into details here. Interested readers are
referred to [61 where a linearly convergent variable-by-variable parallel p-adic construction is
described in full detail.

T h e author wishes to thank Joel Moses for suggesting this paper and Miss Dianne Foster
for careful copying and editing.

REFERENCES

1. Claybrook, B.G.: Factorization of Multivariate Polynomials Over the Integers. SICSAM
Bulletin, Feb. 1976, p. 13.

2. T h e Mathlab Group: MACSYMA Reference Manual. Lab. for Comp. Sci., Massachusetts Inst.
Technol., Nov. 1975.

3. Griesmer, J.H.; Jenks, D.R.; and Yun, D.Y.Y.: SCRATCHPAD Users' Manual. IBM Research
Report, RA 70, June 1975.

4. Wang, P.S.; and Rothschild, L.P.: Factoring Multivariate Polynomials Over the Integers. Math.
Comp., vol. 29, no. 131, July 1975, pp. 935-950.

5. Wang, P.S.: Factoring Larger Multivariate Polynomials. SICSAM Bulletin, Nov. 1976.

6. Wang, P.S.: An Improved Multivariate Polynomial Factoring Algorithm. Submitted to Math.
Comp., 1977.

7. Musser, D.R.: Algorithms for Polynomial Factorization. PhD Thesis, Univ. of Wisconsin, Aug.
1971.

8. Yun, D.Y.Y.: The Hensel Lemma in Algebraic Manipulation. PhD Thesis, Massachusetts Inst.
Technol., Nov. 1973.

61

APPENDIX A

Contained here a r e ten factoring examples done by MACSYMA using
the o ld fac tor ing a lgor i thm (OFA) (r e f . 4) and the new factor ing a lgori thm
(NFA) (r e f . 6) . These polynomials are proposed by C1 aybrook (ref. 1) who
fac to red them using a heurist ic approach. To conserve space, these polynomials
a r e g i v e n i n f ac to red form below. The t i m i n g f o r OFA and NFA was done on a
DEC KL-10. Claybrook's timings are obtained from (ref. 1) . He d id his
timing on a Univac 1108. Times l i s ted i n Table 1 a re i n - seconds . A * i n d i c a t e s
r u n n i n g ou t o f s t o r e .

FACTORING TIME COMPARISONS

Polynomial

b
7
8
9

10

0 FA N FA C1 aybrook

* 3.30
0.96 0.95 * 7.83 * 5.12 * 9.07 * 5.92
0.27 0.28
3.398 0.58

10.52 2.82
79.68 0.58

174.65
6.85

10.06
149.26
160.03
172.16

1.97
25.38
67.49

129.01

TABLE 1

The ten polynomials

4 3 2 2 4 5 6 2 3 5 3 2 3
(1) (w z - X Y z - w x Y - w x Y) (- X z + Y Z + X Y)

4 6 2 3 2 2 2 2 5 4 2 3 3
(W z + Y 2 - w x Y z + x 2 - x Y - u x Y)

62

3 2
(Z + Y + X - 3) (Z + Y + X - Z I

2 16 4 12 12 3 3 2 15 20
(3) (- 1 5 Y Z +29W X Y Z + 2 1 X Z + 3 W Y I

31 12 28 18 14 2 2 21 2
(- z - W 2 + Y - Y + x Y + x + W)

4 2 2 3 2 2 3 2 2 2 3
(4) U X Z (6W Y Z + 1 8 U W X Z + 1 5 U Z + 1 8 U W X Y)

4 4 2 3 4 3 4 2 4 4 3
(- 4 4 U W X Y Z - 2 5 U W Y Z + 8 U W X Z - 3 2 U W Y Z

2 2 3 3 3 2 2 2 2 2 3 2
+ 4 8 U X Y Z - 1 2 Y Z + 2 U W X Y - 1 1 U W X Y - 4 W X)

2 2 2 2 2 2 2 2 2 2 2
(5) (3 1 U X Z + 3 5 W Y + 6 X Y + 4 0 W X) (U W X Y Z + 2 4 U W X Y Z

2 2 2 2 2 2 2 2 2 2 2 2
+ 1 2 U X Y Z + 2 4 U X Y Z + 4 3 W X Y Z + 3 1 W Y Z + 8 U W Z

2 2 2 2 2 2 2 2 2 2 2 2 2
+ 4 7 U W Z + 1 3 U W X Y + 2 2 X Y + 4 2 U W Y +29W Y + 2 7 U W X Y

2 2 2 2 2 2
+ 3 7 w X z + 3 9 U W X Z + 4 3 U X Y + 2 4 X Y + 9 U W X + 2 2 U W)

3 3 3 2 3 3 3 3 3 2 3 3 2
(4 3 U X Y Z + 3 6 U W X Y Z + 1 4 W X Y Z - 2 9 W X Y Z

2 2 2 2 2 2 3 3 2 2 3
- 2 8 U W X Y Z + 3 6 U W X Y Z - 4 8 U U X Y Z + S U W X Y

2 3 3 3 2 3 2 2 2 3 2
+ 3 6 U W Y - 3 U W Y - 2 3 U W X Y + 4 6 U X Y + 8 X Y + 3 1 U W Y

2 2 3 2
- 9 U Y + 4 5 X - 4 6 U W X I

(7)
3

(Z + Y + X - 3)

63

3 3 2 3 2 3 2
(3Z + 2 W Z - 9 Y - Y + 4 5 X) (W z + 4 7 X Y - W)

4 5 5 3 4 2 4 2 3 4 2 4
(9) (- 1 8 X Y + 2 2 Y - 2 6 X Y - 3 8 X Y + 2 9 X Y - 4 1 X Y + 3 7 X)

5 6 2 3 4
(3 3 X Y + 1 1 Y + 3 5 x Y - 2 2 X)

6 3 2 3 2 2 2 2 3
(18) X Y Z (3Z + 2 W Z - 8 X Y + 1 4 W Y - Y + 1 8 X Y)

2 3 2 3 2 2
(- 1 2 W X Y Z + w z + 3 X Y + 2 9 X - W)

6 4

7

ON THE EQUIVALENCE OF POLYNOMIAL
GCD AND SQUAREFREE FACTORIZATION PROBLEMS

David Y. Y. Yun

Mathematical Sciences Department
IBM Thomas J. Watson Research Center

Yorktown Heights, New York, 10598 USA

(Extended Abstract)

The importance of computing greatest common divisors (GCD's) of polynomials has been

recognized more than a decade ago. All symbolic and algebraic computation systems must

provide some form of polynomial GCD capability in order to handle the fundamental extension

field of rational functions. The complexity of the GCD problem is aggravated by the fact that

most of these systems use an expanded canonical representation for polynomials, which is at its

worst, in terms of space requirement and comprehensibility, when the polynomials are multivari-

ate. Much work has been done to understand and improve algorithms for computing GCD's over

the past decade (ref. 1 , 2, 3). But the need for a symbolic system to maintain relatively prime

numerators and denominators in a rational function continues to cause a large amount of

computer time to be spent computing GCD's.

In 1974, Brown (ref. 4) paved the way to a "factored" representation of rational .

functions for symbolic systems. The idea is that if both the numerator and denominator are

factored into irreducible polynomials (primes in the polynomial domain) then the computation of

GCD's simply involves finding the .minimum powers of identical primes. Unfortunately, there are

two drawbacks to Brown's approach. First, such a ''factored" representation, though maintaining

the relatively prime property of numerator and denominator (with minimum effort), does not

result in canonically represented polynomials - that is, identical rational functions may appear

65

differently in the numerator and denominator polynomials. The other is, as Brown correctly

pointed out, factorization of polynomials into primes is too expensive an operation, so that his

"factored" representation can only look for ''sharable factors" by inexpensive means and maintain

such partially factored forms. Consequently, equivalence of rational functions in such a repre-

sentation can only be recognized by subtractions and, in most cases, expansions as well as GCD

computations. Even though some symbolic systems have successfully utilized the "factored"

representation (mainly in terms of the ability to comprehend expressions), it is not clear what is

the actual trade-off between the effort for GCD computations that is presumably saved and the

sacrifice of canonical form with the possible gain of maintaining some "sharable" factors.

In 1976, Yun published an improved algorithm for finding the "squarefreel' factorization

of a polynomial (ref. 5). By definition, a polynomial is said to be squarefree if it has no divisor

(or factor) of multiplicity greater than 1. Thus, the problem of finding the squarefree

factorization (abbreviated as SQFR) is that of finding polynomials

P,, P,, ..., Pk such that P = P , ' P , ~ ... pkk, where Pk # 1 , each pi is squarefree, and

gcd(Pi, Pj) = 1 for all i # j S k.

Although the squarefree factorization is not quite the complete factorization of polynomials into

primes, it is a canonical form for polynomials, as Yun pointed out. In fact, a result of Knuth

indicates that the probability of the squarefree factorization being the same as the complete

factorization for an arbitrary polynomial is approximately 4/5. Such a result further increases the

usefulness of a squarefree representation for polynomials which has no parallel in the case of

integers (i.e., given an integer, there is no known algorithm that will produce its squarefree

factorization without finding its prime factorization first). On the other hand, squarefree

factorization constitutes an essential step in polynomial factorization (ref. 6 , 7, 8) , partial

fraction decomposition of rational functions (ref. 9), and rational function integration (ref. 10, 1 1 ,

12).

66

The mathematical theory for the new algorithm is given by the following three results (ref.

5) :

Fundamental Theorem of Squarefree Decomposition:

If P(x) is a primitive polynomial in D[x] where D is a field of characteristic 0 and

the squarefree factorization of P is P,P22...Pkk, then gcd(P,P‘) = P2P,2...Pkk-2.

Corollary 1: Let D = gcd(P,P’), then P’/D - (P/D)’ = P II (i-1) P. ll Pj .

Corollary 2: gcd(P/D, P’/D - (P/D)’) = PI .

Based on these results, an algorithm for finding the squarefree factorization of a polynomial P(x)

can be given. Let (G. A*, B*) + gcd(A,B) denote the computation of GCD of A and B and

assignment of the GCD to G , A/G to A*, and B/G to B*.

Yun’s algorithm (ref. 5) is as follows:

k

1 i=2 ’ j+i

(W, C,, Dl) + gcd(P,P’);

For i = 1 , step 1, until Ci = 1 ,

DO (Pi, Ci+l, Di+l) 6 gcd(Ci, Di - C i) .

Yun’s 1976 paper got as far as comparing three algorithms for squarefree factorization and

showing the superiority of the new algorithm both experimentally and by algorithmic analysis of

certain models for computation. However, there was no attempt to derive any specific expression

for the computing cost bound nor any reducibility result. In this paper, we will show that the

total computing cost of the squarefree factorization of a polynomial with degree n (i.e. SQFR(n))

is bounded by and, in fact, equal to 2*GCD(n). The crucial observation is that the inputs to calls

of the GCD function in Yun’s new algorithm are more “balanced1’ in terms of degrees than those

algorithms previously proposed. Since the reduction of squarefree factorization problem to GCD

problem hinges on the use of a two-argument function (GCD) to do the job of a one-argument

function (SQFR), the balancing of degrees becomes especially important. (The other algorithms

for squarefree factorization turn out to call on GCD functions with one input far more dominant

in degree than the other.)

67

Thus, we will show that a closer re-examination of Yun's 1976 paper reveals the reduci-

bility of SQFR to GCD. The natural question that follows is whether GCD is reducible to SQFR.

That is answered affirmatively by the other half of this paper and the derivation will actually

suggest an algorithm for computing GCD's when input polynomials are already represented by

their SQFR form.

The fundamental theorem for this reduction process is

Theorem: For squarefree polynomials A and B,

gcd(A,B) = A*B/sqfrpt(A*B)

where the squarefree part of P = sqfrpt(P) = PlP,...Pk,

if P = PI 'P2,...Pkk, hence, a by-product of sqfr(P).

This theorem, which is reminiscent to the relationship between GCD and LCM, suggests an

obvious way of reducing GCD to SQFR. That is, for F = Fl IF22...Fkk and G = G11G22...G,m,

compute gcd(Fj, Gj) for all i and j by the method of the theorem since each Fi and G j is square-

free. (Note that this type of ''cross GCDing" is also necessary for the "factored" representation

of Brown.) Unfortunately, there are k*m GCD's required which forces k and m into the

computing cost expression and affects the reduction process of GCD to SQFR - we are looking

for strong reducibility of GCD to SQFR with constant cost for transformation of problems, as in

the reduction of SQFR to GCD case where the constant is 2.

A corollary of the theorem provides a hint for a different approach.

Corollary: For polynomials F and G, let FS and GS denote sqfrpt(F) and sqfrpt(G) respectively.

Then sqfrpt(gcd(F,G)) = gcd(FS,GS) = FS*GS/sqfrpt(FS*GS)

Thus, a polynomial D,=sqfrpt(gcd(F,G)) can be computed, according to the corollary, from

sqfrpt(F) = F , F ,... F, and sqfrpt(G) = G I G ,... G,.

Similarly, we compute Dj = gcd(F j...Fk, Gj...Gm) according to the corollary for all j up to

min(k,l). Finally, it will be shown that gcd(F,G) = D1D2...Dmin(k,m).

68

The important technique in this case is "triangularization". As opposed to the k*m cross

GCD's, squarefree parts of F and G are peeled off successively and collectively. The total cost of

computing the D's, hence the GCD, via the method of the corollary adds up to less than

6*SQFR(n), where the degrees of F and G are assumed to be n. In other words, GCD(n)

problem is strongly reducible to SQFR(n) with a multiplying constant of 6.

If F and G are already in SQFR form, then the cost for computing their GCD is bounded

by 4*SQFR(n), i.e., the cost for computing GCD of polynomials in SQFR form is not more than

twice that of putting them in SQFR form originally. Another potential advantage of such a GCD

algorithm is that the computing cost will be generally dependent on the minimum of the degrees

of the input polynomials when the degrees are not equal, mainly because the computation goes on

only until.min(k,m) is reached. Previously, all GCD algorithms have shown a strong dependence

on the maximum of the degrees, which is the cause of the need to "balance" the inputs of calls to

GCD functions, as noted earlier.

At this point, we can draw the following conclusion

Theorem: GCD(n) problem is equivalent to SQFR(n) problem.

It should be noted that the derivation of above results are based on the assumptions that

a2 M(n) 2 M(a n) 2 a M(n) for all a - > 1

where M(n) stands for the cost for multiplying polynomials of degree n (ref. 13, p. 280). Let

X(n) denote M(n), GCD(n), or SQFR(n). Then the satisfiability of the following condition has

also been assumed:
k k

i = l I=1
Z X(ni) 5 X(Z ni) for any ni in N.

We point out, however, this condition is easily satisfied by the above operation costs, so that it

represents no severe restriction on our result.

69

REFERENCES

1 . Brown, W. S.: On Euclid's Algorithm and the Computation of Polynomial Greatest Common
Divisor. JACM, vol. 18, no. 4, Oct. 1971, pp 478-504.

2. Moses, J.; and Yun, D. Y. Y.: The EZ GCD Algorithm. Proceedings of ACM Annual '

Conference, Aug. 1973, Atlanta, pp. 159-166.

3. Moenck, R.: Fast Computation of GCD's. Proceedings of 5th Annual ACM Symposium on
Theory of Computing, 1973, 142-151.

- .

4. Brown, W. S.: On Computing with Factored Rational Expressions. Proceedings of EURO-
SAM '74, also SIGSAM Bulletin No. 31; Aug. 1974, pp. 26-34.

5. Yun, D. Y. Y.: On Square-free Decomposition Algorithms. proceedings of 1976 ACM
Symposium on Symbolic and Algebraic Computation, R. D. Jenks, ed., Aug. 1976, pp. 26-35.

6. Knuth, D.: The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-
Wesley, Reading, Mass., 1969.

7. Musser, D. R.: Algorithms for Polynomial Factorization, Ph. D. Thesis, C. S. Dept., Univ. of

8.

9.

10.

11.

12.

13.

Wisconsin, August 197 1.

Wang, P. S.; and Rothschild, L. P.: Factoring Multivariate Polynomials Over the Integers.
Mathematica of Computation, Vol. 29, No. 131, July 1975, pp. 1035-950.

Kung, H. T.; and Tong, D. M.: Fast Algorithms for Partial Fraction Decomposition. Dept. of
Computer Science Report, Carnegie-Mellon University, January 1976.

Moses, J.: Symbolic Integration: The Stormy Decade. Proceedings of the Second Symposium
on Symbolic and Algebraic Manipulation, S. R. Petrick, ed., March 1971, 427-440.

Horowitz, E.: Algorithms for Partial Fraction Decomposition and Rational Function Integra-
tion. Proceedings of the Second Symposium on Symbolic and Algebraic Manipulation, S. R.
Petrick, ed., March 1971, 441-457.

Yun, D. Y. Y.: Fast Algorithm For Rational Function Integration. Proceedings of IFIP
Congress 77, Aug. 1977, Toronto, Canada.

Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D.: The Design and Analysis of Computer
Algorithms, Addison-Wesley, Mass., 1974.

70

DIFFERENTIAL FORM ANALYSIS USING MACSYMA
*

Hugo D. Wahlquist
Jet Propulsion Laboratory

California Institute of Technology

ABSTRACT

' The calculus of exterior differential forms has increasing applications in
several areas of applied mathematics and theoretical physics. The formalism
was developed initially by E. Cartan (ref. 1) for his own research in differ-
ential geometry. Modernized and updated by present day mathematicians, it has
become a standard tool for mathematical work in the differential geometry of
manifolds (refs. 2 and 3) .

With that genesis it is not surprising that the techniques of differen-
tial forms are useful in general relativity (ref. 4) . Many problems in rela-
tivity can be concisely expressed and efficiently solved using differential
forms together with Cartan's "method of moving frames." The calculational
effort involved is often significantly reduced compared to the standard tensor
formalism. Other areas of theoretical physics in which differential forms have
utility, as well as elegance, include Hamiltonian mechanics, statistical
mechanics, and the calculus of variations (refs. 5 and 6) .

In recent years the geometric techniques of exterior calculus developed
(again by Cartan) for systems of partial differential equations (refs. 1 and 7)
have been applied to physically important nonlinear equations. Many results
on transformation properties, invariance groups, and conservation laws can be
derived directly and systematically using these methods (ref. 8) . When the
methods are applied to nonlinear equations which exhibit the recently
discovered "soliton" phenomenon (the Korteweg-de Vries equation, for instance),
a beautiful algebraic structure associated with the equations is revealed.
These so-called "prolongation structures," which are essentially "free" Lie
algebras, can be shown to lead directly to solution methods such as the
inverse scattering method, Backlund transformations, and exact nonlinear super-
position principles (ref. 9). The prolongation structures also have a geome-
trical interpretation in terms of affine connections over solution manifolds
(ref. l o) . From this viewpoint they appear to be closely related to non-
linear, gauge-invariant, field theories; the Yang-Mills fields.

*
This paper presents the results of one phase of research carried out at the
Jet Propulsion Laboratory, California Institute of Technology, under Contract
No. NAS7-100, sponsored by the National Aeronautics and Space Administration.

71

I -

The u t i l i t y o f d i f f e r e n t i a l f o r m s is n o t l i m i t e d t o p r o v i n g a b s t r a c t
g e n e r a l t h e o r e m s ; t h e y a l s o p r o v i d e a n e f f i c i e n t c a l c u l a t i o n a l t o o l f o r
d e r i v i n g p a r t i c u l a r r e s u l t s irr spec i f ic p roblems (re f . .11) . A s i n o t h e r areas
o f ana lys i s , t he compute r can be o f g rea t he lp i n ca r ry ing ou t t he ac tua l
manipula t ions . Exter ior ca lcu lus has been implemented in Pl/l-FORMAC by
F. E r n s t (r e f . 1 2) . The major purpose of h i s programs w a s t o f a c i l i t a t e t h e
use o f d i f f e ren t i a l fo rms i n gene ra l r e l a t iv i ty , a l t hough t he p rog rams are n o t
r e s t r i c t e d t o t h a t a p p l i c a t i o n . R e c e n t l y , w e h a v e w r i t t e n a small f i l e of
r o u t i n e s i n MACSYMA which w e a r e u s i n g t o p e r f o r m d i f f e r e n t i a l f o r m c a l c u l a -
t i o n s i n t h e t h e o r y o f n o n l i n e a r d i f f e r e n t i a l e q u a t i o n s . T h e s e ' r o u t i n e s
a c c o m p l i s h o n l y p a r t i a l i m p l e m e n t a t i o n ; i n f a c t , t h e main r e a s o n f o r t h i s p a p e r
is t o a d v e r t i s e t h e n e e d f o r i m p l e m e n t i n g e x t e r i o r c a l c u l u s i n MACSYMA which
c l e a r l y h a s t h e f a c i l i t i e s t o do the comple te job . My hope i s t o provoke
enough i n t e r e s t i n someone su f f i c i en t ly knowledgeab le t o do t h e j o b r i g h t .

A l g e b r a i c a l l y , t h e d i f f e r e n t i a l f o r m s c o n s t i t u t e a Grassman algebra over
the co tangent space o f a manifold involving the noncommutat ive exter ior product
ope ra t ion , u sua l ly deno ted by t he wedge symbol, A. The e x t e r i o r d e r i v a t i v e , d ,
' is t h e u n i q u e o p e r a t i o n o f d i f f e r e n t i a t i o n l e a d i n g f r o m o n e d i f f e r e n t i a l f o r m
t o a n o t h e r . I ts a p p l i c a t i o n t o a form of rank p r e s u l t s i n a form of rank
p + 1.

When i n a d d i t i o n t h e d u a l t a n g e n t v e c t o r s o f t h e m a n i f o l d a r e i n t r o d u c e d ,
new i n v a r i a n t a l g e b r a i c a n d d e r i v a t i v e o p e r a t i o n s c a n b e d e f i n e d : c o n t r a c t i o n
between vectors and forms, and L i e derivatives of both forms and vectors.

The pape r desc r ibes t he MACSYMA f i l e which has been wri t ten to perform
these opera t ions and d i scusses the improvements and addi t ions which a re needed
t o accomplish a complete and eff ic ient implementat ion. Examples of d i f f e r e n -
t i a l fo rm ca l cu la t ions a r e a l so d i sp l ayed .

72

REFERENCES

1. Cartan, E., Les systGmes differentials extGrieurs et leurs applications 1 1

g&om6trique," Hermann, Paris, 1945. This is the principal source.

2. Hermann, R., Interdisciplinary Mathematics, Vols. I-XII, Math. Sci. Press,
Brookline, MA, 1976. Much of the classical work on differential geo-
metry, partial differential equations, Lie groups, etc. which is
important for applications is reconstructed in these volumes in modern
mathematical language and notation, often employing exterior calculus.

3 . Choquet-Bruhat, Y., "Ggomgtrie diffgrentielle et systgmes extgrieurs,"
Dunod, Paris, 1968. A thorough, fairly rigorous, well-balanced coverage
of exterior calculus.

4 . Israel, W., "Differential forms in general relativity," Comm. Dublin Inst.
Adv. Studies Ser. A, No. 19, 1970. The utility of differential forms in
general relativity is convincingly demonstrated herein.

5. Flanders, H., Differential "_ Forms, Academic Press, New York, 1963;
D. Lovelock, and H. Rund, Tensors, Differential Forms, and Varia-
tional Principles, Wiley, New York, 1975. These are both excel-
lent introductions to the subject of differential f0rrr.s with
applications to Riemannian geometry, variational calculus, and
other areas of theoretical physics.

~ -~

6. Estabrook, F. B. and Wahlquist, H. D., "The geometric approach to sets of
ordinary differential equations and Hamiltonian dynamics," SIAM Review
- 17, No. 2, 201-220, 1975. A review article treating Hamiltonian theory
in the language of differential forms.

7. Slebodzinski, W., Exterior Forms and Applications, Polish Scientific
Publ., Warsaw, 1970. A fairly complete summary of Cartan's theory of

_ _ _ " "-

partial differential systems is included. In English translation.

8. Harrison, B. K. and Estabrook, F. B., "Geometric approach to invariance
groups and solutions of partial differential systems," J. Math. Phys.

forms is used to systematize invariance groups and similarity solutions
of partial differential equations.

- 12, 653-666, 1971. The Lie derivative of the differential ideal of

9. Wahlquist, H. D. and Estabrook, F. B., "Prolongation structures of non-
linear evolution equations," J. Math. Phys. 16, 1-7, 1975. Also,
Estabrook, F. B. and Wahlquist, H. D., 11, JTMath. Phys. 17, 1293-
1297, 1976. Two papers with identical titles which introduce the
concept of prolongation structures, derive them for particular non-
linear soliton equations, and relate them to solution methods.

73

10. Hermann, R., "The pseudopotentials of Estabrook and Wahlquist, the geo-
metry of solitons, and the theory of connections," Phys. Rev. Lett. 36,
835, 1975. In which the geometric significance of prolongation struF
tures is revealed.

11. Estabrook, F. B., "Some old and new techniques for the practical use of
exterior differential forms," in Bzcklund Transformations, No. 515,
Springer Lecture Notes in Mathematics, p. 136-161, Ed. R. M. Miura,
Springer-Verlag, New York, 1976. A concise discussion of forms and
their uses together with properties, identities, and calculational
techniques.

12. Ernst, F., "Manipulation of differential forms on a digital computer,"
Proceedings of the Relativity Seminar, PORS IIT-10, Illinois Institute
of Technology, Chicago, 1969. A documentation of the PL/l-FORMAC
implementation of exterior calculus.

74

INOICIAL TENSOR MANIPULATION ON MACSYMA

. Richard A. Bogen
Laboratory for Computer Science

Massachusetts I n s t i t u t e o f Technology
Cambridge, Massachusetts 82139

Richard Pavelle
Logicon, Inc.

Har twe I I Avenue
Lexington, tlassachusetts 82173

ABSTRACT

we descr ibe a new computational tool for physical calculations. I t i s t h e f i r s t
computer system capable of performing indicia1 tensor calculus(as opposed to
component tensor calculus). I t i s nou operational on the symbol ic manipulat ion
system HACSYMA. We out l ine the capab i l i t ies o f the system and descr ibe some o f
the physical problems we have considered as w e l l as others we are examin ing a t
t h i s time.

I NTRODUCT I ON

Symbodic or a lgebra ic computer manipulation systems a re f i nd ing a growing

r o l e in physics by performing complex calculat ions u i thout error. Whi le symbo-

l i c manipulat ion has been used in Quantum Electrodynamics, Quantum Mechanics,

C e l e s t i a l Mechanics and gravi tat ion theor ies (ref .1) , i t i e i n t h e g r a v i t a t i o n

t h e o r i e s where these systems are now becoming essential tools. Symbolic mani

l a t i o n g i v e s one t h e a b i l i t y t o guess at exact so lu t ions o f grav i ta t ional f i

equat ions or use approximation procedures to f ind them (ref.2). Symbolic cal

ta t ion . , ' a lso p rov ldes one the freedom to consider lengthy problems uhose sol

9

PU-

e l d

cu-

U-

t i o n by hand would be error prone and could take months. A recent paper reviews

aome of the problems in g r a v i t a t i o n which have been studied using symbol ic

man ipu la t ion as ue l l as the computing systems which are now in use (ref.3).

75

I -

of coordinates and th

i e employed in weak f

76

i s

i e

The usual symbol i c computing system f o r g r a v i t a t i o n c a l c u l a t i o n s o p e r a t e s ,

In t h e f o l l o w i n g manner: The user of ten wishes to study a p a r t i c u l a r m e t r i c a n d

inputs each spec i f i c component r e l a t i v e t o a coordinate system or noncoordinate

frame. The system then computes the geometr ic ob jects or d i f ferent ia l equat ions

o f i n t e r e s t . There a re many types o f r e l a t i v i s t i c c a l c u l a t i o n s khich computer

systems are performing (ref.31. We have had such a system running on,flACSYMA

s i n c e 1973. In 1974, however, we began construct ion of a novel package f o r

per forming actua l Ind ic ia1 tensor analys is as opposed to the usual component

tensor ca lcu lus. The purpose o f t h i s paper i s t o desc r ibe t he cu r ren t capab i l i -

t i e s o f our indicia1 tensor manipulat ion system, ITMS. We s h a l l a l s o d e s c r i b e

some o f t h e problems we have solved as well as o thers o f cur ren t in te res t .

INDICIAL TENSOR UANIPULATION

i jk..

rs.. . We represent a tensor T as a funct ion of two arguments which a re t he

l i s t s o f i n d i c e s . A l i s t i n MACSYMA i s a sequence o f i t s elements which are

separated by comm'as and enclosed by square brackets. Thus we w r i t e t h e above

tensor as 'T(1r.s ,... 1,1i~,j,k,..11 while a scalar i s represented by a f u n c t i o n

with empty I i s t s such as P(Cl,[11.

i n IT f lS o rd ina ry d i f f e ren t i a t i on o f a tensor u i t h respect to a coo rd ina te
k

x causes the k index to be appended onto the l is t (tensor1 as an addi t ional

argument to the tensor funct ion. Thus we represent T as T ([i , j l , [l , k l .

S i n c e o r d i n a r y d i f f e r e n t i a t i o n i s commutative, m u l t i p l e o r d i n a r y d e r i v a t i v e

i n d i c e s a r e s o r t e d in alphanumeric order causing expressions such as

T(li, j1,13,k,n,ml - T([i , j I , [l ,m,k,nl to vanish automat ical ly as part of

MACSYMA's s i m p l i f i c a t i o n r o u t i n e . We may a l s o declare a tensor independent

i j,k

causes i t s o rd inary der iva t ive to van ish . Th is fea ture

I d approximations and a lgebra ica l l y degenera te met r i cs .

. .

uhere . the Lo ren tz me t r i c appears as a funct ion of the metr ic tensor. We may

a l s o i d e n t i f y a metr ic by enter ing the command "me t r i c (g) " (a l l ITHS

f u n c t i o n names and de f i n i t i ons a re w r i t t en u i th double quotes in t h i s t e x t)

uhich enables HACSYHA t o r a i s e and louer indices of a tensor u i th r e s p e c t t o

the tensor named g. With such a d e f i n i t i o n ue may employ the "contract ' *

command so that the statement **contract(g([i , j l , Cl)*g(CJ, C j , k l)) " re tu rns

"de l ta(Ci1, Ckll**. The Kronecker de l ta as uel I as the general ized Kronecker

d e l t a a r e a l s o used in the contract rout ine for index subst i tut ion. The

func t i on * *de l ta (C1 ,11) * * i s t he dimension of the manifold u i th a d e f a u l t o f 4.

I n con t ras t t o hand calculat ions, one o f t he d i f f i cu l t i es f aced u i th indi-

c ia1 tensor manipulat ion is the ease with uhich one may create expressions with

more than one covar iant and contravar iant dummy index u i th the same symbol. To

a v o i d t h e e r r o r ue employ an algor i thm in ITMS whereby dummy ind ices are a lways

represented by the set Xl,X?,...Xn. Whenever a dummy index i s generated, a

counter i s increased by one and appended onto the X symbol t o form a neu index.

Fo r a g iven met r ic the ca lcu la t ion o f a curvature tensor may cause the counter

t o r e a c h a large number. Houever, expressions u i t h m u l t i p l e dummy i n d i c e s a r e

avoided. Clear ly, in such a calculat ion, many of the terms are capable o f b e i n g

combined. d i f f e r i n g o n l y i n the index number. S imp l i f i ca t i on o f t h i s k i n d i s

c a r r i e d o u t by expanding the expression and apply ing the funct ion ' * rename**

which resets the counter to zero and renames dummy indices in each of the

expanded terma. The resu l t ing express ion i s then the same order o f complex i ty

a s one would f ind by hand ca lcu lat ion.

f l u l t i p l e c o v a r i a n t d i f f e r e n t i a t i o n o f any tensor density i s based upon an

algori thm described elseuhere (ref.4). The resul tant expression may be expres-

sed in te rms o f Chr is to f fe l symbols or evaluated for a p a r t i c u l a r i n d i c i a 1

m e t r i c i f one has been defined.

77

Other features we have implemented include a func t i on ca l l ed * *show**

which d i s p l a y s any indexed object ui th i t s appropriate covariant and contrav-

a r i a n t i n d i c e s . A func t ion ca l led * *n te rms** u i l l t e l

t o t h e number o f terms an expression would have i f fu

ful for avo id ing the manipulat ion o f an expression uh

system i s n o t capable o f s imp l i f y i ng it. I f too large

I the user the upper limit

I l y expanded. T h i s i s u s e -

i c h i s so l a rge tha t the

the user may use I'TMS t o

s impl i fy the subexpress ions and combine them later or decide a new approach t o

t h e c a l c u l a t i o n i s a p p r o p r i a t e . A function cal led "defcon" al lows one t o i m -

pose var ious types o f .cont ract ion proper t ies such as whether a g i v e n v e c t o r i e

null or uhether a given tensor i s trace free. A func t ion * *geodes ic** eva lua tes

express ions in coordinate systems i n which und i f f e ren t i a ted Chr i s to f fe l symbo ls

a r e s e t t o zero. ITMS has pattern matching rout ines to enable the user to apply

va r ious cond i t i ons on d i f ferent ia ted tensors such as the Lorentz condi t ions.

A n o t h e r f e a t u r e i s t h e a b i l i t y o f ITMS t o pe r fo rm d i f f e ren t i a t i on u i th respec t

t o t h e m e t r i c t e n s o r and i ts der ivat ives. This enables ITMS t o compute f i e l d

e q u a t i o n s f o r a l t e r n a t i v e r e l a t i v i s t i c Lagrangians (ref.S)., ITtlS.also. manip-

ulates the numerical tensor densi t ies.

To exempl i fy the speed and a b i l i t y o f t h e system we can carry out

v e r i f i c a t i o n o f t h e B i a n c h i i d e n t i t y (see any tex t on r e l a t i v i t y) g i v e n b y
i j (k l r a)

R ' - 8 by expanding the Riemann tensor in terms o f C h r i s t o f f e l symbol-s

and emp loy ing t he .s imp l i f i ca t i on rou t i nes o f ITtlS in 4 seconds cpu time. Here

the parentheses imply symmetrization of enclosed indices, the semicolon i s

c o v a r i a n t d i f f e r e n t i a t i o n and the hook denotes anti-symmetric indices. As

another exampler the Balakram identity (ref.6) which i s R v - 0 can be

v e r i f i e d in 40 seconds cpu time.

i j

k t : i j

f lany ca lcu lat ions in grav i ta t ion a re s t ra igh t fo rward u i th ITflS. The d e f i n -

i t i o n s of t h e C h r i s t o f f e l symbols, curvature tensor, and var ious geometr ical

78

o b j e c t s a r e programmed in the system as functions of the metric tensor o r

other geometr ical objects. For example ue may define the metric tensor and i t s

i nve rse by commands in ITMS nota t ion such as

f o r .the weak f ie ld metr ic approx imat ion def ined by the metric tensor

Here E i s the Lorentz metr ic, H i s an arb i

and L i s an i n f i n i t e s i m a l expansion parameter(
i j

I .

' J

i i

i j i j
- L*(2*H - H*E 1

t rary tensor f ie ld . H

ref.7). I n t h i s case

components

i t s t r a c e

i t i s usual

t o impose the Lorent r condi t ion H = 0. For such a metric ue can use I TMS

t o compute the f i r s t .order Riemann tensor, Einstein tensor and Weyl tensor in

less than 18 seconds cpu t ime u i th the implementation of the Lorentz condition.

Whi le the ful I m a n i p u l a t i v e a b i l i t y of the ITMS system has not 'been r i g o r o u s l y

tes.ted UB have had occasion t o compute Einstein tensors with four th o rder

m e t r i c s r e p l a c i n g t h e r i g h t hand side of (11. These ca lcu la t ions invo lved the

manipulat ion of expressions u i th more than 1008 terms which uere contracted and

s i m p l i f i e d . Thus the memory space avai lab le to ITnS i s seen t o be qu i te l a rge .

, j

One o f t he l a rge ca l cu la t i one wed to t es t ITMS involved the study of the

g r a v i t a t i o n t h e o r i e s o f H. Yilmaz. To t h i r d order, Yilmaz' me t r i c i s (re f .81

g E + 2*L*(HlrE - 2*H 1 + 21h
i j i j i j i i

2 - a

i j i j i a j
*(H *E - 4" + 4*H H 1

a b a

a ib j
di - 8 d H H I

79

i j
where H i s t h e t r a c e o f H which sa t is f ie8 the Loren tz cond i t ion H - 8.

i j , j
ITMS uas used to compute the t h i r d order Einstein tensor G f o r (2) and

ab
subtract f rom i t the third order tensor d’Alembert ian of H . These ca l cu la -

t i o n s u i th ITMS i nd i ca te t he t heo ry i s va l i d t o f i r s t o rde r , bu t when c a r r i e d
ab

t o s e c o n d o r d e r d i f f i c u l t i e s a r i s e which inva l ida te the theory to a l l o rders .

These resu l ts a re p resented elsewhere (ref.91.

An ana lys is wh ich i s idea l l y su i ted to ITMS i s the study o f var ious

m e t r i c g r a v i t a t i o n a l t h e o r i e s by us ing a lgebra ica l ly spec ia l metr ics (re f .18)

where the metric takes the form

g - E - 2*mk L
i j i j i j

(31

where m i s constant, E i s the Lorentz metric and L

r e s p e c t t o b o t h g and E . For the metr ic (31 one a

f e r e n t i a l i d e n t i t i e s which arise from the d i f f e r e n t i a t

i j i

i j i j

i s a nu

I s 0 has

ion o f
I

nul I vectors , L L - 0. Implementing these identit ies we can
i

I vector with

a number o f d i f -

he i d e n t i t y f o r

compute t h e R i c c i

t enso r f o r (31 in 30 seconds cpu time and v e r i f y the wel l known express ions fo r

t h e E i n s t e i n vacuum f i e l d equations in these coordinates (ref.10). We a re now

at tempt ing to f ind a lgebra ica l ly spec ia l so lu t ions for the f lansour i -Chang

equat ions (ref .11) in add i t i on t o the Kilmister-Yang equations (ref.12) which

have been discussed in part icular coordinate systems (ref.131.

Conformal ly

where P i s a sca

f o r ITMS s ince s

f l a t m e t r i c s o f the form

G - P*E
i j i j

l a r and E i s the Lorentz metric represent

i m p l i f i c a t i o n s become extensive. For the metr
i j

ideal candidates

i c (41 we have

examined the c lass of Riemannian invar ian tadef ined in terms o f the genera l i zed

80

Kronecker delta by

These invariants are discussed in quantum gravity as they satisfy the Gauss-

Bonnet theorem in 2m dimensional spaces. Using ITMS we have expressed the

general term L(m) as an ordinary divergence in conformally flat space-time9 of

2m dimensions and thereby found alternate expressions for the identities of

Horndeski (ref. 14).

One. of our hopes is that ITMS wi 1 I also have the abi I i ty to carry out

needed investigations in differential geometry. Many identities in Riemannian

geometry are of great importance in physics and new identities uill presumably

be discovered uhen computer systems can take the enormous drudgery out o f this

particular kind of calculation. The difficulty faced is the construction of an

algorithm for the complicated symmetry properties uhich one encounters. We are

presently attempting to construct an appropriate algorithm which uill permit

tensorial manipulations o f this type.

A somewhat primitive feature which ITMS currently possesses is the indi-

cia1 tensor manipulation of non-symmetric metrics. Given a non-symmetric metric

and affinity as in the Einetein-Straue theory (ref.15) we can employ ITMS to

compute the various geometrical tensors. Houever, we have not yet implemented

appropriate simplification routines.

While we have stressed the relativistic and differential geometrical

aspects of ITMS, the package has been used by others and ue believe ITMS, uith

minor modifications, uill find applications in many branches of physics.

81

I

APPEND1 X

Below we exhib i t the output for the weak f ie ld approx imat ion i n General

R e l a t i v i t y (r e f . 7) . (E l l 1 and (E121 are the covariant and con t rava r ian t me t r i c

tensors to f i r s t o r d e r in L. The previous commands (CS)-(C8) de f ine t he me t r i c

t enso r t o be G, declare ' the Lorentz metr ic E t o be constant with r e s p e c t t o

o r d i n a r y d i f f e r e n t i a t i o n and speci fy i ts inner product. (€16) demonstrates that

the cont ract ion o f the inner product o f G with i t s e l f , t o f i r s t o r d e r . i s equal

t o t he K ronecke r de l ta as expected. The f i r s t order Ricci tensor i s d i ' s p l a y e d

by (€281. (€21) i s the same tensor af ter implementat ion of the Lorentz condi-

t ion. Contract ing the Ricci tensor with the metric ue obta in the sca lar curva-

t u r e d i s p l a y e d in (E23). We then construct the contravar iant Einst .e in tensor

d i s p l a y e d in (E25). A convenient feature of ITMS i s seen i n (C26) where the

m e t r i c i s r e d e f i n e d a8 E t o enable us to display the ordinary d'Alembert ian in

t h e f i r s t term of (€28). Then redefining the metric as G ue take the covariant

d ivergence o f the E ins te in tensor to f ind i t vanishes i d e n t i c a l l y as expected.

(C5) DECLARE (E,CONSTANT) S

(C6 1 DEFCON (E 1 S

(C71 DEFCON(E,E,DELTA) 1)

(El 1) 2 (P E - 2 P) L + E
I J I J I J

82

(C12) SHOW(G([I, [I,Jl))S

(E121 E - 2 (P E - 2 P) L
I J I J I J

(C13) RATVARS (L) S

(C141 RATWEIGHT (L, 1) S

(C15) RATWTLYLt 18

(C16) SHOW (CONTRACT (RATEXPAND (G ([I , J1, [I (11 , [J, K 1 1)) 1 S

(E161 DELTA
K

I

(C171 RIEMANN([S,U.NI . tN3 IS

(C181 D17.EVALS

(C191 RICCI:CONTRACT(RATEXPAND(Ol81)S

(C201 SHOW (RICCI 1 S
X1 x1 x2 x1 x2

u,x1 s s u,x1 x2 ,x1 x2 s u
(€20) - 2 L P + 2 E L P - P E L E

x1
s,x1 u

- 2 L P

(C211 SHOW (LORENTZ (R I CCI 1 1 S

(E21 1 2 E L P - P E L E
x1 x2 x1 x2

9 u,x1 x2 ,x1 x2 s u
(C22) SC:CONTRACT(RATEXPAND(RICCI*G(11, [S,UI))IS

(C231 SHOW (SC) S

(E231 - 4 P L - Z P E L
x1 x2 x1 x2

,%l x2 ,x1 x2

(C25) SHOW (EINSTEIN) S

(€25) 2 E P L + 2 P E L - 2 P E L
X1%2 I J X1x2 I J X1 I X2 J

,x1 x2 ,x1 x2 ,x1 % 2

X1 J %2 I

,%1 x2
- 2 P E L

(C26) tlETRIC (E) t

(C27) EINSTEIN:MAKEBOX(EINSTEIN1S

(C28) SHOW (EINSTEIN) S

(E28 1 2 [1 P L + 2 P E L - 2 P E L - 2 P E L
I J X l X 2 I J X 1 I X2 J X 1 J %2 I

, X 1 x2 ,X1 x2 , X 1 ‘x2

(C29) METRIC (GI t

E 3 8 1 COVDIFF (EINSTEIN, J) S

(C31) 038, EVALS

E 3 2 1 CONTRACT (RATEXPAND (D311 1 S

(C33) SHOW (032) I)

(E331

84

REFERENCES

1. Barton, 0. : and F i tch , J.. P.: Applications o f Algebraic Manipulat ion
Programs in Physics. Rep. Prog. Phys., 35, 1972, pp. 235-314.

2. Pave1 le, R.; Unphysical Characterist lce o f Yang’s Pure Space Equations.
Phys. Rev. Le t t . , 37, 1976, pp. 961-964.

3. d’Inverno, R. A.: Algebraic Computing in General R e l a t i v i t y .
Gen. Re1 . Grav., 6 , 1975, pp. 567-593.

4. Pavel le , R.: Mult ip le Covar iant Di f ferent ia t ion- A New Method.
Gen. Re I . Grav. -7, 1976, pp. 383-386.

5. Buchdahl, H. A.: The Hamiltonian Derivatives of a Class of
Fundamental Invariants. Quart. J. Math., 19, 1948. pp. 150-159.

6. Balakram: A Theorem in Tensor Calculus. J. Lon. Math. SOC., 4, 1929.

7 . Weber, J.: General R e l a t i v i t y and Gravi tat ional Waves. In te rec ience
Publ. , 1961, Sect ion 7.1.

8. Y i lmaz, H.: New Approach t o R e l a t i v i t y and Gravi tat ion.
Annals of Physics., 81, 1973, pp. 179-200.

9. Fenne l ly A. J.: and Paveile, R.: Nonv iab i l i t y o f Yi lmaz’ Gravi tat ion
Theor ies and h i s C r i t i c i s m s o f Rosen’s Theory. Gen. Rel. Grav., 1977,

* in press.

le. Adler, R.: Bazin, M.; and Schi f fer , fl.: In t roduc t ion to Genera l Re la t i v i t y .
McGrau-Hill Book Company Inc., 1975, Chapter 7.

11. Mansouri, F.: and Chang, L. N.: Gravi ta t ion as a Gauge Theory.
Phys. Rev., 13, 1976, pp. 3192-3200.

12. Yang, C. N.: I n teg ra l Formalism for Gauge Fields.
Phys. Rev. Let t . , 33, 1974, pp. 445-447.

13. Pavel le , R.: Unphysical Solutions of Yang’s Grav i ta t ional -F ie ld Equat ions.
Phys. Rev. Lett . , 34, 1975, pp. 1114.

14. Horndeski, G. W.: Dimensionally Dependent Divergences.
Proc. Camb. Ph i l . S O C . , ~ ~ , 1972, pp. 77-82.

15. Schrodinger, E.: Space-Time Structure. Cambridge Univ. Press., 1963,
Chapter XII.

PURE FIELD THEORIES AND MACSYMA ALGORITHMS

William S. Ament
Naval Research Iaboratory

SUMMARY

A pure field theory attempts to describe physical-phenomena through
singularity-free solutions of field equations resulting from an action princi-
ple. The physics goes into forming the action principle and interpreting
specific results. Algorithms for the intervening mathematical steps are
sketched. Vacuum general relativity is a pure field theory, serving as model
and providing checks for generalizations. The fieTds of general relativity
are the 10 components of a symmetric Riemannian metric tensor gij; those of
the Einstein-Straus generalization are the 16 components of a nonsymmetric g
Algebraic properties of gij are exploited in top-level MACSYMA commands
toward performing some of the algorithms of that generalization. The light-
cone for the theory as left by Einstein and Straus is found and simplifications
of that theory are discussed. Attention is called to the need for spinor
theories; the algebra of gij may help in their construction.

ij

PURE FIELD THEORY (PFT)

A pure field theory (PFT) (ref. 1, final pages) attempts to describe
physical phenomena in terms of singularity-free solutions of a set of field
equations, the Euler-Lagrange equations of an action principle. The physical
wisdom goes into assembling the action integral and into interpreting any
specific results; the intervening mathematics appears strictly algorithmic and
therefore doable with, and perhaps only with, computer symbol manipulations
such as done by MACSYMA. Einstein's general relativity (GR) is a prototype
PFT. GR serves both as the physical basis for test algorithms and as model
for the following outline of 'formal' PFT.

One has a coordinate manifold-of (presumably) four dimensions, param-
eterized by Gaussian coordinates XI, i = 1 , 2 , 3 , 4 . Dependent 'fields' having
N scalar components f = f(xl) are assembled, together with their low-order
coordinate derivatives f,i , fYij , ..., into a scalar density L serving as
integrand of the action principle LL. The scalar fields f of GR are the 10
components of a symmetric Riemannian metric tensor g ̂ =

A

ij gji-

Algorithmic 'Process No. 1 (AP1): Coordinate Independence

Taking the integration of LL over a coordinate region V having smooth
boundary B y check that the value of LL is properly invariant to coordinate
transformations interior to V.

87

I .

AP2: Get the Field Equations as Euler-Iagrange Equations of LL

This amounts to replacing f with f + df, fYi with fYi + dfYi etc.,
throughout L, retaining terms of first degree in df, df,i,... in the expansion
of the result, and integrating by parts to eliminate, in V, derivatives
dfYi Y dfYij , ... of the 'variations' df. The coefficients of the N df, set
to zero, are then the N scalar field equations in the N scalar fields f.

A P 3 : Gauge Conditions (Ref. 2)

When the dependent scalars f are components of a tensor such as the g of
i i i j ij

GR, then coordinate transformations in V such as T: x 4 x + y (x) require
corresponding transformations for the indexed field components. For example,

n - n dgij - - n A n - gijyn Yn - inj Y,i - gin Y, j

is a 'variation' of gij arising from a mere infinitesimal coordinate transfor-
mation T. The 10 Euler-Lagrange equations of GR are linear in second deriv-
atives of but there are four scalar Bianchi identities of third

differential order arising from invariance of LL to the four dg possible with

a four-parameter gauge transformation y (x). The (unassembled) algorithms for
finding the 'gauge vaziations' and corresponding Bianchi-like identities should
be some mix of those of AP1 and AP2.

ij

i j ij

AP4: Small Amplitude High Frequency Waves and the Light Cone

If a PFT is to describe physical vacuum somewhere and is to be
singularity-free, then the PFT describes vacuum everywhere. The accepted
physical vacuum permits gravitational, electromagnetic, and neutrino waves
propagating according to a single light-cone or dispersioq relation. To find.
the light cone: In each of the N field equations, substitute f + df;\exp(Kb.xl)
(K a frequency parameter, bi a propagation vector, df an infinitesimal scalar
amplitude) for each f in each field equation. Expand and retain only terms
linear in the df of highest degree in K--which then factors out, along with
expo. The result is N equations each linear and homogeneous in the N ampli-
tudes df, each homogeneous in the bi. Factor the coefficient determinant,

finding a sufficient number of quadratic factors b.g E bgb to feel sure

that bgb 0 is the light-cone equation. [If no such bgb factor is found or
believed, then use what you may have learned for revising L.]

1

,-.i jb
1 j

AP5 : GR With Non-Phenomenological Source Terms

The si' of bgb = 0, built from the f and their coordinate derivatives, is
necessarily symmetric, and its inverse can be construed as (up to a conformal
scalar factor S) the Riemannian metric tensor g ̂ of GR. Use the algorithms ij

88

of GR to get the Einstein tensor Gij, a form in the f, f,

equations for eliminating from G the highest derivatives of the f. What's

left over is either zero (vacuum) or counts as a Tij energy-tensor source
.term--again a form in the f and their (low-order) derivatives. [Select, or
eliminate the need for selecting, conformal scalar S. Recognize any T as
implied in L according to Noetherian principles.]

i"** Use the field

ij

ij

AP6: Neutrinos and Spin One-Half

Unless some of the f in L are spinor variables, there will be no neutrinos
among the vacuum waves, or other 'spin-2' structure in the field equations.
Thus: prepare a 'spinor version' of L and plod through the foregoing semi-
algorithms. [Conversion to 'spinor form' appears algorithmic in GR, starting
from a Riemannian metric tensor (ref. 3) , but may not be so in other PFT's.]

EINSTEIN-STRAUS THEORY

The scalar fields of Einstein-Straus (ES) theory (refs. 1 and 4) are the
16 components o f a nonsymmetric tensor g This g is used in an L and in
subsequent development in a way suggested in GR, but the gij is in no way

usable for or equivalent to the symmetric Riemannian 10-component metric ten-
sor of GR. The ES field equations are derived from an action principle; no

one appears to have asked after the 'vacuum waves' of ES theory, their light
cone, or its mathematical connection with GR. So we began with the problem of
finding the vacuum waves of the ES field equations--equations given in terms of
an affine connection or 'gamma' defined as the solution of a 64x64 linear
equation system

ij' ij

ij

n - - n
gij,k ,gin rkj " gnj rik (1)

Let the inverse g be defined through g gnj = g gjn = 6 . This leaves

another order for the summation over the 'dummy index' n:

ij ni - in i
j

hi = g gnj , with g gjn in ni -1 i
j

E (h) Let AA = hi = trace (h) ,
j' i

CC = (hi .hj.) = trace (h) , BB = (AA2 - CC)/2. Then h = h satisfies 2 i
J 1 j

Q(h) = 0 by symmetry. Matrix h has generally four eigenvectors V[n] and
eigenvalues v [n] :

-1

hi.V[n]j = v[n]V[nIi ; h .V. [n] = v[n]V[nIj i
3 1

(3)
3

One can normalize so that V[mIiV[n] = b[n,m] and (suunning over the repeated i

'eigenindex' n) V[nIiV[n]j = bji. The symmetry of Q(h) implies that if

Q(x) = 0 then Q(l/x) = 0 so that if v[n] is an eigenvalue then so is
l/v[n] = v[n' 1, say. Thus, eigenindices [n] (which are not tensor indices)
run over say 1,1',2,2' and we introduce op: op[n]:=n', op[n']:=n. With this,

and with = v[n], u[n]u[n'] = 1, we have h = ~[n]V[n]~V[n] and
compatible representations j j

i

Thus, the 16-scalar gij of ES theory has a natural 18-parameter representation

with spinor-like (ref. 3) eigenindexing, and supplies what may be called a

built-in vierbein provided by the four directions V[n] , n = 1,1',2,2'. i

The ES. field equations being in terms of the gammas, we solved (1) for the
gammas using ri = g Wnjk with W represented in the manner of (3) , (4)

through eigenindices as Wijk = Z[p,q,r]V[p]iV[q]jV[r]k say. By exploiting

ni
jk

symmetries, the 64x64 problem (ref. 5) of inverting (1) for the gammas reduces
to a 10x10 problem for finding Z[p,q,r]. The straightforward MACSYMA solution,
giving terms of up to degree 6 in AA, 5 in BB, is computationally useless (as
suspected by Schrodinger, ref. 4, p. 111): formally, there are some 472 terms
before replacing three scalar symbols by chree hi matrices.

j

The ES field equations, however, entail the gammas in symmetrized or
internally contracted forms, so that it was possible to use eigenindexing to
set them in terms of the basic fields g without resort to the formal inver-

sion of (1). The 16x16 determinant of the homogeneous equation system result-
ing from AP2 was much too big for the computer but could be made tractable:.
(1) Resolve the equations and the bi along vierbein directions, as already done
for the gammas by the W -+ Z above. (2) Then bgb has to be two formally identi-
cal terms, one in eigenindices 1,l ' the other in 2,2'; replace variables having
2,2' indices with random integers. (3) Any b. given in eigenindex or vierbein

components as (blYbl',b2,b2') = - b is orthogonal, for any possible 'metric',
to c = (b1,-bl',O,O) and to d = (Oy0,b2,-b2') in the sense big c =bgc Ecgb-0

and bgd E 0. A final such vector e = (blYbl',-b2,-b2') satisfies cge E 0 E dge;
cgd f 0 but bge # 0 generally. TaFe the amplitude-tensor dg as a 4x4
quadratic form (exterior product) in the near-orthogonal vector system b,g,d,e,
with 16 unknown coefficients as new 'amplitudes'. The substitution
diagonalizes the 16x16 equation system into 6x6 and 10x10 blocks. Both blocks
appear degenerate (coefficient determinants vanishing). But eliminating

ij

1

ij ,.ij -
- - j

ij

90

equations of the result one at a time gives a sequence of identical bgb factors
in which the structure of the symbols of the 1,l' term is matched by thdt of
the integers of the 2,2' term. The resulting eigenindexed bgb then implies a
iij from which the light-cone metric is then, via Q(h) - = 0

where S is an undetermined conformal scalar. But: the nature of the waves
propagating according to the bgb light-cone equation remains unknown, owing to
complexity and, particularly, to failure to eliminate 'gauge transformations'
mentioned in AP3. (That failure may also account for the degeneracy of the
coefficient determinant.)

In GR the bgb = 0 light-cone equation is known a priori; it is asserted in
the metric tensor In examining final equations,for the nature of the

'vacuum waves' one can take as locally diagonal, thus rendering symboli-
cally indexed expressions in compact, inspectable forms. No such diagonaliza-
tion is seen valid in ES theories, and finding bgb may always have to be done
with explicit components. If so, the foregoing sketch of a route to bgb will
save much time.

ij'
ij

Published variants of ES theory use the gammas and are thereby unnecessar-
ily complicated. In Riemannian geometry the gammas, defined in terms of the
metric tensor g are used for forming tensors from derivatives of further

.scalar and tensor objects. But ES theory is in terms of the g from which the
gammas are defined, via equation (l), and there are no further objects. There-
fore the gammas are superfluous. The ES equations follow GR by using a Riemann
tensor given compactly in terms of the gammas and their first derivatives. The
Riemann tensor has two basic definitions, equivalent in GR: The coefficient of

tensor T in Ta;b;c - Ta;c;b is the Riemann tensor R abc--but there is no Ta in
ES theory for which this function of the Riemann tensor might be needed.
Alternatively, the lower-indexed Riemann tensor R is the non-trivial tensor

of lowest degree formable from a 'metric tensor' and its derivatives.

Handcrafting gives, with

ij'

ij

d
d

i jkl

gi j

+ IExy ([ijx][kny] - [if2x][kjy])

91

I

in which IEij is the (symmetric) inverse to g - (gij + gji)/2, and order of
the indicesisto be respected. (Compare eq. (7)with eq. (3 0) of ref. 6, p. 153.)

(ij 1
- -

The class of PFT's now under consideration is therefore restricted to
those starting from the foregoing tensor Rijkm contracted to a curvature

scalar R by some multiplier M concocted from g , h ng ,..., and then
multiplied by various similarly available Jacobians J to form the scalar

density L; these forms are essentially unique in GR, where M - g g and

J = (det(g. .)) . In this general ES theory, each term of L can have a scalar
coefficient arbitrarily dependent on scalars AA,BB formed from g

i jkm ij i nj

i jkm - AikAjm

ti
= J

ij'

Tensor Riknj
has the familiar symmetries

In forming a 'curvature scalar' M;kR E M

symmetries to the multiplying tensor M. Equation (2) restricts the occurrence

of gij usable in M to essentially four forms gij,gji,hi gmj and h mg , generi-
cally represented here as F . In view of the symmetries, M can be given as a

10-parameter form Me of symmetrically arranged products F F plus a

3-parameter form Mo of products F F . In addition, from totally antisymme-
trized derivatives ag(i,j,k) = g one can assemble a legitimate two-

parameter scalar NN = N (a , b , c , d , e , f) a g (a , b , c) a g (d , e , f) ; tensor N has two
additional parameters. Thus symbolic action integrand L = Mf:R+NN is a form
linear in a total of 15 free scalar parameters. Any 'parameter' is actually
some function f(AA,BB) depending on the basic fields g via the AA,BB of
equation (2).

ikn j
Rikn j ' one may assign the same

j mi

ij m

in jk

ik nj

[ij ,k 1

ij

CONFORMALLY INVARIANT ES THEORY

The present attempt is to assign the foregoing 15 parameters s o that LL is
conformally invariant, i.e., its value is unchanged by the substitution
gij 4 gij -I- wgij, where w is an arbitrary infinitesimal scalar function of
coordinates. We choose conformal invariance because no plausible alternatives
are visible [suggestions are welcome, particularly those having 'spinor' impli-
cations], because physicists have said kind things about such conformal invari-
ance, because the problem of assigning conformal scalar S of AP5 and equation
(5) becomes eliminated, and most of all, because the choice appears to give a
well posed, doable problem having a possibly unique answer.

The present situation with this problem is best described as fluid. The
implication, if any, of 'gauge invariance' is not yet understood in this con-
text. Several unmentioned algebraic simplifications make the problem easier

92

than it appears at first glance; not all such algebraic niceties are incor-
porated, and the present package of computer commands requires t o o much think-
ing at the keyboard.

APPROPRIATE SYMBOL MANIPULATIONS IN MACSYMA

First described are notational and other conventions, then some general
purpose commands and functions.

No attempt at displays in textbook format is made; one has to remember that
both indices i,j of gg and the first index of gam and gam1 are upper (U)
indices whereas the other indices above are lower (L) indices. Thus

g gnj
appearing once as U-index and once as L-index. U-index i and L-index j here
are 'free' indices appearing once each.

ni
+ gg(n,i)+:g(n,j); repeated index n is a 'dummy' index of summation

An indexed expression EE is valid only when each free U- or L-index is
represented by the same symbol (letter or atom), and occurs only once, in each
term of EE, and when any dummy index symbol appears just once in any term as
U-index, once as L-index. A validity-checking TEST(EE) is readily constructed.
One builds desired forms by 'contraction' on one or more free indices. For
example, s = s(i,j,k) = t(i,j,n)>;u(n,k) = t k , where free U-index n in u,
L-index n in t, becomes dummy index n in the contracted tensor product s = t;;u.
To JOIN t,u as s then entails 1) preserving the final free indices i,j,k and
'contraction' dummy index n while 2) changing dummy indices x of say u so as to
differ from these of s . This is done by DECLARE'ing i,j,k,n to be constants
while changing any item say x of LISTOFVARS(u), found in the similar list of
dummies of s , to some new symbol say xrr = CONCAT(x,rr). But this process
should not change other atomic symbols such as the AA,BB of (2)--such symbols
are thus initially DECLARED constant.

O f course replacement symbol xrr could be found in t; also t,u and a valid
resulting s may contain identical, possibly cancelling, terms disguised by
having different symbols for the same dummy variable. Thus one wants a func-
tion converting each term of an expression EE to consistent canonical indexing.
Command hOx(EE,ILIS) does this term by term: ILIS is a list of free indices
declared constant. Internal to hOx, YLIS = [yl,y2, ...I is an adequately long
list of symbols declared constant, and NAMES is an alphanumerically ordered
internal list of these names (such as g,gg,gaml) which occur in the term.
Suppose ILIS is [b,x,y,a] and f(i,j,b,p,a) is a factor in the formal term of
EE; hOx finds this factor as the one containing b, finds its LISTOFVARS
[i, j ,p] , substitutes yl,y2 ,y3 for i, j ,p throughout the term and reconsiders

93

the result with ILIS = [yl,y2,y3,x,y,a],YLIS = [y4,y5,...]. Or if the initial
ILIS were empty and the foregoing factor's name f is first in NAMES then
yl,y2,y3,y4,y5 are substituted in order for the LISTOFVARS [i,j,b,p,a] and
become the new ILIS . At the close, the constants [yl,y2.. . 3 of YLIS are
replaced by variables pl,p2, ... to avoid conflicts in any iteration of hOx.
I believe that hOx converts a valid EE to unique form of minimal length when
each term of EE has some dummy-containing name occurring just once so as to
appear in NAMES, and the order of indices within each named object is unique.
Otherwise hOx(EE,[]) will produce an EE with dummy symbols pl,p2 not neces-
sarily in minimal form. Regrettably, this now calls for ad hoc measures and
iterations of hOx, which never increase the number of terms.

The symmetry IE(a,b) = IE(b,a) is invoked automatically by a prior
DECLslRE(IE,COMMUTATIVE); this imposes the canonical ordering IE(a,b) for either
form. Declaring A W commutative, and C constant, then doing LISTOFVARS
(APPLY(ALF,[a,y,C,x,b,x2])) produces the alphanumerically ordered list
[a,bYx,x2,y]--sans constant C y of course. ALF may analogously be used to
order g -, g2(i,jyy,x) g2(i,j,x,y) in the latter form, and used in canon-

ical antisymmetrizing commands.
ij ,F

Perhaps the central problem in simplification of dummy-indexed expressions
is seen in an example: Let scalar form F be IEv(K -K). Tensor IEXY+IE(x,y)
has been declared 'commutative' so that IE(y,x) appears alphanumerically
reordered as IE(x,y). Thus, though nothing is asserted about tensor K, scalar
F as contracted from IE,K above is to vanish--it would if the indices of the
second factor of F were canonically reordered as permitted by the symmetry of
IE. Our dodge has been: substitute the name AK for K in F, do hOx(F, [I) so
that the priority in the order of the new indexing goes to AK, resulting for-
mally in F = AK(p1,p2)*(IE(p1,p2)-IE(pZYpl)), whereupon the declared symmetry
of IE produces cancellation in the last factor and one gets the wanted F = 0.

XY YX

Clearly, what one wants is some simplifier that orders dummy indices, of
factors in a monomial, taking full account of declared symmetries of tensor
factors in which dummies have already been assigned. The problem is compli-
cated by (a) the variety of possible symmetries and antisymmetries, (b) multi-
ple occurrences of tensor names in the monomial, (c) the present necessity to
change dummy eigenindex p' = op[p] in step with p = op[p' 1, (d) the utility of
keeping intact the symbols for free indices.

One plausible way to keep free indices, say i,j,k, of a form
f = f(i,j,k,dumies), is to contract f with a 'holding tensor' H = H(i,j,k),
process the contracted scalar Hf, and then substitute back i,j,k for the
plYp2,p3 of the final result as indexed with priority set by the name H. But
this sometimes results in some terms with the anticipated factor H(plYp2,p3)
while other terms have factors say H(pl,p2,op[pl])--making for unwanted
thought and typing.

The sketched algorithms of AP2,AP3,AP4 require different types of differ-
entiations. All can (apparently) be done in a single overall command
TENSDIFF(EE,NLIS) by supplying appropriate versions of DIFFLIS, listing forms
of derivatives, when TENSDIFF calls on it. NLIS lists names of tensors

94

considered differentiable, all other symbols and functions being considered
constants. Example: TENSDIFF(f(i,j,p)fcg(i,j), [g]) first sees name g in NLIS,
goes to a list GSUBS to find g(a,b):=g%[a,b] evaluates EE as FEE:f(i,j,p)*g%[i,j]
does DIFF(FEE) returning f (i, j ,p)'kDEL(g%[i, j I) , replaces the MACSYMA symbol
DEL by DDEL, DDEL(array member) being specified in DIFFLIS, e.g.,
DDEL(g%[a,b]):=gl(a,b,ik). Such indexed forms g%, gg%, gam% as may remain are
reconverted to initial forms through the array definitions of list GBACK,
reversing GSUBS. Index-renaming as in JOIN prevents dumy indices occurring
in DIFFLIS from conflicting with those already in EE. The generic differen-
tiation index "ik" is then to be replaced by some chosen symbol, and before any
second differentiation the result should (as with an iterated JOIN operation)
be boiled down and converted to relatively harmless indices via hOx.

After all differentiations, one goes immediately to eigenindexed forms as
much more compact and perspicuous. The basic substitutions are g(x,y):=yW(x,y)
and gg(x,y):= xftf(x,y)--the tensor indices x,y of g,gg become eigenindices
and the freestanding factors x,y are in effect the eigenvalues u of equation
(4). Function NUFF then sequentially extracts each' factor f(p,q) and in its
coefficient replaces q with op[p], op[q] with p. Function CRIMP(EE,NAMES) then
renames and reorders, term by term, the eigenindices p together with their
'opposites' p' = op(p) in the general manner of hOx, though with priorities as
set by the ordered list NAMES of germane function names. With sufficient
application of CRIMP, some minimum of ad hoc substitution, and luck, the named
objects are canonically indexed and may be factored out, leaving a polynomial
P = P(A,...,pl,pl',...) linear in undetermined parameters A . One must event-
ually allow for p' = op[p] as implying p' = l/p--but not too soon, for expres-
sion pJ;p';kZ(other indices) represents a sum over eigenindex p with result 42.
Function CRIMP leaves indices of objects in NAMES as constants, other free-
standing indices, like the above p,p', as variables. Function CFDO does sums
over such variables: CFDO applied to p'9' yields 4 , applied to p'nf.pnk2 yields
the scalar AA of equation (2), etc. Polynomial P is reducible to degree 3 in

p2 through Q(p) = 0 , equation (2). Requiring P to vanish then gives a set of
linear relations among the parameters A , which may now be solved for in
f ami 1 iar ways .

2

REMARKS

Described elsewhere in these Proceedings (ref. 7) is a tensor manipulating
package ITMS, designed primarily to analyze field equations of GR based on a
symmetric metric tensor 2 Our developing package is aimed at finding 2

ij' ij
as upshot of field equations derived from action integrals based on non-
symmetric tensors. There appears to be no significant duplicati,on of ITMS
items. I welcome appropriate extensions of ITMS and recommend its use in case
of overlapping capabilities.

I call attention to the problem of providing a spinor representation
natural for the non-symmetric g The present n,n' eigenindexing is sugges-

tive of two-component spinor notation, and the eigenvectors may provide a
natural framework for a spinorization.

ik

95

REFERENCES

1. E i n s t e i n , A . : Meaning o f R e l a t i v i t y . F o u r t h o r F i f t h e d . P r i n c e t o n
Univ. Press , 1955.

3 . P i r a n i , F . A . E . : I n t roduc t ion t o Grav i t a t iona l Rad ia t ion Theory .
Brandeis Summer Ins t i t u t e i n Theore t i ca l Phys i c s 166 , 1964 .

4 . SchrGdinger, E . : Space-Time Structure. Cambridge Univ. Press , 1950.

5. E i n s t e i n , A . ; Kaufman, B. : A l g e b r a i c P r o p e r t i e s o f t h e F i e l d i n t h e
Rel .a t iv i s t ic Theory of the Asymmetric F i e l d . Ann. of Math., V O l . 59, no. 2,
1954, pp. 230-244.

6 . McConnell, A . J . : Applications of Tensor Analysis. Dover Publ., 1957.

7. Bogen, R . A. ; Pave l le , R . : Indicia1 Tensor Manipulat ion on MACSYMA. 1977
MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper no. 9 o f t h i s
compilat ion.)

96

11

BLACK HOLES AND RELATIVISTIC GRAVITY THEORIES

A . J . Fennelly
Physics and Astronomy Department

Western Kentucky Un ivers i ty
Bowling Green, Kentucky 42101

Richard Pavelle
Log i con, Inc .

Hartwel l Avenue
Lexington, Massachusetts 02173

ABSTRACT

We c o n s i d e r a l l p r e s e n t l y known re la t i v i s t i c g rav i ta t i on t heo r ies wh ich have
a Riemannian background geometry and possess exact s ta t ic , spher ica l ly symmetr ic
so lu t ions wh ich a re asympto t ica l l y f la t . We show each t h e o r y p r e d i c t s t h e
existence of t rapped surfaces (black 'holes). For a g e n e r a l s t a t i c i s o t r o p i c
m e t r i c we use MACSYMA t o compute the Newman-Penrose equat ions, the b lack ho le
radius, the impact parameter and capture radius for photon accret ion, and ver i fy
asympto t ic f la tness . These r e s u l t s a r e then applied t o several o f t h e b e t t e r
known g r a v i t a t i o n t h e o r i e s . It appears the claims of Hawking, Lightman, Lee and
Rosen regarding the existence of black holes i n s e v e r a l t h e o r i e s a r e n o t v a l i d ,
and b lack ho les a re a na tura l consequence o f present ideas about gravity.

INTRODUCTION

The sub jec t o f black holes has become very popular i n r e c e n t y e a r s . With

dozens o f papers appearing i n s c i e n t i f i c j o u r n a l s each month and p o p u l a r a r t i c l e s

i n abundance, the sub jec t o f black holes i s a t rue mystery s ince there i s no

known method for observ ing them d i r e c t l y If indeed they exist. Opponents develop

theor ies wh ich they be l ieve e l im ina te b lack ho les en t i re ly wh i le p roponents

a t t e m p t t o show tha t b lack ho les a re leg i t imate o r tha t the i r ex is tence I s

97

temporary i n the evo lu t i on o f ce r ta in c lasses o f s ta rs . Our purpose i n t h i s paper

i s t o show tha t b lack ho les a re a natura l consequence o f t h e : b a s i c f o r m a t o f

g r a v i t a t i o n t h e o r i e s (a t t h i s t i m e) when s o l u t i o n s o f f i e l d e q u a t i o n s c a n be

found i n exact form and where the background geometry o f the space- t ime i s

Riemannian. The ca lcu lat ions invo lved in the analys is are ext remely compl icated

and we would not have attempted t h i s p a r t i c u l a r p r o b l e m w i t h o u t t h e a i d o f

MACSYMA. MACSYHA possesses a number o f special purpose r e l a t i v i s t i c programs as

p a r t o f t h e component tensor manipulation system, CTMS, i n a d d i t i o n t o ITMS

(re f .1) . Given the met r ic components as i m p l i c i t o r e x p l i c i t f u n c t i o n s o f t h e

coord inates, .CTMS can compute a l l geometrical objects such as Riemann

tensors,etc . It also has the capab i l i t ies fo r f ind ing the Newman-Penrose spin

c o e f f i c i e n t s a s w e l l as a host o f other objects owing t o t h e g e n e r a l i t y o f

MACSYMA and CTMS.

TRAPPED SURFACES AND PHOTON CAPTURE

The l i n e element f o r a s ta t i c spher i ca l l y symmetric met r ic may be w r i t t e n i n

i s o t r o p i c f o r m as

dS2 = e2#(dR2 + R2dn2) - e2+dt2 (1)

where $ (R) and +(R) . We use isotropic form rather than Schwarzschi ld coordinates

f o r a g l a n c e a t t h e l i t e r a t u r e shows tha t (1) w i t h i t s h i g h degree o f symmetry

l e n d s i t s e l f t o c l o s e d f o r m s o l u t i o n s more readi ly than o ther metr ics . For

example a closed form solution of the Brans-Dicke theory i n S c h w a r z s c h i l d

coordinates has never been exhibi ted (ref .2) .

98

A t rapped sur face (the phys ica l measure o f t he rad ius a t wh ich phys i ca l l aws

change) i s one fo r wh ich a l l . geodesic congruences converge, i . e . , s t r i ke a

s i n g u l a r i t y (r e f . 3 , r e f . 4) . The measure o f t he convergence o f a geodesic i s t h e

spin c o e f f i c i e n t (r e f . 5)

.
where l,, i s t h e t a n g e n t v e c t o r t o an outward directed nul l geodesic congruence,

the semi-co lon i s cova r ian t d i f f e ren t i a t i on and ns(i s t h e complex v e c t o r

spann ing t he ce les t i a l sphere. The vectors lC, m and Zfi are combined w i t h an

ingo ing tangent vec tor nfi t o form a complex n u l l t e t r a d . The m e t r i c i s g i v e n by

C'

gfiv = ' (p 5) - "(p% (3)

where () i s symmetrization. The te t rad obeys usua l inner p roduc t ru les (re f .5) .

The i s o t r o p i c m e t r i c (1) may be w r i t t e n i n terms o f a new lum inos i t y coo r -

d i n a t e by the t ransformat ion

e'bdt = e4dv + e#dR

which gives the t ransformed metr ic (1) as

ds2 = -e2+dv2 - 2e++#dvdR + R2e2$m2

The n u l l t e t r a d components a re eas i l y found, and the complex expansion o f t h e

n u l l congruence i s then found by MACSYMA t o be

p oc 1 + R$' (6)

where $' = dJl/dR. The expansion p will be negative and a t rapped sur face w i l l

form o n l y if 1 +R$" < 0. Clear ly, a l a rge c lass o f me t r i cs will s a t i s f y t h i s

c o n d i t i o n f o r some c r i t i c a l f i n i t e v a l u e (s) o f t h e r a d i u s w h i c h we denote by R t .

99

This trapped surface location i s coordinate dependent. For comparison we shall

wish to transform the expression Rt tu Schwarzschild coordinates by choosing the

coordinate system in which we redefine the radius by P = Re$. Thus having found

the trapped location for (1) we easily find rt.

For a metric to represent the gravitational field of an isolated particle it
I

i s necessary that the field vanish asymptotically at large distances from the

particle and the space-time reduce to that o f special relativity. The invariant

measure of "asymptotic flatness'' is satisfied if the Weyl invariant

q2 = -I/Z Cabcd lanb(lcnd-mc#) (7)

vanishes asymptotically as R where Cabcd i s the Weyl tensor. For the metric (1)

we find CTMS gives the following expression for the Weyl invariant as

e-2$

*2 = "" (9' - 4' + R (4" + (4')2 - Z+'#' - # " + (9')') (8 1
12R

It is well known that General Relativity predicts both the existence o f a

trapped surface and the logically related physical consequence which is an impact

parameter for particle capture residing outside the trapped surface (ref.6). This

i s a non-Newtonian effect and it is therefore of interest to determine whether

other relativistic gravity theories also predict such a phenomenon. The only

assumption we make is that the geodesic equations which are valid in General

Relativity hold in other theories too. This assumption is reasonable since

alternatives to the geodesic equations of motion have not been proposed.

For the metric (1) and motion in the equatorial plane the geodesic equations

100

immedia l t e l y g i v e two constants of the motion h, and K . These f o l l o w r e s p e c t i v e l y

from g++ ds/d+ = 0 and gtt ds/dt = 0. Wri t ing x = K/h as the impact parameter

one f inds orb i ta l equat ions which may be p u t i n the form

dR R r

We proceed now d i r e c t l y t o t h e photon E=O, s i n c e m a t e r i a l p a r t i c l e s a r e

more d r a s t i c a l l y a f f e c t e d and will simply give more extreme phys ica l behav io r .

O r b i t s a r e s t a b l e down t o a c r i t i c a l r a d i u s g i v e n by R=Rc. We f i n d a genera l

method f o r computing the value o f Rc i s g iven by s imu l taneous ly se t t ing

dR/d+ = 0 and d/dR (dR/d+) = 0 . These equations also give a corresponding

c r i t i c a l impact parameter x,. These condi t ions are found to g ive Rc f rom

1 + R(+’ - $’) = o
R=Rc

and

f o r the corresponding capture impact parameter.

VALUES OF THE PHYSICAL PARAMETERS

We now apply MACSYMA to the equations derived above f o r t h e s t u d y o f v a r i o u s

g r a v i t a t i o n t h e o r i e s . We adopt the fo l low ing no ta t ion fo r our phys ica l

parameters:

R t = locat ion(s) o f t rapped sur faces in isot rop ic coord inates f rom (6)

101

I .

rt = corresponding locat ion(s) i n Schwarzschi ld coordinates by transformation

R, = l o c a t i o n (s) o f photon cap ture rad i i in i so t rop ic coord ina tes f rom (10).

r, = corresponding loca t i on i n Schwarzschi ld coordinates by transformation

Ac = corresponding impact parameter for photon capture(co0rdinate independent)

I n each theory we use MACSYMA t o compute and s impl i fy the phys ica l parameters as

we l l as ve r i f y t he cond i t i on o f asympto t i c f l a tness . By equat ing (1) t o t h e

a c t u a l m e t r i c i n each theory we can so lve fo r 9 and $. Then we use MACSYMA t o

compute (6) , (a) , (10) and (11) as we l l as transform the physical parameters t o

Schwarzschi ld coord inates.

A) GENERAL RELATIVITY: The i so t rop i c fo rm of the Reissner-Nordstrom metric i s

2 2
M - E 2

(1 i "-"" 1
2

2 2 2 2 M - E 2 H + E 2 4 R 2
dS = (a R + dR) (----- + 1) ("" + 1) - """"""""""""- d t

2 R 2 R M - E 2 M + E 2 (12)
(""_ + 1) (""- + 1)

2 R 2 R

where E i s t h e charge o f t h e mass M. We f i n d

Rt = 1/2 (M2-E2)1/2

Rc = 1/4 (M+K) f 1 / 2 4 (M+K)1/2(3M+K)1/2 where K= (9M2-8E2)1/2 and M5K53H

rc = 3M/2 f 1/2 (9M2-8E2)1/2 = (3M+K)3/2/(fi (M+K)1/2)
(13)

The resu l t s f o r t he t rapped su r face l oca t i on a re known whereas t h e f o r m o f t h e

m e t r i c (12) and the photon capture parameters appear t o be new. S e t t i n g E = 0 i n

(13) the parameters become

102

a l l of which are known (ref .7) and conf i rm the va l id i ty o f our computat ions.

B) Rosen‘s Theory (ref.8) : This theory has rece ived w ide a t ten t i on recen t l y

and i s presen t l y t he most popu lar a l te rna t ive to General R e l a t i v i t y . One o f the

r e a s o n s f o r t h i s i s the be l ie f that the theory does n o t p r e d i c t t h e e x i s t e n c e o f

b l a c k h o l e s . We s h a l l now see t h i s c l a i m i s f a l s e . Rosen’s me t r i c i s

and we f i n d

R t = M rt = Hoe

Rc = 2M rc = 2 M G ‘Xc = 2Me

We now see trapped surfaces do e x i s t i n t h i s t h e o r y as w e l l as cap tu re ra ’d i i and

photon impact parameters.

C) Brans-Dicke Theory: We use the met r ic in i t s standard form (re f .2) to f i n d
3 w

2
M (i SQRT(--- + 2) + w + 1)

Rt =
2 w + 3

2 0 2 a

M n
1 - "- - P p + --- + 1

(Rc - a) (Rc + a) x, = """""""""-""""""""""
RC

where

Here too we find a contradiction with earlier results which claimed that Brans-

Dicke black holes are identical to those of General Relativity (ref . 9) . Note

that trapped surfaces do not form unless the coupling constant w is negative.

Also, (17) reduce to (14) as w becomes infinite as one would expect since this

is the asymptotic correspondence limit of the Brans-Dicke theory.

D) Yang-Kilmister Theory (ref.10) : Two solutions of the Yang-Kilmister

equations are given as (ref.11)

ds2 = (l - t ~ / R) ~ (dR2 + R2dQ2 - dt2)
and

104

which g i v e r e s p e c t i v e l y

Rt = M/2 rt = 2M Rc = M/2 rc = 2M X, 2M (22)

The f i r s t s o l u t i o n (19) i s p e c u l i a r as it implies, from (Z l) , an impenetrab le

b a r r i e r a t R = M corresponding to r = 0 i n Schwarzschild coordinates. The se'cond

s o l u t i o n e x h i b i t s more unusual behavior since the trapped surface, location,

cap tu re rad ius and impact parameter reside a t t h e same rad ius i n Schwarzsch i l d

coord ina tes . These , resul ts are not surpr is ing s ince it has been shown, using

MACSYMA, that these metr ics are unphysical (ref .12) by possessing solut ions which

g i ve i nco r rec t phys i ca l p red ic t i ons .

R t = M/2(3*6) rt = M/2(5*26)
(24)

Rc = M/2(3+26) rc = M/2(5+3fi) X, = M/2(7+4d3)

It has been claimed (ref.14) that (23) does not contain a b lack ho le rad ius a t

M / 2 and 3M/2 , where the met r ic components become s i n g u l a r , s i n c e t h e r e r a d i i

cannot be encountered a f ter t ravel l ing a f i n i t e a f f i n e d i s t a n c e . T h i s c l a i m is

i n v a l i d s i n c e , from (24), we f i n d a trapped surface forms a t H/2(3+&) which l i e s

beyond 3M/2. It i s c l e a r a black hole forms i n t h i s t h e o r y too.

105

CONCLUSIONS

We have establ ised that b lack holes are a normal ra ther than a p a t h o l o g i c a l

f e a t u r e o f v iab le g rav i ta t i on t heo r ies . Th i s f ac t i s amp l i f i ed by t h e new

observat ion that photon capture and photon impact parameters are a lso normal

occurrences i n t h e b e h a v i o r o f t h e g r a v i t a t i o n a l f i e l d o f dense bodies. Thus we

have d isproven the c la im that b lack ho les do n o t e x i s t i n Rosen's theo ry as we l l '

as shown that the t rapped sur face ex is ts and can be approached i n t h e L i g h t m a n -

Lee theory. I n a d d i t i o n we have shown t h a t Brans-Dicke black hples are qui te

u n l i k e t h o s e o f General Relat iv i ty . We are now using HACSYHA t o i n v e s t i g a t e a

recent a t tempt in t roduc tng Quantum theory in to the subject o f b l a c k h o l e s i n t h e

study o f the "evapora t ion o f black holes" i n which p a r t i c l e s can tunnel out o f

the t rapped sur face. These r e s u l t s will be presented elsewhere.

106

1.

2.

3.

4.

5.

6.

7.

0 .

9 .

10.

11.

12.

13.

14.

REFERENCES

Bogen, R. A.; and Pavelle, R.: I n d i c i a 1 Tensor Manipulat ion on MACSYMA.
P r o c e e d i n g s o f t h e 1977 MACSYMA Users' Conference, NASA CP-2012, 1977.
(Paper No. 9 o f t h i s Compilat ion).

Brans, C.; and Dicke, R . H.: Mach's P r i n c i p l e and a R e l a t i v i s t i c T h e o r y
o f G r a v i t a t i o n . Phys. Rev., 124, 1961, pp. 925-935.

Penrose, R.: G rav i ta t i ona l Co l l apse and Space-Time S i n g u l a r i t i e s .
Phys. Rev. Let t . , 14, 1965, pp. 57-59.

Hawking, S. W.: Occurrence o f S i n g u l a r i t i e s i n Open Universes.
Phys. Rev. Le t t . , 15, 1965, pp'. 689-690.

Newman E.; and Penrose, R.: An Approach t o G r a v i t a t i o n a l R a d i a t i o n
by a Method o f Sp in Coe f f i c i en ts . , J . Math. Phys., 3, 1962, pp. 566-578.

Darwin, C.: The G r a v i t y F i e l d o f a Par t ic le , I . Proc. Roy. SOC. London A.,
249, 1958, pp. i80-194.

Misner , C. W.; Thorne K. S . ; and Wheeler J . A , : G r a v i t a t i o n .
W. H. Freeman, and Co., 1973, pp. 921-924.

Rosen, N. A Bi -Me t r i c Theory o f Grav i ta t i on .
Gen. Rel. Grav., 4, 1973, pp. 435-448.

Hawking, S. W.: B lack Holes in the Brans-Dicke Theory o f Grav i ta t ion.
Commun. Math. Phys., 25, 1972, pp. 167-171.

Yang, C. N.: I n teg ra l Fo rma l i sm fo r Gauge F ie lds .
Phys. Rev. Le t t . , 33, 1974, pp. 445-447.

Pave l l e , R.: Unphys ica l So lu t i ons o f Yang's G r a v i t a t i o n a l - F i e l d E q u a t i o n s .
Phys. Rev. Le t t . , 34, 1975, pp. 1114.

Pave l l e , R.: Unphys ica l Charac ter is t i cs o f Yang's Pure Space Equations.
Phys. Rev. Le t t . , 37, 1976, pp. 961-964.

L ightman A. P.; and Lee, W. L.: New Two-Metric Theory o f G r a v i t y w i t h
P r i o r Geometry. Phys. Rev. D., 8, 1973, pp. 3293-3.302.

Lightman, A. P.; Press, W . ; P r i c e R.; and Teukolsky, S.: Problem Book i n
R e l a t i v i t y and Grav i ta t ion, Problem.17.12, Princeton Univ. Press, 1975.

107

12 .

The Evaluation of Atomic Variables in MACSYMA *

Jeffrey P. Golden
Laboratory for Computer Science

Massachusetts Institute of Technology

1. Introduction

In this tutorial pager, we explore the many issues fwvolviwg the use of atomic variables, of
nume$, in MACSYMA. We hope thereby to gain insight into the m p k x i t k s of d u a r t t o n
which may sometimes cause frustration to the MACSYMA user. Some sf the simpler aspects will
be glossed over as they are adequately covered in the MACSYMA Reference Manual (ref. l), and
as we may assume that all MACSYMA users are mewha t familiar with them.

2. Evaluation-Free Expressions

W e begin by looking at "evaluation-free" expressions, in which names stand for themselves.

(C l) FACTOR(XA2-YA2);
(D l) - (Y - X) (Y + X)

T h e basic idea in the above example is clear to the MACSYMA user. We wish to factor the
polynomial x2-y2 over the integers, so we type in the m m a n d line shown at (C l) , obtaining the
answer at (Dl) . X stands for Itself and Y stands for itself.

1. Implicit Assignment

Now, we decide to expand the result (Dl). We may m e

(C2) EXPAND(D1);

or more usually

This work was supported, In part, by the United States Energy Research and Development
Administration under Contract Number E(11-1>3070 and by the National Aeronautics and Spaa
Administration under Grant NSG 1323.

109

(C2) EXPAND(%);

obtaining

2 2
x - Y

In this case, we know that D l or X do not stand for themselves, but rather that they both
refer to the expression -(Y-X)(Y+X); D l because MACSYMA implicitly labelled that expression
with "Dl", and X because in MACSYMA it refers to the "previous" expression or computation.

4. Evaluation

It is important to be clear on the process by which the command lines (C l) and (C2) were
handled. The& command lines were evaluated, meaning that in order to determine the
expressions FACTOR and EXPAND were to operate on, their arguments, the expressions XA2-YA2, Dl ,
or X were d d t c d (and simplified) first, and this means that the variables or names in them
were cvducrted one time. Emhat ion of names means that if a name has been ,implicitly or
explicitly assigned a value, that we obtain that value If a name has not been assigned a value,
the evaluator just returns the name itself.

5. Explicit Assignment

We know that we can mplicitly assign a value to a name wlth the use of : (colon). So, if
we wish to hold on to a polynomial, say x2+x+y, and invent a name of out own for it, we can
tPPC

(C3) POLY 1 : X*E+X+Y;
2

Y + X + x

we know that POLYl and 03 are the same in the sense that they both refer to the same expression,
Y+X2+X We also note that even though X and Y have no assigned values (are "unbound?. and
thus evaluation produced no changes in our polynomial, that it has been reordered by the
simplifier. Lastly, D3 being an imfllkUly arslped name goes on the LABELS list, while POLYl
being an explicitly asstgned name goes on the VALUES list, which perhaps is named somewhat
confusingly. (These lists have many uses as noted in the manual.) The following should be c k r :

(C4) POLY1-2+X;

(D4)
2

Y + X - x

110

I
0. MACSYMA Options

We can also use explicit assignment to reset the value of a MACSYMA option. A
MACSYMA o p m is simply a name that has been initially assigned a value by MACSYMA, and
which directs the performance of MACSYMA a certain way by its current setting. Thus, if we
wish to see the computation time elapsed in evaluating command lines, we may type

(cs TIHE :TRUES
time= 1 msec.
(C6) FACTOR(X"3+YA3);
t h e = 90 msec.

2 2
(D6) (Y + X) (Y - X Y + X)
(C7) 1IHE:FALSES

When we reset a MACSYMA option, even if we reset it back to its initial value. it goes on the
MYOPTIONS list.

(C 8) [LABELS,VALUES,HYOPTIONS];
(De) [[Ce, 07, C7, D6, C6, DS, CS, 04, C4, 03, C3, 02, C2,

D l , C l] , [POLYl], [TIHE]]

7. The EV Command

Often. we only wish to reset the value of a MACSYMA option temporarily, say, for a single
amputation. We may do this as follows:

(C9) SIN(X)%COS(X) ,EXPONENTIALIZE;
%I x - X I x X I x - %I x

! %I (%E - %E 1 (%E + %E 1
(09) - """""""""""""""""""""

4

This sets the value of the MACSYMA option EXPONENTIALIZE, normally FALSE, to TRUE only
during the evaluation of the expression sin x cos x, thus causing the trigonometric expression
to be converted to exponential form..

First, let us note that (C9) as given above is an easy way for typing in

(C9) SIN(X)%COS(X),EXPONENTIALIZE:TRUE;

T h e latter form is also acceptable, but the former abbreviated variant is available for many

111

MACSYMA options, and may also be introduced by the user by DECLAREing a variable as an
EVFLAG (see the manual, p. 120).

We also note that (C 9) is an abbreviated syntax for a call to the EV command, and could
have been given as

(C 9) EV(SIN(X)xCOS(X) , EXPONENTIALIZE) ;

EV is by far the most frequently used command in MACSYMA. The above example on the face
of it looks very simple, and indeed, in most instances EV gives the expected result in a
straightforward manner. Unfortunately, as we shall see later on in this paper, EVs many variants
which lead t s id great usefulness, are also the reason for its complexity, in understanding it and
in how it is handled by MACSYMA.

8. Sinple Level of Evaluation

Let's now assign to X the value of Z

W e know what typing in x2-y2 does:

(C 1 1) XA2-YA2;

z

2 2
2 - Y

Let us now request the value of 02:

(C12) D2;

(D l 2 1 x - Y
2 2

We notice that the value of D2 has not changed even though X has now been assigned a value
This is because MACSYMA ordinarily evaluates expressions (in this case 02) only one tim and
docs not reevaluate expressions even If doing so would result in further change.

9. Multileveled Evaluation

One can request evaluation until no further change takes place by using the INFEVAL
("infinite evaluation") flag of EV, as follows

112

(C13) D2,INFEVAL;

(D l 3 1
2 2

z - Y

In designing MACSYMA, we chose to ordinarily evaluate expressions only one time as this
gives the user much more control over hidher expressions in that helshe can control the number
of times evaluation is to take place. In almost every case this is not an important issue as
variables appearing In expressions are usually either unbound (stand for themselves) or are
bound to expressions containing variables all of which are unbound. Thus, in almost every case,
it would make no difference if we evaluated variables only one time or attempted to evaluate
t h h more than once.

However, suppose the user has an expression which is labelled, say, L1, which contains one
or more Occurrences of the variable A, and that A in turn has been assigned as value a large
expression. (One way of accomplishing this easily is by assigning to L 1 before assigning to A)
Then, thanks to the evaluation scheme described above, the user can play around with the
expression L 1 , i . i use L 1 in his/her command lines, without fearing that a large expression will be
plugged in for A before the user wants this to occur.

(As another example, when the user typed D2; at (C l Z) , the user may have only wanted to
see 02 displayed again, rather than wanting additional computation to take place at that point
Or, when the user types VALUES; at MACSYMA, the user wants to see the names of the variables
that have been assigned to, rather than their values.)

When the user wants this plug-in to L1 to take place, this may be done simply with
MACSYMA by typing any of the following command-lines:

EV(L1) ; or L1,RESCAN; or L1, INFEVAL;

The first two are equivalent, and take advantage of the fact that calling EV causes the expression
L1 to be evaluated one extra time, i.e. twice. Thls is obviously the reason the flag is named
"RESCAN". (The reason for this extra evaluation will be gone into further below, when EV is
taken up again.)

The above example, however, is actually somewhat artificial. If the user wanted the above
effect, it is more usual to either postpone assigning to A until that assignment is needed, or to use
the SUBST comqand when needed to substitute in that large expression for A However, one
circumstance in which a sltuation similar to that above occurs is when using the SOLVE command,
as In the following:

(C14) KILL(X)$

(C15) SOLVE(XA3+X+C,X);

(€15) I

2
WRT(27 C + 4)

C 1/3

2
(E15 - -)

We note that in order to keep the solutions E17, E18, and E19 to the cubic equation somewhat
smaller than they otherwise. mlght be, the label E16 is automatically asslgned by SOLVE to a
subexpression common to all three solutions. The label E15 is also generated as an auxiliary
label. Thus, we gain somewhat in the size of displayed expressions at the expense perhaps of
sane convenience in manipulating the expressions.

Now, let us look at what might be seen by some as a problem with MACSYMA's evaluation
and simplification scheme. Suppose we have

(C20) SIN(X)+COS(X);
(020 1 COS(X) SIN(X)

(C21) EXPONENTIAL1ZE:TRUE~

(C22) DIFF(D20,X);

"

Note that the EXPONENTIALIZE flag has been reset in the middle of a computation. T h e result
obtained in D22 (which, by the way, is equivalent to COS2(X)-SIN2(X)) at first sight may be
surprising to the MACSYMA user. We see that even though the EXPONENTIALIZE switch has
been set to TRUE via C21, that 022 still has S I N S and COS'S in it! This can be seen to be a result
of MACSYMA's single level evaluation and simplification scheme in its interaction with the rule
for dlfferentiation of products. Those parts of the resuit which are generated by O I F F are
scanned and converted into'exponentials, whereas the unrescanned subexpressions are unchanged.
The user can obviously obtain the probably desired result, 1.c. a fully exponmtialized expresston,
by aus ing a r m n to take place, e.g. by

X I x - X I x X I x - X I x
%I (%E - %E) (X I %E - X I %E 1 - """"""""""""""""""""""""

4

(C24) EV(D22);
X I x - X I X 2 X I x - X I X 2

(%E + %E 1 (%E - %E 1

4 4
(024 1 """""""""" + """"-""""---

(C25) EXPONENTIAL1ZE:FALSES

(C25 resets EXPONENTIALIZE back to its default value.)

T h e results D23 and 024 are different for reasons explained in the section on EV below.

The single level evaluation and simplification scheme gives the user the extra flexibility
and control desipble in certain circumstances. Also, manipulation of expressions is faster, as
expressions are not ordinarily rescanned unless specifically requested by the user. (An exception
to this is in MACSYMA's rational function package, where, in order for algorithms to work

115

correctly, it may be necessary for expressions to be consistent with the current environment.) An
implementation which automatically rescans expressions whenever flags such as EXPONENTIALIZE
are reset since the last time the expressions were scanned is possible, although cumbersome, and it
would remove some level of control from the user.

10. The EV Command Expla&d

We have seen several examples of the versatility of the EV command above. T h e EV
command is used to contrd the environment In which an evaluation andlor simplification are to
take place. The general syntax is

meaning that the expression exp is to be evaluated and simplified in the environment given by
the remaining arguments, the aref. For example, noting (C9) above

we see that the intention is that the expression SIN(X)+COS(X) be simplified, 1.c transformed, in
the environment where EXPONENTIALIZE is TRUE.

To see how this affects evaluation, we consider the example

2
x + 1

10

T h e expression X (or D26) is to be evaluated in the environment wRere X has value 3, giving 10. X
has value 3 while evaluating X (026) irrespective of any vahe X might Rave in the moutside
world". Also, X will revert to its "outside world" (global) value when evaluation of the call to EV
in C27 is completed. (By the wag, the syntax X:3 may also be used for X33 here.)

Now, jet us see &st how the evaluation of the call to EV in C27 takes place. First, the name
X is evaluated, giving $+I, thereby obtaining the expression EV is to work on. In general, names
appearing in the first argument to EV are evaluated one time at this stage. Usually, these names
are labels which point to (whose values are) the expressions EV is to work on. The evaluation (of
the name X) will 'not take place in a case Dike EV(X2+1,X=3); where the name (X) is the left hand
side of an equatim or assignment. Obviously, the global value of X is not wanted in this case.

Next, X is bound to 3, and the expression X2+1 is evaluated in this environment, giving IO.
So, we note that the original expression X was evaluated & i.e. one extra time.

116

Using this! information, we can analyze how the command lines (C23) EV(DIFF(020, X)) ;
and (C24) EV(022) ; are handled. In the case of C23, first the values of DZO (which is
COS(X) f l I N (X)) and of X (which is X) are retrieved. Then, the resulting expression
DIFF(COS(X)d IN(X) ,X) is evaluated, which means, since EXPONENTIALIZE is TRUE and since
the evaluation of arguments takes place before DIFF is called, that COS(X) and SIN(X), are
converted to exponentials before the differentiation is carried out. Thus, we see that
EV(DIFF(D20, X)) ; is equivalent here to DIFF(EV(D20), X) ;. In the case of C24, first the .value
of D22 is retrieved, which is an expression containing both SIN'S and COS'S and exponentlals.
Then, this expression is evaluated, which in this case, since EXPONENTIALIZE is TRUE, simply
causes the Occurrences of .SIN(X) and COS(X) to be converted to exponentials.

Noting the above analysis, the examples in the manual following the description of the
SUBST command should be clear. There, the differences between sdstitution as performed by the
SUBST command and binding as performed by EV, as well as the differences in the order in which
and extent to which evaluation takes place are illustrated. (The arguments in a call to SUBST are.
of course, evaluated before substitution takes place.)

We have seen above how EV may be used to affect evaluation. We have also seen the use
of the INFEVAL flag of EV to cause repeated evaluation of an expression until no further change
takes place. Now, we will briefly mention other flags of EV which may be used to affect how
evaluation and simplification takes place.

Especially when we use EV to plug in solutions obtained by SOLVE, eg.

(C28) XA3+X+C,E19,RATSIMP;
2 2

108 E15 - 27 C - 4
(D28 1 """"""""""

108 E15 - 54 C

we may wish one more evaluation than normal to take place, in this case to eliminate the E15.
This may be done with the INFEVAL flag of EV, but if we wish to control the number of extra
evaluations (usually, only one will be necessary), this may be done with the EVAL flag of EV.

(C29) XA3+X+C,E19,EVAL,RATSIMP;
(029) 0

In fact, one extra evaluation will take place for each mention of the EVAL flag. EV finds that E19
evaluates to an equation that is used to obtain a value for X The RATSIHP flag is a so-called
EVFUN which is used to obtain the simplification we desire, by composing it around the first
argument, 1.e. C29 is quivalent to

I

(C29) RATSIMP(XA3+X+l),E19,EVAL;

I ..

(EXPONENTIALIZk, used above, is called an EMLAG. It is a true fhg , used to affect simplification
of Mgonomaric hnctions.)

There is also a NUHER flag to EV which is used to obtain numerical, i.c floating point,
answers where possible. Egg.

((230) SIN(l/2)+SQRT(l+%I),RECTFORH,NUMER;
(030 1 0.45508987 %I + 1.57810968

Sometimes, eg. when the NUWER effect of EV is desired, but the extra evaluation done by EV is not,
the NOEVAL flag may be used to indicate that substitutions rather than evaluations are to be used
where necessary. (An example of the use of NOEVAL is given later.) EV will also use substitutions
rather than binding when the left hand sides of equatlons in its latter arguments are non-atomic
E%.

(C31) 2~IN(X)"2+2*COS(X)"2,COS(X)"2=l-SIN(X)"2,EXPAND;
(031 1 2

EV also plays a role in MACSYMA's nounlverb scheme in converting nouns like 'D IFF
rderivative") into verbs like DIFF (liiifferentiate"), as noted in the manual.

11. Program Binding

This section discusses the binding of names to values in function calls and the handling of
BLOCK variables. We proceed by considering an example. The following function definition for
NYTAYLOR defines a very limited Taylor series capability.

(C32) HYTAYLOR(EXPR,VAR,POINT,HIPOUER):=
BLOCK(CRESULT1,

RESULT: SUBST(POINT,VAR,EXPR),
FOR 1:1 THRU HIPOWER

DO (EXPR: DIFF(EXPR,VAR)/I,
RESULT: RESULT+(VAR-P0INT)"I

fiUBST(POINT,VAR,EXPR)),
RETURN(RESULT))S

(C33) HYTAYLOR(SIN(X),X,A,3);
3 2

COS(A) (X - A) SIN(A) (X - A)
(D33) i - --------------- - --------------- + COS(A) (X - A) + SIN(A)

I' 6 2

The definition for HYTAYLOR has four names, EXPR, VAR, POINT, and HIPOWER, which are

118

I called the "formal parameters" of the function definition. They are bounc d in turn to the values ! of the argumend or "actual parameters" of the function a l l ; in the case of (C33), to SIN(X) , X,
A, and 3, respcitively, (X and A are unbound) when the call is handled. When the body (right
hand side of the function definition) of HYTAYLOR is exited upon completion, these bindings are
undone, and EXPR, VAR, POINT, and HIPOWER again take on whatever values they may have
had prior to the call. We also note that EXPR is assigned a new value each time the W statement
bps . This, of course, causes no difficulties.

The definition also has a local BLOCK variable RESULT. Being a BLOCK variable, it is
treated as unbound upon entering the BLOCK, and in this case, in the first actual statement of the
BLOCK, it is assigned to. RESULT is reassigned in the body of the DO statement, and, noting the last
statement of the BLOCK, its final value is actually the value returned by the call to HYTAYLOR
And, like the formal parameters of the definition, when the BLOCK is exited, RESULT takes on
whatever value it may have had outside the BLOCK.

(We note that we can use this last fact to temporarily reassign the value of a MACSYMA
option, as in the following example for teaching MACSYMA a possible simplification rule ô o +
1. Here, we want simplification turned off while the rule is being set up to avoid getting an error
message.

(C34) O^O;
0

0 has been generated

(G35) ~~LOCK([SIHP],SIHP:FALSE,TELLSIHP(OAO,l));
rule dlaced on
(035) [#RULEI, SIHPEXPT]

Lastly, thd definition has a local DO variable L I is given an initial value of 1 in the
definition. This is the value I has the first time through the body of the DO. Each successive
time through the body of the DO, the value of I is incremented by 1. And, just as with BLOCK
variables, when the DO statement is exited, I takes on whatever value it may have had outside the
DO.

The above example exhibits no real difficulties. When a function call is made, variables
are bound to certain values. The values these variables had prior to these bindings are placed on
a list, and when the body of the function, BLOCK, or DO statement is exited, these prior values are
retrieved and the variables are reassigned to them.

But, let us !exhibit a case that doesn't work 50 well. Consider

(C37) F(X):=SIN(X)+XS

119

- SIN(X) - X
This is surely the answer we expected. We note that X was bound to -X during the evaluation of
the body of the definition for F. But, what if

(C39) F(X):=EV(SIN(X)*X,NlMER)S

0.97942555

SIN(X) + X

T h e intention of the user is to obtain numerical answers in cases like C40. But, notice what
happened In evaluating the command line for C41. Variables in EVs first argument are
evaluated twice, and X evaluated twice gives -(-X) or X, not the -X the user probably intended.

One way to get around the problem In this casc Is to use the NOEVAL flag to EV.

(C42) F(X):=EV(SIN(X)+X,NUHER,NOEVAL)S

Note that SIN is handled by the simplifier, rather than by the evaluator.

In general, however, when EV is used as above in the body of a function definition, a better
and sometimes necessary solution is to name one’s local program variables (Le. function, BLOCK, or
DO variables) differently from one’s symbolic variables (the variables appearing in one’s actual
expressions). E.g. if one expects that %X will not appear in one’s expressions (or in that of a user
of one’s programs!), then the following will work.

(C44) F(XX):=EV(SIN(%X)+XX,NUMER)S

Problems like the above occur rarely in using MACSYMA We are thinking about
solutions to it. It Is discussed in reference 2 and a p i b k solution via a change In
implementation of MACSYMA is proposed there.

120

12. Single-Quote, and Quote-Quote

Single-quote (’) and quote-quote (”) are two operators which affect the evaluation of
names (and of other forms) in essentially opposite ways. A complete discussion of these operators
is given in section 3.2 on Evaluation in the MACSYMA manual, and that discussion will not be
repeated here. Essentially, preceding a variable by a singlequote prevents an evaluation from
taking place; while preceding a variable by a quote-quote causes an extra evaluation and
simplification to take place. The effect of single-quote is at evaluation time, while that of quote-
quote is at parse time. Quotequote is often used to cause reevaluation of a C-label.

One interesting use of single-quote is when using the INFEVAL flag of EV. Suppose one has
an expression named EXPR which one wishes to repeatedly evaluate until no further change takes
place. Suppose, however, that EXPR contains a variable, say X, which one would prefer to retain
as a name in the expression, even though X is now bound. One simple way of doing this is as
follows.

EV(EXPR, INFEVAL,X=’X) ;

This assigns to X the value of X during the “infinite“ evaluation of EXPR, thus causing X to
remain unchanged in the process.

(By the way, using singlequote, of course, offers another solution to our problem above, eg.

(C 4 6) F(X):=EV(’(SIN(X)+X),NUMER)S

13. Other Issues

T o keep this paper reasonably sized, only the evaluation of atomic variables was discussed.
Thus, many other evaluation issues were not mentioned. For the sake of completeness, a list of
these omitted issues is given here: Other evaluation-forms, e.g. compound statements, the colon-
colon () operator, LAMBDA notation, APPLY and MAPping, 60 and RETURN, predicate evaluation,
passing function names into programs and the evaluation of function names, passing array names
into programs, the evaluation and simplification of SUM and PRODUCT, the noun-verb scheme,
subscripted variables and functions, running interpreted (normal) functions vs. running translated
or compiled functions, and debugging what the evaluator has done to you. Many of these issues
are discussed at length in the manual, or may be the subject of future papers.

I wlsh to thank Joel Moses for coaxing me into writing this paper, Ellen Lewis for her
helpful assistance, and all members of the Mathlab Group and others at M.I.T. and elsewhere for
our many discussions, agreements, and disagreements on the s u b F of evaluation - a hotly
cantested ISSUC! !

121

REFERENCES

L The Mathlab Group: MACSYMA Reference Manual. Version 8. Lab. Comput. Sd,
Massachusetts Inst. Technol, Nov. 19%.

2. Moses, J.: The Variety of Variables in Mathematical Expressions. Proceedings of the 19'77
MACSYMA Users' Conference, NASA CP-2012.1977. (Paper no. 13 of this compilation.)

122

13

THE VARIETY O F VARIABLES IN MATHEMATICAL EXPRESSIONS

Joel Moses
Laboratory for Computer Science, MIT'

T h e methods of evaluating mathematical expressions in a symbolic mathematical system
differ from system to system. We show that classical computer science evaluation approaches are
inadequate for this task. The problem is that one is mixing two worlds - the world of mathematics
and the world of programming. An approach which separates these two worlds is indicated, and
various alternatives to it are indicated.

Consider the evaluation of the following' pair of statements in a programming language
such as FORTRAN or PL/I. The statements are written in MACSYMA syntax.

After the first statement has been evaluated, the variable 1 will have the value 1 stored in
a cell reserved for y. In evaluating the second statement, C2, the value of y is obtained from that
cell, a constant 2 is added to it, using integer addition , and the result is stored in the cell reyrved
for x. This process of looking up values in cells temporarily reserved for variables is equivalent to
the usual method of evaluation of variables employed in most programming languages.

Now consider a slight variation on the two statements above:

Suppose that y has no value at the time the first statement is reached. What is the value
to be given to x? Different languages will have different results. Some might automatically store
some starting value, say 0, for all variables. Others may discover the problem in the compiler and
give an error message. In an algebraic manipulation system such as MACSYMA, neither of these
actions occurs. The result stored in the cell reserved for x is the expression y + 2. This is obtained
in the following manner. The identifier y is encountered and the cell reserved for i t is examined.
Th i s yields the information that y has no value at this time. Thus the result returned for y is the
expression y itself. Such an action cannot be taken by an algebraic language which does not have
a symbolic expression as a legal data type, and it is one thing which makes algebraic manipulation
languages differ from other languages. Next the constant 2 is evaluated as usual. T h e addition
is handled differently. Since we no longer have numbers only, numerical addition becomes

8. This work was supported, in part, by ERDA contract Number E(l1-1)-3070 and NASA Grant
NSG 1328.

123

simplification of sums. The simplifier may use numerical addition, but in this case cannot, and
thus returns the expression y + 2 to be stored in the cell for x.

Now consider the second statement, C2. The evaluation done here is quite normal, that
is, a constant 1 is stored in the cell reserved for y, Consider the value for x after this point,
however. Either x has the old value of y + 2 or else it has the value 3, which utilizes the newly
obtained value of y. That there is an issue here is due solely to the fact that the variable x has a
value involving the symbol y. In the usual algebraic language, if x depended on an old numerical
value of y, and then y's value changed, no one would expect x's value to change automatically.

Let us consider the alternatives for the value of x again. The value y + 2 is easy to get,
because that is exactly what is stored in the cell reserved for x. We claim that users of algebraic
manipulation systems want to get the value.3 most of the time. There are several ways of getting
that value for x. The rest of this paper will discuss such approaches, and the difficulties that they
engender.

T h e basic idea of the alternative approaches is to re-evaluate the value of a variable.
T h u s in MACSYMA the command:

(C3) x;
will return y + 2, but

(C3') EV(x);
will return 3.

T h e EV function will, in effect, evaluate the expression y + 2 for x. Since y now has the
value 1, simplifying 1 + 2 will yield 3. Thus the MACSYMA user can in this case choose either of
the alternative values for x. The EV command is insufficient in handling more complex cases,
however. Furthermore, experience indicates that the value the user would normally want to see is
3, and thus extra work should be required for getting the y + 2 rather than the 3. as is now the
case.

A simple example, where EV fails to give the desired value, is shown below:

Consider the possible values for x: Using the usual algebraic evaluation scheme, x
evaluates to y + 1. Using EV(x), we would get I + 3 after simplification. Our user probably wants
to see w + 6. We could get that by calling EV twice, or EV(x,EVAL), but that simply exposes the
problem with EV, that one may need to hold its hand until one gets the value one desires. T h e
key to getting w + 6 automatically is to consider another evaluation strategy; namely a Markovian
or infinite evaluation strategy.

124

T h e basic idea behind infinite evaluation is to keep evaluating the results until there is
no change. T h e process ends when one obtains a constant or a variable which has not yet been
given a value. Such a strategy has recently been introduced into EV with the INFEVAL mode.
Thus, EV(x, INFEVAL) would yield w + 6 in the example above.

There are two basic problems with the infinite evaluator strategy. It is not the strategy
you want when dealing with usual programming variables. Moreover, when it is clear that you
want something like infinite evaluation, it is not precisely infinite evaluation that you want. We
shall deal with the latter, and easier, issue first.

Consider a situation which might occur when one uses substitution of variables a
number of times in a problem:

What are the possible values for x? The usual evaluation strategy will yield f (y ,z) .
EV(x) will yield an expression in u and V. EV(x, INFEVAL) will yield an expression in values p
and q. Suppose you wanted to see x in terms of t and J. This request, which is not unreasonable,
is hard to satisfy in general using the strategies we have discussed. There is an easy solution,
however. This is to make t and J temporarily appear to have no value, and then infinitely
evaluate x . We call the role that t and J play in this case shadow variables. Shadow variables are
variables which have known values, but are temporarily considered to be atomic.

Shadow variables are, in a sense, already in use in MACSYMA in various ways. When
solving cubic or quartic equations, certain intermediate results are generated and given E labels.
The f ina l result is given in terms of these E labels. The reason for using the E labels is to keep
the expression relatively small. We claim that the E labels are acting as shadow variables for those
intermediate expressions they possess as values. Unfortunately, there is no easy way to keep the E
labels from being evaluated on command. An expression containing them, when evaluated using
EV, will substitute the values for the E labels. The shadow variable scheme, when implemented,
would allow one to introduce shadow variables and specify exactly when their values are to be
shown. There are yet other situations in MACSYMA where a similar need for shadow variables
shows up. MACSYMA’s constants RE and XPI have numerical values associated with them which
are revealed when one evaluates an expression with, say, EV(expression, NUMER). Thus %E and
%PI may be said to be shadow variables. Similarly the functions SIN and COS are shadowing

125

their numerical counterparts. Thus EV(SIN(l), NUMER) calls the "value" of the SIN function in
order to obtain a numerical result.

In the above we have considered evaluation of mathematical expressions without dealing
with the companion operation, that is, simplification. Since these two operations tend to get
confused, we would like to indicate a possible distinction. We like to consider evaluation as a
relatively straightforward, well-defined, and simple operation whose basic job is to replace
variables and functions with arguments by their "values". Simplification, on the other hand is a
less welldefined operation which does not usually deal with programming concerns such as
variables and their values, but rather with equivalence transformations on the mathematical
obpcts themselves. We would like the result of evaluation to be unique. We know' that the results
of simplification are often not so well defined and different users will want different results.

It turns out that a classic way to implement simplification algorithms is with a Markov
algorithm, Le., infinite evaluation. Since we indicated that infinite evaluation might be of use in
evaluation, it is not surprising that one algebraic manipulation system, SCRATCHPAD, has opted
for having only an infinite evaluation scheme. This is reasonable only as long as one avoids
writing subroutines and stops using variables in the usual programming sense. In such a case, one
can get into unexpected difficulties, with one of the simplest of them shown below:

Consider the value of f(x + 2) called for in C2. In MACSYMA, using the usual
evaluation strategy, you would get x + 3. But with infinite evaluation for all variables you will get
an infinite loop, since the x occurring in the expression x + I in the definition of f(x) forces one to
keep evaluating its value. SCRATCHPAD prevents the user from defining functions in the usual
way, but this is clearly unsatisfactory in general.

Infinite evaluation thus has a drawback in that it allows infinite loops. T h e possibility
for looping may be essential when dealing with most Markov algorithms. But mathematicians do
not evaluate expressions that way! When x depends on y and y depends on x that leads to a system
of equations to be solved and not one to be evaluated or simplified. Evaluation of mathematical
expressions requires a finite number of substitutions and no loops are allowed. We shall call
"finite evalution" the process which evaluates without bound, but which checks for loops and thus
avoids infinite loops. We believe that infinite evaluation has been in vogue in certain symbolic
systems due, in part, to a confusion between simplification and evaluation. Simplification
algorithms, if implemented as Markov algorithms will, in fact, require loops! If a loop is found in
finite evaluation, we shall assume that evaluation stops and an error message is given.

Another approach that has been taken is to recognize that some variables will be
evaluated once and others infinitely, and to force the user to choose the mode by a declaration or a
change in the spelling of the variable's name. An approach which relies on declarations is
essentially the one taken in REDUCE. In addition to our desire for a distinction between finite

126

and infinite evaluation and for a shadow variable capability, we eschew the declaration or the
spelling approach because one does not want users of interactive systems to make declarations
unless they’re absolutely required, as successful interactive systems such as APL and LISP have
clearly indicated. In addition, the declaration approach is unnecessarily restrictive, since it does not
normally allow a variable to be used in both the usual or finite evaluation modes in the same
subroutine, for example.

Hence our goal is to indicate an evaluation strategy that 1) gives the user the usual
strategy when he wants it for a given variable, 2) gives him the finite evaluation strategy when it
is more appropriate and (3) allows him to switch from one mode to the other while requiring
hardly any declarations. This particular feat of magic appears possible when we make the
following observations:

1) Variables used inside subroutines are usually intended for programming objectives
and not as symbolic data objects. Users of such variables will usually want them to be evaluated
just once.

2) Variables used in an interactive step-by-step mode, with the exception of labels, are.
usually intended as symbolic data objects. Users of such variables will usually desire them to be
evaluated finitely. Labels, such as MACSYMA’s Ci and Di labels are not data objects. T h e values
of labels will usually be desired to be evaluated finitely, however.

If we take these observations to heart, then we would evaluate all variables inside
subroutines just once, and all variables occurring in step-by-step (top level) ca!culations finitely.
We could allow for exceptions by declaration, but such declarations will rarely be necessary. Yet
this doesn’t solve the problem. The basic dilemma is that inside a given subroutine one could
have the identifier x representing a local variable (which is to be evaluated just once for its value)
and implicitly have a data object containing the variable x (which is to be evaluated finitely for its
(usually different) value).

Before I describe a proposed solution, let me recall some remarks made to me by the late.
famous computer scientist, C. Strachey, in 1965. Strachey said that mathematicians never really
understood the concept of a variable. The variables in mathematics are clearly constants. It is
computer scientists who were the first to deal with and appreciate variability in mathematical
objects.

I was deeply impressed by Strachey’s comments and to my sorrow I have learned how
misleading they were. Mathematicians, physicists and engineers, I have concluded, have used a
much richer concept of variable than‘ computer scientists have ever dreamt of. Since symbolic and
algebraic manipulation systems are essentially the only computer systems to attempt to deal with
mathematics in the way it is usually dealt with, they have been most hurt by the interpretation of
‘variables in vogue in computer science. In part, computer scientists have been overly enamored by
variability of our variables (e.g.. x : x + I), and have only lately learned that there is much to be
gained in ease of understanding by restricting variability. In part, and this is a major point of the

127

present effort, variables in computer science have not shown much variety of interpretation. T h e
reason is largely that the data objects in vogue in computer science (i.e., numbers) do not possess
much structure.

Getting back to the present subject, we note that one solution is to recognize that there
may be several different Variables with the same name at the same time throughout a computation.
Many languages already allow one to use thesame identifier for both a function and a variable,
since the usage is so very different. Others might let one use array names which are the same as
variable names. Again the usage differentiates them. In mathematics it is common to play such
games, some would call them puns, depending on context to give sufficient information regarding
the type of the variable intended and its mode of interpretation. In our situation, we claim that
there is no acceptable solution unless each variable can essentially have two different values, a
regular one and a symbolic one. At any given time, the value chosen is a function of the
interpretation assigned to the variable. The remaining questions are largely of how one
determines what interpretation to assign.

We are, therefore, led to propose the following evaluation strategy:

Rule 1. A variable used in the top level, step-by-step mode uses its symbolic value, unless
a declaration is made to do the contrary. The symbolic value is then evaluated finitely.

Rule 2. A variable used inside a subroutine uses its regular value which is not further
evaluated, unless there is a declaration made to do the contrary.

Rule 3. A label used at the top level stores its value in its regular value cell. The value
of a label is further evaluated finitely.

Switching modes, an issue we made much of earlier, could be accomplished with EV
using the following rule.

Rule 4. In a subroutine, EV of a programming variable first evaluates using the
variable’s regular value. The result is then evaluated finitely, using only the symbolic values for
any variables. Should a variable given to EV not have a regular value or be declared symbolic, its
symbolic value (which always exists) is used and evaluated finitely.

We believe that such rules allow for the diversity of usage of variables in symbolic and
algebraic manipulation systems that users expect. Since the scheme above has Lot yet been
implemented, we unfortunately do not have practical experience as yet to indicate its acceptance in
such a context, but we hope this situation will be remedied soon.

We shall now discuss various approaches which are closely related to the proposal above.
T h e first is that instead of having two value cells for each variable, one would achieve largely the
same purpose by automatically renaming one .of the variables. For example, any variable
occurring inside a subroutine and not declared to be symbolic could be renamed, for example, by

128

automatically attaching the symbol 9. to the name. Thus, the symbolic and programming variables
would be distinct and the values would not clash. The communications between the two modes
would be handled by EV still, but slightly differently. For example, suppose we communicate the
expression %+I into a subroutine which would like to assign different values to I. Inside that
subroutine, we might use the variable J, and then perform SUBSTITUTE (J, 'I, expression).
Here, 'I will indicate that we mean the symbolic variable I, rather than the programming variable
I.

Another approach, which is closer to what the FORTRAN-based (e.g., FORMAC) rather
than the LISP-based systems have attempted is to disallow assignment to symbolic variables and to
force users to simulate the Markov algorithm evaluation by explicit substitution, Thus if you wish
to substitute 2 for 9 in an expression, you explicitly make the substitution or similarly indicate i t
with EV(expression, 9 - 2). This forces the user to separate his mathematical and programming
worlds and could avoid some confusions. It does appear to force the user to be more explicit in his
evaluations, which may get tiresome. It also necessitates another mechanism for dealing with
shadow variables and possibly even with labels for expressions.

CONCLUSION

This paper discusses various distinctions which can be made regarding evaluation of
mathematical expressions: regular evaluation vs. infinite evaluation vs. finite evaluation, regular
variables vs. mathematical variables vs. shadow variables vs. labels, simplification vs. evaluation
vs. solution of equations. We claim that the unsatisfactory state of evaluation strategies in
symbolic systems is due to insufficient use of such distinctions in the past. Yet we can claim to
have only begun the discussion about such distinctions and the various mechanisms for
implementing them in a human engineered manner.

This paper resulted from discussions that have been going on in the Mathlab Group for
the past year. Not surprisingly, a number of positions on evaluation have arisen. We shall
mention only two here. In a companion paper, Jeffrey Golden defends MACSYMA's current
evaluation strategy. This strategy has changed somewhat in the past year with the introduction of
the INFEVAL mode in EV. Another view is held by David Barton. He maintains that
mathematicians hardly evaluate expressions. Usually they restrict the range of solutions with side
conditions (e.g., let x2 = a in ...) until only one result is possible. He also maintains that assignment
to mathematical variables should appear syntactically different from assignment to programming
variables. Substitution also replaces evaluation in many cases in his scheme. The approach of this
paper may be viewed as a compromise between such views.

We wish to acknowledge the usefulness of discussions with David Barton and Jeff
Golden, as well as with Michael Genesereth, Barry Trager, and Richard Zippel.

129

RATIONAL APPROXIMATION TO e-x WITH NEGATIVE REAL POLES

E l i z a b e t h C u t h i l l
David W. Taylor Naval Ship Research and Development Center

Th.is n o t e d e s c r i b e s a n a p p l i c a t i o n of MACSYMA t o t h e g e n e r a t i o n of an
expans ion in terms of Laguer re po lynomia ls to ob ta in approximat ions to e-x
on [0, m) of t h e form

P m

(1 + -1 x m
m

Here Pm is a polynomial of degree m-1 in x . These approximations are compared
with those developed by Saff , Schgnhage, and' Varga [3] . T h e i r ' s are optimum
Chebyshev approx ima t ions . In pa r t i cu la r , Tab le 3 con ta ins a comparison oi
t he maximum e r r o r s i n t h e Chebyshev sense showing the superior performance of
the approximat ions in [3] when t h i s norm i s used. Table 4 con ta ins a compari-
son of t h e least squa res e r ro r s . I n such a comparison, the approximations
developed i n t h i s p a p e r are s u p e r i o r .

Kaufman and Taylor [4] cons ider approximat ions to e-x of the form
D

(l+B1x) (1+B2x) ...(l + B x) m

where B 1 , ..., Bm are p o s i t i v e real numbers. I n t h i s n o t e w e a l so cons ide r t he
expansion of e-X(l+Blx).:.(l+Bmx) i n terms of Laguerre polynomials. The
f i r s t few terms of such an expansion are der ived with MACSYMA.

INTRODUCTION

I n t h e few months t h a t w e have been working with MACSYMA, w e have found
t h a t i t provides us with a g r e a t l y expanded c a p a b i l i t y f o r g e n e r a t i n g and
exploring the behavior of a v a r i e t y of approximat ions . In th i s no te w e d i s -
cuss one such appl icat ion of MACSYMA f o r t h e g e n e r a t i o n of r a t i o n a l a p p r o x i -
mat ions to e-x on [0 , a) wi th nega t ive real poles. There has been consider-
a b l e i n t e r e s t i n t h e p a s t few yea r s i n , such approx ima t ions because o f t he i r
importance in developing and analyzing numerical methods for solving cer ta in
systems of d i f f e r e n t i a l e q u a t i o n s [l, 21.

I n p a r t i c u l a r , i n a recent paper , Saff , Schb'nhage, and Varga [31
developed a sequence of ra t iona l approximat ions to e-x f o r x on [0 , m) of t h e
form

131

P m m = 1, 2 , ...

(wi th Pm a polynomial of d e g r e e m-1) which are optimum i n t h e Chebyshev norm
a n d c o n v e r g e g e o m e t r i c a l l y t o e-X on [0, a). On c o n s i d e r i n g t h i s s e q u e n c e of
approximat ions , a n a t u r a l q u e s t i o n arises - how does i t compare t o a n
approx ima t ing s equence ob ta ined by u s ing fo r Pm t h e f i r s t m terms of t h e
expansion of

i n L a g u e r r e p o l y n o m i a l s ? S u c h a n e x p a n s i o n c a n b e g e n e r a t e d a n a l y t i c a l l y .
T h e a v a i l a b i l i t y of MACSYMA a l l o w e d u s t o e a s i l y o b t a i n t h e r e q u i r e d e x p a n s i o n
to answer some of o u r q u e s t i o n s .

A r e c e n t p a p e r o f Kaufman and Taylor [4] c o n s i d e r s a more genera l form
f o r t h e a p p r o x i m a t i n g f u n c t i o n :

P

(l+B1x) (l+B2x) ... (l+Bmx)
m m = 1, 2 , ... - ___

where aga in Pm is a polynomia l o f degree m-1 i n x and t he Bm are real and
p o s i t i v e . They prove an ex is tance theorem for bes t Chebyshev approximat ions
of t h i s form t o e-x on [O , . a) . T h e i r n u m e r i c a l r e s u l t s s u g g e s t t h a t t h e
b e s t u n i f o r m a p p r o x i m a t i o n t o e-x f r o m t h i s class has on ly one po le and
f o r m=2 they prove such a r e s u l t . Here w e c o n s i d e r t h e f i r s t f e w a p p r o x i m a -
t i o n s o f t h i s t y p e w h i c h c a n a g a i n b e g e n e r a t e d u s i n g t h e a p p r o p r i a t e number
of terms of an expansion of e-X(1+Blx)(l+B2x) ...(l+ Bmx) i n L a g u e r r e p o l y -
n o m i a l s . I n t h e s e e x p a n s i o n s Pm depends no t on ly on x bu t on t he pa rame te r s
B 1 , ...,%. Nearly optimum v a l u e s f o r t h e B i i n t h e C h e b y s h e v s e n s e f o r t h e
f i r s t few such approximations are obta ined and compared wi th those ob ta ined
i n [4] .

RESULTS

The f i r s t case c o n s i d e r e d i s t h e g e n e r a t i o n of a sequence of approxima-
t i o n s t o e-x of the form

'm

(1 + ")m m

f o r m = 1, 2 , ..., 10, by a sequence of expansions of t he fo rm

where

m-1
c)

i= 0

00

e (1+ ;> Li(x) e-xdx. -X x m
i ,m

We do no t expec t such an approx ima t ion t o behave w e l l f o r l a r g e m y b u t f o r
small m w e expec t i t t o do reasonably w e l l . T a b l e 1 c o n t a i n s t h e v a l u e s o f

Ai rn genera ted by MACYSMA f o r m = 1, 2 , ..., 10. T a b l e 2 c o n t a i n s t h e
eqd lva len t po lynomia l s . The p rog ram.used fo r gene ra t ing such an approx ima t ion
o f o rde r m is g i v e n i n F i g u r e 1. F i g u r e 2 shows t h e e x e c u t i o n o f t h e p r o g r a m
o f F igu re 1 f o r m = 4 .

Since the Chebyshev approximat ions are d e v e l o p e d i n [3] and (4) g i v e s
a w e i g h t e d l e a s t s q u a r e s a p p r o x i m a t i o n , w e expec t cu r maximum a b s o l u t e e r r o r
t o b e l a r g e r t h a n t h a t o b t a i n e d i n [3] f o r a n a p p r o x i m a t i o n o f t h e same
o r d e r . T h i s is confirmed by Table 3 which con ta ins estimates o f t h e maximum
e r r o r s o n [0 , a) f o r t h e a p p r o x i m a t i o n s i n T a b l e 2 and i n R e f e r e n c e [3] . The
r e l a t i v e e r r o r f o r t h e a p p r o x i m a t i o n s e q u e n c e p r e s e n t e d h e r e r e m a i n s u n d e r
c o n t r o l somewhat l onge r t han fo r t he min imax approx ima t ions of [3] . An
estimate o f t h e i n t e r v a l o n w h i c h t h e re la t ive e r ro r r ema ins unde r 10% f o r
b o t h sets of approximat ions i s a l s o g i v e n i n T a b l e 3 . Note t ha t beyond t ha t
p o i n t t h e r e w i l l i n g e n e r a l b e less t h a n o n e s i g n i f i c a n t f i g u r e i n t h e
approximation.

Table 4 con ta ins we igh ted l ea s t s q u a r e s e r r o r s i n two forms:

and

N o t e t h a t f o r g i v e n m and P MACSYMA c a n p e r f o r m t h e i n t e g r a t i o n i n (6)
e x a c t l y . m y

133

The approximations given by (4) behave somewhat e r r a t i c a l l y w i t h r e s p e c t
t o t h e e r r o r norm (5) , bu t they behave more regular ly wi th respec t to the
e r r o r norm (6) used i n gene ra t ing t he approx ima t ion .

For the genera l approximat ing form in express ion (2) ,
t h e f i r s t t h r e e a p p r o x i m a t i o n s t o e-x of the paramet r ized form

m- 1
v

i= 0

where

A i ,m =I e -X (l+Blx) (1+B2x). . . (l+Bmx)Li(x)e-xdx

0

were g e n e r a t e d . I n p a r t i c u l a r , f o r m = 1 ,

B1+2
A =

0 9 1 4

so t ha t t he app rox ima t ing func t ion is

B, +2

The e n t i r e se t of approximations generated by vary ing B goes th rough the
po in t x = .5 wi th a va lue o f .5 . S ince [e-s5 -. 5 I = l .1065. . . , w e have
a bound on how w e l l (1) can perform in approximating e-x on [0 , m) f o r any
f i x e d v a l u e of B .

From Table 3 we h a v e t h a t f o r B1 = 1 i n (lo), an estimate of the maximum
e r ro r i n app rox ima t ing e-x on [0 , a) is .25. This can be improved to . l o 9
by t ak ing B1 = 2.435.

For m = 2, w e d e t e r m i n e

B ~ B ~ + B ~ + B ~ + z
A =

092 4

so t h a t t h e a p p r o x i m a t i n g f u n c t i o n h a s t h e f o r m

(B1B2-2)Z + B1B2+2(B2+B1) +6

8(1+B1Z) (1+B2Z)

A s n o t e d i n T a b l e 3, when B - - B2 = . 5 , a n estimate of t h e maximum
e r r o r i n u s i n g (11) as a n a p p r o x l m a t l o n t o e-x on [0, -) is .033. It
a p p e a r s t h a t t h i s c a n b e i m p r o v e d o n l y s l i g h t l y b y c h a n g i n g t h e v a l u e s o f
B and B2. Kaufman and Taylor [4] show t h a t t h e optimum Chebysilev approxima-
t l o n t o e-X of the form (2) w i t h n e g a t i v e rea l p o l e s h a s B = B2. The optimum
approximation i n t h e Chebyshev sense which they determine Bas B = B2 = .52416
and has an estimate f o r t h e maximum e r r o r o n [0 , a) of .02271.

1

1

For m = 3 w e d e t e r m i n e
3B1B2B3+2(B B +B B +B B)+2(B1+B2+B3)+4

A = 1 2 1 3 2 3
093 8

3B1B2B3+(B1B2+B,B3+B2B3)-2

8 AI3 - - -I_

-

With t h i s se t o f e x p r e s s i o n s ,

B1 = .214 B2 = .27 B3 = .3

o r any pe rmuta t ion t he reo f appea r s t o be near optimum. With t h i s set of
parameters our estimate f o r t h e maximum e r r o r is .019 which compares with
t h e v a l u e o f .056 f rom Table 2 f o r B =B =B =1/3 and .00805, t h e e r r o r
estimate of Kaufman and Tay lo r ob ta ined when B=B =B =B = .27127 i n (2)
and P w a s de te rmined to min imize the Chebyshev !io&. 3They d e t e r m i n e d t h a t
t h i s v a l u e f o r B w a s n e a r optimum.

1 2 3

3

F o r c o n v e n i e n t r e f e r e n c e , a t a b l e o f t h e f i r s t t e n L a g u e r r e p o l y n o m i a l s
g e n e r a t e d by MACSYMA is appended as F i g u r e 3 .

REFERENCES

1. Cody, W. J .; Meindardus, G. ; Varga, R. S . : Chebyshev Rational Approxima-
t i o n s t o e-x i n [0 , m) and Appl ica t ions to Heat -Conduct ion Problems.
J . Approx. Theory, 2, 1969, pp. 50-65.

2 . Cavendish, J. C. ; Culham, W. E . ; and Varga, R. S . : A Comparison of Crank-
Nicolson and Chebyshev Rat ional Methods for Numerical ly Solving Linear
P a r a b o l i c E q u a t i o n s . J . Comp. P h y s i c s , 1 0 , 1972, pp. 354-368.

3 . Saf f , E. B. ; Schgnhage, A. ; and Varga, R. S. : Geometric Convergence
t o e-x by R a t i o n a l F u n c t i o n s w i t h Real P o l e s . Numer. Math. 25, 1976,
pp. 307-322.

-

4 . Kaufman, E . H . , Jr . ; and Taylor , G . D . : Best Ra t iona l Approx ima t ions w i th
N e g a t i v e P o l e s t o e-X on [0 , m) . To a p p e a r i n P a d e a n d R a t i o n a l
Approximat ions : Theory and Appl ica t ions (E. B . Saf f and R. S . Varga,
Eds) , Academic Press , Inc .

1 36

m
"

iT1

i 1 2 3 4

TABLE 1

C o e f f i c i e n t s A, - (See Equation (4))

0

1

2

3

4

5

6

7

8

9

3
4
- 13

1 6

7
32

-

-

6 1
7 2

7
36

1
7 2

"

"

-

8 9 1
1024

359
!048

1 3
i o 9 6

1 8 3
3192

-

-

-

-

5
,

4433
5000

7 9 9
5000

- 77
20000

- 223
10000

- 5 5 1
40000

6

37289
41472

1 2 1 9 1
82944

- 1 7 9
20736

- 895
41472

- 3919
331776

- 2833
563552

7 8
I '

1711167 61545067
1882384 67108864

64081
~

1 7 0 3 4 6 9 1
470596 134217728

I
- 4 5 0 6 1 - 3847297

3764768 268435456

- 38721 , - 10444889
1882384 536870912

- 7 6 3 1 5 - 9363467
7529536 073741824 b
- 11313 - 290279

10118144 b294967296

3374353

9 10

35347283
38263752

- 350659
19131876

- 1 0 6 1 7 1 1
612220032

310547
2448880128

487751
1224440064

323197
1224440064

2974181307
3200000000

715994377
.6400000000

- 1 1 0 2 0 3 7 9 9
6400000000

- 2 2 0 6 2 7 8 0 9
12800000000

-129582367
102400000000

. 12658197
51200000000

39102607
102400000000

90749869
409600000000

71643279
819200000000

3
p1 4

= -

TABLE 2
APPROXIMATING POLYNOMIALS Pm (See Equation (3))

7 z - 3 3 P2 - - -
32

Z2 - 32 Z + 152
144 P3 .- -

61 Z3 - 523 ZL - 1878 Z + 16814
p4 -

-
16384

" 551 Z4 - 12384 Z3 + 73632 Z2 + 28896 Z - 966216 'P5 - 960000

2833 z5 - 110015 z4 .+ 1480040 z3 - 7442760 Z2 + 288600 Z + 79611960
'6 -

- . .

79626240
. .. .

P7 - - - (3771 z6 - 326804 Z5 + 9525750 Z4 - 120883040 Z3 + 621070920 Z2
- 58785120 Z - 7221056400)/7228354560

P8 - - - (3374353 Z7 - 161279391 Z6 + 1981437906 Z5 + 13968908310 Z4
- 472304862120 Z3 + 3058703597880 Z2 - 190815090480 Z
- 43270628481360)/43293270343680

p9 = (323197 Z8 - 24586616 Z7 + 706666604 Z6 - 9122407392 Z5
+ 37275042840 z4 + 284113381440 z3 - 2860087476960 Z2 + 61728145920 Z

+ 49362418082880)/49369423380480

plo - " (23881093 Z9 - 2478867747 Z8 + 104255443296 Z7
- 2266707280992 Z6 + 26146314869472 Z5 - 126953976270240 Z4
- 296150820215040 Z3 + 4937695894897920 Z2 + 1012259928960 Z

- 99090082246700160)/99090432000000000

TABLE 3.

ERROR ESTIMATES

m

1

2

3

4

5

6

7

8

9

10

Maximur

Approximation
For

(31, (4)

.25

.033

.056

.026

.0135

.0080

-0011

.0042

.0059

.0043

Erro r

From [3]

.16

.025

.015

.007 9

.0031

.0089

.00019

.000121

.000070

.000030

"

"

I n t e r v a l i n w h i c h relative e r r o r
remains l e s s

For
Approximation

(3) ¶ (4)

-

[0,2.01

IOY2.71

LOY4.41

[0,4.91

[0,7.11

[0,8.21

[0,8.71

[0,10.1]

[0,12.5]

than 10%
Using Approxi-
mation from

[31

139

m

1

2

3

4

5

6

7

8

9

10

4 (3) 9 (4)

.136

.0124

.017 5

,0082

.00203

.000118

.000267

.000138

.0000375

.00000214

TABLE 4 .

LEAST SQUARES ERRORS

EktFmate of
Expression (5)

Ior Approximation of

lRef e rence [31

. lo6

.017 6

.0105

,0055

.00214

.000620

.00013 7

.000085

.000049

.0000207
I

t
Estimate of Expression (6)
for Approximation of

(3) Y (4)

.259

.043 2

.03 00

.0180

.0060

.00100

.00054

.000352

.000125

.000022

Reference [3]

.274

.0552

.04 51

.03 28

.0157

.0059

.00158

.00126

-00092

.000466

F I G U R E 1. - PROGFL4.M TO GENERATE Pm

time:true;
1Cnl(x,a>:=((2*n-l+a-x)/n)*l[n-l](x,a)-((n-l+.a)/n)*~[n-2](x,a);
l[Ol(x,a):=l;
1[1l(x,a):=?-x;
fn(x,n):=(l+x/n)**n*exp(-x);
for i:O thru m-1 do

(li[il:ev(l[il(x,o),ratsimp),

d i s p l a y ~ a ~ i ~ m l : e v ~ i n , x : O , r a t s i m ~))) ;
in:-inteyrate(li[i]*exp(-x)*fn(x,m),x)’,

d i s ~ l a y (~ [m l : e v (s u m (a [i , m l * ~ i [i] , i ~ ~ ~ m - l) , r a t s i ~ ~)) ~

141

FIGURE 2. - EXECUTION OF PROGRAM TO GENERATE Pq

'K
(C11) m:4;
TIME= 1 MSEC.
(Dl11

(C12) demo(e,l,dsk,elizc);

(Cl3) T1ME:TRUE;
TIME= 1 MSEC.
(Dl31

4

TRUS

'TC14) L[N](X,A) :=((2*N-l+A-X)/N)*L[N-l](X,A)-((N-l+A)/N)*L[N-2](X

TIME= 1 MSEC.
, A) ;

2 N - l + A - X
(Dl&) L (X, A) : = - ---_--______-_ L (X, A)

N N N - 1
N - l + A - """"_ L (X , A)

N N - 2

TC15) L[OI(X,A):=l;
TIME= 1 MSEC.
(Dl51 L (X, A) : = 1

0
-
(C16) L[l](X,A):=l-X;
TIME= 1 MSEC.
(Dl61 L (X, A) := 1 - X

1

TC17) FN(X,N):=(l+X/N)**N*EXP(-X);
TIME= 1 MSEC.

(Dl71 FN(X, N) : = (1 + -) EXP(- X)
X N

N

TC18) FOR 1:0 THRU M-1 DO
(LI[I]:EV(L[Il(X,O~,RATSIMP),

DISPLAY(A[I,M]:EV(IN,X:O,RATSIMP)));
IN:-INTECRATE(LI[I]*EXP(-X)*FN(X,M),X),

891
A
0, 4 1024

= ""

359
A
1 , 4 2048

= ""

13
A = ""
2, 4 4096

183

8192
A

3, 4
= - ""

142

TIME= 9266 MSEC.
(Dl81

F I G U R E 2 . - CONTINUED

DONE
-
(C19) DISPLAY(P[M]~EV(SUM(A[I,MI*LI[I],I,O,M-1),RATSI~P))~

-3 2
61 X - - 523 X - 1878 X + 16814

p = """""""""""""""-
4 16384

TIME= 40 MSEC.
(Dl91

TIME= 10392 MSEC.
(D20 1

DONE

DEMO TERMINATED

143

FIGURJ3 3 . - TABLE OF LAGUERRJZ POLYNOMIALS GENERATED BY MACSYMA
M = 10

7

(C15) L[NI~Z,A)~~((2*~-1+A-Z)/~~)*L[~~-l](~,A)-((~-l+~)/N)*L[N-2~(Z,A)~
-
(C16) L[O](Z,A):=l%

(C17) L[l](Z,A):=l-Z$
-

-
(C18) FOR I:O THR:J 1.1-1 DI) DISPLAY(LI[I]:EV(LCI1(Z,D),RATSI~P))~

LI = 1
0

LI = I - 2 .
1

3 2
7 - 1 7 , + 1 9 7 - h

LI - """"""""""
3 6

4 3 2
2 -16 7 +72z - 1 6 Z + 7 4

LI = """""""""""""""
4 34

5 4 3 2
7, - ?5 z + 200 7, - 500 7, + 600 7 - 130

LI - """""""""""""""""""""
5 1 PO

h 5 4 3 ?
Z - 36 7, + 450 Z - 2490 Z + 5400 7. - 4370 '7 + 720

LI =
5 720

7 h 5 4 3 2
z - 49 7, + 852 z - 7350 z + a400 I, - 5 2 ~ 1 ? + ? v R n 7 - 5n40

LI = - ---""""""""""""""""""""""""""""""""-
7 5040

8 7 5 5 4 7
LI = (Z - 64 I , + 1565 Z - 18516 Z + 117500 Z - 776720 7. + 564490 Z

2

8

144

15

TIMING FORMULAS FOR DISSECTION ALGORITHMS

ON VECTOR COMPUTERS

W. G. Poole, Jr.
College of William and Mary

SUMMARY

The use of the finite element and finite difference methods often leads to
the problem of solving large, sparse, positive definite systems of linear equa-
tions. Recently the one-way dissection and nested dissection algorithms have
been developed for solving such systems. Concurrently, vector computers (com-
puters with hardware instructions that accept vectors as operands) have been
developed for large scientific applications. In reference 1, George, Poole and
Voigt analyzed the use of dissection algorithms on vector computers. In that
paper, MACSYMA played a major role in the generation of formulas representing
the time required for execution of the dissection algorithms. In the present
paper the author describes the use of MACSYMA in the generation of those
formulas .

DISSECTION ALGORITHMS

When finite difference or finite element methods are used for approxi-
mating solutions of partial differential equations, it is often the case that a
large, sparse, positive definite system of linear equations,

must be solved. We shall assume that the domain over'which the differential
equation is defined is a square region covered by an n by n grid consisting
of (n-1)2 2 small squares called elements. It follows that A is an
n2 by n matrix. The ordering of the unknowns at the grid points determines
the location of the nonzero components of A and, consequently, the storage
and time required to solve the linear system by Gauss elimination.

An ordering of the unknowns called one-way dissection .is due to George
(see ref. 2). Referring to figure 1, the idea of one-way dissection is first
to divide the grid with m horizontal separators. The unknowns in the m+l
remaining rectangles are numbered vertically toward a separator and then the

This paper was prepared as a result of work supported in part under NASA
Contract No. NAS1-14101 at ICASE, NASA Langley Research Center, Hampton, VA
23665 and in part by Office of Naval Research Contract N00014-75-C-0879.

145

separator nodes are numbered. The problem is to derive formulas for storage
and timing requirements and to minimize those formulas with respect to m (see
ref. 2).

The second dissection scheme is called nested dissection (again, see ref.
2) and has been shown to be asymptotically osimal (see ref.3). The idea here
is to divide the grid with both horizontal and vertical separators as shown in
figure 2. Unknowns in regions 1 - 4 are numbered before those on separators
5 - 7. Each of the regions 1 - 4 is a square and may itself be dissected using
horizontal and vertical separators. Thus the idea may be applied recursively
and, in the case n = 2k1, nested dissection will terminate after k-1 steps.

Although both dissection orderings were analyzed in reference 1, only
nested dissection will be discussed further here because it is a more important
algorithm and the generation of its timing formula was a much more formidable
task.

The nested dissection algorithm is nontrivial to describe in detail. It
was first developed and analyzed with scalar computers in mind by A. George in
the early 1970's. The first attempts at obtaining a timing formula were done
by hand and only gave a description of the asymptotic behavior, O(n3). Later,
the first few terms were generated by hand. Then in reference 3, A. George
obtained the entire formula with the aid of ALTRAN.

VECTOR COMPUTERS

The existence of vector computers, i.e., computers with hardware instruc-
tions that operate on vectors rather than scalars, raises the question of how
effective the dissection techniques are on this rather new class of computers.
It is assumed that these computers have basic vector instruction execution
times which are of the form

where T,(j) is the total time for the vector instruction *; S, is an over-
head time, called "start-up" time; P* is the "per-result" time of that
instruction; and j is the length of the vector.

The large value of S;t/P* on currently available vector computers implies
that one pays a significant penalty for operation on short vectors; consequent-
ly, one would prefer algorithms which permit the longest possible vectors (see
ref. 4) . However, both of the dissection algorithms work by repeated subdivi-
sion of the grid until a minimum operation count is obtained. It is this
apparent conflict between the cost of using shorter vectors and the correspond-
ing lower operation counts that was studied in reference 1.

146

3

GENERATION OF FORMULAS

In reference 1, George, Poole and Voigt were interested in obtaining
parameterized versions of the timing formulas for the dissection algorithms on
vector computers. Such formulas were needed in order to study the effects of
varying several parameters. They identified nine parameters characterizing the
vector computers: 3,start-up times for vector addition, multiplication, and
inner product; 3 per-result times for the same instructions; and 3 scalar
operations. Furthermore, there was a parameter, n, related to the problem
size and another, E, related to the algorithm which the user could vary at
liberty. The goal was to choose R so as to minimize the timing formula for
a given set of computer parameters and a given problem size. Obtaining the
timing formulas was useful in several ways:

With the formulas in hand, one could study the effects of chang-
ing values for the parameters. In a hypothetical sense one
could try to optimize subject to certain side constraints. In a
very practical sense, manufacturers announced changes in the
parameter values several times;

There are several options in the implementation of the dissec-
tion algorithms. For example, one can use a vector inner
product. or a vector "outer product" version (see ref. 1). The
choice reduces to comparing the time required for a vector inner
product versus a vector addition plus a vector multiplication.
Timing formulas permitted analysis of such options;

Considerable insight into the vectorization of algorithms was
gained. For example, average vector lengths could be studied;

Without the formula, a table of timing values for particular
choices of the parameters could be generated by executing a
model of the algorithm. However, the coefficients in the formu-
las could not be generated.

The nested dissection timing formula was generated in the following manner.
The execution of the nested dissection algorithm was simulated in a top-down
fashion. The top level, level 1, involved several summations of which

j -1

i= 1 2i 2i
c (2i - 2)20(n - zi + 1 4(n + 1)

Y 9 4)

is typical, where 0 is a procedure at the second level. Each of the second
level procedures called several third level procedures, e.g.,

THETA(Q,P,K) := CHLSKY(Q) + P LOWSOL(Q) + MODNES(Q,P,K)
CHLSKY, LOWSOL and MODNES are three of the third level procedures defined to be
the timing formulas for simple numerical computations, e.g.,

147

(5)
SM SA 2 PM PA

+ (DSR + _ _ - __ - ____ - --) Q - SM
2 2 3 6

is the timing formula for the factorization of a dense linear system. These
third level procedures were formulas for factorization, lower solve and upper
solve of dense systems and banded systems and matrix modifications of the form

A : = A - U W . T

Finally, the bottom level consisted of the parameters which characterize the
vector computer. E.g.,

SA + Q PA

is the time for a vector add of length Q.

The second and third levels each consisted of 10 to 15 modules and level
4 consisted of 9 instruction parameters, 1 parameter related to the algo-
rithm and 1 related to the grid size for the problem. The top level module
contained several MACSYMA sums of the form

sVM("(EV(((21-2)2)*(THETA((N-2 '~ l) / (21) ,4*(N+l) / (2 I) , 4)) ,
(8)

EXPAND)) ,IylyJ-l) .
This is the MACSYMA form of the sum in eq. (3) . The entire generated formula
consists of over 200 terms and can be found in Appendix B of reference 1. The
formula was checked by evaluating it for several sets of parameter values and
comparing the results to execution times of a FORTRAN simulation of the algo-
rithm. The one-way dissection formula was generated in a similar, but much
more forward, manner.

CONCLUDING REMARKS

MACSYMA has been shown to.be of considerable value in the study of the
performance of the nested dissection algorithm when used on hypothetical vector
computers. The derived timing formulas lead to an understanding of the effects
of varying the parameters which characterize the computers. Options in the
algorithm's implementation can be studied as well as the extent to which the
algorithm vectorizes.

148

REFERENCES

1. George, A.; Poole, W. G., Jr.; and Voigt, R. G.: Analysis of Dissection
Algorithms for Vector Computers. ICASE Report No. 76-17, June 8, 1976.
(Available as NASA CR-145177.)

2. George, A.: Numerical Experiments Using Dissection Methods to Solve n by n
Grid Problems. SIAM J. Numerical Analysis, vol . 14, no. 2, Apr. 1977,
pp. 161-179.

3. George, A.: Nested Dissection of a Regular Finite Element Mesh. SIAM J.
Numerical Analysis, vol. 10, no. 2, Apr. 1973, pp. 345-363.

4. Lambiotte, J. J., Jr.; and Voigt, R. G.: The Solution of Tridiagonal Linear
Systems on the DCD STAR-100 Computer. BCM Trans. Math. Software, vol. 1,
no. 4 , Dec. 1975, pp. 308-329.

149

150

FIGURE 1. - ONE-WAY DISSECTION WITH ORDERING OF
UNKNOWNS INDICATED BY NUMBERS (m = 3).

FIGURE 2. - ONE STEP OF NESTED DISSECTION WITH
ORDERING OF UNKNOWNS INDICATED BY NUMBERS.

._.._." ."""."._..."...... . .-..

16

SYMBOLIC CALCULATIONS IN A FINITE
DYNAMIC ELEMENT ANALYSIS

Kajal K. Gupta and Edward W. Ng
Jet Propulsion Laboratory

INTRODUCTION

Since this paper is addressed to an audience primarily interested in sym-

bolic computations, we shall briefly describe the context of engineering
mathematics to motivate the computational aspect. The present problem is

concerned with prestressed membrane elements with application to the development
of large furlable conical spacecraft antennas whose reflector surfaces are made
of stretched membranes (Ref. 1). The mathematical aspect involves the appli-
cation of a finite element method to approximate the membrane deformation as a

function of time. The phrase 'dynamic element' is used here to connote time

dependent corrections to the static modeis attacked by the usual finite element
method. The general strategy and overall scope of the present application is
described by Gupta (Ref. 2) and in the following we shall confine ourselves to

the computational problems. Throughout this paper we shall use capital letters

for vectors and matrices, and lower case letters for scalars. We shall describe
in detail a second order problem for which MACSYMA was used only for checking

purpose, and then in brevity a fourth order problem for which a symbolic system
is necessary. At.the end, some sample output is displayed to indicate the

complexity of the computational problem.

A SECOND ORDER PROBLEM

For the simpler problem we are dealing with a second order time harmonic

differential equation in two dimensions, (x,y) and a time variable t:

5 I

151

subject to boundary conditions for the four corners of each rectangular finite

element, say, (O,O), (l,O), (1,l) and (0,l):

Here we are simulating a thin rectangular membrane of thickness h, mass per unit

area p and uniform tensile force per unit length ah, and (a,b) specified the

size of the rectangle. The solution is constructed from a second-order ex-

pansion of the time harmonic problem, with natural frequency W , i.e.,

where A A and A are.vector functions of instantaneous nodal displacement and

also of the frequency of such motion, and QT is a unit vector, all these vectors

being dependent only on 5 and q. We have no formal proof that such expansion

converges, but in (Ref. 2) it is given physical arguments and empirical evidence

that such expansion does lead to dramatic improvement over the usual finite

element approach. Substituting eq. (2) into eq. (1) and equating like powers
of w render the following equations:

0' 1 2

V ~ A ~ Q ~ = o

o"A, QT = G

=o (51
with the corresponding boundary conditions that A - 0 - [qL'q2A3Y q41 Y A1 = 0 and
A = 0, where the above symbol [, ,] is used throughout the present paper for
a row vector, and the superscript T signifies the transpose of a matrix or
vector.

2

At this step we have to choose certain basis functions to form the

solutions, for example,

(lo j

152

where these coefficients have to satisfy the boundary conditions, and P is a
particular integral that satisfied eq. (5). Once a set of basis functions is

picked, we need to calculate the A vectors as functions of 5, rl and the
boundary parameters a and b.

The next step concerns the application of the principle of minimum total

potential energy. In particular, a sufficient condition for this principle is
given by equating the lateral strain energy and the kinetic energy of transverse
vibration, i. e. ,

Substitution of eq. (2) into eqs. (10) and (11) gives

where the K ' s are stiffness matrices and the M's are mass matrices. The zeroth-

order terms correspond to the well-known static counterparts in the usual
finite element method and the higher-order terms represent dynamic corrections.
These matrices are given by

Finally, we can apply the above expressions to eq. (9) and obtain an
equation of motion in the form

153

This is a quadratic eigenproblem and i s to be so lved numer i ca l ly . The main

use of a symbol ic ca lcu la tor is to p repa re and s impl i fy t he matrices K ’ s and

M’s i n t h e f o r m o f FORTRAN s t a t e m e n t s f o r t h e i n c l u s i o n i n t o a numerical

program. The symbol i c ca l cu la t ion s t eps may be summarized as fol lows:

The v e c t o r s [cl, c2,c3, c4] and [d d d d] are computed from t h e

boundary conditions.
1’ 2’ 3’ 4

A and A are computed from t h e s e two vec to r s .

The p a r t i c u l a r i n t e g r a l P i n e q . (8) i s chosen. So f a r t h e c h o i c e

has been made from an ad hoc procedure. In the next sect ion w e

sha l l desc r ibe an a t t empt t owards a more sys temat ic approach for

t h i s s t e p .

0 1

From the boundary condi t ions the vec tor [e e 1’ 2’e3’e4] can be

c a l c u l a t e d i n terms of [c c] which i n t u r n g i v e s t h e

vec to r A

Once t h e A ’ s are determined, w e need t o compute t h e matrices K

and M t h rough symbol i c d i f f e ren t i a t ions and i n t eg ra t ions .

The o u t p u t h a s t o b e s i m p l i f i e d a n d f o r m a t t e d f o r i n c l u s i o n i n a

FORTRAN program.

1’c2’c3’ 4

2’

i j

i j

A FOURTH O R D E R PROBLEM

For a plate bending problem w e are dea l ing wi th the b iharmonic equat ion

Conceptually the approach is e x a c t l y t h e same as the above problem. The d i f -

f e r e n c e i n s i z e , however, is two orders of magni tude. There are now 12

154

"

boundary conditions, 4 e a c h i n u , 3 and &. Thus a l l the vec to r s and matrlces

described above are now of d imens ig is 12 igd 12 , respec t ive ly . The a l g e b r a i c

manipulat ion i s most ex tens ive , and a symbolic system is an abso lu t e necess i ty

here.

Fo r t h i s p rob lem the s i x s teps above bas ica l ly car ry th rough, wi th the

exception of (iii) which can be somewhat hazardous. We s h a l l i l l u s t r a t e t h i s

p r o c e s s i n some d e t a i l h e r e . F o l l o w i n g t h e same procedure from eq. (1) t o e q .

(5) , w e g e t , w i t h D 8/86, D,, = 8 / h 5

1
' L e t - 3 (6 , n) be a s o l u t i o n of eq. (18), and l e t P (6 , n) be a p a r t i c u l a r i n t e g r a l B
of (19). Thus w e have,

L e t

We can formally invert the above equat ions by d e f i n i n g t h e a n t i d e r i v a t i v e s as

D and D-n. Combining eqs. (20) and (21) gives us -n
6 rl

To sa t i s fy the twelve boundary condi t ions w& can choose a s i m p l e b i v a r i a t e

cub ic func t ion , v i z . ,

I

-

155

Then D P (C , r i , = 0 for n > 3, and on ly two terms remain i n eq. (249 , i.e.

a n d , s i m i l a r l y ,

The last s i m p l i f i c a t i o n comes from DnH (5,rl) = 0 , n > 3 and (D D - D D) *
rl srl rls

H (S y n) = 0 -

So t h e a b o v e r e p r e s e n t s a somewhat a d h o c p r o c e d u r e t o f i n d a p a r t i c u -

lar i n t e g r a l , b u t o b v i o u s l y t h e a n s w e r i s no t un ique , because w e could have

r e v e r s e d t h e r o l e o f D and D a t eq. (23) a n d / o r a t eq. (27). This f reedom i s

h o w e v e r c o n s t r a i n e d b y t h e p h y s i c s o f t h e p r o b l e m w h i c h r e q u i r e s c e r t a i n

symmetry i n t h e matrices K ' s and M's.

5 rl

SAMPLE OUTPUT

On t h e n e x t two pages , w e p r e s e n t some sample ou tput f rom MACSYMA t o

i n d i c a t e t h e c o m p l e x i t y i n v o l v e d . We p r i n t t h e v e c t o r s A and A2 f rom eqs. (6)

and (8) , and A from eq. (25). The matrices, however, are a b i t t o o u n w i e l d y

t o d i s p l a y f o r t h e p r e s e n t p u r p o s e . The two d i f f e r e n t A ' s d e m o n s t r a t e t h a t

t h e f o u r t h o r d e r p r o b l e m i s two orders of magni tude more complex than the second

o r d e r p r o b l e m (t h e v e c t o r s b e i n g o n e o r d e r a n d t h e matrices b e i n g two o r d e r s) .

0

0

0

156

The two v e c t o r s on th i s page , g iven by eqs. (D5) and (D6) correspond to

A and A from eqs. (6) and (8). 0 2

.-,

E ETA

1 -:I

c

+ """ 7 :I
L

157

The vector given below corresponds to A 0 from eq. (25).

158

REFERENCES

1. Oliver, R, E., and Wilson, A. H.: Furlable Spacecraft Antenna Development:

an interim.report. Tech. Memo 33-537, Jet Propulsion Laboratory,

Pasadena, California, 1972.

2. Gupta, K. K.: On a Finite Dynamic Element Method for Free Vibration

Analysis of Structures. Computer Methods in Applied Mechanics and

Engineering, vol. 9, pp. 105-120, 1976.

159

SYMBOLIC MANIPULATION TECHNIQUES FOR VIBRATION

ANALYSIS OF LAMINATED ELLIPTIC PLATES*

C. M. Andersen
The C o l l e g e o f W i l l i a m and Mary i n V i r g i n i a

Ahmed K. Noor
The George Washington U n i v e r s i t y

J o i n t I n s t i t u t e f o r Advancement o f F l i g h t S c i e n c e s
a t NASA Langley Research Center

SUMMARY

A computat ional scheme i s p r e s e n t e d f o r t h e f r e e v i b r a t i o n a n a l y s i s o f
l a m i n a t e d c o m p o s i t e e l l i p t i c p l a t e s . The scheme i s based on Hamil ton's
p r i n c i p l e , t h e R a y l e i g h - R i t z t e c h n i q u e and symmetry cons idera t ions and i s
i m p l e m e n t e d w i t h t h e a i d c f t h e MACSYMA symbol ic manipulat ion system. The
MACSYMA s y s t e m , t h r o u g h d i f f e r e n t i a t i o n , i n t e g r a t i o n and s i m p l i f i c a t i o n o f
a n a l y t i c e x p r e s s i o n s , p r o d u c e s h i g h l y - e f f i c i e n t FORTRAN code f o r t h e e v a l u -
a t i o n o f t h e s t i f f n e s s and mass c o e f f i c i e n t s . M u l t i p l e use i s made o f t h i s
code t o o b t a i n n o t o n l y t h e f r e q u e n c i e s and mode shapes o f t h e p l a t e , b u t
a l s o t h e d e r i v a t i v e s o f t h e f r e q u e n c i e s w i t h r e s p e c t t o v a r i o u s m a t e r i a l and
geometr ic parameters.

INTRODUCTION

Many o f t he boundary -va lue p rob lems wh ich a r i se i n eng inee r ing and
phys ics cannot be s o l v e d i n a c losed o r ana ly t i c fo rm. There fore , numer ica l
methods are necessary f o r t h e i r s o l u t i o n . N e v e r t h e l e s s , we can expec t tha t
some o f t h e s t e p s i n t h e s o l u t i o n p r o c e s s will be s y m b o l i c o r a n a l y t i c i n
na ture . Fo r example, e a r l y s t e p s i n t h e s o l u t i o n p r o c e s s may i n v o l v e
(a) c a s t i n g t h e g o v e r n i n g d i f f e r e n t i a l o r f u n c t i o n a l e q u a t i o n s i n a more
conven ien t f o rm fo r so lu t i on t h rough rep lacemen t o f t he f undamenta l unknowns
by new va r iab les wh ich a re d imens ion less o r have o t h e r d e s i r a b l e p r o p e r t i e s ,
and (b) t h e i n t r o d u c t i o n o f a p p r o x i m a t i o n f u n c t i o n s o r p e r t u r b a t i o n e x p a n s i o n s
and a regroup ing o f the var ious te rms. Thus , the so lu t ion p rocess can be
t h o u g h t o f as c o n s h t i n g o f a s y m b o l i c (o r a n a l y t i c) phase fo l l owed by a
numerical phase. With the a
sometimes ca r ry t he symbo l i c
v e n t i o n a l l y done and thereby
t h e c a l c u l a t i o n s .

*Work supported by NASA Lang

d o f compu te r i zed a lgeb ra i c man ipu la t i on - , we may
phase o f t h e c a l c u l a t i o n f u r t h e r t h a n i s con-
reduce the cos t and/or improve the accuracy o f

ey Research Center.

161

A case i n p o i n t i s t h e f r e e v i b r a t i o n a n a l y s i s o f l a m i n a t e d c o m p o s i t e
e l l i p t i c p l a t e s (r e f s . 1 and 2) . A p l a t e i s a f l a t body whose t h i c k n e s s i s
small compared t o i t s o t h e r d i m e n s i o n s . P l a t e s a n d o t h e r s t r u c t u r e s f o r m e d
from carnpodLte m a t e & & such as g raph i te o r boron f ibers imbedded i n a m a t r i x
of epoxy o r p o l y i m i d e r e s i n s h a v e c o n s i d e r a b l e i n t e r e s t t o t h e . a i r c r a f t
i n d u s t r y b e c a u s e o f t h e i r h i g h s t r e n g t h and r i g i d i t y , easy mach inab i l i t y and
l i g h t w e i g h t . These compos i tes a re charac ter ized by ex t remely h igh tens i le
s t r e n g t h i n t h e d i r e c t i o n o f t h e f i b e r s b u t r e l a t i v e l y l o w s t r e n g t h i n d i r e c -
t i o n s n o r m a l t o t h e f i b e r s . As a consequence, t h e c o m p o s i t e s a r e t y p i c a l l y
used i n l a m i n a t e d s t r u c t u r e s w h e r e t h e o r i e n t a t i o n o f t h e f i b e r s changes from
lam ina t o l am ina . The h i g h l y a n i s o t r o p i c b e h a v i o r o f c o m p o s i t e m a t e r i a l s
c o n s i d e r a b l y c o m p l i c a t e s t h e a n a l y s i s o f t h e s t r u c t u r e s i n w h i c h t h e y a r e u s e d .
An i n v e s t i g a t i o n o f t h e dependence of t h e f r e q u e n c i e s o f v i b r a t i o n (a n d t h e
assoc ia ted mode shapes) on the var ious geometr ic and laminat ion parameters i s
needed f o r t h e e f f i c i e n t d e s i g n o f p l a t e s made f rom compos i te ma te r ia l s . Th i s
r e q u i r e s n o t o n l y t h e e f f i c i e n t e v a l u a t i o n o f t h e f r e q u e n c i e s and mode shapes
f o r a g i v e n s e t o f p a r a m e t e r s , b u t a l s o t h e e f f i c i e n t c o m p u t a t i o n of t h e
d e r i v a t i v e s o f t h e f r e q u e n c i e s w i t h r e s p e c t t o t h e V a r i o u s d e s i g n v a r i a b l e s .
Such d e r i v . a t i v e s p r o v i d e i n f o r m a t i o n a b o u t t h e s e n s i t i v i t y o f t h e f r e q u e n c i e s
t o changes i n t h e d e s i g n v a r i a b l e s .

The o b j e c t i v e s o f t he p resen t paper a re t o deve lop a computat ional scheme
f o r t h e f r e e v i b r a t i o n a n a l y s i s o f 1 a m i n a t e d . c o m p o s i t e e l l i p t i c p l a t e s w i t h
clamped edges and t o i d e n t i f y t h e m a j o r a d v a n t a g e s g a i n e d f r o m t h e u s e o f
s y m b o l i c m a n i p u l a t i o n i n t h e s o l u t i o n p r o c e s s . The ma in e lemen ts o f t he
scheme i n c l u d e (1) t h e u s e o f t h e R a y l e i g h - R i t z m e t h o d i n c o n j u n c t i o n w i t h
H a m i l t o n ' s p r i n c i p l e , (2) s i m p l i f i c a t i o n o f the computa t ion th rough cons ider -
a t i o n s o f v a r i o u s t y p e s o f s y m m e t r i e s , (3) t h e u s e o f t h e MACSYMA symbol ic
m a n i p u l a t i o n s y s t e m t o g e n e r a t e e f f i c i e n t FORTRAN code, and (4) m u l t i p l e u s e
o f t h a t code i n t h e d e t e r m i n a t i o n of both f requencies and f requency der ivat ives.
Because o f t h e e l l i p t i c a l shape o f t h e p l a t e s , MACSYMA i s a b l e t o p r o v i d e
s h o r t e x a c t a n a l y t i c f o r m s f o r a- l a r g e number o f express ions wh ich wou ld
o the rw ise have t o be approx imated th rough the use o f numer ica l quadra ture .

MATHEMATICAL FORMULATION

F i g u r e 1 shows an e l l i p t i c p l a t e and i t s C a r t e s i a n c o o r d i n a t e s y s t e m .
The z - a x i s i s n o r m a l t o t h e f l a t s u r f a c e s o f t h e p l a t e , and the x - and y -
axes l i e i n t h e m i d d l e
problem domain i s thus

I n t h i s s t u d y we t r e a t
e l a s t i c i t v Droblem. A

p lane a1 ong t h e p r i n c i p a l axes o f t h e e l 1 ipse . The
s p e c i f i e d b y

t h e p l a t e v i b r a t i o n p r o b l e m as a three-d imensional
f r e e v i b r a t i o n mode o f t h e P l a t e i s d e s c r i b e d bv a

f r e q u e n c y k (a c t u a l l y an angular ve loc i , ty) and by the d isp lacement "

ampl i tudes Ui (X ly ,Z) (i = 1,2,3). A p o i n t i n t h e v i b r a t i n g p l a t e with
e q u i l i b r i u m p o s i t i o n (x,y,z) will h a v e t h e p o s i t i o n

162

(x+ul(x,y,z)sinwt, y+u2(x,y,z)sinwtY z+u3(x,yYz)sinwt) at time t.

the displacement compondnts U j by
The components ~i -(x,y,z) of the strain tensor are defined i n terms of

E ~ ~ (x , Y , z) = 1 (a i u j + a . u .) (i , j = 1,2,3)
J 1

where a1 = a / a x , a2 = a/ay and a3 = a /az . We group the six strain compon-
ents into a vector EI(xyy,z) (I = 1+6) by le t t ing

€1 - €11 €2 - €22 €3 - €33
- - -

E4 = 2 €23

We analogously define a s t ress vector O~(x,y,z) (I = 1+6) i n terms of
the six independent components of the stress tensor and assume the stress-
s t ra in re la t ionship is l inear and given by the -constitutive relation

6

We assume t h a t c (z) i s constant within each layer b u t can vary from layer
t o layer. Furthe&? we assume t h a t the f ibers are a1 1 parallel t o the x-y
plane. As a consequence, the CI J (z) form a symmetric matrix of the form

Symme t ri c

-
The s t ra in energy U and the kinetic energy T are given i n terms of the
s t ra ins and displacements by

6

I ,J=1

c1 3 L
T = E- 2 /'p(z.) [ui(x,y,z)] 2 dx dy dz

where p (z) i s t h e d e n s i t y o f t h e p l a t e m a t e r i a l . S i n c e we assume t h a t
p (z) , l i k e [c (z)] , i s c o n s t a n t w i t h i n each l a y e r b u t can vary f rom layer
t o l a y e r , t h e i n t e g r a t i o n s i n t h e z - d i r e c t i o n a r e t o be performed i n a p i e c e -
wise manner.

The q u a n t i t y r r (u i) = T - U i s t o be regarded as a f u n c t i o n a l o f t h e
d i sp lacemen t f unc t i ons U i (x , y , z) . H a m i l t o n ' s v a r i a t i o n a l p r i n c i p l e s t a t e s
tha t u i (X ,y ,Z) must be such tha t the quant i t y n (u i) i s s t a t i o n a r y w i t h
r e s p e c t t o v a r i a t i o n s i n t h e d i s p l a c e m e n t f u n c t i o n s , i . e .

6l-I = 0 (7)

where 6n i s t h e symbol f o r t h e f i r s t v a r i a t i o n o f II. The v a r i a t i o n a l
p r i n c i p l e t h u s g i v e s r i s e t o a s e t o f e l l i p t i c p a r t i a l d i f f e r e n t i a l e q ' u a t i o n s
i n t h e u i (x , y , z) . However, r a t h e r t h a n e x p l i c i t l y d e v e l o p i n g t h e s e d i f -
f e r e n t i a l e q u a t i o n s we sha l l adop t a s l i g h t l y d i f f e r e n t approach. We a p p r o x i -
m a t e t h e u i (x , y , z) i n n b y l i n e a r c o m b i n a t i o n s o v e r a s e t o f approx imat ion
f u n c t i o n s . The c o e f f i c i e n t s Qj (j = l+N) which appear i n t h e s e l i n e a r
combina t ions a re de termined f rom the requ i rement tha t

(i = 1 + N)

T h i s r e s u l t s i n a l i n e a r g e n e r a l i z e d e i g e n v a l u e p r o b l e m o f t h e f o r m

N N
K - . $ - = u2 Mij $ j

j = l 1J J j=l

where

164

I

SYMBOLIC PHASE OF COMPUTATION

The f i r s t s t e p i n t h e s y m b o l i c phase o f computat ion i s t o approx imate the
displacements u i (x,y,z) i n t h e f u n c t i o n a l n. The boundary condi t ions

a long t he c lamped edge o f t he p la te a re au tomat i ca l l y sa t i s f i ed by t he use o f
a p p r o x i m a t i o n s o f t h e f o r m

Ui(XYY,Z) = c z $ m y n Y k [l - (x / a) ‘ - (y/b)’] x y
m n

k m,n i

where the upper limit o f k i n t h e summation i s one h i g h e r f o r i=l o r 2
t h a n f o r i = 3 . The number of terms needed i n t h e e x p a n s i o n (1 2) depends on
t h e t h i c k n e s s o f t h e p l a t e as we1 1 as on t h e a c c u r a c y d e s i r e d f o r t h e s o l u t i o n s .
The $j o f eqs. (8) through (10) a r e t h e c o e f f i c i e n t s $ m y n y k taken i n some
a r b i t r a r y o r d e r . The symbol ic phase o f the computa t ion can p rowed as f o l l o w s :

(1) S e l e c t a (new) p a i r o f i n d i c e s i and j , fo r wh ich exp ress ions
f o r Ki. and Mij a re des i red (see the sec t ion on Symmetry
Conside4at ions) .

(2) Set a l l $k t o z e r o e x c e p t $i and $ which remain as

(3) Form t h e t e r m s o f u k (x y y , z) (k = 1,2,3) which depend on Qi

undef ined (a tomic) var iab les . j y

and $ us ing eq. (12) . j

j

(4) Compute t h e t e r m s o f ~ ~ (x , y , z) (I = 1+6) which depend on $i
and $ using eq. (2) .

(5) E v a l u a t e t h e t e r m s o f t h e i n t e g r a n d s o f U and T which depend
on $i Y $j u s i n g eq. (6) .

(6) E v a l u a t e t h e i n t e g r a n d s o f Kij and M . by d i f f e r e n t i a t i o n

(7) Evaluate Ki . and Mi . b y p e r f o r m i n g t h e i n t e g r a t i o n s o v e r

(8) Simp1 i f y the nonzero Ki and Mi and develop FORTRAN

w i t h r e s p e c t t o b o t h $i and us in4 jeq . (10) .
j

x,y and z d i a p a t t e d m a t c h i n g .

e x p r e s s i o n s f o r them.

(9) Go t o s t e p (1) un less f i n i shed .

I n s t e p (7) , t h e i n t e g r a t i o n w i t h r e s p e c t t o t h e z c o o r d i n a t e i s a compl ished
s y m b o l i c a l l y (a n a l y t i c a l l y) s i m p l y by i n t r o d u c i n g new v a r i a b l e s Cf:? and

165

D(') defined by

'IJ ('I = J h / 2 - h / 2 zR CIJ(z) dz (1,J = 1 + 6 ; R = 0,1 ,2 ...)

and the integration with respect t o x and y i s accomplished by the
rep1 acements

x -f a r cos(e)

y + b r cos(e)

followed by exact closed-form integration in r and e . The expressions
produced fo r K i and Mi. in step (8) are very simple since an M i -
expression contajns a t most a single term, and a K i j expression congains
a t most three terms. The Mij are linear in the D (a) and the most
general form for the K i j i s

where X], x2 and X a re l inear combinations o f the C (') with r a t ' o a1
number coefficients; ?4y A and A are integer multipids o f the C 7 eT :
x7 i s an integer; and the F8RTRAN vapiables A, B, A B , A2, B2, A2B2 a&$
defined by

A = a B = b A B = a b

A2B2 = a b 2 B2 = b 2 2 2 A2 = a

The symbolic phase ends when the FORTRAN code has been transferred t o a local
computer for the numerical phase of computation.

NUMERICAL PHASE OF COMPUTATION

The f i r s t goal of the numerical phase'of computation i s t o solve the
linear generalized eigenvalue problem (eq. (9)) for the lowest few frequencies
wk(k=l ,2, . . .). To accomplish this the numerical program evaluates

166

... _. - - -

t h e C [J ") , t h e D") , t h e FORTRAN v a r i a b es o f eq. (1 6) , a n d f i n a l l y t h e
K i j and Mij. Then the e igenvalues (wk) ' and the i r assoc iated e igenvectors
$j may be determined by the method o f subspace i t e r a t i o n , (r e f . 3) .

The second goal o f t h e n u m e r i c a l phase o f c o m p u t a t i o n i s t o d e t e r m i n e t h e
d e r i v a t i v e s o f t h e Wk w i t h r e s p e c t t o changes i n geometry, f i b e r o r i e n t a t i o n s
o r m a t e r i a l p r o p e r t i e s . The d e r i v a t i v e o f t h e f r e q u e n c y wk w i t h r e s p e c t t o
t h e p l a t e a r e a Tab (keep ing t he aspec t ra t i o a /b , t h i ckness h and
m a t e r i a l p r o p e r t i e s f i x e d) i s g i v e n b y

N (k) a (Tab K. .)
- C $i

TJ (k)
a(Tab) h, a/b '9

- i , j=l - -.___.___

h, a/b
i , j=l

T h i s e q u a t i o n t a k e s i n t o a c c o u n t t h e f a c t t h a t e a c h Mij i s p r o p o r t i o n a l t o
t h e a r e a b u t i s i n d e p e n d e n t o f t h e a s p e c t r a t i o . The d e r i v a t i v e on the RHS o f
eq. (17) i s e v a l u a t e d b y u s i n g t h e FORTRAN code f o r t h e K i j b t l t w i t h
FORTRAN v a r i a b l e s o f eq. (16) def ined as fo l lows:

A = a/2 B = b/2 AB = 1

A2 = a/b B2 = b/a A2B2 = 0
(18)

The c o m p u t a t i o n a l e f f o r t i n v o l v e d i n t h e e v a l u a t i o n o f u s i n g
eq. (17) i s c o n s i d e r a b l y l e s s t h a n t h a t r e q u i r e d f o r s o l v i n g t h e
e igenvalue problem. Note that it would be d i f f i c u l t t o e v a l u a t e t h e d e r i v a t i v e
m a t r i x i n
W k w i t h

3
ah

eq. (1 7) by conventional numerica
r e s p e c t t o t h e t h i c k n e s s h (keep

1 techniques. The d e r i v a t i v e o f
i n g a and b f i x e d) i s g i v e n b y

T h i s e q u a t i o n i s b a s e d on t h e f a c t t h a t t h e r e p l a c e m e n t o f a by xa, b by
Ab, and h by xh (k e e p i n g t h e r e 1 t i v e t h i c k n e s s e s o f t he l am inae cons tan t)
r e s u l t s i n W k be ing rep laced by x- 9 W k . The d e r i v a t i v e o f t h e f r e q u e n c y w
w i t h r e s p e c t t o a change i n t h e a s p e c t r a t i o a / b (k e e p i n g t h e a r e a Tab an s
th ickness h f i x e d) i s g i v e n b y

a o -
h, ab

i , j=l
/ N

(h ,nab

1 6,7

where the summation i n the denominator i s the same as i n eq. (17). We now
need t o make the x1 and A6 terms o f eq. (1 5) vanish since they do not
depend on a/b. We accomplish th i s by set t ing

A = N b /2 B = - N b / (2 a) A B = a b 2

3 A 2 = N a b B2 = - N b / a A2B2 = 0

where N i s a very large number (e .g . , N = 10) , and compensate for the
introduction of N by dividing by N af ter the summation indicated in
eq. (2 0) has been carried o u t . When the derivatives of w k with respect
t o area, aspect ratio and thickness are k n o w n , one can easi ly determine the
derivatives of W k with respect t o a , b and/or any other functions of
n a b , a / b and h .

15

Derivatives of W k with respect t o the fiber orientation angles or mat-
erial properties may be computed s imilar ly , b u t for these cases the FORTRAN
variables of eq. (2 1) regain their original definitions (eq. (1 6)) and the
Xi (i = 1+6) are replaced by their appropriate derivatives. This kind of
mu1 t i p l e use of a 1 arge block of FORTRAN code i s very useful for reducing the
length of the FORTRAN program a s well as the amount o f symbolic computation.
Both are further reduced by the symmetry considerations discussed in the next
secti on.

SYMMETRY CONSIDERATIONS

There are three types of symmetries which he1 p simp1 if,y our calculations.
These are associated with a) symmetry of the [K] and [MI matrices , b)
rotation-reflection symmetry of the undeformed p la te , and c) symmetry of
the s t i f fness and mass coefficients with respect t o interchanging the roles of
a , b and the subscripts 1,Z.

Symmetry of the [K] and [MI Matrices

The f i r s t type of symmetry i s the symmetry of the [K] and [M I matrices
under transposition, t h a t i s

M i j = M .
J i

(see eq. (1 0)) . The presence of t h i s symmetry means t h a t we need symbolic.
expressions only for those K i and M i with i < j.

168

Rota t i on -Re f1 ec t i on Symmetry o f t h e Undeformed P1 a t e

The second type o f symmetry i s t h e symmetry o f t h e (u n d e f o r m e d) p l a t e
i t s e l f . V a r i o u s r o t a t i o n s o r r e f l e c t i o n s may leave t he boundar ies and m a t e r i a l
p r o p e r t i e s o f t h e p l a t e i n v a r i a n t (r e f . 4) . For ins tance, by our assumpt ion
t h a t t h e f i b e r d i r e c t i o n s a r e p a r a l l e l t o t h e p l a t e , r o t a t i o n s o f t h e p l a t e b y
1 8 0 0 a b o u t t h e z - a x i s l e a v e [C (z)] i n v a r i a n t .

A consequence o f t h i s symmetry (t h e symmetry group i s c a l l e d C2 i n
S c h o e n f l i e s n o t a t i o n (r e f . 5)) i s t h a t t h e r e a r e t w o f a m i l i e s o f s o l u t i o n s -
t h o s e w i t h u = 1 and t hose w i th u = -1 i n t h e r e l a t i o n s

Equat ion (23) de f ines the minimum symmetry e x h i b i t e d b y t h e l a m i n a t e d p l a t e s
considered i n t h e p r e s e n t s t u d y .

The l a r g e s t symmetry group which can leave the boundar ies invar iant i s
the g roup D2h. A p l a t e w h i c h has t h i s symmetry i s i n v a r i a n t u n d e r r o t a t i o n s
by 180° no t on ly a round the z -ax is bu t a round the x - and y -axes as w e l l .
F u r t h e r , i t i s i n v a r i a n t u n d e r r e f l e c t i o n s i n t h e x - y , y - z and z-x planes
and under i nve rs ion (t he ope ra t i on wh ich sends t he gener i c po in t (x , y , z)
t o t h e p o i n t (- x , - y , - z)) . P l a t e s w i t h D2h symmetr,y have e i g h t f a m i l i e s o f
s o l u t i o n s each corresponding t o one o f t h e p o s s i b l e c o m b i n a t i o n s o f

= 21 i n t h e r e l a t i o n s - u1 - 21 y o2 - 21, -
O3

u (x,y,z) = -0 u (-x,y,z) = 0 u (x,-y,z) = -0 u (x,y,-z)

u (x,y,z) = 0 u (-x,y,z) = -0 u (x,-y,z) = -u u (x,y,-z)

1 1 1 2 1 3 1

2 1 2 2 2 3 2

U3(XYY,Z) = olu3(-x’y,z) = 0 2 3 u (x,-y,z) = u 3 3 u (x,y,-z)

F o r t h e f o u r f a m i l i e s w i t h o3 = - 1 t h e m i d d l e s u r f a c e o f t h e p l a t e (t h e
s u r f a c e w i t h z = 0) i s d e f o r m e d w i t h p l a n a r m o t i o n s o n l y . I n o r d e r f o r a
l a m i n a t e d c o m p o s i t e p l a t e t o h a v e t h e f u l l D2h symmet ry , t he f i be r ang le
w i t h r e s p e c t t o t h e x - a x i s , e (z) , m u s t t a k e o n l y t h e v a l u e s Oo and 90’
and e(z) must equal e(-z) .

The group D2 ha.s t h r e e s u b g r o u p s o f o r d e r f o u r w h i c h c o n t a i n C2 as
a subgroup. I n Sc k- o e n f l i e s n o t a t i o n t h e y a r e c a l l e d C 2 h y C2v and D2.
Each of these subgroups correspond to a poss ib le p la te symmet ry h ighe r t han
the m in ima l C2 symmetry y e t l o w e r t h a n t h e f u l l Dzh symmetry. P1 a t e s w i t h
any o f t h e s e s y m m e t r i e s h a v e f o u r f a m i l i e s o f s o l u t i o n s . P l a t e s w i t h symmetry
‘2 h have e (z) e q u a l t o e (- z) and have s o l u t i o n s c h a r a c t e r i z e d b y
(a, u3) = (I,I), (I , - I) , (-I,I) o r (-I,-I) i n

169

P l a t e s w i t h symmetry C2” have f i b e r a n g l e s o f 0’ and 90’ o n l y and have
s o l u t i o n s c h a r a c t e r i z e d b y (ol , a 2) = (1 , l) , (1 , - 1) , (- 1 , l) o r (- 1 , - 1) i n

u1 (X,Y,Z) = - 0 p 1 (-X,Y,Z) = O2U2(X”YYZ)

U2(XYYYZ) = 01u2(-x ’y,z) = -o2u2(x’-y,z)

U3(X’YYZ) = 01u3(-x ’y,z) = 03u3(x”y,z)

P l a t e s w i t h symmetry D2 a r e i n v a r i a n t u n d e r r o t a t i o n s b y 180’ about the
x-, y- and z-axes and thus have

e (z) = - e (- z > ; -90’ < e 2 90’ (27)

Fo r t hese p la tes we l e t

where

Then the so lu t i ons a re cha rac te r i zed by (o l , 02) = (1 , l) , (1 , - l) , (- 1 , l) o r
(-1 , - I) i n

w i t h (01 , 0 2) replaced by (-01, -02) i n t h e c o r r e s p o n d i n g r e l a t i o n s f o r UT. I f any two o f t h e eqs. (25) , (26) and (30) ho ld s imu l taneous ly t hen
eq. (2 4) must hold. On t h e o t h e r hand, eq. (23) i s a consequence o f
eqs. (25) , (2 6) o r (30) separa te ly .

S o l u t i o n s l a c k i n g t h e a p p r o p r i a t e symmetry a r e p o s s i b l e o n l y i n t h e
(u n l i k e l y) e v e n t t h a t t h e e i g e n v a l u e s f o r members o f two d i f f e r e n t f a m i l i e s
o f s o l u t i o n s c o i n c i d e , i n w h i c h c a s e t h e s o l u t i o n s a r e l i n e a r c o m b i n a t i o n s o f

170

symmetric solutions. The presence of families of solutions with different
symmetries means t h a t w i t h the choice of a proper ordering of the $i the
[K] and [MI matrices have a block diagonal form with one block fo r each family
of solutions T. Tha t i s , n may be written as

n = z n
T

T

where nT contains the $i associated w i t h the symmetry T. This resul ts i.n
replacing a large problem by two, four or eight (depending on the symmetry
g roup) smaller subproblems. For each of the subproblems, the expansion i n
eq. (1 2) i s adjusted t o match the desired symmetries.

Symmetry of Stiffness and Mass Coefficients With Respect t o
Interchanging the Roles of a,b and the Subscripts 1 , 2

The third type of symmetry is related to the observation t h a t when given
a physical plate we may analyze i t in two different ways - w i t h the semi-major
axis of the plate along the x-axis o r along the y-axis. The two ways are
equivalent b u t resul t i n interchanging the numerical values f o r a* and b
and for some of the material properties C I J (Z) . Let Kij and Ki * be com-
ponents of the stiffness matrices (before the partitioning of eq. (4 1)) for
the same physical problem as formulated in $he two different ways. While i t
i s n o t true in general t h a t Kij equals K ; J , i t i s t r u e t h a t fo r each pair
of indices i , j there corresponds a pair , j I such t h a t Kij = K T I j l ;
thus

Thus , while Kij and Ki I . I d o n o t necessarily have the same numerical value,
they do have essent ia l ly $he same algebraic form, and the FORTRAN code used
t o evaluate Kij can serve t o evaluate Kiljl as well. The relation turns
o u t t o be even stronger for the [M I matrix since

The f i r s t , second and third types of symmetries interact with each other in
the following way. Either all the index pairs i , j in the block of the [K]
matrix associated w i t h symmetry T correspond to index pairs i l , j l in the
block h a v i n g a different symmetry T I o r they a l l correspond t o i ' , j ' i n
the same block. For the former case the FORTRAN code generated t o find the
solutions w i t h symmetry T can be used to find the solutions with symmetry
T I as we1 1 . For the l a t t e r case the relations (2 2) , (3 2) and (33) together
serve to reduce the FORTRAN code needed for symmetry T t o l i t t l e more than
ha1 f that needed when considering eq. (2 2) alone. For this case the code i s
executed once and the incomplete [K] and [M I saved. Then the code i s executed

171

a second t ime w i th var iab les in te rchanged as i n eq. (32) and the two se ts o f
matr ices are merged. The i n t e r a c t i o n s o f t h e t h r e e t y p e s o f symmetry a r e
summarized i n Table 1 f o r t h e f i v e symmetry groups o f i n t e r e s t . The symmetry
c o n s i d e r a t i o n s d i s c u s s e d i n t h i s s e c t i o n a p p l y e q u a l l y w e l l f o r t h e d e t e r m i -
n a t i o n o f t h e d e r i v a t i v e m a t r i c e s i n eqs. (17) , (19) and (20) .

TABLE 1. - INTE-RAGTIONS AMONG THE FIRST, SECOND AND THIRD TYPES OF SYMMETRIES

- __ - ~" . ~~ . . . - . . - .

Symmetries i n t e r r e l a t e d
by eqs. (2 2) , (32)
and (33)

". . . .
Symmetry Symme t r y Symmetries f o r w h i c h
Group o f Parameters, [K] and [M I a r e s i m p l i -
P1 a t e T f i e d by eqs. (2 2) , (32)

and (33)
.~ - ~ ~ ~ " ". . " . - -

c2 (0) (U Y (- 1)

'2 h

D2 h

. "

(1 3-1 Y1) - (-1 ,1 J) ;
(1 , - I ,-1) - (- 1 , l , -1)

NUMERICAL RESULTS

Numer ica l resul ts have been ob ta ined f o r modera te l y t h i ck l am ina ted p la tes
w i t h symmetry D2.. For the case 01 = 02 = 1, we u s e t h e f o l l o w i n g v e r s i o n o f
eq. (1 2) which takes eq. (30) in to account :

172

where

Th is app rox ima t ion scheme r e s u l t s i n m a t r i c e s [K] and [M I hav ing d imension
110 by 110 and requ i res t he genera t i on o f 3541 FORTRAN s t a t e m e n t s . S i m i l a r
app rox ima t ion schemes a r e u s e d f o r t h e o t h e r f a m i l i e s o f s o l u t i o n s . T y p i c a l
r e s u l t s a r e shown i n f i g u r e 2. These r e s u l t s a r e f o r e i g h t - l a y e r e d p l a t e s
w i t h h = b/10 and f i b e r o r i e n t a t i o n s A w i t h r e s p e c t t o t h e x - a x i s) w h i c h a r e
a l t e r n a t e l y e and - e , where e = 45 . The m a t e r i a l p r o p e r t i e s a r e c h o s e n
t o be t h o s e t y p i c a l o f a h igh-modulus graphi te-epoxy composi te . F igure 2
shows t h e v a r i a t i o n w i t h t h e a s p e c t r a t i o a / b o f t h e l o w e s t f r e q u e n c i e s and
o f t h e d e r i v a t i v e s o f t h e s e f r e q u e n c i e s w i t h r e s p e c t t o t h e f i b e r o r i e n t a t i o n
ang le e.

CONCLUDING REMARKS

The ma jo r advan tages o f us ing symbo l i c man
a n a l y s i s o f l a m i n a t e d c o m p o s i t e e l l i p t i c p l a t e s

i p u l a t i o n i n t h e f r e e v i b r a t
a r e

1) The a c c u r a t e a n d r e 1 i a b l e s y m b o l i c e v a l u a t i o n o f 1 arge numbers
o f d e r i v a t i v e s and i n t e g r a l s

2) The c o n c i s e f o r m o f t h e r e s u l t i . n g FORTRAN e x p r e s s i o n s f o r Ki
and Mi

3) The ease of implement ing symmetry concepts

4) The s i m p l i c i t y o f e v a l u a t i n g t h e f i r s t d e r i v a t i v e s o f t h e
f r e q u e n c i e s w i t h r e s p e c t t o t h e d e s i g n v a r i a b l e s

The m u l t i p l e usage o f t h e l a r g e b l o c k s o f FORTRAN code generated by
MACSYMA a l l o w s t h e c a l c u l a t i o n o f f r e q u e n c y d e r i v a t i v e s w i t h n o e x t r a s y m b o l i c
e f f o r t and very l i t t l e e x t r a n u m e r i c a l c o m p u t a t i o n . O f course , the symbol ic
auuroach would be useless were i t n o t f o r t h e f a c t t h a t t h e o u t p u t i s i n t h e
fokm o f FORTRAN statements which need never
on such a l a r g e q u a n t i t y o f d a t a w o u l d s u r e
v e r y d i f f i c u l t t o r e c t i f y .

be keypunched. Manua

i o n

1 o p e r a t i o n s
l y i n t i o d u c e e r r o r s w h i c h w o u l d be

The major d isadvantages a re

1) The l a r g e amount o f FORTRAN code needed t o o b t a i n a c c u r a t e n u m e r i c a l
r e s u l t s

2) The r e l a t i v e l y l o n g s y m b o l i c c o m p u t a t i o n t i m e s

173

3) The s low speed o f t r a n s f e r r i n g d a t a f r o m t h e s y m b o l i c
p rocess ing compu te r t o t he number processing computer
when the two computers are not on the same network

Severa l ex tens ions o f the p resent work come t o mind, such as studying
p l a t e s w i t h o t h e r b o u n d a r y c o n d i t i o n s and o ther geomet r ies . Shapes r e q u i r i n g
n u m e r i c a l q u a d , r a t u r e f o r . t h e x - y i n t e g r a t i o n may a l s o be i n v e s t i g a t e d . The
v a r i o u s i n t e g r a l s r e q u i r e d c a n be i d e n t i f i e d , i s o l a t e d and ass igned var iab le
names t h r o u g h t h e u s e o f symbol m a n i p u l a t i o n much as t h e z - i n t e g r a l s a r e
t r e a t e d i n t h e p r e s e n t s t u d y . The techn iques used he re in a re app l i cab le t o a
w i d e v a r i e t y o f o ther boundary-va lue problems.

REFERENCES

1. Andersen, C. M.; and Noor, Ahmed K.: F ree V ib ra t ion o f Laminated Compos i te
E l 1 i p t i c P1 a t e s . Advances i n Engineering Sci 'ence , Vol ume 2 , NASA CP-2001,
1976 , pp. 425-438.

2. Ashton, J . E.; and Whitney, J . M.: Theory o f Laminated Plates. Technomic
Publ. CO. , 1970;

.3. Bathe, K. J . ; and Wilson, E. L.: Numerical Methods i n F i n i t e Element
A n a l y s i s . P r e n t i c e - H a l l , I n c . , 1976.

4. Noor, A. K . : Symmetries i n Laminated Composite Plates. Proceedings o f
the Eighth Southeastern Conference on Theoret ical and Appl ied Mechanics,
V i r g i n i a P o l y t e c h . I n s t . & State Univ., Apr. 1976, pp. 225-246.

5. Hamermesh, Morton: Group Theory and I t s A p p l i c a t i o n t o P h y s i c a l P r o b l e m s .
Addison-Wesley Pub. Co. , I n c . , c.1962.

174

I
"

Y

t

Fiv. 1. ClamFed laminated elliptic nlate.

"
1 dw

w de

0 ' I I I I

1.0 1.5 2.0 2.5 3.0

a/ b

-.6 I._ I I I

1.0 1.5 2.0 2.5 3.0

alb

Fiq. 2. Effect of a/b on w and wde for clamped eight-layered elliptic
plates with D2 symmetry and fiber orientations a1 ternately +45'
and -45'. h/b = 1/10; EL/ET 40; vLT = 1/4; G /E = 3/5;

2 1 dw

2 2 LT T
GTT/ET = 1/2; m0 = (ETh) / (~ b >.

175

18
OBSERVATIONS ON APPROXIMATE INTEGRATIONS

Edward W. Ng
Jet Propuls ion Laboratory

Extended Abstract

I n this p r e s e n t a t i o n w e explore a class of i n t e g r a t i o n s t r a t e g i e s that
f a l l i n between t h e two extremes of symbolic integration and numerical quadra-
ture , which are, respec t ive ly , a imed at t h e computer generat ion of answers in
the form of exact expressions and numerical values . We s h a l l f i r s t d i s c u s s the
theo re t i ca l advances i n symbol i c i n t eg ra t ion , as m o t i v a t i o n t o the fol lowing,
then examine th ree major contex ts o f appl ica t ions wi th a t tendant case s t u d i e s ,
and f i n a l l y e x p l o r e f o u r p o s s i b l e t y p e s o f s t r a t e g i e s f o r a p p r o x i m a t e i n t e -
g r a t i o n . I n p a r t i c u l a r we s h a l l comment on t h e f e a s i b i l i t y and adequacy (or
inadequacy) of MACSYMA fo r imp lemen t ing t hese s t r a t eg ie s .

We b e g i n w i t h t h e o r e t i c a l d i s c u s s i o n s . I n this aspec t w e have discerned
two major paradigms of s t ra tegies , which w e l abe l t he "pa t t e rn - recogn i t ion
paradigm" and the "problem-solving paradigm". These labels, though far from
p e r f e c t , are chosen to ind ica te the emphas is on ly . In the former class w e
include, for example, Risch's algorithm, (Ref. 1) and Moses' new approach based
on extension operators (Ref . 2) . We b e l i e v e t h e s e s t r a t e g i e s t o b e p a r t i c u l a r l y
cha rac t e r i zed by t h e s e a r c h of a l g o r i t h m i c a b i l i t y t o r e c o g n i z e t h a t c e r t a i n
expres s ions o r ope ra to r s be long t o some s p e c i f i e d class of such. The problem
solving paradigm i s o b v i o u s l y i n h e r i t e d f r o m h e u r i s t i c s t r a t e g i e s of a r t i f i c i a l
i n t e l l i g e n c e . I n t h i s la t ter class we i n c l u d e , f o r example, Wang's d e f i n i t e
in tegra t ions (Ref . 3) a n d o u r e l l i p t i c i n t e g r a t i o n s (R e f . 4) . A l l t h e s e
t h e o r e t i c a l s t r a t e g i e s s u f f e r f r o m p r a c t i c a l l i m i t a t i o n s of one kind or another .
Notably among t h e s e are t h e m u l t i v a r i a t e f a c t o r i z a t i o n p r o b l e m , t h e o p t i m a l
s e l e c t i o n of input vis-a-vis output class o f exp res s ions and i n t e l l i gen t cho ice
of c o n t o u r s f o r d e f i n i t e i n t e g r a t i o n . The op t ima l s e l ec t ion needs pa r t i cu la r
e l abora t ion he re . Take f o r example t h e i n t e g r a t i o n of r a t i o n a l f u n c t i o n s . It
is e a s y t o d e v i s e a n e f f i c i e n t a l g o r i t h m t o d e c i d e i f a g i v e n r a t i o n a l f u n c t i o n
c a n b e i n t e g r a t e d i n terms of r a t i o n a l f u n c t i o n s . But such algorithm would be
of ex t r eme ly l imi t ed i n t e re s t because it would r e t u r n a negat ive answer for
most input express ions , such as something as s imple as l/(x+l). The a d d i t i o n
of one 'new' func t ion (l oga r i thm) i n t he ou tpu t class dramat ica l ly expands the
problem-solving horizon. On the other hand, w e o b v i o u s l y c a n n o t c a r r y t h i s t o
t h e o t h e r extreme of choosing a l a r g e number of new func t ions , les t t h e r e s u l t
be next to wor th less . All t h e s e d i s c u s s i o n s , however, f o r c e u s t o c o n s i d e r
w h a t w e mean by ' u se fu lness ' of an ou tpu t exp res s ion , wh ich i n t u rn l eads US t o
cons ider ing th ree major contex ts o f appl ica t ions .

A t t h i s Labora to ry w e have been associated with an applied mathematics
group which provides consul ta t ion and suppor t to a d i v e r s i t y of engineers and
s c i e n t i s t s . A l t h o u g h o u r p i c t u r e i s s t i l l somewhat l imi t ed , it does give us an

177

i nd ica t ion 'o f t he ma jo r con tex t s i n wh ich i n t eg ra t ion t oo l s are considered neces-
s a r y o r u s e f u l . The f i r s t is the usua l explora tory contex t , where a s c i e n t i s t
o r eng inee r encoun te r s i so l a t ed i n t eg ra l s wh ich he needs t o tackle. Here he
t y p i c a l l y wants c losed fo rm so lu t ion , bu t o f t en settles f o r an approximate
answer. The need here is based on t h e m o t i v a t i o n t o "do something with" the
r e s u l t , t h a t is, t o e i t h e r s t u d y i ts dependency on some parameters o r on some
other mathematical operat ions. The second context revolves around multiple
i n t e g r a t i o n . Here t h e g o a l is usua l ly numer ica l eva lua t ion , bu t one i s i n t e r -
e s t e d i n r e d u c i n g t h e d i m e n s i o n a l i t y o f i n t e g r a t i o n as much as poss ib le , .because
mul t ip l e quadra tu re is c o s t l y b o t h i n computing time and accuracy. The third
contex t concerns mul t i -parameter s tud ies , where the in tegra l depends on a
number of parameters , thus making n u m e r i c a l r e s u l t s d i f f i c u l t , i f n o t i m p o s s i -
b l e t o i n t e r p r e t e . For example, i f t h e i n t e g r a l is a func t ion of s ix parameters ,
t h e n u m e r i c a l r e s u l t would r e q u i r e a s ix-d imens iona l t ab le o r s ix-d imens iona l
hype r su r face t o r ep resen t . I n a l l these con tex t s of a p p l i c a t i o n s , c u r r e n t
t e c h n o l o g y f o r c e s a n i n v e s t i g a t o r t o t a k e e i t h e r a l t e r n a t i v e of t h e two ex-
tremes of numer i ca l ve r sus ana ly t i c r e su l t s (w i th some e x c e p t i o n s t o b e
mentioned later). It i s f a i r t o s a y t h a t most "real l i fe" p roblems are non-
e l e g a n t i n n a t u r e a n d f o r w h i c h a n a l y t i c r e s u l t s are d i f f i c u l t and un l ike ly t o
come by. For example, a polynomial of 5th degree whose c o e f f i c i e n t s are
der ived f rom da ta o r o ther computa t ions are u s u a l l y i r r e d u c i b l e o v e r t h e
in tegers . . In mos t non- t r iv ia l a lgor i thms of i n t e g r a t i o n t h i s f u n d a m e n t a l
l f m i t a t i o n i s o f t e n f a t a l , b e c a u s e t h e y i n v o l v e , i n o n e f o r m o r a n o t h e r , p a r t i a l
f ract ion decomposi t ion which depends on factor izat ion. All t h e s e d i s c u s s i o n s
p o i n t t o t h e need of a compromising approach between the extremes of numerical
and exact integrat ion. Such an approach (l e t u s c a l l i t approximate in tegra t ion) ,
i s r e s o r t e d t o by s c i e n t i s t s and e n g i n e e r s i n i s o l a t e d i n s t a n c e s , b u t h a s n o t
been invest igated as a p o s s i b l e g e n e r a l p u r p o s e t o o l i n t h e s e n s e of a quadra ture
scheme o r a symbol ic in tegra t ion a lgor i thm. The i m p o r t a n t p o i n t t o stress i s
that the approximate approach i s i n t e n d e d t o y i e l d a n o u t p u t that i s a n ex-
p r e s s i o n , r a t h e r t h a n a t a b l e of numbers..

A t t h i s s t a g e we have examined four b road ca tegor ies of such approximate
schemes. The f i r s t c o n s i s t s of the approximation of the integrand by a set of
bas i s func t ions such as polynomials or spl ines . There have been some i s o l a t e d
app l i ca t ions u s ing such approx ima t ion , fo r i n s t ance , i n f i n i t e e l emen t ana lys i s .
One example is g i v e n i n t h e p a r t i c u l a r i n t e g r a t i o n o f mass and s t i f f n e s s
matrices g iven in (Ref . 5). Here t h e i n t e g r a n d , a f t e r a sequence of symbolic
manipulat ions, i s made up of a matrix of b ivar ia te po lynomia ls which are r e a d i l y
i n t e g r a t e d . I n a more general vein, Andersen (Ref. 6) d e s c r i b e s t h e v a r i e t y of
i n t e g r a t i o n s f o r t r i a n g u l a r and q u a d r i l a t e r a l f i n i t e e l e m e n t s .

The second approach may b e l a b e l l e d i n t e r p o l a t o r y scheme. Here t h e s p i r i t
is a n a l o g o u s t o t h e d e r i v a t i o n o.f quadrature schemes. i .e., by approximating
the i n t eg rand by some ' in t e rpo la t ion fo rmula and t hen i n t eg ra t ing term by term.
An example can be cited from Filon quadrature (Ref. 7) . Here the i n t eg rand i s
of the form f (x)s ico(ax) where sic0 i s e i t h e r s i n e o r c o s i n e . The i n t e g r a t i o n
i n t e r v a l i s subdiv ided in to n segments and f (x) i s i n t e r p o l a t e d by a quadra t i c
i n e a c h segment t o f i t t h e m i d p o i n t a n d two endpoin ts o f tha t segment . The
in t e rpo la t ed expres s ion can t hen be i n t eg ra t ed ana ly t i ca l ly . S imi l a r t echn iques

178

can be applied to other types of functions. As pointed out by a referee,
in te rpola t ion ac tua l ly can be viewed as a special case of approximating i n
terms of a bas i s , i t being the Lagrange polynomials associated with the inter-
pola t ion po in ts and having an i n t e g r a l e r r o r c r i t e r i o n s u b j e c t t o e x a c t f i t a t
these points .

The third approach is based on a reduction of transcendence of t h e i n t e -
grand. T e r m w i s e i n t eg ra t ion of approximations of the integrand by power o r
asymptotic series is a well-known example i n this category. ' This s t ra tegy
amounts to an approximation of the integrand by a polynomial. However, one can
also approximate the integrand by a rat ional funct ion. For example, t a k e t h e
exponential of a polynomial. For a proper range the exponential can be
approximated by a ra t iona l func t ion , bu t there is a n a s s o c i a t e d d i f f i c u l t y
here, namely, that the r a t iona l func t ion cons i s t s of polynomials of high degrees,
and tha t some kind of telescoping procedure need be app l i ed i n o rde r t ha t t he
i n t e g r a t e d r e s u l t is manageable. An example w i l l be presented to d e t a i l t h e
advantages and disadvantages of such a s t r a t egy .

The last approach is t o compute t h e i n t e g r a l by quadrature and then
approximate the answer by, for example, some basis functions. This approach
can hardly be considered under the umbrella of i n t e g r a t i o n (i t is more of a
curve o r s u r f a c e f i t t i n g problem). I n a paper on practical approximations
(Ref. 8) the author gives an example on the approximation of an in tegra l . The
bas ic idea w i l l ca r ry th rough to a more general problem where quadrature can
be used instead. We s h a l l comment on the p ros and cons of t h i s approach.

I n t h e o r a l p r e s e n t a t i o n w e sha l l p rovide a concrete example f o r each
approach and d i s c u s s t h e MACSYMA re l evance t o each. Though w e do not have a
coherent theory behind each, w e b e l i e v e t h i s i n v e s t i g a t i o n i s a modest
beginning of approaches of practical significance.

179

I

REFERENCES

1. Risch, R.: The Problem of Integration in Finite Terms. Trans. American
Math. SOC., vol. 139, 1969, pp. 167-189.

2. Moses, J.: Toward A General Theory of Special Functions. Commun. ACM,
vol. 15, no. 7, July 1972, pp. 550-554.

3. Wang, P.: Evaluation of Definite Integrals by Symbolic Manipulation.
Rep. 92, Lab. Comput. Sci. , (formerly Proj. MAC) , Massachusetts Inst.
Technol. , 1971.

4 . Ng, E.; and Polajnar, D.: A Study of Alternative Methods for Symbolic
Calculation of Elliptical Integrals. Proceeding of 1976 ACM Symposium
on Symbolic and Algebraic Computations, Aug. 1976, pp. 372-376.

5. Gupta, K.; and Ng, E.: Symbolic Calculations in a Finite Dynamic Element
Analysis. Proceedings of the 1977 MACSYMA Users' Conference, NASA
CP-2012, 1977. (Paper no. 16 of this compilation.)

6. Andersen, C.: Use of Computerized Symbolic Integration in Finite Element
Development. Proceedings of the ACM Annual Conference, pp. 554-562,
1974.

7. Chase, S.M.; and Fosdick, L.D.: An Algorithm for Filon Quadrature.
Commun. ACM, vol. 12, no. 8, Aug. 1969.

8. Cody, W . J . : A Survey of Practical Rational and Polynomial Approximation
of Functions. SIAM Rev. vol. 12, no. 3, 1970.

180

LISP: PROGRAM IS DATA

A HISTORICAL PERSPECTIVE ON MACLISP

Jon L White
Laboratory for Computer Science, M.I.T.*

ABSTRACT

For over 10 years, MACLISP has supported a variety of projects at M.I.T.'s Artificial Intelligence
Laboratory, and the Laboratory for Computer Science (formerly Project MAC). During this time, there
has been a continuing development of the MACLISP system, spurred in great measure by the needs of
MACSYMA development. Herein are reported, in a mosiac, historical style, the major features of the
system. For each feature discussed, an attempt will be made to mention the year of initial development,
and the names of persons or projects primarily responsible for requiring, needing, or suggesting such
features.

INTRODUCTION

In 1964, Greenblatt and others participated in the check-out phase of Digital Equipment
Corporation's new computer, the PDP-6. This machine had a number of innovative features that were
thought to be ideal for the development of a list processing system, and thus i t was very appropriate that
the first working program actually run on the PDP-6 was an ancestor of the current MACLISP. This
early LISP was patterned after the existing PDP-1 LISP (see reference l) , and was produced by using
the text editor and a mini-assembler on the PDP-1. That first PDP-6 finally found its way into M.I.T.'s
Project MAC for use by the Artificial lntelligence group (the A.1. group later became the M.I.T.
Artificial Intelligence Laboratory, and Project MAC became the Laboratory for Computer Science). By
1968, the PDP-6 was running the Incompatible Time-sharing system, and was soon supplanted by the
PDP-IO. Today, the KL-I 0, an advanced version of the PDP-10, supports a variety of time sharing
systems, most of which are capable of running a MACLISP.

MACSYMA (ref. 2) grew out of projects started o n the 7090 LISP 1.5, namely Moses' SIN
program and Martin's MATHLAB. By implementing the Project MAC Symbolic and Algebraic
manipulation system in LISP, many advantages were obtained. Of particular importance were
(i) a basic data convention well-suited for encoding algebraic expressions, (ii) the ability for many
independent individuals to make programming contributions by adhering to the programming and data
framework of LISP, and (iii) the availability of a good compiler and debugging aids in the MACLISP
system. As the years rolled by, the question was asked "What price LISP"? That is, how much faster
could the algebraic system be if the advantages brought by the LISP system were abandoned and an
all-out effort was made in machine language? Moses has estimated that about a factor of two could be
gained (private communication), but at the cost of shifting much of the project resources from mathe-
matical research to coding and programming. However, that loss could have been much larger had not
MACLISP development kept pace, being inspired by the problems observed during MACSYMA
development, and the development of other projects in the A.I. Laboratory. The most precarious strain
placed o n the supporting LISP system by MACSYMA has been its sheer size, and this has led to new
and fundamental changes to MACLISP, with more yet still in the future. Many times, the MACSYMA

*During the calendar year 1977, the author is located at the IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598.

181

system was not able to utilize the solution generated for one of its problems, due to the familiar trap of
having already too. much code invested in some bypass solution; but there has generally been an
interchange of ideas amongst those groups using MACLISP at the A.I. Lab and LCS, and another group
may have received the benefit of an idea born by MACSYMA needs.

Because the system is still evolving after a decade of development, it is useful to think of it as one
big piece of data, a program still amenable to further critical review and emendation. Below are
presented some of the developments of this past 10 years, with a little bit of explanation as to their
significance and origin.

HOW WE GOT TO WHERE WE ARE

Clever Control Features

In 1966, Greenblatt suggested abandoning the a-list model for program variables, and returning to a
standard save-and-restore stack model such as might be used by a recursive FORTRAN. This was the
first LISP to do so, and a later LISP developed at Bolt, Beranek, and Newman (BBN) in Cambridge
used a model whereby storage for program variables was dynamically allocated on the top of a stack.
Both stack models could achieve a significant speed-up over the a-list models, but at a cost of limiting
the use of FUNCTION (see ref. 3) . The BBN LISP later became INTERLISP (ref. 4), and currently
has a stack model with the same function capabilities as the a-list model. In 1975, the PROGV feature
was added and is apparently unique to MACLISP. PROGV is essentially PROG, except that the list of
variables is not syntactically present, but rather is computed as an argument to PROGV; previously,
about the best one could do was to call EVAL (or APPLY) with a dynamically-constructed LAMBDA
expression.

In 1969, Sussman, noticing features of the MULTICS operating system, demanded some similar
features for MACLISP: asynchronous interruption capability, such as alarmclocks, job-console control
keys, hardware faults, interprocess communication, and exceptional process conditions (chiefly, errors).
Many LISP systems now permit the user to supply functions for handling standard LISP errors, and
provide for some mechanism at the job-console to interrupt the system, putting it into a top-level-like
loop called BREAK. MACLISP permits interruption capability on any character of the input-console
keyboard; the user may designate any function to be run when a particular key is typed. To some
degree, these features appeared concurrently in INTERLISP, but especially the stackframe and
debugging facilities of INTERLISP inspired similar ones in MACLISP. In mid-1976, MACLISP could
finally give an interrupt to the user program on several classes of hardware-detected conditions: access
(read or write) to a specific address, attempted access to non-existent address, attempted write access
into read-only memory, parity error, and illegal instruction. Furthermore, some operating system
conditions could trigger special interrupts: system about to shut down in a few minutes, and console
screen altered by system. Evident from the development of LTSP-embedded systems was the need for a
NOINTERRUPT facility, which could protect user-coded processes from an accidental, mid-function
aborting such as might occur during an asynchronous interrupt. Steele designed and implemented the
current scheme in late 1973.

Sussman’s development of MICRO-PLANNER (ref. 5) required some more capabilities for
intelligent, dynamic memory management; and thus White, in 1971, introduced programmable parame-
ters for the garbage collector - a minimum size for each space, a maximum allowable, and a figure
demanding that a certain amount be reclaimed (or found free) after a collection. Then in the next year
came the GC-DAEMON mechanism, whereby a user function is called immediately after each garbage
collection so that it can intelligently monitor the usage of memory and purposefully modify the
memory-management parameters. Baker, who has recently done work on concurrent garbage collection
(ref. 6), has produced a typical storage monitor using the MACLISP mechanisms (ref. 7).

182

Sussman's later development of CONNIVER (ref. 8) showed the need for a sort of non-local
GOTO, as a means of quickly aborting a computation (such as a pattern-matching data-base search) that
had gone down a wrong path. Thus in 1972 White devised the CATCH and THROW facilities
(THROW provides a quick, non-local break-out to a program spot determined by CATCH), and
implemented FRETURN as a means of an impromptu "THROW" out of any stackframe higher up than
the current point of computation (this is especially effective if an error break occurs, and the user can
supply by hand a correct return value for some pending subroutine call several levels up the stack). In
1975, Steele coded the EVALHOOK feature, which traps each interpretive entry to EVAL during the
evaluation of a , piece of code; this permitted users to write debugging packages that can effectively
llsingle-step'' through an evaluation.

The embedding of advanced programming-language systems in LISP, such as MACSYMA,
MICRO-PLANNER, CONNIVER, and LLOGO (ref. 9) required a means of insulating the supporting
system (written as LISP code) from the users code (written in the new experimental language). Sussman
and White noticed that the action of INTERN was primarily a table look-up, and they implemented this
table (in 1971) as a LISP array, which array is held as the value of the global variable OBARRAY.
Thus a user can change, or even LAMBDA-bind, the INTERN environment. Similarly, the action of the
programmable reader could be controlled by exposing its syntax and macro table as the value of the
global variable READTABLE, which was done in 1972. In 1975, the MAPATOMS function as found in
INTERLISP was implemented for quickly applying a function to all the objects on a given OBARRAY.
All these. embedded systems wanted to have better control over the LISP top-level and break-level
loops; so in 1971 two features were added: 1) ability to replace the top-level ar,d break-level action
with a form of the user's choice, and 2) a facility to capture control after a system-detected error has
occurred but before re-entry to the top level. At first, the error-break permitted only exiting by quitting
out back to top level, but later these breaks were such that many errors could be corrected and the
computation restarted at the point just prior to the error detection. By early 1975, it was noted that
many applications wanted to alter what might be called the default input reader and the default output
printer; the former because their code files were written with many macro and special facilities, and the
latter because of the occurrence of circular list structure. Thus the two variables READ and PRINI, if
non-NIL, hold a user-supplied function for these operations.

1 / 0 Facilities

In 1968, White proposed a programmable, macro-character input reader, and by the summer of
1969, the reader was in operation. Since that time, some other LISPS have added certain special
features to their readers, such as inputting 'A as (QUOTE A), or as in INTERLISP, permitting the user
to change the meaning of break, separator, and escape characters; but to the author's knowledge none
have any user-programmable macro' facility, nor so wide a range of parsing options as does MACLISP.

The PRINT function of MACLISP has remained relatively neglected over the years; but in 1973
Steele implemented the PRINLEVEL and PRINLENGTH facilities as inspired by the INTERLISP
PRINTLEVEL facility. LISP has always had the notion of "line length", such that if more than a
specified number of characters were output without an intervening newline character, the a newline was
automatically inserted by the system (this was especially practical in the days when model 33 Teletypes
were the main terminal used, and the operating system did not take care of preventing too long a line).
MACLISP allowed an override on this automatic insertion feature, but in 1,976 Steele modified this
facility so that, even when not overriden, it would not insert the generated newline character in the
middle of some atom. Along with the macro-reader in 1968, White installed dynamically-variable base
conversion for fixnums, so that any base between 2 and 36 could be used; for what it's worth, Steele
extended this for roman numerals also in 1974.

. "_ ~~~

Of course the macro functions are written in LISP, what else!

183

The problem of "perfect" output for floating-point numbers on the PDP-10 has apparently not been
solved in any other system. That is, given the more-or-less standard input algorithm for base conversion
from floating-point .decimal numbers (dfpns) to floating-point binary numbers (bfpns), construct an
output conversion algorithm such that

i) every representable bfpn is converted to a shortest dfpn, and
ii) if e is a representable bfpn, and e* is its dfpn image by the output algorithm, then the input

In 1972, White devised and installed in MACLISP an algorithm that was more nearly ''perfect'' than any
other known to the author or to persons of his acquaintance; and in May 1977 White and Steele
improved that algorithm so that they think it is "perfect'' (a proof of which is forthcoming). Most other
algorithms will increase the least-significant bit of some numbers when passed through the read-in of
print-out cycle (see reference 10 for a possible explanation of why this problem is so hard). Golden
anticipates MACSYMA's usage of this capability, "perfect" print-out, if i t indeed is truly so.

algorithm applied to e* produces exactly e.

Inspired by LISP 1.6 (ref. 1 l) , a preliminary version of a multiple 1 / 0 scheme was coded up by
Stallman in 197 1. Prior to this, MACLISP could effectively READ from at most one file at a time, and
PRINT out onto at most one file at a time; furthermore, there were no provisions for 1 / 0 other than the
ASCII streams implicit in READ and PRINT. That preliminary version was abandoned in early 1973,
and a decision was made to copy the design of the MULTICS version 1 / 0 (which had been developed
rather independently). This scheme, coded by Steele and ready for use early in 1975, has been termed
"Newio''. It has since been undergoing continuing check-out and development up until now, and in
January 1977 became the standard MACLISP on the ITS versions, although we have not yet made the
necessary modifications to the TOPS-10 version.

Between 1967 and 1971, the A.1. Lab Vision Group, and MACSYMA Group saw the need for a
faster method of getting compiled LISP subroutines off disk storage and into a running system. Back
then, the compiler would produce a file of LAP code, which would be assembled in each time it was
required. The first step in this direction was taken in 1969 when White devised a dynamic array space,
with automatic garbage collection. Then White and others worked out a relocatable format for disk
storage such that the load in time could be minimal; Steele and White implemented this scheme between
1972 and 1973, called FASLOAD. Golden reported that the time to load in all the routines comprising
the then-existing MACSYMA dropped from about an hour to two minutes; continuing MACSYMA
development certainly required this FASt LOADing scheme. Closely following in time was the
AUTOLOAD scheme, whereby a function that was not part of the in-core environment, but resident in
FASL format on disk, would be FASLOADed in upon first invocation.

Arithmetic Capabilities

Perhaps the most stunning achievement of MACLISP has been the method of arithmetic that has
permitted FORTRAN-like speed from compiled LISP code. In 1968, Martin and Moses, foreseeing
future needs of MACSYMA, demanded better arithmetic capabilities from MACLISP. In 1969, Martin
changed the implementation of numbers so that FIXNUMs and FLONUMS consumed only one word,
rather than three - that is, the LISP 1.5 format was abandoned and numbers were implemented merely
as the pointer to the full-word space cell containing their value. Such a scheme had already been
accomplished, partially, in other LISPS. After that change in the interpreter had been completed, some
new functions were introduced for type-specific arithmetic:

for fixed point: + - * / 1+ 1-
for floating point: +$ -$ *$ /$ 1+$ 1-$
for either (but not mixed): = < >

Later, more functions were added, such as fixed-point square-root, and greatest-common-divisor. The
fixed-point functions would be an automatic declaration to the compiler that all arguments and results
would be fixnums, and that all arithmetic can be modulo 235; similarly, the flonum functions would
specify the use of floating point hardware in the compiled code.

1 84

At the same time, Binford suggested installing- separate full-word stacks for FIXNUMs and for
FLONUMs, and interpreting these stack addresses as the corresponding type number. Then White
proposed eliminating the discontinuity in FIXNUM representation caused by the INUM scheme,.so that
open-compilation of numeric code would need no extra, interpretive-like steps to extract the numerical
value from a LISP number;2 White also designed a scheme for using the number stacks, interfacing
compiled subroutines with one another and with the interpreter. The redesign of number storage, and
the design of a numeric subroutine interface, was for the purpose of permitting the compiier to produce
code similar to what a PDP-10 FORTRAN compiler could produce on essentially numeric program^.^
Work then began on the compiler to take advantage of all this, and a preliminary version for arithmetic
code was operational by late 1971, under the care of Golden and Rosen who did most of the early
coding. Rosen and White developed optimization in the compiler during 1972, and White continued this
work through the end of 1976. In 1974, White and Steele extended the array data facilities of
MACLISP to include FORTRAN-like arrays of fixnums and flonums so that the compiler could optimize
array references in numerical code; see Steele's paper describing the current output available from the
compiler (ref. 13).

Early along in MACSYMA development, Moses and Martin saw the need for variable-precision
integer arithmetic, and thus the BIGNUM functions were born, with most algorithms taken from Knuth
(ref. 14). During 1972 and 1973, Golden suggested the need in MACSYMA for some of the usual
transcendental functions, like SIN, COS, natural logarithm and anti-logarithm, and arc-tangent (these
were adapted from some rational approximations originally developed by White in 1967); for CCD,
HAULONG, HAIPART, and improvements to the the exponentiation function EXPT; and for the
ZUNDERFLOW switch, which permits interpretive arithmetic routines to substitute a real zero for any
floating-point result that causes a floating-point underflow condition. By combining the binary and
Lehmer algorithms from Knuth (ref. 15). Gosper produced a C C D algorithm early in 1976 which runs
much faster on bignum inputs. Also, in 1976, a feature was added to the interpretive floating-point
addition and subtraction routines such that if the sum is significantly less than the principal summand,
then the sum is converted to zero; the variable ZFUZZ holds a scale-factor for this feature, which is
still considered experimental (LISP370 has a more pervasive use of a similar feature in all floating-point
arithmetic and 1 / 0 functions).

Randomness has always been a property of MACLISP, having had a linear-shift-register RANDOM
number generator since early times. This generator produced a maximally-long sequence, was extremely
fast, and moderately acceptable for most applications. However, i t failed the correlated-triples test, and
when i t was used to generate random scenes for display on the LOGO Advent color projector. it
produced some very nice kaleidoscopic pictures; so in late 1976, a modification of Knuth's Algorithm A
(ref. 16) was'coded by Horn.

Ancillary Packages

A number of ancillary functions have been coded in LISP, mostly by persons who were LISP users
rather than system developers, and are kept stored in their compiled, FASL format for loading in when
desired. In 1970, Binford coded a small, but powerful, subset of the INTERLISP in-core editor as a
LISP package, but this was later recoded in machine language; a more extensive version of the
lNTERLZSP editor has been coded by Gabriel in 1975. In 1970, Winston designed and coded INDEX,

*MACLISP, by inspecting the numerical value of a number coming into the FIXNUM-comer, supplies a
canonical, read-only copy for fixnums in the range of about -1000. to +2000. This significantly
reduces the number of new cells required by running arithmetic code, without significantly slowing
down the operations. Currently, no similar action is taken for FLONUMs.

3The generally-accepted opinion in 1968, and indeed in some quarters up until 1973, was that LISP is
inherently a hundred times slower on arithmetic than is FORTRAN. Fateman's note in 1973 effectively
rebutted this opinion (ref. 12), but in 1969 it tonk faith to go ahead with this plan; only Martin and
the author had a clear resolve to do so then.

~. .. ~ - " - . ~~~~ ~~

185

a package to analyze a file of LISP programs and report on- certain properties therein. During 1972,
Goldstein replaced an existing, slow pretty-printer (called GRIND) with a programmable pretty-printer
(ref. 17), and Steele spruced-up an existing TRACE package to have more features. After the Newio
scheme became operational, two packages were coded for the fast dumping onto disk and retrieval
therefrom of numeric arrays, and a FASDUMP package was implemented for MACSYMA that could
quickly and efficiently store list structure on disk (Kulp had a hand in developing this package, but it
may no longer be in use). Many of these user-supplied packages now reside on a disk area called
LIBLSP, which includes a FORMAT package by White for printing out numbers under control of a
format (such as is used in FORTRAN), a package for reading and printing circular list structures,
various debugging packages and s-expression editors, and many others.

In 1973 Pratt was continuing work on a "front end'' for LISP, CGOL (ref. 18), which he had
begun at Stanford University in 1971, and he had it generally operational a t a number of sites by 1975.
It exemplifies the Pratt operator-precedence parser (now used at the front end of MACSYMA), and has
some of the character of MLISP (ref. 19). However, the CGOL-to-MACLISP conversion is dynamic and
fast, and furthermore, an acceptable inverse operation has been implemented, so that one can effectively
use this ALGOL-like language while still retaining all the advantages of MACLISP (fast interpreter,
good compiler, many debugging aids, ,etc.). It is not at all impractical to replace the MACLISP default
reader and printer with CGOL's (see notes on READ and PRINl in the last paragraph of "Clever
Control Features'' above), so that CGOL may be properly thought of as an alternate external syntax for
LISP. See reference 7 for a practical example - one particular GC-DAEMON function for MACLISP,
coded in CGOL.

MIDAS, the A.I. Lab's assembly-language system for the PDP-IO, cooperates with MACLISP to
the extent of being able to produce a FASL format file. A number of these ancillary packages have thus
been coded in machine language for greater efficiency. In mid 1973, Steele coded a version of
Quicksort (ref 20) which is autoloadable as the function SORT; in 1976, after Newio became stable,
Steele coded a file-directory query package (called ALLFILES), and designed a package for creating and
controlling subjobs (tasks) in the ITS time-sharing environment (called HUMBLE). Using the HUM-
BLE package, Kulp and others interfaced the text editor TECO with MACLISP, for increased program-
mer efficiency in debugging and updating LISP programs. Kulp and others had proposed a text-
processing system suitable for use with a photo-composer to be written in MACLISP and using these
features, but this has not yet been realized. With the ALARMCLOCK facility for periodic interrupts,
and HUMBLE for driving sub-tasks, MACLISP is fully equipped for becoming a time-sharing system.

Export Systems

Martin's desire to be able to use MACSYMA on the MULTICS system led to the start of a
MULTTCS version of MACLISP, begun in late 1971 by Reed; after this was fully operational in 1973,
Moon, who had worked on it wrote the now-extinct MACLISP Reference Manual published in March
1974 (ref. 21). Although there has been little use of MACSYMA on the MULTICS version, it was
successfully transplanted there; several other extension systems developed on the PDP-10 version were
also successfully tested on the MULTICS version, such as LLOGO and CONNIVER.

In the summer of 1973, the MACLISP system was extended to permit its use on TOPS-10, DEC's
non-paged time sharing system. Much help on this development has come from members of the
Worcester Polytech Computation Center, and from the resources of the Computer Science department of
Carnegie-Mellon University. The impetus for having a TOPS-10 version came from many academic
institutions, where students with interests in artificial intelligence had been intrigued by MICRO-
PLANNER and CONNIVER and their applications, and had wanted to experiment with these systems
on their own PDP-10s. Later, as M.I.T. graduate students and professors moved to other universities,
they took with them the desire to use MACLISP, rather than any of the other available LISP alterna-
tives. The major difficulty in export to these other institutions has been their lack of adequate amounts
of main memory - few places could even run the MACLISP compiler, which requires 65+K. At one

186

time Moses had a desire to export MACSYMA through this means, but this has not proved feasible.
Even for the KI-10 and KL-10 processors, which have paging boxes, the TOPS-10 operating system
does not give user programs sufficient control over the page-map; consequently, this version of
MACLISP is to some degree less efficient in its memory utilization.

The TENEX and TOPS-20 operating systems should be able to support the TOPS-10 version of
MACLISP, under a compatibility mode, but there has been some. difficulty there. In 1971, a specially
tailored version of MACLISP was run under the TENEX system, but this version died out for lack of
interest. If future interest demands it, there should be no trouble in getting almost the full range of
MACLISP features found on the ITS version to be implemented in a TOPS-20/TENEX version. In
1976 Gabriel adapted the TOPS-10 version to run on the Stanford A.I. Laboratory operating system,
and there is currently an increasing body of users out there.

Revised Data Representations .

A major step was taken in 1973 when the long-awaited plans to revise the storage strategy of
MACLISP saw the light. A plan called Bibop (acronym for Blg Bag Of Pages), inspired in part by the
prior INTERLISP format, was designed by White, Steele, and Macrakis; and this was coded by Steele
during the succeeding year. The new format relieves the need for a LISP user to make precise alloca-
tions of computer memory, and permits dynamic expansion of'each data space (although only the array
storage area can be dynamically reduced in size). In 1974, numeric arrays were added, and in 1976 a
new data type called HUNK was added as a s-expression vector without any of the overhead associated
with the array data type. Steele's paper in these proceedings (ref. 22) gives a detailed account of how
the current storage picture looks inside MACLISP.

Especially MACSYMA, as well as Winograd's SHRDLU and Hewitt's PLASMA systems, needed
the efficiency and versatility of these new formats. The concept of "pure free storage" entered the
picture after Bibop became operational: this is list and s-expression structure that is essentially constant,
and which can be removed from the active storage areas that the garbage collector manages. Further-
more, it can be made read-only, and shared among users of the same system; in MACSYMA, there are
myriads of such cells, and the consequent savings is enormous. Thus the incremental amount of memory
required for another MACSYMA user on the system starts at only about 45K words!

The Compiler

Greenblatt and others wrote a compiler for the PDP-6 lisp, patterned initially after the one for 7090
LISP on CTSS. This early attempt is the grandfather of both the current MACLISP and current
LISP 1.6 compilers. However, optimizing LISP code for the the PDP-6 (and PDP-IO) is a much more
difficult task than i t might first appear to be, because of the multiple opportunities provided by the
machine architecture. That early compiler had too many bugs to be really useful, but it did provide a
good, basic structure on which White began in 1969 (joined by Golden in 1970) to work out the plans
for the fast-arithmetic schemes (see ref. 13). The LISP 1.6 compiler has apparently not had so
thorough a check-out and debugging as the MACLISP compiler, since its reputation is unreliability. The
INTERLISP compiler was produced independently, and seems to be quite reliable; but comparisons have
shown that average programs compile into almost twice as many instructions through it than through the
MACLISP compiler.

Ad-Hoc Hacs

As the number of new and interactive features grew, there was observed need for a systematic way
to query and change the status of various of the operating system and LISP system facilities. We did not
want to have to introduce a new LISP primitive function for every such feature (there are scores!), so
thus was born in 1969 the STATUS and SSTATWS series. The first argument to these functions selects
one of many operations, ranging from getting the time of day from a home-built clock, to reading the
phase of the moon, and to setting up a special TV terminai line to monitor the garbage collector. Later,

187

in 1975, the function SYSCALL was added as a LISP entry into the time-sharing system's CALL series
of operations. (See reference 23 for information on the ITS system.)

Between 1970 and 1972, the demands of the A.I. Lab Vision group necessitated the installation of
a simulated TV camera, called the FAKETV, along with a library file of disk-stored scene images. A
cooperative effort between the Vision group and the LOGO group led' to the design of a Display-slave
- a higher, display-orientated language for use with the Lab's 340 Display unit using the PDP-6 as an
off-line display processor. Goldstein, because of his interest in LLOGO (ref. 9), participated in the
initial design along with Lerman and White; the programming and coding were done by the latter two.

In 1973, terminal-input echo processing (rubout capability) was enhanced, and cursor control was
made available to the user for the existing display terminals. When the A.T. Lab began using the
home-built TV terminal system, Lieberman coded a general-purpose display packages in LISP for use on
the TV display buffer. When Newio became available in 1975, Lieberman and Steele showed examples
of split-screen layouts usable from LISP, and in 1976 Steele showed how to code a variety of "rubout"
processors in LISP. Furthermore, Newio permitted extended (12-bit) input from the keyboards
associated with these terminals.

In 1973, MACLISP copied a feature from LISP 1.6 for improving facilities in linkage between
compiled subroutines - the UUOLINKS technique. All compiled- subroutine calls are done indirect
through a table, which contains interpretive links for subroutine-to-subroutine transfer. Under user
option, these links may be "snapped" during run time - that is, converted to a single PDP-10 subrout-
ine transfer instruction. A read-only copy is made of this table (after a system such as MACSYMA is
generated) so that i t may be restored to its unsnapped state at any time. The advantage of this is that,
normally, subroutine transfers will take place in one or two instruction executions, but if i t is desired to
debug some already compiled subroutines, then one need only restore the interpretive links from the
read-only copy.

Inspired by MACSYMA's history variables, MACLISP adopted the convention in early 197 1 that
the variable "*" would hold the most recent quantity obtained at top level.

In 1973, White coded an s-expression hashing algorithm called SXHASH, which has been useful to
routines doing canonicalization of list structure (by hashing, one can greatly speed-up the search to
determine whether or not there is an s-expression copy in a table EQUAL to a given s-expression).

To accommodate the group that translated the lunar rocks query-information system from
INTERLISP to MACLISP, the convention was established in 1974 that car[NIL]=cdr[NlL]=NlL. This
seems to have been widely accepted, since i t simplifies many predicates of the form
(AND X (CDR X) (CDDR X)) into something like (CDDR X).

WHERE DO WE GO FROM HERE?

The major problem now with MACLISP, especially as far as MACSYMA is concerned, is the
limitation imposed by the PDP-10 architecture - an 18.-bit address space, which after overhead is
taken out, only leaves about 180K words for data and compiled programs. Steele discusses some of our
current thinking on what to do about this in his paper (ref. 22) of these proceedings, under the section
"The Address Space Problem". Since the LISP machine of Greenblatt (ref. 24) is such an attractive
alternative, and is even operational now in 1977, we will n o doubt explore the possibilities of incorporat-
ing into PDP-IO MACLISP some of its unique features, and in general try to reduce the differences
between them. For the future of MACSYMA, we foresee the need for new, primitive data types for
efficient use of complex numbers and of double-precision floating-point numbers. We anticipate also the
need to have a version efficiently planted in the TOPS-20 system.

188

FULL NAMES OF PERSONS ASSOCIATED WITH MACLISP DEVELOPMENT
AND MENTIONED IN THIS PAPER

MIT Professors
Joel Moses
William A. Martin
Gerald J. Sussman
Ira P. Goldstein
Vaughan Pratt
Patrick H. Winston
Terry L. Winograd*
Carl E. Hewitt
Richard J . Faternan*
Berthold K. P. Horn
* = N o longer at M.1.T

Research Staff
Jon L White
Jeffrey P. Golden
Richard Greenblatt
Thomas 0. Binford*
Jerry B. Lerman*
K. William Gosper*

Students
Guy L. Steele Jr.
David A. Moon
Eric C. Rosen*
John L. Kulp
Richard P. Gabriel*
Henry Lieberman
Richard M. Stallman
Stavros Macrakis
David P. Reed
Henry G . Baker, Jr.

REFERENCES

1. Deutsch, L., and Berkeley, E.; The LISP Implementation for the PDP-1 Computer, in THE
PROGRAMMING LANGUAGE "LISP". edited by Berekeley, E., and Bobrow, D., Information
International Inc., 1964.

2. MACSYMA Reference Manual, Project MAC Mathlab Group, M.I.T., November 1975.
3. Moses, J.; The Function of FUNCTION in LISP. AI Memo 199, Artificial Intelligence Lab, M.I.T.,

4. Teitelman, W.; INTERLISP Reference Manual (Revised edition). Xerox Palo Alto Research Center,

5 . Sussman, G., Winograd, T, and Charniak, E.; Micro-Planner Reference Manual (revised). AI Memo

6. Baker, H . ; A Note on the Optimal Allocation of Spaces in MACLISP. Working Paper 142, Artificial

7. Baker, H . ; List Processing in Real Time on a Serial Computer. Working Paper 139, Artificial

8. McDermott, D., and Sussman, G.; THE CONNIVER REFERENCE MANUAL. AI Memo 259A,

9. Goldstein, I . ; LLOGO: An Implemenlalion of LOGO in LISP. AI Memo 307, Artificial Intelligence

June 1970.

1975

203A, Artificial Intelligence Lab, M.I.T., December 197 1 .

intelligence Lab, M.I.T., March 1977.

Intelligence Lab, M.I.T., February 1977.

Artificial Intelligence Lab, M.I.T., January 1974.

Lab, M.I.T., June 1974.
10. Matula, D.; In-and-Out Conversions. CACM I / , I, January 1968, pp. 47-50.
1 1 . Quam, L.; STANFORD LISP 1.6 MANUAL. SAILON 28.3. Artificial Intelligence Lab, Stanford

12. Fateman, R.; "Reply to an Editorial", SIGSAM Bulletin, 25, March 1973, pp. 9-1 1.
13. Steele, G.; Fast .Arithmetic in MACLISP. Proceedings of the 1977 MACSYMA Users Conference,

14. Knuth, D.; The Art of Computer Programming, V2. Addison-Wesley, 1969, pp. 229-240.

University, 1969.

NASA CP-2012, 1977. (Paper no. 22 of this compilation).

15. - , ibid., pp. 293-307.
16. ~ , ibid., pp. 26-27.
17. Goldstein, I . ; Prelty-Prinling, Converting List to Linear Structure. AI Memo 279, Artificial

18. Pratt, V.; CGOL - An Alternative External Representation for LISP Users. Working Paper 121,

19. Smith, D.; MLISP. AIM-135, Artificial Intelligence Lab, Stanford University, 1970.
20. Knuth, D.; The Art of Computer Programming. V3, Addison-Wesley, 1973, pp. 114-1 16. .
21. Moon, D.; MACLISP Reference Manual, Revision 0. Laboratory for Computer Science (formerly

22. Steele, G . ; Data Representations in PDP-10 MACLISP. Proceedings of the 1977 MACSYMA

23. Eastlake, D.; ITS Status Report. AI Memo 238, Artificial Intelligence Lab, M.I.T., April 1972.
24. Greenblatt, R.; The Lisp Machine. Working Paper 79, Artificial' Intelligence Lab, M.I.T.,

Intelligence Lab, M.I.T., Feburary 1973.

Artificial Intelligence Lab, M.I.T., March 1976.

Project MAC), M.I.T., March 1974.

Users Conference, NASA CP-2012, 1977. (Paper no. 21 of this compilation).

November 1974.

I .

II I

20

LISP: DATA IS PROGRAM

A TUTORIAL IN LISP

Jon L White
Laboratory for Computer Science, M.I.T.*

ABSTRACT

A novel approach at teaching LISP to a novice is herein developed. First, the abstract data format
is presented, emphasizing its real structure and its machine implantation. Then the technique of writing
programs in the data language, and of "interpreting" them, is presented. Illustrative features are drawn
from various extant LISP implementations.

INTRODUCTION

The design of LISP as a programming language was based on the desire for a practical implementa-
tion of recursively defined subroutines capable of operating on data of arbitrarily complex structure.
This paper will develop, partly from a historical point of view and partly for the benefit of a program-
ming novice, the requirements placed on the data implementation, and the usefulness of the data
structure to symbolic computation. A self-contained and motivating data presentation for the novice has
not been adequately handled elsewhere, as previous works invariably define a classic logical language of
well-formed-formulae over a character alphabet - an approach which does not relate well to the
structured nature of LISP data, and which cannot provide the basis for explaining one of the primary
data predicates: EQ. In addition, the goal of embedding the programming language into the data
language, and achieving efficient interpretation therein, will be discussed. LISP is unique in that a
simple data operation will take an expression of the data language and, leaving its structure intact,
extend it to be an applicable function in the programming language. This is essentially the ability to
create LAMBDA expressions dynamically (and, where appropriate, to create FUNARG expressions, and
to compile functions at run time). It is not expected that this paper will be sufficient for a novice
actually to learn how to program in LISP, but it should provide a good, basic understanding of the
concepts involved.

THE DATA

Its Structure

In many programming languages, the data are essentially "flat" objects. In FORTRAN, the basic
datum is an integer (or floating point number), limited in information content to some fixed number of
bits, and the basic arithmetic operators are not thought of as decomposing an integer into sub-parts.
Even the notion of a vector of numbers is quite "flat1' since the components of such a vector are not
themselves considered to be sub-vectors, but merely numbers. In languages which provide for character-
string processing, there is a similar "flatness1', with 'number' replaced by 'character', and 'vector'
replaced by 'string'. Just as we would not want each program variable to be restricted to one kind of
data, similarly we would not want our most general type of composite data to be restricted as to the type

*During the calendar year 1977, the author is located at the IBM Thomas J . Watson Research Center,
Yorktown Heights, NY 10598, and wishes to acknowledge members of the LISP370 project as having
contributed to the development of ideas in this paper.

191

of subcomponents it may have. Another problem in these languages is that the program variables must
often be restricted to data of a particular size - FORTRAN integer variables being implicitly limited by
the word size of the supporting machine, FORTRAN vectors (and vector variables) requiring explicit
compile-time dimensioning of sizes, and PL/I string variables being limited analogously by explicit
program declaration.

One goal of LISP is to remove the limitations of llflatnessll and size from the data objects and their
corresponding variables; e.g., typeless variables are permissible in LISP, and the transition from
hardware-supported integer arithmetic (modulo, say, 235.) to infinite-precision integer arithmetic need
not concern the programmer .(except for the question of computation cost). For the data to be of the
most general structure, its components must not be restricted as to type; in short, the data should be
defined recursively. Two obvious features of structured data sets are: 1) that at least some of the data
structures have more than one component (otherwise, there would be no structure!), and 2) that without
any real loss of generality it is sufficient to have only binary structures, since there is a natural, easy
embedding of any other into these.

LISP has, for its basic non-atomic data, objects of two components which are decomposed by the
functions CAR and CDR, and which are built up by the function CONS. These functions represent, in
an abstract sense, the necessary operators defined over a structured data set - CONS being mnemonic
for the construction function, and the other two, subcomponent accessors, being named after a particular
feature of the architecture of the IBM 704 on which the first LISP system was implemented. In fact,
actual machine architecture has deeply influenced LISP design, for one goal of LISP was to become a
useful programming language. Thus, a first step was to assign a logical record of memory (that is, some
finite number of bits easily accessible by the supporting hardware) to hold a data object; we call such a
block of memory a "cell", and use the machine address of the cell as a handle for the object. An
address used this way will variously be called a "pointer" or ''name" of the stored object. Half of the
bits in the cell (or thereabouts) hold the first part of the pair, accessed by CAR, and the other half hold
the second, or CDR, part. Computer architecture intrudes at this point, in that the computer word is
often chosen as the unit of memory for a cell, partly because of economy in memory utilization and
partly because of a computer instruction repertoire which permits easy decomposition of data stored this
way. This has been true for almost all PDPlO LISPS, and quite a few IBM360 LISPS, but LISP370 (an
experimental LISP at IBM's Research Center) uses a double word for each cell, and the MULTICS
MACLISP takes four words per cell. At first, this storage method seems to invalidate the goal of not
limiting the size of a data object to a fixed bound, but this is not nearly so serious as it may seem, since
the parts of a cell are interpreted as names for other cells; thus a data object is thought of as a graph,
consisting of all the cells and links reachable from a given pointer by CAR and CDR.

In the world of algebraic manipulation, any reasonable fixed allocation for the maximum size of
integers will prevent most simplification algorithms from working.] For this reason, most good LISP
systems provide for variable-precision integer arithmetic, often by embedding the parts of a long integer
into one of the other complex data structures. However, the maximum size of a data structure is limited
by the total number of names available for nodes of the conceptual graph which it represents, and this
name space is limited by the number of bits in a half-cell. At the outset of LISP development, large
computers had up to 32K words of main memory, and this was thought to be larger than any program
would ever need; however, applications soon came up requiring many times that number of LISP cells

An llunreasonablell size allocation would be one in which only a few hundred integers could fit in main
memory at one time. The default allocation for most languages is one computer word per integer,
because there is generally built into the hardware the circuitry for quickly doing arithmetic on one- or
two-word cells. One can only go so far in attempts to speed up arithmetic with larger and larger
circuitry, as the work of Winograd shows in references 1 and 2. Another approach at increasing
speed has been to analyze numerical algorithms, trying to separate out the parallel parts so that
duplicate arithmetic units may carry ou t the subcomputations in parallel; the ILLIAC-IV has much
circuitry involved in the latter approach.

192

- MACSYMA is a particularly good offender in this regard. An early LISP at the IBM Research
Center had only a 16-bit address space, and was soon "choked" to death by SCRATCHPAD the current
system, LISP370, has a 24-bit address space in a completely revised design. This size seems optimistic
now (24 bits, of which three are the byte address within a cell, leaving room for addressing 2M cells), in
that 2 million 64-bit doublewords is probably more main memory than most computers are likely to have
directly addressable during the next five or so years, but we have been wrong about this in the past.
The danger of biting off too many bits for the address space is that each cell would then require more
and more words for storage, and thus with a bounded amount of main memory fewer and fewer cells
could be held therein. Of course, 2<number Of address bits> is a real upper bound, even in a virtual-
memory machine with a much smaller amount of real memory. Sometimes, it is possible to segment. the
data and process it in two or more passes so that it need not all be directly addressable at once, but the
familiar "intermediate-expression swell" of algebraic manipulation shows that this can not serve as a
general solution. Again, it would be possible to extend the name space beyond actual address space by
treating each name as an address in an extended secondary-storage space; however, except for very
limited applications, this would slow down operations drastically. The costs of computer memories are
still decreasing, larger and larger address spaces are becoming more feasible, but the finiteness bound is
still there. Even though we have bumped into the top of that bound several times, it should not be too
frightening; an excellent article by Knuth puts "finite" into proper perspective (reference 3) .

A data object, graphically represented as in figure 1 , can easily and directly be translated into
computer memory by assigning each node of the graph a new cell, and labelling each directed edge with
the address of the translated node that it points to. Stored in a cell, then, would be the two addresses
found on the edges leading out of the corresponding node. In order to get these data "off the ground",
certain structures are designated as atomic, that is, not decomposable by (there are no sub-parts
accessible by) the functions CAR and CDR. Atomic objects can be denoted graphically as a string of
alphabetic characters (from a computer alphabet such as ASCII or EBCDIC), and in figure 1 they are
enclosed in rectangular rather than round boxes.2 The collections of atomic and non-atomic data are
called "s-expressions", which is short for "symbolic expressions".

Atoms - Symbols

Atoms are in fact structured objects (but not in the general sense described above), and their
sub-parts are obtained by specialized accessor functions. Because of the varying potential for efficiency
of representation and operation, there are generally several classes of atoms in a LISP system, distin-
guishable in their memory structure. A most important one of these will be called an "atomic symbol",
or merely SYMBOL, and each has a place in its structure for storing (i) a pointer to a list of associated
properties, (i i) a pointer to a binding cell when the symbol is being used as a program variable, (i i i) a
string of alphabetic characters for denoting the object o n input-output, and possibly other parts
depending on the implementation. Item (iii) has been historically called the print name, but now
generally acronymized as PNAME (pronounced pea-name), and provides the output routine with a quick
method of generating a sequence of characters corresponding to that object. An input routine, when
given a string of characters, could, by taking new cells of storage, construct a symbol with that string as
PNAME. But more often, i t is desired to use the PNAME sequence as an external, address-free
reference to a specific symbol, a canonical symbol with that PNAME, so that pre-existing properties

2 0 u r use of rectangular and round boxes is an inversion of the convention found in other presentations,
e.g. Weissman's "LISP 1.5 Primer'' (ref. 4), and the "LISP 1.5 Programmers Manual'' (ref. 5). This
is by design, partly to emphasize that the structure in the boxes, rather than their shape, is the
important thing; but also two other advantages occur: 1) the PNAMEs of atoms, which can be quite
long, have a box shape more suitable to their typography, and 2) there is a fuller separation between
the older notation, which prompted one to think of s-expressions as well-formed-formulae over a
character set, and the notation in this paper, which only begrudgingly admits of the linearized print
form.

193

attached to that particular object may be easily accessed. - the PNAME thus serving as a kind of
''key". The standard input routine for LISP, generally called .READ, constructs s-expressions by parsing
an input stream of characters; but in particular, when it parses a string into a PNAME, it uses a function
INTERN to locate the canonical symbol with that PNAME; INTERN, in turn, accomplishes this by
keeping a table (called the OBARRAY, or the OBLIST) of all canonical symbols, creating new ones as
the need arises. Some implementations do not permit the creation of any symbols except the canonical
ones, so that no two distinct symbols would have the same PNAME; but in others not so strict, the
terminology "uninterned atom" is used to mean a symbol not entered (and hence not "canonical") on
the current OBARRAY. The importance of an external, address-free reference will be seen as this paper
develops the presentation of the LISP data language as a programming language: atomic symbols are
used as names (in the informal sense) for system subroutines, for user-defined subroutines, for program
variables, and for a few specially recognized constants.

Atoms - Numbers

The desire to use machine hardware arithmetic instructions, and to economize on storage, has led
LISP .to introduce the class of atoms called FIXNUM (and, in most systems, FLONUM also). The
programming language provides basic'predicates for testing whether a given object is an atom of numeric
type, the most general such being NUMBERP, and most LISP systems support a variety of numeric data
types with associated type-specific predicates in order to accommodate programming needs (some LISPS
also provide a basic predicate to test whether an object is an atomic symbol, such as SYMBOLP in
MACLTSP and LITATOM in INTERLISP, but some others do not - the programmer resorting to a
compound form like "atom[x]h-numberp[x]"). A fixnum, for example, has a word in which a number is
stored in the usual computer notation (say, 2's complement in a 36-bit word); numeric operations will
now be facilitated. but the output routine will have to go through some base-conversion process to
produce the digit-string that one would like to see for that number. On the input side of the question, a
digit-string can be evaluated assuming a particular radix notation, and a new cell (or cells, if a multiple-
precision integer is indicated) allocated for storing the incoming number. At this point, a certain
ambiguity is evident concerning the input parser: should a string of characters, all of which are decimal
digits, be converted into a fixnum, or into a symbol with that string as PNAME? As a convention, such
a string would be input as a fixnum (or flonum if the sequence also had some character recognized by
the parser as a floating point indicator), and another convention is established for escaping the special
significance that the parser might apply to particular characters. In MACLISP, the character / is used in
prefix of any character that might otherwise cause the parser not to include that character in the
PNAME of a symbol. For example,

1729
could be read in as a fixnum, the least integer expressible as the sum of two cubes in precisely two
different ways, whereas

/ I 729
would be read in as a symbol with four characters in its PNAME. There are no systemic properties
associated with a number other than its numerical value, so there seems to be no need to try to identify
a canonical storage location for a given value (but some systems do canonicalization, of varying degrees,
in order to reduce storage utilization).

Lists

The general data structures of LISP are then built up over the field of atomic objects with the
construction function CONS. The basic non-atomic object, because of the way it is constructed and
stored, is called by some persons a "cons'' cell, by others a "pair", and by many others a "list" cell. As
a function, CONS is anti-commutative in that if el and e2 are unequal, 'then CONS[el,e2] and
CONS[e2,elJ are also unequal. Graphically, this is seen in figure 1 in that the edges emanating from a
node have a definite left-hand and right-hand orientation; also evident is the binary nature of CONS, in
that each non-atomic node has precisely two edges emanating from it (and each atomic node has none).

I94

The external, linearized representation of a non-atomic object; called its "print representation", is a
modification of a fully-parenthesized notation. The full notation is easily described: let e l and e2 be any
two data objects, and let el* and e2* be their respective print representations. Then a data object
constructed from el and e2, that is by CONS[el,e2], will have the print representation

(el* * e2*)
It is generally convenient to think of the pair cell as holding a list, even though this is only an interpreta-
tion in the mind of the beholder: the CAR part of a pair is the first element of the list, and the CDR
part is the tail of the list with the first element removed. Ostensibly, by successive applications of the
CDR function, some atom will be reached; by convention, we desire this atom to be the symbol NIL,
and elevate it to the status of the null list, i.e., the list with no elements. Many LISP systems will permit
list operators to work with lists terminating in some other atom, but by fixing on this conventional use of
NIL, the following simplification can be made for the print representation:

(i)

(ii)

Figure

Instead of (el* . NIL),
we will print (el*)
Suppose there is a list 1 which prints as

then, for 1' = cons[eo,r], instead of

we will print (eo* el* e2* . . . en*)
2 shows a graph for a data structure, as in figure 1, with the two possible print representations

(el* e2* ... en*),

(eo* . (el* e2* ... -en*)),

printed below it. Note, also, the several common references to the boxes for the symbols ABC and NIL,
and the duplication of the boxes for the fixnum 35; see how the graph more directly shows the
canonicalization that has taken place for the input of symbols and the duplication for input of numbers.

THE PROGRAMS

What kind of operations might one want to do in this data world? McCarthy's classic paper,
"Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I" (ref. 6, one
might say the grandfather of LISP papers), is a good start at answering this question. Both it and the
LISP 1.5 Programmer's Manual indicate that the elementary operations CAR, CDR, CONS (discussed
above as being the requisite operations needed over any binary structured data set), and the elementary
predicates ATOM, EQ, along with the mathematical notions of functional composition, conditional
expression, and recursive definition comprise a sufficient means to build up any computable function on
this data d ~ r n a i n . ~ This collection of primitive functions and functional schemata is minimal in that no
one part can be derived from the others alone. (The two points, sufficiency and minimality, have been
proven by Mike Levin, one of the early originators of LISP). Of course, in real usage, many more
functions are added for the convenience of the programmer; part of the job of a LISP system implem-
enter is to choose a reasonable set of basic, system-supplied functions - not so large as to bloat the
computer's memory, and not so small as to unduly cramp the programmer.

Historically, the development of LISP as we know it today, was quite accidental. Originally, it was
assumed that various functions could be defined and written down with some mathematical rigor, using a
more-or-less standard mathematical notation which was called the Meta-language (see refs. 5,6) . Then
from this presentation, one would compile the algorithm into a machi'ne language program, with
subroutines holding their data and exit addresses on a stack in order to provide for recursive operation

31t is interesting to note that the paper (ref. 6), while laying the foundation of a good non-numeric data
structure for computers (symbolic expressions), at the same time has had a profound effect on the
development of program schema, namely the way in which programs are put together from compo-
nents. Conditional expression and memory operation are required in any non-trivial programming
world; but McCarthy, by emphasizing functional composition and recursive definition, injected a bit
of mathematical common-sense into the world of sequential programming.

195

I

- hardly the interpretive LISP we know today! In any programming project, the task of getting
programs into the computer always becomes more difficult as time goes on (and time has a notorious
infamy for always going on), so someone had the bright idea of transcribing programs, not into machine
language, but into the data language already defined, namely s-expressions, so that they could be
automatically translated into machine language.. The first mechanical compiler was, of course, written in
machine language, but it was not very successful (needless to say, subsequent compilers were written in
LISP). Then, one of the programmers associated with the original LISP project had the bright idea of
making an s-expression evaluator, which could interpret these encoded programs, and hence, through
EVAL, the LISP interpreter was born.

That single idea has had enormous consequence on the development of the fields of list processing,
artificial intelligence, and symbolic manipulation. Although some other languages, such as APL, permit
the dynamic evaluation of computed expressions, in none save LISP is the programming language so
thoroughly embedded into the data. In no other is there the smooth naturalness with which LISP
programs may dissect, analyze, report upon, review, "dress-up", synthesize, emulate, and compile other
LISP programs.

Functions, Functional Composition, and QUOTE

What, then, is the transcription scheme? It is really quite simple. First, we note that most LISP
systems have at least the characters of the 6-bit ASCII alphabet, which is 26 uppercase letters, 10 digits,
some punctuation marks, and the usual assortment of special characters found on most typewriters or
teletype machines. Then, a variable or function is represented by the symbol of the corresponding
PNAME; numbers stand for themselves, that is they will be transcribed directly; functional application is
shown as a list of the function and all its arguments in order; functional composition is shown as list
composition; the elementary operations are represented by the atomic symbols CAR, CDR, CONS,
ATOM, and EQ; and some of the basic arithmetic operators are implemented with mnemonic names in
prefix notation (instead of writing ' ' x + ~ + 2 . 3 ~ ' , we would write in prefix notation "plus[x,z,2.3]"). As
an example illustrating all the rules mentioned so far, we would transcribe

5=[log sin(x+z+2.3)]
into a list printable as

(TIMES 5 (LOG (SIN (PLUS X Z 2.3)))) (1)
If all our functions were defined only over numbers, then the intent of such a program, coded in list
structure, is clear: add together the numeric values of the variables x and z and the number 2.3, take the
trigonometric sin of the result, then the natural log of that, and finally multiply by 5 . But some of our
functions are defined over lists as well as other objects, and the question arises as to how the argument
for such a function is obtained. For example, suppose we want to print out the list (PLUS X 3), and
suppose coincidentally that the variable X has the value 7. Then what does

(PRINT (PLUS X 3)) (2)
do as a program? By the above rules, it should print out the number 10. How then are we to indicate
that we want to print out the list (PLUS X 3)? It becomes necessary to add a rule in the transcription
scheme that overrides the notation for functional composition - for this purpose, we use the atom
QUOTE in the first element of a list to indicate that the second element is not a sub-program, but rather
is to be taken directly as data without any interpretation. Line (2) above would print out the number 7,
whereas

(PRINT (QUOTE (PLUS X 3))) (3)
would print out the desired list, (PLUS X 3). Line (2) could be a transcription of the expression
"print[x+3]", whereas line (3) could be that for "print['(PLUS X 3)"''.

There are several kinds of overrides to the functional composition rule, to be discussed in turn
below. Because of the similarity of structure - namely, an atomic symbol at the first element of a list
- many persons have begun referring to these overriders as ''functions" also; but they should more

196

properly be viewed as parts of the syntax of the programming language LISP. In LISP 1.5, they are
called "special forms". In particular, they represent the realization in LISP o f some of the abstract,
universal concepts found in any practical programming language; e.g., COND, PROG, SETQ, DEFINE.
LISP further has QUOTE as just discussed, and LAMBDA - the former to distinguish data expressions
from programs in which the data might be embedded, and the latter to distinguish programs from some
data in which they, in turn, might be embedded. At this point, it must be stressed that these rules and
conventions comprise part of the programmatic interpretation of LISP data expressions; other, radically
different interpretations are possible, e.g. without QUOTE, or without PROG and SETQ, but they are
generally less usable.

Program interpretation also implies an importance to the sequence in which the sub-computations
are carried out. If there were no memory cells in a computer, nor any side-effects during computation,
then the order of evaluation of the sub-parts of a program would be irrelevant. For example, what
difference would it make if, in computing "(x+3).(y-5)", the sum were performed after the difference
calculation? Logically, none; but if while computing the difference "y-S", some action is taken that
changes the value of the variable x, then probably a different final product would result. The normal
rule for LISP program interpretation is left-to-right order of evaluation, beginning with the first element
of the list. This first element, corresponding to some function to be applied, is inspected for a basic
function definition, or for one supplied by the programmer (which may involve recursion through the
i n t e r ~ r e t e r) ; ~ and then the first argument to the function is calculated according to the program part in
the second element of the list; and then the third, and so on. Finally, the function is invoked with the
corresponding arguments. The special forms PROG and SETQ do not come under this normal rule.
PROG corresponds to the sequential nature, with GOTOs, of FORTRAN programs; and SETQ
corresponds to the notion of assigning a new value to a variable while releasing the old value. Because
of lack of space, these features will not be further discussed in this paper.

Predicates and Conditional Expressions

Predicates operate on data to produce one of two values - true or false. In the LISP world, we let
the symbol NIL encode the value false and T encode true. However, as a convenience, we allow any
non-NIL value to be returned by a predicate, and in so doing interpret it as true. Furthermore, we
remove NIL and T from the collection of possible program variables, considering them as constants
which stand for themselves just as numbers do.

The elementary predicate ATOM is a function which is true for terminal nodes of the graph-
structured data (the items in rectangular boxes in figures 1 thru 3) , and false for cons cells. It is
apparent that the domain of ATOM on which it is false is precisely the domain of s-expressions on

4Normally, the identity of the function, or sub-program, to be applied is evident upon "inspection", in
that i t will be an atomic symbol with some direct functional property. What happens when this is not
the case has never been clearly defined - notice, for example, the discrepancy between lines 18-19
and line 20 on page 71 of the LISP 1.5 Programmer's Manual (ref. 5); and reference 6 has an even
more confusing bug at the corresponding spot of the definition of EVAL. Most LISP systems make
one evaluation of the first element, then evaluate all the remaining elements once in order to obtain
the arguments, and then begin a process of re-evaluation of the result from the first element until it is
directly discernible to be a function. There is no problem unless some relevant memory location is
changed, such as happens in the following example. First, note the shorthand convention of writing
'exp instead of (QUOTE exp).

((SUBST 3 'N '(PROG2 (SETQ X (PLUS X N)) 'DIFFERENCE))
X
Y)

In this case, by evaluating the first element successively twice, one gets a result different from that
obtained by the order of evaluation just mentioned above.

197

which CAR and CDR are applicable. Atoms which are. interpretable as numbers are stored in computer
memory in such a way as to require specialized functions and predicates, for the purpose of achieving
efficiency in numeric operations; e.g., NUMBERP, FIXP, FLOATP, GREATERP, and numeric-e.qua1.
In MACLISP, and some others, many new numeric functions and predicates have been introduced
generally having shorter names, such as > as a less general form of GREATERP, = for (exact) numeric
equal, + for addition restricted to fixnums, +$ for addition restricted to flonums, and so on.5

The predicate EQ, a function of two arguments, is a test for pointer identity; let us see how this
works. In figure 3, two lists L1 and L2 are shown graphically along with their print representation (in
L2, the edges are not shown as extending all the way to the rectangular boxes for atoms, merely because
of the complexity of drawing too many intersecting lines). Suppose for example that the top node of L1
is stored in a cons cell at computer address 0129, and L2 at 3724. Let x, y, z be program variables such
that x =L1, y = L2, and z = L1. This means that the variables hold some pointer to a cons cell - the
bits of x and z would correspond to the decimal number 129, and those of y to 3724. But a LISP
system interprefs this pointer according to its data classification; thus ATOM is false for each of the
variables, and each would be printed out as

(LIST (QUOTE FOO))
Now, E Q is frue of [x,z], but false of [x,y] and [y,z] because x and z hold the same pointer, but x and y
are different pointers corresponding to isomorphic structures.

Of course, not all functions, even over the domain of numbers, are smooth and "analytic";
discontinuities of various sorts can be introduced by conditional expressions. Let DELTA be defined as
a function of x and n as follows: 1 if x>n, -1 if x<n, and 0 otherwise. This conditional
expression would be transcribed into LISP as

(COND ((GREATERP X-N) 1) (4)
((LESSP X N) -1)
(T 0))

As with QUOTE, COND is a special form in the programming language, and indicates that a sequence
of sub-lists follows, each sub-list consisting of one or more expressions. The first elements of the
sub-lists are evaluated in sequence order until the first one that comes up not false is found; the
remaining elements of that sub-list are then evaluated and value of the last element (which might also
incidentally be the first) is taken as the resulting value for the COND expression. In addition to the
"discontinuity" which the conditional expression introduces, there is a noticeable programmatic feature,
namely that of selective evaluation. Not all of the predicates are evaluated, but only those which, in
sequence, turn out to be false, up until the first one that is [rue. Obviously, COND may be thought of
as a compound predicate; so are OR and AND, whose definitions are in accord with ofle's intuitive
notion. It may be helpful to see corresponding code for OR and AND in terms of COND:

To round out the logical connectives, NOT operates as truth-value inversion. Both (NOT x) and
(NULL x) operate the same as the expression (COND (x NIL) (T)).

"

5LlSP systems which have introduced novel data types generally have introduced functions and
predicates with restricted domains in order to operate efficiently on them. This is one way of
extending LISP.

198

Defining Functions -
The expression (4) above is almost a definition for a function ''delta'', but it is not symmetric in the

two variables x and n; if you were to write (DELTA 3 5), you would want to know whether X would
hold 3 and N 5, or vice-versa. The symbol LAMBDA is a special form to indicate that a function is
being defined from an expression, by specifying the order in which the variables of the expression shall
correspond to the incoming arguments. Rewriting (4) as a functional expression, we get

(LAMBDA (X N) (5)
(COND ((GREATERP X N) 1)

((LESSP X N) -1)
(T 0)))

Now (5) is an expression that can be applied to [3,5] and'result in -1 , but when applied to [7,2] results
in 1 . The syntax permits us to write this expression directly in the functional position of a list intended
for program interpretation:

((LAMBDA (X N) (COND ((> X N) 1) ((< X N) - 1) (T 0))) 3 5)
However, for convenience of writing, we might like to define DELTA as a function name corresponding
to the functional expression (5); in the case of recursive definition, there is no choice about the matter,
we must start out with some function name so that we can write down the definition using that name.
Consider the classic case, defining the factorial function.

(LAMBDA (N) (COND ((= N 0) 1) (T (* N Cfact-continualion (- N 1))))))
At the point where fact-continuation occurs, we would like another copy of the entire functional
expression substituted, so that the computation could be carried o n recursively. Rather than extend the
notation to encompass cyclic structure, or to infinite sub-structure, we fiild that using a symbol as a
name for a function being defined solves not only this problem, but also that of conciseness. Thus the
factorial definition becomes:

(DEFINE FACT (LAMBDA (N) (6)

(T (* N (FACT (- N 1)))))))

Function definition is generally realized in .a LISP system by executing a program that places a
property on the property list of the symbol which is the function name; DEFINE (or DEFUN in
MACLISP) is a special form which causes this to happen.6 Evaluating (DEFINE FOO exp) will cause
an attribute-value pair to go on the property list of FOO - the attribute name is EXPR, and its
corresponding value is exp. The interpreter can then quickly recognize FOO to be a function name by
accessing its EXPR property, and substituting the LAMBDA expression so obtained for the name. In
the case of machine-language subroutines, a starting-address is stored under the SUBR attribute, and,
after the arguments are obtained, the interpreter can quickly despatch control off to the relevant
location. In such a LISP, one needs only the ability to read-in lists and to evaluate them after read-in in
order to add subroutines (or programs, if you will) to the system. The so-called "top level" of a LISP
system is basically a loop:

(COND ((= N 0) 1)

A: print(eval(read0))
go A

From this we can see the importance of INTERN to the 'input READ function: it is necessary that both
instances of "FACT" in (6) above be read in as pointing to the same atomic object (and not merely to
atoms with the same PNAME), and the same holds true of the three instances of "N". Thus it is that
one programs in LISP, and interacts with LISP environment.

~~

6There are LISP systems that do not use the property list for function definition, but instead use
whatever mechanism implements the assignment of a value to a variable. This approach is adequate,
although it means that one could not use a symbol both for a variable name and a function name.

199

A Useful Example

Let us consider a definition of an "equality" predicate EQUAL defined over all the data types
mentioned in this paper, such that two s-expressions are printed out in linear format the same way if and
only if they are EQUAL. For numbers, the numeric equality predicate is used; for symbols,
SAMEPNAMEP and for lists, the definition is recursive over the CAR part and the CDR part.
Historically, EQUAL was defined before any consideration was given to multiple copies of atomic
objects all with the same PNAME; hence EQ was generally used instead of SAMEPNAMEP; because if
two symbols were stored in different locations then they necessarily had different PNAMEs. As far as
the author knows, all LISP systems still use EQ here, and this is considered satisfactory.

(DEFINE EQUAL
(LAMBDA (X Y)

(COND ((EQ X Y) T)
((ATOM X)
(COND ((NOT (ATOM Y)) NIL)

((AND (NUMBERP X) (NUMBERP Y)) (= X Y))
((OR (NUMBERP X) (NUMBERP Y)) NIL)
(T (SAMEPNAMEP X Y))))

((ATOM Y) NIL)
((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y)))
(T NIL))))

I t would be instructive for the reader to consider this example line by line to verify how it works. Note
carefully that EQUAL does not define "graph-isomorphism", but rather a concept that has come to be
called ''access-equivalence". Two structures are said to be access-equivalent (or EQUAL) if any access
chain (a sequence of CARS and CDRs, for LISP) leading to an atomic object in one structure also leads
to the same atomic object in the other. See figure 4 for a graphic presentation of twa structures that are
EQUAL but not isomorphic.

REFERENCES

1. Winograd, S.; O n The Time Required to Perform Addition. J . ACM 12, 2, April 1965, pp. 277-285.
2. Winograd, S.; On The Time Required to Perform Multiplication. J . ACM 14, 4 , Oct 1967,

3. Knuth, D.; Mathematics and Computer Science: Coping with Finiteness. Science, 194,

4. Weissman, Clark; LISP 1.5 Primer, Dickenson Publishing Co., 1967.
5 . McCarthy, John, et. al.; LISP 1.5 Programmer's Manual, The MIT Press, Second edition 1965.
6. McCarthy, John; Recursive Functions of Symbolic Expressions and Their Computation by Machine,

pp. 793-802.

17 Dec 1976, pp. 1235-1242.

Part I. CACM 3 , 4 , April 1960, pp. 184-195.

200

t o

t o

t 2
372 4

(LIST (QUOTE F O O)) (LIST (QUOTE FOO))

Figure 3

202

21
DATA REPRESENTATIONS IN PDP-10 HACLISP

Guy Lewis Steele Jr.
Hassachusetts Institute of Technology

Laboratory for Computer Science
(formerly Project HAC)

ABSTRACT

The internal representations of the various MacLISP data types are presented
end discussed. Certain implementation tradeoffs are considered. The ultimate
decisions on these tradeoffs are discussed in the light of HacLISP's prime
objective of being an efficient high-level language for the implementation of large
systems such as MACSYMA. The basic strategy of garbage collection is outlined,
with reference to the specific representations involved. Certain "clever tricks"
are explained and justified. The "address space crunch" is explained and some
alternative solutions explored.

INTRODUCTION

MacLISP is a version of LISP which is used not only as a user application
language but as a systems programming language, supporting such systems as MACSYMA
and CONNIVER. As such, it has been carefully designed with speed as one of its
ma jot- goals. Generality, ease of use, and debuggability have not been neglected,
but speed of compiled code has been the primary consideration. This is a departure
from the traditional view of LISP as a friendly and general but slow and clumsy
language.

The representations of data objects-in MacLISP have undergone a continuous
evolution towards this goal. When MacLISP was first created, the data
representations were designed for simplicity and compactness at the expense of
speed. Since then there have been at least two major revisions, each to speed up
compiled code and simplify the processing of the data. Here we discuss the current
implementation on the PDP-10 (MacLISP also runs on Multics, and on the "LISP
machines" being constructed at the HIT Artificial Intelligence Laboratory). We
shall contrast it with previous MacLISP implementations and implementations of
other LISP systems, and discuss some of the design decisions involved.

ORGANIZATION OF THE PDP-10

The data representations in HacLISP have been carefully designed to take
full advantage of the PDP-10 architecture. A full understanding of the design
decisions involved requires the following minimal knowledge of the PDP-10
instruction set.

The PDP-10 operates on 36-bit words. Memory addresses designate words, not
bytes, and are 18 bits wide; thus two addresses can fit in one word. There is a
class of instructions which manipulate half-words; for example, one can store into
half of a memory word and either not affect the other half or set the other half to
all zeros or all ones.

The PDP-10 has 16 accumulators, each 36 bits wide. All but one can be used
for indexing; all can be used as stack pointers; all can be used for arithmetic.

The accumulators can a l so be referenced as the f i r s t 16 memory locations (though
t h e y are hardware reg is te rs and n o t ac tua l ly memory l o c a t i o n s) . . For reasons
e x p l a i n e d l a t e r , MacLISP devotes cer ta in accumulators to specif ic purposes .
Accumulator 0 contains the atom NIL. Accumulators 1-5 may conta in po in te rs to da ta
ob jec t s ; t hese a r e used t o pass arguments t o LISP functions and return values from
them. Accumulators 6-10 a re s c ra t ch r eg i s t e r s , and a r e g e n e r a l l y u s e d f o r
arithmetic. Accumulator 11 is reserved for a future purpose. Accumulators 12-15
are used for stack pointers to the four stacks.

Every user PDP-10 instruction has the following format:

~ - - - -

I opcode address 1
Each i n s t r u c t i o n h a s a 9 - b i t operation code and a 4 - b i t f i e l d s p e c i f y i n g an
accumulator . The e f f e c t i v e memory address (o r immediate operand) i s uni formly
computed by a d d i n g to the 18-b i t address f ie ld the conten ts o f the accumula tor
specif ied by the 4 - b i t index f i e l d (a zero index f i e l d means no indexing) . I f t h e
i n d i r e c t i o n b i t "@I' is s e t , then a word is fetched us ing the computed address and
t h e process i t e ra ted on t h e address, index, and @ f i e l d s of the fetched word. I n
t h i s way t h e PDP-10 allows multiple levels of indirection w i t h indexing a t each
step.

HACLISP DATA TYPES

MacLISP current ly provides t h e user w i t h the fol lowing types of da t a
o b j e c t s :

FIXNUM Single-precision integers.
FLONUM Single-precision floating-point numbers.
BIGNUM In tegers o f a rb i t ra ry p rec is ion . The s i z e of an i n t e g e r ar i thmetic

r e s u l t is limited only by the amount of storage available.
SYMBOL Atomic symbols, which are used i n LISP as i den t i f i e r s b u t which a r e a l s o

manipulable data objects. Symbols have value c e l l s , which can contain
LISP o b j e c t s , and property l i s t s , which a r e l i s t s u s e d t o s t o r e
information which can be accessed quickly given the atom. Symbols are
wr i t ten as strings of l e t t e r s , d i g i t s , and other non-special characters.
The s p e c i a l symbol NIL is used t o terminate l ists and t o d e n o t e t h e
logical value FALSE.

LIST The t r a d i t i o n a l CONS c e l l , which has a CAR and a CDR which are each LISP
objects . A chain of such c e l l s s t rung together by t h e i r CDR f i e l d s is
ca l led a l ist ; the CAR fields contain the elements of the l i s t . The
spec ia l symbol NIL is i n the CDR of the l as t ce l l . A chain of l ist ce l l s
is wri t ten by w r i t i n g the CAR elements, enclosed i n parentheses. A non-
NIL nan- l i s t CDR f i e l d is written preceded by a dot. An example of a
list is (ONE TWO THREE), which has three elements which are a l l symbols.
I t is made up of three list c e l l s t h u s :

204

car

ONE TWO THREE

ARRAY Arrays of one t o f i v e dimensions, dynamically a l loca t ab le .
HUNK Shor t vec to r s , s imi l a r t o LIST cel ls except t ha t they have more.than two

components. This data type is f a i r l y new and is.stil1 experimental .

POINTERS

I n MacLISP, as i n most LISP systems, the u n i t of da ta is t h e p o i n t e r . A
p o i n t e r is typ ica l ly represented as a memory address, w i t h the components of the
d a t a o b j e c t p o i n t e d t o i n the memory a t tha t address . The r e a s o n f o r t h i s is t h a t
LISP d a t a o b j e c t s have varying sizes, and i t is desirable to manipulate them i n a
uniform manner. Numbers, f o r example, may occupy varying numbers of words, and it
is no t a lways f eas ib l e t o p u t one a s such into the accumulators. A p o i n t e r , b e i n g
o n l y 18 b i t s , c a n a l w a y s f i t i n one accumula to r r ega rd le s s o f t he s i ze o f t he
o b j e c t p o i n t e d t o ; m o r e o v e r , i t requi res on ly 18 b i t s f o r o n e d a t a o b j e c t t o
con ta in ano the r , s ince i t need actually only contain a p o i n t e r t o t h e o t h e r .

Given a p o i n t e r , it i s necessary t o be ab le to de te rmine what k ind of
o b j e c t is being pointed to. There a re two a l te rna t ives : one can e i t h e r h a v e a
f i e l d i n e v e r y d a t a o b j e c t s p e c i f y i n g what type of object it is , or encode the type
informat ion i n the po in te r to the ob jec t . The l a t t e r method e n t a i l s an a d d i t i o n a l
cho ice : one can either adjoin type information to the memory address (i n which
case it t akes more b i t s t o r e p r e s e n t a pointer) , o r arrange it so t h a t t h e t y p e i s
impl ied by t h e memory addres s i t s e l f (i n which case the memory m u s t be p a r t i t i o n e d
in to d i f f e ren t a r eas r e se rved fo r t he va r ious da t a t ypes) . MacLISP h a s g e n e r a l l y
used t h i s l a s t s o l u t i o n , p r i m a r i l y because of the half-word manipulation f a c i l i t i e s
o f t he PDP-10. Two memory addresses will f i t i n one word w i t h no e x t r a b i t s l e f t
over. (Cont ras t t h i s w i t h an IBM 370, which has 32-bit words and 24 -b i t add res ses ;
on t h i s machine one would use 32-bit pointers, encoding type information i n t h e
extra e i g h t b i t s .) T h i s is extremely useful because a l i s t c e l l w i l l f i t i n one
w o r d ; t h e l e f t h a l f can contain a pointer to the CAR and t h e r i g h t h a l f a p o i n t e r
t o t h e CDR.

The method MacLISP presently uses for determining. the type of a d a t a o b j e c t
i nvo lves u s i n g a data type t ab le . The 18-b i t address space (256K words) of t h e
PDP-10 is d iv ided i n to segments of 512 words. A l l ob jec ts i n the same segment are
of t h e same da ta type . To f ind the data type of an object given its address, one
t a k e s t h e n i n e h i g h - o r d e r b i t s of the address and uses them t o i ndex t he da t a t ype
t a b l e (c a l l e d ST, f o r Segment Table). This table entry contains an encoding of the
d a t a t y p e f o r o b j e c t s i n the corresponding segment:

B i t 0
B i t 1
B i t 2
B i t 3
B i t 4
B i t 5
B i t 6
B i t 7

0 i f atomic, 1 otherwise.
1 i f l i s t c e l l s .
1 i f fixnums.
1 i f flonums.
1 i f bignums.
1 i f symbols.
1 if ar rays (ac tua l ly , a r ray po in te rs ; see below).
1 i f v a l u e cel ls f o r symbols.

205

B i t a 1 i f number s tack (one of bi ts 2-3 should also be set) .
B i t 9 is c u r r e n t l y unused.
B i t 10 1 i f memory exists, but is not used f o r data.
B i t 11 1 if memory does not exist.
B i t 12 1 i f memory is pure (read-only).
B i t 13 1 i f hunks.
Bits 14-17 are c u r r e n t l y unused.
Bits 18-35 (t h e r i g h t h a l f) c o n t a i n a po in t e r t o t he symbol

represent ing the data type, namely one of LIST,
FIXNUM, etc. The symbol RANDOM is used f o r segments
containing no standard MacLISP data objec ts .

The encoding is redundant to take advantage of the PDP-10 i n s t r u c t i o n set and t o
o p t i m i z e c e r t a i n common operat ions. There is an, i n s t r u c t i o n w h i c h - c a n t e s t
s e l e c t e d b i t s i n a half-word of an accumulator and s k i p i f any are se t . T h u s , one
can test for a number by t e s t i n g b i t s 2, 3, and 4 together . B i t 0 (t h e s i g n b i t)
is 1 f o r l i s t , hunk, and value cell segments (non-atoms) and 0 f o r a l l o t h e r s
(a toms) . Th i s s aves an in s t ruc t ion when making the very common t e s t for a tom-ness ,
s ince one can use t h e skip-on-memory-sign ins t ruc t ion instead of having t o fe tch
t h e table e n t r y i n t o an accumulator. The r i g h t half of a table entry c o n t a i n s a
p o i n t e r t o t h e symbol which the MacLISP function TYPEP is supposed t o r e t u r n f o r
objects o f t h a t type. Thus, the TYPEP function need on ly ex t r ac t the r i g h t h a l f o f
a t ab le e n t r y ; i t does not have t o t e s t a l l the b i t s i n d i v i d u a l l y . F i n a l l y , t h e
system a r r a n g e s f o r a l l t h e symbols t o which a t a b l e e n t r y c a n p o i n t t o be i n
c o n s e c u t i v e memory l o c a t i o n s i n one symbol segment. Since these symbols have
c o n s e c u t i v e memory address , the r igh t ha l f of a t a b l e e n t r y can be u s e d t o i n d e x
d i s p a t c h t a b l e s by type. For example, the EQUAL funct ion, which determines whether
two L I S P o b j e c t s a r e i s o m o r p h i c , f i r s t c o m p a r e s t h e d a t a t y p e s o f i t s two
arguments; i f t h e data types match, then it does an indexed jump, indexed by t h e
r i g h t h a l f o f a Segment Table entry, to determine how t o compare t h e two o b j e c t s .

By way of c o n t r a s t , l e t us br ie f ly cons ider the s torage convent ion former ly
used by MacLISP. Memory was par t i t ioned into several cont iguous regions, not a l l
o f t h e same s i z e . The lowest and h ighes t addresses o f each reg ion were known
(u s u a l l y t h e low address of one region was one more than the h ighes t address o f t h e
r e g i o n b e l o w i t) . To determine the data type of a p o i n t e r i t was n e c e s s a r y t o
compare the address to the addresses of a l l the boundaries of the r e g i o n s . T h i s
was somewhat f a s t e r t h a n t h e c u r r e n t t a b l e method i f o n l y one o r two comparisons
were needed (a s in 'determining whether a pointer pointed to a number, s i n c e t h e
number reg ions were cont iguous) , bu t s lower i n the g e n e r a l c a s e ; f u r t h e r m o r e ,
t h e r e was no convenient way to d i spa tch on the data type. On t he o the r hand , t he
table method requires space for the en t i re 512-word table , even i f o n l y a small
number of segments are in use. (There is another 512-word t a b l e f o r use by t h e
garbage c o l l e c t o r , t h e GC Segment Table (GCST), which doubles t h i s pena l ty .) The
dec id ing advantage o f the t ab le method is t h a t i t permits dynamic expansion of t h e
s to rage u sed fo r each k ind of data. The region method r equ i r e s a l l l ist c e l l s , f o r
example, t o be i n a contiguous region; once t h i s region is f ixed , t he re i s no easy
way t o expand i t . Under t h e t a b l e method, any cu r ren t ly unused s egmen t can be
p r e s s e d i n t o s e r v i c e f o r l i s t c e l l s m e r e l y by changing i t s t a b l e e n t r y . An
a d d i t i o n a l b o n u s o f t h e t a b l e scheme is t h a t t h e s p a c e r equ i r ed f o r t h e
i n s t r u c t i o n s t o do a type-check is small, and so it is of ten wor th-whi le to compi le
s u c h t y p e - c h e c k s i n - l i n e i n c o m p i l e d c o d e r a t h e r t h a n c a l l i n g a t y p e - c h e c k i n g
s u b r o u t i n e .

I n p r a c t i c e new da ta segments a re no t a l loca ted randomly, b u t f r o m t h e t o p

206

of memory down. As new pages of memory are needed they are acquired from t h e time-
s h a r i n g system and used f o r segments (on t h e ITS system, the re are two segments per
page). Compiled programs are loaded start ing i n low memory and working u p ; t h u s
be tween the h ighes t program loaded and the lowest data segment a l l o c a t e d there is a
big h o l e i n memory, which is eaten away from both ends as required. T h i s h o l e has
been w h i m s i c a l l y named " t h e BIg Bag O f Pages" from which new ones a re drawn as
needed; hence t h e name "BIBOP" f o r t h e scheme. (The TOPS-10 t imeshar ing system
provided by DEC does not al low memory t o be grown from the top down, bu t on ly f rom
t h e b o t t o m up. When running under t h i s time-sharing system MacLISP has a fixed
r e g i o n for loading programs, and allocates new data segments from the bottom up.)

DATA REPRESENTATIONS

List cel ls , as mentioned above, are represented as s ing le words. The CAR
' p o i n t e r is i n t h e l e f t h a l f of the word, and the CDR pointer i n t h e r i g h t h a l f .

F i x n u m s a r e r e p r e s e n t e d as s ing le words w h i c h c o n t a i n t h e PDP-10
r e p r e s e n t a t i o n o f the number. As explained more f u l l y i n r e f e r e n c e 1, t h i s
r e p r e s e n t a t i o n permits a r i t hme t i c t o be performed e a s i l y . I f a p o i n t e r t o a fixnum
is In an accumula to r , t hen any a r i t h m e t i c i n s t r u c t i o n can access t h e v a l u e by
indexing of f tha t accumula tor w i t h a zero base address.

Flonums are represented as s ingle words i n a manner s imi l a r t o f i xnums .
Bignums each have a s ing le word i n a bignum segment. The l e f t h a l f of t h i s

word is a l l z e r o s o r a l l o n e s , r e p r e s e n t i n g t h e s i g n o f t h e number. T h i s
r e p r e s e n t a t i o n o f t h e s ign is compatible w i t h t h a t f o r fixnums and flonums; t h u s
t h e s i g n o f any number can be t e s t e d w i t h t h e t e s t - s i g n - o f - m e m o r y i n s t r u c t i o n .
(Bignums were formerly represented as l ist ce l l s w i th spec ia l po in t e r s i n t h e C A R ;
t h i s d i d n o t permit the compatibi l i ty of s ign b i t s , and made it d i f f i c u l t t o t e s t
for e i t h e r numbers o r l ists .) The r i g h t ha l f po in ts to a l i s t of pos i t ive f ixnums.
which represent t h e magnitude of the bignum, 35 b i t s per fixnum, l e a s t s i g n i f i c a n t
b i t s f i rs t i n t h e l i s t . A list is used instead of a cont iguous block of s torage
fo r bo th ea se o f a l l oca t ion and genera l i ty of use. The l e a s t s i g n i f i c a n t b i t s come
first i n t h e list to ease the addi t ion a lgori thm.

Symbols a r e q u i t e complex objects . Each symbol has one word i n a symbol
segment and two words i n ano the r segment. The r i g h t half of t h e one word p o i n t s t o
t h e symbol's proper ty list, which is an ordinary l i s t ; t h e l e f t h a l f p o i n t s t o t h e
two-word block. These two words i n turn are l a id ou t so:

I b i t s I 0
pointer to value cell-

~ _ _ _ _ ~

.- - " . - -

1 "args" proper ty po in te r to p r i n t name
~ ~ -

The " b i t s " have various specialized purposes. The value c e l l f o r t h e symbol is i n
a v a l u e c e l l s e g m e n t . N o t i c e . t h a t b i t s 13-17 of t h e f i r s t word a r e z e r o ,
s p e c i f y i n g no indexing or indirect ion. T h i s permits an i n s t r u c t i o n t o i n d i r e c t
through t h i s word t o get the value of the symbol. Get t ing the address of t h e two-
wqrd b l o c k a l s o t a k e s an in s t ruc t ion ; t h u s one can ge t the va lue o f a symbol i n
t w o i n s t r u c t i o n s . The "args" p roper ty is used by t h e MacLISP i n t e r p r e t e r for
checking the number of argument t o a funct ion (for symbols are a l s o used t o d e n o t e
t h e n a m e s o f f u n c t i o n s) . The p r i n t name is a list o f f i xnums con ta in ing t h e
c h a r a c t e r s o f t h e symbol's name, packed f i v e a s c i i c h a r a c t e r s t o t h e word.

207

The s p e c i a l symbol NIL is not represented i n t h i s manner. The a d d r e s s of
N I L is zero . T h i s a l lows a p a r t i c u l a r l y f a s t check f o r NIL; one can use t h e jump-
i f - z e r o i n s t r u c t i o n . T h i s is why accumulator 0 (which is a l s o memory l o c a t i o n 0)
is r e s e r v e d f o r NIL. Accumulator 0 normally contains zero i t s e l f ; i n t h i s way
t a k i n g CAR o r CDR of NIL y i e l d s NIL. T h i s a l l ows one t o fo l low a l i s t by CDR
p o i n t e r s t o a predetermined depth and not have t o check a t each s tep whether one
has r u n o f f t h e end. (T h i s t r i c k was borrowed from InterLISP (r e f . 2) .) Most
f u n c t i o n s make spec ia l checks fo r NIL anyway, so t h i s non-s tandard representa t ion
is not harmful . . PRINT, f o r example, just checks f o r NIL s p e c i a l l y and just o u t p u t s
"NIL" without looking for a p r i n t name. NIL does have a property l i s t , b u t i t is
n o t s t o r e d where it is i n other symbols; the property list func t ions m u s t check
f o r NIL (which t akes on ly one i n s t r u c t i o n anyway). NIL has no v a l u e c e l l , a n d
always e v a l u a t e s t o NIL.

One might wonder why normal symbols are divided up i n t o two pa r t s , and why
t h e v a l u e c e l l is not simply par t of the two-word block. The answer is t h a t once
c o n s t r u c t e d t h e two-word block normally does not change, and so may be p l a c e d i n
r ead -on ly memory and shared between processes . I f several HACSYHA p r o c e s s e s a r e i n
use, t h i s s h a r i n g may ease core requirements by tens of thousands of words.

To save even more memory, symbols are not provided w i t h va lue c e l l s u n t i l
necessary (most symbols are never actual ly given values) . Instead, they are made
t o p o i n t t o a "standard unbound" va lue ce l l , which is read-only and conta ins the
marker specifying t h a t no value is present. When an attempt is made t o write i n t o
t h i s v a l u e c e l l , t h e w r i t e is i n t e rcep ted and a new va lue c e l l c r e a t e d f o r t h e
symbol i n ques t ion .

(Besides making p a r t s of symbols read-only, MacLISP c u r r e n t l y a l l o w s f o r
r e a d - o n l y l ist c e l l s , fixnums, flonums, and bignums. These a r e u s e f u l f o r
c o n s t r u c t i n g c o n s t a n t d a t a o b j e c t s which are r e f e r r e d t o by compiled code b u t n e v e r
mod i f i ed , and f o r p r o p e r t i e s on property l ists whose values are n o t e x p e c t e d t o
change (such as func t ion de f in i t i ons) . In cer ta in cases , such as t h e p r o p e r t y - l i s t
modifying rout ines , checks are made for read-only objects , and such o b j e c t s a re
c o p i e d i n t o w r i t a b l e memory i f necessary to car ry ou t the opera t ion . T h i s copying
causes t he o ld r ead -on ly copy t o be wasted from then on, b u t t h i s is accep tab le as
such copying is seldom necessary i n p rac t ice . T h i s s t r a t e g y may be c o n t r a s t e d t o
t h e approach of I n t e r L I S P (r e f . Z) , i n w h i c h an e n t i r e page of memory is made
writable i f an attempt is made t o modify any object on t h a t page. T h i s approach is
more general t h a n t h a t of MacLISP, bu t i n p rac t ice t ends to reduce t h e s h a r i n g o f
pages among processes , increasing the load on the time-sharing system.)

Va lue ce l l s , t hough no t p rope r ly a AacLISP d a t a t y p e , a r e w o r t h y o f
d i s c u s s i o n . They are s i n g l e words, containing a pointer i n t he r i g h t h a l f and zero
in t h e l e f t h a l f . T h i s appa ren t was t e o f 18 b i t s i s m o t i v a t e d by s p e e d
c o n s i d e r a t i o n s . C o m p i l e d c o d e o f t e n r e f e r e n c e s t h e v a l u e c e l l s o f g l o b a l
variables. S i n c e t h e l e f t half of a va lue ce l l is zero, a t es t f o r NIL can be done
w i t h a s i n g l e s k i p - i f - m e m o r y - z e r o i n s t r u c t i o n ; t h i s is u s e f u l f o r switches.
F u r t h e r m o r e , i f a v a l u e c e l l is known t o c o n t a i n a l i s t , t h e CAR or CDR c a n b e
t a k e n i n o n e i n s t r u c t i o n , u s i n g a half-word in s t ruc t ion w i t h indirect addres s ing ,
because t h e i n d e x a n d i n d i r e c t i o n f i e l d s a r e z e r o , w i t h o u t h a v i n g t o f e t c h t h e
v a l u e i n t o an accumulator f irst . Similar ly , i f a va lue ce l l conta i .ns a number, t h e
s i g n c a n be tested and t h e value (except for bignums) accessed by us ing indirect
a d d r e s s i n g . (I t should be noted that compiled code does not keep local variable
values i n va lue ce l l s , but uses even more clever techniques involving s tacks.)

Arrays have a complicated representation because they can be o f a r b i t r a r y
size, and m u s t be a l l o c a t e d as a c o n t i g u o u s b l o c k f o r e f f i c i e n t i n d e x i n g . T h e
so lu t ion chosen is t o s p l i t it i n t o two parts: a Special ARray cel l (c a l l e d SAR.

208

not SAC, for some reason) in an array segment, and the block of data. The data
itself is kept just below the hole in memory, floating above loaded programs. When
new programs are loaded, the array data is shuffled upward in memory, and the
special array pointers are updated. Similarly, when allocating a new array o r
reclaiming an old one it may be necessary to shuffle the array data.

The special array pointer is two words:

special array
pointer (SAR)

”-

bits 7 I

I,

for garbage collector

dimension
information I

A complete discussion of the SAR contents and array access methods is beyond the
scope of this paper. Notice, however, that the Indirection and index fields are
chosen to be 0 and 7 for the two SAR words. The first admits an indirection for
calling the array as if it were a function, according to MacLISP convention; the
second allows indexing off accumulator 7 for accessing the data from compiled code.
See reference 1 for a fuller treatment of this.

Hunks are like list cells, but consist of several contiguous words. They
are always a power of two in size, for convenience of allocation. Hunks of sizes
other than powers of two are created by allocating a hunk of a size just big
enough, and then marking some of the halfwords as being unused by filling them with
a -1 pointer (actually 777777). This was chosen because it never points to a data
object, and because it is easily generated with instructions that set half- or
full-words to all ones. It is time-consuming to determine the actual size of a
hunk, since one must count the number of unused halfwords, but then hunks were
created as an experimental space-saving representation with properties somewhere
between those of lists and arrays.

GARBAGE COLLECTION

Every so often there comes a point when all the space currently existing
for data objects has been allocated. At this point there are two alternatives:
[l] allocate a new segment for data objects of the type needed.
[2] attempt to reclaim space used by data objects which are no longer needed (by
the process of garbage collection).
A study by Conrad indicates that the best strategy is to do [2] only if [l] fails
because one’s address space (2561: words, in this case) is completely allocated,
PROVIDED that one has the facility to compact one’s data storage and de-allocate

209

s e g m e n t s . (R e f . 3) Since MacLISP c u r r e n t l y h a s n ' t t h e a b i l i t y t o d e - a l l o c a t e
segments ("once a fixnum, always a fixnum"), t h i s s t r a t e g y must be modified. One
must be caut ious about a l loca t ing a new segment, since the a l loca t ion canno t be
u n d o n e ; t h u s MacLISP tries ga rbage co l l ec t ion first u n l e s s e x p l i c i t l y t o l d
o t h e r w i s e by t h e programmer-, and then a l locates a new segment i f g a r b a g e c o l l e c t i o n
fails t o reclaim enough space for the requi red data type.

Suppose, for example, t h a t it is necessa ry t o a l l oca t e a new list ce l l .
The CONS f u n c t i o n c h e c k s t h e f r e e l i s t f o r t h e data t y p e "list c e l l " ; i f t h e
f r e e l i s t is n o t e m p t y , t h e n t h e f i r s t c e l l on t h a t l ist is used . (T h e r e is a
f reel is t for each data type, which cons is t s of a l l t h e c u r r e n t l y unused o b j e c t s i n
a l l the segments for t h a t data type, s t r u n g together such t h a t e a c h o b j e c t p o i n t s
t o the nex t . Th i s can be done even for ob jec ts which o r d i n a r i l y do n o t c o n t a i n
p o i n t e r s , s u c h as fixnums and f lonums, s ince those ob jec ts are l a r g e e n o u g h t o
c o n t a i n a t l eas t a s ing le po in t e r . There is a s e t o f f ixed loca t ions , one for each
da ta type , wh ich con ta in po in t e r s t o t he f i r s t c e l l s on the r e spec t ive f r ee l i s t s .)

I f , i n ou r example , t he l i s t c e l l f r e e l i s t i s empty , t hen t he ga rbage
c o l l e c t o r i s invoked. Cont ro l led by u s e r - s e t t a b l e p a r a m e t e r s , t h e garbage
c o l l e c t o r may dec ide s imply to a l loca te a new list segment (which i n v o l v e s g e t t i n g
a new memory page from the t ime-sharing system, altering the Segment Table, and
adding the newly a l loca ted ob jec ts t o t h e f r e e l i s t) . I f it d e c i d e s n o t t o d o t h i s ,
ar i f t h e a t t e m p t f a i l s f o r any reason, then the actual garbage col lect ion process
is undertaken. T h i s involves f ind ing a l l the da ta ob jec ts which a r e accessible t o
t h e u s e r program. An objec t is access ib l e i f i t is poin ted to by compiled code, i f
p o i n t e d t o b y a g loba l va r i ab le or in te rna l po in te r register (such as accumula tors
1-5) , or i f p o i n t e d t o by another accessible object . Not ice that t h i s d e f i n i t i o n
is r e c u r s i v e , and so r e q u i r e s a r e c u r s i v e s e a r c h i n g o f a l l t h e d a t a o b j e c t s t o
de te rmine which are access ib le . T h i s searching is known as the mark phase of t h e
g a r b a g e c o l l e c t o r .

Associated w i t h each data object is a "mark b i t " f o r . use by t h e garbage
c o l l e c t o r . A s the garbage col lector locates each access ib le ob jec t , it se t s t h a t
o b j e c t ' s mark b i t . For l is t c e l l s , fixnums, flonums, bignums, and h u n k s , these
b i t s are s t o r e d i n a part of memory unre la ted to the memory occupied by t h e data
o b j e c t s t h e m s e l v e s . For each 512-word segment there is a "b i t b lock" o f 16 words,
each ho ld ing 32 mark b i t s . The locat ion of the b i t block is found by u s i n g t h e t o p
9 b i t s of t h e address of the da ta ob jec t t o i ndex the GC Segment Table . (B i t
b locks t hemse lves a r e a l l oca t ed i n special "bit block" segments; thus b i t b l o c k s
are t rea ted in t e rna l ly a s ye t ano the r da t a t ype . Occas iona l ly t he obscu re e r ro r
message "GLEEP - OUT OF BIT BLOCKS" is p r i n t e d by LISP i n the h i g h l y i n f r e q u e n t
s i t u a t i o n where it cannot a l loca te a new b i t block a f t e r a l l o c a t i n g a new segment
which needs a b i t block.) No b i t blocks are needed for symbols and special array
p o i n t e r s . Recall t h a t t h e l e f t h a l f of a symbol word p o i n t s t o a two-word b lock .
Since s u c h a two-word block i s always a t an even a d d r e s s , t h e low b i t o f t h e
p o i n t e r t o it is normally zero. T h i s b i t is used d u r i n g garbage co l lec t ion a s t h e
mark b i t for t h a t symbol. Special array pointers have room i n them for a v a r i e t y
of b i t s , and one of them is used a s a mark b i t . Value c e l l s a r e o n l y r e c l a i m e d
when t h e symbol p o i n t i n g t o them is reclaimed (and not even t h e n , i f compiled code
p o i n t s t o t h e v a l u e c e l l , which f a c t is indicated by a b i t i n t h e two-word symbol
b l o c k p o i n t i n g t o t h e v a l u e c e l l) , and so they require no mark b i t s .

To a i d t h e garbage co l l ec to r i n the mark phase, t h e GCST con ta ins some b i t s
wh ich a l so encode t he da t a t ype r edundan t ly , i n a f o r m u s e f u l t o t h e mark ing
r o u t i n e . The b i t s i n d i c a t e whether the object must be marked, and i f so t h e method
o f mark ing ; t hey a l so i nd ica t e how many po in te r s t o o the r ob jec t s are c o n t a i n e d i n
t h e o b j e c t now being marked.

210

After r ecu r s ive ly l oca t ing and marking a l l accessible cells , t h e garbage
c o l l e c t o r t h e n p e r f o r m s a sweep phase, i n which every data ob jec t is examined, and
t h o s e which have not been marked are added t o the appropriate f r ee l i s t . To a id t h e
sweep phase, each GCST ent ry has a f ie ld by which a l l entries for segments of t h e
same data type are l inked toge ther in a list. In t h i s n a y t h e g a r b a g e c o l l e c t o r
d o e s n o t n e e d t o s c a n the e n t i r e segment t ab le l ook ing fo r en t r i e s fo r each type.
For each segment, the garbage collector examines each data ob jec t i n t he s egmen t
and its mark b i t , and adds the ob jec t t o t h e appropriate f r ee l i s t i f t h e mark b i t
is n o t se t . For symbols and arrays it a l so r e se t s t h e mark b i t a t t h i s time. (B i t
b l o c k s are reset a t the beginning of the mark phase.)

If, i n o u r example, t h e garbage collection process has not reclaimed enough
list cel ls (as determined by another programmer-specified parameter), then it w i l l
t r y t o a l l o c a t e one o r more new list ce l l segments. I f , however, t h i s causes t h e
t o t a l number of list ce l l s t o exceed yet another programmer-specified parameter,
t h e n a "user i n t e r r u p t " is s ignaled, and a function writ ten by t h e programmer steps
i n . In MACSYMA, t h i s funct ion is the one t h a t typ ica l ly informs you:

YOU HAVE RUN OUT OF LIST SPACE.
DO YOU WANT MORE?
TYPE ALL; NONE; A LEVEL-NO. OR THE NAME OF A SPACE.

The reason for a l l these parameters is the necessary caut ion descr ibed above; i f
a l l t h e a v a i l a b l e segments ge t a l loca ted as l ist c e l l segments (which can e a s i l y
happen due. to intermediate expression swel l , for example), then they cannot be used
for a n y t h i n g e l s e , i n c l u d i n g compiled code. T h i s is why, i n MACSYMA, i f you use up
t o o much list space, you can ' t load up DEFINT thereaf te r !

Array data (as opposed t o t h e SAR objec ts) i s handled by a special r o u t i n e
t h a t knows how t o s h u f f l e them u p and down i n core as necessary. When a new array
is a l l o c a t e d , t h e garbage col lector has the same dec is ion to make as t o w h e t h e r t o
a l l o c a t e more memory or a t tempt to reclaim unused ar rays . The dec i s ion here is
less c r i t i c a l , s ince menory a l loca ted for a r rays CAN be de-al located, and so no
programmer-spec i f ied parameters a re used . Array da ta on ly goes away when t h e
cor responding SAR is reclaimed by the normal garbage co l l ec t ion p rocess (or when
t h e a r r a y is e x p l i c i t l y k i l l e d by the user , u s i n g the *REARRAY func t ion) .

For the in t e re s t ed r eade r , t he format of a GCST en t ry is shown here:

B i t 0
B i t 1
B i t 2
B i t 3
B i t 4

B i t 5

B i t 6

Bits 7-12

1 i f da ta ob jec ts i n t h i s segment must be marked.
1 i f t h i s segment contains value cel ls .
1 i f symbols. .
1 i f spec ia l a r ray po in te rs .
1 i f the r i g h t half of t h i s data object contains a
po in te r (t rue of list, bignum, and hunk data objec ts) .
1 i f t h e l e f t h a l f of t h i s data object contains a
poin te r (true of l ist and hunk ob jec ts -- note t h a t
symbols and spec ia l a r ray po in te rs ge t spec ia l t rea tment) .
I t is always t r u e t h a t b i t 4 is s e t i f t h i s one is.
1 i f hunks (i n t h i s case, the ST ent ry is used t o
determine t h e s i z e of the hunk).
a r e unused.

Bits 13-21 contain t h e index into GCST of the next entry w i t h t h e
same data type , o r zero i f t h i s is the l a s t such e n t r y .
(Segment 0 never contains data objects, except NIL,
which is t rea ted spec ia l ly anyway.)

21 1

Bits 22-35 conta in the h igh 14 b i t s of the address of t h e b i t
block for t h i s segment, i f any.

Since b i t b l o c k s are 16 words long, the low four b i t s o f t he add res s of such a b i t
b l o c k are always zero. Thus the GCST entry only needs to contain the high 14 b i t s
of t h e a d d r e s s . These 14 b i t s a r e r i g h t - a d j u s t e d i n the GCST e n t r y f o r t h e
convenience of a clever , t ight ly-coded marking algorithm. T h i s a lgori thm works
rough ly as fol lows:
[a] S h i f t t h e address of the da ta ob jec t to be marked r i g h t by 9 b i t s , p u t t i n g t h e
low 9 b i t s i n t o t h e n e x t accumulator.
[b] Use the h igh 9 address b i t s t o f e t ch a GCST ent ry in to the accumula tor ho ld ing
t h e h i g h 9 address b i t s , skipping on the s i g n b i t (whether to mark or n o t) .
[c] Test b i t s 1, 2, 3 (spec ia l t rea tment) , s k i p p i n g i f none are se t .
[d l S h i f t t h e two accumula to r s l e f t by 4 b i t s . T h i s b r i n g s f o u r o f t h e low 9
address b i t s back into the f i rs t accumulator , which together with 14 b i t s f rom the
GCST en t ry y i e ld t he addres s o f a word i n the b i t block. The 5 b i t s remaining i n
the second accumula tor ind ica te the bit w i t h i n the word t o u s e a s t h e mark b i t .
F i n a l l y , b i t 4 is brought into the s i g n b i t of the f i rs t accumulator.
[e] Rotate the second accumulator, bringing the 5 b i t s - t o t he low end.
[f] Indexing of f the f i r s t accumula tor , fe tch the word of mark b i t s .
[g] Set a mark b i t i n t he word, s k i p p i n g i f it was not already marked. (I f t h i s
d o e s n ' t s k i p , t h e n we e x i t the marking algorithm. I t is n o t n e c e s s a r y t o s t o r e
b a c k t h e word of mark b i t s .) The b i t is s e l e c t e d b y i n d e x i n g o f f t h e s e c o n d
accumula to r i n to a t a b l e of words, each w i t h one b i t s e t .
[h] S tore back the word of mark b i t s .
[i] Test t h e s ign b i t of t h e f i r s t accumulator (b i t 4 of t h e GCST ent ry) , jumping
t o t h e ex i t i f no t s e t .
[j] If b i t 1 is se t (b i t 5 of the GCST ent ry) , recurs ive ly mark t h e p o i n t e r . i n t h e
l e f t h a l f . If b i t 2 is set (b i t 6 of the GCST en t ry) , mark a l l t h e p o i n t e r s i n t h e
hunk.
[k] I t e r a t i v e l y mark the po in te r i n the r i g h t ha l f .

I have taken the t rouble to ou t l ine these s teps carefu l ly because mos t o f
them are s i n g l e PDP-10 ins t ruc t ions , carefu l ly des igned t o perform two o r three
use fu l ope ra t ions s imu l t aneous ly . The point is tha t t he ca re fu l design of t ab l e s
and t h e use of redundant encoding can greatly increase t h e speed of c r i t i c a l i n n e r
l o o p s . (I t s h o u l d a l s o be men t ioned t ha t such ca re fu l t hough t abou t des ign is
u s u a l l y w a r r a n t e d only for c r i t i ca l i nne r l oops !) I should also mention t h a t most
of t h e c o n s t a n t s which have been mentioned i n t h i s paper (b i t numbers, s i ze s of
segments, and so on) are represented symbolically i n the tex t of t h e MacLISP code;
one can change the s i z e of a segment by changing a s ingle d e f i n i t i o n , and t h e s i z e s
of f i e l d s i n GCST e n t r i e s , p o s i t i o n s sf b i t s , and so on will be a d j u s t e d by
assembly-time c o m p u t a t i o n s . I have used numbers i n t h i s p a p e r o n l y f o r
c o n c r e t e n e s s .

For cer ta in spaces the mark b i t s a re ac tua l ly used in the inver ted sense :
1 means not marked, and 0 means marked. T h i s al lows the sweep l o o p t o t e s t f o r a n
e n t i r e b l o c k o f 32. words a l l being marked by t e s t i n g f o r a zero word of mark b i t s ;
t h e l o o p can then just s k i p over the block, and avoid tes t ing t h e i n d i v i d u a l b i t s .
The t e s t f o r a ze ro word is done while moving the word i n t o an accumulator, which
h a s t o b e done anyway, and so is es sen t i a l ly f r ee .

212

THE ADDRESS SPACE PROBLEM

One o f t he d i f f i cu l t i e s cu r ren t ly f ac ing MacLISP is the " l imi t ed" addres s
space p rovided by t h e PDP-10. The a rch i tec ture of the machine i n h e r e n t l y limits
a d d r e s s e s t o 18 b i t s ; hence a s ing le program cannot address more than 256K words
of memory. Combined wi th the fac t t h a t MacLISP does not present ly a l low for de-
a l l o c a t i o n o f d a t a segments (or of loaded compiled code, f o r t h a t m a t t e r) , t h i s
s e v e r e l y limits t h e u s e o f memory. Some MACSYMA problems, for example, would
r e q u i r e much more than 256K of programs and l is t d a t a t o s o l v e ; o t h e r s r e q u i r e
less t h a n 256K a t any one t ime, but cannot be r u n because of t h e d e - a l l o c a t i o n
d i f f i c u l t y .

I t is f a i r l y c l e a r t h a t completely solving the de-allocation problem would
b e m o r e t r o u b l e t h a n i t i s wor th , and wou ld no t s t ave o f f t h e f u n d a m e n t a l
d i f f i c u l t y i n d e f i n i t e l y . As both MACSYMA problems and MACSYMA i t se l f grow i n s i ze ,
we w i l l f ee l more and more the "address space crunch". The on ly gene ra l way t o
s o l v e t h i s problem is t o a r r a n g e f o r a bigger address space.

There a re three s o l u t i o n s which a r e p r e s e n t l y a t a l l r e a l i s t i c . Two
involve cont inued use of the PDP-10 architecture, but modified i n s e v e r a l ways t o
a l low programs to access more memory. These modifications may or may no t be made
a v a i l a b l e b y DEC, and may or may not be r e t r o f i t t a b l e t o t h e MACSYMA Consortium
K L l O processor . The d i f fe rence between the two schemes involves the dec is ion as t o
w h e t h e r MacLISP da ta po in t e r s shou ld s t i l l f i t i n t o 18 b i t s . I f n o t , there is
i m m e d i a t e l y a f ac to r -o f - two memory pena l ty , s ince l i s t c e l l s m u s t be two words
i n s t e a d o f o n e . However, t h e r e a r e a l s o some t e c h n i c a l a d v a n t a g e s t o s u c h a n
arrangement , as well as the obvious advantage that l i s t space can become b i g g e r
t h a n 256K. If po in t e r s a r e kep t t o 18 b i t s , then a l l LISP da ta m u s t f i t i n 256K,
b u t a n y amount of compiled code and any number of arrays could be loaded. Both of
t h e s e schemes have been worked out on paper t o a grea t ex ten t by Guy L . S t e e l e Jr.
and Jon L . White, t o compare the i r mer i t s and to p repare for the p o s s i b i l i t y t h a t
one of them may be needed. Either scheme would require a good dea l o f work (a t
l e a s t o n e t o two man-yea r s) t o implement f u l l y i n bo th the i n t e r p r e t e r a n d t h e
compi le r .

The t h i r d s o l u t i o n i n v o l v e s moving t o a n o t h e r m a c h i n e a r c h i t e c t u r e
a l t o g e t h e r . T h i s leaves open the choice of machine. Few commerc ia l ly ava i lab le
machines are as conducive to the support of LISP as t he PDP-10, and it probably
would no t be p rac t ica l to under take a completely new implementation. MacLISP does
p r e s e n t l y r u n on Multics (on a Honeywell 6180 processor), but is ra ther s low, and
t h e Multics system is expensive and not widely available. The b e s t b e t i n t h i s
d i r e c t i o n seems t o be the LISP machine, designed by Richard Greenblatt , Tom Knight ,
e t a l . a t t h e MIT Art i f ic ia l Intel l igence Laboratory. The prototype machine has
been working for a number of months now, and the basic sof tware is b e g i n n i n g t o
show s i g n s o f l i f e . I t is not inconceivable that MACSYMA may be run exper imenta l ly
on it by summer 1977. The LISP machine has a 23-bit address space, and makes more
e f f i c i e n t u s e o f i ts memory than even the PDP-10. However, although it is much
less expensive than a KL10, it is not designed for time-sharing.

The PDP-10 implementation of MacLISP and of MACSYMA w i l l c e r t a i n l y b e
Useful for a t leas t the next f ive to t en years . Af te r tha t , on ly time can t e l l .

SUMMARY

MacLISP is d e s i g n e d t o b e an e f f ic ien t , h igh- leve l sys tems programming
language , ra ther than pr imar i ly an appl icat ions programming language. I t s i n t e r n a l

213

organizat ion is a careful ly chosen balance between useful generali ty and spec ia l -
case e f f i c i ency t r i cks . A thoughtful choice of data and table representations can
e x p l o i t t h e a r c h i t e c t u r e of the h.ost machine to gain speed i n c r i t i c a l p l a c e s
w i t h o u t great loss o f genera l i ty . The use of symbolic assembly parameters can
avoid t y i n g the sys tem to a s ingle r igid format . The g r e a t e s t e f f o r t h a s b e e n
expended on speeding up type-checking, access to values i n global variables, and
garbage collection, since these are among the most frequent of LISP operat ions.
The address space crunch may eventually force yet another redesign i f t h e PDP-10
architecture is retained.

REFERENCES

1. S t e e l e , Guy L. Jr.: "Fast Arithmetic i n MacLISP." Proceedings of the MACSYMA
Users' Conference, NASA CP-2012, 1977. (Paper No. 22 of t h i s compilation.)

2. Teitelman, Warren: InterLISP Reference Manual. Revised edi t ion. Xerox Palo
Alto Research Center (Palo Alto, 1975).

3.' Conrad, William R.: A compactifying garbage col lector for E C L ' s non-homogeneous
heap. Technical Report 2-74. Center for Research i n Computing Technology, Harvard
U. (Cambridge, February 1974).

214

22

FAST ARITHMETIC IN MACLISP
Guy Lewis Steele Jr.

Massachusetts Institute of Technology
Laboratory for Computer Science

(formerly Project HAC)

ABSTRACT

MacLISP provides a compiler which produces numerical code competitive in
speed with some FORTRAN implementations and yet compatible with the rest of the
MacLISP system. All numerical programs can be run under the MacLISP interpreter.
Additional declarations to the compiler specify type information which allows the
generation of optimized numerical code which generally does not require the garbage
collection of temporary numerical results. Array accesses are almost as fast as in
FORTRAN, and permit the use of dynamically allocated arrays of varying dimensions.
Here we discuss the implementation decisions regarding ,user interface, data
representations, and interfacing conventions which allow the generation of fast
numerical LISP code.

INTRODUCTION
For several years now MacLISP has supported a compiler which produces

extremely good numerical code. Measurements made by Fateman indicate that the
generated code is competitive with FORTRAN. (Ref. 1) Expressing such numerical
code does not require the use of special numerical language embedded within LISP,
in the manner that some higher-level languages allow the user to write machine code
in the middle of a program. Rather, all numerical programs are completely
compatible with the MacLISP interpreter. The compiler processes the interpreter
definitions along with additional numerical declarations. These declarations are
not required; omitting them merely results in slower compiled code. For
convenience, special numeric functions are provided which carry implicit declared
type information (such as + and +$ for integer and floating point addition, a s
opposed to PLUS), but the user need not use them to get optimized numerical code.

CHANGES TO THE MACLISP LANGUAGE

The primary change to the MacLISP language, as seen by the user, was the
creation of numerical declarations for use by the compiler. A general compiler
declaration mechanism was already a part of the language, so adding the numerical
declarations was not difficult. This mechanism involves writing a MacLISP
expression beginning with the word DECLARE and followed by various declarations.
Declarations may be global or local. Global declarations are written by themselves
in a file, and affect all following functions; local declarations are written
w,ithin the text of a MacLISP function, and affect only the scope of the construct
they are written within.

The simplest new declarations are statements of the types of variables.
Recall that MacLISP has three basic numeric types: fixnum, flonum, and bignum.
These are (respectively) single-precision integers, single-precision floating-point

215

numbers, and arbitrary-precision integers. Only the first two types can be
operated on directly by hardware instructions, and so they are the only types of
interest to the compiler. An example of a variable declaration:

(DECLARE (FIXNUM 1 J K) ;single-precision integers
(FLONUM A Et FOO ZAP) ;single-precision reals
(NOTYPE SNURF QUUX)) ;no specific type

If a variable is' always numeric but sometimes may hold bignums, it must be declared
NOTYPE. The default assumption is that a variable is NOTYPE (that is, may contain
any MacLISP data object); NOTYPE declarations are primarily useful to undo
previous numeric declarations.

The types of the arguments and returned values of functions may be
similarly declared:

(DECLARE (FLONUM (CUBE-ROOT FLONUM)

(F IXNUM (FIBONACCI F IXNUM)

(NOTYPE (BETWEEN-ZERO-AND-ONE-PREDICATE FLONUM)))

(INTEGER-POWER-OF-REAL FLONUM FIXNUM))

(LENGTH-OF-LIST NOTYPE))

This declaration specifies that CUBE-ROOT takes a FLONUM argument and delivers a
FLONUM result, that INTEGER-POWER-OF-REAL takes a FLONUM and a FIXNUM and delivers
a FLONUM, and so on. The types of the arguments could also be specified by using a
local declaration:

(DECLARE (FLONUM (CUBE-ROOT))) ;global declaration

(DEFUN CUBE-ROOT (X)
(DECLARE (FLONUM X)) ;local declaration
(EXPT X .333333333))

The result type must be specified by a global declaration, however, and declaring
the argument types globally also can help the compiler t o produce better code f o r
functions which call the declared function.

Arrays may also be declared globally to the compiler. MacLISP arrays come
in three types, which are essentially FIXNUM, FLONUM, and NOTYPE. (There are other
types also, but these do not concern us here.) The ARRAY* declaration takes a
subdeclaration specifying the array type; the subdeclaration in turn specifies the
names of arrays and their dimensions. An example:

(DECLARE (ARRAY" (FIXNUM TUPLE 1 TABLE 2)
(FLONUM VECTOR 1 MATRIX 2)))

This declares TUPLE and VECTOR to be one-dimensional arrays, and TABLE and MATRIX
to be a two-dimensional arrays. (MacLISP arrays may have up t o five dimensions.)
If the values of the dimensions are also known ahead of time, a slightly different
form may be used:

(DECLARE (ARRAY* (FIXNUM (TUPLE 43) (TABLE 3 5))
(FLONUM (VECTOR 3) (MATRIX ? 1 7))))

This declares TUPLE to be of length 43, TABLE to be 3 by 5, and MTRIX to have 17

216

columns and an unknown number of rows. Note that " 7 " can be used t o denote an
unknown dimension value; even par t ia l dimension information can help the compiler
t o op t imize array accesses.

The u s e r can wr i te a r i thmet ic code u s i n g t h e t r a d i t i o n a l names PLUS,
DIFFERENCE, TIMES, and QUOTIENT; these f u n c t i o n s work on any k i n d s of numbers ,
even b i g n u m s , and admit mixed-mode a r i thme t i c . In t he p re sence o f t y p e
dec la ra t ions , t he compi l e r may be ab le to deduce that the arguments are always
flonums, for example, and produce hardware i n s t r u c t i o n s f o r f l o a t i n g - p o i n t
arithmetic. The user can also use the FIXSW and FLOSW declara t ions to t e l l t h e
compiler t h a t such "generic" arithmetic will always involve only fixnums or only
f lonums .

As a convenience to the user, however, several vers ions of t h e common
arithmetic functions are provided:

generic
PLUS
DIFFERENCE
TIMES
QUOTIENT
REMAINDER
GCD
GREATERP
LESSP
EQUAL
EXPT

fixnum only
+ -
s
/ /
\
\\
>
< - -
A

f lonum only
+%
-s
*$
//s

>
<
A$ (f ixnum exponent)
- -

(The division functions are writ ten as "/ /" instead of "/" because R / n is a MacLISP
escape character .) The functions i n the last two columns are completely equivalent
t o t h o s e i n t h e f i r s t column, except that they convey additional type information
abou t t he i r arguments and resul ts . (An exception is that the fixnum-only func t ions
do not check for overf low, so i n a s i tua t ion where, f o r example, 100000000 and
100000000 were multiplied together, TINES would produce a bignum, whereas * would
overflow and produce a not-very-meaningful f i x n u m . The flonum-only functions do
no t check fo r ove r f low e i the r , whereas the generic functions give an e r r o r f o r
overflow, and e i t h e r an error or zero f o r underflow.)

CHANGES TO THE HACLISP IMPLEMENTATION

I n order that the arithmetic machine instructions migh t be used d i r e c t l y on
MacLISP numeric data objects, i t was necessary t o modify MacLISP t o use a uniform
r e p r e s e n t a t i o n f o r fixnums and f l o n u m s . Before the fast-ari thmetic scheme was
implemented, MacLISP, l i k e many other LISP systems, used two r ep resen ta t ions fo r
s ingle-precis ion integers . One represented the integer as a poin te r to a mach ine
word con ta in ing t he va lue , i n the same manner as f loating-point numbers were
represented. The other encoded the value i n t o the po in te r i t se l f , u s i n g p o i n t e r
va lues which were otherwise worthless because they pointed a t code instead of data
o b j e c t s . The motivat ion behind the ear l ier dual representat ion was t o a v o i d
allocating storage for small integer values, which are frequently used. (InterLISP
h a s f o r s e v e r a l y e a r s "open-compiled" arithmetic functions as s i n g l e machine
i n s t r u c t i o n s . (Ref. 2) Unfortunately, it s t i l l has a d u a l r e p r e s e n t a t i o n f o r
i n t e g e r s ; as a resul t , before adding two numbers it m u s t c a l l a r o u t i n e which
determines a t run-time the representation of each number and converts each i n t o a

217

f u l l machine word representa t ion . Compiled InterLISP code also calls a similar
r o u t i n e f o r f l o a t i n g - p o i n t numbers, not because of m u l t i p l e r e p r e s e n t a t i o n s , b u t i n
order t o perform error-checking as completely as the interpreter does. This run-
time checking des t roys any advantage ga ined by o p e n - c o m p i l i n g t h e a r i t h m e t i c
i n s t r u c t i o n s .)

The po in te r encod ing was removed from MacLISP f o r t h e f a s t - a r i t h m e t i c
scheme, and a l l numbers are now uniformly encoded a s p o i n t e r s t o f u l l machine words
w h i c h c o n t a i n t h e mach ine r ep resen ta t ions o f t he va lues . In o rde r t o avo id
a l l o c a t i n g s t o r a g e f o r f r e q u e n t l y used small integers, there are seve ra l hundred
words o f memory containing consecutive small integer values, and small i n t e g e r s are
created by making a p o i n t e r t o one of these standard l o c a t i o n s , r a t h e r t h a n
a l l o c a t i n g a new word f o r each use of a small integer. (MacLISP does no t a l l ow the
words u sed t o con ta in numbers t o be modified i n the way In te rLISP a l lows us ing the
SETN p r i m i t i v e (r e f . 2) . so t h e r e is no d i f f i c u l t y i n s h a r i n g s u c h w o r d s . I n
fac t , these sma l l i n t ege r l oca t ions a r e even shared among a l l t h e MacLISP p r o c e s s e s
in t he t ime- sha r ing sys t em by making them read-only.)

While a r i t h m e t i c on bignums cannot be compiled as s t anda rd a r i t hme t i c
machine ins t ruc t ions , the i r representa t ion has been chosen to pe rmi t s i g n t e s t s t o
be open-compiled. A bignum is a poin ter to a word which has the s ign of t h e bignum
i n t h e s i g n b i t (and i n f a c t t h e e n t i r e l e f t h a l f) , and a p o i n t e r t o a list o f
fixnums (which represent the magnitude) i n the r i g h t h a l f . Thus a l l numbers are
p o i n t e r s t o words which contain the s ign of the number i n t h e s ign b i t , and such
f u n c t i o n s as MINUSP can always be compiled as s ingle machine i n s t r u c t i o n s .

In o rde r t o p re se rve the uniformity of t he func t ion -ca l l i ng i n t e r f ace , it
was decided t h a t a l l arguments t o func t ions must be v a l i d MacLISP data o b j e c t s . On
t h e o t h e r h a n d , i t is no t des i r ab le t o have t o "number cons" out of f ree s t o r a g e ,
w i t h t h e g a r b a g e c o l l e c t i o n o v e r h e a d t h a t - i m p l i e s , i n o r d e r t o pass numbers t o
f u n c t i o n s . The so lu t ion used was to introduce two ex t r a pushdown lists (s t a c k s)
cal led t h e fixnum and fPonum p d l s . The storage i n these p d l s appear to have f i x n u m
or f lonum da ta t y p e , b u t t h e y a r e a l l o c a t e d a s s t a c k s r a t h e r t h a n as garbage-
c o l l e c t e d h e a p s . These s t acks can be used t o hold temporary numerical values and
t h e v a l u e s o f PROG va r i ab le s which have been dec lared to be numeric, b u t they can
a l s o be used t o a l l o c a t e pseudo-data objects compatible w i t h MacLISP's s t a n d a r d
number r ep resen ta t ion . A po in te r t o a fixnum p d l loca t ion is i n d i s t i n g u i s h a b l e
from an ordinary f ixnum for most purposes; it is a p o i n t e r t o a f u l l machine word
conta in ing the numer ic va lue . A typ ica l code sequence r e su l t i ng from compiling
(FOO (+ A 5)) is:

;assume accumulator '1 has the pointer value of A i n it
MOVE 7 , (1) ; ge t t he machine word f o r A into accumulator 7
ADD1 7 , 5 ;add 5 t o t h e machine word
PUSH FXP, 7 ;push r e su l t i ng word i n t o fixnum p d l
MOVE1 l , (F X P) ;copy fxp pointer into argument accumulator 1
CALL 1,FGO ; ca l l f oo
SUB F X P , [l , , l] ;remove pushed word from fixnum pdl

To the func t ion FOO the pointer passed i n accumulator 1 has the precise format of a
MacLISP i n t e g e r : a p o i n t e r t o a machine word containing the in teger va lue . Note
t h a t t h e v a l u e of t he va r i ab le A may i t s e l f have been such a "pdl number"; the
MOVE i n s t r u c t i o n would move the machine word value into accumulator 7 whether it
was a p d l number or an ordinary fixnum.

One o f t h e d i f f i c u l t i e s of using stack-allocated numbers is t h a t t h e y h a v e
a d e f i n i t e l ifetime; on re turn from the func t ion they a re passed to , they are de-

218

a l l o c a t e d and no longer exist. By the time they are de-allocated, there must be no
more p o i n t e r s t o t h a t word access ib le to the user program, or e l s e s u b s e q u e n t
references might see a wrong value because the p d l word was re -a l loca ted for some
other purpose.

To overcome t h i s d i f f icu l ty the notion of safety was developed. A copy of
a poin ter is s a f e i f it can be guaranteed that the copy will become inaccess ib le
before what i t poin ts to is de-allocated if the pointer i n f a c t p o i n t s t o a p d l
number. Alternatively, a use for a pointer is safe i f that use doesn't require a
safe pointer . The fast-ari thmetic compiler does some complex a n a l y s i s t o determine
what s i tua t ions are safe. Some standard conventions for safety:
[l J A pointer i n a global (special) variable may have an indef in i te l i fe t ime, and
so p u t t i n g a p o i n t e r i n a global var iable is unsafe. I t f o l l o w s t h a t s u c h a
v a r i a b l e may not contain a pointer to a p d l number, since we cannot guarantee such
a p o i n t e r t o be safe . Consequently, any pointer actually obtained from a g l o b a l
v a r i a b l e is safe.
[Z] Consing a pointer into a list c e l l (or us ing RPLACA t o p u t a poin te r in to an
e x i s t i n g l ist c a l l) is s imi la r ly unsafe . Poin te rs ac tua l ly occur r ing i n l i s t
structure must therefore be guaranteed safe.
[3] I t is not possible to return a p d l number as the value of a function, because
there would be no r e tu rn t o t he code t o de-allocate i t . Therefore r e t u r n i n g a
p o i n t e r from a funct ion is unsafe, and a l l p o i n t e r s a c t u a l l y r e t u r n e d f r o m
funct ions are safe .
[4] Passing a pointer as an argument t o a function is safe; therefore p d l numbers
(u n s a f e po in te rs) may be passed as arguments t o functions. A l l function arguments
are t h u s potentially unsafe. They may be passed on down to other cal led funct ions,
b u t may not be returned or otherwise used as i f they were safe.
[SI P d l numbers may be pointed t o by ordinary compiled local var iables . Such
loca l va r i ab le s may or may not have unsafe values, depending on where the va lues
came from. The compiler m u s t guarantee that when the value of a l oca l va r i ab le is
used e i ther the value is safe or the use is safe.

Suppose we wrote a function such as:

(DEFUN ZAP (A) (CONS A ' F O O))

We are p u t t i n g the argument A I n t o a l ist c e l l (an unsafe use), b u t the argument A
i s a l so (po ten t i a l ly) unsa fe . In t h i s situation the compiled code mus t create a
safe copy of the unsafe pointer. The compiled code therefore uses a rout ine PDLNMK
(" p d l number make") which checks for a p d l number and makes a copy by doing a
number cons i f necessary. That is, if the pointer given t o PDLNMK is a l r eady s a fe ,
it is r e t u r n e d as is; b u t i f it is unsafe, a s a f e copy is made w i t h t h e same
value. The compiled code for ZAP would look l ike t h i s :

MOVEI 2,'FOO ; p u t constant n foon i n accumulator 2
JSP T,PDLNMK ;make sure accumulator 1 has a safe pointer
JCALL 2,CONS ; c a l l CONS

If A is not a p d l number, PDLNMK does no th ing ; b u t i f it is, PDLNMK replaces t h e
p o i n t e r i n accumulator 1 w i t h a freshly allocated f i x n u m w i t h t h e same value as t h e
p d l number. In t h i s way a safe value w i l l be passed to the CONS function. (The
convention about function arguments being potentially unsafe has an exception i n
CONS, so t h a t CONS i t s e l f need n o t always perform PDLNMK on its arguments. The
compiler knows about t h i s exception, and guarantees that anyone who cal ls CONS w i l l
p rovide safe arguments. I n p rac t ice , arguments passed t o CONS o f t e n can b e

guaran teed safe by compile-time analysis, and it saves time n o t t o h a v e CONS u s e
PDLNMK.)

Notice t h a t one consequence of the use of PDLNMK is t h a t two numbers which
are a p p a r e n t l y EQ (i . e . t he same pointer) may not be i f the compiled code has t o
make a copy. For example, consider t h i s code:

(DEFUN LOSE (X)
(SETQ G X)
4 E Q X G I)

I

The r e s u l t o f t h e EQ t e s t c o u l d b e NIL, even though t h e g l o b a l v a r i a b l e G
a p p a r e n t l y i s assigned the same pointer as was passed t o LOSE as an argument. If
an u n s a f e p o i n t e r is passed t o LOSE, G will rece ive a s a f e c o p y o f t h a t v a l u e ,
which w i l l no t be the same pointer , and so the EQ t e s t w i l l f a i l . (T h i s is a n o t h e r
r eason why MacLISP does not have a SETN primit ive; s ince the compiler can make
c o p i e s o f a number without warning, conceivably SETN might modify one copy of a
number b u t n o t t h e o t h e r , w i t h anomalous r e s u l t s .)

Recall t h a t one unsafe use of a pointer is re turn ing it as the va lue o f a
f u n c t i o n . We would l i k e f o r numeric code n o t t o eve r ,have t o "number cons", b u t we
c a n n o t r e t u r n a p d l number from a function. The s o l u t i o n t o t h i s dilemma is t o
a l l o w n u m e r i c - v a l u e d f u n c t i o n s t o have two e n t r y p o i n t s . One is t h e s t a n d a r d
MacLISP e n t r y p o i n t , and i s compatible w i t h the standard MacLISP ca l l ing sequence;
ca l l i ng t h e f u n c t i o n t h e r e will produce a MacLISP poin ter va lue , which w i l l i n v o l v e
a number cons i f the va lue is i n f a c t numeric. The o ther is a s p e c i a l e n t r y p o i n t
which is non-standard, and can only be used by compiled code which knows t h a t t h e
cal led func t ion is numeric-valued. Entering a numeric func t ion there w i l l d e l i v e r
a machine word i n accumulator 7 instead of the s tandard pointer i n accumulator 1.

In o rde r t o u se t h i s special call ing sequence, both t h e ca l l ed func t ion and
t h e c a l l i n g f u n c t i o n m u s t be compiled w i t h dec la ra t ions spec i fy ing t h a t t h e ca l led
f u n c t i o n is numeric-valued. The compiler will then compile the cal led f u n c t i o n tu
have two e n t r y p o i n t s , and the ca l l ing func t ion to use the non-standard numeric
e n t r y p o i n t .

The e n t r y p o i n t s a r e a c t u a l l y implemented a s two consecu t ive l oca t ions a t
the beginning of the func t ion . The f irst is the s tandard entry point ; i t -merely
p u s h e s t h e address of a s p e c i a l r o u t i n e F I X 1 (o r FLOAT1, f o r a f lonum-valued
f u n c t i o n) o n t o t h e s t a c k , and then fa l ls in to the non-standard entry point . The
function then always produces a machine number i n accumulator 7. I f t h e f u n c t i o n
is c a l l e d a t the numeric entry point, it w i l l de l iver its va lue a s a machine word.
If ca l led a t the s tandard entry point , then on de l iver ing the machine word it w i l l
" r e t u r n " t o FIX1, which performs a "number cons" on t h e machine word, producing a
normal fixnum (or FLOAT1, which produces a flonum), and t h e n returns t o t h e cal ler .

As an example, here a re two functions w i t h appropr ia te dec la ra t ions :

(DECLARE (FLONUM (DISC FLONUM FLONUM FLONUM)))

(DEFUN DISC (A B C)
(-$ (*$ B B) (*% 4.0 A C)))

(DEFUN QUAD (A B C)
(PROG (D)

(DECLARE (FLONUM D))
(SETQ D (DISC A B C))
(COND ((MINUSP D) (RETURN (ERROR)))

220

The code produced would look l ike th i s :

DISC: PUSH P,[FLOATl] ; fo r normal entry, push address of FLOAT1
MOVE 7,(2) ;numeric entry point ; get machine word f o r B
FMPR 7,7 ; f l oa t ing m u l t i p l y B by i tself
MOVSI 10,(4.0) ;get 4.0 i n accumulator 10
FMPR 10,(1) ; f l oa t ing m u l t i p l y by A
FMPR 10,(3) ; f loa t ing m u l t i p l y by C
FSBR 7,lO ; f loa t ing subt rac t ac 10 from ac 7
POPJ P, ;machine word r e s u l t is i n ac 7

Notice t h a t DISC does no number c o n s i n g a t a l l i f cal led a t t h e n u m e r i c e n t r y
p o i n t . I t does a l l a r i thmet ic i n the accumulators, and returns a machine word as
i ts result. The code is remarkably compact, of the k ind one o rd ina r i ly expec t s
from a FORTRAN compiler.

QUAD: PUSH P, 1
PUSH P.2
PUSH P,3
NCALL 3,DISC
PUSH FLP, 7
JUMPGE 7,G0003
MOVEI T,O
CALL 16,ERROR
JRST GO005

G0003: MOVEI l,(FLP)
NCALL 1,SQRT
FSBR 7,@-1(P)
MOVE lo,@-2(P)
FSC 10,l
FDVR 7,lO
JSP T,FLCONS

G0005: SUB P,[3,,3]
SUB FLP,[l,, 13
POPJ P,

;save A, B, and C on t h e s t ack
; to preserve them across the
; c a l l t o DISC
; c a l l DISC w i t h the same arguments
;push the resu l t on to flonum p d l
; jump if value non-negative

; ca l l t he ERROR rout ine
;go t o GO005
;get a pointer into flonum p d l
; c a l l SQRT w i t h tha t po in te r
; f loa t ing subt rac t machine value of B
; fe tch machine word value of A
; m u l t i p l y by 2.0 (u s i n g " f l o a t i n g scale")
;divide ac 7 by ac 10
;perform a flonum cons
;clean u p the s tacks

;return pointer value i n accumulator 1

There are severa l po in ts to no te about QUAD:
(1) I t was n o t d e c l a r e d t o be numeric-valued. As a r e s u l t , when r e t u r n i n g a
number i t mus t do a number cons. Moreover, it does not have a numeric e n t r y p o i n t .
(2) Because DISC was dec lared to be numeric-valued, QUAD uses NCALL i n s t e a d of
CALL t o invoke i t; NCALL en te r s a t the numeric en t ry po in t . The resul t of DISC is
expected in accumula tor 7. Since QUAD needs to u se t h i s r e s u l t t o pass t o SQRT, it
makes a p d l number out of t h i s machine word. In t h i s way func t ion va lues can be
made i n t o p d l numbers a f t e r a l l -- b u t by t h e c a l l e r r a the r t h a n t h e ca l led
f u n c t i o n .
(3) As an as ide, t h e compiler makes some o t h e r n e a t o p t i m i z a t i o n s . I t u s e s a
JUMPGE i n s t r u c t i o n f o r MINUSP, because the value to be t e s t e d is in an accumula tor
anyway. I t takes advan tage o f t he add res s a r i t hme t i c o f t h e PDP-10 t o f e t c h
machine words p o i n t e d t o by poin ters on t h e stack i n one i n s t r u c t i o n . It knows how
t o use severa l accumula tors for a r i thmet ic , and t o arrange f o r t h e r e s u l t t o end up

22 1

in the cor rec t accumula tor . I t expresses the mult ipl icat ion by 2.0 as a " f l o a t i n g
scale" i n s t r u c t i o n , which i s f a s t e r t h a n t h e m u l t i p l i c a t i o n i n s t r u c t i o n i f o n e
operand is a f loa t ing -po in t power of two.

The representat ion of arrays i n MacLISP was ca re fu l ly r edes igned t o a l l ow
f a s t access t o t h e m by compiled code, again taking advantage of t h e p o w e r f u l
address a r i thme t i c o f t h e PDP-10. There are e s s e n t i a l l y two kinds of arrays: s-
expres s ion a r r ays , whose components may be any safe po in te rs , and numeric a r r a y s ,
whose components must be. a l l fixnum machine words o r a l l flonum machine words.

The MacLISP. ARRAY data type is a poin te r to a double word (t h e " s p e c i a l
array p o i n t e r ") which i n t u r n po in ts to the a r ray da ta . The r eason fo r t h i s is
t h a t t h e p o i n t e r m u s t point t o a f ixed p l ace (a s a l l MacLISP po in te r s m u s t) , b u t
t h e actual array data may have t o be sh i f ted around by t h e g a r b a g e c o l l e c t o r t o
accommodate new storage requests, because arrays are not of a uni form s ize . When
t h e garbage c o l l e c t o r moves t h e a r r a y d a t a , it u p d a t e s t h e t h e c o n t e n t s o f t h e
special a r r a y p o i n t e r , b u t the spec ia l a r r ay po in t e r i t s e l f may remain i n a f i x e d .
p l a c e .

In exchange for the f lex ib i l i ty of dynamically a l located arrays, however ,
one pays t h e pr ice o f a lways access ing t he a r r ay da t a i nd i r ec t ly t h rough t h e
s p e c i a l array poin ter . T h i s cost is a l lev ia ted by taking advantage of addressing
a r i t h m e t i c . The second word o f e a c h s p e c i a l a r r a y p o i n t e r p o i n t s t o t h e a r r ay
data , which is ar ranged l inear ly i n row-major order; t h i s second word fur thermore
s p e c i f i e s i n d e x i n g by accumulator 7.

1

GC information
special array pointer ,header code array data

c-
dimension 1 .
dimension 2

dimension n + element 0
element 1

...

u element Dl**. . .*Dn-1

Compiled code can a.ccess a numeric array datum by ca l cu la t ing t he l i nea r s u b s c r i p t
value in accumulator 7 and then using an indirect fetch through t h e second word of
t h e special a r ray po in te r for the a r ray . The l inear subscr ip t va lue is of course
c a l c u l a t e d as

(... (J l * D2 + 52) * D3 + 53 ...) * Dn + Jn

where t h e N i are the dimensions of the array and the Ji a r e t h e a c t u a l s u b s c r i p t s .
For example, suppose tha t accumulator 1 contains a po in te r t o a 3 by 5 by 13 fixnum
array, and that accumulators 2, 3, and 4 contain fixnum s u b s c r i p t s f o r t h a t a r r a y .
Then t o f e t c h t h e d e s i r e d datum this code would be used:

MOVE 7 , (2) ; f e t c h f i r s t s u b s c r i p t i n t o ac 7
IMULI 7,5 ;mult iply by 5 (second dimension)
ADD 7. (3) ;add i n second subscr ipt
IMULI 7 , 1 3 ;multiply by 13 (t h i r d dimension)

222

ADD 7, (4) ;add in third subscript
MOVE 7,@1(1) ;fetch indirect through special array pointer

If the number of dimensions of the array has been declared to the compiler but not
the values of the dimensions, the compiler arranges to fetch the dimension values
at run time. This is easy because the array is arranged so that negative subscript
values fetch the dimension information. (The LISP user is not supposed to use this
fact, but only compiled code.) The same example for a three-dimensional array of
arbitrary dimensions might look like this:

MOVE 10,(2)
MOVNI 7,2
IMULI 10, @l(1)
ADD 7,(3)
MOVNI 7,l
IMULI lO,@l(l)
ADD 10,(4)
MOVE 7 , l O
MOVE 7,@1(1)

;fetch first subscript into ac 10
;put -2 into ac 7
;multiply by second dimension
;add in second subscript
;put -1 into ac 7
;multiply by third dimension
;add in third subscript
;move into ac 7 for subscripting
;fetch indirect through special array pointer

The code is a little longer than before, but will work for any three-dimensional
array. in general, the compiler tries to minimize subscript computations. If the
exact dimensions are declared, or if some of the subscripts are constant, the
compiler will do part or all of the subscript calculations at compile time.

For s-expression arrays, the pointer data are stored two per word, with
elements having even linear subscripts in the left half of a word and the
succeeding odd subscripted elements in the right half of the word. The compiler
must generate code to test the parity of the linear subscript and fetch the correct
half-word. Suppose that a pointer to a one-dimensional array is in accumulator 1,
and a fixnum subscript is in accumulator 2. Then the following code would be
generated:

HOVE 7 , (2) ;fetch subscript into ac 7
ROT 7,-1 ;divide by 2, putting remainder bit in sign
JUMPL 7,G0006 ;jump if linear subscript was odd
HLRZ 3,@1(1) ;fetch pointer from left half
JRST GO007 ;jump to GO007

G0006: HRRZ 3,@1(1) ;fetch pointer from right half
G0007: ...
If the compiler can determine at compile time that the linear subscript will always
be odd or always even, it will simplify the code and omit the JUMPL, JRST, and the
unused halfword fetch.

SUMMARY

MacLISP supports the compilation of numerical programs into code comparable
to that produced by a FORTRAN compiler while maintaining complete compatibility
with the rest of the MacLISP system. All numeric code will run in the MacLISP
Interpreter; additional information may be given to the compiler in the form of
declarations to help it generate the best possible code. If such declarations are
omitted, the worst that happens is that the code runs slower.

Compat ib i l i ty w i t h non-numeric functions was achieved by t h e j u d i c i o u s
c h o i c e o f a uniform representat ion for LISP numbers combined w i t h a compat ib le
s t a c k - a l l o c a t e d r e p r e s e n t a t i o n f o r temporary numeric values passed between
func t ions . The use of stack allocation reduces the need f o r garbage co l l ec t ion o f
numbers, w h i l e the uniformity of representation eliminates the need f o r most run-
time rep resen ta t ion checks . One exception to t h i s i s t h a t t h e use of stack-
a l l o c a t e d numbers m u s t be r e s t r i c t e d ; t h i s d i f f i c u l t y is k e p t i n check by
m a i n t a i n i n g a careful interface between safe and unsafe uses, and analyzing t h e
safety of pointers as much as possible at compile time.

While numeric functions and non-numeric funct ions may c a l l e a c h o t h e r
freely, a spec ia l in te r face is provided for one numeric funct ion to cal l another i n
such a way as t o avoid number consing.

Arrays are s tored i n such a way that they may be dynamically allocated and
ye t a c c e s s e d q u i c k l y by compiled code. T h i s i s a i d e d by t h e r i c h a d d r e s s
ari thmetic provided by the PDP-10.

The philosophy behind the implementation is that the generali ty of LISP and
t h e speed of optimized numeric code are, n o t incompatible. A l l t ha t is needed is a
well-chosen, uniform representation for data objects suitable for use by hardware
i n s t r u c t i o n s , combined w i t h a wil l ingness to handle important special cases
c l e v e r l y i n the compiler.

REFERENCES

1. Fateman, Richard J . : "Reply t o an Editorial." SIGSAN Bulletin 25 (March 1973).
9-11.

2. Teitelman, Warren: InterLISP Reference Manual. Revised edi t ion. Xerox. Palo
A l t o Research Center (Palo Alto, 1975).

224

23

ON COMPUTING CLOSED FORMS FOR SUMMATIONS

Robert Moenck
Division of Physical Sciences

Scarborough College
University of Toronto

ABS TRACT

The problem of finding closed forms for a summation involving polynomials
and rational functions is considered. A method closely related to Hermite's
method for integration of rational functions is derived. The method expresses
the sum of a rational function as a rational function part and a transcendental
part involving derivatives of the gamma function.

Section 1. Introduction

Mathematicians have long been interested in finding closed form expressions
for formal summations.

or

n i n+l
i 2n-l

1 - = ~ - - - "

i=l 2

The history of this problem is dotted with the names of the giants of
mathematics; names like Newton, Euler, Bernoulli or Boole. Jordan (ref. 1)
gives a comprehensive survey of this field of mathematics. In spite of the many
years of work which has been devoted to the problem, there is no general algo-
rithmic approach to finding such closed forms. Jordan's book is more like a
cookbook of approaches, rather than a rigorous algorithmic treatment, such as we
would like to have for computer applications.

For this reason, since the turn of the century, the field has developed in
other directions. In particular the areas of approximation theory and numerical
analysis have been it's progeny. However, the need for finding closed forms for
sunmations still exists. It is useful for large portions of the study of combi-
natorics. So, it would be nice, if the problem could be solved algorithmically,
with the aid of algebraic manipulation. This paper is intended to lay some
ground work to explore parts of the problem.

One reason that there is hope for an algorithmic solution, is'the remarkable

225

success in so lv ing the in tegra t ion problem. Work by mathemat ic ians l ike Risch
(ref- 2) , Moses (r e f . 3) and many o thers has resu l ted in the deve lopment o f
a l g o r i t h m s f o r f i n d i n g c l o s e d f o r m s f o r a l a rge r ange o f i n t eg ra l s . A s Boole
(r e f . 4) n o t e d i n h i s work on d i f f e rences ove r a century ago, there are s t r o n g
pa ra l l e l s be tween t he two problems. In th i s paper , w e shall explore some of
them and use the methods of the integrat ion problem as a l i g h t t o g u i d e o u r way.

To a la rge ex ten t the p roblem of f ind ing c losed fo rms fo r summations has
b e e n n e g l e c t e d i n t h e work of a lgebra ic manipula t ion . Johnson (re f . 5) con-
s ide red t he ze ro r ecogn i t ion p rob lem fo r combina to r i a l sums and Gosper (r e f . 6)
considered the problem of automatically economizing summations. Recently,
Cheatham (r e f . 7) descr ibed a program which a t t e m p t s t o f i n d a closed form for
summations computed by l o o p s i n a program, and i n r e f e r e n c e 8 Gosper describes
a method based on c o n t i n u e d f r a c t i o n s , f o r f i n d i n g s m a t i o n s .

I n s e c t i o n (2) w e p re sen t some n o t a t i o n and p r o p e r t i e s of d i f f e r e n c e s .
Sec t ion (3) ske tches the summation of polynomials. Section (4) dea l s w i th
f i n d i n g t h e r a t i o n a l p a r t of a summation of a r a t iona l func t ion and s ec t ion (5)
b r i e f ly cons ide r s t he t r anscenden ta l p a r t .

Sec t ion 2; Some Notat ion

I f w e are presented wi th a d e f i n i t e summation and asked t o f i n d i t s c losed
form:

one way w e can approach the problem i s t o f i n d t h e i n d e f i n i t e summation:

x-1
h(x) = 1 f (i) .

i = O

Then one can eva lua te h (x) to ob ta in g (n) .

This b r i e f s k e t c h s i d e s t e p s t h e i s s u e of any s i n g u l a r i t i e s which may o c c u r i n
the func t ion over the range of summation. However, i t does point out the impor-
tance of t h e i n d e f i n i t e s u m a t . i o n , t h e q u a n t i t y w e sha l l be concerned wi th here .

I m p l i c i t i n o u r n o t a t i o n f o r (e q . 1) i s t h a t i t akes on i n t e g r a l v a l u e s
between a and b. Therefore, i f w e t ake the f i r s t d i f f e r e n c e of h (x) :

we o b t a i n f (x) , t h e f u n c t i o n w e are t r y i n g t o sum. Conver se ly , i f w e apply the
i n v e r s e d i f f e r e n c e o p e r a t i o r A - ’ t o f (x) :

226

A-lf (x) = h(x)

we obtain the indefinite summation.

This leads to our first parallel between summation and integration: we can
obtain an expression for the summation by anti-differencing the function; much
in the way one obtains an integral by anti-differentiation. Also, the study of
differences lead’s to the understanding of sums, much in the way differentiation
is the key to integration..

The anti-difference is unique up to the addition of functions whose first
difference is zero. Examples of such functions are:

a) cons tan ts

b) functions with period 1 e;g. sin(?rx).

Since the beginning of the study of differences; it has been convenient to
1 employ an operator notation to express equations. We shall use the notation

employed by Jordan (ref. l), which is fairly standard. The common and most
useful operators are:

a) the Shift Operator E : Ef (x) = f(x+l)

b) the Difference Operator A :Af(x) = Ef(x) - f(x)

c) the inverse difference operator A - l : A-’ f (x) = 1 f (i)
x-1

i=O

We will use the inverse difference operator A-] to represent the quantity
we wish to compute, to avoid any confusion between it andany bounded sums which
will be expressed by the sumnation operator C . Occasionally, we shall extend
the notation by indicating the variable involved in the difference and the length
sf the difference:

i.e.: Bf(x,y) = f(x+h,y) - f(x,y).
h

Normally x will be understood from the context and h=l, and so this extra embel-
lishment will not be necessary.

In modern terms operators a) and b) are derivations on an extension field
F(x,xl, ..., xn) over some ground field F(x). Using these derivations Cohn (ref.
9) constructs a Difference Algebra much like Ritt’s (ref. 10) Differential
Algebra. However, Cohn is more concerned with the larger problem,of systems of
difference equations, rather than the simple linear difference equation (eq. 2) .

Properties of Differences:

The following properties can be simply.derived from the definition of
differences:

PI) Akf(x) = kAf (x) , keF

P 4

A (f (x)+g(x)) = Af (x)+Ag(x)

It is the s l igh t d i screpancies be tween these p roper t ies and the i r ana logous
ones i n d i f f e r e n t i a l a l g e b r a , t h a t p r e v e n t s d i r e c t a p p l i c a t i o n o f i t s r e s u l t s and
m e tho ds .

Sect ion 3. Sums o f Polynomials

The s i m p l e s t form of function w e might want t o s u n i s a polynomial:

In t he ca se of d i f f e r e n t i a l a l g e b r a , t h e i n t e g r a l is e a s i l y o b t a i n e d s i n c e :

(3) D x n = n x n-1

There fo re , t he i n t eg ra l i s cons t ruc t ed by a n t i - d i f f e r e n t i a t i o n . However, d i f -
fe rences of powers do not have such a concise form:

n-1 n- i

i = O
Axn = 1 (:I x .

Thus expressing a func t ion as a sum of powers is n o t a convenient form i n d i f -
f e r e n c e a l g e b r a . I n s t e a d , t h e f a c t o r i a l f u n c t i o n s are used:

(4) Cxln = x(x-l)(x-2) .. . (x-n+l)

The d i f f e rence o f a f a c t o r i a l is:

This has the concise form of (eq. 3) and so i s a b e t t e r r e p r e s e n t a t i o n .
convert a po lynomia l t o t he f ac to r i a l form using Newton's formula, which
sses a f u n c t i o n i n terms of i t ' s h ighe r d i f f e rences :

We can
expre-

228

,, -

where f(x) i s a polynomial of degree n. The h ighe r d i f f e rences can be fourid
us ing a d i f f e r e n c e t a b l e a f t e r e v a l u a t i n g t h e p o l y n o m i a l a t t h e p o i n t s
x=O,l,.. . ,n. Now:

n Cxli
(7) f (x) = 1 i! f i

i=O
and so:

eg: To compute g(x) = A-l(3x3-2x+1) = A-lf(x)

The d i f f e r e n c e t a b l e is:

0 1 1 1 8 1 8

1 2 19 36

2 2 1 55

3 76

To conver t f rom f .ac tor ia1 representa t ion to power r e p r e s e n t a t i o n w e can expand
t h e f a c t o r i a l f u n c t i o n s u s i n g t h e i r d e f i n i t i o n s .

Cxl, = x

$XI2 = - -x + -x* 1 1 1
2 2

3CxI3 = 6~ - 9x2 + 3x3

,CXl4 = - -x - -2 - -3 + 4 3 9 21 9 3
2 4 2 4

To ta l g (x) = 2x - 13% - -x3 + -$$ 3
4 2

229

Sec t ion 4 . Sums of Rat iona l Funct ions

The n e x t l a r g e r class of problems is sums o f r a t i o n a l f u n c t i o n s . I n i n t e -
g r a t i o n , t h e s e are approached using Hermite's method which performs a p a r t i a l
f ract ion decomposi t ion of the funct ion. Moses (r e f . 3) desc r ibes t h i s p rocess .
The pa r t i a l f r ac t ion decompos i t ion b reaks t he r a t iona l func t ion i n to a sum of
r a t i o n a l f u n c t i o n s whose denominators are powers of square f ree factors of the
or iginal denominator . Then us ing i n t eg ra t ion -by-pa r t s t he i n t eg ra l can be ex-
pressed as a r a t i o n a l f u n c t i o n p o r t i o n and a t ranscendefi ta l por t ion which is a
sum of logarithms.

We s h a l l f o l l o w t h i s me thod , w i th s l i gh t mod i f i ca t ions , t o de r ive a ra-
t i o n a l p o r t i o n of t he suma t ion and a t r anscenden ta l po r t ion . The match of the
two methods i s c l o s e enough t h a t w e can descr ibe i t as Hermite Sumat ion .

Remembering from sect ion 3 t h a t powers are no t n i ce fo rms fo r summation,
w e de f ine a f a c t o r i a l o p e r a t o r on a func t ion:

(9) cf (X) 1, = f (x) * f (x-1) *f (x-2). . .f (x-k+l) f o r k>O .
We can ex tend th i s opera tor by no t i c ing :

I f w e d e f i n e [f (x) l = 1 and assert tha t (10) is a n i d e n t i t y t h e n s u b s t i t u t i n g
k=O w e ge t : 0

(1 1) [f (x) l =
1

-R Cf (x+a) 1;

We w i l l c a l l t h e v a l u e of k o r R i n e q u a t i o n s 9 and 11, t h e f a c t o r i a l d e g r e e of
funct ion, because of i t s pa ra l l e l t o t he ' "power" deg ree . We now proceed to
examine t h e d i f f e r e n c e s o f f a c t o r i a l s .

AEf R (x)
- -

C f (x+R+l)l,+l

No t i ce t ha t t he f ac to r i a l deg ree i s decreased (resp . increased) by 1 on d i f f e r -
e n c i n g f a c t o r i a l s (r e s p . r e c i p r o c a l f a c t o r i a l s) .

S h i f t Free Decomposition:

I f w e are given a product of functions w e can decompose i t i n t o a product
of fac tor ia l func t ions . Suppose our p roduct i s of the form:

S = a = b - c

where a,b,c are mutual ly re la t i i te ly pr ime and Ea=b. Then:

ES = (Ea)*(Eb)*(Ec) = b(Eb)*(Ec)

and GCD(S,,ES) = b

so w e can d iv ide ou t b and a from S and form:

S = cbl,-C .
Applying t h i s method r epea ted ly w e can put a p roduc t i n to t he form:

...
where t h e i n d i v i d u a l S are s h i f t - f r e e . Given a r a t i o n a l f u n c t i o n w e can per-
form a s h i f t - f r e e p a r t l a l f r a c t i o n d e c o m p o s i t i o n : i

and a l s o a comple t e sh i f t - f r ee pa r t i a l f r ac t ion decompos i t ion .

Th i s comple t e sh i f t - f r ee pa r t i a l f r ac t ion decompos i t ion is completely analogous
t o t h e s t a r t i n g p o i n t of the integration-by-parts phase of Hermite's method.
It can be computed i n t h e same way the complete square f ree p a r t i a l f r a c t i o n
decompos i t ion fo r i n t eg ra t ion is done (see eg. Horowitz ref . 11 o r Ym
re f . 1 2) . We can a lso deduce (f (x+k) A f (x + l)) = 1 i f f (f (x+k) f (x + l)) = 1.

This w i l l be t r u e i f w e have performed a k-shif t - f ree decomposi t ion of f (x) .
k-1

Shif t Independence:

We can test i f a func t ion is s h i f t f r e e u s i n g t h e GCD construct ion above.
However t h i s d o e s n o t e l i m i n a t e a l l t h e cases. Consider:

Our GCD tes t w i l l say S(x) is 1 - s h i f t - f r e e w h i c h m i g h t l e a d t o e r r o r s i f w e
assume i t is k - s h i f t - f r e e f o r a l l kEZ. We might c a l l s u c h f u n c t i o n s h i f t de-
pendent s ince i t is not 3 -sh i f t - f ree . We can tes t f o r s h i f t i n d e p e n d e n c e u s i n g
the fo l lowing method:

1) Form S (x+k) where k i s a new v a r i a b l e .
S (x+k) = &+(2k+3) x+(k2+3k) .

2) Compute t h e r e s u l t a n t w i t h r e s p e c t t o k:

23 1

R e s (S(x+k), S(x)) = R(k)
Res (x2+(2k+3)x+(k2+3k) , x2+3x) = -k4-9k2

3) Test f o r i n t e g e r r o o t s of R(k); these w i l l d i s c lose any k ' s w i th non- t r iv i a l
GCD'S of t h e form.

GCD (S(x) E S (x)) . k

i .e. : k=0,+3. Choose: k=+3.

4) Apply S t i r l i n g ' s Method t o c o n v e r t t h e r a t i o n a l f u n c t i o n i n t o a f a c t o r i a l
denominator. i . e . mult iply top and bot tom by (x+l)(x+2) to obtain

A(x) = (x+l) (x+2)
s (x) cx+3 14

5) Proceed as before .

Summation by Par t s

From proper ty P3) of d i f f e rences w e can deduce t he ru l e fo r summation-by-
p a r t s :

(17) A (u*Av) = u-v - A CEv Au]
- -

We can apply th i s to a t y p i c a l term i n o u r c o m p l e t e s h i f t - f r e e p a r t i a l f r a c t i o n
decomposition.

F i r s t w e can apply the extended eucl idean a lgori thm to f ind B , C such tha t :

(18) B f i (x+i- j+l) + c A f (x+i - j) = 1.
j -1

This can be used to expand the term f u r t h e r as:

A (x) Ai . C . A f (x+i - j) A . Bf(x+i-j+l)
A-l

i , j . . - , - I Y J J - 1
+ A-1 iyJ

f (x+1) 1 [f i (x+i) I j
J

Cfi(x+i) 1
(19)

D . A f (x+ i - j)

Applying summation by p a r t s t o t h e f i r s t t e r m o f eq. 19,

(20)
- - -D + A-' (AD)

I f . (x + i - l) I j-l Cf(x+i) 1 j-l
1

The second terms of (20) and (19) and any terms of f a c t o r i a l d e g r e e j-1 i n t h e
comple te sh i f t - f ree pa r t i a l f rac t ion decomposi t ion , can be combined t o g e t h e r t o

232

give the next term of the iteration:

The same method can be applied again. Continuing in this way we eventually ob-
tain an expression for the indefinite sum of a rational function as a rational
function plus an indefinite summation of terms with shift-free denominators of
factorial degree 1.

An Exanple of Hermite Summation:

We wish to compute: A-1 - A
B

where :

” A - - (x2+3x+3)
B x4+2x3-3x2-4x+2

First we put B into a shift free form:

EB = x4+6x3+9x2-2

and

GCD(B,EB) = (x2+2x-1>

A - (x2+3x+3) and so - -

Next we perform a complete shift-free decomposition on - *
A
B .

B Cx2+2x-1I2
-

- - A -(3xi-5)
+ -1 - = - ‘ + F .

B [x2+2x-13, I [x2+2x-1] 1 D

Now we want to put - into a form suitable f o r summation by parts. Since C

E-l(x2-2x-1> = ~ ~ - 2 . D

- - C - GA(x2-2) + H (x2-2)
D Cx2+2x-l12 Cx2+2x-1I2

Since (x2-2) is shift free:

(A(x2-2) , (x2-2)) = 1

and therefore we can employ the extended euclidean algorithm to solve the
equation:

-(3~+5) = S(2~+1) + T(x2-2)
= -(x+l) (2x+1) + 2(x2-2)

233

So is of t h e form:

" c - -(x+l) (2x+1) + 2(x2-2)
D Cx2+2x-l12 [x2+2x-112

-(x+l)A(x-2) + 2
Cx2+2x-1I2 Cx2+2x-1I2

Now w e perform summation by p a r t s t o o b t a i n :

and so:

x+l -
[x2+2x-11)=E-

Sect ion 5: The Transcendental Pa r t

= D * l o g r (x+2) = Dm log(x+l) I' (x+l)

Therefore the sum of a nega t ive power of (x+l) is:

A - 1 1 - (-1) m-l -
(m-1) ! $,(x) - (x+l) m'

The func t ions Ijl (x) are a l s o known as the polygamma func t ions . m

We can now expand the remainder o f our ra t iona l func t ion in terms of i ts
roo t s : .

"

1 k a
i - =

B(x) i=l (x-bi) j (i)

where j (i) i s t h e m u l t i p l i c i t y o f t h e r o o t .

Using the +m f u n c t i o n s t h e i n d e f i n i t e summation of remainder of t he r a t ion -

a l func t ion is:

The func t ions + p lay a r o l e similar ' t o l o g a r i t h m s i n t h e i n t e g r a t i o n of

r a t i o n a l f u n c t i o n s . I conjec ture :
m

a) The func t ions Q (x) are t r anscenden ta l w i th r e spec t t o t he g round m
f i e l d F(x).

b) If b . are t h e s h i f t - f r e e r o o t s of a polynomial then JI (x-b.) are
1 j (i) 1

a lgebra i ca l ly i ndependen t .

I f t hese s t a t emen t s are t rue then one could argue, much as Hermi te d id for
i n t e g r a t i o n , t h a t t h e r a t i o n a l and t ranscendenta l par t s o f a summation are
unique.

235

REFERENCES

1. Jordan, C.: Calculus of Finite Differences. Chelsea, N.Y., 1965, 3rd ed.

2. Risch, R.: The Problem of Integration in Finite Terms. Trans. A.M.S.139,
May 1969 , pp. 162-189.

3. Moses, J.: Symbolic Integration: the Stormy Decade. Comm. A.C.M., vol. 14
no. 8, Aug. 1971, pp. 548-560.

4 . Boole, G.: A Treatise on the Calculus of Finite Differences. Cambridge,
1860.

5. Johnson, S.C.: On the Problem of Recognizing Zero. J.A.C.M., vol. 18,
no. 4, Oct. 1971, pp. 559-565.

6. Gosper, R.W.: A Calculus of Series Rearrangements. Proc. S p p . on New
Directions in Algorithms and Complexity, C.M.U. 1976.

7. Cheatham, T.E. and Townley, J.A.: Symbolic Evaluation of Programs: A
Look at Loop Analysis. Proc. 1976 Symp. on Symbolic and Algebraic
Computation, R.D. Jenks Ed., A.C.M. New York, pp. 90-96.

8. Gosper, R. Wm., Jr.: Indefinite Hypergeometric Sums in MACSYMA. Proceed-
ings of the 1977 MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper
no. 2 4 of this compilation.)

9. Cohn, R.M.: Difference Algebra. Interscience, N.Y., 1965.

10. Ritt, J.F.: Differential Algebra. Coll. A.M.S., vol. 33, 1950.

11. Horowitz, E.: Algorithms f o r Partial Fraction Integration. Proc. 2nd
Symp. on Symbolic and Algebraic Manipulation, Max 1971. S.R. Petrick
ed., pp. 441-457.

12. Yun, D.: On Partial Fraction Decomposition Algorithms. Proc. 1977 IFIP
Congress.

I '

Indefinite Hypergeometric Sums in MACSYMA*

R. Wm. Gosper, Jr.
XEROX Palo Alto Research Center

ABSTRACT

We preoont 8 MACSYMA function which, given tho summand

finds g(n), the "indefinite sum", within an additive constant, provided that g(n4
n. We then havo tho identity

.l)/g(n) is a rational function Q If

(B)

Examples:

2 11'4" 2 (mt1)(63m4t112m3+18m2-22m+3)4m
n=O - (:) = m(- 3) ,

(h) ! (81rn2+261rn+300) (3m+Z)! 9
n! (ntl)! (rl+2)! 27" 40m! (rntl)! (m+2)! 27'" - 2

e

The algorithm moks a "teloscoping function" [(I I) satisfying

(func)

whence, from (8) and (C),

(voila)
n = p

From (A) and (C) i t can be shown that f (n) is a rational function if g(n+l)/g(n) is. Our algorithm determines f
as a finite continued fraction whose terms are polynomials in 11. We await either a mathematical proof of its
effectiveness, or alternatively, an example on which it fails, to determine whethor it is I decision procoduro,
or merely a useful but fallible heuristic.

*This work was supported, in part, by the National Science Foundation, and was fostered by
the hospitable and unfettered environment at the Stanford Artificial Intelligenco Laboratory.

24

237

Sums and Summands, Range and Domain

If g(n+l)/g(n) is a rational function of n, then g(d, and therefore a, = Ag(n), is r constant timot a product of
n tonsecutivo values of some rational function. We shall call such functions "hypergoomotric tormt". Wo
believe our algorithm finds all inverse differences which have this form, thus performing indofinito oummation
on generalized hypergeometric series.

Of course, not all finite products of rational functions sum to functions of the same typo, just as not ail rational
functions integrato to rational functions. One might ask, therefore, whether precluding higher functions from
the answer g(n) might thwart our algorithm the way precluding logarithms, oft., would thwart an integration
algorithm. The answer is yes, but not nearly as badly. I t appears that among tho frmilirr highor functions,
only the polygammas* of certain linear arguments have first differencos in the form of hypergoomotric torms.
This paucity of functions applicablo to the expression of indefinite sums is due to fho lack of a discroto
analogue to the chain rule, and has the unfortunate consequeno that 8 givrn sum is loss likoly to havo r
closed form than is an integral of similar complexity. In particular, the only hypergromotric series whoso
indefinite sums are facilitated by polygammas are those with rational summands. Should it bo needed, a fairly
simple partial fractions algorithm can sum rational functions as polygammas, at least when it is clear how to
adequately factor the summand's denominator. (Polygammas in the summands might bo handiod using
summation by parts, but not in the algorithm under discussion.)

It is a little surprising that the rational summands which require polygammas are invariably special casos of
hypergeometric summands which are amenable to our MACSYMA sum function, e.g.

will simplify no further ($* is the trigamma function), yet this sum is the special case x 3 0 of

Here the telescoping function was f (n) = n 2 / x 2 - 1. (We also used the factorial reflection' formula,
x ! (-x) ! = nxls in nx.) In general, the telescoping function f (r d = -I/Can yields the identity

rn

Letting E + 0, we have an arbitrary sum as the limit of a product over the same range (which is clear from
considering the expansion of the product through the O (0 terms.) When an is rational in n, we can always
express this product and the summand as hypergeometric terms prior to taking the limit. Thus, for another
example of the sum of reciprocal squares, use a,, = l/n2 (and, for convenience, replace t by t2):

(The value r(2) = n2/6 is evident i f rn + 03 before C 0 .)

*derivatives of log r(z)

238

Unfortunately, the current algorithm is not a decision procedure for the expressibility of indefinito
hypergeometric sums in closed form. The top level procedure heuristically bounds the complexity of the
telescoping function f, to prevent the main iteration, when given an impossible problem, from plunging down
an endless continued fraction. Another as yet nonrigorous aspect of the main iteration: i t uses a rathor
shortsighted, "greedy" algorithm to determine the successive term polynomials, and wo haw yot to show that
it will never need to backtrack when solving the functional equations which arise from serios. (If necessary,
backtrack could be installod, but it might be very costly in cases which turn out inexprossiblo in cloood form.)

The Algorithm

The only significant problem is to solve the rational functional equation

(func)

which is rational when g(n+l)/g(n) is. Because we have no boundary condition to satisfy, equation (func) is
easier to satisfy than a first order linear recurrence with polynomial coefficients. In fact, if f(n) is a solution,
then so is f(n)+c/a,, c arbitrary. Thus if the summand an is rational, then there is a continuum of rational f
satisfying (func), differing only in the "constant of summation" c that they add to the sum 8.

If f is a rational function, then the quotients from Euclid's algorithm (using polynomial division) form'the terms
of its continued fraction:

Our MACSYMA algorithm successively determines pl, p!, . . . , with the proviso that no p i be constant for i >
1, so as to guarantoo the uniquonoss of the represontatlon.

Since the term ratio an+l/an is I rational function, we can write it as P(n)/Q(n), whoro P and Q aro
polynomials. Then f must satisfy

In. particular, this relation holds for large n, where f (n) 3 p,(n). We thus "greedily" detormino pI as tho
polynomial approximation to f which most nearly satisfies (1 1, that is, the polynomial which minimizes tho
degree of the lefthand side. We then substitute p l (d + l/f2(n) for f (n) , SO that we can recursively detormin.
the rest of f s continued fraction as f2, the solution of the new functional equation

2.3 9

We write this equation in the form

(2ndform) A(n)f2(a)f2z(lwl) + B(n)f2(n) + C(n)f2(n+1) + D(w) = 0 ,
where A, B, C, and D are polynomials. Then we "greedily" seek the polynomial p2 which, in place of fi,,
most nearly satisfies (Zndform). We proceed in this way, replacing

until we either find a pk(n) which exactly satisfies our equation, or we conclude that no colution oxisto.
Fortunately, further substitutions of the form (subst) lead to no equations more compticatad than (2ndform).

Worked Example: we seek

in closed form. Equation (func) becomes

or

In order to determine the first polynomial of f ' s continued fraction, we must first detormine the degree of
that polynomial. We do this by replacing 1 with the "polynomial" estimate p,(n) = an'tO(n'"l), q to be
determined. Suppose p 0 . Then (f 1) becomes

implying a = 0, meaning that q was too large. So q must be 0, and thus p 1 must bo a constant a, making (f 1)

to be solved for f2. Again, if we estimate f 2 by p 2 (d = anq t O W 1) , (f2) becomes

2 40

Now 9 must be positive sinco we have forbidden pi to be constant for i>l. But if p 1 than 2g+l > q+z,.
forcing u to be 0, which is oquivalent to reducing q. So q 4 , and the rbovo bocomes

which identically vanishes if 6 = 2. Thus we have found the solution

1 1
/ (I d - - 2 + 5 I1

t -
r-2n

"

r

whenco, by

(voila)

we get

(This example was suggested by D. Knuth.) Incidentally, Euler, (refs. 1, 1 a), had the special case m = 00 of
(voila) in 1753, but he didn't get much mileage out of it. Chrystal (ref. 2) gives (voila) within 0 change of
variables, but still underestimates its generality. He credits Euler in "Nou. Comm. Petrop., 1760", but I can't
locate this.

In certain cases where the continued fraction fails to terminate quickly, it is possible to deduce the general
formula for the i th term.. With this you can tell if and when the fraction will terminate, and in any case get an
interesting identity. Consider, for example,

which oncompasses the Taylor series of many useful functions, e.g.

(1-X)P

In (1-x)
"

X

arctan x
X

arcsin x
rJ1-r2

First off, 'we not. that equation (voila) has arbitrary upper and lower limits on Ih. rum. Wm oxplojt thi8
degroo of froodom by shifting tho summation index by c-1, so that (2F1) bocomoc

which, if we replace a-c by b, eliminates a parameter from the summand. (Summing for n2c-l means for n -
c-1, c, c+1, ... regardless of whether c is integral or even real.)

Equation (func) now becomes

Experience indicates that, having determined pi in the form (An + B)/C, say, we should cloar out tho
denominator C by writing

before going on to determino lj+l, This will usually lead to simpler coefficionts in tho lrter polynomirlg, Our
solution will then begin

bZ
(b-l)x 1 (I - r) n - bx + 1 +

(~-z)II - (6-112 + 2 + 2(&-2)r
(l-z)n - (b-2)r + 3 + - 3 (b - 3) ~

and, in general, the i th equation

which in turn yields the i+lst equation

for R3. Finally, since a0 = 1 and (if the series converges) an -f 0,

. . . _._ .

242

By the ormo mothod wo crn also ortablish

m + 2 - x +
m + 3 - r + - 3 x

which, for rn = 0, gives a nice continued fraction for 6'.

Messy Details

I have glossed over three problems that arise in determining the successive polynomials, nrmoly, what
degree polynomial to choose, how many coefficients must be solved for at once, and what to do about
multiple solutions.

1) The polynomial degree:

The MACSYMA algorithm basically chooses the largest integer q such that whon an0 is substituted for f i (n) in
the expression

more than one of the four lefthand terms is of maximal degree in 11. When there is such a largest q, the
coefficient of the highest power of 11 will contain at least two different powers of a, so that tho coefficiont
can be eliminated with a nonzero choice of a. But on the first term (i = l), A(n) - 0 and C(n) - D(n), and it
can happen that deg (B(n)+C(n)) < deg (B(n)-C(n)), i.e. B(n) and C(n) have the forms

respectively. Then, sinco dog (fj(rt+l)+jj(n)) - deg (B(n)-C(n)) + 1, thero is no largost q mooting our
condition. In this cas., we estimate f l (r t) - anq + b r ~ q - ~ + O(~tq-~) , and the quantity wo aro trying to rnnihilrto
becomes

Here we can zero the high order coefficient with either of two choices: q = -(d,+d,)/c or q - 1. The
program heuristically chooses the larger of these, provided it is an integer, on tho thoory that thoro lo 8
good chanco of lator detormining that a - 0, should the choico prow wrong. But this rorroning is
questionablo in light of tho functional equation

The two solutions of this oquation are evidently

but only the second solution is a rational function. Thus, any attempt to find the first solution will rasult In
nontermination. Yet the erroneous choice of p , (n) = n105 reduces the lefthand side of (loser) to degree 107,
while the correct choice p,(n) = 0 only reduces it to degree 210. Our meek excuse is that in problems arising
from sums we never encounter such products as (j(n+l))2jOd, which appears in (loser). (Robert Maas helped
construct this oxample).

At the end of the next section, we give an example where the heuristic succeeds in retroactively detormining
that the high coefficient is 0, but very nearly requires backtracking to do it.

2) The need to consider more than one coefficient at a time:

The aforementioned (tricky) case, in which the exponent becomes involved in the coefficients, is the source of
another, less serious annoyance. In this case, and this alone, it is necessary i o determino each coefficient of
p 1 in terms of the next lower one. Consider the sum

which determinos the functional equation

In the notation of the preceding discussion, c = 1, d B = 1, d , - -3, and thus q - 2. Now suppose wo
estimated f(n) as an2 + bn + 00). Then we would have

(T - 6 - 1)n2 .t O(n) = 0 .

Had we merely estimated f (t d by an2, we would have erroneously determined Q on the assumption that b was
0, and then gone on to determine that 6 was, in fact, nonzero. Since a’s value depends on b’s, this incorrect
value of Q would fail to annihilate the term, leaving that job for b. If c is expended on the linear term, i t
happens that the constant term remains unvanquished, and the continued fraction process will plunge down an
almost certainly bottomless hole. This would be a shame, since the equation could have been solved with the
first term:

Sa

This, incidentally, provides

In principle, it is never necessary to solve simultaneous equations, even in this worst case. It is merely
necessary to determine each coefficient in terms of the as yet undetermined succeeding coefficient, and only
in those cases where B(n)+C(n) has lower degree than B (d - C (n) , and only for the first polynomial. In
practice, our algorithm invokes MACSYMA’s LINSOLVE linear system package, mainly for its automatic back
substitution.

244

Incidentally, the only way that a coefficient could depend on tho noxt two coofflclontr would bo if tho
functional oquatlon containod throo distinct invocation8 of f , ray P(n-11, Jh), and f(n+l).

Vory occasionally, rn oquation for (I coefficient can have no solution81 Thir hrpponr whilo summing

(weirdo)

which requiras the solution of

Proceeding as before, we would again find q = 2 and estimating ! by an2 + 611 + O(11, we would doterminm
that a = -2-26. Then estimating f = -2(6+l)n2 + 6n + c + O(n"), we would determino b - (16c+1)/3. But this
le'aves the equation

and there is no way to choose c to annihilate the coefficient of n, since it depends on the next continued
fraction term rather than on c. It is unsafe to choose c arbitrarily, since our nonrational summand precludes
the "constant of summation", so we must postpone the determination until after determining that the second
continued fraction term is (-16n+36c+13)/3, which leaves us the lefthand side

-3 (4c + 1) ((18Oc+45)1z - 3 2 4 ~ ' - 117c + 16) .

Our patience is rewarded, for the determination c = -1/4 terminates the problem, but with the ironic result
that 6 = 4/3 and u = 0, SO that the choice q = 1, which is always available in such cases, was correct after all.
(See the first sentence after equation (tricky).) Incidentally, we have determined

and thus

3) Multiple roots when determining a coefficient:

If f (n) is a rational function with rational coefficients, we can be sure that no irrational coefficient wi l l rr iso in
its continued fraction. I t is therefore reasonable to hope that in solving a functional equation for such a
continued fraction, no nonlinear equation need be solved. This hope is Bubstrntirlly fulfillod, but for a couplm
of glitches. For oxample, in establishing the identity

245

wo would detormino tho toloscoping function to be

10(C2-10)1t - c3 +
C'

(C 2 - l O h + c

whero c is the arbitrary "constant of summation'' which we get when thm summand it rational. But our
algorithm is not smart enough to leave c, (which is also the coefficient of no in p3(n)), undetermined, and the
consequences of this greed can be annoying. To determine the linear coefficient in p3, en is substituted for
f3(n) in the current (i.e. the third) equation, resulting in a polynomial of the form a(lO-a)n' + O(n3), which
determines a = 10. But then, when we go to determine c by estimating f3Ct11 as 1011 + c, wo find we have I)

polynomial of the form (c2-10)n2 + O(n). In other words, the choice a = 10 "fortuitously" annihilated the cubic,
as well as the quartic term. Ordinarily, the only quadratic equations we oncounter aro of the degenorato
form a(k-e) - 0, which occur whon we are determining the high coefficient of each pi after i = 1. If choosing
a (or any lower coefficient) annihilates only one'term of the expression being reduced, then tho next term
cannot be quadratic in the coefficient below a. This is because squares of coefficients of f can only come
from the f(tt)f(n+l) term of the functional equation, but here the first quadratic instances of each coefficient
come two powers of n apart. But when two or more powers of n disappear with one choice of coefficient,
we may be left with a nondegenerate quadratic equation for the next coefficient.

Greedily pursuing our example, then, we find c = m, which makes our continued fraction for f an
indeterminate form.
found by the groedy

Although MACSYMA

Either by performing the algorithm or taking limits, we find that tho continuod frrction
algorithm iE actually one term shorter:

11 1 1
3

10n + Jm +
1

J m n 2 - n

solves quadratic equations as readily as linear ones, the introduction of surds into the
computation can consume valuable time and storage, especially if it happens more than once, or involves large
expressions containing symbolic parameters. If the original sum was rational and involved no surds, yet a
surd arises in the course of the solution, it is probably always safe to arbitrarily replace this surd by 0 o r
anything else convenient, but until this step has been mathematically justified, it should be taken only when
the greedy approach runs out of time or storage.

The quadratic final term of the above continued fraction illustrates another conjecture which, if true, would
simplify the solution algorithm. We note that in converting a rational function to a continued fracfion with
Euclid's algorithm, most remainders are of degree one less than the corresponding divisor, and, consequently,
the next partial quotient is linear. But if some remainder is "fortuitously" two or more powers less than the
divisor, then the next quotient will be quadratic or greater. Recall that on the term preceding the quadratic
(and last) term in our example, we were "fortuitously" able to annihilate three polynomial terms with two
degrees of freedom. We therefore conjecture that the degree of a given polynomial is simply 1 + however
many fortuitous annihilations occurred during the determination of the previous polynomial.

246

Knowing When to Quit

How many terms of a continued fraction should we computo bofore rolinquiohing hop. of its tormination? I
can only offer what ceoms to be a safe and reasonable bound, namely 1 + tho sum of tho magnitudos of tho
integer roots, zi, of the resultant of P(n) and (7(n+r) with respect to n, whoro P(n) and Q(n) aro tho
numerator and donominator of the term ratio an,l/an, and multiple roots aro to be woightad by thoir
multiplicitios m;. This represents.al1 of the possible integer shifts of tho denominator with rospoct to tho
numerator which resht in one or more cancellations.

Possible Extensions

Trigonometric sums might be handled by a process which first converts to complex exponential notation, then
replaces some power of e2iz by the "base" 9 , thus forming a basic, or q analog hypergeometric sum. Then
we would apply the existing MACSYMA function to the corresponding ordinary hypergeometric, and form tho
q analog of the result, if we got one. This is, however, highly speculative, and, in any evont, would bo
unlikely to find such fancy telescoping functions as f(n) = -1-cos 2%, which provides tho identity

X

sin 2%

Just as with definite integration, the problem of definite (typically infinite) summation is complicated by tho
bewildering variety of techniques available. One especially promising technique historically precedes and
generalizes the method described in this paper (ref. 3). To see the relation between the methods, we point
out another way of looking at the telescoping function f (/ r) , that is, as the "splitting function" determining the
proportions into which the nth term of a series be partitioned, prior to combining the loft portion of each
term with the right portion of the preceding term. Writing I,, for f(n), we have

up + up+* + . . . + a 9 = (-fp+l+fp)ap + (-fp+l+l+fp+l)ap+, + . . . + (-fq+l+f)a
9 0

which yields equation (voila) upon the satisfaction of (func). But suppose it is not possiblo to annihilate tho
quantity

Then we will have only succeeded in creating a new series whose terms aro u, time8 tho old ones. But if IC,
is reasonably simple and numerically small, it might be possible to iterate this splitting procose indofinitoly, so
that in the limit, all of the original terms are multiplied by 0. When the various edgo offectr aro takon Into
account, this process yields many interesting identities, such as

Sometimes, the edge effects involve limits which have thus far eluded analysis, whereupon we invoke a
nonrigorous technique which involves interpreting finite products over noninteger ranges. This results in
conjectural identities such as

2F1[-a2 'G1 ; %] = 2.3' COS n(~t I /~) ,

Al l of these conjectural formulas can be proven for countably many values of their parameiers, and they have
withstood extensive numerical testing at other values, but they remain tantalizingly uncertified.

Before the next MACSYMA Users' Conference, we hope to report on a partial implementation of a systom for
definite summation I

Late Developments

Kevin Karplus of Stanford has been developing a roughly parallel set of MACSYMA functions, so as to
effectively double the rate of algorithmic experimentation. Discussions with him led me to discovor that

is an out-and-out counterexample to the greedy algorithm, since the correct telescoping function is

while the polynomisl which most nearly satisfies (func) is

As a result, I patched the algorithm to only determine q of its qt1 undetermined coefficients on non terminal'
terms where 9 > 1, thus treating all such cases in the manner of (weirdo;. This seemed to repair the
problem, at the cost of exhausting list storage capacity on certain cases that had formerly worked.
Fortunately, on 20 April 1977, all of this kludgery was rendered obsolete when I found a decision procedure
for this problem. (A discrete analog to the Risch algorithm for indefinite integration.) The proceglure is
simpler, and makes better use of Jeff Golden's recently installed FUNMAKE and SUBST(LAMBDA(...
capabilities, and, as a result, runs ten to fifty times faster than the continued fraction algorithm. For thoso
most interested, the details will be available in a handout at the conference.

Here follows the transcript of a short demo of both algorithms.

(C1) l oad f i l e (bo the r ,?> ,dsk , rug)S

BOTHER SUM15 DSK RUG b e i n g I oaded
load ing done

248

(C21 bothersum((-l)fn/nf~lnl~lm)l~cfdepth:~:
TIME= 11585 MSEC.

M
"" "_ N
\ (- 1)

/ 2
===e: N
N - 1

> """

(C3) %cf:
TIME- 0 MSEC. 1

"""""""""""""""""""" - 1
1

"""""""""""""""""" - N
2

"""""""""""""""" - N
4

"""""""""""""" - N
6

"""""""""""" - N
9

"""""""""" - N
12

"""""""" - N
16

"""""" - N
1

--MORE--
- - - - - - - - - N

(03 1

2

Old version fails (correctly) to find a closed form, but finds a nice continued fraction for f((n), which it stores
in %CF. Binding %CFDEPTH to an integer overrides the heuristic depth limiter.

(C4) l o a d f i le(nusum,?>,dsk,share)S

NUSUM 19 DSK SHARE ... loaded

(C5 1 n T 3 ~ 3 T n :
TIME= 3 MSEC.
(05 1

3 N
N 3

(C6) nusum (X , n, 0, m) ;
TIME= 1209 MSEC.

3 2 M
3 (4 M - 6 M + 1 2 M - 1 1) 3 3 1 1

(D6) """"""""""""""" + ""

8 8

New version (decision procedurr) does an easy case.

3 2 3 3 2 2
- 3 ((27 B - 216 B + 549 B - 4 4 0) M + (81 B - 486 B t 945 6 - 600) M

3 2 3 2 M
+ (81 B - 216 B t 153 B - 38) M + 27 B + 81 B - 144 B + 52) 3 (M + l) !

(C9) unsum (X , m) :
Ti ME= 3005 flSEC.

3 f l
fl 3 f l !

-"""""""
M + B
/===\

- ! !
! ! (3 1 - 2)
! !

I = A

New version does (I tougher case. UNSUM (backward difference) then check it.

250

1.

1 a.

2.

3.

REFERENCES

Euler, L.: Considerrtio Quarundam Serierurn Quae Singularibus Proprietatibut Sunt Prroditro.
Novi Comentarii academiao sciontarum Petropolitanae 3 (1750/1), 1753, pp. 86-108

This appears in the Collected Works as

Opera Omnia, Serioo I, Volume 14, Teubner, 1925, pp 525-6.

Chrystal, G.: Algebra, an Elementary Tort, Chelsea, 1964, Chaptor XXXI, Set. 12, p. 392.

Gospor, R. Wm., Jr.: A Calculus of Series Rearrangements. Algorithm8 and Complexity, New
Direction8 and Recent Re8ult4 Academic Press, 1976, (Ed. J. Traub), pp. 12 1-1 5 1.

This paper is stored as TELESC.XGP[l ,RWG]aSAIL, converted from TELESC.POX by the POX documont
compiler, which was extended for this occasion by its developer, Robert Maas, of Stanford University.

25 1

25

MODULAR POLYNOMIAL ARITHMETIC IN PARTIAL FRACTION
DECOMPOSITION*

S. K. Abdali
B. F. Caviness
A. Pridor

Rensselaer Polytechnic Institute

ABSTRACT

Algorithms for general partial fraction decomposition are
obtained by using modular polynomial arithmetic. An algorithm
is presented to compute inverses modulo a power of a polynomial
in terms of inverses modulo that polynomial. This algorithm is
used to make an improvement in the Kung-Tong partial fraction
decomposition algorithm.

INTRODUCTION

The partial fraction decomposition (pfd) of rational func-
tions constitutes an important step in some symbolic inteqration
algorithms (Horowitz ref. 1). Such a decomposition is frequently
needed also in electrical network theory and control theory (e.g.,
Kuo ref. 2, Hsu and Meyer ref. 3). Consequently, a number of pfd
algorithms dealing with the general and the important special
cases (only linear or quadratic factors in the denominator of the
rational function being decomposed) have appeared in the liter-
ature (see references in Kung and Tong, ref. 4). These
algorithms fall into two categories: those based on applying the
extended Euclidean algorithm (see Knuth ref. 5) and those based
on solving linear systems of equations. Prior to 1969 , the pfd
algorithm most widely implemented in symbolic computation sys-
tems (e.g., Engelman's MATHLAB ref. 6, Moses' SIN ref. 7) was one
of the former type and dated back to Hermite (ref. 8). Horowitz
(ref. 11, however, discovered a faster algorithm of the latter
type. The latter type algorithms require solving n linear
equations in n unknowns, where n is the degree of the denominator
in the rational fraction to be decomposed. Thus in the general
case, they require O(n3) operations using classical elimination
methods, or O(n2-81) operations using Strassen's method (ref. 9) .
In special cases, the best bound is 0 (n2). But quite recently,

*Research partially supported by National Science Foundation
Grant MCS-7623762.

253

Kung and. Tong (ref. 4) have given an O(n log n) algorithm which
is again based on the extended Euclidean algorithm.

2

This paper uses. the notation of modular polynomial arith-
metic to derive pfd algorithms. This formulation brings out the
similarities between the general pfd algorithms and the well-
known technique of pfd by substitution for non-repeated linear
factors (e.g.,’Kuo ref.2). The Kung-Tong algorithm is then
easily derived as an adaptation of the general algorithm for fast
computation. An algorithm is presented to obtain inverses
modulo powers of a polynomial in terms of inverses modulo that I

polynomial. This is used in an improvement to Kung-Tong algor-
ithm, which improvement although asymptotically minor, is be-
lieved to be of practical value in symbolic computation systems.

PRELIMINARIES

Throughout this paper, polynomials are assumed to be uni-
variate with coefficients in some given field.

Let B be a fixed polynomial. As usual, the relation
congruence modulo B and the binary operation mod - on polynomials
are defined by

X E Y (mod B) iff, for some polynomial Q , X = QB + Y.
X mod B = Y, where X Y (mod B) and deg (Y) < deg (B) .
Let A be a polynomial relatively prime to B. Then it is

well-known (see, e-g., Herstein ref. 10) that there exist unique
polynomials X, Y satisfying

AX + BY = 1 , deg (X) < deg (B) , deg (Y) < deg (A). (1)

Accordingly we have the following:

Definition 2.1 (Inverse and division modulo B. Defined only if
the denominator is relatively prime to B.)

(a) A mod B = X where AX 1 (mod B) and deg (X) < deg (B) 1

(b) - mod B = (A- (- mod B)) mod B A 1
C C

Definition 2.2 (‘-?:-*mcated polynomial quotient)

LA/g = (A - (A mod B)) / B .
We use M(n) , D(n) , F (n) to denote (an upper ,bound on) the number
of operations needed, re;:yectively, to multiply two polynomials

254

of degree'n, divide a polynomial of degree 2n by one of degree n,
obtain polynomials X and Y of (1) when given A and B with max
(deg (A), deg (B.)) = n. We assume that the following convexity
conditions are satisfied.

aM(n) 5 M(an) , a - > 1

CM(ni) 5 M(Cni) , n i integer
CF (ni) - < F (xni) , ni integer.

It is reasonable to require such conditions as they are satisfied
by the bounds M(n) and F (n) f o r all existing algorithms. Similar
conditions are usually assumed, for example, by Aho, Hopcroft,
and Ullman (ref. Il), Kung and Tong (ref. 4) .

PARTIAL FRACTION DECOMPOSITION PROBLEMS AND SIMPLE ALGORITHMS

Following Kung and Tong (ref. 4) , we define three problems
related to partial fraction decomposition.

1) General partial fraction decomposition (P F) Problem.

Let Q1, ...,Q be pairwise relatively prime polynomials of k
degree nl, ..., nk, respectively. Let Rlf...,R be positive
integers and let P be a polynomial such that

k

2) Problem P1.: (Special case of PF with Ri = 1, 1 - < i - < k.)
Given pairwise relatively prime polynomials R1, ... ,Rk,

and the polynomial P such Ehat

deg (P) < deg
i=l

255

3) Problem P2: (Special case of PF with k = 1.)

obtain the polynomials C1,...,CR satisfying
Given polynomials P, Q such that deg (P) < deg (Q 1 , to R

R -
" - 1 3 , deg (C.) < deg (Q), 1 < j < R .
Q R J Q'

(3 1 - -
j=1

It is well known (e.g., Horowitz ref. '1) that the poly-
nomials to be determined in the above three problems all exist
and are unique.

Using the modular polynomial arithmetic, we can now state
simple algorithms for solving problems P1 and P2.

Algorithm 3.1 To solve PI.
for i 4 1 to k do - - -

P ci - - mod R . i

The algorithm is derived by multiplying both sides of (2) by
Ri and reducing each side modulo Ri.

Remark Note the similarity with the algorithm that works by
substitution in the case of non-repeated linear factors (ref. 2).
If Ri = x - a, then according to that algorithm one would obtain
C. by substituting a for x in the fraction after cancelling x - a
from the denominator. That is,
1

Ci - - (T!: evaluated with x =
7

m o d x - a .

x - a

Algorithm 3.1 is thus a straightforward generalization of that
approach replacing substitutions by evaluation modulo a poly-
nomial.

256

Alaorithm 3.2 To solve P2.
begin P' + P;
for j + R downto 1 do

begin
C 4 P' mod Q;

- -

j
P' 4 LPVQJ
end -

end
The PF problem can now be solved by cascading solutions of
-

P1 and P2:
Algorithm 3.3 (Horowitz ref. 1) To solve PF.

begin
1 compute Ri f Qi " , i = 1, ..., k;
2 solve problem P1 for P/ fiRi , obtaining C which

satisfy (2) :

3 solve problems P2 for the fractions Ci/Qi I i=l, ... ,k;

i
i=l 'i

end

The above algorithm lends itself to fast computation, and
will be discussed further in section 5 . We close this section
with another useful algorithm which requires computing inverses

modulo Qi only, not Qi -
Algorithm 3 . 4 To solve PF.

"

Ri

begin
D f P ; E + fi Q:i '

i=l
for i + 1 to k do - - -

begin
n

E 4

F +

for -

E/Q ; i
- mod Q : 1
E i
j +,ti gownto 1 __ do
begln

'ij
D f (D - Pij*E)/Qi
end

XI

+ (D*F) mod Qi;

-

257

COMPUTATION OF INVERSES MODULO A POWER OF A POLYNOMIAL

1 R

where A is relatively prime to B and deg (A) < R deg (B). By
applying, say, the Extended Euclidean Algorithm directly, we will
need O(F(R*deg (B)) operations. We describe below an alternative
method in which use is made of the inverse modulo B only.

In this section, we consider the computation of x mod B ,

Lemma 4.1 Let A, B be relatively prime polynomials and let

xi A
1- i = - mod B for each i > 0. Then

= (X. + Xi(l - AX.)) mod B a) Xi+j
i+ j

3 3

b) X2i = (Xi a (2 - AXi)) mod B .
These relations (with j = 1) are used below to compute -mod B

2i

1 2
A

in a manner reminiscent of the binary algorithm for exponen-
tiation (Knuth ref. 5).

Algorithm 4.1 Computation of - mod B 1 R
A

begin
1

X1 f 2 mod B; D -+ 1 - AX1 ;

while u > 1 do -
begin
u f 4 2 ;
q + v +
C + C :
Z .+ Z (3 - AZ)mOd C;
z f 22;
if q = 1 then

begin
v -f. v - u;
C + CR; Z f (Xl + 2D)mod C;
z + z + 1;
end

__ end;

2
u;

-

- . - .- -. re ku.ri1 z ;
end -

The correctness of the above algorithm follows from the fact
that after execution of each line, it is the case that zu + v =R,

258

0 < v < u, 2 = Xz, C = B , and u varies through consecutive de-
creasing powers of 2 from about R at entry to 1 at exit (where
v = 0).

Theorem 4.1 Algorithm 4.1 computes x mod B in

Z
-

1 R

O(F (deg (B)) + (log R) M (R deg (B))) operations.

FAST ALGORITHMS FOR PARTIAL FRACTION DECOMPOSITION

We now turn to the adaptation of the pfd methods for fast
computations, the resulting algorithm being essentially that of
Kung and Tong (ref. 4) . In addition to the notation in the
statement of the general PF problem, we use two other symbols:

'max
n = n + ... + n

= max (El,...,

' 1 k *

'k) -

Lemma 5.1 Lines 1 and 3 of Algorithm 3 . 3 can be executed in
0 (M (n)) and 0 ((log Rmax) O M (n)) operations respectively.

The analysis of Line 2 of Algorithm 3 . 3 is more involved.
This line requires the execution of Algorithm 3.1, i.e., the
computation of

Writing R ' for fi Rj , we have
j=1

ci - - R' - i E m o d Ri mod Ri .
Ri \ Ri

- mod R =
- mod Ri

R '

i
The computation of all of R mod Ri is not easy to arrange for a

fast algorithm. Instead, let us introduce the new quantity
k

R = x g .
j=1 j

259

k

Now R mod Ri = c
j=1

since each term in the last summation is a multiple of R . Hence
from (2 1 , we .get

i

P mod Ri
'i = (R mod Ri) mod Ri

(This result, derivable so readily in terms of modular arithmetic,
has a more intricate proof in Kung and Tong (ref. 4)) That is,

By using a binary splitting technique, Kung and Tong (ref. 4) show
how to obtain all of P mod Ri and R mod Ri in 0 ((log k) *M(n))
operations. For th.e inverse part we may use Algorithm 4.1. Hence
by Theorem 4.1 and the assumptions on the bound F(n), we obtain

Lemma 5.2 All of the inverses in (5) can be computed in
F (E) + O ((log tmax) * ~ (n) operations.

Now we have

Lemma 5 . 3 Line 2 of Algorithm 3.3 can be executed in
F (n) + O ((log Emax) -M(n)) + O ((log k) *M(n)) operations.

Theorem 5 . 1 The general PF problem can be done in
F(n) + O((1og Rmax)=M(n)) + O((1og k)*M(n)) operations.

The original Kung-Tong algorithm requires F(n) instead of
F(n) as the first term. Recall that n = CniRi, while n = Ini.

260

REFERENCES

1. Horowitz, E.: Algorithms for Symbolic Integration of
Rational Functions, Ph.D. dissertation, Univ. of Wisconsin,
Madison, Wisconsin, 1 9 6 9 . See also Algorithms for Partial
Fraction Decomposition and Rational Function Integration,
in Proceedings of the Second Symposium on Symbolic and
Algebraic Manipulation, S. R. Petrick ed. (March 1 9 7 1) ,
ACM, New York.

2. KUO, F. F.: Network Analysis and Synthesis, 2nd edition,
John Wiley, New York, 1 9 6 6 .

3. HSU, J. c.; Meyer, A. U.: Modern Control Principles and
Applications, McGraw-Hill, New York, 1 9 6 8 .

4. Kung, H. T.; Tong, D. M.: Fast Algorithms for Partial Frac-
tion Decomposition, Tech. Report, Computer Science Depart-
ment, Carnegie-Mellon University, February 1 9 7 6 .

5. Knuth, D. E.: Semi-Numerical Algorithms, Addison-Wesley,
Reading, Mass., 1 9 6 9 .

6. Engelman, C.: MATHLAB: A Program for On-Line Assistance in
Symbolic Computations, Proc. 1 9 6 5 FJCC, Spartan Books,
Washington, D. C.

7. Moses, J.: Symbolic Integration, Ph.D. dissertation, Massa-
chusetts Institute of Technology, Cambridge, Mass., 1 9 6 7 .

8. Hermite, C.: Oeuvres de Charles Hermite, (Picard E.: editor),
Vol. 3, Gauthiers-Villars, Paris, 1912 .

9. Strassen, V.: Gaussian Elimination Is Not Optimal,
Numerische Math., 1 3 , 1 9 6 9 , pp. 354-356.

11. Aho, A. V.; Hopcroft, J. E.; Ullman, J. D.: The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading,
Mass., 1 9 7 4 .

26 1

26

A NEW ALGORITHM FOR THE INTEGRATION OF EXPONENTIAL

AND LOGARITHMIC FUNCTIONS*

Michael Rothstein
Universidad Simon Bolivar

ABSTRACT

A new algorithm for symbolic integration of functions built
up from the rational functions by repeatedly applying either the
exponential or logarithm functions is discussed. This new al-
gorithm does not require polynomial factorization nor partial
fraction decomposition and requires solutions of linear systems
with only a small number of unknowns. It is proven that if this
algorithm is applied to rational functions over the integers, a
computing time bound for the algorithm can be obtained which is
a polynomial in (1) a bound on the integer length of the coeffi-
cients, and (2) the degrees, of the numerator and denominator of
the rational function involved.

INTRODUCTION AND SOME NECESSARY CONCEPTS

In this paper we discuss a new algorithm for symbolic inte-
gration of rational functions of logarithms and exponentials ob-
tained (roughly speaking) by repeatedly applying the logarithm
and exponential functions to rational functions in the integra-
tion variable. No restriction is placed on the constant field,
except that arithmetic in this field be recursive, and that no
functional expression obtainable from our expressions above by
addition, subtraction, multiplication and division be a new
constant.

As many authors have done in this area (see a complete his-
tory of the subject in ref. 1) we shall use the notation and
concepts described by Risch (ref. 2). In particular we shall work
with differential fields of the form

*Work supported in part by National Science Foundation Grant
MCS76-23762 (to Rensselaer Polytechnic Institute) and by
Grants GJ 32181 and MCS76-15035 (to University of Utah).

and each en is a monomial (logarithmic or exponential) over

We shall also say that Fn is a Liouville extension of Fi (i < n)
in this situation.

Our algorithm will require the existence of algorithms to
perform arithmetic in K, and also, algorithms for the usual
arithmetic operation defined on the domains Si = Fi-l[eil and

= {p/ei, P E Si and R E Z } , like addition, subtraction, multi- Ei
plication, and division (for elements of S obtaining a quotient
and a remainder).

R

if

Finding gcd's (greatest common divisors) of elements of S i
can be done by applying Euclid's algorithm. Notice that this gcd
is always monic. For Eir we define the gcd of two elements f and
g by pointing out that we can find P and Q in Si such that gcd
(P,B.) = gcd (Q,O.) = 1 and for some integers j, m, we have that

1 1

We shall also require algorithms for finding X and Y in S i
such that AX + BY = C with deg X < deg B for given A , B , C in Si
with gcd (A , B) = 1. We shall refer to these equations as univari-
ate polynomial equations (U.P.E.'s).

Finally, we will need the abi1,ity to compute the resultant
of given elements A , B of Si[a] (where a is some indeterminate
over S.) with respect to Oi. We shall denote this function by
Res (A , B , Oil.

1

Now some more definitions:

a) Given a non-zero element
unique P, Q in^ S such that P/Q = m

f of Fm (m - < n) there exist
f, gcd (P,Q) = 1 and Q is monic.

We shall call P the numerator (denoted by num f) and Q the denom-
inator (denoted by den f) of f. Let us also define num 0 = 0 and
den 0 = 1.

b) We shall say that f in Fm is a proper element of Fm if
f = 0 or deg (num f) < deg (den f) and also, if em is exponential
over Fm-l, then Om does not divide den f. This implies that all
square free factors q of den f satisfy gcd(q,q') = 1.

264

C) If f is a proper element of Fm, we shall say that f is
normal (in Fm) if den f is square-free (equivalently, if gcd
(den f, (den f)') = 1).

d) Let Dm denote Em if €Im = exp u, u E F otherwise m-1'
Dm - - Sm.

Notice that all these definitions are valid with m = 0 and
F-l = K.

ALGORITHM OUTLINE

We shall now discuss the operations done by our algorithm
when presented with some integrand f (z) E Fn. Let Q = num f,
R = den f and, by a division process, obtain P1, T in Sn such
that

Q = P R + T , d e g T < d e g R , o r T = O . 1
If On is not exponential over F we now have to compute n-1'

jl and .
Otherwise, let R = 8 R R1 in S gcd (R1,On) = 1, and solve
the U.P.E.

j
n 1' n'

T = 8iT1 + R1T2

for T1, T2, with deg T1 < deg R1 (and deg T2 < j) .

We then have to compute

and thus, we have succeeded in decomposing our integral into
integrating an element of Dn and integrating a proper element of
Fn.

To integrate elements of Dn, we employ a method similar to
one described by Risch (ref. 2) with the following changes:

265

a) In the logarithmic case, the algorithm invoked re-
cursively is the algorithm described herein instead of Risch's.
A special purpose algorithm is also discussed in reference 1,
pp. 46-49.

b) In the exponential case, we use a different algorithm
to solve the resulting differential equation for X

X' + u'X = T

with X , u, T in Fn - 1, where exp (u) is a regular monomial over
Fn-l.

This algorithm will be described in section 3.

To integrate proper elements g of Fn we use an algorithm

described by D. Mack (ref. 3) which yields

where h2 is normal in Fn. Our algorithm to find sh2 will be
described in section 4. In section 5 we will present a comput-
ing time analysis for the rational function case.

SOLVING A SPECIAL CASE OF A DIFFERENTIAL EQUATION

In this section we will present a method for solving the
differential equation

X' + VX = T (1)

for X in Fn, assuming that v, T are in Fn, and that exp(Jv) is

a regular monomial over F (sv), where .k, if not in F is

elementary over F . Thus, X, if it exists, is unique.
n n'

n
(The reason for not requiring .fv to be in Fn is that this

algorithm will be invoked recursively and under those circum-
stances, we cannot guarantee that $v be in Fn, even though our

266

other conditions will apply.)

In order to find X, let

V 1 and v = - T = - T1
v2 T2

with vl, TI in Dn, v2, T2 in Sn, where, if e n is exponential over

Fn- 1 (Dn = E n) then en rv2, and BnfT2. We will also require
that gcd (v,,v2) and gcd (T1,T2) = 1 and that v ,T2 be monic. 2

Let us further factor

v1 = v v and T 1 = T T
- A A

in such a way that v, T E Sn are monic, gcd (;,T2) = gcd (v2,?)
= 1, v , ? are in D and every square-free factor of v

(respectively '?) divides T (respectively v2). We can then prove
that gcd (7,;) = gvd (T , T) = 1.

A A

A

n

A
2

Now, let pl,...,pk be a square-free basis for v, T , v2, T 2 .
h A

Assume each p is monic, obtaining i

T
-

T = k

where the bi,ci are integers with bi # 0 if ci = 0.

It can be shown that X can then be represented uniquely
as

X
-

x = k with 2 E Dn n PXi "

i=l I

if we assume
1).

We will
these values

k

now find the x , as follows: If we substitute i
of X, v, T in (l), we obtain

k k

j=1
j#i

- i=l i=l
”

+ v x - T -

fipTi+l

i=l

I f bi # 1 we notice that xi = c - max (b ,l). Otherwise (for i i
bi = 1).we can have p dividing the numerator of this expres-

sion. But this can happen if and only if
0

i
0

gcd [pi 9: (G n pii i=l

a -b

0

i#io

where a = max (b ,I) and a is the smallest non-negative integer i i
such that the expression in parenthesis times belongs to S . n n

But this is true if and only if

k
a -b i i a a

Res (pi I n - xi enp; r 9) = 0.

i=l i=l 0 0 0
n

i#io

Since this is a polynomial equation in xi , we can check whether

our root is an integer (bigger than c - 1) and solve fo r it;
0

i
0

268

otherwise we set x - 1.
0

We then obtain an equation of the form

with A, B, e, in Dn. If On is exponential over F we can do
a similar computation to find an equivalent equation with x, 6 ,
e , 2 in Sn. Thus, assume A, B, e, 2 are in Sn. In order to find
2, we now do the following analysis:

n-1

-

We can assume that gcd (A, E) = 1, since otherwise, let
g = gcd (A, E) . Then gle (otherwise no solution exists) and we - -
obtain the equivalent equation - X ' + - X = - . A - B - C

g g

We have three different cases:

i) deg x = 0 and deg > 0.

In this case, either = 0, (so that fi = 0) or deg E >
deg e , so that no solution exists, or deg E deg and we can
find the leading coefficient of 2, (since deg A X ' < deg B X)
arriving at an equation of the form

" "

with deg e < deg e , so that we can solve it recursively.
ii) deg = deg = 0 .
Since, by assumption, our solution, if it exists, is unique,

we obtain that deg = deg and a set of equations of the form
(1) but with v, T, X in F We then enter our algorithm

recursively, noting (though not trivially) that these equations
satisfy the same conditions we had before, w i t h respect to v.

n-1'

iii) deg f i > 0.

I II

269

In this case, we point out that if we let % = QA + R ,

(deg R < deg z) and substitute, we obtain
= X x' + B X = A (Q ' A + Q (A ' + E) + R ') + BR . - -

Thus if we solve the UPE

YE + Z B = for Y and Z

with deg Z < deg X, we must have that Z = R, and Q must be the
solution of the equation

It is very important to note that (iii) should be applied
afteg computing a bound on deg x and noting that deg Q < deg X -
deg A . If we obtain that deg Q < 0, then there is no possible
solution. Note that after the first time we apply (iii), no com-
putation on the bound of X is required, since this bound is
already known. Finally, the first time we apply (iii), we compute
a bound on deg X using methods described in reference 2.

INTEGRATION OF NORMAL ELEMENTS OF Fn

In this section we will present a new algorithm for finding
the integral of a normal element of Fn. The algorithm is justi-
fied and explained in the following:

Theorem 1.

Let f be normal in Fn, P = num f, Q = den f. Let r(a) =

resultant (P - aQ',Q,en). Then $f is elementary if and only if
all the roots of r(a) are constants, if and only if r(a> = s t(a)
with t(a) E K [a] and s E Sn.

Theorem 2.

Using the same notation as in Theorem 1, if f is elementary,
let clr...,c be the roots of r(a) and vi = gcd (P - ciQ',Q).
Then

m

270

i) If 0 is logarithmic over F or n = 0, then n n-1 f=Pc - . V!

i v2
1

i=l I

Vi
ii) I f en = exp, (w), w E F then f = 2 ci(r - n.w') n-1' 1

i=l i

where n = deg vi . i
Theorem 3 .

Using the same notation as in the two previous theorems,
if f is elementary, then r(a) (and t(a)) define the least degree
extension of the constant field, necessary to express the integral
of f . This theorem answers affirmatively the open problem asked
by Risch on page 171 of reference 2, and generalizes a result of
Trager (ref. 4) . For proofs of these statements, we refer the
reader to reference 1.

COMPUTING TIME ANALYSIS FOR THE RATIONAL FUNCTION CASE

In this section, we will present a computing time analysis
of this algorithm for the rational function case. First if P
is a polynomial with integer coefficients,

P = 2 a.x , we define i
1

i=O

Now, we define F(m,n,d) as the class of functions P/Q, with
P, Q relatively prime univariate polynomials over the integers,
max (lPl,lQl) 1. d , deg P - < m , deg Q - < n .

We shall use the definitions and notation for dominance and
codominance used, for example, by Collins (ref. 5).

Then, we have the following theorem. For f E F(m,n,d), the
time required by the algorithm described herein is given by

(m,n,d) < n L (an) + n L (kn) 8 2 6 3
T~~~~ -

27 1

2 + max (m + 1 - n, O)nL (6) + 1
(if we assume that the norm of any of the partial results except
the resultant, is also bounded by d) where L (d) = log2 (d) + 1.

Proof: We have two cases to consider.

(a) m > n , and -

(b) m < n .
If m < n, we do a quotient-remainder operation, and then we

continue with D. Mack's algorithm and the algorithm described in
section 4. We then have the following computing times.

The quotient-remainder operation requires constant time.
D. Mack's algorithm requires time n L(nd) as proven in reference
3 .

5 2

The algorithm in section 4 requires time dominated by:

i) nL(d) to compute Q'

ii) nL(d) to compute P - aQ' (deg P < n)
3 iii) n L(d) to compute R = resultant (P - aQ' ,Q) .,

(We point out that degaR < n, and its norm is bounded by (2n)ld 2n
2nd2n -

-
- < 2n - (2dn) 2n and thus L (norm R) - < nL (an)) .

iv) n8 + n L (norm R) + n L (norm R) < n L (an) + n L (dn)
to compute the roots of R (as given in private communication from
G.E. Collins assuming number of roots = n).

6 2 3 3 8 2 6 3

v) n(n L(d) + nL (dl) to compute gcd (P - c.Q',Q) for 2 2
1 - < i - < n (assuming there are n distinct roots of &>.

Adding these times, it is clear that the time to compute
the roots of R dominates all other computing times, and we obtain
the desired result that the computing time for the algorithm
in section 4 is dominated by

n L (dn) + n L (dn) . 8 2 6 3

Finally, if m > n, the time to compute the quotient-remainder
is given by (m + 1 - n)nL2 (d) and the time to compute the integral
of the polynomial part (by the classical method) isgiven by
(m + 1 - n)L (a). 2

272

I

If we add all these computing times w2 obtain the result
that we quoted at the beginning.

Note: The bounds on the time to compute the resultant and
the norm of R were obtained from reference 5.

CONCLUSIONS

We have shown that for rational functions integration in
finite terms can be done in time bounded by a polynomial in the
size of the input, if part of that size is the degree.

In the general case, we conjecture that the computing time,
for the case where the number o.f monomials is fixed, yields a
polynomial in the same sense as above. (No better bound can be
obtained, as shown by the example sx e dx.) , This conjecture,
though, implies that the computing time of any algorithm for
symbolic integration is at least exponential in the number of
monomials in the integrand.

n x

273

REFERENCES

1. Rothstein, Michael: Aspects of Symbolic Integration and
Simplification of Exponential and Primitive Functions, Ph.D.
Thesis, University of Wisconsin, Madison, 1976. Available
from Xerox University Microfilms, Ann Arbor, Michigan.

2. Risch, Robert H.: The Problem of Integration in Finite Terms,
Trans. her. Math. SOC., 139, May 1969, pp. 167-189.

3. Mack, Dieter: On Rational Integration, University of Utah,
Computational Physics Group Report UCP-38, September 1975.

4. Trager, Barry M.: Algebraic Factoring and Rational Function
Integration, Proceedings of the 1976 Symposium on Symbolic
and Algebraic Computation, R. D. Jenks, Ed., Assoc. for
Comp. Mach. N. Y., 1976.

5. Collins, George E.: The Calculation of Multivariate Poly-
nomial Resultants, JACM 18, #4, October 1971, pp. 515-532.

27 4

27
SUMMATION OF RATIONAL EXPONENTIAL EXPRESSIONS

IN CLOSED FORM

Jar Moses*
and Jacques Cohenm

ABSTRACT

A program is described which provides, whenever possible, symbolic closed form
solutions to summations of rational exponential expressions, i.e., of the type

x =u

where the F’s are polynomials in x. The program is based on a decision procedure recently
developed by M. Karr. The decision procedure consists of determining if the resulting sum is in
itself a rational exponential, and,if so, generating that expression. The paper first reviews some of
the classical techniques summarized by G. Boole for attempting to find closed forms for the given
type of summations. Karr’s method is then informally presented. His method not only provides a
decision procedure but also appears better suited for computer implementation than the classical
techniques. Several examples of the program’s use are provided.

*. Laboratory for Computer Science, M.I.T., Cambridge, Mass. 02139. This work was supported by
the United States Energy Research and Development Administration under contract E(II-I)-3070
and by NASA under Grant NSG 1323.

m. Physics Dept., Brandeis University, Waltham, Mass. 02154. This work was supported by the
National Science Foundation under Grant Number DCR-74-24569.

275

28

Ustr Aids for MACSYMAO

by
V. Ellen Lewis

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts

1. SUMMARY

T h e aids available to the MACSYMA user are described, from the printed manual, primer,
and system introduction to the various on-line sources of help. This is a tutoria! paper which is, in
fact, a "user aid" itself.

2. PRINTED MATERIAL

When a new user requests information about MACSYMA, he is sent a standard package
consisting of the MACSYMA Reference Manual, the "MACSYMA Primer", and the "Introduction
to ITS for the MACSYMA user." These three documents comprise the printed documentation for
MACSYMA and are intended to provide enough information to a prospective user to permit him
to (1) determine whether or not MACSYMA can help him solve his problem, and (2) get started
using MACSYMA

2.1. The MACSYMA Reference Manual

T h e Reference Manual is, of course, the most complete document dealing with the
MACSYMA System. It describes all the functions, commands, switches and options available in
the system. Most serious MACSYMA users will want to have one for reference. It has indices of
functions and switches, as well as detailed information dealing with programming and the internal
operation of MACSYMA. It is updated approximately every 12 to 18 months. In between

0. This work was supported, in part, by the United States Energy Research and Development
Administration under Contract Number E(ll-1)-3070 and by the National Aeronautics and Space
Administration under Grant NSG 1328.

277

I

revisions, information about new features is available on-line in the file HACSYH;UPDATE Y""'.

2.2. The "Introduction to ITS" and the "MACSYMA Primer"

T h e "Introduction to ITS for the MACSYMA user" attempts to explain to those whose
primary purpose in using the computer is using MACSYMA how to cope with the time-sharing
system (ITS) on which MACSYMA runs. This is at best a stop-gap measure, but an essential one
for the moment, because MACSYMA runs on a "research" system. The assumption is that the
person using the computer wants to have access to any part of the operating system at all times.
For a programmer this is a "feature" (an advantage), but for a user this can be a distinct
disadvantage. The "Introduction to ITS" is intended to offset this disadvantage.

The MACSYMA Primer is a brief description of some of ,the commonly used features of
MACSYMA By use of a number of examples, it demonstrates MACSYMA's syntax and gives a
short "cook book recipe" for how to use MACSYMA.

Using these two documents, a potential user can establish a connection to the computer, and
get started using MACSYMA.

3. T H E ON-LINE AIDS

MACSYMA is a system with a lot of built-in expertise. Once the user has gotten himself
connected to it, it is reasonable to hope that MACSYMA can offer information about itself should
the user desire it and respond to simple user queries.

3.1. The PRIMER

For the novice user, or other users who want some instruction in a particular aspect of
MACSYMA, there is the on-line Primer. This is conceived as an interactive educational tool
which leadsathe user through some sample calculations. It allows the user to type commands, but
intercepts them for checking before they reach MACSYMA's evaluator. If a command is typed
correctly, it is passed on to the evaluator and MACSYMA handles it exactly as if it had been typed
in from top level MACSYMA. If a command is not correct, the Primer tries to identify the source
of the error and give the user an appropriate error message. The command is not passed on to
MACSYMA and the user is asked to T r y again." Thus the user gets "hands on" experience

#. This file may be printed out with the command :PRINT MACSYH;UPDATE)<carriage return> at
DDT level

278

typing actual MACSYMA commands but in a controlled situation where he will be introduced to
the complexities of the system without having to flounder around.

T h e command to start up the Primer Is PRIMER() ;." This will print out a brief introduction
and offer a choice of subjects to learn about, thus:

(C l) PRIMER();

Hello. Please terminate your responses wi th a ;. What would you
l i k e t o go over? (Select the number of t h e s c r i p t you would l i k e t o s e e .)
INTRO i s a general introduction for people who have never used MACSYMA or
t h i s PRIMER before.
1 - INTRO
2 - SIMPLIFICATION
3 - SCRATCHPAD
4 - SYNTAX
5 - ASSIGNMENT
6 - F I L I N G
7 - MATRICES
8 - SHARE
9 - E X I T

These topics are called scripts because their interactive nature makes them closer to dramatic scripts
than to narratives. The user selects a script by typing its number (or its name) followed by a semi-
colon. (INTRO is the introductory script and should be run by new users.) There is a "standard"
introduction consisting of the INTRO script (which inserts the SYNTAX script), the SIMPLIF ICATION
script, and the so-called SCRATCHPAD scripttf'). These scripts lead one to the next, with an optional
ordering offered. Additional scripts are available on MATRICES, F I L I N G (the various kinds of
disk files and how to use them), and ASSIGNMENT (how to define functions and assign variables).
Scripts will eventually be added dealing with EVALUATION, program wrizing, and (in the spirit of
self explanation) User Aids. Some of the information on the SHARE directory may also be printed
out in the Primer, by selecting the SHARE script, which offers a further selection of file names to be
printed. T h e PRIMER command may also be given a script name as an argument, e.g.
PRIMER(MATRICES) ;, and it will then run that script.

T h e user is moved around from script to script in the Primer depending on how he answers
the "yes or no" questions the Primer asks:

o. This is called a "function of no arguments", since MACSYMA
inside parentheses.

w. SCRATCHPAD is meant to imply the ability to "fiddle" with
connection with another manipulation system is intended.

functions take their arguments

MACSYMA expressions. No

Do you need help with MACSYMA syntax?

YES ;

Other script switches are accomplished by the primer printing out the list of scripts again and
allowing the user to select a script or to exit. (Also at any point the user may type control-uparrow,
the MACSYMA "quit" character, and exit back to top level MACSYMA).

The user will be invited to try out the various commands as they are explained, e.g.

Here i s a simple example o f the use o f SUBST. The numerator o f
t h i s e x p r e s s i o n i s equal t o 1 f o r a l l X, but the MACSYMA s i m p l i f i e r s will
n o t s i m p l i f y it d i r e c t l y .

(C2) (S1N(X)"2+COS(X)"2)/(XA2+39);
2 2

S I N (X) + COS (X)
(D2) """"""""-

2
x + 3 9

There are three ways t o use SUBST on t h i s example:
One cou ld subs t i tu te 1 f o r SIN(X)^P+COS(X)"Z
One cou ld subs t i tu te l-SIN(X)^E f o r COS(X)"Z
O r one could subst i tu te l-COS(X)^Z f o r SIN(X)"E

The f i r s t way i s more d i rec t , bu t i n more complex examples where
t h e s i n squared plus cos squared i s deeply entwined with other elements
of the express ion the second o r t h i r d way would be necessary. P i c k t h e
way you l i k e b e s t and simpli fy the expression by using SUBST.

The user may then perform the indicated operation, or if he is not sure how to proceed (or has
tried once or twice and been unsuccessful), he may type NO; and the Primer will show him how to
do it:

(C3) NO;

Q.K. I'll do it for you.
(C3) SUBST(l,SIN(X)^2+COS(X)"2,%);

280

. . ..

1 """_
2

x + 3 9

3.2. The HELP Command

T h e casual MACSYMA user frequently wants to do one task, invert a matrix or solve a
differential equation, for instance. The advanced user sometimes needs to know one thing like
what switches affect a particular command. That is to say, there are specific questions users have,
which fit into two general forms:

1. How do I <do something> ?
2. What are the <arguments, switches> for <command> ?

O f course, the user could ask a knowledgeable user these questions, or look them up in the
Reference Manual, but this is not always convenient. So the HELP() ; command has been
implemented. The HELP() ; command starts up a small "natural language" subsystem which can
understand English in a flexible but limited way. Sentences it cannot understand are returned
with the constructions or words the system does not undertand pointed out, so the user may
rephrase his question. This HELPer is the beginning of the ADVISOR subsystem which will
ultimately take the place of the communication with human advisors for most questions (see ref. 1).

Basically, this subsystem will be able to understand and reply to questions of the two forms
stated above: "How do I ,?" and "What are the - for ,?" The flexibility of the system permlts,
for instance, the two questions:

1. How do you append two lists?
2. How db I make one list out of two lists?

by recognizing that they are both requesting information about the APPEND command. Questions
of the form

"How can I integrate D3?"

can also be handled, since the subsystem has access to the rest of the user's MACSYMA and can
find out what D3 is, even replying "I'm sorry, MACSYMA cannot integrate <expression>." should
that be the case.

28 1

To exit from the HELPer, type BYE.

3.3. Options, Describe, and Example

3.3.1 Opt i ons

Users sometimes need to ask a more general sort of question, like "What can I do with a
matrix?" or "What kinds of operations can I perform on trigonometric functions?" T h e
OPTIONS() ; command was conceived for this purpose.

OPTIONS() ; starts up the "Options Interpreter". Note that OPTIONS may take the name of a
command or a general topic (e.g. MATRICES, SIMPLIFICATION, FACTOR) as an argument.
The effect of OPTIONS() ; is

(C4) OPTIONS() ;

OPTION FASL DSK MACSYII being loaded
load ing done
OPTIONS i n t e r p r e t e r (Type "EXIT;" t o e x i t .)
1 - INTERACTION
2 - DEBUGGING
3 - EVALUATION
4 - LISTS
5 - MATRICES
6 - SIMPLIFICATION
7 - REPRESENTATIONS
8 - PLOTTING
9 - TRANSLATION

.

This list of topics is the top of a branching hierarchical structure like an inverted tree which
organizes the names of MACSYMA commands and switches by topic or function. A portion of
the tree looks like this:

282

I

INTERACTION DEBUGGING EVALUATION LISTS MATRICES S IMPLIF ICATION

A
EXPANSION FACTORING T R I G

/\
MAXPOSEX (SI MAXNEGEX (s)

T h e Options Interpreter uses the same mechanism for moving around in this tree that the Primer
uses for script selection, thus referring back to the printout from OPTIONS() ;, the user types a
number followed by a semi-colon to sef the things under a particular topic (a "node" in the tree).
For example:

(C 4) OPTIONS() ;
OPTIONS i n t e r p r e t e r (T y p e " E X I T ; " t o e x i t .)
1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
6;
1 -
2 -
3 -

INTERACTION
DEBUGGING
EVALUATION
L ISTS
MATRICES
SIMPLIFICATION
REPRESENTATIONS
PLOTTING
TRANSLATION

EXPANSION
FACTORING
TRIG

Continuing further

1;
1 - EXPAND (C)
2 - RATEXPAND (C,S)

A command will have the symbol (C) after it, a switch will have the symbol (S), and a variable
W i l l have (V). Continuing down the tree, if the user selects "I", the EXPAND command, M ACSY M A
prints out:

1;'
1 - MAXPOSEX (S)
2 - MAXNEGEX (S)

showing the switches which affect that command. If the user selects "1" at this point, the MAXPOSEX
switch, MACSYMA prlnts out

no o p t i o n s

indicating that he has reached the bottom of the tree. To move back up, perhaps to check out the
RATEXPAND command, the user types

back;
1 - EXPAND (C)
2 - RATEXPAND (C,S)

and the system moves him back up to the next higher level. To exit from the OPTIONS Interpreter,
type ex 1 t ;.

3.3.2 D e s c r i b e

T h e OPTIONS command allows the user to select a command or a small set of commands.
T h e user can then check the command in the manual or use the DESCRIBE command to f ind out
what it does exactly, and what arguments it takes. DESCRIBE takes a command name or a switch
name as an argument and prints out the section of the manual which explains the command or
switch.* DESCRIBE.works within OPTIONS, taking the number of the command:

1 - FACTOR (C)
2 - GFACTOR (C)
3 - FACTORSUM (C)
4 - GFACTORSUM (C)
5 - SQFR (C)
6 - PARTITION (C)
DESCRIBE(1) ;
FACTOR(exp) f a c t o r s t h e e x p r e s s i o n exp conta in ing any number of

v a r i a b l e s o r f u n c t i o n s , i n t o f a c t o r s i r r e d u c i b l e over
t h e i n t e g e r s .

~~

0. O f course, this is only as good as the latest version of the manual, and might be out of date if
new features have been added.

284

Or DESCRIBE can be used directly from top level MACSYMA:

(C5) DESCRIBE(FACT0R);
FACTOR(exp) factors the expression exp containing any number of

variables or functlons, into factors irreducible over
the integers.

(0 5) . DONE

3.3.3 Exampl e

T h e EXAMPLE command fits very closely with DESCRIBE. It also takes a command as an
argument and gives examples of how that command may be used, and the sort of output it gives.

(C6) EXAMPLE(FACT0R);

EXAMPL 2 DSK DEMO being loaded
loading done

(C7) FACTOR&& FACTOR(2^63-1);

2
7 73 127 337 92737 649657

-
(C8) FACTOR(ZA2*(X+2*Y)-4*X-8*Y);
(D8) (2 Y + X) (Z'- 2) (Z + 2)

Since the EXAMPLE command is actually a demonstration (see DEMO command below), i t prompts the
user with a - at the left margin after each command line is processed, so the user may type a
space to see the next command line, or control-uparrow to "QUIT" out of the EXAMPLE.

m m

9.4. Demonstrations, and the DEMO Directory

Another way a user tan find out'how various MACSYMA functions work and get an idea
of how MACSYMA can be used on real problems is to run some of the demonstrations which are
contained in the DEMO directory.

285

T h e directory may be listed at system top level (DDT level)* and the files loaded into
MACSYMA with the DEMO command, e.g.

(C9) DEMO(NDEMO,FILE,DSK,DEHO);

4. USER SPECIFIC INFORMATlON

All the user aids discussed thus far have been for getting information about the system. I t is
sometimes necessary for a user to get information about his own functions or the current state of
his MACSYMA

4.1. Information about User-Defined Functions and Variables

4.1.1 DISPFUN and GRIND

Suppose the user has defined a function F(X), for instance:

(C l O) F(X) :=XA2+2*X+l;

(D l 0 1 F(X) := X + 2 X + 1
2

T h e user can redisplay this function using the command DISPFUN(F) ;

(C11) DISPFUN(F);
2

(D11) F (X) := X + 2 X + 1

In this way he can check the correctness of the definition, or review it.

If the function the user had defined is a BLOCK statement, e.g.

(C 1 2) MYTAYLOR(EXPR,VAR,POINT,HIPOWER):=BLOCK([RESULT],
RESULT: SUBST(POINT,VAR,EXPR),FOR 1:1 THRU HIPOWER
DO (EXPR: DIFF(EXPR,VAR)/I,RESULT: RESULT+(VAR-POINT)"I*
SUBST(POINT,VAR,EXPR)), RETURN(RESULT))$

e. : L I S T F DEMWcatriage return>

286

just displaying it may not be very helpful, especially if the user is trying to "debug" it. T h e
command GRIND(G); can be used and will display the function G with the various parts of the
BLOCK statement indented properly so their structure can be more easily seen, for example:

(C13) GRIND(HYTAYL0R);
HYTAYLOR(EXPR,VAR,POINT,HIPOWER) :=BLOCK([RESULT],

RESULT:SUBST(POINT,VAR,EXPR),
FOR I THRU HIPOWER DO

(EXPR:DIFF(EXPR,VAR,l)/I,
RESULT:RESULT+(VAR-POINT)AI*SUBST(POINT,VARDEXPR)),

RETURN(RESULT))S
(D l 3 1 DONE

Using GRIND on a function like F (X) above (which fits on one line) produces the one dimensional
representation in which the function was input, although in general it might be equivalent bu t
slightly re-arranged.

(C 1 4) G R I N D (F) ;
F(X):=XA2+2+x+1S
(D l 4 1 DONE

1.1.2 PROPERTIES and ARRAYINFO

T h e command PROPERTIES takes a function or a ,variable as an argument, and prints out the
things MACSYMA knows about it, e.g. that it is a function. For example:

(C15) PROPERTIES(HYTAYL0R);

PROPFN FASL DSK MAXOUT being loaded
loading done
(D l 5 1 [FUNCTION]

(C16) PROPERTIES(GR1ND);
(016) [SYSTEM FUNCTION]

T h e command ARRAYINFO takes the name of an array as an argument, and will print out the
information about the array: whether or not it is declared and its dimensions.

4.2. INFOLISTS

INFOLISTS is a list of the lists of information MACSYMA maintains about the user’s
MACSYMA state. Typing INFOLISTS; will produce the following output:

(C17) INFOLISTS;
(D17) [LABELS, VALUES, FUNCTIONS, ARRAYS, MYOPTIONS, PROPS, ALIASES,

RULES, GRADEFS, DEPENDENCIES, FEATURES]

EV(INFOLISTS) ; will produce a list of the things in each of the lists. The lists maintained are:

LABELS - T h e line labels in the current MACSYMA which have been assigned, that is all C-lines,
D-lines, and E-lines.

VALUES - All the variables the user has assigned a value to explicitly with the : operator, by
variable name.

FUNCTIONS - All the functions the user has defined with the :- operator, except subscripted (array)
functions.

ARRAYS - All arrays and matrices, declared and undeclared, and all array functions.

HYOPTIONS - All the MACSYMA options (switches) the user has changed.

PROPS - Any atoms which have properties such as atvalues, matchdeclares, or properties specified
by the DECLARE function.

ALIASES - T h e user’s own abbreviated names for quantities, e.g. ALIAS(INTEG, INTEGRATE) sets
up INTEG as a short spelling for INTEGRATE.

RULES - Any simplification rules or pattern matching rules the user has defined using the
TELLSIMP, TELLSIMPAFTER, DEFMATCH, or DEFRULE commands.

GRADEFS - Those functions for which the user has defined derivatives.

DEPENDENCIES - The functional dependencies declared by the user with the DEPENDENCIES or
GRADEF command.

FEATURES - Special mathematical or other properties of functions. Three are built into
MACSYMA: INTEGER, EVEN, and ODD, but the user can add others.

288

I

4.3. Tracing and Debugging Aids

The TRACE function accepts the names of functions as arguments, and will print out
information each time the functions being traced are called, e.g.

(C18) TRACE(MYTAYL0R);

MTRACE FASL DSK MACSYM being loaded
loading done
(018) [MY TAY LOR J

Th i s permits the user to make a better guess as to where his function is not behaving as he
expects.

T h e UNTRACE function is the complementary function which removes the trace from
functions (e.g., UNTRACE(MYTAYL0R);). UNTRACE(); will remove tracing from all functions.
TRACE() ; will print out a list of all functions being traced.

(C20) TRACE();
(D20)

(C21) UNTRACEO;
(0 2 1)

[MYTAY LOR]

[MYTAYLOR]

There is a switch which helps the user keep track of what variables he has assigned values
to. This is SETCHECK. SETCHECK may be set (using the : operator) to a list of variables, and
MACSYMA will print out a message any tlme an assignment is made to one of those variables.

I

There are a few other debugging aids, which are explained in the manual in the section on
Debugging Functions.

5. FINALLY, T H E R E ARESTILL PEOPLE!

Finally, should the user find these various aids inadequate, there are still human advisors
around to whom he can put his questions. These human advisors are MACSYMA's best "User
Aid", and the user is encouraged to contact them with his problems. This can be done within
MACSYMA by using the SEND command, e.g.

(C22) SEND("H0W DO I INVERT A MATRIX?");

Notice the quotation marks, they are part of the command. This will send a message to one of the
MACSYMA helpers who is logged in at the time. Alternatively, the user desiring help can exit
from MACSYMA with a control-2 and use the DDT command :SEND to contact a particular
person", or in cases of desperation, the : LUSER command.'>>

6. REFERENCES

1. Cenesereth, M. R.: "An Automated Consultant for MACSYMA". 1977 MACSYMA User's
Conference, NASA CP-2012,1977 (paper no. 30) of this compilation.

0. See the "Introduction to ITS for MACSYMA Users" for details

00. Once again, see the "Introduction to ITS.."

290

29

Abstract

The Difficulties of Using MACSYMA and the Function of User Aids':'

Michael R. Genesereth

Center for Research in Computing Technology
Harvard University

Laboratory for Computer Science
Massachusetts Institute of Technology

T h e difficulties of using a computer system to help solve a problem can be divided into
learning difficulties, resource knowledge difficulties, and communication difficulties. T h e
purpose of this paper is to explore the nature and manifestations of these difficulties in
MACSYMA and to explain the function of user aids in dealing with them. A learning difficulty
arises whenever a system is too large or too complex to understand fully. A resource knowledge
difficulty arises whenever a user is unable to solve his problem due to a deficiency in thls
understanding. A communication difficulty is due to a difference between the primitive objects,
actions, and relations of a user's problem and those provided by the system. The importance of
this distinction lies in the way each difficulty is handled: learning difficulties by primers, lectures,
tutors; resource knowledge difficulties by manuals, information networks, consultants;
communication difficulties by bringing the system closer to the user's needs. In all cases, the
optimal assistance can be provided by an aid that maintains and uses an explicit, internal "model"
of the user's state of knowledge, his goals, and his "plan" for achieving ttiem.

Introduction

Consider a scientist trying to solve a mathematical problem with the aid of an algebraic
manipulation system like MACSYMA. If he were to solve the problem by hand, he would
personally have to grapple with the problem itself and all the subproblems that arise. By using
MACSYMA, he can delegate many subproblems and thereby save time and effort. However, to

a This work was supported, in part, by the United States Energy Research and Development
Administration under Contract Number E(ll-1)-3070 and by the National Aeronautics and Space
Administration under Grant NSG 1323.

do so, he must (1) understand the relevant portions of MACSYMA, (2) be able to remedy any
difficulties that arise from a deficiency in this understanding, and (3) expend the additional
effort necessary to communicate to MACSYMA the essential details of his problem. In general.
when a person employs any tool to help solve a problem, he is trading off the effort required for
these three tasks in return for the tool's powerful or unique abilities at solving his problem.

T h e purpose of this paper is to explore the nature and manifestations of these tasks in the
context of MACSYMA and to explain the function of user aids in facilitating their execution.
People sometimes complain that MACSYMA is difficult to understand or to control, and they
usually cite specific properties of the system as primarily responsible, e.g. too many commands, too
hard to specify subexpressions. In all cases, these complaints are attributable to increases in the
difficulty of one or more of the above tasks. Difficulties encountered in acquiring an initial
understanding of a system will hereafter be called learning difficulties; problem solving
difficulties resulting from a deficiency in this understanding will be called resource knowledve
difficulties; and difficulties in communicating to the system the essential details of a problem and
in retrieving a comprehensible result will be called communication difficulties. T h e importance
of this distinction lies in the way each difficulty can best be handled. All three difficulties can be
lessened by improving MACSYMA itself. However, learning difficulties can also be treated by
tutorial aids, and resource knowledge difficulties by "user-initiative" information sources. I t will
be argued that in all three cases the ultimate aid is one that maintains and uses a "model" of the
user's problem and his "plan" for solving it.

T h e analysis presented here is concerned only with difficulties arising from the use of
MACSYMA; it does not consider those arising from ill formulated or partially formulated
problems. Such problems are not uncommon, e.g. a scientist will occasionally engage in algebraic
manipulation without a precise goal because he wants the insight that comes from writing his
result in different forms. Although the paper does mention in general terms the constraints on
MACSYMA's design, it does not consider specific implementational .or mathematical difficulties.
e.g. address space problems, the representation of derivatives.

A learning difficulty arises when a system is too large or its primitives too complex for a
new user to understand fully. MACSYMA, for example, has over 350 commands and 200
switches, and the behavior of many commands like TRIGREDUCE cannot be simply described.
Learning difficulties are best countered either by simplifying the system or by providing tutorial
aids like primers and lectures.

A resource knowledge difficulty arises when the user finds himself unable to proceed
further in solving his problem due to a deficiency in his knowledge of MACSYMA. He might
not, for example, be able to remember the name of the command for putting a sum of quotienEs
over a common denominator (COMBINE). Or, he might be unaware of a command's
dependence on the setting of some variable, e.g. EXPAND and MAXPOSEX. Or, he might get
an incorrect answer due to a programming mistake but not know where in his derivation he went
wrong. Resource knowledge difficulties are best treated by user-initiative information sources. e.g.
manuals, information networks, and consultants.

I1 111

A communication difficulty results from a difference b’etween the objects, actions, and
relations of the user’s problem and those provided by the system. The difference may be either
simple or complex. A “simple” difference is eliminated by defining the relevant concepts. For
example, MACSYMA can represent a matrix and compute and solve its characteristic polynomial,
but It knows nothing about eigenvalues. The user with a matrix eigenvalue problem may either
cal i the appropriate commands one by one or define a function. A “complex” difference results
when there is no homomorphic mapping between the primitives of the user’s problem and their
representation in MACSYMA. For example, a user may want to write an expression as (V/C)*.
but MACSYMA insists on writing V2/C2. The most straightforward solution to communication
difficulties is for the system designer to bring the system’s primitives closer to those of the user.

It is important to keep in mind a basic distinction between learning and resource
knowledge difficulties on the one hand and communication difficulties on the other. A
communication difficulty results from the difference between the expertise required to solve the
user’s problem and that provided by the system. A learning or resource knowledge difficulty is
due to the user’s misunderstanding of the system, no matter how appropriate the system is to the
problem at hand. A communication difficulty varies inversely with the system’s expertise and
would exist even if the user understood MACSYMA perfectly. Learning and resource knowledge
difficulties vary directly with the complexity of that portion of the system appropriate to the
user’s problem and are otherwise independent of the problem.

T h e advantage of a large algebraic manipulation system like MACSYMA over a smaller,
sparer system like REDUCE is that MACSYMA has more mathematical knowledge built in. As a
consequence, the user is not forced to communicate as much mathematical knowledge to the
system, and it is even possible that the system offers expertise with which the user himself is
unfamiliar. The’disadvantage is that MACSYMA can be more difficult to understand and to
use. In other words, the communication difficulty is.drastically decreased for increased learning
and resource knowledge difficulties.

One advantage of numerical computation over symbolic manipulation is that the former
can sometimes succeed where the latter fails -- many problems are amenable only to numerical
techniques. This is unfortunate because graphs and tables alone do not offer as much structure
as closed form or even series solutions. The inadequacy of numerical solutions can be viewed as a
communication difficulty in which the answers are not as readily interpretable in the user’s terms.
Thus, when both numerical computation and symbolic manipulation are applicable, the latter has
the advantage of more comprehensible results and, due to the decreased communication difficulty,
may actually be more efficient in terms of user time.

In providing the optimal assistance for each of these three types of difficulties, one feature
is common, namely the importance of a model for the user’s goal and his plan for achieving it.
In order to provide information tailored to the user’s need, the tutor or consultant must know
what the user knows and what he is trying to do. If MACSYMA were able to keep track of the
structure of the user’s session (why he is doing what he is doing), it could choose defaults and
disambiguate input in a way that is not now possible. The automatic user aids of the future --
tutors, consultants, and apprentices -- will very likely maintain and use such models.

29 3

This paper deals with the three types of difficulties in turn. The first section describes
MACSYMA's tutorial aids, discusses their strengths, and suggests some improvements. T h e
second section classifies and explains the observed manifestations of resource knowledge
difficulties by way of an explicit model of the "typical" MACSYMA user and describes
MACSYMA's provisions for dealing with these difficulties. After listing the requirements for
communication .with MACSYMA, the third section outlines its current capabilities for easing
communication difficulties and suggests several improvements that would further reduce their
degree. The fourth section states in very general terms why MACSYMA has developed as it has.
The f ina l section describes the state of implementation of the suggestions made in the paper,
indicates some shortcomings of the model used in section 2, and argues that the difficulties of
using a computer system need not be prohibitive if adequate user aids are provided.

1. Learning Difficulties I

A learning difficulty arises when a system is too large or its primitives too complex for a
new user to understand fully. The effect of having too many commands and switches is that the
user cannot remember all the capabilities available and the details of each; there is just too much
information. A mnemonic naming scheme is one way MACSYMA tries to counter this difficulty.
Obviously, a good naming scheme should be unambiguous, systematic, prescriptive, and
designative of the command's exact function.

Mnemonic naming is the best way to help a user recall the name of a command or switch. .
However, the best way to help him remember the range of capabilities available is to provide a
conceptual framework for those capabilities. A primer is a user aid that supplies information
from a fixed syllabus. This facilitates the learning process by structuring the material to be
learned. MACSYMA has a small hard copy primer (ref. 1) that is supplied to all new users.

T h e best way to help a user remember the details of a command's use, e.g. its arguments.
options, side effects, is practice. MACSYMA also has an interactive primer (ref. 2) in which the
user participates by solving test problems under its auspices (via the PRIMER command). T h e
advantage is that the user is forced to try out what he has learned immediately after he learns it.
T h e user's solution is checked for mistakes by specialized analysis functions supplied by the
primer's author.

In the future, this analysis and maybe even the invention of examples may be automated.
T h e work reported in (refs. 3, 4, 5, 6) suggests a possible implementation. The MACSYMA tutor
would maintain a model of the user's knowledge of MACSYMA based on the material already
presented to him and a model of the task he was given; and it would obtain through analysis of
his actions and statements a model of his plan for solving the problem. It would examine these
models in an attempt to recognize any tutorial "issues" (ref. 4) in its syllabus and, finding one,
would generate the appropriate correction. The construction of such a tutor, however, has not yet
been seriously considered.

One other tutorial approach is the traditional lecture and problem set discipline. T h e
M A C S Y M A staff yearly offers a six lecture mini-course at M.I.T., and there are plans to
videotape these lectures for general circulation.

T h e disadvantage of a tutorial aid is that the information provided is not tailored to the
user’s current problem. While a full presentation may be best in the long run, some users may not
have the time or patience to consult such an aid before tackling their problem.

2. Resource Knowledge Problems

T h e MACSYMA user typically has a mathematical problem he is trying to solve and
approaches M A C S Y M A for its powerful abilities at algebraic manipulation. T h e domain in
which the problem is expressed (here mathematics) is called the task environment, and the user
typically knows a good deal about it. This knowledge is represented in figure 1 as the box labeled
T. He also has a model of MACSYMA’s abilities (M) and maintains a dynamic model for the
state of his current MACSYMA (m). In solving his problem, the person uses this knowledge to
map his problem from the task environment to MACSYMA, solve the resulting MACSYMA
problem, and interpret the result. For example, he represents his equations as a matrix, inverts it,
and reads off the solutions. In executing this procedure, he implicitly generates and follows a
plan P, Le. a goal-subgoal tree that he believes will solve his problem. This view of the user’s use
of MACSYMA leads to the configuration in figure 1.

n I
I 1 T

m

I P 1
Fig. 1 - A MACSYMA user’s data structures

A resource knowledge difficulty arises when a user is unable to proceed further in solving
his problem due to a deficiency in his model of MACSYMA (M). When this happens, the user
must either strike out at random or consult one of the information sources available to him.
Difficulties due to errors in the user’s model of his task environment (T) are not treated here,
though they often arise. One might, for example, balk at seeing an imaginary solution when
trying to find the intersection of two circles, until one realizes that the circles do not intersect.
Difficulties due to deficiencies in the user’s model of his current MACSYM A (m) stem from
deficiencies in M or T and are dealt with in part by improving communication of MACSYMA’s
state to the user as described in section 3.

In analyzing resource knowledge difficulties, several questions naturally arise. Is there any
way to bound and classify the sorts of difficulties that can befall the user? Of what use are user
aids in dealing with these difficulties? This section presents some data on the information needs
of users experiencing resource knowledge difficulties and explains this data by way of a model of
the "typical" MACSYMA user.

2.1 Observed Information Needs of MACSYMA Users

One of MACSYMA's strongest user aids is its staff of human consultants, available on-line
to help users with resource knowledge difficulties. During the last three years, the author has
served as a MACSYMA consultant and recorded many of these consultation sessions. During the
same three years, Profs. Corry, Martin, and Stolovitz have offered a course on "knowledge-based
systems" at M.I.T. in which one of the requirements is the solution of a MACSYMA problem and
an analysis of the resulting protocol. The analyses were supposed to indicate which information
sources were consulted and why. The author also had the opportunity to read many of these

' analyses.

An examination of the data obtained from such consultations and protocol analyses reveals
that in using MACSYMA, people perceive the need for five general classes of information.

(1) T h e user needs to know the name of a command or technique to do some task. I f he were to
phrase his need as a question, he would ask "How do I do ... ?" This is called a H O W D O
need.

(2) He needs to know a command's prerequisites, arguments, postrequisites, etc. He would ask
"What are the ... of ... ?". A WHAT need.

(3) He needs to check his beliefs about MACSYMA. He would ask "Is it the case that ... ?". An IS
need.

(4) He needs a procedural explanation of how a command works or a result was obtained. H e
would ask "How did MACSYMA do ... ?". A HOW need.

(5) MACSYMA has returned an unexpected result, and he can find nothing wrong with his
derivation. He needs sufficient information to pinpoint and correct the misconception
underlying his erroneous expectation. He would ask "Why is it that ... ?" A WHY need.

Of course, the syntax the person uses need not correspond to these five categories, only the
underlying question. For example, "Can you tell me how to invert a matrix?" means "How do I
invert a matrix?" and a complaint of "Dl3 is positive!" means "Why is Dl3 positive?".

296

2.2 A Model for the Typical" MACSYMA User

T h e analysis presented here assumes that in solving his problem the user acts in accordance
with a standard, high level planning algorithm. This algorithm is best represented as a "state
and transition augmented network" (called SATAN) in which the states represent problem
solving commitments and the transitions are augmented by predicates and problem solving actions
(accesses and updates to M, m, and P). For the present discussion, however, the full network
described in (ref. 6) may be simplified to the flowchart in figure 2.

n

+
A I F i n d method to achieve goal I

B S a t i s f y P r e r e q u i s i t e s 1

ct S e t up Arguments

D Run method and update model
I

I Check R e s u l t I

c d .b
Fig. 2 - A flowchart for the "typical" user's planning strategy

T h e initial goal is the solution of the MACSYMA version of the user's problem. . In
processing a goal, the problem solver either selects a "canned" method (a "template") or develops
one especially from the facts about the objects and relations involved. The method chosen may
be a single command or a high level program with commands and other goals as steps (a
"procedural net"). In processing these subgoals, the problem solver generates yet other procedural
nets until a level is reached containing only MACSYMA commands. Thus, the normal operation
of the problem solver implicitly generates a hierarchical goal-subgoal tree, the root of which is the
user's ultimate goal and the fringe of which is his MACSYMA solution. At any given level, the
problem solver may insert additional goals to achieve prerequisites or check results. It may also
transform the plan, omitting or rearranging steps, in order to optimize it. This step is not shown
in figure 2. This means that the goal "tree" may in fact become a directed acyclic graph. It is
important to remember that the plan need not be explicit, i.e. the user need not be conscious of
his plan; the essential point is that the user acts as if he were following a plan.

297

During the planning process, the user forms expectations about the results of his plan.
When he checks these results, however, he may discover a discrepancy between these expectations
and the facts (a bug manifestation). This discrepancy may be due either to a simple planning or
execution mistake, e.g. a sign error, or to a more significant deficiency in M, m, or T (called a
misconception). However, the point in his plan at which the misconception had its effect (the
locus) may not be immediately apparent. If so, the user must pinpoint the locus in order to
uncover the misconception. In debugging his plan, the user is assumed to operate in accordance
with a standard, high level debugging algorithm. Like the planning algorithm, this algorithm is
also best described as an augmented network. However, for the present purposes, it can be
simplified to the flow chart In figure 3.

Q
F I Correct Misconception I

Repair Plan

Fig. 3 - A flowchart for the "typical" user's debugging strategy

It is when the user finds himself unable to perform any of the steps in the planning or
debugging procedures due to a lack of knowledge about MACSYMA (deficient M) that a
resource knowledge difficulty becomes manifest.

(1) A HOWDO need arlses in box A of the planning algorithm.

(2) WHAT needs arise in boxes B, C, D.

(3) An IS need can arise in any box, but most often in debugging.

(4) T h e user may be unable to identify the locus of a misconception in box E of the debugging
algorithm and therefore experiences a HOW need.

(5) He may be unable to find anything wrong with his plan, Le. he needs help in either box E or
F. This is a WHY need.

According to this mechanistic model of MACSYMA problem solving, a resource knowledge

298

difficulty is viewed as the user's inability to make a transition from some problem solving state,
and the kind of difficulty that arises identifies the offending state. The importance of having
such a m d e l is that it explains how resource knowledge difficulties arise and sets a neatly
specifiable bound on the types of difficulties and thereby on the types of assistance that user aids
must provide.

2.3 T h e Function of User Aids

, In order to deal with the difficulties listed in section 2.1, system designers often provide a n
array of user aids.

T h e most common aid is the system's reference manual. MACSYMA's manual is avaiiabte
both in hard copy and on line (via the DESCRIBE command). The function of a manual is to
provide quick, reference to the facts about a command or variable, given its name. Thus, a
manual effectively satlsf ies WHAT needs and many IS needs.

Also common is the system's trace capability. MACSYMA allows a user to trace all function
entries and exits (the TRACE command) as well as the settings of variables (the SETCHECK
variable). T h e purpose of tracing is to help the user discover the locus of the misconception
underlying his bug manifestation, and therefore it helps meet HOW needs.

A less common user aid is the "inverted manual", or information network. MACSYMA's
version of this is available via the OPTIONS command. An information network is essentially a
thesaurus of commands indexed by category and is primarily intended to help the user find the
commands applicable to a particular task. Its primary effect is to answer HOWDO questions.

WHAT, HOWDO, and IS problems can be dealt with directly by an information source
with no sensitivity to the user's purposes or state of knowledge. A WHY or HOW problem,
however, often calls for different answers to different people in different situations. Such a
problem arises when a misconception gives rise to a bug manifestation, and its treatment calls for
providing the user with enough information to correct the misconception. A source able to
provide just this information and no more must have a model of the user's state of knowledge
(MI, his model of the current MACSYMA (m), his goal (T), and his plan for achieving it (P), and
it therefore must be considerably more sophisticated than the other, user-independent aids. A
consultant is an information source that seeks to improve the user's model of the system in "user-
initiative" mode. Consultation is a method widely used in computer centers for coping with WHY
and HOW questions, and MACSYMA's consulting staff has proved to be its most effective user
aid. A consultant can deal with all five kinds of problems and provide information tailored to
the user's need and level of understanding. Armed with the consultant's advice, the user can
often surmount his difficulty and continue solving his problem.

Unfortunately, human consultants are a scarce resource and quite' expensive. And, as
MACSYMA is exported and its user community grows, even more consultants might have to be

299

provided. For this reason, work has begun on the construction of an automated consultant. called
the Advisor. This program should be able to converse with the user in English about a difficulty
he has encountered and provide advice tailored to his need. The MACSYMA Advisor is a
program distinct from MACSYMA with its own separate data base and expertise. However, for
convenience the program can be called directly from MACSYMA (via the HELP command) and
can access the user's data structures. As currently implemented, the Advisor deals only with the
"straight line" or nested use of MACSYMA commands and not loops or user-defined functions.
For a concrete example of the Advisor's performance, one should see the abstract printed in these
proceedings. As with the proposed MACSYMA tutor, the MACSYMA advisor relies heavily on
its partial models of the user's state of knowledge, his goal, and his plan for achieving it.

3. Communication Difficulties

A communication difficulty is the result of the difference between the primitive objects,
.actions, and relations in the u.ser's problem and those provided by the system. Thus, the degree
of such a difficulty is a function of both the user's problem and the system's expertise. Although
a resource knowledge difficulty can be thought of as a communication difficulty, the concern here
is with those difficulties that remain even when the user's model of MACSYMA is complete.

T h e difference may be either simple or complex. A simple difference is eliminated by
defining the relevant concepts. For example, MACSYMA can represent a matrix and compute
and solve its characteristic polynomial, but it knows nothing about eigenvalues. However, the
user with a matrix eigenvalue problem may educate, MACSYMA simply by defining a function
that calls the appropriate commands. The disadvantage of a "conservative" system (ref. 7) is that
the user must convey large amounts of knowledge in this form. A complex difference results
when there is no homomorphic mapping between the primitives of the user's problem and their
representation in MACSYMA. For example, a user may want to write an expression as (V/C)2,
but MACSYMA insists on writing V2/C2. Or, a user may define his operators by the identities
they satisfy, but MACSYMA insists on function definitions and unidirectional replacement rules.
T h e disadvantage of a "radical" system (ref. 7) is that its "model" of algebraic manipulation is in
some domains too narrow and rigid to accommodate the full range of models possessed by users.
Some recent work on reformulating problem descriptions expressed in the user's language in
terms of a system's model of the domain is reported in (ref. 8). However, no such capability is yet
available in MACSYMA, and so the user must translate his problems into MACSYMA's terms.
Fortunately, MACSYMA is, within limits, a diverse system offering both radical representations
where applicable and a flexible general representation otherwise.

T h e communication task consists of breaching the distance between the user's problem and
the appropriate system model . The necessary information that must be conveyed to the system
includes:

(I) input expressions, constraints, and domain-dependent expertise, e.g. inequalities, order
truncation information, physical arguments

(2) operations to be performed, e.g. solving an equation, showing two expressions equal

In evaluating the degree of the input communication difficulty, the two most important issues a re
the amount of material that must be presented and the degree of flexibility in order and format
of its presentation. The information that must be retrieved from MACSYMA includes:

(3) form of the solution, e.g. "expanded in Z"

(4) information about MACSYMA's state, e.g. values of switches

Furthermore, the user might want an explanation of how the result was obtained. If the system's
model is similar to the user's, the explanation should be quite simple, e.g. integration by parts; if
the technique used is very different, the explanation might be more complicated, e.g. explaining
the whole Risch algorithm. Recent work reported in (refs. 6, 9, 10) indicates how a system could
be made to explain its behavior.

3.1 Present Capabilities in MACSYMA for Facilitating Communication

Occasionally, a user may want to update or verify his model of the current MACSYMA
(m). For this purpose, MACSYMA has a full set of information commands and variables. These
differ from the commands mentioned in section 2 in that they provide information about the
state of the user's particular MACSYMA and not about MACSYMA in general. These sources
fall into two categories: finding information about an object given its name, e.g. DISPFUN.
DISPRULE, and PRINTPROPS, and finding the names of all objects having a given feature,
e.g. VALUES, FUNCTIONS, GRADEFS, etc. The sources available are listed in (ref. 2) and
described in detail in (ref. 11).

Very often MACSYMA produces large, unwieldy results affording little insight. In a
recent paper (ref. 12). David Stoutemyer discusses a package written in MACSYMA to extract the
"qualitative" features of an expression, e.g. its sign behavior, convexity or concavity, zeros,
periodicity, etc. For users as interested in the qualitative behavior of an expression as its symbolic
details, this package should be of great value. It attacks the communication problem through
item (3) of the above list.

T h e idea behind a specialized "application package" is to convert MACSYMA into an
expert in a given domain and thereby lessen communication difficulties. A good example is
MACSYMA's explicit tensor manipulation package. Another example is the forthcoming
TRANSLATE helper that will lead the user by the hand through the translation and compilation
process. T h e tensor package brings with it much knowledge that the user would otherwise have
to communicate himself. The TRANSLATE helper guides the user's activities according to a
model of the translation process and thereby saves problem solving effort on the part of the user.
In this manner, these packages convert MACSYMA in limited domains from its normal
"operator-based" mode into a "model-based" system.

30 1

3.2 Suggested Improvements to MACSYMA

When a person 'chooses to employ any tool to help him solve a problem, even if he has a
complete model of how it works, he must expend the effort necessary to specialize the too l (e.g.
define functions in MACSYMA, build jigs for a woodworking machine), and transform his
problem into an amenable form, (e.g. represent Iris linear equations as a matrix). Obviously, some
tools are better suited to a given problem than others. Among computer systems, two extremes
stand out, namely the expert problem solver and the programming language.

An expert is an agent with language, knowledge, and abilities tailored to a particular
domain and able to solve any reasonable, appropriate problem without outside guidance, e.g. a n
electronic circuit analysis program like SCEPTRE. Assuming the expert is flexible about input
and does not employ too alien a model, the user need only describe his problem, then sit back and
wait for the answer. Communication difficulties, among others, are minimal. In fact, item (4)
above is completely unnecessary.

T h e approach of programming language designers is to provide some computational
primitives useful to the user in writing code to solve his problem. Usually, the user must
contribute his own problem solving skills in writing the code. The meaning of a primitive is
usually independent of the use to which it is put, e.g. COEFF works the same whether the
problem is solving a quadratic or computing syzygies. The lower the "level" of the primitives,
the greater the simple differences between the user's world and the system's but the fewer the
complex differences.

MACSYMA is primarily a programming language, albeit a very high level one, with only a
few expert question-asking submodules, e.g. the tensor package. One could imagine, though, a
system somewhere between these two extremes. It would keep track of the user's goals and actions
and terminology and would use this information to facilitate input and try to solve his problem
using a mechanical problem solver able to take advice from the user at crucial points. Th i s
possibility is discussed further below.

Several of the ideas presented in this section are concerned with the conception of
mathematical knowledge as a body of proEramminp; rules, implemented in MACSYMA as
variable values, function definitions, TELLSIMP rules, etc., rather than as a set of mathematical
definitions and constraints. A rule in MACSYMA consists of (I) an identity and (2) a n
application procedure. An identity is always interpreted as a unidirectional replacement rule, i.e.
whenever an expression matches the left hand side of an identity, it is replaced by the right hand
side and never the other way around. The match procedure is for the 'most part "local".
Although global conditions can be tested in the predicates constraining the variables of a
TELLSIMP rule, the properties of the expression enclosing the one being matched cannot be
easily checked. And, most significantly, there is no sensitivity to the user's goal or plan, no overall
direction to decide when a replacement rule should be made and when bypassed in order, for
example, to achieve a cancellation or prevent an infinite loop.

302

There are various types of application procedures. Some rules are applied at only a single
level, e.g. XTHRU, MULTTHRU. Others have automatic recursion built in, e.g.
TRIGEXPAND, LOGCONTRACT, TELLSIMP rules. The application is in ail cases
deterministic, despite the possibility of a non-unique match between the pattern and the
expression, e.g. matching X+Y to A+B+3.

When a user complains that MACSYMA is too hard to control , he is usually referring to
its lack of selectivity in the automatic, recursive application of evaluation or simplification rules.
MACSYMA provides automatic recursive application to save the user the drudgery of applying a
large body of system-defined and user-defined rules by hand. However, the user may
occasionally want a rule to be applied nonuniformly, e.g. when evaluating only certain derivatives
in an expression after plugging in values for some variables. Or, he may want a rule applied in
reverse. Due to MACSYMA's unidirectionality, this requires that a second rule be defined, which
can result in an infinite loop. In using automatic, recursive rule application, the user is
sacrificing the effort necessary to control MACSYMA to eliminate the drudgery of applying the
rules himself.

In order to avoid the complications that can arise from the user's ignorance of the rules
used by the general simplifier and commands like INTEGRATE, these rules should be made
explicit and controllable. This suggestion has already been realized in the realm of trigonometric
simplification, where all rules are named and can be activated or deactivated by the setting of a
switch. It would be convenient if the "," syntax at top level MACSYMA could be extended to
activate rules for one line's duration just as it is now used to define substitution rules. With this
syntax one would be able to say, for example, D4,X=2,Z2=4,SINRULEI,EXPONENTJALIZE.
This suggestion is in keeping with the view of the "," syntax as an "environment setup" command.

More generally what is needed is a better structuring of simplification rules. It is doubtful
that a user would define rules for the internal use of heuristic commands since their operation
usually is too complex to describe. Therefore, complex commands like INTEGRATE should
deactivate all potentially conflicting user rules until their work is done. One way of implementing
this that would offer other desirable features is in the form of "environments": sets of rules,
variable bindings, function definitions, declarations, and assumptions that can be "shallow
bound". A primitive form of environment structuring is already available in MACSYMA
through the context mechanism. As with contexts, environments should be hierarchically
structured. It would then be possible for the environments for certain domains, l ike gravitation
theory and continuum mechanics, to share the knowledge of common subdomains like tensor
manipulations, while remaining distinct from conflicting domains like Newtonian physics.

Another improvement would be the ability to add properties to expressions as well as
variables. It is currently possible to declare partial information about variables, e.g.
DECLARE(N,INTEGER); however one cannot declare similar information about expressions
even though it might be useful for later manipulations. For example, in integrating a n
expression, the user might make an assumption about the sign of a variable that could be used by
the LIMIT command at a later time. The new MACSYMA internal representation together with

MACSYMA's high level data base system (ref. IS) should be able to represent such information
quite easily. Furthermore, it should allow the user to tell MACSYMA the semantic significance of
expressions, e.g. that GOVIM is a convection term, and to define semantic rules to prevent
combining semantically incompatible terms, e.g. adding apples and oranges. This ability. is
available now only in the restrictive form of the "invisible boxes" generated by the TBOX
command.

Perhaps the most ambitious suggestion is to transform MACSYMA from the
programming language that it is now into a more intelligent, problem solving' system, a sort of
"mathematician's apprentice". The essential idea behind this proposal is for the system to
maintain and use information about the user's goal and his plan for achieving it. MACSYMA's
syntax, while remaining the same, would no longer denote fixed, pre-defined operations but
would serve rather only as a convenient language for communicating the mathematical operations
the user wants performed. With this view, a command or syntax could mean different things in
different situations. For example, COEFF might mean RATCOEF in solving a quadratic but
have its current definition in finding polynomial solutions to a polynomial equation; or F in
.DIFF(F,X) might mean the variable F if F has a value or the function F if it has a function
definition. T h e input would be interpreted on the basis of not only the command line but also
the user's plan. Similarly, the application of a rule would depend on not only the rule's pattern
but also some notion of its use in achieving the user's goal. Where the system is unable to decide
which of several interpretations the user prefers, it could inform him of the options rather than
choosing a default as it does now. The essential idea again is to observe and use the structure of
a user's session with MACSYMA to help ease his communication requirements. T h e
implementation of such an apprentice could rely at the start on the programming apprentice
technology described in (ref. 14).

Even if an apprentice were available, the user would still have to direct most manipulations
of expressions. One frequently occurring type of manipulation is the application of several rules
to some subpart of an expression. The SUBSTPART command was implemented for rhis
purpose. However, the use of SUBSTPART requires a careful count of parts to select the desired
subpart; if afterward the user wishes to apply another transformation, he must supply the part
specification again; and of course all the intermediate expressions are saved. A better alternative
is the use of a two-dimensional editor, a mechanism whereby the user is given control of a
moveable "window" around an expression which he can zoom in on the desired subexpression
using simple "up" and "down" commands, apply as many rules as he likes, then zoom out again to
find the overall expression suitably modified. Such an editor would be much less tedious than
the current SUBSTPART mechanism and would avoid the accumulation of unwanted
intermediate results. A primitive 2D editor was programmed for MACSYMA by Richard Bryan
but never released due to the inefficiency of the 2D display routines; with the current
implementation, however, an efficient editor could be implemented.

In the long run the best solution to the subpart specification problem and the expression
input problem is the graphics tablet. Technology has developed to the point where the
recognition of hand-written expressions is feasible (refs. 15, 16). The remaining problem i s

304

I

inefficiency; however, with the advent of non-timeshared computers such as the LISP machine
(ref. 17), the necessary processing need not be prohibitive. A less extreme alternative is the use of
a light pen for 2D editing with keyboard input. A user could type in his expressions on the
keyboard but move his window and cancel terms using a light pen. The disadvantage of either
of these proposals is the limited availability of tablets and devoted processors at present. T h e
LISP machine could, however, make the idea of "MACSYMA in a briefcase" a reality in a decade
or so.

4. M ACSY MA's Evolution

People sometimes complain that MACSYMA is difficult to understand or to control, and
they usually cite specific properties of the system as primarily responsible, e.g. too many
commands, too hard to specify subexpressions. These properties are not inherently difficulties
but rather give rise to difficulties when the system is applied to certain tasks or by making the
system difficult to understand or to use.

Such properties are not the results of poor design decisions. Rather, they are the best
efforts of an active group of programmers to satisfy the conflicting goals of program modularity
and efficiency and satisfaction of the user's needs (ref. 7). The resolution of this conflict is
considerably harder for algebraic manipulation systems like MACSYMA than for more
traditional programming languages. Most other programming language designs in a sense
"define" the world in which they operate. MACSYMA's goal is to match as closely as possible a
world that Is already defined, namely mathematical manipulation as used in textbooks and on
thousands of blackboards and notepads. Although some people say the constraints can and
should be changed, with the current goal, they cannot be, even for a particularly elegant or well-
structured design.

MACSYMA must also satisfy the often conflicting needs of a diverse user community.
Many capabilities in MACSYMA were originally implemented to satisfy a particular need. AS
new users required analogous capabilities for other classes of expressions and in different
environments, the capabilities had to be suitably broadened or refined. Viewed historically.
MACSYMA is an excellent example of evolutionary programming. It is reminiscent of the
progress of "normal science" described by Thomas Kuhn (ref. 18) in which a theory, or
"paradigm", is repeatedly patched to repair its weaknesses until it is supplanted by a cognitively
cleaner descendant. The growth of MACSYMA has led some people to believe that the new
paradigm can be achieved only by avoiding the creation of new commands or by implementing
simpler, more understandable evaluation algorithms. However, complexity in MACSY M A has
usually resulted from the attempt to satisfy the conflicting needs of different users; if a new
symbolic manipulation paradigm does arise, it will have to take these differing needs into account.
T h e MACSYMA of the future will have to maintain an explicit, internal "model" of the user's
goals and of his "plan" for achieving them.

305

5. Commentary

One of the purposes of this paper is to suggest some research projects oriented toward
minimizing the difficulties of using a complex system like MACSYMA. Some of these projects
are already underway. The MACSYMA Advisor is scheduled for limited release this summer.
T h e new rationa.1 function representation is already partly implemented. The other projects a re
mentioned here to indicate some directions in which MACSYMA might go and to solicit
implementation ideas and comment on their value.

T h e model for the "typical" MACSYMA user presented in section 2, on which the analysis
of resource knowledge problems is based suffers two major deficiencies. The first is that it says
little about domain dependent expertise. A sophisticated MACSYMA user probably mentally
employs specialized procedural strategies and representations. The former are approximated by
the templates in M; the latter are not dealt with at all. The model was designed to explain the
performance of novice users as observed in several dozen protocols of MACSYMA usage;
protocols of more advanced users were not included. The second major deficiency is that the
model does not take learning into account. There is no sensitivity to how the user comes by his
misconceptions. Also there is no information that could be used to determine how a consultant
could best teach a point. .It might, for example, be expedient to lie about something to make a n
explanation as simple as possible. These are several theories of learning in the literature (refs. 19,
20) that could be used in this regard.

T h e contributions of this paper are (!) its statement of the distinction between the various,
essentially "orthogonal" types of difficulties of using a tool to help solve a problem and (2) its
explanation of the function of user aids in meeting these difficulties, resulting in its proposal for
more advanced aids based on this explanation. A learning difficulty arises when a system is t o o
large or its primitives too complex for a new user to understand fully. A resource knowledge
difficulty can arise whenever one is faced with a problem solving situation in a domain which
one does not fully understand. The lack of knowledge may be incidental, as it is when the
domain or device is fairly simple but time constraints make it impossible for the user to learn all
that is necessary (e.g. wsing a calculator or oscilloscope). O r it may be essential, as when the
domain is very complex and the user can't possibly learn everything (eg. MACSYMA or business
oe law). Furthermore, the need is acute for computer systems like MACSYMA in which the level
of commands is so close to the level of the task environment that the user is apt to confuse a
simply defined procedure (like COEFF) with its mathematical counterpart (here coefficient) that
ie at best approximates. A communication difficulty can arise whenever a system's designer
cannot provide every intended user with expertise tailored exclusively to his need. MACSYMA's
knowledge based approach to algebraic manipulation drastically reduces communication
difficulties; and by transforming MACSYMA from a programming language into a
mathematician's apprentice, these difficulties might be even further reduced. Although the
knowledge based approach engenders increased learning and resource knowledge difficulties.
these difficulties need not be prohibitive, if adequate user aids - tutors and advisors -- are
provided.

References

1. Moses,J.: A MACSYMA Primer. Lab. Computer Sci., Massachusetts Inst. Technol., Oct. 1975.

2. Lewis,V.E.: User Aids for MACSYMA. Proceedings of the 1977 MACSYMA Users’
Conference, NASA CP-2012, 1977. (Paper no. 28 of this compilation.)

3. Brown,J.S.;Burton,R.;and Bell,A.: SOPHIE: A Sophisticated Instructional Environment for
Teaching Electronic Troubleshooting (An Example of AI in CAI). Rep. 2790, Bolt Beranek
and Newman, Inc., 1974.

4. Burton,R.;and Brown,J.S.: A Tutoring and Student Modelling Paradigm for Gaming
Environments. SIGCSE Vol. 8, No. 1, Feb. 1976, pp. 236-246.

5. Goldstein,I.P.;and Miller,M.: AI Learning Environments. Memo 389, AI Lab, Massachusetts
Inst. Technol., Dec. 1976.

6. Genesereth,M.R.: Automated Consultation for Complex Computer Systems. Ph.D. Thesis,
Harvard Univ., 1977.

7. M0ses.J.: Algebraic Simplification: A Guide for the Perplexed. Commun. ACM Vol. 14, No. 8,
AUg. 1971. pp. 527-537.

8. Mark,W.S.: The Reformulation Model of Expertise. TR-172, Lab. Computer Sci.,
Massachusetts Inst. Technol., Dec. 1976.

9. Davis,R.;Buchanan,B.;and Shortliffe,E.: Production Rules as a Representation for a Knowledge-
Based Consultation Program. AIM-266, AI Lab, Stanford Univ., Oct. 1975.

10. Swartout,W.R.: A Digitalis Therapy Advisor With Explanations. TR-176, Lab. Computer Sci.,
Massachusetts Inst. Technol., Feb. 1977.

11. Mathlab Group: MACSYMA Reference Manual. Lab. Computer Sci., Massachusetts Inst.
Technol., Nov. 1975.

12. Stoutemyer,D.: Qualitative Analysis of Mathematical Expressions Using Computer Symbolic
Mathematics. Proceedings of the 1976 Symposium on Symbolic and Algebraic Computation,
Aug. 1976, pp. 97-104.

13. Genesereth,M.R.: DB: A High Level Data Base System with Inference. Memo 4, MACSY M A
Group, Massachusetts Inst. Technol., Dec. 1976.

14. Rich,C.;and Shrobe,H.E.: Understanding LISP Programs. Working Paper 82, A I Lab,
Massachusetts Inst. Technol., Dec. 1971.

307

I .

15. Martin,W.A.: Symbolic Mathematical Laboratory. TR-36, Lab. Computer Sci., Massachusetts
Inst. Technol., Jan. 1967.

16. Williams,T.G.: On-Line Pasing of Hand-Printed Mathematical Expressions. NASA CR-1455,
1969.

17. Greenblatt,R.: T h e LISP Machine. Working Paper 79, A I Lab, Massachusetts Inst. Technol.,
Nov. 1974.

18. Kuhn,T.: The S t ruc ture of Scientific Revolutions. Univ. of Chicago Press, 1970.

19. Sussman,G.J.: A Computational Model of Skill Acquisition. Elsevier Pub. Co., 1975.

20. Winston,P.W.: Learning Stuctural Descriptions from Examples. TR-231, AI Lab,
Massachusetts Inst. Technol., Sept. 1970.

308

30

An Automated Consultant for MACSYMA"

Michael R. Genesereth

Center for Research in Computing Technology
Harvard University

Laboratory for Computer Science
Massachusetts Institute of Technology

Consider a person trying to solve a problem with a computer system he does not fully
understand. And assume that, although he has encountered a difficulty due to his lack of
knowledge, he is unwilling to learn more about the system than is necessary to solve the problem.
T h e simplest way for him to acquire just the information he needs and no more is to consult an
expert. Then, armed with the expert's advice, he may surmount the difficulty and solve the
problem. A consultant is an information source that seeks to improve the user's model of its
domain in "user-initiative" mode. Consultation is a method widely used in computer centers as
well as in domains like business, law, and medicine. Unfortunately, human consultants are a
scarce resource and quite expensive.

T h e purpose of this paper is to propose as an alternative an automated consultant, as
exemplified by an "advisor" for the algebraic manipulation system MACSYMA. Such a program
should be able to converse with its user in English about a difficulty he has encountered and
provide information tailored to his need. The MACSYMA Advisor is a program distinct from
MACSYMA with its own separate data base and expertise. However, for convenience the
program can be called directly from MACSYMA and can access the user's data structures
contained therein. The Advlsor described here deals only with the "straight-line" or nested use of
MACSYMA commands and not loops or user-defined functions.

T h e implementation of the Advisor relies heavily on an explicit, internal "model" of the
user's state of knowledge, his goals, and his "plan" for achieving them. As a result, i t can provide

8 This work was supported, in part, by the United States Energy Research and Development
Administration under Contract Number E(ll-1)-3070 and by the National Aeronautics and Space
Administration under Grant NSC 1323.

(This .article is an extended abstract of a paper to be published in the proceedings of the Fifth
International Joint Conference on Artificial Intelligence.)

309

more precise answers to a larger class of information needs than traditional user aids, such as
manuals, information networks, and simple question-answering programs.

As a concrete example of the Advisor's performance, consider a scientist trying to solve a
matrix eigenvalue problem using MACSYMA, as illustrated in figure 1. An advisor episode is
the connected fragment of discourse between a user and the Advisor that begins when the user
types HELP() in MACSYMA and ends when he bids the Advisor goodbye. Each episode can
have any number of subepisodes. A subepisode begins when the user asks a question and ends
when the Advisor considers itself done. During a subepisode the Advisor may ask the user
questions and expect answers; however, further questions by the user are ignored. In the protocol
the first episode contains two subepisodes; the others one each, as marked.

(Cl) (M[1,1]:2*Z,M[1,2]:Z,M[2,1]:2~Z-3,M[2,2]:Z-3)%
; The user tries to input his matrix by directly assigning to elements.
; Unbeknownst to him, this results in the creation of a n array named M.
; In C2, he checks M and E n d s that his attempt failed.

(C2) M;
(02) n

(C3) HELP()% .
""""""""""""""""""""""""""""""""""""

Advisor: Speak up!

iA User: How do I construct a matrix?

Advisor: Use MATRIX or ENTERMATRIX.

User: What are the arguments to MATRIX?

IB Advisor: The rows of the matrix being constructed.

User: Bye.
""""""""""""""""""""""""""""""""""""

(C3) M:MATRIX([Z*Z,Z],C3-Z*Z,3-Z]);
c 2 2 Z I

(03) c 1
C 3 - 2 Z 3 - 2 1

; H e enters his matrix. Note that the signs of two of the elements
; are dvferent from before.

(C4) (M[l,l]-X)*(M[2,2]-X)-H[l,Z]*H[Z,l];
(04) (Z - X - 3) (2 Z - X) - Z (2 Z - 3)

; Here he tries to compute the characteristic polynomial. T h e
; subscript notation is used for both array and matrix access. When
; a n array exists, it means array selection, else matrix. Here i s
; selecting from the array M not the matrix as he expects.

I

(C5) SOLVE(D4) ;
E r r o r - more unknowns than equations.

; He tries to solve the polynomiai, but forgets to specvy the variable
; to solve for. Not understanding the error message, he'decides to
; solve it himself.

(C 6) R A T S I M P (D 4) ;
2

(06) (- 3 X - 3) Z + X + 3 x

(C 7) (A:l,B:COEFF(D6,X,l),C:COEFF(D6,X,O))S
; Intending to use the quadrutic formula, he picks out the coefficients
; of 0 6 . Unfortunately, by using a "$", he doesn't see that the answer
; he gets is not what he expects.

(0 8) 0
(C 8) (-B+SQRT(B2-4*A*C)) / (2*A) ;

0

(C 1 0) H E L P ()S
""""""""""""""""""""""""""""""""""""

User: In line C7, I used COEFF to get the zeroth coefficient of D6. T h e
real coefficient is -302, but MACSYMA returned O!

Advisor: COEFF(EXP, VAR, POW) returns the correct coefficient of
2 VARPoW in EXP only if EXP is expanded with respect to VAR.

Either expand first and then use COEFF or use RATCOEF.

(C10) B :RATCOEF(DG,X , l) ;

User: Ok, thanks. Bye.

(Dl01 3 - 3 2

""""""""""""""""""""""""""""""""""""

(C11) C:RATCOEF(D6,X,O);
(D l 1 1 - 3 2

(C 1 2) (-B-SQRT(B2-4*A*C))/(2*A);
2 - SQRT(12 Z + (3 - 3 Z)) + 3 Z - 3

2
(012) """""""""""""""""-

(C 1 3) E V (D l Z . Z = l) ;
(013) - SQRT(3)

; Here Le plugs in a value for 2 to check the eigenvalue.

31 1

I

(C14) HELP()S
"""""""""""""""""""""""""""""""""""

User: Dl3 is wrong.

Advisor: What were you trying to do?

User: Find the eigenvalues of M.

Advisor: You used the determinant formula to compute the characteristic
polynomial. You used RATSIMP to simplify it. You used the quadratic
formula to solve it to obtain the eigenvalue. Am I right?

User: Yes.

Advisor: Did you intend the MII,Jl to select elements from the matrix M?

User: Obviously.

Advisor: When an array exists, the subscript notation means to select
the corresponding element from the array. It works as matrix element
selection only when no array exists. Were you aware you had an array? '

User: No.

Advisor: An array is automatically created when an assignment is made
to an unbound subscripted variable. Incidentally, to compute the
characteristic polynomial of a matrix, you should use CHARPOLY.

User: Bye.
"""""""""""""""""""""""""""""""""""

(C14) CHARPOLY(M,X);
2

(Dl41 3 Z + X (- Z - 3) + X

(C15) FACTOR(D14);
(~ 1 5) - (X - 3) (Z - X)

; The user recomputes the characteristic polynomial and tries FACTOR
;from the result of which the roots are obvious.

(C16) LOGOUT()t
Fig. 1 - Protocol of MACSYMA use and consultation

T h e examples in this protocol were chosen to illustrate the most important of the Advisor's
abilities. A full fist of the types of questions it can answer follows.

(I) "What is the of ... 7" Retrieval of a property of an ob&t or concept given its name, e.g.
subepisode 1B.

(2) "How do I do ... 7" Retrieval of a command or method given a description of the task to be
performed, subepisode 1A.

(3) "Is it the case that ... ?" Evaluation of predicates.

(4) "Why is it the case that ... ?" Ability to pinpoint a deficiency in the user's understanding
and provide a precise answer, e.g. episodes 2 and 3.

(5) "How does MACSYMA do ... I" Procedural explanation of a result or fact.

O f these, the questions requiring the most sophisticated treatment are WHY and HOW. WHAT,
HOWDO, and IS questions can be answered directly, with no consideration of the user's
purpose or his state of knowledge. A WHY or HOW question calls for different answers to
different people in different situations. The primary implementational contribution of this
research is its technique for handling such questions and the data structures it uses.

Although the various parts of the Advisor have all been implemented, as of this writing
they have not yet been combined into a working system. Also, the present data base is at best
meager. T h e current timetable calls for its release to the MACSYMA user community this
summer, where if successful it will find heavy use and provide valuable data for further
Improvements.

T h e important contributions of this research are (1) its recognition of the need for a
consultant in any sufficiently complex domain'and an indication of the nature of the user's needs,
(2) a demonstration by design and partial implementation of the feasibility of automating such a
consultant, (3) the model debugging algorithm utilizing a partial, explicit runtime model of the
user and a partial plan for his behavior and based on an explicit design model. In general, a
consultant is necessary whenever one is faced with (I) a problem solving situation (2) in a domain
one does not fully understand. The lack of knowledge may be incidental, as it is when the
domain or device is fairly simple but time constraints make it impossible for the user to learn all
that is necessary (e.g. using a calculator or oscilloscope). O r it may be essential, as when rhe
domain is very complex and the user can't possibly learn everything (e.g. MACSYMA or business
or law). Furthermore, the need is acute for computer systems like MACSYMA in which the level
of commands is so close to the level of the task environment that the user is apt to confuse a
simply defined procedure (like COEFF) with its mathematical counterpart (here coefficient) that
i t a t best approximates. It would be of interest to see whether an automated business or legal
consultant could be constructed and how effective the techniques described here would be in those
domains.

313

31

A MACSYMA COMPUTER-ALGEBRA MOVIE DEMONSTRATION

David R. Stoutemyer
University of Hawaii

ABSTRACT

The compelling excitment of using a powerful interactive computer-algebra
system is hard to convey without a live demonstration, which is often imprac-
tical because of the size or location of an audience. However, a movie of a
live demonstration is probably the next best way to convey the impact of inter-
active computer-algebra to an audience of newcomers. Sound projection 1 6 ~
equipment is far more available than the alternative of video tape equipment,
which suffers from marginal resolution. Available from national educational
film libraries and from the developers of computer-algebra systems, such films
could significantly increase the awareness and utilization of this under-
utilized resource. To this end, I have produced a 10-minute prototype 8mm
sound movie MACSYMA demonstration to show at this conference. While not of
sufficient quality to be reproduced as a distributed 16mm film, it is hoped
that this prototype will inspire a full-scale effort by someone with more cine-
matographic talent, with more funds, with access to high quality photographic
resources, and with access to a fast terminal with high resolution.

315

32

SOME MACSYMA PROGRAMS FOR SOLVING

DIFFERENCE EQUATIONS*

John Iv ie
U n i v e r s i t y o f C a l i f o r n i a , B e r k e l e y .

INTRODUCTION

We d e s c r i b e h e r e a set o f p r o g r a m s t o f i n d c l o s e d - f o r m s o l u t i o n s
t o l i n e a r r e c u r r e n c e r e l a t i o n s (o r " d i f f e r e n c e e q u a t i o n s ") , n a m e l y
equa t ions o f t he fo rm

ak u(n+k) + ak-l u(n+k-1) + . . .+ a. u (n) = g (n)

w h e r e t h e c o e f f i c i e n t s a are e i t h e r c o n s t a n t s (t h e c o n s t a n t c o e f f i c i e n t
c a s e) o r p o l y n o m i a l s i n n (t h e v a r i a b l e c o e f f i c i e n t c a s e) . i

I would l i k e t o t h a n k R i c h a r d F a t e m a n f o r s u g g e s t i n g t h i s p r o b l e m
t o m e , as well a s f o r a l l o f h i s h e l p w i t h t h e MACSYHA system.

CONSTANT COEFFICIENT CASE

The C h a r a c t e r i s t i c E q u a t i o n Method

We f i r s t c o n s i d e r t h e homogeneous case, t h a t i s when g (n) = 0 i n
equat ion (1) above. By s u b s t i t u t i n g x k - i f o r u (n + k - i) i n e q u a t i o n (1) ,
w e o b t a i n a p o l y n o m i a l e q u a t i o n ; t h e s o l u t i o n t o t h e r e c u r r e n c e r e l a t i o n
c a n t h e n b e w r i t t e n as a l i n e a r c o m b i n a t i o n o f t h e r o o t s o f t h i s p o l y n o m i a l .
A l l o f t h i s i s f a i r l y e a s i l y d o n e b y m e a n s o f t h e MACSYMA "SOLVE" command.

* This work w a s made p o s s i b l e by access t o t h e MACSYMA system a t M.I.T. ,
s u p p o r t e d i n p a r t b y ERDA unde r Con t rac t Number E(ll-1)-3070 and by
NASA under Grant NSG 1323.

T h i s i s a n e x t e n d e d a b s t r a c t o f a paper t o a p p e a r i n t h e ACM Tran-
s a c t i o n s on Mathematical Software .

I n t h e inhomogeneous case, when t h e r i g h t hand s ide o f equa t ion (1)
is non-zero, w e f i r s t f i n d t h e homogeneous s o l u t i o n as above, and then
add t o i t a p a r t i c u l a r s o l u t i o n o f equat ion (1). T h i s p a r t i c u l a r s o l u t i o n
i s found by t h e method of undetermined coeff ic ients , which gives a set
o f l i nea r equa t ions t o be so lved via t h e "SOLVE" command. In ou r ca se
he re , w e assume t h a t g (n) i s e i t h e r a polynomial i n n , a cons t an t r a i sed
t o a polynomial power, o r s i n e o r c o s i n e o f a l i n e a r f u n c t i o n o f n .

This method is implemented by the "CHAR" port ion of our programs,
which are g iven in an appendix .

The Method of Generating Functions

This i s another method f o r s o l v i n g c o n s t a n t c o e f f i c i e n t r e c u r r e n c e
r e l a t ions . Th i s method f i n d s t h e homogeneous and p a r t i c u l a r s o l u t i o n s
a t once, but is s lower i n ou r imp lemen ta t ion t han t he cha rac t e r i s t i c
equation method.

The b a s i c i d e a o f t h i s method is the fol lowing: def ine the gener-
a t ing func t ion F(x) o f the sequence u(n) as

m

Using the recur rence re la t ion (I) , w e c a n a r r i v e a t an a lgeb ra i c equa t ion
f o r F (x) , so tha t F(x) can be expressed as a r a t i o n a l f u n c t i o n i n x.
We can then rewrite t h i s r a t i o n a l f u n c t i o n f o r F(x) i n terms of a pa r t i a l
f rac t ion decomposi t ion , so t h a t t h e c o e f f i c i e n t s u (n) i n F (x) can be
i d e n t i f i e d , which g i v e s t h e s o l u t i o n t o t h e r e c u r r e n c e r e l a t i o n .
(This technique i s very much l i k e a d iscre te Laplace t ransform) .
The main MACSYHA commands used t o do a l l o f t h i s are "SOLVE" and
t l ~ ~ ~ ~ f v .

This method i s implemented by t h e "GENF" p o r t i o n of our programs.

VARIABLE COEFFICIENT CASE

One method f o r s o l v i n g v a r i a b l e c o e f f i c i e n t r e c u r r e n c e r e l a t i o n s
i s tha t o f exponen t i a l gene ra t ing func t ions . We assume t h a t o u r gen-
e ra t ing func t ion fo r t he s equence u (n) i s of the form

m

Y (x) = 1 u(n> x" / n!

n= 0

318

Taking success ive der iva t ives and us ing the recur rence re la t ion (l) , w e
o b t a i n a n o r d i n a r y d i f f e r e n t i a l e q u a t i o n f o r Y(x). Expanding t h e s o l u t i o n
t o t h e d i f f e r e n t i a l e q u a t i o n i n a Taylor series, w e see t h a t t h e n t h
term of t he series i s t h e s o l u t i o n t o o u r r e c u r r e n c e r e l a t i o n (1).
This method can be programmed u s i n g t h e MACSYMA commands "ODE2" and
"POWERSERIES" . This technique i s implemented by t h e "VARC1" p o r t i o n
of our programs.

One major problem with this method i s t h a t t h e r e may b e no way t o
f i n d a c losed - fo rm so lu t ion t o t he d i f f e ren t i a l equa t ion wh ich is obta ined ,
o r e v e n t o e x p r e s s a c losed - fo rm so lu t ion i n a "nice" form. However,
an exp l i c i t c lo sed - fo rm so lu t ion i s a v a i l a b l e f o r f i r s t - o r d e r r e c u r r e n c e
r e l a t i o n s ; t h i s is implemented by "VARC2" i n o u r programs. For second-
o rde r r ecu r rences , a spec ia l check is made fo r t hose t ha t can be so lved
i n terms of Bessel f u n c t i o n s ; t h i s i s given by "BESSELCHECK" i n o u r
program l i s t i n g s .

TESTING THE PROGRAMS

Using our programs, w e were a b l e t o s o l v e problems and examples
taken f rom several textbooks (as g i v e n i n o u r l i s t of r e fe rences).
The fol lowing i s a small sample of some typical problems:

(C66) CHAR(U(N+l)-U(N) ,(1/6)*Nf(N-1)*(N-2)+N-1,U,N,1, [U (@) = 1]) ;
3 2

N N 23 N 7

2 4 4 24 4
(D71) U(N) = N (-- - -- + --" - -) + 1

(C72) CHAR(U(N+2)-2*U(N+l)+U(N) ,N**2,U,N,2, [U(fll=O,U(l)=1]);
2

2 N N 5 5 N
(D77) U (N) = N (-- - - + --) + ---

12 3 12 6

(C 7 8) GENF(U(N+2)-U(N) ,2**N,U,N,2, [U(D)=l,U(l)=a]) ;
N N

(D84) U(N) = -- + "" ""
2 2 (- 1)

3 3

319

(C12) VARC1(U(N+2)-(3"N+2)*U(N+1)+5*U(N) ,U,U,N,2, [U(C3)=0,U(l)=1]);
(Dl21 A LINEAR COMBINATION OF B E S S E L F U N C T I O N S

Us ing t he 7 7 problems f rom the re fe rences which w e t r i e d , w e found
t h a t CHAR had an average running time of 585 msec., w h i l e t h a t f o r GENF
was 1113 msec. . T h u s , t h e c h a r a c t e r i s t i c e q u a t i o n m e t h o d is much f a s t e r
i n o u r i m p l e m e n t a t i o n h e r e .

CONCLUDING REMARKS

A f t e r t h i s p a p e r was w r i t t e n , w e became aware of a similar paper by
Cohen a n d K a t c o f f (t o a p p e a r i n T r a n s a c t i o n s on Mathematical Software) .
Their methods seem somewha t more gene ra l (t heydea l w i th sys t ems a l so) ;
however, our programs are much s h o r t e r a n d seem t o h a v e f a s t e r r u n n i n g
times .

"

1.

2.

3 .

4 .

5.

REFERENCES

Anderson, Ian: A First Course in Combinatorial Mathematics. Oxford
Univ. Press,Inc., 1974.

Goldberg, Samuel: Introduction to Difference Equations. John Wiley
&Sons , Inc. , 1958.

Hall, Marshall, Jr.: Combinatorial Theory. Blaisdell Pub. Co., 1967.

Liu, C.L.: Introduction to Combinatorial Mathematics. McGraw-Hill
Book Co.,Inc., 1968.

APPENDIX

For completeness, we give here a listing O f the actual MAcsyMA
code for our programs.

/*THIS BLOCK ChECKS FOR A POLYNOMIAL IN N * /

POLYP(G,N) :=BLOCK([D,F,C],
G:RATEXPAND(G) , IF FREEOF(N,G) THEN RE'I'URN(TRUE) ,
D:HIPOVi(G,N), F:TRUE,

(C:COEFF(G,N,I), IF NOT(FREEOF(N,C)) THEN F:FALSE,

RETURN (IS (G=0 AND F))) $

FOR I:D S'I'EP -1 THRU 0 DO

G:RATEXPAND(G-C*N**I)),

/*THIS BLOCK CHECKS FOR A CONSTANT TO A POLYNOMIAL POWER*/

POLYINN(X,N) :=BLOCK([B,E],
IF INPART(X,O)="*" THEN
RETURN(POLYINN(INPART(G,l) ,N) AND PoLYINN(INPART(G,2) ,Id))
IF INPART(X,O)#"**" THEN RETURN (FALSE)
B:INPART(X,l),
E:INPART(X,2),

RETURN(POLYP(E,N)))$
IF NOT FREEOF(N,B) THEN RETURN (FALSE)

/*THIS BLOCK IMPLEMENTS THE CHARACTERISTIC EQUATION METHOD*/

CHAR(E,G,U,N,K,IV):=BLOCK([GENSOL,HOMSOL,PARSOL,LOS,MULTIPLICITIES,
H,V,L,SS,DISPFLAG],
LOCAL(A,AA,B,R,M),
DISPFLAG:FALSE,

FOR 1:0 THRU K DO
AA[IJ :COEFF(E,U(N+K-I)),
H:0 ,

H:H+AA(I]*U(N+K-I),
FOR I :0 THRU K DO

IF H#E THEN RETURN ("ERRONEOUS INPUT"),

FOR I :0 THRU K DO
H:SUBST(U**(K-I) ,U(N+K-I) ,HI,

MULTIPLICITIES:TRUE,
LOS:SOLVE(H,U),
FOR I : 1 THRU LENGTH (LOS! DO

M[I] :MULTIPLICITIES[I]),
(R[I] :LOS[I] ,, R[I] :RHS(EV(R[II) 1 , '

HOMSOL :
SUM(SUM(A[I,J]*N**(M[I]-J) ,J,1,M[I])*R[I]**N,I,1,LENGTH(LOS)),

IF G=O THEN
(V:[I ,
FOR I :1 THRU LENGTH (LOS) DO
FOR J:1 THRU M[I] DO V:CONS(A[I,Jl,V),

FOR Q : O THRU K-1 DO L:CONS(SUBST(Q,N,HOMSOL)=U(Q) ,L),
L:[I,

S S : EV (SOLVE (L ,V) , IV) ,
RETURN(U(N)=(EV(HOMSOL,SS))))

ELSE IF POLYP (G ,N) = TRUE THEN
(G:RATEXPAND(G), PARSOL:SUM(B[J]*N**J,J,0,HIPOW(G,N!!,
FOR J :0 THRU K DO
(L:0, V:E,
FOR I :0 THRU K DO
(L:RATEXPAND(SUBST(N+K-I,N,B[J]*N**J) 1 ,
V:RATEXPAND(SUBST(L,U(N+K-I) ,V))) ,
V:RATSIMP(V) ,
IF V#0 THEN RETURN(V) ELSE PARSOL:N*PARSOL),

FOR I:0 THRU K DO (L:RATEXPAND(SUBST(N+K-I,N,PARSOL)l,
V:E,

V:RATEXPAND(SUBST(L,U(N+K-I) ,VI)),
L:[I ,

FOR 1:0 THRU HIPOW(PARSOL,N) DO
L:CONS(COEFF(V=G,N,I) ,L),
V:[I ,

322

FOR J:O THRU HIPOW(PARSOL,N) DO
V:CONS (B [J] ,V) ,

SS:SOLVE(L,V) ,
PARSOL:EV(PARSOL,SS))

ELSE IF POLYINN(G,N) = TRUE THEN
(PARSOL:Bl*G,

(L:0, V:E,
FOR J:O THRU K DO

FOR I :0 THRU. K DO
(L:SUBST(N+K-I,N,PARSOL), V:SUBST(L,'U(N+K-I) ,V) 1 ,
V : RATSIMP (V) ,
IF V#0 THEN RETURN(V) ELSE PARSOL:N*PARSOL),

SS:SOLVE(V=G,Bl),
PAHSOL : EV (PARSOL, SS))

ELSE IF INPART(G,O)=SIN OR INPART(G,B) = COS THEN
(PARSOL:B[l]*SIN(INPART(G,l)) + t3[2]*COS(INPART(G,l)).t
FOR J:8 THRU K DO
(L:0, V : E ,
FOR 1:0 THRU K DO
(L:EXPAND(SUBST(N+X-I,N,PARSOLI) ,
V:EXPAND(SUBST(L,U(N+K-I) ,V))),

V :TRIGEXPAND (V) ,
IF V#B THEN RETURN (V) ELSE PARSOL:N*PARSOL) ,

V:E,

V:EXPAND(SUBST(L,U(N+K-I) ,V) 1) ,
FOR I:@ THRU K DO(L:EXPAND(SUBST(N+K-I,N,PARSOL)) I

V :TRIGEXPAND (V) ,
LT: [SIN(INPART(G,l)) ,COS(INPART(G,l)) 1 ,
FOR JJ:l THRU 2 DO

L:l 1 ,

L:CONS(COEFF(V=G,LT[JJ]) ,L),
V:[1 ,

FOR J :1 THRU 2 DO
V:CONS(B[J] ,VI,

SS:SOLVE(L,V),
PARSOL:EV(PARSOL,SSI)

ELSE RETURN ("CAN'T BE SOLVED IN CLOSED FORM BY PROGRAM"),

GENS0L:HOMSOL + PARSOL,
FOR 1:1 THRU LENGTH (LOS) DO

V:[I ,

FOR J:1 THRU M[I] DO V:CONS(A[I,J],V),
L:[I ,

FOR Q : 0 THRU K-1 DO
L:CONS(SUBST(Q,N,GENSOL)=U(Q) ,L),
SS:EV(SOLVE(L,V) ,IV),
RETURN(U(N)=(EV(GENSOL,SS))))$

323

/*THIS BLOCK IMPLEMENTS THE GENERATING FUNCTION METHOD*/

GENF(E,G,U,N,K,IV):=BLOCK([MULTIPLICITIES,L,V,SS,VV,LOS,
NR,F,SOL,P,DISPFLAG],
LOCAL(A,AA,B),
DISPFLAG: FALSE,

FOR I:O THRU K DO
AA[I] :COEFF(E,U(N+'K-I)),
H:0,

FOR I:@ THRU K .DO

IF H#E THEN RETURN (" E R R O N E O U S INPUT") ,
H:H+AA[I]*U(N+K-I),

L:E,
FOR I :ld THRU K DO

L:SUBST((F-SUM(U(J)*X**J,J,O.,K-I-l))*X**I,U(N+K-I) ,L),

IF G=O THEN
(S:SOLVE(L,F),
F:EV(F,S))

ELSE IF POLYP(G,N) = TRUE THEN
(G:RATEXPAND(G). ,
V:SUBST(X**K/(~-X)*COEFF(G,N,~) ,COEFF(G,N,~! ,GI,
VV:RATSIMP(DIFF(~/(~-X) ,x)),
FOR 1:l THRU HIPOW(G,N) DO

(V:SUBS'I'(X**K*X*VV*COEFF(G,N,I) ,COEFF(G,N,I)*N**I,V),
VV:RATSIMP(DIFF(X*VV,X)) 1 ,

V:RATSIMP(V) ,
SS:SOLVE(L=V,F),
F:EV(F,SS))

ELSE IF POLYINN(G,N) = TRUE AND HIPOW(INPART(G,2) ,N) < 2 THEN
(Gl:(X**K)*(INPART(G,l)**COEFF(INPART(G,2) , N , O !) ,
G2:l - X*(INPART(GI1)**COEFF(1NPART(G,2) , N , l)) ,
V:HATSIMP(Gl/G2),
SS:SOLVE(L=V,F),
F:EV(F,SS))

ELSE RETURN ("CAN'T BE SOLVED IN CLOSED FORM BY PROGRAM"),

MULTIPLICITIES:TRUE,
LOS:SOLVE(NEWRAT(F) ,X),
FOR I :1 THRU LENGTH (LOS! DO

(R[I] :LOS[I], R[IJ :RHS(EV(R[II!),
M [I] :MULTIPLICITIES [I] 1 ,

V:[I ,
B:PRODUCT((l-R[I]*X)**M[I] ,I,l,LENGTH(LOS)),
FOR I : 1 THRU LENGTH (LOSl DO
FOR J:l THRU M[I] DO

P:SUM(SUM(P[I,J] ,J,l,Fl[I]) ,I,l,LENGTH(LOS)),
(P[I,JJ:B*A[I,J]/((l-R[I]*X)**J), V:CONS(A[I,J] ,V)),

L:. [I I

NF:HATEXPAND(NUM(F)/ABS(COEFF(DENOM.(F) ,X,Q))), P:RATEXPAND(P),
FOR I:@ THRU HIPOW(RATEXPAND(B) ,X)-l DO

SSS:EV(SOLVE(L,V) ,IV),
L:CONS(COEFF(NF=P,X,I) ,L),

SOL:SUM(SUM(A[I,J]*COEFF(DENOt4(F) ,X,0)/ABS(CoEFF(DENOM(F] ,X,Oll*
BINOMIAL(J+N-1,N)*R[I]**N,J,l,M[I]) ,I,l,LENGTH(LOS)),

RETURN(U(N)=(EV(SOL,SSS))))$

/*THIS BLOCK FINDS THE NEW POLYNOMIAL ASSOCIATED TO F*/

NEWRAT(F) :=BLOCK([HD,CP,DP],
HD:HIPOW(DENOM(F) ,X),
CP:COEFF(DENOM(F) ,X,HD),
DP:SUM((COEPF(DENOM(F) ,X,I))/CP*X**I,I,O,HD),
RETURN(SUM(COEFF(DP,X,HD-I)*X**I,I,0,HD))) $

/*THIS BLOCK IMPLEMENTS THE VARIABLE COEFFICIENT METHOD*/

VARCl(E,G,U,N,K,IV):=BLOCK([V,VV,EQ,Y,CAUCHYSUM,FINSOL,SERSOL,DISPFLAG],
LOCAL(A,B),DISPFLAG:FALSE,

(A[I] :COEFF(E,U(N+I)),
A[I] :RATEXPAND(A[I]),
IF POLYP (A[I] ,N)=FALSE THEN RETURN ("CAN'T DO IT") l ,

FOR I :0 THRU K DO

IF K=2 AND (B:BESSELCHECK(E,Kl # FALSE) THEN RETURN(B),
V : RATEXPAND (E) ,
FOR I:K STEP -1 THRU 0 DO

FOR J:HIPOW(A[I] ,N) STEP -1 THRU 0 DO
(V:RATSUBST(X**J*'DIFF(Y,X,I+J) ,N**J*U(N+I) ,V),
V:RATEXPAND (V)) ,

V:RATSUBST(Y,'DIFF(Y,X,0) ,VI,
V : RATEXPAND (V) ,
IF POLYP(G,N) = TRUE THEN

(G:RATEXPAND(G)', VV:G,
FOR 1:0 THRU HIPOW(G,N) DO

VV:SUBST(X**I,N**I,VV),
VV: %E**X*VV)

ELSE RETURN("CAN'T DO IT"),

325

I

EQ : V-VV
DEPENDENCIES (Y (X)) ,
IF K=l THEN FINSOL:INITIAL1(SOL,X=0,Y=EV(U(0);IV)~
ELSE IF K=2 THEN FINSOLiIC(SOL,X=B,Y=EV(U(0) ,IV) ,'DIFF(Y,X)=EV(U(l) ,IV)
ELSE RETURN("0.D.E. CAN'T BE SOLVED AT PRESENT BY MACSYMA"),

SERSoL:POWERSERIES(RHS(FINSOL) ,X,0), SERSOL:EXPAND(SERSOL) ,
IF ATOM(SERS0L) THEN RETURN("U(N)=0 FOR N > 0 ") ,
B:INPART(SEHSOL,l),
B:EV(B,X=l),
IF ATOM(B)=FALSE THEN B:SUBSTPART(N,B,4),
RETURN(U(N)=((N!)*B)))$

SOL:ODE2(EQ=B,Y,X)',

CAUCHYSUM:TRUE,

/*THIS BLOCK CHECKS FOR A BESSEL RECURRENCE RELATION*/

BESSELCHECK(E,K) :=BLOCK([A,ANS],
LOCAL (A) ,

FOR I :0 THRU K DO
(A[I] :COEFF(E,U(N+I) 1 ,

IF NOT(INTEGERP(A[O])) THEN RETURN(FALSE),
IF NOT(INTEGERP(EV(A[l] ,N=0))) THEN RETURN(FALSE),
IF NOT(HIPOW(A[l] ,N)=l! THEN RETURN(FALSE),
IF NOT(INTEGERP(COEFF(A[l] , N , l))) THEN RETURN(FALSE),
IF NOT(A[2]=1) THEN RETURN(FALSE),
ANS: "A LINEAR COMBINATION OF BESSEL FUNCTIONS",
/*EXACT DETAILS ARE OF NO SIGNIFICANCE,SINCE WE ARE MERELY

RETURN (ANS)) $

AI11 :RATEXPAND(A[Ij)),

DEMONSTRATING THE FEASIBILITY OF THIS APPROACH*/

/*THIS BLOCK IMPLEMENTS THE FIRST ORDER METHOD*/

VARCZ (E,G,U,N,K, IV) :=BLOCK ([H ,P,V,C ,SOL] ,
LOCAL(AP,P),

P: (-1) *COEFF(E,U(N))jCOEFF(E,U(N+l) 1 ,
V:G/COEFF (E,U (N + 1 !) ,
S[J] :SUBST(J,N,P),
S[I] :SUBST(I,N,P),
P[N] :PRODUCT(S[I] ,I,l,N-l),
H[I] :SUBST(I,N,V)/PRODUCT(S[J] ,J,l,I-l) ,
Vl:SUM(H[I] ,I,O,N),

RETURN(U(N)=AP*P[Nl+P[Nl*Vl))$
AP:EV(U(O)-SUSST(O,N,V) ,IV),

33

SOME COMMENTS ON SERIES SOLUTIONS e
Richard J. Fateman

University of California, Berkeley

1. SUMMARY

T h e use of power series and truncated power series in the MACSYMA system for algebraic
manipulation is illustrated. Algebraic and differential equations are solved using Taylor series or
asymptotic series. Deficiencies of the current scheme are noted, and remedies suggested.

2. Infinite Power Series

T h e general term "series" is used for at least two different types of expressions in MACSY M A
(ref. 1). A power series, informally, is an exact representation of a function usually of one complex
variable, f(z), sometimes requirlng the summation of an infinite number of terms, where the power
series may converge only for IzlcR, where R is the radius of convergence. Examples:

exp(x)= sum(,xAl / l ! , l ,O, lnf) , convergent for 1x1 < I n f ;

x+3~xA3=sum(a[l]~x^l,l,0,1nf) where a[1]=1, a[3]=3,

(o r more compactly, x+3*xA3) convergent f o r 1x1 < l n f ;
a[O]=a[E]=a[j] = 0 324

l / (l - x) = sum(xAl, l ,O,lnf) convergent f o r 1x1 < 1;

These are power series expansions about x=& Translation to a point a 4 0 is trivially
accomplished for a finite series: x+30x3 =I> a3+a + (9>:ta2+1)C(x-a) + 9:ra:::(x-a)* + 3:::(~-a)~. For a
function f(t) analytic at a finite point c, a linear transformation can be used to map the point c to
the origin. Expansion about a pole of f(z) in the complex plane is sketched in section 5. Such
problems are examined in a mathematical context in numerous texts of which references 2-3 are
examples.

0. T h e work described herein was performed with the help of MACSYMA, which is supported, in
part, by the United States Energy Research and Development Administration under Contract
Number E(ll-1)-3070 and by the National Aeronautics and Space Administration under Grant N S C
1323.

327

Power series as used in MACSYMA need not consist solely of non-negative exponents:
exp(x)/x= sum(xi/(i+I)!,i,-l,inf).

They need not consist solely of integer exponents: e~p(x) sx l /~ - sum(~~+~/~/i!,i,O,inf).

T h e existence of power series solutions to various types of equations, (typically differential
equations) has been established,.(see. for example, ref. 3) but proofs, even if .constructive, rarely
provide a means for expressing in closed form, in terms of some limited class of functions and
forms, the power series itself. By "forms" ye mean summations, products, or integrals with finite
or infinite limits, or derivatives of finite order of known functions.

To be more precise, in terms of finite presentation, a univariate power series is a triple: (x ,
{Ik],{ak}). T h e first item, x, is the independent variable (indeterminate) of the series, (I k) is a
sequence of exponents, and {ak) is a sequence,of coefficients. Usually the sequences are infinite,
and therefore cannot be represented in a computer by enumeration, but rather by generation. It
is convenient to require that given some value from irk], say j, the corresponding k such that I k = j
can be found: this is the operation of finding out the coefficient of a given power of x.

MACSYMA produces power series via the POWERSERIES command in a closely related
form. The triple specified above is only a slight generalization of the representation: the
summation form used in MACSYMA devolves down to a subset of the integers, and thus the
exponents are a function of the index rather than members of the exponent set.

Furthermore, the MACSYMA default result for the product of two infinite series -
surn(aioxi,i,O,inf) and sum(bioxi,i,O,inf) has the form surn(sum(a+>b 1 J ->)xi+j,j,O,inf),i,O,inf) rather than
(with CAUCHYSUM:TRUE) sum(sum(a.obk_. j 0 k)oxk,k,O,inf) in which the coefficient of xk is a
finite sum. If the conversion to "Cauchy -style products were the only barrier, then there would be
little cause for alarm. Much more difficult is the generation of an explicit form for composition.
Although implicit forms, usually recurrence relations for the sequence (ai), can be calculated, these
do not satisfy our "finite closed form" restriction.

J J" '

Thus while infinite power series are a powerful mathematical construction, operations on them
may lead outside the domain of series with explicit finitely generated terms.

This is not to say this leads necessarily to intractable problems: on the contrary, we can say the
same thing about trigonometric or algebraic functions (square roots for example) since they may
lead from the finitely-generated rational numbers to algebraic or transcendental numbers.

Nevertheless, if one is attempting to compute with power series, it is useful to minimally ensure
that the ratio test for convergence can be computed for any power series expression:
lim(an/an,p,inf) < inf, where an is the coefficient of x". The finitely-generated restriction gives
one a good possibility for this, although it is not a necessary condition for the power-series ratio
test to be computable.

3. Truncated Power Series

T h e second type of series construction in MACSYMA which by and large ignores questions of
ultimate convergence, but has considerable advantage in terms of ease of computation, is the
truncated power series (TPS- so called in ALTRAN and SCRATCHPAD) or the “Taylor Series”
form in MACSYMA. Since it is unreasonable to restrict our discussion to Taylor series (no
negative exponents), and the name used in MACSYMA is primarily of historical origin, we will
use the phrase truncated power series or TPS to denote this type of expression. A T P S is a finite
subset of the coefficient-exponent pairs in a full power series. The representation includes an
indication of the order of truncation which has been imposed by the user andlor the system. In
some cases the order of truncation is altered by operations, which include all rational operations
(where division by TPS with a zero constant term may lead to a truncatedLaurent series with
negative exponents). Additional operations such as power series reversion, multivariate expansions,
a type of asymptotic expansion, and extension to more terms are described in the M A C S Y MA
manual (ref. 1, also see ref. 4 for a more detailed discussion of univariate TPS in M A C S Y M A) .
Other systems offering automated handling of TPS include ALTRAN and SCRATCHPAD (refs.
5,6). Facilities are present in many earlier algebra systems for handling “weighted variables” but i t
seems that only recently has an appreciation developed for the fact that these rudimentary power-
series ideas are easily generalized to operations such as inversion and reversion.

We indicate in passing that asymptotically fast methods of computation on TPS have been
described by Brent and Kung (ref. 7), Kung and Traub (ref. 8). to replace the classical methods
(see, for example, Lipson (ref. 9) or Knuth (ref. 10)). For the remainder of this paper we will be
concerned with the use of TPS in the solution of equations, and the relative rapidity of the
algorithms underlying the methods will not much affect the usefulness of the results.

For our purposes, we choose to omit from the TPS repertoire a number of the more
sophisticated features. We consider a TPS to be identical with a power series with the change that
{Ik}, the set of exponents, is necessarily finite (and a prefix of the infinite set), and each operation
on TPS must preserve as many terms in the answer as can be guaranteed correct, given the
operand description. In some cases additional assumptions are made. For example, given the TPS
Y - I-x+ ..., then 1/Y - l+x + ._.. Yet if Y is in fact ... + 1 - x + ..., e.g. llx + 1 - x + ... then 1/Y = x -
x 2 + ..., rendering even the constant term incorrect. Thus we will assume, except when explicitly
stated otherwise, that all negative exponent terms are given.

4. m e b r a i c Equations and Truncated Power Series

If we lay aside cautions concerning the validity of expressing an unknown function as a TPS,
we can often proceed to find the coefficients in the series by substitution into a defining equation.
W e illustrate with examples of algebraic equations and differential equations. Additional examples
can be demonstrated combining these two, or adding the operation integration.

T h e techniques in this section are not intended to be general prescriptions for all problems of
this nature, but to illustrate a common-sense approach which frequently is useful.

329’

I

Consider the following irreducible cubic equation:

T h e three roots for L obtainable by means of the cubic formula are, as expected, unwieldy. If
we assume the existence of a solution L(e)= sum(LLisei,i,O,inf) and try to determine {LLij by
substitution, we find that setting to zero coefficients of various powers of e in the equation result
in inconsistencies (e.g. -1 = 0). A few moments consideration of the defining equa.tion suggests that
such a series does not exist, but that if we solve for L3, then a cube root of the lowest term in e,
(e1) will provide a basis for expansion. In fact, substitution of e3 for e in the original equation (or
alternatively, expansion of L in terms of the cubermt of e), serves the purpose precisely.

Now that the general form has been chosen there are several levels of generality in which the
coefficients may be found.

, T h e infinite power series approach, namely to substitute power series forms into the defining
equation and solve for the arbitrary coefficients in closed form a s a function of n, the index of
dl3, would .be the most powerful. Unfortunately, MACSYMA cannot do this automatically,
although with sufficient prompting part of the algebra can be accomplished. (It would be
interesting to completely characterize what can be done by mechanical means to find closed form
solutions; the result would be analogous to the Riscti integration algorithm.)

Less satisfactory, but more to be expected considering the small set of solvable recurrences, is
the derivation of a recurrence which can be marched to any desired order.

Yet more likely is that a set of equations can be generated such that all LLi up to some fixed i - N can be found. Of course it may happen that the defining equations for the coefficients are no
more tractable than the original equation. This is certainly possible for algebraic equations but if
we start with a differential equation we have at least traded it for an algebraic problem.

Elementary arithmetical considerations suggest that polynomial equations of the form Ln-
eo(lower order terms in L) = 0 have formal power series solutions for L in terms of elln. In fact
the degree of the smallest non-zero term can be predicted. A complete procedure for such
determinations for algebraic expressions would be interesting, but in general we must tackle rather
difficult problems: The computation of LLo in L = sum(LLjsel,i,O,inf) given a defining polynomial
in L is in general as hard as (and may be the same as) finding an algebraic expression for L itself.
If e is missing from the equation, then trivially L- LLO

Some algebraic equations can be dealt with in a very powerful framework involving "Newton-
like" iterations. (ref. 8) Rather than use these somewhat esoteric methods here, we will proceed on a
more direct path to specific examples. Section 7 treats Newton iterations briefly. T h e results
coincide when both approaches are appropriate.

As an illustration of the algebraic substitution technique on the example given above, we

330

present the following dialogue with MACSYMA. The definition of the function SOLVEALL is
more complex than need be, perhaps, for this simple function, but it illustrates the "blind" use of
this substitution technique. In this particular case, LLo is found from the coefficient of eo, LLI is

found from the coefficient of e3 (and is chosen arbitrarily to be one of the three rmts of LL?-1 =

O), and LL2 through LL) are determined from the coefficients of et through e6. While LL5 and
LL6 appear in the equation, their values are not determined because the appropriate coefficients
are already zero.

(Cl) EQ: LA3-E~(L+1);
3

(Dl 1 L = E (L + l)

(C2) DEFTAYLOR(H(E),SUM(LLII]~EnI,I,O,INF));
(02 1 CHI

(C3) TAYLOR(SUBST(H(E),L,EQ),E,0,4);
3 2

(D3)/T/ LL + (3 LL LL - LL - 1) E
0 1 0 0

2 2 2
4 (3 LL LL + 3 LL LL - LL) E

2 0 1 0 1

2 3 3
+ (3 LL LL + 6 LL LL LL + LL - LL 1 E

3 0 2 1 0 1 2

2 2 2

4 0 3 1 2 0 2 1
+ (3 LL LL + (6 LL LL + 3 LL) LL + 3 LL LL

4
L L) E + . .
3

Note that the first three coefficients imply that LLo=O, LL1=-1/3, and LLl=O simultaneously,
clearly inconsistent.

(C4) EQ3:SUBST(EA3,E,EQ);

(D4) L - E (L + 1)
3 3

(C 5) RES:TAYLOR(SUBST(H(E),L,EQ3),E,O,6);

(D5)/T/ LL + 3 LL LL E + (3 LL LL + 3 LL LL) E
3 2 2 2 2

0 1 0 2 0 1 0

33 1

I

2 3 3
+ (3 LL LL , + (6 LL LL - 1) LL + LL - 1) E

3 0 2 1 0 1

2 2 2 4
+ (3 LL LL + (6 LL LL . + 3 LL) LL + 3 LL LL - LL) E

4 0 3 1 2 0 2 1 1

2 2 2

5 0 4 1 3 2 0 3 1 2 1
+ (3 LL LL + (6 LL LL + 6 LL LL) LL + 3 LL LL + 3 LL LL

5 2 2

2 6 0 5 1 4 2 ,3 0
- LL) E + (3 LL LL + (6 LL LL + ' 6 LL LL + 3 LL) LL

2 3 6
+ 3 L L LL + 6 L L LL LL + L L - L L) E + . - .

4 1 3 2 1 2 3

T h e value of RES above is the result of substituting a series into EQ3, the same as EQ, but
with E replaced by E3. We now define a fairly general program to solve for all the coefficients in
such a defining equation. The program below is not asymptotically fast, since examples can be
concocted for which it is O(n!) for n terms desired. Iterative methods described in section 6
provide the potential for much faster construction of terms, yet the relative simplicity of
SOLVEALL below -- in not relying on how the equation was generated, is attractive.

(C6) /* SOLVE EQ FOR CC[O] . CC[LIM] AS REQUIRED TO MAKE EQ(X) ZERO. */
SOLVEALL(EQ,X,CC,LIM):=
BLOCK([C,VARS,S,K],
K:O,
WHILE EQiO AND K<LIM DO

(C:COEFF(EQ,X,K),
I F CIO THEN

(VARS:LISTOFVARS(C),
UNK:MINF,/* MINUS INFINITY */
FOR I I N VARS DO

I F NOT(ATOM(I)) AND PART(I,O)=CC AND PART(I,l)>UNK THEN
UNK:PART(I,l),

/*PICK OUT HIGHEST INDEX */
/+ NO WAY TO HAKE COEFF. ZERO +/

I F UNK = MINF THEN ERROR("INCONSISTENT"),

UNK : CC[UNK 1,

332

S:SOLVE(C,UNK),
I F S =[J THEN ERROR("INCONSISTENT")

ELSE (IF REST(S)#[3 THEN PRINT
("MULTIPLE SOLUTIONS: FIRST ONE CHOSEN"),

UNK::RHS(EV(S[lJ)), /* ASSIGN COEFFICENT VALUE */
EQ:EWEQ))) ,

K :K+l))S

(C 7) SOLVEALL(RES,E,LL,6);
SOLUTION

MULTIPLICITY 3
SOLUTION

LL = 0
0

X I SORT(3) + 1
LL = - """""""

1 2

(E 1 0 1 LL = 1

MULTIPLE SOLUTIONS: FIRST ONE CHOSEN
SOLUTION

1

X I SQRT(3) + 1
LL = - """""""

2 6

LL = o
3

DONE

T h e difficulty with multiple solutions for LLl can be nicely resolved in MACSYMA as follows:

Let w be a primitive root of w3-1 (i.e. a rmt of the irreducible factor of w3-l with roots which
generate all distinct cube roots of 1: wz+w+l), remove old values of LL. and then set LL, to w.
SOLVEALL then uses the given value for LLl, and proceeds to find the other coefficients. By
informing MACSYMA via TELLRAT and ALGEBRAIC about the special properties of w, LL2
come out nicely reduced.

I -

(C13) (KILL(LL),TELLRAT(UV+W+l),
/* W IS PRIMITIVE CUBE-ROOT OF 1 8/

LL[1 J:W, ALGEBRA1C:TRUE)S

(C14) SOLVEALL(RES,E,LL,6); .

SOLUTION

MULTIPLICITY 3
SOLUTION

SOLUTION

LL = O
0

LL = O
3

5. Differential Equations and Truncated Power Series

This section deals with an admittedly trivial differential equation as an illustration. We
demonstrate the types of operations supplied by MACSYMA and how to use them. T h e
differential equation (assume right hand side is zero) is entered on line C17, we remove the
previous values for the LL-array, and generate the TAYLORSOL as given below.

(C17) DE:DIFF(H(E),E,2)-An2*H(E);
2

d 2
(D l 7 1 --- H(E) - A H(E)

2
dE

(C 1 8) KILL(LL)S

(C19) DETAYLOR:TAYLOR(DE,E,O,6);

(019) /T / 2 LL - LL A + (- LL A + 6 LL) E + (- LL A + 12 LL) E
2 2 2 2

2 0 1 3 2 4

334

2 3 2 4
+ (- L L A + 2 0 L L) E + (- L L A + 3 0 L L) E

3 5 4 6

2 5 2 6
+ (- L L A + 4 2 L L) E + (- L L A + 5 6 L L) E + . . .

5 7 6 8

(C20) SOLVEALL(DETAYLOR,E,LL,7)8

6 6 6 7

0 1

720 5040

A L L E A L L E

+ -"""" + """"- + . . .

. To check this result by "automatic" means, we use MACSYMA's ODE solver, which uses
standard textbook recipes, mostly drawn from reference 11. These procedures solve many classes of
first and second order linear ordinary differential equations. Anticipating a query about the value
of "A", we specify A > 0 below. The answer is reformatted by simplification via RADCAN. and
K1, K2 arbitrary constants are related to LLo and LL1 arbitrary constants by the simultaneous
solution of the two linear equations for initial conditions. The result is expanded as a Taylor
series to order 7 in E, where it is seen in line D32 to agree to that order with TAYLORSOL
generated earlier.

(C28) ASSUME(A>O)S

(C29) RADCAN(ODE2(DE,H(E),E));

DERIVD FASL DSK MAXOUT being loaded
loading done

- A E 2 A E
(029) H(E) = %E (K2 + %E K1)
(C30) /+ IMPOSE INITIAL CONDITIONS H(O)=LL[O], H'(O)=LLCll */
IC2(X,E=O,H(E)=LL[O],'DIFF(H(E),E)=LL[l]);

335

2 A E
(LL A + LL) %E LL A - LL

- A E 0 1 0 1
(031) H(E) = %E (""""""-"""" + """""- I

2 A 2 A
(C32) TAYLOR(RHS(X),E,O,7.)-TAYLORSOL;
(D32) /T/ o + . . .

We will return briefly to this example in the next section when steps (C19) through (C27) are
mathematically reformulated and simplified for the special case of a .regular solution to a second
order linear differential equation, expanded at the origin.

6. An Introduction to Asymptotic Series

This section will necessarily be very sketchy since asymptotic series are both complicated, and
discussed in great detail elsewhere. (see (ref. 2) for example).

Consider the function sin(l/x). It is not possible to construct a Taylor series in ascending
powers of x, since there are no derivatives at x-0. The fact that there is an essential singularity a t
zero is a sufficient barrier to power series expansion. However, for sufficiently large x. when I l x is
sufficiently small, sin(l/x) behaves like l/x (sin(y) = y + ...).

The notion of an asymptotic series is quite useful in the approximation of functions. Whether
or not the series converges is not necessarily important: just as we were willing to deal with a
truncated power series, we can deal with a truncated asymptotic series. MACSYMA is capable of
producing some series from defining expressions as illustrated below.

(Cl) TAYLOR(SIN(l/X),X,O,5);
E s s e n t i a l s i n g u l a r i t y encountered i n

1

X
SIN(-)

(C2) TAYLOR(SIN(l /X),[X,0,5,ASYMP]);

(02)/T/
1 1 1

X 3 5
- - "" + """ + . . .

6 X 120 X

Unfortunately, many of the most useful asymptotic expansions do not have such a simple

336

structure. For example, instead of a series in descending powers of x, we may need a series in
powers of exp(x). A series which MACSYMA cannot "automatically" handle is easily produced via
the program given below. The reference to Olver is ref. 2 in the References. We do not define
"irregular singularity" or "rank", but the interested reader may refer to ref. 2 for background.
Incidentally, this program is a demonstration of the brevity possible in MACSYMA programs fo r
non-trivial mathematical transformations.

(C3) /* EXTENSION OF LG (WKBJ) APPROXIMATION FOR LINEAR 2ND ORDER
ODE'S I N THE NEIGHBORHOOD OF AN IRREGULAR SINGULARITY.
(SUBCASE: UNIT RANK AT INFINITY). SECTION 7.1 I N OLVER.

(SOLVES
W//+F(Z)*W/+G(Z)*W = 0

6 IV ING SPECIF IED NUMBER OF TERMS.)
*/

ODE701(FF,GG,WW,Z,TMS):= /* 7 0 1 ind ica tes sec t ion 7.1 i n Olver */
BLOCK ([RHO],
LOCAL(F,G,LAMBDA,MU,A,W),

/*F[I] and G [I] represent terms i n expansion o f arguments
FF and GG */
F[I]:~LIMIT(Z^I~(FF-SUM(F[J]/ZAJ,J,O,I-1)),Z,INF),
G[I]:~LIMIT(ZAI~(GG-SUM(G[J]/ZAJ,J,O,I-l)),Z,INF),
RHO:(1/4*F[O]^Z-G[0 I)^(1 /2) ,
I F RHO=O THEN RETURN(ODE70103()) ,

/* lambda[0 1 and lambda[11 correspond t o two
/* SPECIAL CASE OF SECTION 7.1.3 */

s o l u t i o n s i n s e r i e s . Same f o r mu[O], mu[l]. */
LAMBDA[I] :=- l /Z*F[O I+(-1)"I*RHO,
MU[I]:=-(F[l]*LAMBDA[I]+G[l])/(F[O]+2*LAMBDA[I]),
A[O,O]:/Kl, A[O,l]:/K2, /* a rb i t ra ry cons tan ts */
A[S,I]:= 1/ (S*(F[O]+2*LAMBDA[I]))*

(SUM((LAMBDA[I]*F[J+l]+G[J+l]-(S-J-MU[I])*F[J])*A[S-J,I],
J, 1,s)

+(S-MU[I])*(S-l-MU[I])*A[S-l,I]),
W[I]:=XE^(LAMBDA[I]*Z)*ZAHU[I]~UH(A[S,I] /Z~S,S,O,TMS),

RETURN(WW=W[l]+W[O]))S

(C4) TESTF : (2*ZA2+2*Z+5) /2^28

(C 5) TESTG: (2*Z+3)/ZA2S

(C 6) ODE70l(TESTF,TESTG,W,Z,3);
/* s o l v e ~ 2 ~ W ~ ' + (2 s z n 2 + 2 * z + 5) * n +(Z*z+3)m = 0 */

337

3 K1 5 K 1 25 K1

2 2 2 3
"" + "" - ""- + K 1

8 Z 1 6 Z
+ """"""""""""

Z

This section is required for exercise 7.1.2 in Olver, so we proceed to fill in the "blank" in the
above program namely program ODE'IOIOS.
(C7) /* OLVER SECTION 7.1.3 "T rans fo rma t ion o f Fab ry " */
ODE70103():=
BLOCK([F2,G2,NEWF,NEWG,ANS],

F2:SUBST(ZA2,Z,FF),
G2:SUBST(ZA2,Z,GG),
NEWF:2*Z*F2-2*Z*F[O]-l/Z,
NEWG:ZA2*(4*G2+F[O]A2-2*F[O]*F2),
IF 2*G[1]=F[O]*F[13 THEN

/* REGULAR SINGULARITY AT Z=INF: CONVERGENT POWER SERIES */
/*Method i n Olver, Section 5.4, b u t expand
a t i n f i n i t y . See below f o r expansion a t z e r o . */

ANS:ODE504INF(NEWF,NEW6,W,Z,TMS) /* AT INF*/

ANS:ODE701(NEWF,NEW6,W,Z,TMS),
ELSE

RETURN(WW=SUBST(SQRT(Z),Z,RHS(ANS)*%EA(-F[O]*Z/2))))S

(C 8) TESTF:E/ZS

(C9) TESTG:-(1/4+5/16/Z)/ZS

(C10) /*OLVER EXERCISE 7.1.2 */

K 1 SQRT(Z 1 K2 - SQRT(Z)
(K 1 - ------, 1 %E (- - - - - - - + K 2) %E

SQRT(Z 1 SQRV Z 1
(D 1 0) W = - _ - _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ + _-________------_---------

314 3 /4
Z Z

(C 1 1) /* T H I S ANSWER HAPPENS TO BE EXACT. PROOF? BELOW: at/

'DIFF(W,Z,2)+TESTFa'DIFF(W,Z)+TESTG*W,X,DIFF,EXPAND;
(D l 1 1 0

Another standard technique for series expansion is the method of Frobenius. Here we dispense
only with the case of roots of the indicia1 equation which do not differ by an integer (or zero).
The latter case requires separate, but fairly simple treatment. One example is worked on lines
(C13>(C15).

((212) /at OLVER SECTION 5.4.1: REGULAR SINGULARITY.
ASSUME WITHOUT LOSS OF GENERALITY EXPANSION AT ORIGIN
(METHOD OF FROBENIUS). */
ODE504(FF,GG,WW,Z,TMS):= /+Olver sect ion 5.4.1 */
BLOCK([DISCR,SD],
LOCAL(ALPHA,F,G,A,Q,W),

F[I]:~LIMIT((Z*FF-SUM(F[J]~ZnJ,J,O,I-1))/ZnI,Z,O),
G[I]:~LIMIT((Zn2~GG-SUM(G[J]~ZnJ,J,O,I-1))/ZnI,Z,O),
DISCR:(F[0]-1)"2-4*G[O], /* DISCRIMINANT OF INDICIAL EQUATION */
SD : RADCAN(SORT(DISCR)) ,
ALPHA[I]:=(-F[O]+l+(-1)"I*SD)/2, /* QUADRATIC SOL. */
Q(X):=X*(X-l)+F[O]*X+G[O],
WII]:=ZAALPHAII]*SUM(AIS,I]*Z"S,S,O,TMS),
A[S,I]:=-SUM(((ALPHA[I]+J)*F[S-J]+G[S-J])*A[J,I],J,O,S~l)/

Q(ALPHA[I]+S),
A[O,O]:'Kl,A[O, 1]:'K2, /*ARBITRARY CONSTS */
I F INTEGERP(ALPHA[O]-ALPHA[l]) THEN ODE505010 /* ROOTS DIFFER

BY INTEGER OR 0 at/
ELSE RETURN(WW= W[O]+W[13))s

FF:%E*Z/ZS
GG:-3*COS(Z)/Zn2S
RATSIMP(ODE504(FF,66,W,Z,3));

2 SQRT(3) 3
w = (Z ((176 SQRT(3) - 2 5 3) K 1 Z

339

9'

2
+ (108 - 117 SQRT(3)) K1 Z + (7 2 SQRT(3) - 4 3 2) K 1 Z + 792 K1)

3 2
+ (- 176 SQRT(3) - 253) K2 Z + (117 SQRT(3) + 108) K2 Z

SORT(3 1
+ (- 72 SQRT(3) - 432) K2 Z + 792 K2)/(792 Z 1

To close this section, we show how to generate, in a rather brief program, a Taylor series
expansion we have seen before; the solution to DIFF(H(E),E,2)-A2~)H(E)=0.

(C 1 6) /+ EXPANSION I N SERIES, ORDINARY POINT.
ASSUME WITHOUT LOSS OF GENERALITY EXPANSION AT ORIGIN
OLVER SECTION 5.3.2 */
TAYSER(FF,GG,W,Z,TMS):=

LOCAL(A,F,G),
BLOCK([1,

A[O]:'Kl,A[1]:'K2,
A[S]:=-l/S/(S-l)*SUM(F[J~(S-J-l)~A[S-J-l]+G[J]*A[S-J-2],J,O,S-2),
F[I]:=LIMIT((FF-SUH(F[J]~Z"J,J,O,I-1))/Z"I,Z,O),
6[I~:=LIflIT((GG-SUH(G[J]*Z"J,J,O,I-1))/Z"I,Z,O),

RETURN(W=SUM(A[S)+Z"S,S,O,THS)))S

This is the same as D27 of the previous section.

340

7. T h e Use of Newton Iteration over a Power Series Domain

A powerful technique for solving algebraic problems is pointed out in references 8 and 9. W e
restate Lipson's theorem 3.1 (ref. 9) to justify the following constructions.

THEOREM: Let f(x) be a polynomial with coefficients in a power series domain (series in t
with coefficients in F) D=F[[tll. Let a in F be an O(t) approximation to a root of f(x) (i.e. x=a is a
solution to f(x)-0 when t-0). Furthermore, suppose that a satisfies f'(a) 4 0 when to0 (where the
prime indicates differentiation with respect to x)

Then the sequence of iterations xo=a, XI, .I computed according to

is such that Xk is an o(t(Zk)) approximation to x.

Reference 8 generalizes this result somewhat by explaining how an iteration can be constructed
for a polynomial f(x) which does not satisfy the condition on f'(x). This "Newton polygon"
calculation will not be demonstrated here.

We note in passing that our earlier examples do not satisfy the requirements of this theorem.

T h e following protocol does not demonstrate the most efficient formulation of this iteration,
since one can concoct (as demonstrated in ref. 9) efficient Horner's rule evaluation of a polynomial
and its first derivative at a power-series point, and furthermore, the essential computations can be
done by asymptotically faster methods (ref. 7). Yet, since one is much more likely to be interested
in the first few terms of an expansion than any others, an O(n2) or slightly worse algorithm for n-
terms is not objectionable.

(C l) /* NEWTON'S METHOD FOR ROOT-FINDING OVER A POWER SERIES
DOMAIN */
/a INPUTS:
EX= EXPRESSION I N VARIABLES W AND T. EX=O WILL BE SOLVED

APPROXIMATELY
FOR W(T) TO ORDER N OR HIGHER.

IS NONZERO. (THIS CONDITION I S CHECKED.) */
AROOT IS A ZERO OF EX WHEN T=O, SUCH THAT DIFF(EX,W) WITH T=O

NEWTONROOT(EX,W,T,N,AROOT):=
BLOCK([DEX,S, I],
DEX:DIFF(EX,W),
/II CHECK I N I T I A L CONDITIONS I N NEXT I F STATEMENT +/
I F TAYLOR(SUBST(AROOT,W,EX),T,O,O)/O

OR TAYLOR(SUBST(AROOT,W,DEX),T,O,O)=O
THEN RETURN(PRINT("N0T ABLE TO EXPAND AT ", AROOT)),

S:AROOT,
FOR I:1 NEXT 2*1+1 WHILE I < = N DO

(S:RATDISREP(SUBST(S,W,S-TAYLOR(EX/DEX,T,O,I))),
S:TAYLOR(S,TP0,2+I+l) /* PREPARE FOR NEXT ITERATION +/),

RETURN(S))S

(C2) /+ THE FOLLOWING EXAMPLES ARE TAKEN FROH REF. 9. */
/* PROBLEM 1. COMPUTE A SQUARE ROOT OF A=1+T+2+T"2+3+TA3+ ...
TO ORDER 8 ERROR. */

+ . . .
(C3) /+PROBLEM 2 . COMPUTE A SOLUTION T0.A CUBIC a/

NEWTONROOT(XA3-2/(1-T)rX*1,X,T,7,1);
2 3 4 5 6

(0 3) / T / 1 + 2 T - 6 T + 58 T - 622 T + 7506 T - 96822 T

7
+ 1307466 T + . . .

(C4) /*PROBLEM 3 . REVERT T=ATAN(X) TO FIND A SERIES FOR TAN(T)
*/

NEWTONROOT(ATAN(X)-T,X,T,7,0);
3 5 7

T 2 T 1 7 T

3 15 315
(04) /T/ T + -- + ---- + --"- + . . .

8. Comments on the Implementation

Several notational problems seem apparent. If a TPS is displayed as Y - 1 + x + ..., does this
mean that Y - 1 - x is O(x2)? How would the display differ if the difference was O(x3)? T h e
ellipsis is insufficient, and 1 + x + O(x2), if such is the case, would resolve the question. This
information is available internally, in most cases, anyway. As pointed out by R. Zippel (private
communication), how can one compute n in sin(x)z+cos(x)2-1 - 0 + O(xn) ? A calculus of orders
seems to be the next step in this direction: (l+O(x2))o(l+O(y)) = 1 + O(x20y), not 1 + Addition and
other operations would have to be implemented, along with a careful treatment of the asymmetrical
use of this notation on the left and right hand sides of equations.

Another deflciency, not illustrated in this paper exists in terms of the consistency of TPS
operations in parts of MACSYMA. For example, matrix operations with TPS entries forces a
conversion to a non-TPS form. In the process, information is lost which can be.of considerable
benefit. It also appears that significant time savings may be possible by recognition of TPS
matrices as a special case: computing the inverse of a matrix of TPS entries can be done in a
variety of ways by matrix-wise series expansion, for example.

T h e implementation of infinite summations "SUM"s is currently in flux, because of important
work due to R.W. Gosper (reported in this Proceedings). While it is possible to solve the equation
(CI) as mentioned earlier, to get a closed-form formula for LLn in finite terms, the manipulation
is not yet routine using MACSYMA.

What is needed, minimally, is the capability of moving independent variables both in and out
of summations: assum(x',i,O,inf) <I=> sum(asxi,i,O,inf), changing the index: xaosum(xl,i,O,inf) <==>

sum(xi+a,i,O,inf) <=I> sum(xi,i,a,inf), taking terms out 'of sums: sum(ai,i,O,inf) ==> ag+sum(ai,i,l,inf)
or sum(ai,i,O,n) ==> sum(ai,i,O,n-I) + an. Suitable generalizations of these transformations, plus a
neat methodology for specifying which transformation to use where would provide a basic facility.
More elaborate simplifications can be programmed, but without this type of facility, the lone user
has a difficult time. We note'that thisproposed facility is different from one which does exist in
MACSYMA, namely the simplification of sums to closed forms when possible, mentioned in the
previous paragraph.

9. Conclusions

We hope we have given a sufficient, number both of main-line and incidental comments
concerning the use of series, especially in MACSYMA, to illustrate the principal well-understood
approaches. While the details of derivation of these methods, and the underlying (sometimes quite
sophisticated) programming and mathematical algorithms have not been explained in this paper,
sufficient information on these topics is available in the references.

We have deliberately avoided discussion of methods for convergent or asymptotic series
approximations of integral equations, and transcendental equations. This is not because of lack of

343

material: rather, there is a wealth of material, especially on integral approximation and integral
equation solution. The work of Stoutemyer (ref. 13) originally in REDUCE has been made
available in MACSYMA by Richard Bogen (reported in these Proceedings). Early work by P a u l
Wang (ref. 14) and Seth Chaiken at MIT provide procedures for integral approximation by the
methods of stationary phase, steepest descent, and other schemes. There are a growing number of
references to work in other systems, principally REDUCE, FORMAC (ref. 15) and ALTRAN along
the lines of the more straightforward rational methods. These may be identified through recent
ACM SIGSAM Bulletin listings of abstracts. We would like to note the interesting use of Taylor
series in a combined numericallsymbolic mode as in (refs. 16, I f) . The idea in these papers is to use
symbolic methods in a compiler as a technique for producing numerical approximation programs.
By separating the two passes, machine resources can be optimized for the differing requirements of
symbolic and numerical routines.

We hope to classify, describe, and extend approximation work in a variety of areas, including
but not limited to the areas explored in this paper, at a later time. pi number of researchers have
examined simple applications of the method of successive approximation (Picard's method) in a
symbolic context. T h e combination of this technique with power series is very promising.

A common question raised by the automatic solution of equations by series is: How do we know
these methods produce a convergent series, or how can we find the radius of convergence. T h e
answer to both of these questions is: we use the same methods that mathematicians use by "hand";
there is very little magic in the automation of these methods. They are for the most par t "formal"
methods whose convergence can be guaranteed only by additional consideration of the problem at
hand. Indeed, some of the asymptotic methods will usually produce a divergent series; this does not
mean the result is meaningless or useless, since such series have a wide use in the literature.

Significantly absent from this paper is a discussion of the validity of series solutions, and how
to diagnose the appropriateness of various approaches to solving algebraic or differential
equations by approximation. This problem is probably best solved by practitioners in each given
area who are familiar with particular approaches relevant in their special problem domains. T h e
tools provided by MACSYMA, plus simple programs as outlined above serve as early steps toward
more useful cooperation between the applied mathematician and the computer.

REFERENCES

1. MACSYMA Users Manual. Lab. for Computer Sci., Massachusetts Inst..Technol., 1975.

2. Olver, F. W. J.: Asymptotics and Special Functions. Academic Press, 1974.

3. Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. John Wiley and Sons
(Interscience), 1965.

4. Zippel, R. E.: Univariate Power Series Expansions in Algebraic Manipulation. Proceedings of
the 1976 ACM Symposium on Symbolic and Algebraic Computation. Aug. 1976, pp. 198-205.

5. Norman, A. C.: Computing with Formal Power Series. ACM Trans. on Math Software, vol. I .
no. 4, Dec. 1975, pp. 346-356.

6. Brown, W. S., ALTRAN User Manual. Bell Telephone Lab Inc., 1973.

7. Brent, R.; and Kung, H. T.: Fast Algorithms for Manipulating Formal Power Series. Tech. Rep.,
Computer Sci. Dep., Carnegie-Mellon Univ., Jan. 1976.

8. Kung, H. T.; and Traub, J. F.: All Algebraic Functions Can be Computed Fast. Tech. Rep..
Computer Sci. Dep., Carnegie-Mellon Univ., July 1976. July, 1976.

9. Lipson, J.D.: Newton's Method: A Great Algebraic Algorithm. Proceedings of the 1976 A C M
Symposium on Symbolic and Algebraic Computation, Aug. 1976, pp260-270.

IO. Knuth, D. E., The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley Pub. CO., Inc., 1969.

11. Boyce, W. E.; an d DiPrima, R. C.: Elementary Differential Equations. JohnWiley & Sons, Inc.,
1969.

12. Nayfeh, A. H.: Perturbation Methods. John Wiley & Sons, Inc., 1973.

13. Stoutemyer, D. R., Analytical Solution of Integral Equations Using Computer Algebra. UCP-34.
Computer Sci. Dep., Univ. of Utah, June 1975. (to appear, ACM Trans on Math. Software).

It. Wang, P. S.: Application of MACSYMA to an Asymptotic Expansion Problem. Proceedings of
the 27th ACM Annual Conference Volume 2, Aug. 1972, pp. 844-850.

15. Hanson, J. N.: Experiments with Equation Solutions by Functional Analysis Algorithms and
Formula Manipulation. J. Computer Physics, vol. 9,1972. pp. 26-52.

16. van de Riet, R. P.: The Automatic Solution of Partial Differential Equations by Means of

345

Taylor Series Using Formula-Manipulation Methods. ACM SIGSAM Bulletin, no. 28. Dec.
1973, pp. 33-36.

17. Barton, D.; Willcrr, I. M.; and Zahar, R. V. M.: Taylor Series Methods for Ordinary
Differential Equations - An Evaluation. Mathematical Software. J. Rice, ed., Academic Press,
1971, pp. 369-390.

I

POWER SERIES SOLUTIONS OF

ORDINARY DIFFERENTIAL EQUATIONS I N MACSYMA*

Edward L. L a f f e r t y
The MITRE Corpora t ion

INTRODUCTION

A program has b e e n d e v e l o p e d w h i c h e x t e n d s t h e d i f f e r e n t i a l e q u a t i o n
s o l v i n g c a p a b i l i t y of MACSYMA t o power series s o l u t i o n s a n d i s a v a i l a b l e v i a
t h e SHAKE l i b ra ry . The p rog ram i s d i r e c t e d t o w a r d t h o s e classes o f equa t ions
w i t h v a r i a b i e c o e f f i c i e n t s (i n p a r t i c u l a r , t h o s e w i t h s i n g u l a r i t i e s) a n d u s e s
the method of F r o b e n i u s . P r o b a b l y t h e m o s t i m p o r t a n t d i s t i n c t i o n b e t w e e n t h i s
p a c k a g e a n d o t h e r s c u r r e n t l y a v a i l a b l e o r b e i n g d e v e l o p e d i s t h a t , w h e r e v e r
p o s s i b l e , t h i s p r o g r a m w i l l a t t e m p t t o p r o v i d e a " c o m p l e t e " s o l u t i o n t o t h e
e q u a t i o n r a t h e r t h a n an approx ima t ion , i .e . , a f i n i t e number of terms. T h i s
s o l u t i o n w i l l t a k e t h e f o r m o f a sum of i n f i n i t e series.

T h e F roben ius me thod s t a t ed s imply he re as a r e f r e s h e r (s e e R e f . 1, p.189
f o r a more comple te t rea tment) asserts t h a t f o r a homogeneous, l i n e a r ,
d i f f e r e n t i a l e q u a t i o n of the form:

y" + P(x> y ' +Q(x) y = 0 (1)

where P and (z are p o l y n o m i a l s i n X, t hen a t the o rd inary po in t ,X=Xp, a s o l u t i o n
ex is t s of the form:

INF
"" ""

\ N

/ N
Y = > . A X

""
""

N = O

where A and A are a r b i t r a r y c o n s t a n t s a n d are t h e v a l u e s of Y(0) and Y'(0).
0 1

The method f u r t h e r asserts t h a t f o r a r e g u l a r s i n g u l a r p o i n t , X=Xs, t h e
s o l u t i o n i s t h e sum of two l i n e a r l y i n d e p e n d e n t s o l u t i o n s :

I -

*. The work descr ibed i n t h i s p a p e r w a s begun by B. K u i p e r s ' i n 1 9 7 3 a n d t h e
a u t h o r is i n d e b t e d t o h i m f o r s e v e r a l i d e a s a n d a t least o n e r o u t i n e . I n
a d d i t i o n , t h e a u t h o r wishes t o acknowledge the encouragement and assistance of
J. P . G o l d e n t h r o u g h o u t t h e c o u r s e o f t h e e f f o r t .

347

IN F
"" ""

\ R2 + N \ R 1 + N
I N I N

1J = 0 N = O

Y =. K2 (> B (R2) X) + K 1 > A (R l) X

"" "" ""
""

where r l and r 2 are t h e e x p o n e n t s of t h e s i n g u l a r i t y .

The re are two spec ia l cases:

i) r l = r 2 , i n which the B ' s are f o u n d t o b e A' (r l) * a n d t h e s e c o n d
s o l u t i o n c o n t a i n s a l o g a r i t h m i c term;

and i i) r l - r 2 = S , an i n t e g e r , i n which the B ' s are found t o be (r - r2) A ' (r2)
a n d t h e s e c o n d s o i u t i o n c o n t a i n s a l o g a r i t h m i c term except f o r t h e
v e r y s p e c i a l case i n which i t i s f o u n d t h a t some one of t h e A ' s (i n
a d d i t i o n t o A) i s a r b i t r a r y (s e e r e f . 2 f o r a p a r t i c u l a r l y

c o m p l e t e t r e a t m e n t of t h i s c a s e) .
0

A t t o p l e v e l , a f t e r a LOADFILE(SERIES,FASL,DSK,SHARE), the p rogram i s .
c a l l e d by the s ta tement Sf idIES(equat ion , y , x), where "equat ion" is a second
o r d e r l i n e a r o r d i n a r y d i f f e r e n t i a l e q u a t i o n a n d "y" and "x1' are the dependent
a n d i n d g p e n d e n t v a r i a b l e s r e s p e c t i v e l y . (Of cour se , t he dependenc ie s be tween
t h e v a r i a b l e s m u s t b e e s t a b l i s h e d p r i o r t o t y p i n g t h e e q u a t i o n .)

RATIONALE FOR COMPLETE SEKIES SOLUTIONS

V i r t u a l l y a l l e l e m e n t a r y c o u r s e s i n d i f f e r e n t i a l e q u a t i o n s i n t r o d u c e t h e
s t u d e n t t o t h e power series method a t a n ear ly s t a g e , a n d many such courses
c o n t i n u e t o s o l v e p r o b l e m s by u s i n g d i r e c t s u b s t i t u t i o n of t h e power seLies
i n t o t h e e q u a t i o n a n d d e t e r m i n i n g t h e r e c u r r e n c e r e l a t i o n . E v e n i n t h o s e
i n s t a n c e s w h e r e t h e s t u d e n t i s i n t r o d u c e d t o a p p r o x i m a t i o n m e t h o d s u s i n g T a y l o r
c o e f f i c i e n t s t o d e t e r m i n e a r e c u r r e n c e r e l a t i o n f o r e a c h term i n t h e s o l u t i o n ,
t h e au tho r s (fo r example , see r e f e r e n c e s 1 , 2 , 3 , 4 , 5) f r e q u e n t l y w i l l r e v e r t t o
d i r e c t s u b s t i t u t i o n so t n a t t h e s t u d e n t nay b e t t e r u n d e r s t a n d t h e b e h a v i o r o f
t h e v a r i a b l e s , a r . b i t r a r y c o n s t a n t s , a n d parameters of t h e e q u a t i o n s .

While the mathematician who i s i n t i m a t e l y f a m i l i a r w i t h t h e t h e o r y a n d

* A ' (r 1) d e n o t e s t h e p a r t i a l d e r i v a t i v e of A w i t h r e s p e c t t o R e v a l u a t e d a t
r l .

p r a c t i c e o f s o i v i n g d i f f e r e n t i a l e q u a t i o n s may h a v e n o d i f f i c u l t y r e c o g n i z i n g
i n s t a n t l y t h a t c e r t a i n f o r m s are . Bessel e q u a t i o n s , L e g e n d r e e q u a t i o n s , o r
hype rgeomet r i c s , t he ave rage ma themat i c i an o r , more impor t an t ly , t he eng inee r
who h a s o n l y a s u p e r f i c i a l u n d e r s t a n d i n g o f t h i s s u b j e c t may n o t . E a r l y i n t h e
p u r s u a n c e o f t h i s p r o j e c t , I c o n f r o n t e d several advanced degreed mathemat ic ians
w i t h t h e e q u a t i o n (l a t e r f o u n d i n R e f . 6 , p. 97) :

dY
2 "

d Y dX
-" - " + Y = O

2 x
dX

Unly one of f i v e e v e n o f f e r e d a t e n t a t i v e i d e n t i f i c a t i o n of t h i s e q u a t i o n
as a Bessel, and of t h e f i v e , two p r o c e e d e d t o s o l v e i t by the method of
ProDenius. (The above equat ion w i l l a l s o b e u s e d t h r o u g h o u t t h i s p a p e r t o
i l l u s t r a t e some of t h e i n t e r n a l s o f t he p rog ram. These r e su l t s w i l l be numbered
(4 a) , (4 b) , e t c .)

Summar iz ing , t hen , t he r eason fo r i nc lud ing such a c a p a b i l i t y w i t h i n
l.IACSYPk, w e f i n d i t u s e f u l f o r :

a. t h e s t u d e n t who w i s h e s t o u n d e r s t a n d t h e t h e o r y ;

b . t he ma themat i c i an o r eng inee r who may f a i l t o r e c o g n i z e t h e p a r t i c u l a r
form; and

c. t h e t h e o r e t i c a l m a t h e m a t i c i a n w o r k i n g o n a d v a n c e d f o r m s who p r e f e r s t o
s t a r t from bas ic p r i n c i p l e s .

THE 14ETHOD

The f i r s t s t e p i n t h e s o l u t i o n p r o c e s s i s t h e d i a g n o s i s of t h e e q u a t i o n
f o r s i n g u l a r i t i e s . W h i l e o n l y o n e (t h e o n e a t which a s o l u t i o n i s d e s i r e d) of
t h e s e s i n g u l a r i t i e s is of concern t o the p rog ram fo r wha t i s t o f o l l o w , i t may
b e g e n e r a l l y u s e f u l f o r t h e u s e r t o know a t w h a t p o i n t s t h e e q u a t i o n p o s s e s s e s
p o l e s of one so r t o r ano the r . The p rog ram uses S tou temyer ' s
ZEROSMJDSINGULARITIES r o u t i n e b e c a u s e o f i t s g e n e r a l i t y , e.g., i t w i l l f i n d
p o l e s of l o g (x) , t a n (x) , e tc . , as w e l l as polynomials .

T h e i n d i c i a 1 e q u a t i o n is computed from:

2
R + (P - 1) K + Q = O

0 0

349

2
Y (0) = L i m (xP(x)) and Q(0) = L i m (x (Q(x))

x=>o x=>o

S o l v i n g t h i s e q u a t i o n f o r K y i e l d s t h e r o o t s r l and r2 . From t h e s e r o o t s , i t
i s determined whether tile f i n a l s o l u t i o n w i l l c o n t a i n a l o g a r i t h m i c term, i .e . ,
i f r l = r 2 o r i f r l - r 2 = S (a n i n t e g e r) . In a d d i t i o n , t h e v e r y s p e c i a l case
i s d e t e c t e d i n w h i c h t h e r o o t s d i f f e r by a n i n t e g e r , b u t t h e s o l u t i o n d o e s n o t
p o s s e s s a l o g a r i t h m i c term, i . e . , wherein:

A = O
i-1

a n d t h e r e f o r e , t h e c o e f f i c i e n t A i s f i n i t e a n d a r b i t r a r y . .
i

A t t h i s p o i n t i t i s t i m e t o b e g i n t h e d i r e c t s u b s t i t u t i o n o f t he series:

INF
"" ""

\ N+R

I 11
Y = > A X

"" ""

N = O

(r=O f o r a n o r d i n a r y p o i n t) i n t o t h e e q u a t i o n a n d e v a l u a t e t h e d e r i v a t i v e s .
The PIAC;SYr.IA POCJEKSERIES f u n c t i o n i s t h e n u s e d t o d e t e r n i n e a s i n g l e series f o r
t h e e n t i r e l e f t - h a n d side of the equat ion .*For our example (eq . 4) the resul t
i s :

INF
"" ""

\ R + I6 2

I 16 I 6 I 6
> A X + (A R + (2 1 6 - 2) A R

""
""

I6 = 0

2 R + I 6 - 2
+ (I 6 - 2 1 6) A) X

* While t h i s i s a f o r m o f o v e r k i l l f o r t h i s o p e r a t i o n , t h e r o u t i n e c a n h a n d l e
t h e j o b and w i l l b e n e c e s s a r y f o r la ter o p e r a t i o n s .

350

An i m p o r t a n t f e a t u r e of the p rog ram is the rou t ine wh ich computes t he
r e c u r r e n c e ' r e l a t i o n . T h i s is done by removing the summation s ign and by
e q u a t i n g l i k e p o w e r s of t h e i n d e p e n d e n t v a r i a b l e t o z e r o . Some program
s h o r t c u t s are t a k e n i n t h i s p r o c e s s , b u t i t is e s s e n t i a l l y a r e p l i c a t i o n of
what is done by h a n d . T h e e x a m p l e r e s u l t l o o k s l i k e t h i s :

2 2 R + N - 2
(A K + 2 N A R - 2 A R + N A - 2 N A + A > x (4b 1

14 N N N N N - 2

T h e r e c u r r e n c e r e l a t i o n w h i c h is a v a i l a b l e t o t h e u s e r is e x p r e s s e d i n t h e
form:

A = f (N) A
N 14 -PI

o r f o r s i n g u l a r p o i n t s :

A (R) = f (IJ ,R) A
IJ N -1.1

i f C-1, t h e r e are some adjustments which must now be made t o t h e rest of t h e
s o l u t i o n . * F o r o u r e q u a t i o n t h e r e c u r r e n c e r e l a t i o n b e c o m e s :

A
N - 2

= - """""_""""
w (R + IJ - 2) (R + N)

l n some cases t h i s i s as f a r as t h e u s e r may want t o g o i n d e t e r m i n i n g t h e
s o l u t i o n t o h i s e q u a t i o n . I n p a r t i c u l a r , i f t h e f u n c t i o n o n t h e r i g h t - h a n d
s i d e of e q u a t i o n (8) c o n t a i n s more than one "A" term, n o e a s y s i m p l i f i c a t i o n
method is ava i l ab le , and t he p rog ram can t hen compute on ly a f i n i t e number of
terms f o r each of t h e s o l u t i o n s t o b e d e t e r m i n e d . I n t h e s p e c i a l cases, of
c o u r s e , a p p r o p r i a t e d i f f e r e n t i a t i o n of t h e r e c u r r e n c e r e l a t i o n i s r e q u i r e d
b e f o r e t h i s c a n b e d o n e f o r t h e s e c o n d s o l u t i o n . I n a l l cases where t he
r e c u r r e n c e r e l a t i o n i s e x p r e s s e d as a s i n g l e term i n A , t h e p r o g r a m t h e n
p r o c e e d s t o d e t e r m i n e a c o m p l e t e s o l u t i o n as a n i n f i n i t e series. It i s h e r e
t h a t t h e s y s t e m must perform two i n t e r e s t i n g f u n c t i o n s w h i c h w i l l b e d e s c r i b e d
i n t h e n e x t s e c t i o n , i .e . , d i f f e r e n t i a t i o n of p a r t i a l p r o d u c t s a n d t h e

* These w i l l n o t b e d e s c r i b e d i n d e t a i l h e r e f o r l a c k of space, b u t s u f f i c e i t
t o s a y t h a t some "A" va lues mus t be set t o z e r o i n t h e s o l u t i o n , a n d t h e
exponen t s of t h e i n d e p e n d e n t v a r i a b l e m u s t b e a d j u s t e d t o r e f l e c t t h e m i s s i n g
term .

I

s i m p l i f i c a t i o n of p a r t i a l p r o d u c t s * * i n t o factor ia ls a n d p o l y n o m i a l s .

T h e s p e c i a l cases r l = r 2 a n d r l - r 2 = 5 are h a n d l e d by t h e following
r e l a t i o n :

d I
N I

I
N dK I e v a l u a t e d a t r l

B = """_

a n d t h e s o l u t i o n s w i l l h a v e t h e l o g a r i t h m i c f o r m . F o r o u r e q u a t i o n w h i c h is
t h e r l - r2 = S = 2 case, t h e f i n a l s o l u t i o n w o u l d b e :

Y = B (-
.O

IHF
"" K 2 K ""

\ (HARLJl(1, M) + HARil(1, M - 1)) (- 1) x
/ 2 K

> """"""""_""""""""""""
""
"" 2 (K - l)! K!
K = 1

2

IIJF INF
"" K 2 - K "" ""
"" K 2 K
\ (- 1) x 1 \ (- 1) x
/

K = 1 K = 1

+ LOG(X) (> --------------___-) + -) + A > """""""""

2 K 2 0 1 2 K
""
"" 2 (K - l) ! K! 2 (K - l)! K! ""

""

*

THE COMPLETE SOLUTION

P r o o a u l y t h e u o s t i n t e r e s t i n g s e c t i o n of t h e p r o g r a m i s t h a t w h i c h
p e r f o r m s t h e t r a r i s f o r u a t i o n f r o m e q u a t i o n s (4 c) t o (4 d) . T h i s i n v o l v e s

** The term " p a r t i a l p r o d u c t s " i s u s e d t o d i s t i n g u i s h t h e n f r o m c o m p l e t e l y
f i n i t e p r o d u c t s , i . e . , t n o s e t h a t c a n b e c o m p u t e d b y t h e f u n c t i o n , PRODUCT,
a n d i n f i n i t e p r o d u c t s . A n o t h e r commonly a c c e p t e d term i s " i n d e f i n i t e "
p r o d u c t s .

* T h e U<ti f u n c t i o n a n d i t s product ana log , FFF, i s d i s c u s s e d i n t h e n e x t
s e c t i o n .

352

e x p r e s s i n g t h e r e c u r r e n c e r e l a t i o n as a n i n f i n i t e series of p a r t i a l p r o d u c t s i n
14, tile index , and R, t h e g e n e r a l e x p o n e n t o f t h e s i n g u l a r i t y . T h i s m u s t b e
d i f f e r e n t i a t e d w i t h r e s p e c t t o K i n t h e two s p e c i a l cases (eq. 9) and then
s i m p l i f i e d .

Two s l i g h t l y d i f f e r e n t a p p r o a c h e s were t a k e n t o t h i s p r o b l e m a n d c o d e f o r
b o t h c u r r e n t l y ex i s t . The f i r s t , r e t a i n i n g t h e PRODUCT and SUM forms
th roughou t , i s deemed t o b e i n f e r i o r a n d w i l l . n o t b e d e s c r i b e d h e r e ; b u t a
package does ex is t which can handle t h e s i m p l e r e q u a t i o n s u s i n g t h i s t e c h n i q u e .

In work ing w i th t he more compl i ca t ed cases, i t was f o u n d u s e f u l t o c h a n g e
t h e r e p r e s e n t a t i o n of t h e p a r t i a l p r o d u c t s t o t h e more compact " fac tor ia l
f u n c t i o n " (FFE') o f Rainvi l le (see Ref . 3 , pp 109-112) .

FFF(exp,n)=exp(exp+l) (exp+2). . . (exp+n-1) n 2 1

and FFF (exp, 0) =1, exp #O

and t he famil iar s p e c i a l c a s e :

F F F (l , n) = n ! (1 l a)

This metnod has a d i s t i n c t a d v a n t a g e i n t h a t q u o t i e n t s o f FFF's s i m p l i f y
e a s i l y and t h e g r a d i e n t of FFP w i t n respect t o a v a r i a b l e f i r s t a r g u m e n t is
s i m p l y

d (FFF(exp ,n)) ""_ """" = HARM(exp,n) FFF(exp,n)
d r

where IWM(exp,n) i s t h e p a r t i a l sum of the harmonic series:

n
""
""

\ 1

I exp + k
M I 4 (exp , n) = > ""̂ "

""
""

k = l

a n d t h e s p e c i a l case:

W - l (1 , n) = SUM(l/k,k, l ,n)

353

Simplification of factorial function quotients is accomplished using the
following algorithm:

FFF(alph,nalph)/FFF(bet,nbet):=

FFF(m+l,n-n)̂ (pow)

FFF(min(alph,bet),abs(rho))*signum(rho)
"""""""~""""""""""""-

where :
rho=alph-bet
p o w = p o l y s i g n (a l p h + n a l p h - b e t n e t)
m=nin(alph+nalph-l,bet+nbet-1)

and n=max(alph+nalph,bet+nbet)-min(alph+nalph,bet+n~et)

thus giving nicer looking results. More importantly it allows the easy removal
of the troublesome denominators (see Ref. 3 , p.44) which occur in case ii)
aDove since

FFF(r-r2,1)

FFF(r+k-rZ,n)
"-"""""

simplifies by the above algorithm to

1

FFF(r-rZ-l,l) FFF(r-rZ+l,n-1)
"""""""""""""""

In addition, the compact notation for FFF and H A R M may lead eventually to
automatic recognition of closed forms by HACSYMA, or at least assist a user's
visual recognition process.

USER OPTIONS

There are several facilities which the user nay control. In particular,
he may control the point around which the solution is determined by setting the
variable POIldTEXPAiiD: [O] and the maximum number of terms to be computed in a
finite series by setting the variable NUl4TEMlS: [51. The above variables have
only limited use in the program currently. However, they have ultimately a more
general use. In particular, the POINTEXPAND flag is used to determine whether
the equation being processed-has singularities at that point. However, if the
variable is not zero, the translation will not be made to the new point and,
therefore, although the diagnosis will be correct, the solution will not.
NUMTERMS is used for computing a partial series as well as for computing the
Taylor coefficient of polynomials P and Q and may be useful in those cases
where a complete solution is not possible.

354

._ .

I n a d d i t i o n t o t h e a b o v e o p t i o n s , t h e u s e r may set t h e f l a g VERBOSE1
[FALSZ] t o TRUE t o o b t a i n a u t o m a t i c p r i n t o u t of t h e d i a g n o s t i c i n f o r m a t i o n
r e l a t i n g t o t h e e q u a t i o n , i.e., t h e r e c u r r e n c e r e l a t i o n , t h e l o c a t i o n a n d t y p e
of s i n g u l a r i t i e s , a n d t h e r o o t s of t h e i n d i c i a 1 e q u a t i o n . T h i s may b e
p a r t i c u l a r l y u s e f u l i f t h e r o u t i n e is a t t e m p t i n g t o s o l v e a n e q u a t i o n f o r w h i c h
i t is n o t now equipped, i.e., i r r e g u l a r s i n g u l a r p o i n t s , c o n i p l e x r o o t s ,
equa t ions o f o rde r h ighe r t han two , etc., o r w h e r e t h e u s e r is o n l y i n t e r e s t e d
i n the d i a g n o s t i c s r a t h e r t h a n t h e c o m p l e t e s o l u t i o n .

THE FUTURE

I n o r d e r t o p r o d u c e a program i n a r easonab le pe r iod o f time, c e r t a i n
r e s t r i c t i o n s were imposed which can, wi th varying amounts of di f f . icul ty , be
r e l a x e d , a n d t h e r e are some b a s i c e x t e n s i o n s w h i c h m i g h t p r o v e v a l u a b l e i n t h e
f u t u r e . We w i l l a t t e m p t t o e n u m e r a t e some of t h e s e h e r e . It shou ld be no ted
t h a t s e v e r a l of t h e i n t e r n a l r o u t i n e s were coded w i th t hese ex tens ions i n mind ,
i .e., c e r t a i n d a t a are now computed which are n o t u s e d i n t h e c u r r e n t p r o g r a m ,
and t hese w i l l b e n o t e d w h e r e a p p l i c a b l e .

Higher Order Equat ions

The metnod of F r o b e n i u s r e a d i l y e x t e n d s t o h i g h e r o r d e r l i n e a r
d i f f e r e n t i a l e q u a t i o n s a n d up t o t h e p o i n t of d i a g n o s i s , t h i s h a s b e e n
g e n e r a l i z e d . T h i s , i n t h e a u t h o r ' s o p i n i o n , i s t h e m o s t v a l u a b l e f u t u r e
improvement which might be undertaken. It i s r e q u i r e d t h a t t h e n r o o t s of an
n t h o r d e r e q u a t i o n b e computed, n a r b i t r a r y c o n s t a n t s b e a l l o c a t e d , a n d n
s o l u t i o n s b e g e n e r a t e d . E v e n t h e special cases of r l = r 2 ... = r n a n d r l -
r 2 , r 2 - r3, ..., rn-1 - r n = S can b e s o l v e d by t a k i n g n d e r i v a t i v e s of t h e
r e c u r r e n c e r e l a t i o n , a l t h o u g h t h i s may r e q u i r e some thought (see Ref. 3, p .
1 2 u) .

Solut ion Around Points Other Than Zero

W h i l e t h e u s e r c a n e a s i l y t r a n s f o r m h i s e q u a t i o n i n t o o n e w h o s e s o l u t i o n
can b e de te rmined a round zero by t h e t r a n s f o r m a t i o n :

newX=X-point (15)

i t would b e a t r i v i a l matter f o r t h e p r o g r a m t o r e c o g n i z e POINTEXPAND = 0 and
perform t h e t r a n s l a t i o n a n d r e t r a n s l a t i o n f o r him.

Complex Roots

An u n n e c e s s a r y r e s t r i c t i o n e x i s t s i n t h e c u r r e n t p r o g r a m f o r r l , r 2
complex. The r e s t r i c t i o n c a n b e r e l a x e d r a t h e r e a s i l y by computing the real
p a r t s o f r l and r 2 and us ing them in t h e d i a g n o s i s a n d s o l u t i o n o f t h e e q u a t i o n
as f o l l o w s :

355

RE(rl)>RE(r2)

I r r e g u l a r S i n g u l a r i t i e s

A t p r e s e n t t h e p r o g r a m w i l l n o t a t t e m p t a s o l u t i o n a r o u n d a n i r r e g u l a r
s i n g u l a r p o i n t . It may b e p o s s i b l e t o a t t e m p t c o n p l e t e s o l u t i o n s t o t h e
e q u a t i o n a r o u n d a n i r r e g u l a r s i n g u l a r i t y , b u t some work must b e d o n e t o
d e t e r m i n e t h e v a l i d i t y of s u c h s o l u t i o n s (s e e R e f . 3 , p. 1 3 6) . T h e r e are,
however , o the r app rox ima t ion me thods fo r t hese cases which may b e a d e q u a t e i n
view of t h e w o r k i n v o l v e d t o i n c o r p o r a t e a n e x t e n s i o n t o t h e p r o g r a m .

Convergence Tests

A u s e f u l f e a t u r e c o u l d b e a d d e d t o t h e p r o g r a m a t t h e p o i n t of g e n e r a t i o n
o f t h e r e c u r r e n c e r e l a t i o n .or a f t e r c o m p l e t i o n o f t h e f i n a l s o l u t i o n w h i c h
would perform a tes t fo r conve rgence . Th i s wou ld g ive t he u se r impor t an t
a d d i t i o n a l i n f o r u a t i o n r e g a r d i n g t h e r a d i u s of c o n v e r g e n c e a n d v a l i d i t y o f t h e
s o l u t i o n s t h u s o b t a i n e d .

User Cueing

I t w a s assumed i n t h e c o n s t r u c t i o n of t h i s c a p a b i l i t y t h a t t h e u s e r c o u l d
s u b s t i t u t e t h e v a l u e s f o r a r b i t r a r y c o n s t a n t s a f t e r t h e s o l u t i o n was o b t a i n e d .
F o r c e r t a i n a p p l i c a t i o n s , i t m i g h t b e d e s i r a b l e f o r t h e p r o g r a m t o i n t e r r u p t
i t s e x e c u t i o n t o a s k t h e u s e r f o r t h e i n i t i a l v a l u e s o f t h e d e p e n d e n t v a r i a b l e
and i t s d e r i v a t i v e s . I n a d d i t i o n , w h e r e v a r i a b l e parameters are u s e d i n s t e a d
of c o n s t a n t s i n t h e p o l y n o m i a l c o e f f i c i e n t s , P and Q , the p rogram does no t
c u r r e n t l y make a s s u m p t i o n s r e g a r d i n g t h e r a n g e s a n d w i l l , f o r example, produce
s o l u t i o n s i n terms of f 4 1 N (pa rame te r , . 0) and b l A X (pa rame te r , 0) . The u se r
may, of c o u r s e , r e e n t e r t h e r o u t i n e h a v i n g made a s sumpt ions abou t t he
p a r a m e t e r s . (S e e t h e f i n a l example of t h i s p a p e r .) However, s i n c e t h e s e
r e l a t i o n s h i p s c o u l d , i n f a c t , c a u s e a m a j o r v a r i a t i o n i n t h e s o l u t i o n t y p e , i t
would b e d e s i r a b l e f o r t h e p r o g r a m t o s e n s e t h e s e a m b i g u i t i e s q n d c u e t h e u s e r
f o r h i s a s s u m p t i o n s p r i o r t o f i n a l d i a g n o s i s o f t h e e q u a t i o n a n d i n i t i a t i o n o f
t h e s o l u t i o n .

Non-Homogeneous Cases

A t p r e s e n t t h e p r o g r a n s o l v e s o n l y homogeneous l i n e a r d i f f e r e n t i a l
equa t ions o f t he fo rm:

Y"+P(x)Y'+Q(x)Y=O (1 7)

A n o t h e r p a r t i c u l a r s o l u t i o n may b e o b t a i n e d f o r e q u a t i o n s of the form:

Y"+P(x)Y'+Q(x)Y=F(x) (17a)

356

p r o v i d e d t h e f u n c t i o n o n t h e r i g h t - h a n d s i d e c a n b e e x p r e s s e d as a power
series. Sone mod i f i ca t ion w i l l b e r e q u i r e d t o t h e p r o g r a m t o r e c o g n i z e t h i s
case as well as t o i n s u r e t h a t t h e r o u t i n e w h i c h c o m p u t e s t h e r e c u r r e n c e
r e l a t i o n d o e s n o t e n c o u n t e r a n y p r o b l e m s i n c o m b i n i n g t h e a d d i t i o n a l series.

Non-Polynomial Coeff ic ients

I f t h e f u n c t i o n s P and Q c a n b e e x p r e s s e d i n terms of power series, t h e n a
m o d i f i c a t i o n o f . t h e p r o g r a m c a n b e made similar t o t h e non-homogeneous case
which would a l low so lu t ion by t h i s method. Agai'n t he re mus t be some work done
t o d e t e r m i n e w h e t h e r t h e r o u t i n e s w i l l e n c o u n t e r e x p r e s s i o n s b e y o n d t h e i r
c a p a b i l i t y .

CONCLUSION

S e v e r a l m o r e e l a b o r a t e e x t e n s i o n s come t o mind , bu t t hey r equ i r e more t han
a mere m o d i f i c a t i o n of t h i s package . The f i r s t w o u l d b e t o i n c o r p o r a t e t h i s
c a p a b i l i t y i n t o t h e c u r r e n t ODE s o l v i n g c a p a b i l i t y of IUCSYMA s u c h t h a t i n
s i t u a t i o n s w h e r e 0 3 G canno t r ecogn ize a p a r t i c u l a r f o r m , i t a u t o m a t i c a l l y
a t t e m p t s a power series s o l u t i o n . N a t u r a l l y , c e r t a i n tests s h o u l d b e made by
UOE (o r a l t e r n a t i v e l y , b u i l t i n t o t h e SERIES p a c k a g e) p r i o r t o t h i s a t t e m p t
depend ing on t he cu r ren t s t a t e of i t s c a p a b i l i t y .

A f i n a l a n d f a r more ex tens ive ven tu re wh ich has been sugges t ed by o the r s
and i s h i g h l y e n d o r s e d i n t h i s p a p e r i s t h e e x t e n s i o n o f 14ACSYMA's d i f f e r e n t i a l
e q u a t i o n s o l v i n g i n t o t h e realm of s y s t e m s of d i f f e r e n t i a l e q u a t i o n s similar t o
t n a t c u r r e n t l y a v a i l a b l e f o r a l g e b r a i c e q u a t i o n s i n LINSOLVE, SOLVE, and
ALLSYS. T h i s is a p ro jec t wor thy of s e r i o u s c o n s i d e r a t i o n by t h e community a t
l a r g e a n d w i l l r e q u i r e t h e r e s o u r c e s of more t h a n a s i n g l e i n d i v i d u a l s i n c e , i n
o r d e r t o do i t j u s t i c e , a l l of t h e d i f f e r e n t i a l e q u a t i o n c a p a b i l i t i e s s h o u l d b e
examined f o r p o s s i b l e i n c l u s i o n i n s u c h a system.

357

T h e f o l l o w i n g s e c t i o n c o n t a i n s e x a m p l e s o f s e v e r a l o f t h e cases n o t e d
above, i .e . , s o l u t i o n a r o u n d :

1. s i m p l e o r d i n a r y p o i n t ;

2 . o r d i n a r y p o i n t i n w h i c h o n e o r b o t h s o l u t i o n s t r u n c a t e a f t e r a f i n i t e
n u m e r of terms;

3 . r e g u l a r s i n g u l a r p o i n t (r l - r 2 = S) b u t t h e s o l u t i o n d o e s n o t c o n t a i n
a l o g a r i t h m i c term;

4 . t h e g e n e r a l i z e d h y p e r g e o m e t r i c e q u a t i o n i n w h i c h t h e u s e r makes a n
i n i t i a l a s s u m p t i o n .

N o t e t h a t i n t h e t ex t w e have a l r eady shown an example of t h e l o g a r i t h m i c case
of 3 . aDove and t h e r e a d e r i s d i r e c t e d t o t h e SHAKE demo f i l e f o r a more
complete set of examples.

(C6) DEPLLJDEl.lCIES(Y (X)) ;
(d6)

(C7) / * o r d i n a r y p o i n t s * /

EQl:DIFF(Y,X,2)+3*X*llIFF(Y,X)+3*Y=O;
2

d Y dY
-" + 3 X - - + 3 Y = O

2 dX
dX

(D7)

(C8) SEKIES(Z,Y,X);
ILi F INF
"" 1: 2 K + 1 "" K 2 K "" ""

\ (- 3) x \ (- 3) x
(US) y = A (> ---------------) + A > ---""""

1 / 3 K o / K
""
"" FFF(-, K) 2 "" "" 2 K!
K = O 2 K = 0

(C 9) /*Truncation of a series term*/
E Q L : (1+XA2) *DlFF (Y ,X, 2) -2&Y=O;

358

2
2 d Y
(X + 1) --- - 2 Y = O

dX
(C10) SEjSLJiS(%,Y,X);

INF
"" K 2 K + 1 ""

2 \ (- 2) x
(Dl 4) Y = A (X + l) - A > """""""""""

0 1 / K
""
"" (2 K - 1) (2 K + 1) 2
K = O

(C42) /*roots a positive integer-non-log case*/

EQ8:X*DIFF(Y,X,2)-(4+X)*DIFF(Y,X)+2*Y=O$

(C43) SEKIES(%,Y,X);
114 F
""
"" K 2
\ X x x

5 / (K - 2) (K - 1) K (K - 5)! 0 12 2
(D22) y = 60 A (>). + A (-- + - + 1)

""
""

K = 5

(C25) /*The generalized form of the hypergeometric is:*/
HUl:X*(l-X)*UI~F(Y,X,2)+(GAI.1-(ALPHfBETA+l)*X)*DIF~(Y,X)-~PH*BETA*Y~~~

2
dY d Y

dii 2
(D2b) -- (GAi.1 - X (BLTA + ALPH + 1)) - ALPH Y BETA + (1 - X) X --- = 0

dX

(C27) /*since we already know that SEKLES will be confused by the paramet
ers */
ASSUME (l-GAl.I>O)$

(C28) SEKIES(HYl,Y,X);

359

(D38) Y = A
0

IlJF
"" K - GAM + 1 ""

\ FFF(- GAM + ALPH + 1 , K) X FFF(BETA - GAM + 1, K)
(> """"""""""""""""~"""""""""""""-)
I FFF (2 - GAM, fo K!

K = O
""
""

INF
"" "" K
\ FFF (ALPH, K) X FFF (BETA, K)

+.I3 > """"""""""""""

0 1 FFF(GAM, K) K!
-"-
""

K = O

REFERENCES

1. Boyce, W. E . ; an3 DiPrima, R. C . : E l e m e n t a r y D i f f e r e n t i a l E q u a t i o n s . S e c o n d
e d . , John IJ i ley & Sons , Inc . , 1969.

2. Coddington, E. A. : An I n t r o d u c t i o n t o O r d i n a r y D i f f e r e n t i a l E q u a t i o n s .
P r e n t i c e - i i a l l , I n c . , 1961, pp. 162-166.

4 . Hildebrand , F . 6.: Advanced Ca lcu lus fo r Eng inee r s . P ren t i ce -Ha l l , I nc . ,
1949.

5. K a i n v i l l e , E . I).: Elemen ta ry D i f f e ren t i a l Equa t ions . Macmi l l an , 1949.

6. Watson, G. N.: Theory of Bessel Funct ions . Second ed . , Cambr idge Univers i ty
Press , 1958.

35

Radical Simplification Made Easy*

Richard E.6. .Zippel
Labamtory for Computer Sclence

Massachusetts Instttute of Technology

It is a fortunate person who has not been stymied by an algebraic manipulation
system whlch was unable to manipulate fully the algebraic numbers and functions which
occured'ln a problem. Here we see three distinct types of problems. Some slmplifiers
ere "gulllb.lelt enough to be coaxed Into erroneous sequences of transformations such as:

On the other hand, there are the %onservative" simplifiers which refuse to reduce
expressions like 6- fi6 to zero. This concjervatism is at least partially justified by
the sort of problems into which the guillbie simplifier can fall. The thlrd and final
deficlency in algebraic simplifiers (and the one which we will dwell on the most) may be
descrlbed as the problem of the naive simplifier, Typical of these sorts of problems Is:

Admlttediy many users are themselves guilty of being naive in this sense (the above
Identity is not really obvious), but for some reason we don't seem willing tu accept this
nalvetii on the part of out systems.

Some previous work has been done on the problem of slmpllflcation of algebraic
expresslons. S.L. Klelman {ref. ?) dld early work on the problem in a more general
context. Both B.F.. Cavlness (ref. 2) and R.J. Fateman (ref. 3) did work on unnested
radicals In thelr theses and have written a recent summary of their work (ref. 4). Our
work generallzes all the results on simpiiflcation of radicals contained in these two
theses. For the sake of slmpliclty all the examples given here are in algebraic number
fleids. However, the results are fully general and depend upon'only the characterlstlc of

*
This work was supported, In part, by the United States Energy Research and

Development Administration under Contract Number E(11-1)-3070 and by the National
Aeronautics and Space Administration under Grant NSG 1323.

36 I

ground field.

. . Basic Defintttons
We will need some mathematical terminology in this discussion. If k Is a field then

t h e field of rational functions in a over k, K = k(a) , is called an extension of k. If a is
t h e zero of some irreducible polynomial with coefficients in k, p(x) , then K is said to be
en algebraic extension of k an,d a is said. to be algebraic over k. Otherwise K is a
transcendental extension of k and a is transcendental over k. K is a k vector space of
finite dimension if and only if u Is algebraic. .The degree of K over k , written [K : k] is
finite when a is algebraic and in which case is equal to the degree of p (x) . If p (x)
consists of two terms, 1.e. p (x) = ax"+b, then K is said to be a radlcal extension of k. A
tower of fields Is said to be radical if each extension in the tower is radical. Generally
a radlcal f ield L over k is an extension of k for which there exists a radical tower of
fields between L and k. (Note that we differ from a common usuage of the term "radical
extension" which refers to a purely inseparable extension.) An element of a radical
extension of k can always be written In terms of (possibly nested) radicals.

. The work contained In this paper comes from the author's thesis (ref. 6). The
proofs of the theorems quoted in this paper can be'found there.

Gullible and Conservative Radical Simplifiers

The problem into which the gullible system fell, and which the conservative system
avoided, can be characterized by the following transformation: &+a&. Assuming all
square roots take the same branch and ail occurrences of a single rat t ic i i r e f e r 10 t l 1p

same element (assumptions which will be malntained throughout this paper) this
transformation is valid If and only if arg AB = erg A + arg 8. The. correct. transformation Is

fi-, ,l(argAB - w A - a r s r ~ Y 2

Thus we have di(-l)(-l) = -J-"J"T= (- l) (- l) = 1 as desired.

In general this transformation takes the following form:

C'A,A, ... A, ,i(argA ,... A, - argA, - ... - a r g A , I l r ~ 1 '.. ,c. m

Similar expressions are valid for logarithms but their consideration would take us a bit
far afield.' It should be noted that for algebraic functions there are other techniques
which may be useful. For instance, we might want to know under what circumstances

= a&, where A and 8 are functions of x. This may be a valid transformation for x
In a certaln region, in which case restricting x to that region may be the appropriate

course of action.

From now on we shall assume that in implementing the techniques outlined below
sufficient care Is taken with regard to the problems just mentioned. This is not too
difficult and we shall point out the one point at which care must be exercised.

Construction of the Bash

Assume ' K Is a radical extension of k of degree m. Then K is an m-dimension
k-vector space. We propose to find a set of elements {a1, ..., a,} contained In K ,
linearly independent over k, which spans K. Then ' ail the..eiements of K may be
expressed as:

wlal + w2a2 + ... + w,a,,

where the o1 are elements of k. As an example consider K = k (Z , &, &I, k =Q. We
shall see that [K : k] = 4 but we have eight candidates for the a,:

l,&, a, 6, &&, &6, &6, &J5 6.
Our algorithm will recognize 6 = Z&, thus picking as a basis 1, fi, a, . f i & A

more llluminatlng example is provided by k = 0 < 6) , K = k (f i . 6 + 2 6). Recognizing J"
2(6 + 2 6) = (2 + &I2,

we will use 1, fi as the basis elements and let

This technique is based on the foHowing result:

Theorem: Let K = k(a l ' l f , ..., a, ' I r) and let A = (x=alS1 ... a> I O s s , s r and x i s not a

perfect rth power of an element of k } , then the degree of K over k is the number of
elements of A.
It Is clear that [KE k] is bounded by the cardinality of A since K contains the set of
linear combinations of elements of k and r* roots of elements of A. The theorem says
that ths elements of A are actually linearly independent. This is precisely the set of
basis elements for which we were looking.

In the general problem we have radicals f l l 1 l r l , ..., fl,'l'n which we adjoin to k. Let

I be the least common multiple of the rI and let a1 = fl,'"r. So, K = k (a lllf, ..., an1").
Clearly. A, = {a,81 ... an% I O s sI < I,} forms a group under multiplication modulo u:~. Some

of the elements of A, may actually be perfect rth powers as elements of k. Any such

ele,ment generates a subgroup of elements which are perfect rth powers in k. Consider

363

the following example:

Bx6x6 = 21 6 elements.
we also have

let n=3 , r = 6 and assume all the r, are also 6. A 1 has

If we can determine that a12a: is a perfect slxth power. then

All are perfect sixth powers that Is, a, Is a perfect cube and a2 is a perfect square.
This reduces the sine of A, by a factor of 6.

There are many techniques available for finding the "quotient group" as it is called.
We present one method which is particularly suggestive in our particular case. With
notation as before, the n a, are of order r,. Let alml ...anmn be an element of A, which is

a perfect rth power in k. Assu.me m, + 0. Let w = m l / (r , - m l) modrl, where the ratio is
reduced to lowest terms In P (the rational integers) and then the division takes place In
the finite fleld. Then

(a2m2.,. a / n) W = (a ,'1 -ml IW = a ,m1

and we have reduced a,% order to m,. We also know that

(a2m2 ... anmny1'm1 = 1, -

so we may repeat the procedure with this new smaller expression and obtain further
reductions.

To Illustrate this technique consider our favorite example:

J r k - fi.

We have a, = 6 + 2 6, a2 = 2, k = Q(6). We are looking for perfect squares. 6, is of

order 4 and there are only 3 elements to check: dl = 5.+ 2 6, a2 = 2, and u p 2 = 10 +

4 6 . a2 is obviously not, a perfect s.quare. For a1 we have to work a bit. Assume it
was,

6 + 2 6 = (a + b f i) 2 = a2 + 0 b 2 + 2 a b 6

where a and b must be rational numbers. The resulting pair of equations must possess
solutlons In rational numbers. This leads to

a4 - 5e2 + 6 = (a2 - 2) (a2 - 3) = 0

which plainly has no rational roots. Thus a, is not a perfect square in Q (6) . (An

alternatlve manner of determining thls is to factor x* - a1 over Q (6) i f an algebraic
factoring algorithm is available.) By analogous reasoning we deduce that ala2 is a

perfect square (which was pointed out earlier). Now comes the dangerous part.
taking square roots wq get

Making the appropriate substitution in (1) we finally get 7 Afi (or &) as desired.

By

An
inappropriate choice of the root of unity at this step'wouldbe the source of Incorrect
answers.

A t SYMSAC '76, Fateman posed the following problem due to Shanks:

J K Z Z E + J I ~ - 2 ~ + 245s - 10,129 = J G Z S + ' G .
The triply nested radlcal Is not a square as an element of Q (m, j-), but as

an element of ~(6, E, JiGTZEi) It is:

16 - 2-+ 2466 -.lo&= (&+ J l l - &I2.
In the next sectlon we show how to determine the fields In which to search for perfect
powers; what we conslder here is the resulting simplification problem:

JGTKG+J iTXZ=J i i i i T iZ . (2)

- Uslng the technlque just described, we have a1 = 1 1 + 2&, a2 = 1 1 - 2-, and a3
22 + 24% alap = 6, which happens to be a perfect square In k. This gives the following
reducllon:

Jm = -A& Jn.
Contlnuing, we get

a , a , = 2 4 2 + 4 ~ + 2 2 ~ + 4 ~ ~ = (& + 1 1 +2&512.

So finally

Denesting Nested Radicals

The fundemental concept in this section Is that of nestlng, and in particular, what
the nesting level of a field is. Rather than give the rigorous definition of nesting order
(which would probably only serve to confuse the reader) we shall rely upon his intuition

and the following examples. The fields k(&'),),:k(a,&), k (J a) , and U (J 3)

365

are singly nested over. k;k, k, and A(&) respectively. 'The next. to last field is singly
nested because It is contained in a field which Is slrrgiy nested (1.8. the second field).
Thus the nesting' of a field Is roughly the minimal amount of nesting 'needed to express
the most deeply nested expression In the fleld over a particular ground fieid. We are
not able to compute the minimal nesting level of any field but we are able to prove the
following theorem.
Theorem: Let E be 8n dgebraic extension of k of nesting level n and let L = €(a'''). If l.
can be expressed wlth nesting level n then there is an element /3 of a proper subf!eld of
E such that aB Is a perfect rth power In K.

As an example consider JS + 2 6. Then k . = Q, E = Q(6). The only proper

subfield of E is Q. Thus we have # = 2 or 3 since 2 (6 + 2 6) = (2 + f i) 2 and 3 (5 + 2fi)
= (3 + -6)'. In the general quadratic case we have

B (p + 4 = (a, + a , G 2 .

Since do and fl are elements of a field we, may assume a, = 1 and we have the equations

B p = a t + q , ~ 2 8 ,

or /3* - 4flp + 4 q = 0.
Sinae must be ratiqnal p2 - Q must be a perfect square. Letting d2 = p2 - q, we have ' A.

the foilowing classical formula:

It is easy to extend this technlque to arbltrary degree extensions of k. From a
practical point of view, however, the systems of equations can become quite unwieldy
when the degree la much above 3. The 'author's thesis contains a number of general
formulas which were derived in this manner, but wlth quite a bit of work. For Instance:

Conclusions

We have hoped to point out that what had been thought to have been difficult
problem, the simplification of nested radicals, is actually not very much mop difficult
than simplification- of un-nested radicals. Of the algorithms presented only the
de-nesting algorithm is really very costly, and that algorithm is really not necessary. Ail
the results mentioned here are either classical or direct corollaries of classical results.
What we hope to have contributed is a novel way of looking at classical mathematics.

. JI

REFERENCES

1. Klelman, S.L.: "Computing with Rational Expressions in Several Algebraically
Dependent Variables." Bell Laboratories Tech. Rep., 1968.
2. Caviness, B.F.: On Canonical Forms and Simpliflcation, Ph.D. Diss., Carnegle-Melion

Univ. 1 W38,
3. Fateman, R.J.: Essays in Algebraic Simplification. Ph.D. Diss., Harvard Univ. 1971.

(Revised version avallable'as MIT Tech. Rep. MAC TR-95 1972.
4. Cavlness, B.F. and Fateman, R.J.: Simpliflcatlon of Radical Expressions.

Proceedings of the 1976 Symp. on Symbolic and Algebraic Computation, Aug. 1976, pp.

329-338.
6. Zippel, R.E.B.: llSimpliflcation of Nested Radicals with Applications to Solving

Polynomial Equations.Il M.S. Thesls, Mass. Inst. of Tech., 1977.

36

A CONSTRUCTIVE APPROACH TO

COMMUTATIVE RING THEORY

David A. Spear

Massachusetts I n s t i t u t e o f Technology

1. 1 NTROOUCT 1 ON

We a r e b u i l d i n g , in MACSYMA a system f o r Commutative Ring Theory .
The o b j e c t i s t o d e t e r m i n e how much o f the theory o f commutative r i n g s

can be made e f f e c t i v e , and t o r e a l i z e those parts of the theory on

a computer We adopt 2 basic goals :

(1) t o prov ide a langu'age c a p a b i l i t y .
(2) t o p r o v i d e a problem-solv ing capabi l i ty .

O u r m a i n i n t e r e s t i s in so lv ing r ing theory problems ;

however i t i s c l e a r l y d e s i r a b l e t o be able to express

i n f o r m a t i o n in a language reasonably close to that o f r i n g t h e o r y

We p resen t he re an ou t l i ne o f t he system as we env is ion i t

The implementat ion has just begun and i s proceeding rap id ly

but a s o f n o u o n l y a smal l part of the system i s ready for use .
2. ADMISSIBLE RINGS

By a n a d m i s s i b l e r i n g we mean a r i n g u h i c h i s a l l o u a b l e in

our system . As the system grous , the c lass of admiss ib le r i ngs

Uill expand . Some axioms o f a d m i s s i b i l i t y a r e :

369

(1) f i s admissible (z denotes the integers) . -
(2) I f R i s admissible so i s R f X 1 .
(3) I f R i s admissible and I i s a f i n i t e l y generated ideal of R

then R / I i s admissible

(4) I f R i s admissible and R i s an in tegra l domain

then the quot ien t f ie ld o f R i s admissible .
(5) I f R and S are admissible so i s their d i r e c t sum .
(6) I f R and S are admissible so i s t h e i r tensor product (over Z) .
(7) I f R i s admissible so i s any f i n i t e l y generated subring of R .

The smal les t c lass o f r ings sa t is fy ing these axioms ue s h a l l c a l l

the e lementary r ings . Thus we have

(elementary r ings) c (admissible rings)

I n i t i a l l y , a l I admissible r ings will be elementary .
Examples o f elementary r ings :

2 112
(1) Q [X I // [X - 2 1 (t h e f i e l d Q(2 1 1

2
(2) Z [X I // [X + 1 1 (the r ing o f Gaussian integers)

2 7 2 3 4
(3) Z [A,B,Cl // [A B - C , A B C 1

(4) Q [X , Y l // [X - Y 1

5
2 3

I t should be apparent that the elementary rings form a large

and i n t e r e s t i n g c l a s s o f r i n g s .

370

3. ALGORITHMS FOR ELEMENTARY RINGS

B u i l t i n t o t h e system are a co l lect ion o f a lgebra ic a lgor i thms

which uork in any elementary r i n g . Some o f these algorithms

a r e c l a s s i c a l o t h e r s f a i r l y r e c e n t , and some due to the author ,

are apparent ly neu . I n developing the system most o f pur energy

has been directed touard enlarging and .improving i t s package o f

a lgo r i t hms . To g ive an idea of the strength of the system

ue l i s t some of the problems which i.t i s able to solve .
Let R be an elementary r ing and l e t a , ... a E ' R .

1 n

Lst I be the idea I o f R generated by the a and 1 e t
i

S be the subr ing o f R generated by the a .
i

(1) i dea l membership .
Given r c R decide whether or not r c I .

(2) subr ing membership .
Given r c R decide whether or not r E S .

(3) sytyg i es .
Find a l l s o l u t i o n s x * ... x E R to the equation

1 n

a x +...+ a x - 0
1 1 n n

(4) a l g e b r a i c r e l a t i o n s .
Find a l l a lgeb ra i c re la t i on8 betueen a ... a

1 n

37 1

(5) p r i m e t e s t .
Decide i f I i s a maximal ideal

Decide i f I i s a pr ime ideal

Decide i f I i s a rad i ca l i dea l

(6) dimension .
Compute the dimension of R . (Krull dimension) .
Compute the transcendence degree of R over S .

(7) i d e a l i n t e r s e c t i o n .
Given i dea ls I and J compute t h e i r i n t e r s e c t i o n

(8) i d e a l c o n t r a c t i o n .
Compute the in te rsec t ion o f the idea l I with the subr ing s .

(9) units .
Given r c R decide i f r i s a unit i n R . I f SO , compute l / r

(18) z e r o - d i v i s o r s .
Given r E R decide i f r i s a zero-div isor in R .
I f so , f ind s c R , s z 0 , such that r s - 0 .

4. THE CANONICAL FORM

The s o l u t i o n t o each of the problems described above

depends on a fundamental algori thm for expressing ideals

in a canonica l form . This a lgor i thm appears to have been

f i r s t d iscovered by Buchberger (ref. 1) . Simi la r a lgor i thms

372

have been constructed by Richman (ref. 2) ' Shtokhamer (re f . 3) *

and Lauer (ref . 4) . My own vers i on * independent I y obtained *

i s o n l y s l i g h t l y d i f f e r e n t from Buchberger's ; houever the d i f ference

i s c r u c i a l - i t i s the key to solving most o f the problems l i s t e d i n

the p rev ious sec t i on . The canonical form for an ideal I i s denoted

IDEALBASIS (1) . IDEALBASIS has been implemented by David R. Barton .
5. EXAMPLES

We g i v e some concrete examples i l l u s t r a t i n g the use of the system :

2 3
a ~X,YI // [x - Y 3

(C2) DOMAINP (R) :

(C3) FIELOP (RI :

(03 1 FALSE

(C4) DIMENSION (R) :

(04) 1

(C51 I: IDEAL 1 [X I * R 1 :

(C61 RADICALP (I) :

(E6 1
3

Y e 1

(E71 Y NOT e I

(07) FALSE

(C8) RADICAL (I :

373

,.. ,, - . ." . "~

2
z [XI // tx - 21

t C l 0) I t IDEAL (t71 , R 1 ;

(C111 PRIMEP (I , R) :

(E121 (3 + X1 NOT e I

(€13) (3 - X I NOT a I

(013) FALSE

(C141 UNIT(3 + 2 * X , R 1 :

(E141 (3 + 2 X) (3 - 2 X) - 1

(014) TRUE

(015) P [X,YI

(C161 I: IDEAL ([X"3 * Y"4 , X"2 * Y"61 , RI :

(016)
3 4 2 6

[X Y , x Y 1

(C17) J: IDEAL ([X * Y " 3 , X " 5 1: Y1 , R1 :

(0171

(C181 INTERSECTION (1.J) :

(0181

. 9 5
[X Y , x Y1

2 9 5 4
I X Y , x Y 1

(Dl91 Q [X + Y * X Y 1

(I2201 MEMBER (X"2 + Y"3 * S 1 :

(D281 FALSE

6. FUTURE PLANS

Within the nex t year * many improvements and add i t ions to the

s y s t e m a r e l i k e l y . For example * we p l a n t o a l l o u R-modules

i n t o t h e system . Algebra ic Number Theory and Algebraic Geometry

o f f e r o t h e r p o s s i b l e d i r e c t i o n s f o r t h e system . However much o f

the g r o u t h o f t h e system u i l l be determined by the needs o f i t s u s e r s .
We uelcome suggestions fo r changes or new features .
A comple te cur ren t desc ip t ion o f the R ing Theory System

can be found on the MC f i I e :

DAS: RINGS INFO

T h i s f i l e a lso con ta ins desc r ip t i ons o f system commands ,

examples * and o ther in format ion re levant to the use of the system .
I would l i k e t o thank David R. Barton for hi5 excel lent implementat ion

o f IDEALBASIS . I u o u l d a l s o l i k e t o thank Alex P. Doohovskoy and

B a r r y M. T r a g e r f o r t h e i r encouragement and for many he lp fu l suggest ions .

I

375

REFERENCES

1. Buchberger , B . : Ein Algor i thmisches Kr i ter ium Fur

Algebraischen Gleichungssystems Aequationes Hathematicae ,

V O I . 4 , 1978 .

2. Richman , F . : Construct ive Aspects of Noether ian Rings .
Proc. American Math. SOC. , vol. 44 , 1974 , pp. 436 - 441 .

3. Shtokhamer , R . : Simple Ideal Theory : Some App l ica t ions

t o A l g e b r a i c Simp1 i f i c a t i o n . Tech. Rep. UCP-36 , Univ.

of U t a h , 1375 .

4. Lauer , M . : Canonical Representatives for Residue Classes

o f a Polynomial Ideal . Proceedings of the 1976 ACM Symposium

on Symbo I i c and A I gebraic Computation , Aug . 1976 , pp. 339 - 345 .

376

37
Reduction of the Equation for Lower Hybrid Waves in a Plasma

to a Nonlinear Schriidinger Equation*
by

Charles F. F. Karnoy

Research Laboratory of Electronics and Plasma Fusion Center,
Massachusetts Institute of Technology

The equations describing the nonlinear propagation of waves in an anisotropic p1asm.a are
rarely exactly soluble. However it is often possible to make approximations that reduce the exact
equations into a simpler equation. In this paper we will describe how MACSYMA may be used to
make such approximations, and so reduce the equation describing lower hybrid waves into the
nonlinear Schrijdinger equation which is soluble by the inverse scattering method (ref. 1). It
should be pointed out here that we have not used MACSYMA to do the whole problem; rather
MACSYMA is used at several stages in the calculation that are otherwise done by hand. This is not
to say that MACSYMA could not do the whole problem, just that there is a natural division
between calculations that are easiest done by hand, and those that are easiest done by machine.

The equation describing the steady-state twodimensional electrostatic propagation of lower
hybrid waves in I homogeneous magnetized plasma is (refs. 2,3)

where $ is the complex potential and x and I are the directions parallel and perpendicular to the
magnetic field and the other quantities are constants. (The real potential is Re[+exp(-lwt)l, where
o is the frequency of the wave.) The significance of the terms in equation (1) is as follows: The
first two terms (with coefficents, KL and lKlll) describe the linear, cold, electrostatic response;
they constitute a wave equation and have solutions which propagate along well defined rays (ref.
4). The terms with coefficients a, 6, and c in equation (1) are the corrections due to the finite
temperature of the plasma; the effect of these terms is to cause the ray to disperse. The terms
on the second line (with coefficients a. and 8,) are due to the nonlinearity of the plasma; these
terms arise because in regions where the electric potential is high, the so-called ponderomotive
force expels some of the plasma, causing a change in the dielectric properties of the medium.

We wish to reduce equation (1) to a more manageable form. To do this we must decide
what type of solution we are looking for. Since we are interested in situations where the
nonlinear terms are perturbations to the linear terms, and since wave-like solutions are known for
linear problems, interesting solutions to consider are ones of the form

%ock supported by US. Energy Research and Development Administration (Contract
E(l1-1)-3070) and by the National Science Foundation (Contract ENG76 06242)

377

where the wavenumbers kx and kz are constants and the complex envelope, 4, is slowly varying
compared with the exponential. Since we wish to treat the nonlinear terms as a perturbation, we
w e d only consider the leading order contributions to these terms. Thus we can immediately
simplify the nonlinear terms since each derivative operator will bring down either Ikz or 4kxr
thus they may be written as

where C is a constant. The problem remaining is to reduce the complexity of the linear terms.
This we can do by saying that the dispersion has only a weak effect on the solution (in the final
equation we will see that the nonlinearity and dispersion are treated as being perturbations of the
same order). If we neglect dispersion entirely, then I solution for 4 is

MX, 2) = wz - V#X) ; (4)

Le. the waves travel along characteristics. We will treat the effects of both dispersion and
nonlinearity by letting 4 have an explicit x dependence; thus

#x, z) = Wz’, x‘)exp(ikz - lk,@ , (5)

where I’ = I - vIx, x‘ = x. We order the dependencies in equation (5) as follows

likd * lv8t3/az‘1 * la/ax’l, IlkJ * [a/az‘I . (6)

n h i s ordering is not the only possible one; for instance Morales and. Lee (ref. 2) considered the
case where k, = kt = 0, and derived a modified Korteweg-deVries equation.]

Rather than using this ordering directly in equation (11, i t . is more convenient to treat the
more general problem. So we re-write the linear terms in equation (11, to give

L(s? az a LM + nonlinear terms - o ,
where L is a polynomial,

L(p, q) = KLp2 - IKJd + ap4 + b p 2 6 + cq4 -
Now if L(a/ax, a/&) operates on equation (5) we may make the replacements

a/hX + -I&# - V#a/aZ’ + a/&’ , a/aZ + ikz + . (9)

We may then Taylor expand L about -I&, and lkz. This is, of course, most easily done on
MACSYMA:

(C 1) 6RADEF(L(P,Q),Ll(P,Q),L2(P,O))f

378

Unfortunately MACSYMA has no notation for the derivative of a function with respect to its
arguments; thus we use GRADEF to define L1 to denote the derivative of L with respect to i ts
first argument, etc.

(C5) X , P~-XI*KX-ZEPS*V6*DZ1+ZEPSA2*DXl,Q~%I*KZ+ZEPS*DZl~
?

(D5) 'L (DX1 ZEPS - DZ1 V6 ZEPS - XI KX, D Z l ZEPS + XI KZ)

Here we have just written L(P,Q), substituted for P (- a/ax) and 0 (- a/az) using equation (9).
In order to incorporate the ordering information implied by equation (6) we have introduced the
small parameter ZEPS (ZEPS is chosen rather than, say, EPS, since MACSYMA will treat it as the
main variable in CRE forms.) DZ1 and DX1 are used to denote a/&' and a/h ' respectively.

(C 6) TAYLOR(X,ZEPS,O,E)S

(C7) LEXPAND:EV(X, L(-XI*KX,XI*KZ)=L,
L l (-XI*KX,XI*KZ)=Ll ,
L2(-XI*KX,XI*KZ)=L2,
L11(-XI*KX,XI*KZ)=Ll l ,
L12(-X I *KX,XI*KZ)~L l2 ,
L22(-XI*KX,XI*KZ)=L22);

2 2 2 2 2
(D7) /R/ 1/2 ((DZ1 L11 V6 - 2 DZ1 L12 V6 + DZ1 L22 + 2 DX1 L1) ZEPS

+ (- 2 DZ1 L1 V6 + 2 DZ1 L2) ZEPS + 2 L)

We carry out the Taylor expansion using TAYLOR, keeping terms up to ZEPS"2. The result,
LEXPAND, is made more compact by making the functional dependence of L on KX and K Z implicit.

Since we are interested in the balance of the nonlinear term, equation (3, against the
dispersive part of the linear operator, L, we demand that all but the ZEPS"2 term in D 7 vanish
identically. (Note that the the ZEPS"2 term contains the dispersive operator, # / W z .)

(C 8) LEXPANDO:COEFF(LEXPAND,ZEPS,O);
(D8) /R/ L

The zeroth order term is just L(-fk,, fk>. Setting it to zero

L(-f&,, ik> 0

just states that kx and kz must satisfy the linear dispersion relation

(C9) LEXPANDl:COEFF(LEXPAND,ZEPS,l);
(DO) /R/ - DZ1 L1 V6 + DZ1 L2

(C10) SOLVE(LEXPANDl=O,V6) ;

(10)

379

Setting the first order term to zero gives us the expression for vg. We recognize E10 as the
familiar expression for the group velocity in a dispersive medium,

(The subscripts p and q denote derivatives.)

(C 1 1) LEXPANDZ:COEFF(LEXPAND,ZEPS,Z);

(D l l) / R / 1/2 (DZ1 L11 V6 - 2 DZ1 L12 V6 + DZ1 L22 + 2 DX1 L1)
2 2 2 2

(C12) AA:COEFF(LEXPANDE,DXl);
(012)/R/ L1

(C13) BB:COEFF(LEXPAND2,0Zl,Z);

(D13)/R/ 1/2 (L11 V6 - 2 L12 V6 + L22)

Finally we have the order ZEPS"2 terms. Note that it has the form /la/&' + Ba2/az'*, where A
and B are given by (AA in Dl2 and BB in D13)

2

(All the derivates are evaluated at p - -ikRt q = ikZJ If we demand that the ZEPS? term balance
the nonlinear term, equation (a), we obtain

A@,' + €Mz'zl + = 0 . (13)

I f A is pure imaginary and 8 and C are real (which turns out to be the case) then equation (13) is
the nonlinear Schrtidinger equation.

The last task is to evaluate the coefficients A and 8, for L given by equation (8). Again, in
order to get manageable expressions, we will do this approximately. This time we note that the
coefficients, e, 6, and c are much smaller than KL and Kn. Again such manipulations are most
readlily performed on MACSYMA:

(C14) L:KPERP*PA2+KPAR*~2+ZDTA*(A*P"4+B*P"2*~2+C*Q"4);

(014) (C Q + B P Q + A P) ZDTA + KPAR Q + KPERP P

(C15) (L1 :DIFF(L, P) ,
L2:DIFF(L,Q),
Lll:DIFF(Ll,P),
LlL:DIFF(Ll,Q),
L22 :DIFF(L2 ,Q) ,

4 2 2 4 2 2

L -----..-- -...*I -.. ..I . . , ...,,,..,, , . , ,, , ,,... . ,,, , ,, , , ,,. , ,. ,,, . , I I I.

VG:EV(RHS(ElO)))S

Here we have defined L [see eq. (811 The smallness of a, b, and c is implied by the small
parameter ZDTA We have also defined the various derivatives of b and V6. The evaluation of A
(AA) is straightforward. We Taylor expand AA to obtain the leading term.

(C16) AA:EV(AA,P.-XI*KX,Qt%I*KZ,EVAL);

(D16)/R/ (2 XI B KX KZ + 4 %I A KX) ZDTA - 2 XI KPERP KX

(C17) M:TAYLOR(M,ZDTA,O,O);
(D l 7) / T / - 2 KPERP XI KX + . .
1.0.

2 3

A = -2ikfL.

We repeat this with 8 (BB).

(C l 8) BB:EV(BB);

(D18) /R/ ((4 B C Q + (2 4 A C + 2 B C) P Q + (32 A B C - 2 B) P Q
2 8 2 2 2 6 3 4 4

2 2 6 2 2 8 3
+ (2 4 A C + Z A B) P Q + 4 A B P) Z D T A

2 6 2 2 4
+ ((4 C KPERP + 4 B C KPAR) Q + (8 B C KPERP + (2 4 A C - B) KPAR) P Q

2 4 2 2 6
+ ((24 A C - B) KPERP + 8 A B KPAR) P Q + (4 A B KPERP + 4 A KPAR) P)

2 2 4 2 2 2 2
ZDTA + ((4 C KPAR KPERP + B KPAR) Q + (6 C KPERP + 6 A KPAR) P Q

2 4 2 2 2 2
+ (B KPERP + 4 A KPAR KPERP) P) ZDTA + KPAR KPERP Q + KPAR KPERP P)

2 2 4 4 2 2 6 2
/ ((e P Q + 4 A B P Q + 4 A P) Z D T A

2 2 4 2 2
+ (2 B KPERP P Q + 4 A KPERP P) ZDTA + KPERP P)

(C19) BB:TAYLOR(BB,ZDTA,O,l);
2 2 2

KPAR Q + KPAR KPERP P 2 4
(D19) /T/ ~ ~ - - - ~ ~ - - ~ ~ ~ - ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ - ((KPAR B - 4 KPAR C KPERP) Q

2
KPERP P

38 1

2 2 2 2 2 4
+ (2 KPAR KPERP 6 - 2 KPAR A - 6 C KPERP) P Q - KPERP B P .) ZOTA

2 2
/(KPERP P) + . . .
Note that we have taken the Taylor series expansion of BB up to order ZDTA This is because the
order ZDTAW term is proportional to the order ZDTAV terms in L (see D14), and thus when we
set L to zero [see eq. (lo)] the leading order term will vanish (this is just a reflection of the fact
that "cold" contributions to L, KLp2 - lK#, are nondispersive). There are a number of ways of
incorporating the fact that L = 0 into 01% we chose the following:

(C22) BB:TAYLOR(BB,ZDTA,O,l);
4 2 2 4

(3 C Q + 3 B P Q + 3 A P) Z D T A

2
(0 2 2) / T I """"""""""""""""" + . . .

Q
(Note that indeed the coefficient of ZDTA'W is zero.)

(C23) BB:EV(BB,ZDTA~l,P=-%I*KX,Q=%I*KZ,FACTOR);
4 2 2 4

3 (C KZ + B KX KZ + A KX)
(0 2 3 1 - """""""""""-"""

2
KZ

(Here we have just substituted for p and q.) Thus

8 = - (ak, + bk, kz + ckz) . 4 2 2 4

&*
Finally a scale transformation on 4, x', and z' in equation (13) yields

(15)

'VI. + v + 21v12v - 0 , f f (16)

a standard form of the nonlinear Schrb'dinger equation.

We could have saved some steps in the MACSYMA computation had we worked with the
explicit form of L (014) right from tho beginning. l-bwever this would have had the disadvantage

of confusing the two small parameters in the problem (ZEPS and ZDTA). Also soma of the
generality of the method would be lost. For instance, a simple extension of the method outlined
above to include the effects of a third spatial dimension [which introduces a term, K L ~ 2 ~ / b f l in
eq. (113 is possible (ref. 5). This leads to an unusual generalization of the nonlinear Schtb'dingsr
equation,

iv + VlE - vm + 2 l V l S = 0 . T (17)

The procedure presented here was suggested by the work of Newell and Kaup (ref. 61, who
use a more traditional multiple-time-scales approach. The help of F. Y. F. Chu in preparing this
paper is gratefully acknowledged

REFERENCES

1. Scott, A C.; Chu, F. Y. F.; and McLaughlin, D. by.: The Sditom A New Concept in Applied Science,
Proc. IEEE, vol. 61, no. 10, k t . 1973, pp. 1443-1483.

2. Morales, G I; and Lee Y. C.: The Nonlinear Filementation,of Lower-Hybrid Corns, Phys. Rev.
Lett, vol. 35, no. 14, k t . 1975, pp. 930-933.

3. Korney, C. F. F.; Chu, F. Y. F.; Johnston, G L; and b r s , A: Solution to Boundary Value Probkm
for Propagation of Lower Hybrid Waves, Plasma Res. Rep. 76/11, Research Laboratory of
Electronics, Massachusetts Institute of Technology, Jan. 1976

4. Briggs, R and Parker, R R: Transport of RF Energy to the Lower Hybrid Resonance in an
Inhomogeneous Plasma, Phys. Rev. Lett, vol. 29, no. 13, Sep 1972, pp. 852-855.

5. Sen, k; Karney, C. F. F.; Johnston, G L; and Bers, A: Three-Dimensional Effects in ths
Nonlinear Evolution of Lower Hybrid Cones, Paper D17, Proc. Annual Controlled Fusion
Theory Conference, San Diego, May 1977.

Bull. American Phys. Soc, vol. 21, no. 9, Ckt. 1976, p. 1095.
6. Newell, A C; and Kaup, 0. I: Nod;mar Propagation Along Lower Hybrid Conus, Paper 4F-15,

383

38
Ray Trajectories in a Torus:

An Application of MACSYMA to a..Complex Numerical Computation*
by

John L. Kulp

Research Laboratory of Electronics and Plasma Fusion Center,
Massachusetts Institute of Technology

The study of ray trajectories of plasma waves in a toroidal geometry using MACSYMA .is an
example of how symbolic, numerical, and graphical facilities can be used in concert to accomplish a
complex computational goal. Computational features of this study which are of particular
significance include:. the derivation of code (i,e. writing functions to generate program fragments),
the use of array functions to simplify the specification of a numerical iteration scheme, and the
graphical presentation of the results. Mathematically, this study originates in the solution of a

linear inhomogeneous partial differential equation in 3 dimensions by the method of characteristics.
I t is possible to describe this equation compactly by using vector notation, and by specifying the

spatial variation of the coefficients in terms of intermediate parameters. However the
transformation of the equation into a form amenable to solution is very tedious.

This work is part of a study of the heating of plasmas by radio frequency waves occurring
in controlled thermonuclear fusion research (ref. 1). The objective is to obtain a description of
the r f field structure excited by a waveguide located at the edge of a toroidal p'lasma confinement
device. A steady-state, single frequency driven oscillation is assumed and an examination is macle
of the resulting spatial distribution of fields. In the electrostatic approximation, the electric
potential is then given by

V - K(r) V $(r) - D(V,r) $(r) = 0

where r is a spatial position vector and K is a second rank dielectric tensor. For the pararncter
range of interest, this second order equation is hyperbolic, and its 'characteristic surfaces
$(r)-const can be found from the characteristic form, D(V$,r)=O(ref. 2). This nonlinear first' order

equation can be solved by integrating V$ along the characteristics of D(VlL,r) which are rays in

3-dimensions. Unfortunately, transforming to the coordinates given by V$ does not, in general,
reduce the order of D(V,r) sirice it is a second order operator in 3 independent variab.les. Thus
some additional assumptions are necessary to make the calculation of $ tractable. I f there is a

spatial coordinate along which D is uniform, a Fourier decomposition of $ with respect to that
coordinate is usually successful in reducing the number of dimensions of the equation. However,
this may be inconvenient for other reasons, such as difficulty in applying initial conditions, .or in

integrating the resulting Fourier spectrum. An alternative is to pursue solutions in the WKB
approximation which have the. form,

* Work supported by U.S. Energy Research andflevelopment Administration
(Contract E(11-1)-3070)

385

and where IVlog& Q: IV$l is assumed. The former approach. has been investigated (ref. 3) for a
straight cylinder geometry. Here, the WKB approach is followed since it is more readily
generalized (computationally) to models resulting in higher order equations.

In the following sections, (1) a description of the method for finding and JI is given, (2) the
implementation of the calculation on MACSYMA is presented, and (3) a sample case is shown to
illustrate the display of results.

WKB Solution Along the Characteristic Rays.

Let k = V$. The characteristic equation D(k,r)-0 by itself is not sufficient to determine k .
More information can be obtained by noting that

dO(k(r),r)
dr dk dr Ar .. - 0 is also implied so that - - = -- do dk dD

Thus by integrating along dD/&k we can find k. The initial values of 2 components of .k are

required (the third can be found from D(k,O)-0). The rays defined by the 'tangent vector r)D/Ak
are the bi-characteristics of 0. Let s be the distance. along the ray from some starting point and
S = IdO/dkl. Then, the equations for determining \t become:

(trajectory equation)

(Wave vector equation)

(phase equation)

For the electrostatic equation, note that k .c)D/dk - 0, so the rays are lines of constant 9. In
wave propagation terminology, dD/dk .is in the direction of the group velocity of the 'excited
waves.

To solve for 4, let $(r) = &r)eip(r) so thaf

D(v,r)$ = D(v,~)&&JI = .&$D(~(v$) + V, r$.
Now D can be expanded

which can be integrated

to first order in V'(the WKB approximation) to obtain
Y

to give the usual WKB amplification factor

TO solve the equations for $, expressions for dD/dk and aD/& must be derived. Once
obtained, these expressions must be simplified with a goal of getting an approximate analytic
result, or of producing code which can be numerically evaluated efficiently. The explicit r
dependence of D can be represented

386

o(a, r) - D(V, a p , a , (r) , . . *,a,$% co9cI~- - -1 s

where the a;s are physically convenient parameters such as the imposed magnetic field
components or plasma density and the c;s are constants characterizing the particular situation
being studied (e.g. the r f source frequency, or the peak magnetic field amplitude). Let
a - {ao, 0 , ' . . .). Then &D/& can be computed using the chain rule for differentiation,

Note da/dr is a 3xm matrix which is fixed by the plasma configuration being studied and IS no1
dependent on the plasma model being used as reflected in K (this dependence occurs in AD/h) .

Implementation of the Ray Calculations on MACSYMA.

The implementation of the calculation of ray trajectories involves the following steps: 41)
calculate D in a form where its dependencies on k, and a, are explicit; (2). calculate the derivatives
aD/&k and do/&, then put them in. a form suitable for numerical evaluation; (3) use these
derivatives in an iterative scheme for solving dr/ds and dk/ds; ,and finally (4) present the results

graphically. Once the rays have been found, 4 can be computed by evaluating S(k,r), and $ by
summing 61(1 along the ray. Finally, a complete- solution i s obtained by. superjmpos.ing solutions for

the different initial values of k and r which characterize the source of the excitation. This p a r t o f

the solution will not be discussed here.

The derivation of D raises two frequently encountered issues. First, the order of the
calculation must be considered so that the most simplification can be obtained at each step with a

minimum of storage overhead. Second, it is often propitious to make certain approximations 'on the
resulting form of D to avoid unwieldy expressions at later stages (i.e. when computing the
derivatives and simplifying the results of differentiation). For the equation of interest here, D(k,r) - k K(r) - k, the above concerns motivate us to compute D by expressing K as simply as possible,

(C2) /* Vector Index o f Refract ion */
KK : M A T R I X ([KKRR, XIRKKRT, -XI*KKRP

-XI*KKRT, KKTT,
XI*KKRP, KKTP,

while retaining its basic symmetry. Once the matrix multiplications have been carried out, and

simplifications accomplished (in this case SCANflAP(MULTTHRU, . . .) suffices) the elements such

as KKRR are replaced by expressions such as:

(C5) /* Define the remaining e lements of KK t h a t a r e needed. */
KKRR : 1 - W P I E / (l - W C I E) - VPIE*AMU/(1-WC12*AMUA2)S

387

Automatic generation of appropriate type declarations for the temporary variables would make the.
translation and compilation process less tedious. Finally, as in any such automatic scheme, ce r ta in
numerical problems may be obscured (like the cancellation of large numbers) or part icular
restructuring optimizations l ike Horner's rule may be overlooked. For example, consider the
subexpression below:

(C14) D10;

(014) - . + _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _
2 2 2 2 2

2
2 W C I P H I (1 - WCIPHI) WPIE 2 WCIPHI WPIE

(1 - WCIPHI - WCITHETA) 1 - WCIPHI - WCITHETA

3 2 2 3
2 AMU W C I P H I (1 - AMU WCIPHI) UP12 2 AMU WCIPHI . WPIE - """"""""""""""""""- + """"""~""""-"""--

2 2 2 2 2 2 2
(1 - AMU (WCIPHI + WCITHETA)) 1 - AMU (W C I P H I + WCITHETA)

This expression results from a straightforward calculation of the derivatives. An obvious
optimization can be obtained as shown next:

(C 1 5) (E:SUBSTPART(FACTOR(PIECE),X,C1,2]), SUBSTPART(FACTOR(PIECE),E,[2,3]));
2 2

2 2 2 2 2 2 2 2
(- 1 + WCIPHI + WCITHETA) (- 1 + AMU WCIPHI + AMU WCITHETA)

(C16) (E:PART(D15,1,1,1))*MULTTHRU(l/E,DlS);
2 1 (D I G) 2 WCIPHI WCITHETA (- .

2 2 2
(- 1 + WCIPHI + WCITHETA)

5
AMU - """"""""""""""""""") WPIE

2 2 2 2 2 .
(- 1 + AMU WCIPHI + AMU WCITHETA)

I t is not clear how to apply such optimizations automatically on large expressions. In ,some cases
pattern matching and part ial fract ion expansions can be applied with some success (this approach
was suggested by P. Wang and is currently under investigation). At the t ime of this work, . t he
OPTIMIZE command was extremely inefficient computationally, but has since been rewritten by M.
Genesereth and is now quite fast. Despite some of the drawbacks mentioned above, the use of
OPTIMIZE has been very helpful in this application.

The implementation of (3), the iteration scheme for integrating (dr/ds, dk/ds), is achieved by

the use of . array functions. Array functions have two important. advantages over the usual.

Here, U P 1 2 and WCIZ .are parameters (a,%) and AMU is a constant. The number of a;s might vary
between 3 and 10 depending on the plasma model. Approximations can be introduced by
expanding in terms of, say, 1/A)IU, but for this case it is not necessary.

To accomplish (2) the calculation of derivatives of D, the matrix da/dr is entered (i t i s
usually rather sparse) and multiplied by a list of derivatives obtained by computing bD/Aai for
each a,. Computing aD/ak and thus laD/dkl is straightforward. Now, it is e.xpected that applying
FACTORSUM to various subexpressions may result in a simpler form (note, for ' instance, the
common U P 1 2 term in KKRR above). This is done by the command

.SCANMAP(LAMBDA([X] ,
BLOCK(Y 3 , Y:FACTORSUM(X) ,

EF Y=X THEN X ELSE Y)),);

where the I F conditional assures the preservation of common subexpressions.
One reason for doing step (2) on MACSYMA is that the matrix arith,metic involvcs a

considerable amount of work i f done by hand. But perhaps even more significant is t he fac t that'
the MACSYMA command, OPTIMIZE, can now be used to automatically generate a procedure BLOCK

for evaluating the expressions efficiently. The BLOCK generated by OPTIMIZE consists of a

sequence of assignments of subexpressions to temporary, local variables. For example,

(C l) F(A+B"E)+G(A+B"Z);
.) 9

[Fi 1 O P T I M I Z E (X) ;
F (A + BL) + G(A + B L)

.)

(D 2)
L

BLOCK(CT2, TO], TO : B , Ti? : A + TO, RETURN(F(T2) + G (T 2)))

Using OPTIMIZE is a highly convenient way of accomplishing the famili.ar programing task of finding
common subexpressions, and rewriting the expression in terms of a sequence of statements
constituting an evaluation "tree" of the subexpressions. Furthermore, the derivatives for the six '

equations being integrated (dr/ds and dk/ds) can be calculated in "parallel" (sharing common
subexpressions). The'BLOCK can be translated and compiled for greater execution efficiency. As

might be expected, this optimization often significantly reduces the amount of code required to
evaluate an expression, leading to both execution and storage'efficiency. A typical l ist of the
derivatives requires 45k words to store on disk (with the SAVE command), and yet the procedure
BLOCK generated requires less than 3k words. A more useful comparison would be obtained by
writing on disk using FASSAVE (which preserves co.mmon subexpressions) or STRINGOUT, but bo th
of these run out of available memory when applied to the original expression.

There are several problems with this method as it is currently implemented. A .typical
BLOCK might contain a total of 250 temporary variables, when, in fact, a data flow analysis would
show that a considerably smaller number of temporaries is needed (i.e. they can be reused).

389

DO-loop form of specification. First, the order in which particular values of k / s) or. ri(s) are
computed does not have to be specified. They are computed as needed. This. makes .it much
easier to modify a code since one does not have to be concerned with the order.of a 'sequence of
command statements. Second, programs specified this way are highly modular so i t is very simple
to change one single array function definition in the run time environment, i.e it has both the
advantages of a function and of an array. 'The current liabilities of array functions are: they c a n
use up more storage if used where arrays would not otherwise .be used; in the .current
implementation, references -(calls ' or array accesses) to array functions are not translated or
compiled efficiently.

As an example of how the computation of one element of r is set up, consider the fo1lowin.g
MACSYMA commands for implementing 8 predictor-corrector iteration:

6C') 1 * Adams-Bashforth Predictor step. * /
STEP: Y[N-l]+55/24*DY[N-l]-59/24*DY[N-2]+37/24*DY[N-3]-9/24*DY[N-4 IS

ASTI!P: Y[N-1~]+9 /24*DY~N~+19 /24*DY[N- l] -5 /24*DY[N-2]+1~24~DY[N-3~$
CZ /* C o r r e c t o r s t e */

/* Example.,*[
:="(SUBST([Y=R,DY=DRJ,PSTEP)); /* Predtc t R[N]. "/

(03) R . := R + 5 5 / 2 4 DR - 59 /24 DR + 3 7 / 2 4 DR
N N - 1 " 1 N - 2 N - 3

- 3/8 DR
N - 4

/* Computes O R [N] u s i n R[N] . * /
/* Compute c o r r e c t e d D R [N j . * / /* Return OR[N] . * /
/* Compute c o r r e c t e d Rat41 * /

(0 6) DR := (DSTEP(N), R : 3/8 DR .+ R + 19 /24 DR - 5 / 2 4 DR
N N N . N - 1 N - 1 N - 2

+ 1/24 OR , DSTEP(N) , DR)
N - 3 N

The function DSTEP computes all the elements of sr and sk in parallef. Note the ease with which
the iteration scheme can be changed. I f the array functions were to be compiled, terms like Y[N]
would be replaced by ARRAYFUNCALL(Y,N) in the forms PSTEP and CSTEP. The derivation of
starting points -is done separately. In this calculation, each element of r, k, sr, sk, and a is.defir1ed
as an array function. While saving elements of a is not essential to the integratio.n, i t is usetul for
subsequent calculations to know the trajectory through the parameter space given by a(s).

it should be pointed out that in using array functions, one is making a tradeoff bctwecn
programming convenience versus execution and storage efficiency. To what extent is the
inefficiency inherent rather than implementation dependent? The ordinary implementation of array
functions in MACSYMA suffers from excessive "number consing" (ref. 4) resulting in a need for
large number spaces and costly additional garbage collection. This problem was alleviated by C.

390

Karney, who impleme.nted a new array function calling routine for the MACSYMA interpretcr (not
yet installed) which allows LISP number arrays to be. used with array functiohs. The main
outstanding difficulty is that array functions cannot be referenced efficiently. I n principle
however, the check for array elements being undefined should only require one or two machinc
instructions; thus there is hope that subsequent implementations. will 'have relatively unimportant
overhead associated with them.

Display of the Ray Trajectories.

The graphical display of the ray trajectories employs a rather,extensive library package 0.f.
graphics capabilities implemented by C. Karney, called PLOT2. The main significance of this
package is that it interacts with the MACSYMA environment, thus giving both MACSYMA .and PLOT2
more power than each would have by themselves. The interactive nature- of PLOT2 due to i t s

residing in MACSYMA is particularly advantageous for exploring the parameter space defined by
ab). This is done simply by entering a formula depending on the parameters and calline PLOT2 on.
it. Rescaling and changing view points (in the case of 3-D plots) are very simple interactive
operations.

A sample ray trajectory plot is shown in Figure 1. The outer ring is a top view of the
torus. The ray starts at the right outside edge of this ring and circles around the torus until it
hits the edge again. The inner circle is a projection of the minor crossection of the torus into a

single plane. The ray plotting consists of plotting a template indicating the boundaries of the

torus and the. sector marks followed by calls to PLOT2 using the POLAR option. The template i s .
computed once for each change in aspect ratio and is displayed with REPLOT.

I t is important to note that the actual calculation of the rays is invoked by the plotting
routine asking for the data in the arrays. Once the array functions and initial conditions have
been specified, the array data can be extracted in any order by any other routine without-
explicitly calling a main program to do the computation. For instance, one may not be directly
interested in the rays at all, but simply .in the auxiliary parameters, in which case referencing them
causes ttie rays to be computed first. ,

Sum.mary;

Space limitations do not permit a more thorough discussion of how the Capabilities
mentioned here are used in this continuing study. Several different model equations D, and a large
number of different parameters are being investigated. The points to be emphasized are: (1)
MACSYMA is in some sense evolving into a "complete" system where a user can formulate his
equations, approximate and simplify them symbolically, and i f need be, study solutions to them
numerically and graphically (the drawbacks being that some facilities are. not implemented ,

efficiently yet or are too awkward to use); (2) since MACSYMA is. a symbolic manipulation
environment, it can have facilities to automate various well-defined steps in the Creation of
numerical procedures; and (3) array functions are an effective way to implement numerical
iteration' schemes with a degree of simplicity and flexibility uncharacteristic of most numerical

39 1

programming facilities. A major outstanding problem in generating expressions for nurnericat
evaluation, is finding effective restructuring methods for obtaining expres'sions. which evaluate
efficiently (i.e. minimizing multiplications).

REFERENCES

.l. Kulp, J. L.; Johnston, G. L.; and Bers, A.: Progress Report NO. 117, Research Laboratory of

Electronics, Massachusetts Inst. Tech., 1976, p. 223
2. Roubine, E. ed.: Mathematics Applied to Physics, Springer-Verlag, New York, 1970, p. 286
3. Colestock, P., Bull. Am. Phys. SOC. 3 1144 (1976)
4. .Steele, G.: Fast Arithmetic in MACLISP. Proceedings of the 1977 MACSYMA Users' Conference,

NASA CP-2012, 1977. (Paper No. 22 of this compilation.)

392

ASPECT RATIO (WA) = 5.68 Q NISM = 4.19

39 3

39

APPLICATION OF MACSYMA TO FIRST ORDER PERTURBATION THEORY

IN CELESTIAL MECHANICS*

John D. Anderson and Eunice L. Lau
Jet Propulsion Laboratory

SUMMARY

The application of MACSYMA to general first order perturbation theory in
celestial mechanics is explored. Methods of derivation of small variations in
the Keplerian orbital elements are developed. As an example of the methods,
the small general relativistic perturbations on the two-body Newtonian motion,
resulting from the rotation of the central body, are developed in detail.

GENERAL PROBLEM

The total acceleration x on many objects in the solar system can be
written in the following form.

.. E
- r = - - + a

r 3 - P

where the first term on the right hand side of the expression is the two body
acceleration, and the second term is a perturbative acceleration, assumed small
enough that a first order perturbation theory is adequate to describe the
motion. The zero order solution to equation (1) is the two body' solution
(a = 0) which yields a Keplerian ellipse with constant orbital elements (a, e,
"J i, R , w).

In this paper we use Gauss's perturbation equations to derive time varia-
tions in the Keplerian orbital elements to the first order in the small pertur-
bative acceleration. In terms of radial R, tranverse S, and normal W compo-
nents of a the variations in the Keplerian semimajor axis a, the eccentri-
city e, the mean anomaly M, at the initial time epoch, the inclination of the
orbit i, the longitude of the ascending node 52, and the argument of the perifo-
cal point w, are given by the following set of equations (ref. 1).

-P ,

da - -(l-e) (Re sin v + S E) dt n r
2

"
2 -%

*
The work presented in this paper represents one phase of research carried out

at the Jet Propulsion Laboratory, California Institute of Technology, under
NASA Contract NAS 7-100.

395

where

- _ di - -(1-e w cos (v + w)
dt na

r 2 -%
2

dw r

dt na e
(1 - e [-R 2 cos v + ~ (1 + -> sin v - cos i - (7) 2 -% ' P 1 dR

2 r r dt
- = -

n = (u/a 1

p = a (l - e)

3 %

2

r = (z * - r)' (10)

and v is the true anomaly in the polar equation for the Keplerian ellipse.

The application of MACSYMA to the solution of equations (2) through (7)
proceeds according to the following steps.

Step 1. Evaluate the components R, S, and W of the perturbative acceleration
a .
-P

a * r
7 -

r R =

The magnitude of the orbital angular momentum (r X I) is (p/p) , and if W is
defined as the unit vector normal to the orbital plane along the angular-momen-
tum vector, then

%

396

W = a * W
-P-

- Step 2. Substitute R, S, and W into equations (2) through '(7) and simplify.

Step 3. Multiply the six time derivatives from Step 2 by the common factor

dt r

dv na 2 (1 - e)

2
"

2 -%
"

Simplii-fy the results to obtain expressions daldv, deldv, dMo/dv, dildv, dR/dv,
and dwldv.

Step 4 . Integrate the six derivatives from Step 3 between the limits v to v.
Simplify the results. The resulting six expressions represent the variapions
Aa, Ae, AFio, Ai, AR, and Aw as explicit functions of the unperturbed true
anomaly v or as implicit functions of time by means of the Keplerian relations
between t and v.

Step 5. Obtain the secular time rate of change of the Keplerian elements by
evaluating the variations from Step 4 at v = 0 and v = 2 ~ r . The rates are

A given by 0

2Tr
A = ba]

s 2.rr 0
(1 7)

with similar expressions for the other elements.

EXAMPLE

In order to illustrate the general method, we select a relativistic pertur-
bative acceleration that arises because of the rotation o f the central body
(ref. 2)

a = - h (r - J) r 61.1 +-(2XJ)r -5 21.1 -3

- P C 2 - - 2 - -
C

where h = r X k is the orbital angular momentum, and 2 is the spin angular mo-
mentum per unit mass for the central body. We choose the equator of the central
body as the reference plane for the orientation elements (i, R, w) of the orbit.
Then, the spin angular momentum is along the z axis and

The unit vectors P, Q in the orbit plane, where P is directed to peri-
focus, as well as thevector W along h, are defined by the following MACSYMA
statements.

- -

397

(Cl) PX:COS(OMEGA)*COS(NODE)-SIN(OMEGA)*SIN(NODE)*COS(I)$

(C2) PY:COS(OMEGA)*SIN(NODE)+SIN(OMEGA)*COS(NODE)*COS(I)$
(C3) PZ : SIN (OMEGA) *SIN (I) $

(C4) QX:-SIN(~MEGA)*COS(NODE)-COS(OMEGA)*SIN(NODE)*COS(I)$
(C5) QY:-SIN(OMEGA)*SIN(NODE)+COS(OMEGA)*COS(NODE)*COS(I)$

(C6) QZ:COS(OMEGA).*SIN(I)$

(C7) WX:SIN(NODE)*SIN(I)$

(C8) WY:-COS(NODE)*SIN(I)$

(C9) WZ:COS(I>$

where the Eulerian angles i = I, R = NODE, and w = OMEGA are defined in the
usual sense.

Now, the position - r and velocity 4 vectors are given by,

where

x = r cos v

= r sin v

w

yw

? = - (p/p> sin v

* = (u/p>’ (cos v + e)

%
w

yw

The corresponding MACSYMA definitions are as follows:

(C30) XOMEGA: R*COS (V) $

(~31) yOMEGA:R*SIN(V)$
(C32) XOMEGADOT:-(M/P)**(l/2)*SIN(V)$
(C33) YOMEGADOT:((M/P)**(1/2))*(COS(V)+E)$

(C34) X: XOMEGA*PX+YOMEGAfcQX$
(C35) Y : XOMEGA*PY+YOMEGA*QY$

(C36) Z:XOMEGA*PZ+YOMEGA*QZ$

(C37) DX:XOMEGADOT*PX+YOMEGADOT*QX$

(c38) DY:XOMEGADOT*PY+YOMEGADOT*QY$

398

(C39) DZ:XQMEGADOT*PZ+YOMEGADOT*QZ$

We now d e r i v e e x p r e s s i o n s f o r R, S , and W as given by equat ions (12) , (131,
and (15) fo r t he pe r tu rba t ive acce le ra t ion o f equa t ion (18).

F i r s t o f a l l , t h e scalar product of r and (r X k) is zero by i n s p e c t i o n ,
SO

-

The MACSYMA eva lua t ion of t h e t r i p l e scalar product and then R proceeds as
fo l lows :

((240) EMTERMATRIX(3,3) ;

ROW 1 COLUMN 1 X;

ROW 1 COLUMN 2 Y;

ROW 1 COLUMN 3 Z;

ROW 2 COLUMN 1 DX;

ROW 2 COLUMN 2 DY;

ROW 2 COLUMN 3 DZ;

A ROW 3 COLUMN 1 0;

ROW 3 COLUMN 2 0 ;

ROW 3 COLUMN 3 J;

MATRIX-ENTERED

(C41) DETERMINANT (X) ;
(C42) RATEXPAND(%) ;

((243) RATSUBST(l,SIN(NODE)**2+COS(NODE)**2,%)$

(C44) RATSUBST(l,SIN(OMEGA)**2+COS(OMEGA)**2,%)$

(C45) RATSUBST(l,SIN(I)f~?;*2+COS(1)**2,%);

(C46) RATSUBST (1, SIN (V) **2+COS (V) **2, X) ;

(C50) FACTORSUM(D46) ;

399

(C51) CAPR:2*M*%/R**4/C**2;

(D51)
2 COS(1) J M3/2 (E COS(V) 4- 1)

C2 SQRT(P) R

(C52) RATSUBST(P/R, l+E*COS (V) ,D5l) ;
(C53) CAF'R:%;

(D53)
2 COS (I) J M3/' SQRT (P)

C R 2 4

Because a r = 0, the expression for S from equation (13) is obtained as
follows : -P-

(c55) CAPS:-R*CAPR*E*SIN(V)/P;

(D55) - 2 E COS(1) J M3/2 SIN(V)
C2 SQRT(P) R3

The final component of a , normal to the orbit plane, is obtained by form-
ing the scalar produ$t betwe3 W and a . First of all we obtain the triple
scalar product W (r X J) and then exluate W with the knowledge from the two
body problem that W * h = (up)$. The MACSYMA evaluation follows.

"

"

(C64) ENTERMATRIX(3,3) ;
ROW 1 COLUMN 1 WX;
ROW 1 COLUMN 2 WY;

ROW 1 COLUMN 3 WZ ;

ROW 2 COLUMN 1 DX;
ROW 2 COLUMN 2 DY;

ROW 2 COLUMN 3 DZ;
ROW 3 COLUMN 1 0;

ROW 3 COLUMN 2 0;

ROW 3 COLUMN 3 J;

IL4TRIX-ENTERED
(C65) DETERMINANT(%) $

(C66) RATSUBST(l,SIN(NODE)**2+COS(NODE)**2,%)$
(C67) RATSUBST(l,SIN(OMEGA)**2+COS(OMEGA)**2,%)$

(C68) RATSUBST(l,SIN(1)**2+COS(I)**2,%)$

(C69) RATSUBST(l,SIN(V)**2+COS(V)**2%);

400

FACTORSUM(D69) ;

D77/SIN(I) ;
TRIGREDUCE (X) ;
%*SIN(I) ;

RATS IMP (X) ;
FACTORSUM(X) ;

- SIN(I) J SQRT(M) .(SIN(V + OMEGA) + E SIN(OMEGA))
SQRT (PI

%*2*M/C**2/R**3;

%+6*MkSQRT(M*P) *Z*J*(l+E*COS (V)) /C**2/P/R**4;

FACTORSUM(%) ;

-2 SIN(1) J M3l2 (SIN(V+OMEGA) - 3 E COS(0MEGA) COS(V) SIN(V)

COS(0MEGA) SIN(V) - 3 E SIN(0MEGA) COS2 (V) - 3 SIN(0MEGA) COS(V)
SIN(OMEGA))/ (C2 SQRT(P) R3)

D89/SIN(I) ;

TRIGREDUCE(%) ;

FACTORSUM(%) $

%*SIN (I) ;

CAPW: %$

Now that R, S, and W have been obtained, the variations in the elements
can be derived from equations (2) through (7). The MACSYMA expression for
de/dt in equation (3) is

40 1

(C4) SQRT(1-E**Z)*(CAPR*SIN(V) + CAPS*(R/P)*((l+(P/R))*COS(V)+E))/N/A;

We Perform some substitutions, and multiply by dt/dv to obtain de/dv as follows..

(C5) RATSUBST(P/A, 1-E**2 , X) ;
(C6) EUTSUBST(SQRT (M/A**3) ,N,%) ;

Now multiply by dtldv.

(C7) %*(R**2/SQRT (M*P)) ;

(C8) FACTORSUM(%) ;

(D8) -2 COS (I) J SQRT (M) (A E R2 COS (V) + A E P R COS(V) - P R + A R 2 2

- A P’) SIN(V)/ (A c P 2 3/2 R2)

(C9) RATSUBST (P/ (l+E*COS (V)) , R, %) ;

(c10) RATSUBST(N,kA**(3/2) , SQRT(M) ,%I ;

(C11) RATSUBST(A*(l-E**2),Py%);

(D W
2 COS(1) J N SIN(V)
C2 SQRT(1 - E’)

This is the final expression for de/dv.

We w i l l illustrate one more MACSYMA derivation of a variation by determin-
ing dR/dv from equation (6) .
(C41) R*CAPW*SIN(V+OMEGA) /N/A**2/SQRT (1-E**2) /SIN(I) ;

(C42) SUBST(SQRT (P/A) ,SQRT (I-E**2 , X) ;

(C43) %*(R**2/SQRT. (M*P)) ;

043)
J M SIN(V + OMEGA) (3 E SIN(2 V + OMEGA) + 4 SIN(V + OMEGA) + E SIN(0MEGA))

A3/2 c2 p3/2

(c 4 4) J*M/A**(3/2)/C**2/N/P**(3/2);

(C45) D43/%;
(C46) TRIGREDUCE (%) ;

(C47) FACTORSUM(%) ;

(~47) -(4 cos(2 (v + OMEGA)) + 3 E COS(3 V + 2 OMEGA) +- E Cos(.V d- 2 OMEGA)

- 4 E COS(U) - 4) /2

(C48) RATSTJBST(A*(I”Ej’(*2) ,P,D44) ;

402

RATS'UBST (N**2*A**3 ,M, X) ;
J N

C (1 - E) 2 2 312

RATEXPAND(D47) ;

D50/2;

RATEXPAND (%) ;

2*%*D49;

2 J N (-COS(2 (V f OMEGA)) - 3 E COS(3 V + 2 OMEGA)
4

-- E + E COS(V) + 1)/(C2(1 - E 2) 312) 4

T h i s is the final expression for dR/dv.

A complete listing of the six derivatives follows.

" da = 0
dv

de - 2n(1 - e) cos i sin v dv 2
2 -+

"

C

" d'o 2n 1 cos i cos v
dv e 2

- -
C

dR
dv 2
" - 2n(l - e) -3/2 [I + e COS v - 1/4 e cos (v + 2 ~)

C (31)
1

dw - = -2n(l - e dv

2 (' + 2e
e cos v - 1/4 e cos(v + 2w)

C

403

MACSYMA has produced expressions which can be integrated by in spec t ion .
The s e c u l a r rates in the e lements fo l low a lmost immedia te ly .

s i n i Ci? = 2n (1 - e) 2 2 -3/2 j- sin i
6 2

C

(d i / d t) s = 0

a = O
S

e = O
S

Mos = 0

The p h y s i c a l i n t e r p r e t a t i o n o f t h e s e s e c u l a r e x p r e s s i o n s i s t h a t t h e
pe r i foca l po in t r eg res ses s lowly fo r sa te l l i t e motions i n t h e same genera l
d i r e c t i o n as t h e r o t a t i o n of t h e c e n t r a l body, and advances slowly for retro-
grade s a t e l l i t e motions. The l i ne o f nodes o f t he o rb i t a lways advances
slowly no matter what t he va lue o f t he i nc l ina t ion ang le . The s e c u l a r v a r i a -
t i o n s c a n b e i n t e r p r e t e d i n terms of a s low d ragg ing o f an i ne r t i a l coo rd ina te
sys t em by t he ro t a t ing cen t r a l body. T h i s o c c u r s i n g e n e r a l r e l a t i v i s t i c mech-
a n i c s , b u t n o t i n Newtonian mechanics where the angu la r momentum o f t h e c e n t r a l
body has no d i r e c t e f f e c t on t h e o r b i t a l m o t i o n . The d i f fe rences be tween the
two t h e o r i e s of motion are descr ibed very well by the example of this paper.
The r e s u l t s a g r e e w i t h t h o s e o b t a i n e d by Lense and Thirr ing (ref . 3) .

REFERENCES

1. Brouwer, D. and Clemence, G. M.: Methods of Celestial Mechanics, Academic.
Press, 1961.

2. Weinberg, S. : Gravi ta t ion and ” Cosmolom: Pr inciples and Applicat ions of
ty, Wiley, 1972.

3. Lense, Von J. and Th i r r ing , H. : iiber den Einf lus der E igenro ta . t ion der
Z e n t r a l k h p e r a u f d i e Bewegung de r P l ane ten und Monde nach der
Eins te inschen Gravi ta t ions theor ie . Phys ik . Ze i t schr . , vol. X I X , 1918,
pp. 156-163.

404

1111 111 1 1 1 1 I1

40

SYMBOLIC COMPUTATION OF RECURRENCE EQUATIONS
FOR THE CHEBYSHEV SERIES SOLUTION OF LINEAR ODE'S*

K.O. Geddes
University of Waterloo, Waterloo, Ontario, Canada

ABSTRACT

I f a l i n e a r o r d i n a r y d i f f e r e n t i a l e q u a t i o n w i t h p o l y n o m i a l c o e f f i c i e n t s
i s conve r t ed i n to i n t eg ra t ed fo rm then t he fo rma l subs t i t u t ion o f a Chebyshev
series l eads t o r ecu r rence equa t ions de f in ing t he Chebyshev c o e f f i c i e n t s o f
t he so lu t ion func t ion . An exp l i c i t f o rmula i s presented for the po lynomia l
c o e f f i c i e n t s o f t h e i n t e g r a t e d f o r m i n terms of the po lynomia l coef f ic ien ts o f
t h e d i f f e r e n t i a l form. The symmetries a r i s i n g from m u l t i p l i c a t i o n and in teg-
r a t i o n o f Chebyshev polynomials are e x p l o i t e d i n d e r i v i n g a genera l recur rence
equation from which can be derived a l l of t h e l i n e a r e q u a t i o n s d e f i n i n g t h e
Chebyshev c o e f f i c i e n t s . P r o c e d u r e s f o r d e r i v i n g t h e g e n e r a l r e c u r r e n c e
equat ion are s p e c i f i e d i n a p r e c i s e a l g o r i t h m i c n o t a t i o n s u i t a b l e f o r t r a n s -
l a t i o n i n t o any of the languages for symbolic computation. The method i s
a lgeb ra i c and i t can t he re fo re be app l i ed t o d i f f e ren t i a l equa t ions con ta in ing
inde termina tes .

1. INTRODUCTION

The most widely used methods f o r computing the numerical solution of an
o r d i n a r y d i f f e r e n t i a l e q u a t i o n (ODE), i n t h e fo rm o f e i t he r an i n i t i a l -va lue
problem o r a boundary-value problem, are d iscre te -var iab le methods . That is
t o s a y , t h e s o l u t i o n is ob ta ined i n t he fo rm o f d i sc re t e va lues a t s e l e c t e d
p o i n t s . Methods f o r computing an approximate solution in the form of a con-
t i nuous func t ion (u sua l ly a polynomia l o r ra t iona l func t ion) have rece ived
some a t t e n t i o n i n t h e l i t e r a t u r e . P r o b a b l y t h e b e s t known cont inuous-var iable
method is the Lanczos tau-method (ref. 1) which is c l o s e l y r e l a t e d t o t h e
Chebyshev series methods of Clenshaw (r e f . 2) and Fox (r e f . 3) f o r l i n e a r ODES

* This r e sea rch w a s supported by the Nat ional Research Counci l of Canada
under Grant A8967.

405

The Chebyshev method has a l so been u sed fo r a f i r s t -o rde r non- l inea r ODE (refs.
4 and 5) b u t t h e method t h e n r e q u i r e s i t e r a t i o n whereas i t is a d i r e c t method
i n t h e case of l inear ODEs. More r e c e n t l y , t h e Chebyshev series method has been
e x t e n d e d t o t h e s o l u t i o n of p a r a b o l i c p a r t i a l d i f f e r e n t i a l e q u a t i o n s (r e f s . 6
and 7) .

The most extensive treatment of Chebyshev series methods i s c o n t a i n e d i n
t h e book by Fox and Parker (ref . 8). The basic approach is series. s u b s t i t u t i o n
followed by t h e s o l u t i o n of r e su l t i ng r ecu r rence equa t ions . A l l o f t he au tho r s
treat t h e series s u b s t i t u t i o n and gene ra t ion o f t he r ecu r rence equa t ions as a
hand c o m p u t a t i o n p r i o r t o t h e a p p l i c a t i o n o f a numerical procedure for solving
the r ecu r rence equa t ions . However, e x c e p t f o r p a r t i c u l a r l y s i m p l e s p e c i a l
cases, the gene ra t ion o f t he r ecu r rence equa t ions is a t ed ious and error-prone
hand manipulation which could w e l l be programmed i n a language for symbolic
Computation. In t h i s pape r , p rocedures are d e s c r i b e d f o r g e n e r a t i n g t h e re-
c u r r e n c e e q u a t i o n s f o r a r b i t r a r y - o r d e r l i n e a r O D E s wi th polynomial coeff i -
c i en t s . The re is no need t o restrict t h e method t o f i r s t and second order
equat ions as previous authors have done. Furthermore, the method c a n a l s o b e
appl ied to problems containing indeterminates (for example, indeterminate
i n i t i a l c o n d i t i o n s) and to e igenvalue p roblems. An a t t r a c t i v e f e a t u r e of t h e
method is t h a t t h e a s s o c i a t e d c o n d i t i o n s may be o f in i t ia l -va lue type ,
boundary-value type, or any l inear combinat ion of funct ion and d e r i v a t i v e
va lues a t one o r more p o i n t s .

The procedures described here have been implemented in the ALTRAN lang-
uage (ref . 9) . Once the recur rence equat ions have been genera ted the i r
so lu t ion could , in the s tandard case , be accompl ished by a numerical proce-
du re r a the r t han a symbolic procedure. However, i n t h e p o t e n t i a l l y p o w e r f u l
a p p l i c a t i o n o f t h e method to p roblems conta in ing inde termina tes a symbolic
so lu t ion o f t he r ecu r rence equa t ions w i l l sometimes be desired. Therefore
t h i s second phase has also been coded i n t h e ALTRAN language. The s tandard
problem without indeterminates i s obviously a p r ime c a n d i d a t e f o r a hybrid
symbolic/numeric computational procedure. I n keeping wi th the po ten t ia l de-
sire f o r a symbolic solut ion, we restrict o u t a t t e n t i o n t o a c lass o f p roblems
f o r which the trun'cated Chebyshev series can be obtained by a d i r e c t method.
Thus w e cons ide r on ly l i nea r O D E s wi th po lynomia l coef f ic ien ts . Of course ,
a l i n e a r ODE whose c o e f f i c i e n t s are r a t iona l func t ions cou ld be conve r t ed t o
one wi th po lynomia l coef f ic ien ts and t h e r e f o r e , i n p r i n c i p a l , t h e method can
be appl ied to any l inear ODE whose c o e f f i c i e n t s are func t ions which can be
approximated w e l l by r a t i o n a l f u n c t i o n s .

The method assumes t h a t t h e s o l u t i o n i s d e s i r e d i n t h e i n t e r v a l [-1, 1 3
(which means t h a t a s imple t ransformat ion of var iab les w i l l be r equ i r ed , i n
general , before applying the method) . The truncated Chebyshev series pro-
duced by t h e method i s a near-minimax polynomial approximation of the true
s o l u t i o n t o t h e problem. This i s b a s e d o n t h e f a c t t h a t , f o r a n y f u n c t i o n
con t inuous i n [-1, 11 , t h e minimax e r r o r i n t h e t r u n c a t e d Chebyshev series
of degree n is n e v e r a p p r e c i a b l y l a r g e r t h a n t h e e r r o r i n t h e b e s t minimax
polynomial of degree n (e .g . re f . 10) . The goodness of the approximate

40 6

so lu t ion ob ta ined therefore depends on the ab i l i ty o f po lynomia ls to approx-
imate t h e t r u e s o l u t i o n . A more powerful class of approximating funct ions is
t h e r a t i o n a l f u n c t i o n s . However, the computat ion of near-minimax ra t ional
func t ions would be bes t accompl i shed i n t he form of Chebyshev-Pade approxima-
t i ons (r e f . 11) wh ich r equ i r e , as a n i n i t i a l s t e p , t h e g e n e r a t i o n of Chebyshev
series c o e f f i c i e n t s . Thus t h e method d i s c u s s e d i n t h i s p a p e r i s a bas i c
bui ld ing b lock as w e l l as a powerful method i n i t s own r i g h t .

2 . CONVERSION TO INTEGRATED FORM

Cons ide r an o rd ina ry d i f f e ren t i a l equa t ion o f o rde r V with polynomial
c o e f f i c i e n t s :

PJX> Y(v) (x) + + P1(X) Y l (x) + P0(X> Y (x) = (x) (1)

We w i l l t empora r i ly i gnore t he v assoc ia ted condi t ions which would se rve
t o s p e c i f y a unique so lu t ion of (1) . We seek a solut ion of the form

Y (x) = 1' ckTk(x)
k= 0

where t h e p r i m e (') i n d i c a t e s t h e s t a n d a r d c o n v e n t i o n t h a t t h e f i r s t c o e f f i -
c i e n t i s t o be halved and where T (x) denotes the Chebyshev polynomial of the
f i r s t k i n d : k

T (x) = cos (k a rccos x).

I f t h e series (2) i s s u b s t i t u t e d i n t o t h e d i f f e r e n t i a l e q u a t i o n (1) t h e n

k

the l e f t s ide o f (1) can be expres sed i n t he form of a Chebyshev series. By
expressing the r ight-hand-side polynomial r (x) in Chebyshev form, w e can
e q u a t e c o e f f i c i e n t s on t h e l e f t and r i g h t t o o b t a i n a n i n f i n i t e set of l i n e a r
e q u a t i o n s i n t h e unknowns c , c l , c ~ , ... (r e f . 8) . There w i l l be v addi t ion-
a l equat ions der ived f rom tfle a s s o c i a t e d c o n d i t i o n s .) T h i s i n f i n i t e l i n e a r
sys t em has t he p rope r ty t ha t t he l ower t r i angu la r pa r t i s zero except f o r a
few sub-diagonals and i t t h e r e f o r e becomes f i n i t e u n d e r t h e a s s u m p t i o n
c k = 0 (k > kmax), f o r some chosen lanax. This assumption must be val id , to
w i th in some a b s o l u t e e r r o r t o l e r a n c e , i f t h e s o l u t i o n y (x) i s to have a con-
vergent Chebyshev ser.ies expans'ion. Thus one may s o l v e t h e l i n e a r s y s t e m ,
f o r i n c r e a s i n g v a l u e s o f lunax, u n t i l some conve rgence c r i t e r ion has been
s a t i s f i e d .

However, as is n o t e d i n r e f e r e n c e 8, t he l i nea r sys t em is much s i m p l e r i f
(1) i s f i r s t c o n v e r t e d t o i n t e g r a t e d form. This is because the series r e s u l t i n g
from i n d e f i n i t e i n t e g r a t i o n o f (2) is much s impler than the series r e s u l t i n g
f r o m f o r m a l d i f f e r e n t i a t i o n . S p e c i f i c a l l y , f o r m a l d i f f e r e n t i a t i o n of (2) y i e l d s

407

I

r w 1
y ' (x) = c ' C 2(2 i+ l) c2i+l T2k (x> 1 k=O i=k

w h i l e i n d e f i n i t e i n t e g r a t i o n of (2) yields

(where K d e n o t e s a n a r b i t r a r y c o n s t a n t) . The end r e s u l t i s t h a t i n t h e i n -
f i n i t e l i n e a r s y s t e m d e r i v e d f r o m t h e i n t e g r a t e d f o ? of t h e d i f f e r e n t i a l
equat ion (l), each i nd iv idua l equa t ion con ta ins on ly a f i n i t e number of terms.
I n t h e o r i g i n a l (d i f f e r e n t i a l) f o r m , e a c h i n d i v i d u a l e q u a t i o n i n t h e i n f i n i t e
l inear sys tem is i t s e l f i n f i n i t e . Thus a v e r y s u b s t a n t i a l r e d u c t i o n i n com-
p l e x i t y i s achieved by cons ider ing the in tegra ted form. The c o e f f i c i e n t s are
then spec i f i ed as t h e s o l u t i o n o f a f i n i t e r e c u r r e n c e r e l a t i o n (w i t h non-
c o n s t a n t c o e f f i c i e n t s) r a t h e r t h a n a n i n f i n i t e r e c u r r e n c e r e l a t i o n .

The d e r i v a t i o n o f t h e r e c u r r e n c e e q u a t i o n i s d e s c r i b e d i n d e t a i l i n t h e
nex t s ec t ion . The fol lowing theorem gives a formula for the polynomial co-
e f f i c i e n t s o f t h e i n t e g r a t e d form of t h e o r d e r v d i f f e r e n t i a l e q u a t i o n (l),
i n terms of the po lynomia ls in the o r ig ina l form. This formula for the new
polynomials i s r e a d i l y i n c o r p o r a t e d i n t o a p rogram wr i t t en i n any o f t he
computer languages for symbolic computation, since each new polynomial i s
s p e c i f i e d e x p l i c i t l y as a l i nea r combina t ion o f de r iva t ives o f t he o r ig ina l
polynomials (and the new r ight -hand s ide i s obta ined by i n t e g r a t i n g t h e
or ig ina l r igh t -hand-s ide po lynomia l) . An induc t ion p roo f fo r Theorem 1 is
g i v e n i n r e f e r e n c e 9 and is omit ted here .

Theorem 1:

The o r d i n a r y d i f f e r e n t i a l e q u a t i o n (1) of o rde r v with polynomial co-
e f f i c i e n t s p (x) , . . . , po(x) and r ight-hand-side polynomial r (x) is equiva-
l e n t t o t h e I n t e g r a t e d f o r m v

q0(x) Y(X> + jql (x) Y (X > + .. * + 11 0 . . / q v W Y(X>
V

= s (x) + Kv(x)

where the po lynomia l coe f f i c i en t s q (x) ,. . . , q (x) are g iven by 0 V

and where the right-hand-side polynomial s(x) is given by

s (x) = // ... /r(x) . V

I n (5) - (7) t h e n o t a t i o n %(x) denotes an arbitrary polynomial of degree
V - 1 a r i s i n g from the cons t an t s of i n t eg ra t ion and t he no ta t ions

// . . . I f (x) and f(i) (x)
i

d e n o t e t h e r e s u l t s o f a p p l y i n g , r e s p e c t i v e l y , i n d e f i n i t e i n t e g r a t i o n i times
and f o r m a l d i f f e r e n t i a t i o n i times t o t h e f u n c t i o n f (x) .

3 . GENERAL FORM OF THE RECURRENCE EQUATION

For an o rd ina ry d i f f e ren t i a l equa t ion of o rde r V i n t h e i n t e g r a t e d form
(5) w e seek a s o l u t i o n i n t h e form of t h e Chebyshev series (2) . S u b s t i t u t i n g
(2) i n t o t h e l e f t s i d e of (5) and removing t h e summation s i g n and t h e c out-
s i d e t h e i n t e g r a l s i g n s y i e l d s k

m

I n o r d e r t o e x p r e s s (8) i n t h e form of ,a Chebyshev series (where the coeff i -
c i e n t of Tk(X) w i l l be a l inear combina t ion of c i ' s) , the po lynomia ls
qo(x) , . . . ,qv(x) are conver ted in to Chebyshev form. Then the fol lowing iden-
t i t ies (r e f . 8) are appl ied :

where, f o r t h e moment, w e may assume t h a t k is " la rge enough" i n (9) and that
i is " l a rge enough" i n (10) to avo id non-pos i t i ve subsc r ip t s . Th i s trans-
forms (8) i n t o t h e f o l l o w i n g form, f o r k l a r g e enough (i.e. n e g l e c t i n g t h e
f i r s t few terms):

I

where t h e c o e f f i c i e n t s v (0 S i I 2h) are r a t i o n a l e x p r e s s i o n s i n k a r i s i n g
f rom repea ted appl ica t ions o f (9) and (10) and h i s some p o s i t i v e i n t e g e r . i

Then changing the indices of summation i n
v e r t s (1 1) i n t o a Chebyshev series of the
f i r s t few terms) :

+ u c + ... + u
k ' IuOck-h 1 k-h+l 2hck+h1

where t he coe f f i c i en t s u2 (0 -< i -< 2h) are

(11) , s e p a r a t e l y i n each term, con-
fo l lowing form (neglec t ing the

r a t i o n a l e x p r e s s i o n s i n k . The
f i r s t few terms could be lder ived independent ly . F ina l ly , by conve r t ing t he
r ight-hand-side polynomial in (5) i n t o Chebyshev form, w e are r eady t o equa te
c o e f f i c i e n t s a n d s o l v e f o r t h e c . ' s . The coe f f i c i en t s o f To(x) , ..., Tv-l(x)
would not be equated because o f $he a rb i t ra ry term \ (x) appea r ing i n (5).

. I n s t e a d t h e f i r s t v equations would come from t h e a s s o c i a t e d c o n d i t i o n s .

The following example w i l l serve t o i l l u s t r a t e . C o n s i d e r t h e problem:

(l+x) y"(x) - y' (x) + x y(x) = 2-x
2 2

y(0) = 0; y ' (0) = 1.

The i n t e g r a t e d form of (13) i s , from (5) - (7) ,

(l+x) Y(X) + I (-1-4~) Y(X) + II(~+x) Y(X) 2

= x - (1/12) x4 + K2(x). 2

S u b s t i t u t i n g (2) i n t o (1 5) and conver t ing the po lynomia ls in to Chebyshev
form y i e l d s

I

where some cons tan t .terms on t h e r i g h t h a v e b e e n a b s o r b e d i n t o t h e a r b i t r a r y
l i n e a r term K2(x) . Apply ing the ident i t ies (9) and t hen (10) y i e lds , a f t e r
much manipulat ion, the fol lowing form for t h e f a c t o r ' { 1 i n (1 6) , f o r k
l a r g e enough:

{[8(k+2) (k+3)]-' Tk+3(x) + (1/4 - (k+2)-l + [2(k+l) (k+2)]-1)Tk+2(x)

+ (-[2(k+l)]-l - [8(k+l)(k+2)]-l) Tk+l(x) + (3 /2 - [(k-1) (k+l)]-l)Tk(x)

+ ([Z(k-l)]-' - [8(k-1) (k-2)I-l) T k - l (~)

+ (1/4 + (k-2)-l + [2(k-l)(k-2)]-1)Tk-2(x) + [8(k-2) (k-3)]-1Tk-3(x)1. (17)

To ob ta in t he gene ra l coe f f i c i en t o f Tk(x) on t h e l e f t s i d e o f (1 6) , t h e i n d e x
of summation must be changed s e p a r a t e l y i n e a c h term of the fac tor (17) . For
example, f o r t h e f i r s t t e r m

t h e d e s i r e d change of index is k + k-3, which y i e l d s

where again w e are neg lec t ing t he f i rs t few terms
changing the indices of summation appropr i a t e ly ,
(16) becomes

i n t h e series. Af t e r
t h e l e f t s i d e o f q q u a t

Z{[8k(k-1)]-1 c ~ - ~ + (1 /4 - l / k + [2k(k-l)]-') c ~ - ~
k

+ (-[2k]-' - [8k(k+l)]-l) c ~ - ~ + (3/2 - [(k- l) (k+l)] - l)ck

f ([2k]-l - [8k(k-1) 1-l) ck+l + (1 /4 + l / k + [2k(k+l) 1-3 ck+2

+ [8k(k+l) 1-l ck+3 1 Tk(x) .

ion

Working o u t t h e f i r s t few terms u s i n g s p e c i a l cases (s e e s e c t i o n 4) of
i d e n t i t i e s (9) and (l o) , a n d o b t a i n i n g t h e f i r s t two equat ions f rom the two
as soc ia t ed cond i t ions (14) , w e o b t a i n t h e f o l l o w i n g i n f i n i t e s e t of l i n e a r
equations which define the Chebyshev coefficients of t h e s o l u t i o n f u n c t i o n
Y(X) r

41 1

1 / 2 co - c2 + c4 - C6 + . . .

c - 3c + 5c5 - 7c7 + . . . 1 3

-5/24 c1 + 7/6 c2 + 3/16 c3 + 5/6 c4 + 1 /48 c5

1 /48 c0 + 0 c1 - 17/96 c2 + 11/8 c3 + 7/48 c4

+ 15/24 c5 + 1/96 c6

1/96 c1 + 1/24 c2 - 21/160 c + 43/30 c4 + 11/96 C5 3 '

+ 21/40 c6 + 1/160 ~j

= o

= 1

= 11/24 (19)

= o

= -1/96

The remaining equat ions are obta ined by e q u a t i n g t o z e r o t h e c o e f f i c i e n t o f
Tk(x) i n (1 8) , f o r k = 5,6 ,7 , Note tha t (19) i s a 7-diagonal system
s t a r t i n g from the fou r th equa t ion .

I n g e n e r a l , t h e d e s i r e d Chebyshev c o e f f i c i e n t s s a t i s f y a (2h+l) - term
l inea r r ecu r rence equa t ion of the form

u c + u c + ... + u 0 k-h 1 k-h+l 2h 'k+h = o (20)

where the coef f ic ien ts ui are r a t i o n a l e x p r e s s i o n s i n k. Equation (20) w i l l
b e v a l i d f o r k 2 h e x c e p t t h a t t h e f i r s t few right-hand-sides may be nonzero
depending on the degree of the r ight-hand-side polynomial in (5) . The va lue
of h depends on t h e o r d e r v o f t h e d i f f e r e n t i a l e q u a t i o n and on the degree of
the l e f t -hand-s ide po lynomia ls in the in tegra ted form (5) . Each a p p l i c a t i o n
of the p roduct formula (9) and each appl ica t ion of the in tegra t ion formula
(10) increases the value of h by one. Lower and upper bounds on h can be
r ead i ly de t e rmined f rom the o r ig ina l o rde r -y d i f f e ren t i a l equa t ion (1);
namely, i f maxdeg is t h e maximum of the degrees o f the l e f t -hand-s ide po ly-
nomia ls in (1) then

v 5 h 5 v + maxdeg. (21)

412

The f i r s t V e q u a t i o n s i n t h e i n f i n i t e l i n e a r s y s t e m come from the
associated condi t ions and w i l l b e e q u a t i o n s c o n t a i n i n g a n . i n f i n i t e number
of terms. I f h > V t hen t he re w i l l fol low V-h "spec ia l" cases of the genera l
recur rence equat ion (20) , wi th nonzero r igh t -hand-s ides in genera l , resu l t ing
f rom equa t ing t he coe f f i c i en t s o f t he terms TV(x) , . . . , Th-l(x). The re-
ma in ing l i nea r equa t ions r e su l t f rom equa t ing t he coe f f i c i en t s of Tk(x),
k = h, h+l, ... and w i l l a l l b e i n t h e form of recurrence equation (20)
excep t t ha t t he re w i l l be a few more nonzero r ight-hand-sides if

where s(x) i s the r ight-hand-side polynomial in the integrated form (5) .

4. SPECIAL CASES OF THE RECURRENCE EQUATION

The der iva t ion of the genera l recur rence equat ion (20) as d e s c r i b e d i n
s e c t i o n 3 i s n o t d i f f i c u l t t o implement i n a symbolic language. We now
consider the der ivat ion of the "special" equat ions which require the appl i -
ca t ion of modified versions of the product formula (9) and the integrat ion
formula (10). In other words, we now want t o c o n s i d e r what happens when w e
drop the assumption that k i s " l a rge enough" which w a s assumed i n t h e de-
r i v a t i o n of equat ion (20) .

The product formula (9) is i n f a c t c o r r e c t f o r a l l va lues of k and j
i f t h e s u b s c r i p t k - j i s rep laced by Ik-j I . The in tegra l formula (10) has a
s p e c i a l form f o r t h e c a s e s i = 0 and i = 1, namely

where an arbi t rary constant of integrat ion is implied. These special cases
could be incorpora ted in to a program fo r gene ra t ing t he r ecu r rence equa t ions
b u t t h e c o s t of de r iv ing each i nd iv idua l " spec ia l " equa t ion would be approx-
ima te ly equa l t o t he cos t o f de r iv ing t he one general equat ion (20) . For-
t una te ly , t he form of the special equations can be deduced immediately from
t h e g e n e r a l e q u a t i o n w i t h o u t e x t r a work . Re fe r r ing t o t he example i n s ec t ion
3, the third equat ion of (19) arises f rom equat ing coef f ic ien ts o f T (x) i n
the t ransformed form of (16) . I f we " b l i n d l y " o b t a i n t h e l e f t - s i d e c o e f f i -
c i e n t of T2(x) by s e t t i n g k=2 i n t h e g e n e r a l f o r m u l a (t h e b r a c k e t e d e x p r e s s i o n
i n (1 8)) w e ob ta in t he equa t ion

2

1/16 c - ~ + 0 c0 - 13/48 c l + 7/6 c2 + 3/16 c3 + 5/6 c4

+ 1/48 c5 = 11/24.

I f t h e n e g a t i v e s u b s c r i p t is i n t e r p r e t e d i n a b s o l u t e v a l u e - i.e. i f w e
equate wi th c1 - t h e n t h e t h i r d e q u a t i o n o f (,19) r e s u l t s . Our t a s k i s
now t o p r o v e t h a t t h i s " r u l e " h o l d s i n g e n e r a l .

t h e
u n t i

The main p o i n t i s
de r iva t ion and t he i
.1 t h e f i n a l s t e p .

t h a t n e g a t i v e s u b s c r i p t s may be car r ied th roughout
.r i n t e r p r e t a t i o n i n a b s o l u t e v a l u e may be postponed
Theorems 2, 3, and 4 below show t h a t t h e "special"

cases of the recurrence equation can be immediately deduced from the general
recur rence equat ion . Proofs of these theorems appear in re fe rence 9 and are
omit ted here . The p r o o f s r e q u i r e c a r e f u l a t t e n t i o n t o t h e symmetries involved
i n t h e t r a n s f o r m a t i o n s a p p l i e d t o c o n v e r t (8) i n t o (1 2) .

Theorem 2:

I d e n t i t i e s (9) and (10) are v a l i d when non-pos i t ive subscr ip ts occur on
t h e l e f t and / o r r i g h t i n t h e s e n s e t h a t T i (x) represents T l i l (x) .

The following simple example w i l l c l a r i f y t h e a p p l i c a t i o n o f Theorem 2.
C o n s i d e r t h e d i f f e r e n t i a l e q u a t i o n

o r , i n i n t e g r a t e d form,

S u b s t i t u t i n g t h e series (2) i n to (24) y i e lds

C ' ck {Tk(x) + JTk(x) 1 = 0 .
k=O

1 ?plying formula (lo) gives

The t h i r d term i n b r a c k e t s would c a u s e t r o u b l e i f w e eva lua ted it f o r k = 1
but w e w i l l never do s o because w e do n o t e q u a t e c o e f f i c i e n t s of T (x) .
Cont inuing with the example, the next s tep i s t o change indices of summation
i n (26) y ie ld ing

0

a, m

414

Equa t ing coe f f i c i en t s of Tk(x) on t h e l e f t And r igh t o f (27) g ives the
genera l recur rence equat ion:

For t h i s f i r s t - o r d e r d i f f e r e n t i a l e q u a t i o n w e must equate coeff ic ients of
Tk(x) f o r k 2 1. Theorem 2 g ives a v a l i d i n t e r p r e t a t i o n t o (26) f o r e a c h
va lue o f the index k bu t we have ye t t o p rove t ha t (28) i s v a l i d when, f o r
example, k = 1. I n t h i s example, examination of the lower limits of summation
i n (27) reveals t h a t (28) is c l e a r l y v a l i d f o r k 2 2. The case k = 0 w i l l n o t
be required. For k = 1 (i.e. equa t ing coe f f i c i en t s o f T l (x)) , t he midd le
summation i n (27) has a f a c t o r 1 / 2 a s s o c i a t e d w i t h t h e f i r s t term i n i t s sum
and t h e t h i r d summation w i l l c o n t r i b u t e two t e r m s t o t h e c o e f f i c i e n t of Tl (x) -
namely, the terms wi th k = -1 and k = 1. Thus t h e c o e f f i c i e n t o f Tl(x) comes
from the terms

The s p e c i a l form of the recur rence equat ion cor responding to k = 1 should
the re fo re be

1 / 2 co + c1 - 1/2 c2 = 0. (29)

But (29) i s p r e c i s e l y t h e r e s u l t of s e t t i n g k = 1 i n t h e g e n e r a l r e c u r r e n c e
equat ion (28) .

The fol lowing two theo rems p rove t ha t t he l e f t s ide of the genera l re-
currence equation (20) i s v a l i d f o r a l l k 2 1, i n t h e s e n s e t h a t n e g a t i v e
s u b s c r i p t s are t o b e i n t e r p r e t e d i n a b s o l u t e v a l u e . R e c a l l t h a t t h e l e f t
s i d e of t he gene ra l r ecu r rence equa t ion i s obtained by t ransforming (11) i n t o
(12) . By Theorem 2 , the range of the index of summation i n (11) may be
t aken t o be 0 t o 03 (wi th t he u sua l "pr ime" on t h e summation s i g n as i n (2)) .
Changing t h e i n d i c e s of summation i n t h e terms of (11) transforms (11) into.
the form

03 03

C ' vo(k f k-h) c T (X) + C ' vl(k f k-h+l) c k-h k k-h+i k T (x)
k=h k=h-1

+ ... + C ' ~ ~ ~ (k f k+h) ck+h Tk(x)
k=-h

where t he no ta t ion v i (k + f (k)) deno tes , i n an obv ious way, an opera t ion of
s u b s t i t u t i o n i n t h e r a t i o n a l e x p r e s s i o n vi. Co l l ec t ing terms, (30) t akes
the gene ra l form (12) where t h e new r a t i o n a l e x p r e s s i o n s u i are given by

415

Theorem 3 gives a symmetry property of the rational expressions v and then
Theorem 4 uses this symmetry property to prove the validity of the general re-
currence for k 2 1. In the substitution operations appearing in Theorem 3, the
symbol " = " is used in place of the symbol f " in order to emphasize the
fact that they are arithmetic evaluations in contrast to the change of indices
occurring in (30) and (31).

i

Theorem 3:

The rational expressions v (0 5 i I 2h) appearing-in (11) satisfy the
following symmetry property: i

v. = v (k = - a) , 0 5 i 5 h
1 2h-i

for any value of R.

Theorem 4 :

The expression (12), which defines the general form of the recurrence
equation, is valid for values of the index k 2 1 in the sense that negative
subscripts are to be interpreted in absolute value.

Finally in this section, we mention the interpretation of the term k=O in
(12) which would be required in equating coefficients of T (x). Of course for
any differential equation (1) of order v 2 1 the coefficient of T (x} is un-
determined because of the constants of integration. However, the method
discussed in this paper can be applied directly to a differential equation of
order 0:

0
0

in order to compute the Chebyshev series coefficients for an explicit rational
function r(x>/pO(x). In this case the coefficients of T (x) on the left and
right must be equated for all k 2 0. The coefficient of T (x) on the left of
the transformed form of (32) is not that obtained by direc? application of the
general expression in (12):

k

u (k=O) c - ~ + u (k=O) c - ~ + ~ + . .. + ~ ~ ~ (k = 0) ch.
0 1 (33)

Rather, the correct coefficient of T (x) comes from the last h+l summations in
(30) and it is 0

1/2 vh(k=O) + v (k=l) c1 + . . . + vZh(k=h) ch. '0 h+l (34 1

Using (31) , (34) becomes

416

1/2 u (k=O) c0 t- ~ ~ + ~ c k = O) c1 + . . . + u2h(k=O) ch. h (3 5)

Comparing (3 5) with (3 3) we see that, for the special case k=O in (12),the
terms with negative subscripts must be ignored and the term in c must have a
factor 1/2 associated with it. 0

5 . SPECIFI~CATION ~~ OF THE PROCEDURES

Procedures for generating the general recurrence equation (20) for the
differential equation (1) are .specified in a pseudo-Algol algorithmic notation.
Four basic "system" functions for polynomial manipulation are assumed:

degree (P , x) - returns the degree of the polynomial p in the

derivative (p,x,n) - returns the n-th derivative of the polynomial p
coefficient (p,x,n) - returns the coefficient in the polynomial p of

substitute (r,x,expr) - returns the result of substituting the

indeterminate x

with respect to the indeterminate x

the n-th power of the indeterminate x

expression expr for every occurrence of the
indeterminate x in the rational expression r.

A brief description of each procedure is given followed by the algorithmic
specification.

- Descriltion " of the Procedures:

(1) Procedure generate-recurrence.

Input parameters: v, p
Output parameters: recurrence-equation, h

The polynomials p (0 5 k v) in the differential equation (1) are
passed into the procedure. It is assumed here that the indeterminate in these
polynomials is x and it is also assumed that the global array comb has been
initialized such that

k

comb (i,j) = ($ -
The indeterminate arrays tk and ck are assumed; tkG) is used to represent the
Chebyshev polynomial Tk+j(x) where k is an indeterminate and ck(j) is used to
represent the term c in the general recurrence equation. k appears only
as an indeterminate k+j in these procedures. On return, recurrence-equation
is the left side of the general recurrence equation (201 and h is its

"half-length" as defined by (20).

Each pass through the m-loop adds one term into factor, where the terms
in factor are defined by the bracketed expression in (81. The first part of
the mdoop converts the given polynomials into the m-th polynomial of the
integrated form, using Theorem 1. Then follow procedure calls which implement
the identities (9)' and (10). Finally, the appropriate substitutions are per-
formed to transform (11) into (12) which yields the general recurrence
equation.

(2) Procedure chebyshev-form.

Input parameters: p, degp
Output: the Chebyshev form of p is returned

The polynomial p of degree degp in the indeterminate x is converted into
Chebyshev form. It is assumed that the global array xpower has been initial-
ized such that the e1emen.t xpower(i) is the Chebyshev form of x**i, using an
array of indeterminates t where t(j) represents T.(x).

(3) Procedure product - tk-times.
J

Input parameters: p, degp
Output: the representation of T (x)*p is returned k

The polynomial p of degree degp, assumed to be in Chebyshev form, is
multiplied by the polynomial T (x) by applying identity C9) to each term of p.
The indeterminate arrays t and tk are as discussed above. k

(4) Procedure integrate.

Input parameters :. p, h
Output: the representation of the integral of p is returned

It is assumed that p is a linear combination of the elements
tk(-h) ,..., tk(h) where the meaning of the array tk is discussed above. The
integral of p is computed by applying identity (10) t6 each term of p.

procedure generate - recurrence (v,p,recurrence-equation,h)

degp f degree (p ,x)

q f chebyshev-form (p , degp)

factor f product-tk-times (q,degp)

h f degp

V

V

418

for m=l step 1 until v & -

+ Pv-m - (v-rn+l)*derivative(pv - m+lyxyl)
sign + -1

for i=m-2 step -1 until 0 & -

sign -+ -sign

q f q + sign * comb(v-i,m-i) *~derivative(pv,_i,x,m-i)

doend

degp + degree (q,x)

q f chebyshev-form (q , degp)

term f product-tk-times (q,degp)

hnew f degp

for i-1 step 1 until m -

term -+ integrate (term,hnew)

hnew +- hnew + 1
doend

factor f factor + term
h f max (h , hnew)

doend

recurrence-equation -+ 0

for j = -h step 1 until h

coef -+ coefficient (factor, tk(j),l)

coef f substitute (coef,k,k-j)

recurrence-equation -+ recurrenceequation + coef * ckC-j)
doend

- end of procedure generate-recurrence

procedure chebyshev-form (p,degp)

newp f 0

- for k=O step '1 until degp do -~

newp + newp + coefficient (pyx, k) * xpower (k)
doend

return (newp)

- end of procedure chebyshev - form

procedure product - tk-times (p,degp)

newp f 0

- for j=O step 1 until degp do -____ -

newp f newp + coefficient(P,t(j),l) *(tk(j) + tk(-j))/2
doend

return (newp)

- end of procedure product-tk - times

procedure integrate (p,h)

newp * 0

- for j=-h step 1 until h do -~

newp f newp + coefficient(p,tk(j),l) fc (tk(j+l)/(k+j+l>-(tk(j-l)/(k+j-1>)/2

doend

return (newp)

end of procedure integrate .

420

6 . . SAMPLE PROBLEMS

Reference 9 contains a listing of an ALTRAN program which is an imple-
mentation of the procedures in section 5 and also includes an implementation of
a method for solving the recurrence equations. The program will accept
problems with indeterminates in the associated conditions and also with indet-
erminates in the differential equation itself. The solution of the recurrence
equations is by a method of backward recurrence which obtains a solution under
the assumption c =O for k > kmax where kmax is specified. A strategy could
easily be implemented for updating kmax until some desired absolute accuracy is
satisfied.

k

The following three sample problems illustrate the application of the
method.

Problem 1: (Standard initial-value problem)

y l = y; y (0) = 1

Value of kmax: 10

Recurrence equation generated:

Maximum absolute error in c (0 .g k < 10): k

.11

Size of last computed coefficient:

Problem 2: (Complicated boundary-value problem)

2 (l+x) y" - y1 + xy = 2-x 2

Y(0) = 1; yl (0) + 2y(l) - 1/2 y(- l) = 0

Value of kmax: 10

Recurrence equation generated:

1/8k(k-1) c ~ - ~ + (1/4 - l/k + 1/2k(k-l)) c ~ - ~

- (1/2k + 1/8k(k+l)) c ~ - ~ + (3/2 - l/(k-1) (k+l)) ck
+ (1/2k - 1/8k(k-1)) c ~ + ~ + (1/4 + l/k + 1/2k(k+l)) c ~ + ~

+ 1/8k(k+l) ck+3 = 0

42 1

Size of last computed coeffkient:

c 10 = .34(1f5).

Problem 3: (Indeterminate initial conditions)

2 (l+x) y" - y' + xy = 2-x 2

Y (0) = u p y 1 (0) = u2

Value of kmax: 10

Recurrence equation generated: same as problem 2.

Remark: Each c is a bilinear polynomial of the form

c = akul + bk p2 + dk , for constants a
k

k k7 bk7 dk
Size of last computed coefficient:

c = .45 p1 + . 20(10-5) v2 + .24 (lom6) , 10
Summary of Timing Statistics:

The following table gives the execution times for these three problems on
a Honeywell 66/60, where:

T = time, in seconds, to generate the general recurrence equation;

T, = time, in seconds, to solve the equations for c (0 5 k 5 10).
1

k L

T1 T
2

Problem 1:

73 160 Problem 3 :

80 160 Problem 2:

10 4

"

422

REFERENCES

1. Lanczos, C.: Applied Analysis. Prentice-Hall , Inc., 1957.

2. Clenshaw, C.W.: The Numer ica l Solu t ion of L inear Di f fe ren t ia l Equat ions
i n Chebyshev Series. Proc. Cambridge Phil . SOC., vol. 53, p t . 1, Jan.
1957, pp. 134-149.

3. Fox, L.: Chebyshev Methods fo r Ord ina ry D i f f e ren t i a l Equa t ions . Computer
J., vol. 4, no. 4, Jan. 1962, pp. 318-331.

4. Norton, H.J . : The Iterative So lu t ion of Nonl inear Ordinary Di f fe ren t ia l
Equations in Chebyshev Se r i e s . Computer J., vol . 7 , no. 1, Apr. 1964,
pp. 76-85.

5. Lewanowicz, S. : Solu t ion of a F i r s t -Orde r Non l inea r D i f f e ren t i a l
E q u a t i o n i n Chebyshev S e r i e s . Zastosow. Mat., v o l . 15, no. 2, 1976,
pp. 251-268.

6. Knibb, D.: The Numerical S o l u t i o n o f P a r a b o l i c P a r t i a l D i f f e r e n t i a l
Equations Using the Method of Lanczos. J. I n s t . Math. & Its Appl.,
v o l . 11, no. 2, Apr. 1973, pp. 181-190.

7. Dew, P.M.; and Scraton, R.E.: Chebyshev Methods fo r t he Numer ica l
S o l u t i o n o f P a r a b o l i c P a r t i a l D i f f e r e n t i a l E q u a t i o n s i n Two and Three
Space Variables. J. Inst. Math. & Its Appl., vol. 16, no. 1, Aug. 1975,
pp. 121-131. .

8. Fox, L.; and Parker, I . B . : Chebyshev,Polynomials i n Numerical Analysis.
Oxford Univ. P res s , Inc., 1968.

9. Geddes, K.O. : ALTRAN P r o c e d u r e s f o r t h e Chebyshev Se r i e s So lu t ion of
Linear ODE'S. R e s . Rep. CS-77-05, Univ. Waterloo, Feb. 1977.

10. Powell, M.J .D. : On t h e Maximum E r r o r s of Polynomial Approximations
Defined by Interpolat ion and By Least Squares Criteria. Computer J.,
vol . 9 , no. 4, Feb. 1967, pp. 404-407.

11. Gragg, W.B.; Johnson, G.D. : The Laurent-Pade Table. Proceedings of the
1974 IFIP Congress, pp. 632-637.

.

sin(z)**2 + cos(z)**2 = 1 t

David R. Stoutemyer
Universi ty o'f H a w a i i

ABSTRACT

This i s a chronicle of manifold attempts _to achieve tasteful automatic
employment o f t h e i d e n t i t i e s sin2: + cos2: 1 and cosh2z -. sinh2z Z1, i n a
manner which t r u l y minimizes the complexity of the r e su l t i ng expres s ion . After
descr ib ing the disappointments of tr igonometric reduction, tr igonometric expan-
s ion, pat tern matching, Poisson series, and Demoivre's theorem, the au tho r
r evea l s how he achieved his goal by the method of comparative combinatorial
s u b s t i t u t i o n s .

INTRODUCTION

It i s no coincidence that t h e s p e c t r e o f t h e i d e n t i t y

2 2 - s i n x + cos x = 1

i s r a i s e d i n many papers on computer algebraic simplification, such as
re ferences 1, 2, and 3. This i s a well-known iden t i ty , w i th e spec ia l ly fre-
quent opportuni t ies for employment. The i d e n t i t y

i s perhaps the on ly one tha t en joys g rea te r use . However, t h e former does not
s h a r e t h e u n i v a r i a t e b i n o m i a l p r o p e r t y o f t h e l a t t e r , making a profound dif-
f e r ence i n t h e ease of t h e i r e f f e c t i v e r o u t i n e u s e i n computer algebra.

I d e n t i t y (1) and i t s hyperbol ic counterpar t

cosh x - s inh x = 1 2 2 -
(2)

are mere ly t he s imp les t ca ses o f an i n f in i t e s e t o f such i den t i t i e s , bu t I
w i l l confine my a t t e n t i o n t o t h e s e two ident i t ies because :

1. To my knowledge, none of t h e e x i s t i n g computer algebra systems
provides a t o t a l l y s a t i s f a c t o r y b u i l t - i n employment, of even these
two i d e n t i t i e s .

2. U n t i l t h e s e two i d e n t i t i e s can be t r e a t e d s a t i s f a c t o r i l y , why
worry about t h e o t h e r s .

'This work w a s supported by National Science Foundation gratlt MCS75-22893.

425

3.

4.

5 .

I n a c e r t a i n s e n s e , t h e s e i d e n t i t i e s most concisely convey t h e
cen t r a l f ac t s conce rn ing t he i r cons t i t uen t s : The sine and cosine
are dependent, as are the i r hyperbol ic - counterparts. - . . - . . The o ther
t r igonometr ic and hyperbol ic ident i t ies are par t ly- mere reitera-
t i o n s o f t h e s e f a c t s .

I conjecture that dramatic opportuni t ies for these two i d e n t i t i e s
far outnumber those fo r any o ther two such trigonometric o r
hyperbolic identities--perhaps even a l l of the other such iden-
t i t i e s combined. Many engineering and science problems uti l ize
s in , cos , s inh, or cosh , r a i sed on ly t o modest powers, with argu-
ments t h a t a r e mere indeterminates, such as 8, or a product of
simple coefficients and indeterminates, such as at or 2 ~ x . For
such expressions, appl icat ion of the few a p p l i c a b l e i d e n t i t i e s
o t h e r t h a n i d e n t i t i e s (1) or (2) i s most l i k e l y t o i n c r e a s e t h e
complexity of the expression, as we sha l l s ee .

A f a i l u r e t o e x p l o i t i d e n t i t i e s (1) o r (2) i s more noticeable than
a failure t o e x p l o i t more e so te r i c i den t i t i e s . Uncomi t t ed
computer-algebra candidates are quick t o n o t i c e examples where they
can outperform a computer-algebra system. Unfortunately, many who
might enjoy and benefit from computer a lgeb ra a r e sub jec t t o t he
all-too-prevalent human tendency t o summarily dismiss new opportu-
n i t i e s on t h e b a s i s o f a hastily-formed f i r s t impression. However,
perhaps the scoffer ' s scorn i s somewhat deserved. Is it not
embarrassing that computer-algebra systems that can do such an
elegant job of factor ing and integrat ion cannot exploi t one o f t h e
few iden t i t i e s t ha t t r i gonomet ry s tuden t s are l i k e l y t o remember.

I was unconcerned with such matters until I f irst suf fered at t h e hands
of sin2x + cos2x. It happened during t h e t e s t i n g o f a forthcoming more-
general tensor version of the vector curvil inear-components function described
i n reference 4. To make a long s to ry l e s s l ong , t he components o f t h e second-
k ind Chr is tof fe l symbol a r e computed from those o f the cont ravar ian t met r ic
tensor and t h e f i r s t - k i n d C h r i s t o f f e l symbol. These i n t m n a r e computed from
those o f the covariant metr ic tensor , which a r e i n t u r n computed from those of
the Jacobian matrix, which are computed from the t ransformation from curvi-
l inear to rec tangular Car tes ian components. During a l l of these computations,
there a re o f ' t en oppor tuni t ies to employ i d e n t i t i e s (1) and (2) when t h e
coordinate transformation involves trigonometric and hyperbolic functions, as
do many of the c lass ic o r thogonal curv i l inear coord ina tes . Actua l ly ,
"obligations" i s a more appropriate word than "opportunities" here, because
i f a l l such opportunities were not exploited as soon as they a rose , the compu-
tation frequently could not be completed because of storage exhaustion o r
computing t imes tha t had passed the bounds of decency, with no end i n s i g h t .
The objec t ive was t o make t h e e n t i r e computation automatic, untouched by
human hands. This objective necessitates a s i m p l i f i e r which exp lo i t s one or
more in s t ances o f i den t i t i e s (1) and (2) i n a l l of the i r gu ises ,wi th
differ ing arbi t rary subexpressions as t h e arguments of the tr igonometric and
hyperbolic functions.

"....

AN (EDITED) ACCOUNT OF THE AUTHOR'S TRAVAILS

Given a transformation from curvilinear coordinates 81,82,. . . , 8, t o
Cartesian coordinates x1,x2, ...,cc,, with m . :

it was d e s i r e d t o compute the Jacobian matr ix A, with elements

From t h i s , t h e components of the covariant metr ic tensor are computed as those
of the matrix product

G = A A T .

The desired second-kind of Christoffel symbol involves
of the der iva t ives o f G and the inverse of G , but a general
tr igonometric-hyperbolic simplification w a s already evident
expression (5) and sometimes even expression (4) .

l i n e a r combinations
need for automatic
i n t h e r e s u l t s o f

O f t h e 1 2 classic orthogonal coordinate systems reported, the coordinate
transformations of 8 involve e i ther t r igonometr ic funct ions, hyperbol ic
functions, or both. Relat ively s imple instances o f those 8 a r e

Spherical :

x = r s i n 8 cos @,
y = r s i n 8 s i n $,

z = r COS e;
E l l ip t ic Cyl indr ica l :

x = a cosh u cos v ,
y = a s inh u s i n V ,

z = Z.

General use of the bu i l t - in f rac t iona l -power s impl i f ie r , RADCAN, w a s
necessary because 2 o f t h e 12 reported coordinate transformations involve
square roots and because for vector analysis the square roots of the diagonal
elements of G are computed.

Using RADCAN alone, it required 2.2 seconds for spherical coordinates and
1 . 4 s econds fo r e l l i p t i c cy l ind r i ca l coo rd ina te s t o compute G matrices that
were inadequately simplfied. For example, some off-diagonal elements did not

427

s i m p l i f y t o 'zero i n s p h e r i c a l c o o r d i n a t e s , a n d t h e f o l l o w i n g v a l u e s were
computed for i n s p h e r i c a l a n d e l l i p t i c - c y l i n d r i c a l c o o r d i n a t e s
r e spec t ive ly : 11

s q r t (s i n @ + cos +)P s i n 0 ,

a sqrt(cosh u s i n v + s i n h u cos V) .
2 2 (6)

(7) 2 2 2 2

RADCAiX a lone i s c l ea r ly i nadequa te . The lack of o f f -d iagonal zero-
r e c o g n i t i o n h a d p a r t i c u l a r l y d i s a s t r o u s e f f e c t s on t h e computed inve r se o f G
and on t h e computed Christoffel symbols. Indeed, it o r t e n l e d t o s t o r a g e
exhaust ion or pat ience exhaus t ion dur ing these subsequent ca lcu la t ions .

A p e r u s a l o f t h e MACSYMA manual sugges ts TRIGREDUCE as the obvious
candidate for overcoming these problems, and TRIGREDUCE can i ndeed exp lo i t t he
s y n t a c t i c a l l y most obvious gu ises o f ident i t i es (1) and (2) . However,
co r re spond ing t o exp res s ions (6) and (7) , t h i s t echn ique gave

i P sqr tCcos(28) - 1 1
s q r t (2) Y

i a sqr t [cos(2v) , - cosh (2u) l
s q r t (2) Y

us ing 10 .4 and 4.5 seconds respect ively. Apparent ly TRIGREDUCE a l s o combines
products o f t r igonometr ic or hyperbol ic func t ions in to cor responding func t ions
of mult iple angles , which i s more than 'we want . Other coordinate systems
r e v e a l e d t h a t TRIGREDUCE a l s o combines products o f such func t ions o f d i f fe ren t .
arguments into such funct ions of sums, which i s e v e n l e s s d e s i r a b l e i n o u r
circumstances.

This sugges ts fo l lowing TRIGREDUCE wi th TRIGEXPAND, t o undo t h e s e
undesired mult iple-angles and angle sums. TRIGEXPAND w i l l not expand 1 i n t o
s in20 + cos20, so w e hope f o r some n e t s i m p l i f i c a t i o n from th is approximate ly
i n v e r s e p a i r . T h i s p a i r was followed by RADCAN, f o r i t s r a t i o n a l a n d
fract ional-power s implif icat ion. Al though t h i s stratem helped for some
coord ina te sys tems, cor responding to express ions (6) and (7) t h i s t e c h n i q u e
gave

r s q r t (s i n e - cos e + 1)
s q r t (2)

2 2
Y

a s q r t (s i n v - cos v + s i n h u + cosh u) 2 2 2 2

s q r t (2) Y

us ing 4.9 and 4 . 1 s econds r e spec t i -ve ly . C lea r ly t h i s s t r a t egy i s s t i l l far
from i d e a l .

Undaunted, I n e x t t r i e d u s i n g t h e p a t t e r n m a t c h e r as fol lows:

MATCHDECLARE (XTRUE, TRUE) $

TELLSIMPAFTER (SIN(XTRUE)f2 + COS(XTRUE)f2, 1) $

TELLSIMPAFTER (COSH(XTRUE)f2 - SINH(XTRUE)f2, 1) $

428

T h i s t e c h n i q u e f a i l e d t o s i m p l i f y some of the spher ica l -coord ina te o f f -d iagonal
elements t o z e r o . Also, cor responding to express ions (6) and (7) , t h i s t e c h -
nique gave

r s i n 8 (12)

(13) a . s q r t (c o s h u s i n 2, + s i n h u cos 2,) 2 2 2 2 -

The a t t e r n s are evident ly ' unable t o o p e r a t e t o g e t h e r t o s i m p l i f y
cosh 3 u sin2v + sinh2u C O S ~ V t o s i n 2 v + sinh2u. .Also o ther coord ina te sys tems
r e v e a l e d t h a t t h e two terms o f each pa t t e rn are not t rea ted symmetr ica l ly .
Under the i n t e rna l o rde r ing , one o f each pa i r i s conside.red t o b e t h e " l e a d i n g
var iable" , which lends a bias towards terms of one type. For example, t h e
express ion s in2x i s t ransformed to l -cos2x .

More despera te then , I could no longer postpone learning about Poisson
series, which are c a n o n i c a l a n d e f f i c i e n t . I n t h e s u i t e of MACSYMA Poisson
func t ions , OUTOFPOIS seemed more appropr i a t e . However, t h e f i n e p r i n t
revea led some s e r i o u s r e s t r i c t i o n s o n t h e al lowable arguments of this funct ion.
Some, such as t h e r e s t r i c t i o n t o t r i g o n o m e t r i c a r g u m e n t s t h a t are l i n e a r combi-
na t ions o f i nde te rmina te s , w i t h i n t e g e r c o e f f i c i e n t s , a r e f u n d a m e n t a l t o t h e
na ture o f Poisson se r ies . Others , such as t h e . l i m i t a t i o n t o s i n g l e - p r e c i s i o n
i n t e g e r s and indeterminates in the t r igonometr ic arguments with names chosen
from t h e set {U,V,W,X,Y,Z}, are concess ions to e f f ic iency and ease of imple-
m e n t a t i o n . C l e a r l y t h e s e r e s t r i c t i o n s are too s eve re t o pe rmi t d i r ec t au to -
matic use of OUTOFPOIS from w i t h i n t h e c u r v i l i n e a r c o o r d i n a t e s f u n c t i o n .
Nevertheless , i f Po i s son s impl i f i ca t ion d id t h e r i g h t t h i n g , I was w i l l i n g t o
write a front-end f i l t e r which feeds OUTOPOIS only those por t ions o f an expres-
s ion which, wi th indeterminates temporar i ly renamed appropr i a t e ly , meet t h e
r e s t r i c t ions . A l though OUTOFPOIS does not perform hyperbol ic s implif icat ion,
I w a s w i l l i n g t o t a k e what I could ge t , and I had hopes f o r u s i n g a t r i c k s u c h
as r e p l a c i n g c o s h x w i t h c o s (i z) . However, b e f o r e i n v e s t i n g a l l o f t h i s e f f o r t ,
I t r i e d renaming the coord ina te var iab les manual ly , then us ing

TRIGSIMP(U) : =

(u : FLATSIMP(U) ,

OUTOFPOIS(NUM(U))/OUTOFPOIS(DENOM(U))) $

Corresponding t o e x p r e s s i o n s (6) and (7) , t h i s t echn ique gave

i s q r t (2) r sqr t [cos(2u) - 1 1
2 Y

a s q r t [(s i n h u - cosh u) cos(22,) + sinh u + c o s h u] / s q r t (2) , 2 2 2 2 (15)

us ing 3.5 and 2.1 seconds respect ively. Again w e see t h a t t h e s i m p l i f i c a t i o n
i s t o o d r a s t i c , i n d i s c r i m i n a t e l y r e p l a c i n g p r o d u c t s a n d powers o f t r i gonomet r i c
func t ions wi th t r igonometr ic func t ions o f mul t ip le angles and sums. This may
be i d e a l for series approximations t o p e r i o d i c s o l u t i o n s o f e q u a t i o n s , but it
i s no t i dea l for a l l t r i g o n o m e t r i c s i t u a t i o n s . A lovely answer such as sin9X,
f o r example, w i l l be c o n v e r t e d t o a n e x p r e s s i o n t r u l y u g l y t o b e h o l d .

Nevertheless , I t h i n k t h a t t h e above-mentioned front-end f i l t e r would be
worthwhile i n many s i t u a t i o n s .

A t t h i s p o i n t , c a s u a l p e r u s a l o f t h e manual was r ep laced w i th an i n t ens ive
s tudy , which revea led tha t us ing EV(..., EXPONENTIALIZE) w i l l c o n v e r t t h e
t r i g o n o m e t r i c f u n c t i o n s t o complex exponent ia ls , which can t h e n b e s i m p l i f i e d
wi th RADCAN, ar ter which EV(..., DEMOIVRE) converts complex exponent ia ls to
s ines and cos ines . A f i n a l RADCAN then gives any spurious " i f f ' s an opportu-
n i ty t o cance l . Cor re spond ing t o exp res s ions (6) and (71, t h i s t e c h n i q u e
gave

i r s q r t { [s i n (2 8) + i c o ~ (2 e > J s i n (4 e) + [cos (28)

- i s in (28)] C O S (48) - 2 s i n (2 8) - i s i n (2 8)
2

us ing 37 and 16.7 seconds respec t ive ly .

The mult iple angles were unforeseen, s o I t r i e d i n s e r t i n g a TRIGEXPAND
between t h e DEMOIVRE a n d f i n a l RADCAN. Corresponding t o e x p r e s s i o n s (6) and
(7) , t h i s t echn ique gave

6 5 2 4 r s q r t [s i n 0 - 2 i cos 8 s i n e + (cos e + 2) s i n 8 - 4 i 8 s i n e 3

(- cos 8 + 4 cos 8 + 1) s i n 8 + 2 i c o s e - 2 i cos 8 s i n e - cos 8 4 2 2 5 6
4 2 + 2 cos 8 - cos 83/2 ,

-24 6 224 5 4

- 4 i e cos v s i n v + [-e2' cos v + (2 e + 2) cos z, + e2'] s i n v
+ (2 i e2u cos v - 2 i e2u cos v) s i n v - e2u cos v

+ (e4u + 1) cos v - e2u cos v) /2

(18)

a e sqr t{e2 ' s in v - 2 i e cos v s i n v + (e2u cos2u + e4u + 1) s i n v
2u 3 3 4 4u 2 2

5 6
4 2 (19)

using 32.4 and 20.3 seconds respectively.

The MACSYMA pr imer (re ference 5) mentions a l l of the above techniques,
except using REALPART where I used DEMOIVRE, which gives equal ly disappoint ing
results f o r t h i s a p p l i c a t i o n .

Resolved now t o w r i t i n g my own t r ig -hype rbo l i c , s imp l i f i ca t ion func t ion ,
I f irst t r i e d t h e f o l l o w i n g :

TRIGSIMP(U):=

(u: RADcAN(u) ,
TRIGPOLYSIMP(NUM(U))/TRIGPOLYSIMP(DENOM(U))) $

TRIGPOLYSIMP(U):= BLOCK ([L] ,

Make a i i s t L o f all unique subexpressions
which occur as t h e arguments of both sin and cos , with rn,n22, m n

FOR X I N L Do U: FXMAINDER(U,SIN(X)-+2+COS(X)+2-1),

Perform a similar massage for s inh and cosh,

Corresponding t o e x p r e s s i o n s (6) and (7) , th rs t echnique g ives

r s i n 0 , (20)

i U Sqrt(C0S V - cosh U) s q r t (c o s V + cosh U) , (21)

using 2.6 and 3.2 seconds respectively.

Within TRIGPOLYSIMP, using MTSUBST(l,SIN(X)+2 + COS(X)+2,u) ins tead of
REMAINDER (U,SIN(X)+2 + COS(X)+2-1), and s i m i l a r l y f o r i d e n t i t y (2) g i v e s
v i r t u a l l y i d e n t i c a l results.

A t t h e expense of missing opportuni t ies such as rep lac ing 1-cos x by
s in2x, checking for the presence of both sinm and cosn removed most o f t h e b i a s
present in the pa t te rn-matching a l te rna t ive . A s revealed by expressions (20)
and (2 1) , t h i s t e c h n i q u e does an adequate job for these two coordinate systems,
, though sin2v + sinh2u i s s l i g h t l y p r e f e r a b l e t o cos2V - cosh2u f o r computational
and e s the t i c r ea sons . (I regard "+" as s l igh t ly s imp le r t han "-".) This tech-
n ique a l so d id an adequate . job for t he o the r t e s t ed coord ina te sys t ems , so it
i s n o t c l e a r t o m e now why I looked further. Perhaps it w a s because I knew t h a t
the technique w a s s t i l l t o o d r a s t i c f o r many purposes. For example, a love ly
answer such as s in92 + cosgx i s replaced by an express ion too obscene to l i s t here ,

2

A way t o v e r y n e a r l y r e t a i n symmetry and t o a v o i d an inc rease i n exp res -
sion complexity i s t o compare the complexi t ies o f the express ions ob ta ined
by r a t i o n a l l y s u b s t i t u t i n g l - c o s 2 x f o r $in2,, b y r a t i o n a l l y s u b s t i t u t i n g
1-s in2x for C O S ~ X , and by subs t i t u t ing ne i the r , f o r each r e l evan t spec ie s o f
x i n t h e e x p r e s s i o n . N a t u r a l l y , similar comparisons are done for cosh and
s inh. For these comparisons, the leaFt complex candidate wins, with t i e s
broken i n an arbitrary asymmetric manner. The complexity function can be
designed t o r e f l e c t t h e u s e r ' s v a l u e judgements. For s impl i c i ty , I def ined
the complexity as the l eng th o f an expres s ion , w i th t he l eng th o f a "ATOM
as 1 and t h e l e n g t h o f a complete subexpression as 1 p l u s t h e sum o f t h e
lengths o f the operands . However, t h e b u i l t - i n LISP func t ion ?STRING w a s a
faster length measure, probably because it i s a compiled LISP func t ion r a the r
t han an i n t e rp re t ed MAcsYMA funct ion.

43 I

The technique then i s t o r e p l a c e t h e above TRIGPOLYSIMP wi th a function
t h a t makes a set of elements, with each element being, for a unique argument
x, a s e t c o n t a i n i n g s i n x, cos x or both, according t o which o f these occur
t o at least t h e second power. Analogous elements are also included for cosh
and sinh. Then, t he appropr i a t e subs t i t u t ions are success ive ly t r ied ,
r e t a in ing a t each s tage the expression with shorter length. Corresponding
t o expressions (6) and (7) , t h i s "comparative sequential substi tutions"
technique gave

r s i n 8 , (22)

a s q r t (cosh u s i n v + s inh u cos 2,) , 2 2 2 2

using 5.6 and 6.5 seconds respectively. Unfortunately this technique misses
opportunities such as replacing a cos2u sinh2v + a s i n u cosh v by
a(sin%+sinh%). This example requires replacing cos2u by 1-sin% and cosh2v
by 1-sinh2 , but e i ther a lone temporar i ly lengthens the expression, causing
the combination.to be overlooked.

2 2

This phenomenon suggests t rying a l l combinat ions of feasible subst i tut ions,
t ak ing t he sho r t e s t o f these results. Corresponding to expressions (6) and
(7) , t h i s '!comparative combinatorial substitutions" technique gives

a s q r t (s i n v + s inh u) , 2 2

O f course the computing time would grow dramatical ly with the number of
d i s t i n c t s p e c i e s o f s i n x, cos x, s inh x, and cosh x t h a t o c c u r t o a t
l e a s t t h e second power, but t h e computing timegrows even more dramatically
when less-than-optimally simplified expressions are used for subsequent
ca lcu la t ion of the Chr is tof fe l symbol components. Also, the combinatorial
comparisons a re o rganized in a manner t o s h a r e some comon subst i tut ions
between candidates and to e l imina te some candidates before computing a l l of
them -- s o r t o f a dep th - f i r s t subs t i t u t ion and comparison. Moreover, we a r e
dea l ing wi th s i tua t ions where there a re no t many d i s t inc t spec ie s . If t h e
combinatorial growth w a s wi th respec t to the number of te rms ra ther than the
number of spec ies , th i s a lgor i thm would be l e s s p r a c t i c a l for t h i s t e n i o r
appl ica t ion .

O f the var ious techniques, I am happiest wi th this l as t one of comparative
combinator ia l subst i tut ions. However, I expect to remain content only unti l
I s u f f e r a t t h e hands of an example such as

mess + 2 sec x - t a n x , 2 2

which would most es the t ica l ly t ransform

1 + mess +
or an example such as

(mess + s i n x 2

t o
2 sec x ;

+ cos x) 2 1000
Y

which f o r most purposes i s bes t r ep laced by

(mess + 1) 1000

Thus, it might be useful t o j u d i c i o u s l y u t i l i z e a l l 1 2 trigonometric and
hype rbo l i c func t ions , t oge the r w i th an i n s ide -ou t u t i l i za t ion of TRIGPOLYSIMP
on all sums, r a t h e r t h a n merely the top-level numerator and denominator.

CONCLUSIONS

I have come t o r e g a r d i d e n t i t i e s (1) and (2) as a b l e s s i n g r a t h e r t h a n
a curse. The abi l i ty to use var ious judicious combinat ions of dependent
tr igonometric and dependent hyperbolic functions often permits a far more
compact and understandable answer than i s poss ib le when such s ide r e l a t ions
are not present . The u r g e t o c a n o n i c a l i z e i n a s t ra ightforward fashion can
preclude some of these oppor tuni t ies . It i s poss ib le and sometimes necessary
to au tomat i ca l ly exp lo i t t he t ypes o f non-canonica? s impl i f ica t ions descr ibed
here.

ACKNOWLEDGMENTS

I thank David Barton, Richard Bogen, Richard Fateman, J e f f r e y Golden,
J o e l Moses, Stavros Macrakis and Richard Zippel for their ass is tance
during var ious s tages of my quest .

REFERENCES

1. Fateman, R . J . : Essays in Algebraic Simplif icat ion, Harvard Ph.D. Thesis
and MIT P ro jec t M!lC Technical Report 95, 1972.

2. Hearn, A . C . : The Computer Solution of Algebraic Problems by Pattern
Matching, University of Utah Computational Physics Report 8, 1971.

3. Moses, J.: S impl i f i ca t ion - A Guide fo r t he Pe rp lexed , Communications
o f t h e ACM, August 1971.

4. Stoutemyer, David R . : Symbolic Computer Vector Analysis . Proceedings of the
1977 MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper no. 43 Of
t h i s compi l a t ion .)

5 . Mathlab Group: MACSYMA Primer , Pro jec t MAC , MIT , 19-75,

433

I

MATRIX COMPUTATIONS IN MACSYMA

42

' Paul S. Wang
Laboratory for Computer Science & Mathematics Department, MIT*

INTRODUCTION

An important facility for a computer symbolic mathematics system is matrix computation.
MACSYMA provides many built-in facilities for manipulating matrices. The matrices may have
numerical or symbolic entries. This means matrix elements may involve indeterminates and
functional expressions. Computations will be done exactly, keeping symbols as symbols. The
purpose of this article is to describe these matrix facilities, to explain their use and to give some
idea as to the algorithms or procedures used.

In section 2 the question of how to form a matrix and how to create other matrices by
transforming existing matrices within MACSYMA is addressed. Arithmetic and other computation
with matrices is discussed in section 3. The user control of computational processes through the
use of OPTION VARIABLES is indicated in section 4. In sections 5 and 6 two algorithms
designed specially for sparse matrices are given. Section 7 compares the computing times of several
different ways to compute the determinant of a matrix.

FORMING AND TRANSFORMING MATRICES

one just types MATRIX ([A,B], [C,Dl). If the matrix is large and one wishes to type the entries one
at a time then the command AENTER(m,n); can be used. The integers m and n are the
dimensions of the matrix to be entered. Sometimes the value of an entry can be expressed as a
function of the row and column indexes. In this case the command GENMATRIX which
generates a matrix from a MACSYMA array is useful. For instance, if an m x n matrix A is
needed with 4, - i/j, one first defines an array B by BU,& 4J Then the command
*This work was s u p p o r t e d by ERDA c o n t r a c t E l l - 1 - 3 0 7 0 and by NASA g r a n t NSG 1323,

CENMATRIX(B,m,n) will construct the desired matrix. The MACSYMA reference manual (ref.
1) contains a more detailed description of GENMATRIX.

T h e command AINDENT(m) produces an m x m identity matrix;
ADIACMATRIX(m,x) produces an m x rn diagonal matrix with each diagonal entry x.

MACSYMA provides several commands for taking a part or a submatrix of an esisting
matrix. T h e command MINOR(A,i,j) produces a new matrix by deleting row i and column j from
A. ROW(A,n) and COL(A,n) give, as a matrix, the nth row and column of . A respectively. In
general, SUBMATRIX(i,, ... , i,, A, j , , ... ,jJ produces a matrix from A by deleting the rows i ,
i, and columns j,, ... ,j,,. The (i,j)th entry in a matrix A is accessed by typing A[i,jl.

There are also facilities for modifying or transforming a given matrix. TRANSPOSE
(A) returns AT. ADDROW(A,R) produces a matrix which is equal to A with R appended as the
last row. MATRIXMAP(fn,A) creates a new matrix of the same dimensions as A where each entry
is formed by applying the given function f n to each element of A. The function fn can be a
MACSYMA function or a user defined function. For example, if one wants to make a matrix of
numerators of the entries of A one can do MATRIXMAP(NUM,A).

A user can change the (i,j)tA entry of a matrix A, to x, say, by typing A[i.jl:x. Th i s
change is made on A. If one wishes a new matrix then the change should be made on a copy of A.
COPYMATRIX(A) gives a new matrix which is a copy of A.

As a rule, MACSYMA commands will not alter existing expressions. There are a few
exceptions to this rule and they are clearly indicated in the MACSYMA reference manual (ref. 1).
To emphasize the effect of an expression-altering command we show the following example:

(t :>
Let a set of linear equations EQl, ... , EQm in the variables X1, ..., Xm be given. T h e commands

436

-

COEFMATRIX(eqlist,varlist) and AUGCOEFMATRIX(eqlist,variist) are used to produce the
coefficient matrix and augmen,ted coefficient matrix, respectively, where eqlist is IEQI, ..., EQml
and varlist is [Xl, i.. ,Xml.

MATRIX COMPUTATIONS

Between two matrices of the same dimension and between a scalar and a matrix the
arithmetic operators +, -, *:e, t and / are used for an elementwise effect. Thus if

then

and

T h e usual matrix multiplication uses the dot operator. Multiplying a matrix by itself a
number of times is indicated by the operator tt. Thus

x +yz x y + p

zx+zw zy+w

2

AtT2 = A.A = (*)

437

As an aside, we should note that these operations are not exclusively reserved for
matrices: the dot and t T operators are used for noncommutative multiplication and powers in
general. Computation involving noncommutative multiplication between variables can be done by
declaring the variable NONSCALAR and using the dot operator. For example:

(Cl) DECLARE ([A, Bl; N0NSCALAR)S

(C2) (A + B) . (A - B), EXPAND;

A'2' + B.A - A.B - Bc2'

Note how exponents resulting from noncommu'tative multiplication are displayed. T h e inverse of
A is Att-1. Among these matrix computations, the inverse is the most time consuming. The esact
inverse of a matrix whose entries are polynomials, rational functions and other functional
expressions is 'often much larger than the matrix itself. In some cases, moderately-sized symbolic
matrices (under 10 X 10, say) with not very complicated entries may have inverses whose size
exceeds the maximum store available to MACSYMA. In other cases, the inverse is of reasonable
size but the computation runs out of store at an intermediate stage. This diff icul ty , called
intermediate expression swell, is common to many other symbolic computation processes: polynomial
greatest-common-divisor calculation (CCD), factoring and definite integration, just to name a few.
T h e challenge to algorithm designers is to avoid or control intermediate expression growth while
keeping the algorithms reasonably fast. In general, the best procedure to use is dependent on the
problem to be solved. There are two different inversion procedures in MACSYMA: a basic
Bareiss-type Fraction Free Gaussian Elimination (FFGE) algorithm (ref. 2) and a special procedure
for sparse matrices. The latter is a special feature in MACSYMA and will be described in the
section, "Inverse of Sparse Matrices."

T h e FFEG uses the usual Gaussian elimination process which reduces the given matrix
co the identity by elementary row operations while transforming an identity matrix appended to the
given matrix to the desired inverse. However, in order to avoid computing with fractional forms
which involves many costly CCD calculations, the elimination is made fraction-free. First each row
is multiplied by the least common multiple of its denominators. Then the elimination is carried out
with cross multiplication instead of division. Significant improvement in speed results from
fraction-free elimination. However, cross-multiplication adds to intermediate expression growth.

When the FFGE has reduced a given matrix to upper triangular formi the last diagonal
element is equal to the determinant of the (rescaled) matrix. Therefore it is a1s.o a method for
computing the determinant of a matrix. The command in MACSYMA using this technique to
calculate a determinant is DETERMINANT(A). There are three other ways to compute the
determinant also implemented in MACSYMA. These will be described in section 6. One can also
obtain the triangular form, the echelon form (essentially the triangular form with the first entry of
each row normalized to I), the rank and characteristic polynomial of a matrix A by
TRIANGULARIZE(A), ECHELON(A), RANK(A), and CHARPOLY(A,x), respectively.

4 38

OPTIONS IN CONTROLLING COMPUTATION

Matrix computations can result in expressions which are rather large and complicated.
Therefore it is important to carefully control the manner in which a given computation is csccutcd.
User control options are provided in MACSYMA in the form of OPTION VARIABLE or.
SWITCH settings. There are many SWITCHES in MACSYMA. Each SWITCH may have two
or more possible settings which affect the behavior of one or several routines conti-olled by the
SWITCH. A SWITCH is set, like any other variable, by using the : operator. For example, if
RATMX:TRUE is done, then all matrix arithmetic will be done in CRE form (ref I). In a fresh
MACSYMA system, each SWITCH has a default value or setting. RATMX has the default value
FALSE, which means MATRIX arithmetic will be done in general representation. Vectors in
MACSYMA can be represented as one-dimensional matrices. However it is often convenient to
represent vectors as lists. A list V:[A, B, C] represents a row vector. To mix computation with lists
and matrices one sets LISTARITH to TRUE. If A is a 3 X 3 matrix then V.A is a 1 S 3 matrix
and A.V is a 3 X 1 matrix. Setting SPARSE to TRUE enables several routines specially designed
for sparse symbolic matrix computations to be activated. Other options control operatrons of
scalar-matrix arithmetic and noncommutative operations. The available options are described i n
detail in the manual. Efficient use of these controls comes with experience with a given
application, and experimentation.

INVERSE OF SPARSE MATRICES

T h e question of whether the inverse of a given matrix will f i t in the available memory
space to MACSYMA depends on the size, the number of indeterminates and the number of zero
entries in the matrix. A matrix with many zero entries is said to be sparse. Sparse matrices occur
frequently in practice. One often-asked question in connection with inverting a sparse matrix is
how to order the rows and columns to facilitate the computation. MACSYMA has programs for
reordering rows and columns. We present its algorithm here in more detail to provide the user
with a deeper insight.

If the given matrix is sparse its inverse may also have many zero entries. One obvious
example of this situation is a triangular matrix. Substantial computation can be saved if the zero
entries in the inverse are predicted so that they do not have to be computed. It has been shown
that this can be done if and only if the given matrix is block reducible (ref. 3). Let Q b e a n n x n
sparse matrix. If there is a way of reordering rows and columns so that Qbecomes

439

where Qij is a matrix of dimension ni x ni, n l + ... + n t = n and if t > 1 then Q is reducible.
Otherwise Q is irreducible. A fairly efficient algorithm is implemented in MACSYMA for
computing 8" from ai;'. 8'' has the same block structure as 3. To obtain Q-l from e-1 is just
a matter of undoing the row and column .permutations that transformed Q to 8.

Now let us consider the means of obtaining the desired block structure. A directed graph
(ref. 3) g(Q can be associated to the matrix Q This graph has n nodes labeled 1 through n. T h e
nodes are linked by directed edges representing nonzero entries of Q An edge from node i to ~

node j represents the nonzero entry qii. This edge is labelled qii. Only the nonzero entries of Q a r e
represented in g(Q. A sequence of edges leading from node i to j is called a path from i to j. A
subgraph is isolated if any pair of nodes in the subgraph are connected and no nodes outside the
subgraph are connected to any insider such isolated subgraphs are called strong components of
g(Q. T h e strong components of g (Q give rise to the block structure of Q We denote by SQ the
number of strong components in g(Q.

T h e outcome of the above scheme is dependent on the given order of the rows and
columns of Q This means that a permutation of the rows andlor columns may result in an
associated graph with more strong components and therefore lead to a refined block structure of
Q For example, if Q i s given as

then g(Q looks like

440

which has only one strong component. However, by interchanging the first and third rows of Q
one would find t = 2. Indeed two is the maximum number of blocks Q h a s . As a matter of fact Q
can always be fully reduced if nonzero elements are assigned on the main diagonal before
constructing g(Q.

DETERMINANT OF SPARSE MATRICES

There are four different ways to compute a determinant in MACSYMA. I f R A T M X is
FALSE the DETERMINANT command uses general representation and a Bottom-Up minor
expansion (BU) suggested by Gentleman and Johnson (ref. 4). T h e BU method computes all
possible 2 x 2 minors in the last two columns (rows). Then all the 3 x 3 minors, etc. T h e BU
method was also programmed in LISP by Fateman to render expressions in CRE fo rm. The
command using it is NEWDET. If RATMX is TRUE, then one of two methods is used by the
DETERMINANT command depending on the setting of SPARSE. If SPARSE is FALSE, the
FFGE method mentioned before is used. If SPARSE is TRUE, then a routine, TDBU. specially
designed for taking the determinant of matrices with many zero entries is called.

W e describe the TDBU sparse determinant algorithm in more detail, since we believe i t
to be one of the most efficient methods for this purpose currently implemented on a symbolic
mathematical computer system.

If the given matrix, Q, is reducible to a block triangular form, then its determinant is
the product of the determinants on the main diagonal multiplied by 1 or -1, depending on the row-
column reordering. Let us assume Q is sparse and irreducible. A minor expansion method is
employed for the determinant. of Q It consists of a Top-Down analysis phase and a Bottom-Up
computation phase. T h e Top-Down phase constructs a graphical structure of minors needed to be
computed and the interdependence between these minors. This avoids almost all unnecessary
minors. Then the minors needed are computed Bottom-Up so that there is no repeated
computation. The method is named TDBU (ref. 5).

Let us illustrate the TDBU by an example. Consider the 6 x 6 tridiagonal matrix.

44 1

i B C O O O O

' I A B C O O O

O ' A B C 0 0

' = O O A B C O

O O O A B C

O O O O A B

By the list (i l , ..., ik) we denote the minor at the intersection of the last k columns and the
rows i l , ip, ..., ik. Using the position of the nonzero entries the following tree is constructed:

I

There are 14 nodes besides the root. However some of these nodes represent obviously
singular minors. If a singularity check is used which looks for an entire row or column of zeros i n
a minor, several branches can be cut from this tree. With signed multiplier labels attached to the
branches the tree structure now becomes the following:

Therefore, only 8 minors need be computed. As the bottom-up computation progresses
minors no longer needed are discarded. Thus the storage required for minors is limited to slightly
more than 'one set of necessary i x i minors.

T I M I N G COMPARISONS

Timing tests have been conducted for the three different methods for determinant
computations: the fraction-free Gaussian elimination (FFGE), the bottom-up minor expansion
(BU). and the TDBU. Two forms of sparse matrices are used: the tridiagonal (TRID) and the
tridiagonal with a block structure (BLK). In the following tables an X indicates running out of
core. T h e timings (including garbage collection time) are measured on a DEC KL-IO.

,
443

[C + B C + A 0 0 0 e 1
[1
E B + A C + B C + A 0 0 0 1
[1

' C 0 0 C + B C + A 0 0 1
c 1
E 0 0 B + A C + B C + A '0 1
[1
[0 0 0 0 C + B C + A l
E 1
E 0 0 0 0 B + A C + 8 1

ELK
01 MENS I ON

6
8

10
12
14
16
18
20

' 22
24
26
28

FFGE
1405
5310
17410
43883
104642

X
X
X
X
X
X
X

BU TOBU
166 209
684 356
1523 863
2952 1163
5933 1584
16763 2044

X 3006
X 3643
X 4807
X 6107
X 7992
X 9507

time in milliseconds

444

[C + B C + A 8 8 0 0 1
1

[B + A C + B C + A 0 0 0 1
E 1
c 0 B + A C + B C + A 0 0 1
E 1
E 0 0 B + A C + B C + A 0 1
E 1
E 0 0 0 B + A C + B C + A I
E 1
E 0 0 0 0 B + A C + B l

T R I O
DIMENSION FFGE

6 '1 563
8 6949
10 22750
12
14
16
18
20
22
24
26
28

57251
140445

X
X
X
X
X
X
X

BU
177
710
1281
2760
6099
17307

X
X
X
X
X
X

TDBU
214
758
1446
2114
2970
4739
692 1
9367
12565
17132
231 38
30319

t ime in. mi I I i seconds

445

REFERENCES

1. Mathlab Group: MACSYMA Reference Manual. Lab. Compu. Sci., Massachusetts Inst.
Technol., Nov. 1975. .

2. Lipson, J.D.: Symbolic Methods for the Computer Solution. of Linear Equations With
Applications to Flow-Graphs. Proceedings of the 1968 Summer Institute on Symbolic
Mathematical Computation, IBM Corp., 1969, pp. 233-303.

3. Wang, P.; and Minamikawa, T.: Taking Advantage of Zero Entries in the Exact Inverse of
Sparse Matrices. Proceedings of the, 1976 ACM Symposium on Symbolic and Algebraic
Computation, Aug. 1976, pp. 346-350.

4. Gentleman, W. M.; and Johnson, S. C.: Analysis of Algorithms, A Case Study: Determinants of
Matrices With Polynomial Entries. ACM Trans. Math. Software, vol. 2, no 3, Sept. 1976, pp.
232-241.

5. Wang, P.: On the Expansion of Sparse Symbolic Determinants. Proceedings of the 10th Hawaii
International Conference on System Sciences, Jan. 1977.

446

43

SYMBOLIC COMPUTER VECTOR ANALYSIS*

David R. S t o u t e w e r
Universi ty of H a w a i i

ABSTRACT

A MACSYMA program i s descr ibed which performs symbolic vector algebra and
vector calculus . The program can combine and s i m p l i a symbolic expressions
including dot products and cross p roducts , toge ther wi th the g rad ien t , d iver -
gence, curl , and Laplacian operators . The d i s t r ibu t ion o f t hese ope ra to r s ove r
sums o r products i s under user control , as are var ious other expansions, in-
cluding expansion into components i n any specific orthogonal coordinate system.
There i s a l s o a c a p a b i l i t y f o r , d e r i v i n g t h e s c a l a r or v e c t o r p o t e n t i a l o f a
vec tor f i e ld . Examples i n c l u d e d e r i v a t i o n o f t h e p a r t i a l . d i f f e r e n t i a l equa-
tions describing fluid flow and magnetohydrodynamics, for 1 2 d i f f e r e n t c l a s s i c
or thogonal curvi l inear coordinate systems.

INTRODUCTION

Vector algebra and vector calculus enjoy diverse use throughout engineer-
ing, sc ience, and mathematics. Vector analysis lends conciseness that o f t e n
s impl i f ies the der iva t ion of mathemat ica l theorems and the statement of phys-
i c a l laws. Vector notat ion of ten c lear ly conveys geometr ic or phys ica l i n t e r -
p r e t a t i o n s t h a t g r e a t l y f a c i l i t a t e u n d e r s t a n d i n g . A t one extreme, vector
analysis provides a systematic method fo r de r iv ing t h e mathematical statement
of physical laws in spec i f ic o r thogonal curv i l inear coord ina te sys tems. A t
another extreme, vector analysis provides a means o f s t a t i n g and operating on
these phys ica l l a w s independent of a coordinate system, free from t h e d i s t r a c -
t i n g d e t a i l s o f i n d i v i d u a l components.

However, many engineers and sc ien t i s t s do not use vector analysis
f requent ly enough t o remain familiar w i t h many o f t h e s p e c i a l v e c t o r i d e n t i t i e s
t h a t are sometimes c ruc ia l t o s imp l i f ' y ing vec to r exp res s ions . Also, though
systematic , the expansion of vector expressions into specif ic or thogonal curvi-
l i n e a r components i s usua l ly ted iousand f raught wi th oppor tuni t ies for b lun-
ders. Other tedious blunder-prone operations include deriving scalar or
v e c t o r p o t e n t i a l s from given vector f ie lds . T h i s a r t i c l e d e s c r i b e s a computer
program which he lps overcome these human f ra i l t i es by automating these
processes.

*This work was supported by NatYonal Science Foundation grant MCS75-22893.

447,

The next sec t ion g ives a br ief demonstrat ion of t h e program. Subsequent
s ec t ions ou t l i ne t he unde r ly ing ma themat i ca l and programming techniques , then
summarize the performance for more comprehensive examples.

A DEMONSTRATION

The vector-analysis package contains various default and optional simpll-
f i c a t i o n s for t h e 'dot and cross products together with the operators , GRAD,
DIV, CURL, and LAPLACIAN. The vector operands may be an a rb i t ra ry mix ture of
s imi la r - length o rdered l i s t s , r e p r e s e n t i n g t h e s p e c i f i c componepts, t oge the r
with indeterminates declared NONSCALAR, r ep resen t ing t he vec to r s as a b s t r a c t
en t i t i e s . For example, t o e s t a b l i s h P, Q, F and G as v e c t o r e n t i t i e s , we type

(C3) DECLARE([P, Q, F, GI, NONSCALAR) $

Now, l e t ' s a t tempt to p rove the fo l lowing vec tor ident i ty , where "-"
represents the c ross p roduct opera tor :

Evident ly the default s impl i f i ca t ions are n o t d r a s t i c enough, so we type

(C5) VECTORSIMP(%), EXPANDALL;
(D5) O k O

Now, l e t ' s determine the expansion of an expression involving vector
d i f f e r e n t i a l o p e r a t o r s :

(~6) EXAMPLE: LAPLACIAN(%PI*(S+H)) = DIV(3*S*P);
%PI LAPLACIAN (S + H) = 3 DIV (P S)

(C7) VECTORSIMP(EXAMPLE), EXPANDALL;
(D7) %PI LAPLACIh S + %PI LAPLACIAN H = 3 DIV P S + 3 P * G R A E S

Suppose t h a t ' w e w i s h t o f i n d t h e s p e c i f i c r e p r e s e n t a t i o n of t h i s equation
in pa rabo l i c coo rd ina te s . To avoid having t o look up t h e d e f i n i t i o n o f
parabol ic coordinates :

(C9) BATCH(COORDS) ;

(C10) TTY0FF:TRUE $

(C13) /* PREDEFINED COORDINATE TRANSFORMATIONS :
CARTESIAN2D, CARTESIAN3DY
POLAR, POLARCYLINDRICAL,
SPHERICAL, OBLATESPHEROIDAL, PROLATESPHEROIDAL,

OBLATESPHEROIDALS&RT , PROLATESPHEROICALSQRT ,
ELLIPTIC, ELLIPTICCYLINDRICAL, CONFOCALELLIPTIC,

CONFOCALELLIPSOIDAL,
PARABOLIC, PARABOLICCYLINDRICAL, PARABOLOIDAL,

448

BlPOLAR, BIPOLARCYLINDRICAL,
TOR0 IDAL ,
CONICAL */
/* RESERVED COORDINATE VARIABLES AND PARAMETERS: */
LISTOFVARS (COORDS) ;
(D13) [x, y, Z, R , THETA, PHI, E, U, v, F, W , G]

(D l 4 1 BATCH DONE

In gene ra l , coo rd ina te s are s p e c i f i e d as a l i s t w i t h t h e first element
be ing a l i s t o f t h e t r a n s f o r m a t i o n t o a set o f r ec t angu la r Cartesian coordi-
na t e s . The remaining elements a r e t h e o r d e r e d c u r v i l i n e a r c o o r d i n a t e
v a r i a b l e s :

(C l 5) PARABOLIC;

F i r s t ' w e u s e t h e f u n c t i o n SCALEFACTORS t o d e r i v e a s e t o f g l o b a l s c a l e
f a c t o r s . Then w e u s e t h e f u n c t i o n EXPRESS t o e x p r e s s i t s argument i n t h e
corresponding coordinate system:

(~ 1 6) SCALEFACTORS(PARABOLIC) $

(ai) EXAMPLE: EXPRESS(EXAMPLE);

3 (~ (S SQRT(V'+U) Pv) + E (S Pu S&RT(V + U))) d 3 2 d 2 2

v2 + u2
Al te rna t ive ly , t he g loba l s ca l e f ac to r s can be e s t ab l i shed or changed by

supply ing the coord ina te sys tem as a second argument t o EXPRESS r a t h e r t h a n
an argument t o SCALEFACTORS.

Suppose t h a t H depends only on U, t h a t P depends only upon V, a n d t h a t S
depends upon both U and V. To expand t h e above de r iva t ives , t ak ing advan tage
o f t h e s e s i m p l f i c a t i o n s :

((218) DEPENDS([S,H],U, [S,P],V) $

(C19) EXAMPLE, DIFF;

449

d2H

(Dl9 = 3 (S S&RT(V: + U) (z Pv)
2 2 d

v2 + u2
s v Pv

+ S Q R T (V ~ + $1 pV + P SQ,RT(V 2 2 + U)
dV SQRT (V2 + U2) dU u

+ s u Pu
) / (v2 + u2)

SQ,RT(V2 + U2)

Now, suppose that w e a re g iven the fo l lowing parabol ic -coord ina te compo-
nents o f a gradien t vec tor ,

(C20) EXAMPLE: [(2*U*V**3+3*U**3*V) / (V**2+U**2),
(2*U**2*V**2+U**4)/(u**2+v**2)];

2 u v 3 + 3 u 3 v 2 u 2 2 v + U] 4
(D20 [2 2 Y

v + u 2 2 v + u
and we wish t o d e t e r m i n e t h e c o r r e s p o n d i n g s c a l a r p o t e n t i a l r e l a t i v e t o t h e
p o t e n t i a l at t h e p o i n t [O,O]:

(c21) POTENTIAL (EMMPLE) ;

(D21) u2 v SORT(V* + u2)
There i s an analogous function named VECTORPOTENTIAL t h a t computes t h e

vec to r po ten t i a l a s soc ia t ed w i th a g iven cu r l vec to r .

TECHNIQUES

Vector a lgebra has an in t r igu ing s t ruc ture . Bes ides conta in ing the o rd i -
na ry s ca l a r ope ra t ions , vec to r a lgeb ra has two spec ia l p roducts wi th somewhat
bizarre properties. Although the dot and cross products are b o t h d i s t r i b u t i v e
wi th r e spec t t o vec to r add i t ion , and a l t h o u g h s c a l a r f a c t o r s i n e i t h e r o p e r a n d
may be factored out of t he dot and cross product:

1. Vectors are not c losed under the dot operat ion. (p - q i s a s c a l a r .)

2 . Vectors are c losed under the c ross opera t ion on ly in th ree-
dimensional space, the cross product being undefined otherwise.

3. The dot product i s commutative

P-9 q o P ,
but the c ross p roduct i s anticommutative

pxq -qxp

450

4.

5 .

6 .

7.

8.

Neither is assoc ia t ive . (pX(qxr)$(pxq)xr, whereas p-(q=r) and
(p-q) - r are inva l id .)

Neither has a mul t ip l ica t ive un i t . (There does no t ex is t a f ixed
U such t h a t for a r b i t r a r y p, UXp=p o r pXU=p o r U*p=p o r p*U=p.)

Both admit zero divisors. (For a l l nonzero p,
PXP = 0 Y (3)

and t h e r e e x i s t nonzero q such that p-q=O).

Both are connected via ordinary scalar mult ipl icat ion, denoted w i t h
I 1 11 * , by the s t range s ide re la t ion

px(qxr) (p=r)*q-(p*q)*r (4)

The s t r u c t u r e i s even more complicated i f we consider dyadics,
t r i a d i c s , e t c .

.Vector calculus i s equal ly r ich i n comparison t o i t s scalar counterpar t .
Besides containing the usual derivatives, vector calculus has three special
d i f f e ren t i a l ope ra to r s . Although the gradient, divergence, and c u r l a r e
ou ta t ive (fo r example, grad(constant*$) E constant*(grad 4)) and addi t ive (for
example, grad($+$)Egrad $ +grad $) :

1. The gradient and divergence are not closed. (The gradient of a
sca l a r i s a vec tor , and the divergence of a vec tor i s s c a l a r .)

2. Vectors are c losed under the cur l operat ion only i n three-
dimensional space, the curl being undefined otherwise.

3. Compositions of these operators do not generally commute, but they
do satism the fo l lowing ident i t ies

cu r l (g rad $1 0 , (5)
d iv (cu r1 p) o , (6)

c u r l (c u r l p) E grad(div p) + div(grad p) . (7)
Here denotes a sca l a r , t he g rad ien t o f a vec tor i s a dyadic, and
the divergence o f a dyadic i s a vector.

4. When applied to various products, most of these operators have
expansions similar bu t no t i den t i ca l t o t he o rd ina ry de r iva t ive
of an ordinary product:

g rad(+ p) p grad + + + div p , (8)
div($ p) E (grad @)=p + + d i v p , (9)

c u r l ($ p) E (grad +)xp + $ c u r l p , (10)

grad(pxq) E (grad p)xq + (grad q)xp , (11)

div(pxq) z q * (c u r l p) + p=(curl 9) , (12)

!!5 1

grad(p.9) E (g rad p) * q + (g rad q1.P .
For brevity, the composi t ion div g rad i s Often
the Lap lac i an ope ra to r :

Laplacian 4 E d iv g rad 4 E V . 2

The L a p l a c i a n i n h e r i t s t h e l i n e a r i t y o f d i v and grad , toge ther
wi th the fo l lowing expans ion for p roduct operands :

Laplacian(@+) = 4 Laplacian $ + ~ (~ a p l a c i a n $) (L a p l a c i a n $1
+ I) Laplacian + . (16)

For many physical problems, symmetries or boundary surfaces encourage the
use o f o r thogona l cu rv i l i nea r coo rd ina te s t ha t are not rec tangular Car tes ian .
For example, t o r o i d a l c o o r d i n a t e s are most a p p r o p r i a t e f o r many c o n t r o l l e d
fusion problems, and oblate spheroidal coordinates are most appropr i a t e for
some geophysical problems. In such instances, it i s of'ten necessary t o know
' t h e s p e c i f i c p a r t i a l d i f f e r e n t i a l r e p r e s e n t a t i o n o f t h e g r a d i e n t , d i v e r g e n c e ,
c u r l , o r L a p l a c i a n i n o r d e r t o d e r i v e t h e d i f f e r e n t i a l e q u a t i o n s p e r t a i n i n g
t o t h e d e s i r e d c o o r d i n a t e s .

If the o r thogona l cu rv i l i nea r coo rd ina te s are denoted by 81,82,...,0,,
and a t r a n s f o r m a t i o n t o some rec t angu la r -Car t e s i an coord ina te s xl,x2,...,x
with m_>n, i s given by

m y

t h e n c o o r d i n a t e s c a l e f a c t o r s are def ined by

Otherwise the coord ina tes are nonorthogonal. The func t ion SCALEFACTORS
a t t e m p t s t o v e r i f y e q u a t i o n (19), p r i n t i n g a warn ing t oge the r w i th t he s imp l i -
f i e d l e f t - h a n d s i d e when it does not succeed i n d o i n g so. This p recaut ion
revea led an e r ror in the a l leged-or thogonal confoca l -parabolo ida l coord ina tes
l i s t e d i n t h e r e f e r e n c e t a b l e s o f two wide ly used vec tor -ana lys i s texts!
Computer a lgeb ra i s advisable for checking even when a published "answer" i s
ava i l ab le .

Most of the c lass ic o r thogonal coord ina te- t ransformat ion examples o f
equat ion (17) , involve t r igonometr ic func t ions and/or hyperbol ic func t ions
and/or square roots. Thus, t h e r e i s a v i t a l need fo r e f f ec t ive t r i gonomet r i c ,
hyperbol ic , and f rac t iona l -power s impl i f ica t ion dur ing the eva lua t ion of
formulas (18) and (19). The b u i l t - i n RADCAN func t ion -p rov ided t he

452

I

fractional-power simplification, but it was necessary t o develop a new
trigonometric/hyperbolic s impl i f i e r , d i f f e ren t frdm those bu i l t - in . Though
c r u c i a l t o t h e performance o f t h i s p o r t i o n o f t h e v e c t o r package, a suffi-
cient ly thorough discussion of this new s i m p l i f i e r would lead us too far
as t ray here , so t h e s i m p l i f i e r i s discussed separately in reference 1.

Let n

Then, using ordered l i s t s t o r e p r e s e n t t h e components of a v e c t o r , t h e g e n e r a
formulas fo r t he g rad ien t , divergence, and Laplacian are

For n=3, the genera l formula for the cur l i s

c u r l p = I , (ae2(h3p3) hl a - -(hF2 a 1 1 ,
ae3

The symbolic d i f f e r e n t i a t i o n and algebra necessary for evaluating
formulas (18) through (2 4) i s s t ra ightforward but tedious -- an i d e a l computer-
a lgebra appl ica t ion . In fac t , a r te r comple t ing th i s vec tor -ana lys i s package
I discovered t h a t a package similar t o t h i s curvilinear-components portion
had already been writ ten by Martin S. Cole.

It i s sometimes d e s i r e d t o compute the i nve r se o f t hese d i f f e ren t i a l
operations: Given a spec i f i c vec to r f i e ld , f i nd .a f i e l d , i f one e x i s t s , f o r
which the g iven f ie ld i s the g rad ien t or cur l .

If a given vector p i s theAgrEdiznt of 2n unknown s c a l a r p o t e n t i a l 4, then
denoting an a rb i t r a ry po in t by .8=(81 ,82 , . . . y~ ,) , -

453

0

where @(g) i s an undeterminable constant.
A

Succeszful closed-form computation of these integrals may depend upon
t h e chosen 2 and t h e chosen order ing of the components of S. The v a l i d i t y o f
t h i s formula depends upon t h e assumed exis tence o f a s c a l a r p o t e n t i a l .
Consequently, t h e f u n c t i o n POTENTIAL a t t empt s t o u se d i f f e ren t i a t ion and s i m -
p l i f i c a t i o n t o v e r i f y any candidate constructed by this formula.

If a given vector p i s t h e c u r l o f a n unknown three-dimensional vector
p o t e n t i a l q, then

where $ i s an a rb i t r a ry tw ice -d i f f e ren t i ab le s ca l a r po ten t i a l . Succesz fu l
closed-form computation of these integrals may depend upon t h e chosen 02 and
83 toge ther wi th a well-chosen cyclic permutation of the components of 2. The
va l id i ty o f t h i s fo rmula depends upon the assumed exis tence o f a vector
potent ia l . Consequent ly , the funct ion VECTORPOTENTIAL a t t empt s t o u se d i f -
f e r en t i a t ion and s impl i f i ca t ion t o ve r i fy any cand ida te cons t ruc t ed by t h i s
formula. Formd.as (25) and (26) are genera l iza t ions o f those g iven in pages
201-202 of reference 2 . For t h e program, 2 i n equa t ions (25) and (26) i s
s p e c i f i e d by the g loba l va r i ab le POTENTIALZEROLOC, which i s i n i t i a l l y set

A

A

t o [o,o,. . . ,o].

MACSYMA has several b u i l t - i n features which g r e a t l y f a c i l i t a t e t h e imple-
mentation of extensions such as this vector package:

1. The s y n t a x e x t e n s i o n f a c i l i t y makes it easy t o i n t roduce new
operators, such as "X" , GRAD, DIV, CURL, and W L A C I A N , toget.her
w i th t he i r pa r se b ind ing powers and r e s t r i c t i o n s on t h e i r v a l i d
operand types. However, attempted implementation of GRAD, DIV,
CURL, and LAF'LACIAN r e spec t ive ly as DEL, DEL *, DEL X and DELf2
caused incred ib le chaos , which should no t be surpr i s ing to
anyone who has wri t ten an extendable parser .

454

2. The d e c l a r a t i o n f a c i l i t y made it easy to e s t ab l i sh t he au tomat i c
outat ive and opt ional addi t ive propert ies of GRAD, D I V , CURL,
and LAPLACIAN. The d e c l a r a t i o n f a c i l i t y a l so made it easy t o
supplement the a lgebra ic p roper t ies o f the bu i i t - in opera tor " * "
with commutativity.

3. A bui l t - in f lag permi t ted defea t o f the defau l t assoc ia t iv i ty
property o f "*", and another built-in flag provided optional
d i s t r ibu t ion of ' I *" over "+" . A bui l t - in f lag a l so permi t ted
the automatic factoring of scalars from dot operands.

4. The pattern-matching automatic-substi tution facil i ty made it
easy t o implement simplifications such as transformations (3), (5)
and (6) .

5 . The procedure-def ini t ion faci l i ty together w i t h a bui l t - in funct ion
for determining the parts of expressions made it poss ib l e t o imple-
ment the other expansions and simplifications without recourse to
the lower-level MACSYMA implementation language.

S impl i f ica t ions tha t a re un l ike ly to en la rge an expression, t h a t do not drasti-
c a l l y change the form of an expression, and t h a t a r e e a s y t o implement via
declarat ion and automatic pattern-matching substitutions were made automatic.
Examples include the use of transformations (l), (3) , (5) and (6) .

Other expansions, such as expansions (2) , (4) , (y) , and (8) through (27) ,
together with the employment of addi t iv i ty or d i s t r i b u t i v i t y r e q u i r e a s p e c i f i c
request by the user , v ia the func t ion VECTORSIMP, together perhaps w i t h t h e
appropriate set t ing of var ious global var iables .

It i s expected t h a t most users w i l l wish t o use the function VECTORSIMP
wi th t he f l ag EXPANDALL s e t t o i t s default value of FALSE, request ing only the
leas t cont rovers ia l expans ions , o r se t to TRUE, requesting nearly every pro-
grammed expansion. However, fo r t he u se r who needs f ine con t ro l t he re i s a
hierarchy of f lags permitt ing individual cqntrol over each of t h e programmed
expansions or over various logical groupings of these. The f l ags a r e

EXPANDALL,
EXPANDDOT,

EXPANDCROSS,
EXPANDDOTPLUS ,

EXPANDCROSSPLUS,
EXPANDCROSSCROSS,

EXPANDGRADPLUS,
EXPANDGRADPROD,

EXPANDDIVPLUS ,
EXPANDDIVPROD,

EXPANDGFUID,

EXPANDDIV,

455

EXPANDCURL 9

EXPANDCURLPLUS,
EXPANDCURLCURL,

EXPANDLAPLAC IANPLUS ,
EXPANDLAPLAC IANPROD .

EXPANDLAPLACIAN ,

The PLUS s u f f i x refers t o employing a d d i t i v i t y or d i s t r i b u t i v i t y . The
PROD s u f f i x refers t o t h e expansion for an operand that i s any kind of product.
EXPANDCROSSCROSS refers t o expansion (41, and EXPANDCURLCURL refers t o
expansion (7) . EXPANDCROSS=TRUE h a s t h e same e f f e c t as EXPANDCROSSPLUS=
EXPANT)CROSSCROSS=TRUE, e t c . Two o t h e r f l a g s , EXPANDPLUS AND EXPANDPROD, have
t h e same e f f e c t as s e t t i n g a l l s i m i l a r l y s u f f i x e d f l a g s t r u e . When TRUE,
ano the r f l ag named EXPANDLAPLACIANTODIVGRAD, r e p l a c e s t h e LAPLACIAN opera tor
with the composi t ion D I V GRAD. For convenience the f lags have a l l been
dec lared EVFLAGS.

Those who p r e f e r a p l e tho ra of f u n c t i o n s t o a p l e t h o r a o f f l a g s are
encouraged t o d e f i n e a corresponding set of funct ions which merely local ly
set t h e a p p r o p r i a t e f l a g , t h e n u s e VECTORSIMP. Those who loa the bo th
approaches are free t o i g n o r e a l l o f t h i s .

TEST RESULTS

A c ruc ia l ques t ion i s : How compli'cated can problems be, for the various
por t ions o f the vec tor package , before exhaus t ing the ava i lab le memory space
or a reasonable amount o f computing time? Unfortunately, the answer t o t h i s
quest ion i s very problem-dependent , d i f f icul t to characterfze concisely and
ob jec t ive ly . However, t o s u g g e s t rough i n d i c a t i o n s , t h i s s e c t i o n summarizes
a v a r i e t y o f t e s t results.

F i r s t , t o t e s t t h e non-component s impl i f ica t ions , defau l t s impl i -
f icat ion, fol lowed by VECTORSIMP with EXPANDALL=TRUE, w a s a p p l i e d t o t h e
express ions in Table 1, taken from pages 32-33, 6 0 , and 215 of
re ference 2 .

These examples a l l co r rec t ly s imp l i f i ed t o ze ro , w i th t he excep t ion o f
case 6, which s i m p l i f i e d t o

-a=cx(a=bxc*b-a*bx(bxc)) - (a -bxc) 2

A second appl ica t ion successfu l ly annih i la ted the term containing bx(bxc) , and
r ea r r anged t he f i r s t term t o g i v e

a- (a-bxc*b)xc-(a-bxc) ' .
a-bxc could be fac tored ou t , c lear ly revea l ing tha t the express ion i s zero, but
t he bu i l t - i n s ca l a r - f ac to r ing -ou t mechanism does not recognize that a=bxc
is a s c a l a r d e s p i t e i t s vec tor components.

456

Regard ing the o r thogonal . curv i l inear components por t ion o f the package ,
Table 2 r e p o r t s t h e times r e q u i r e d t o compute t h e s c a l e f a c t o r s , a n d express
t h r e e p a r t i c u l a r e x p r e s s i o n s i n a variety of three-dimensional coordinate
systems. The first- express ion i s a n e q u a t i o n a r i s i n g i n magnetohydrodynamics
g i v e n i n r e f e r e n c e 3:

The second expression i s the Navier-Stokes equat ion of f l u id mechanics:

- = v Laplacian V - Vograd V av
a t

V + - grad div V - grad p
3 P

The t h i r d e x p r e s s i o n i s a l l but one term of another equation from magnetohydro-
dynamics, given i n r e f e r e n c e 4 :

- - ek (grad Ne)x(grad Ye) .
e 'e

The omit ted term w a s 2
CLU-~(- r * (c u r l B)) , e

4lT

where r i s a r e s i s t i v i ty dyad ic . A l though t he vec to r package fo r tu i tous ly
r ep resen t s t he gradien t o f a v e c t o r as a l i s t of d e r i v a t i v e s o f l i s t s , which
can be i n t e r p r e t e d as a dyadic , the package w a s not designed t o t rea t dyadics
i n g e n e r a l . The func t ion EXPRESS expands expressions into components from the
i n s i d e o u t , and expansion o f t he cu r l ope ra to r r equ i r e s an argument tha t i s a
l i s t o f t h ree e l emen t s . Thus, EXPRESS halts w i t h an e r r o r message when it
t r ies t o expand t h e o u t e r c u r l i n e x p r e s s i o n (3 0) .

The d e f i n i t i o n s of t h e c o o r d i n a t e s y s t e m s a r e g i v e n i n r e f e r e n c e 5 . A s
i n d i c a t e d i n Table 2, the sca le - fac tor computa t ion depends s t rongly on the
complexity of t h e coordinate system, whereas t h e t i m e r e q u i r e d t o e x p r e s s
vector expressions does not .

To t e s t t h e f u n c t i o n named POTENTIAL, the fu l ly-expanded grad ien t o f each
of the expres s ions i n Tab le 3 w a s de r ived i n t h ree -d imens iona l r ec t angu la r
Cartesian coordinates . Then, with POTENTIALZEROLOC set as ind ica t ed , POTENTIAL
w a s app l i ed i n an a t t empt t o gene ra t e an expres s ion d i f f e r ing f rom t h e o r i g i n a l
by no more than a cons tan t .

457

I n c o n t r a s t , POTENTIAL w a s a b l e t o v e r i f ' y t h e s o l u t i o n f o r t h e similar
case 3, which has .no ang le sum.

CONCLUSIONS

The examples here demonstrate that vector analysis i s a f e a s i b l e and
worthwhile supplementary program package for a computer-algebra system.

ACKNOWLEDGMENTS

Richard Bogen has been an invaluable cr i t ic and teacher , who g r e a t l y
h e l p e d b r i n g t h i s e f f o r t t o a successfu l conc lus ion . Je f f rey Golden i s , as
always, an unfail ing source of good suggest ions.

REFERENCES

1. Stoutemyer, David R . : s in (z)**2 + cos(Z)**2 ='l, Proceedings of t h e 1977
MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper no. 41 o f t h i s
compilation.)

2. Brand, L . : Vector and Tensor Analysis, John Wiley & Sons, Inc. , 1947.

3. Nielson, C.W. , and L e w i s , R . : Particle-Code Models i n t he Nonrad ia t ive
Limit, Methods i n Computational Physics, Vol. 16, J. Killeen, ed. ,
Academic Press , Inc . , 1976, p. 7-16.

4. Boris, J .P. , and Book, D . L . : So lu t ion of Continuity Equations by t h e
Method of Flux-Corrected Transport, Methods i n Computational Physics,
Vol. 16, J. Killeen, ed. , Academic Press , Inc. , 1976, P. 379.

5 . Spiegel , M.R. : Vector Analysis, McGraw-Hill Book Co. , 1967.

458

TABLE 1

Case

t
2

"

4

5

7

Default _ _ - ~ - " ~ - _ . _ _ _ _

(d-a)=(b-c)+(d-b)-(c-a)+(d-c)=(a-b)

(b-a)=(b-a)+(c+b) - (c -b)+(d-c)=(d-c)
+(a-d)-(a-d)-(c-a)=(c-a)+(d-b)-(d-b)
+(a+c-b-d)-(a+c-b-d)

- "

- ~

(a - b) = (k - -) + (b - c) = (k - 2) a+b b+c

+ (c - a) * (k -7) c+a 0.03

(a+b-c-d)-(a+b-c-d) -
(a-b-c+d) (a-b-c+d)-4(a-c) (b-d)

(bxc)x(axd)+(cxa)x(bxd)+(axb)x(cxd)
+2(a=bxc)+d 1.3

(axb)x (bxc) - (cxa) - (a= (bxc))2 4.0

(a-d)x(b-c)+(b-d)x(c-a)+(c-d)x(a-b)
-2*(axb+bxc+cxa) 0.5

0 .02

~

VECTORSIMP

0.3

0.6

0.3

0.7

4.8

2.0

0 . 6

959

TABLE 2

t i m e i n seconds

Coordinates

I Scale
Factors

p a r a b o l i c c y l i n d r i c a l

rec tangular Car tes ian

p o l a r c y l i n d r i c a l

paraboloidal

conical

sphe r i ca l

e l l i p t i c c y l i n d r i c a l

confoca l e l l i p so ida l

b i p o l a r c y l i n d r i c a l

ob la te sphero ida l

p ro l a t e sphe ro ida l

t o r o i d a l

0.7

0.8
1 . 5
3.4

6.9
7.4
9.3
17.8
20.5

21.8

35.3

57.0

TABLE 3

Eq. (28)

0.9

0.8
0.4
0.9

1.3
0.8

0.5

1.1

0.5

1 . 2

0.5

0.5

Eq. (29)

0.9

1 . 2

0.8

1 .3
2.1

0.8

1 . 4
2.5

1.4
1.0

1 . 5
1.6

Cas e POTENTIALZEROLOC Expression
time i n
seconds

1 [x=O, y=o, z=o] I 1.1 w 2 z + (x3+-) y

2

5.9 [z=1, y=1, z=1] (x +y +z 1 - 3

1 . 0 [F O , y=o, z=ol x/ (y+z+l.) 4

4.2 [x=O, y=o, z=o] x s i n (m) e 3

x s i n (m b) e 3 39+.rr z210g (l + z)

3 3y+.rrz2 log (l+z

11.2 [x=o, y=o, z=o]

. . ". -

5

6 1.1 [z=1, y=o, z=o] loge(z +y 1

2 2 2 -1/2 -112
. . - " .". . . ~ " . .

2 2

~ . . . " .

460

44

A NATURAL WAY TO DO SPATIAL LINEAR GEOMETRY IN MACSYMA

Juan Bulnes
Stanford Artificial Intelligence Laboratory

ABSTRACT

A set of routines, appropriate for use as an interactive aid in 3-dimensional calculations with
planes, lines and points is presented. The mathematical language used is vector calculus. T h e
simplicity with which these routines can be written in MACSYMA is quite remarkable, and that is
the main reason for presenting them here. Because of the natural way in which geometric intuition is
mapped into them, they can serve as a model for an interactive computational aid for architects.

INTRODUCTION

This paper is concerned with the application of MACSYMA to 3-dimensional linear geometry
calculations. A number of routines are presented which provide a designer with a most natural
language for interacting with the system. For example, the designer may be an architect who has
drawn tentative plans for a structure which he wishes to meet certain specifications regarding shape,
perspectives, etc.; his design having been driven by the outward shape he has in mind, he may know
the exact dimensions of some of the subsystems of his structure, but there may be many essential gaps
in his knowledge of how they fit together; also he may still be wondering as to which of his givens
can be used as initial reference and whether the rest would then be under-, over- or uniquely
determined by these. . O u r routines permit him to interactively explore the consequences of his
decisions. In the situation envisioned, the structure does not have any curved surfaces, although it is
possible to deal with them, with some extra work.

T h e mathematical language chosen is three dimensional vector calculus and all surfaces are
represented parametrically. Thus a line is represented by a vector depending on one parameter and a
plane by one that depends on two parameters. This is different from the usual representation in
analytic geometry, where a plane is represented by an equation in three variables and a line by a
system of two equations, and where the variables X, Y and 2 stand for the three coordinates of a
point. In our representation, a point is represented by an ordered triple [a,b,cl and our parameters do
not represent coordinates. Thus the vector [X,Y ,Zl with three free parameters represents the-entire
3-dimensional space, while [O,X,Ol represents the y-axis, the same as [O,Y,Ol or CO,U,Ol.

T h e objects we are dealing with are points, lines and planes. It seems handier to represent a n
object like a line by a vector with one free parameter rachet. than by a system of two equations. It will
be shown that this representation makes the routines that compute distances and angles extremely
simple; in fact they are written in just the language of vector calculus.

46 1

The most important convention we have kept throughout is that for any line the free
parameter will be named X and for any plane the parameters will be Y and 2. Thus, computing the
intersection between two planes can be done by renaming the parameters of one of them SO X and U,
and then solving the resulting system of three equations for Y,Z and U; the solution will contain X
and will therefore be a line.

While the above is a convention for the system we are building in MACSYMA, the following
are conventions for the sake of this exposition only; We shall use lower case letters a,b,c, ... to
represent numerical quantities, as opposed to parameters (however, responses typed back by
MACSYMA will appear always in upper case). Thus we may talk about the point [a,b,cJ, for
instance; or about some horizontal plane [Y,Z,a]. Upper case identifiers A,B, ..., Ll,L2, ... and
PLI,PL2, ... will be used as arguments in the definitions of MACSYMA functions. But X,Y,Z,U will
be reserved for the parameter names.

The author wishes to acknowledge his debt to Bill Gosper who taught him how to use
MACSYMA and substantially contributed to the system shown in the sequel.

BASIC VECTOR CALCULUS IN MACSYMA

Vector addition, substraction, multiplication and division by scalars are already built in
MACSYMA. So is also the dot product. For example:

(C 1) Cal,a2,a3I+[bl,b2,b31;
(D 1) [Bl + A1, B2 + A2, B3 + A33

(C2) a d b l,b2,b33;
(D2) [A B1, A B2, A B31

((23) [al,a2,a3I.[bl,b2,b31;
(D 3) A3 B3 + A2 B2 + A1 B1

Thus the only basic operation that needs be added is the CTOSS product, also called vector
product. The following routine suggested by Bill Gosper combines the MACSYMA functions
DETERMINANT and MATRIX so as to write the cross product in the very same way it is defined ..
in textbooks.

CROSS(A, B) :- DETERMINANT(MATRIX(K1, 0, 01, [O, 1, 01, 10, 0, I]], A, B))

Thus:

Of course 0 4 would make a more efficient definition of the cross product. But Gosper’s
routine is worthy of presentation for its elegance, because it illustrates the capabilities of the
MACSYMA language and also for its additional merit that i t follows the mnemocechnic rule by
which the definition is commonly remembered.

462

FUNCTIONS FOR 3-DIMENSIONAL LINEAR GEOMETRY

Using SOLVE in addition to the basic set of operations just described, one can program a set
of useful routines for using MACSYMA as an interactive calculational aid, in a language that follows
almost verbatim a tutorial exposition of vector calculus. We start with the norm of a vector:

NORM(A) := SQRT(A . A)

T h e distance between two points is the norm of the difference vector:

DISTANCE(A, B) := NORM(A - B)

Vectors of length one are useful for many purposes, for instance for determining angles. The
following function,

Passing a line through two points:

LINE(A, B) := A + X*(B - A)

A n d a plane through three points:

PLANE(A, B, C) := A + Y*(B - A) + Z*(C - A)

Getting the point of intersection of a line and a plane:

INTERSECTION(L, PL) := EV(L, SOLVE(L - PL, [X, Y, 23))

There are several ways to compute the intersection line between two planes. O n e possibility is
the following routine, suggested by Bill Cosper.

PLANEINTERSECTION(PL 1, PL2) :=
BLOCK([INT], INT : SOLVE(PL1- EV(PL2, Y = X, Z - U), [Y, Z, VI), EV(PL1, INT))

T h i s function works fine in most cases; but when the planes are parallel, SOLVE fai ls and
gives the message "inconsistent equations", and that is what it should do. The same happens to
INTERSECTION when the line and the plane don't intersect. However, PLANEINTERSECTION
fails for the following pair of perpendicular planes because of the asymmetry stemming from the. fact
that we solved for three arbitrary parameters out of the four.

(C5) PLANEINTERSECTION(CY,O,Z~,~Z,Y,ZI);
INCONSISTENT EQUATIONS:(2)

Switching around Y and 2 in the first argument does not do any good, but, curiously enough,
doing it with the second one does:

(C6) PLANEINTERSECTION(1Y,O,Zl,[2,Z,Yl);
SOLUTION
(E61 u = o
(E 7) Y = 2
(E81 z = x
(D8) 12, 0, x3

By tracing SOLVE we find the solution to the puzzle:

(C9) PLANEINTERSECTION([Y,O,Zl,12,Y,Zl);

INCONSISTENT EQUATIONS:(2)
1 ENTER SOLVE [[Y - 2, - X, Z - UI, [Y , 2, UII

What has happened is that the second equation says X = 0, but X is considered a coefficient
because it is being solved for [Y,Z,Ul. Switching the second argument helps because we then have U
= 0, which is O.K. for a variable U.

Failure of PLANEINTERSECTION due to the above situation is a rare occurrence; a more
serious problem of this and other routines is occasional numerical unstability. In the next section we
shall discuss some modifications that help with the latter; also we will show how to construct a routine
for intersecting planes that never fails unless the planes do not intersect.

In the rest of this section we shall use a function VCOEFF instead of the MACSYMA
function COEFF. T h e definition of VCOEFF will be given in the next section, as we see why
C O E F F does not always work.

T h e following function GRADVECT computes a vector of unitary length perpendicular to a
plane.

GRADVECT(PL) := UNITL(CROSS(VCOEFF(PL, Y) , VCOEFF(PL, Z)))

Similarly, the unitary vector pointing in the direction of a line.

UNITDIR(L1NE) := UNITL(VCOEFF(LINE, X))

T h e angle between two lines can be computed with help of UNITDIR. T h e simplest way is the
following.

ACOS(UNITDIR(L1). UNITDIR(L2))

However, is the referee suggested, it is numerically preferable to use ATAN2 instead of ACOS
or ASIN, as follows.

46 4

This routine computes the correct angle modulo 2rt. In practical applications you would
probably prefer to compute angles modulo IT, because zegeated use of the cross product. makes it

,difficult to keep track of the orientation of the different unitary vectors. Also angles are computed in
radians, but converting them to degrees is trivial.

A function for computing the shortest distance between two lines is

DISTANCEBETWEENLINES(L~, L2) :-
ABS((EV(L1, X I 0) - EV(L2, X I 0)). UNITL(CROSS(VCOEFF(L1, X), VCOEFF(L2, X))))

which takes the vector from a random point on one line to a random point on the other one and
projects it onto the vector perpendicular to both lines. However it fails when the lines are parallel, in
which case the appropriate procedure is to take a random point on the first line by an EV(L,X=O),
and compute its distance to the other line using the following function.

DISTANCEFROMPOINTTOLINE(A, L) :=
NORM(CROSS(A - EV(L, X = O), UNITL(VCOEFF(L, X))))

Other useful functions are:

DISTANCEFROMPOINTTOPLANE(A, PL) :=
ABS((A - EV(PL, Y 0, Z I 0)). CRADVECT(PL))

ANGLELINEWITHPLANE(L, PL) := ABS(n/2 - ACOS(UNITDIR(L) . GRADVECT(PL)))

T h e names of these routines are self explanatory. The following one computes the angle
between two planes.

SOLIDANGLE(PL 1, PL2) :I n - ACOS(GRADVECT(PL 1) . CRADVECT(PL2))

An interesting problem is passing through a point P a plane perpendicular to a line L. It can
be solved in the following way: let the vector [X,Y,Zl represent a random point in 3-space; then
[X,Y,Zl-P is a vector from P to a random point; restricting [X,Y,Zl-P to being perpendicular to L, we
obtain an equation in X,Y,Z; solve it for X and substitute the solution into [X.Y,Zl; the resulting
vector depends on Y and Z and represents the plane sought. The following routine embodies this
procedure.

NORMALPLANE(P, L) := EV([X,Y,ZJ, SOLVE(([X, Y, ZI - P) . UNITDIR(L), X))

But this function, like PLANEINTERSECTION, may fail in some cases; Le., if the first
coordinate of P is 0, it will return [X,Y,Zl. Fortunately the following simple modification makes it
reliable.

NORMALPLANE(P, L) :I EV([X+Y-Z, X-Y+Z, -X+Y+ZI,
SOLVE(([X+Y-Z, X-Y+Z, -X+Y+ZI - P) . UNITDIR(L), X))

465

Similarly, given a line L and a point P not on L, we can- draw through P a line perpendicular
to L and intersecting L in the following way.

DRAWPERPLINE(P, L) := LINE(P, EV(L, SOLVE(LINE(P, L) . UNITDIR(L))))

However, if we now want to find the point of intersection of L with the perpendicular drawn
by DRAWPERPLINE, we often find that they do not intersect. This is due to the errors of
numerical approximation: the two lines may miss each other by less than a millionth of an inch. T h e
second argument to LINE in the function definition of DRAWPERPLINE is supposed to determine
on L the nearest point to P; I have found that the following way of using differentiation to find the
closest point makes the function more friendly.

DRAWPERPLINE(P, L) := LINE(P, EV(L, SOLVE(DIFF((P - L) . (P - L), X, I))))

In a similar way we might continue defining functions for solving many kinds of geometric
problems. But we shall leave our accounc here and discuss some practical issues in the next two
sections.

SOME HINTS ON MAKING THE SYSTEM MORE FRIENDLY

The foregoing routines suffice for most practical calculations. However, you may often want to
look at the numerical values of your points or lines. The following value serves to illustrate a
problem associated numerical evaluation.

(D10) (706351256145697026997480181 12244808857010 X
+ 1666520868167951809628782280558541766013175)

/ 1875956846519908260995774089014019351503416

(C 1 1) %,numer;
(Dl 1) 0.0

To see what has happened, let us look at its floating point representation,

(C12) BFLOAT(D 10);
(D12) 5.33061302535671 IB-43 (7.06351256145697B40 X + 1.66652086816’1952B42)

T h e solution to this and other problems is to use EXPAND.

(C 13) EXPAND(D 10);

(C14) 2,numer;
(D 14) 0.037652852 X + 0.88835778

466

T h e MACSYMA function COEFF offers an analogous difficulty, as illustrated by the
following case.

x + 5

7
”””

(C 16) COEFF(R,X);
(D 16) 0

(C 17) COEFF(EXPAND(D15), X);

This is the reason why we had to use. a function VCOEFF instead of COEFF in the last
section. Our definition of VCOEFF is as follows.

VCOEFF(V, X) :- MAP(LAMBDA(LL1, COEFF(EXPAND(L), X)), V)

In my own experience, the system is quite friendly if one keeps expressions in expanded form
and exercises extreme caution with floating point conversions. In the use of EVAL in the routines,
one may include the EXPAND argument throughout. When converting a value using numerical
evaluation, it is wise to do it always in two steps: first expand it and then evaluate it. Use of
EV(Z,EXPAND,NUMER) won’t do any good; you have to say:

(INT:EXPAND(%), EV(INT,NUMER))

As for the particular type of failure of PLANEINTERSECTION showed in the previous
section, it occurs so seldom that I have preferred to keep it as it is. However, the following routine
will never fail unless we encounter a plane whose twa.COEFFs are linearly dependent - which could
have been created by giving three colinear points to the routine PLANE. Also it will return NIL if
the two planes are parallel.

PLANEINTERSCT(P 1, P2) :-

BLOCK([INT I,INT2,INT3), INT I:GRADVECT(P I),

IF MAX(INT2, INTS) > 0 THEN
INTB:ABS(VCOEFF(PP, Y). INTI), INTS:ABS(VCOEFF(PP, Z). INTI),

INTERSECTION(IF INT2 > INT3 THEN EV(P2, Y-X, Z-0) ELSE EV(P2, Y-0, Z-X) , P 1)
+ X * UNITL(CROSS(GRADVECT(PP), INT 1))

ELSE NIL)

This routine works by first locating the coefficient of P2 whose direction meets PI at a steeper
angle and taking a line on Y 2 in the direction of thar coefficient; the point of intersection of this line
with P 1 is then used as a starting point for the line of intersection of the two planes, which points in
the direction of the cross product of the CRADVECTs of the two planes.

467.

THE USE OF THE SYSTEM: AN EXAMPLE FROM APOLLONIUS.

T h e referees have expressed the desire to see some examples of the use of the system described
in the previous sections. Also one of them raised the question whether there are problems in which
the symbolic capability of MACSYMA offers a clear advantage.

To me, the main advantage of the system is its flexibility. If you need to get started on some
calculations of your own, here you have an environment where you can compute things exactly as you
want: Not having had much experience with other systems for this purpose, I can’t give a
comparative answer. I hope that the example shown below will permit the experienced user to draw
his own conclusions.

As for the question on the symbolic capability, my answer is a qualified yes. I have found
examples where it is useful; but in many other cases I have found it necessary to force MACSYMA
to stick with numerical, approximated values. Thus I will make a case both ways. I hope that the
example worked out as well as the problem of the quarter cylinder mentioned below, will make the
reader enthusiastic about symbolic calculation. I can think of examples which make much heavier
use of this facility. On the other hand, I hope to temper the enthusiasm so that symbolic computation
will not be abused, because the complexity of algebraic expressions grows extremely large in three
dimensional calculations and in many cases they will blow up MACSYMA’s storage capacity.

For example, consider the following two problems. First give yourself three points P:[pl,p2,03.
Q[q l,q2,01 and R:[rl,ri,OI, and compute the coordinates of the center C N T of the circumscribed
circle of the triangle. Then let MACSYMA do a RATSIMP on
DISTANCE(CNT,P)-DISTANCE(CNT,Q), and it will compute 0. Now give yourself four points
with symbolic coordinates in space and compute the coordinates of the center C N T of the
circumscribed sphere. You will get a huge expression for each coordinate of CNT. When I asked for
RATSIMP(DISTANCE(CNT,q)-DISTANCE(CNT,P)), MACSYMA was not able to handle it.

When doing practical calculations, it pays to keep values stored in numerical form so as to
minimize the size of expressions. Granted chis, I have found that a limited use of the symbolic
capability can be very useful. For instance, consider the following problem. You want to make a piece
in the shape of a quarter of a cylinder that should be inserted between two planes A, B that are not
parallel, and the axis of the cylinder is not perpendicular to either of the planes. T h e planes, the
radius and the axis of the cylinder are given; so are also the planes F1, F2 of the two non curved
faces of the quarter cylinder. You want to make your cylinder by rolling up a sheet of metal, which
should be cut for you on order. Then you may use MACSYMA as follows. Define a line on the
cylinder depending on one parameter THETA; THETA is the angle that the plane through
LINE(THETA) and through the axis makes with F1. You are interested in the range
OsTHETAsn12. Now you can compute the intersections IA(THETA) and IB(THETA), of
LINE(THETA) with A and B, respectively. Similarly let IR(THETA) be the intersection of
LINE(THETA) with some reference plane perpendicular to the cylinder axis. T h e distance on the
cylinder surface from LINE(THETA) to the edge on F1, is THETA times the radius. With all these
functions of THETA, you can now plot the shape of the sheet of metal, which you want cut so that it
will fit into your structure. It cannot be overemphasized that for an application of this nature, it is
convenient to keep everything but THETA in numerical form.

468

Now let us look at a sample problem. Presenting any practical application in a short paper like
this, I am forced to restrict MACSYMA’s output to its shortest possible form. For this reason, I will
make use of the following function.

NUMVAL(A) := BLOCK([TMPI, TMP : EXPAND(A), EV(TMP, NUMER))

(I am not claiming there are no better ways of achieving the same effect. Having written this
section after my paper was reviewed] I can only apologize if this way of doing it is far from optimal.)

Now consider the following variation of the Apollonius’ problems: given two planes PL1 and
PL2, and two points A and B, find the center and the radius of a sphere through A and B that is
tangent to PL1 and to PL2. We shall take some numerical values for the planes and the points.

(C19) P L 2 : PLANE([l,O,O], [2,1,01, [2,1,61);
(D 19) [Z + Y + l , Z + Y , 6 Z I

(C20) A : [0,201201;
(Dm LOl 20,201

Let L O C l be the locus of the points that are equidistant from A and B. Let LOG2 and LOG3
be the loci of the points that have the same distance to PL1 and to PL2. We use the line of
intersection of PL1 and PL2, IL12, as an intermediate value.

(C22) L O C l : NUMVAL(NORMALPLANE((A+B)/2, LINE(A, B))>;
(D22) 11.33333333 Z - 21, 3.33333334 2 - 2 Y - 21, - 1.33333333 Z + 2 Y + 211

(C23) IL 12 : NUMVAL(PLANEINTERSECTION(PL 1, PL2));
(D23) 10.75 X + 1, 0.75 X, - 1.5 XI

((224) L O C 2 : NUMVAL(EV(IL12, X=Y> + Z * (GRADVECT(PL1) + GRADVECT(PL2) k
(D24) 11.28445704 Z + 0.75 Y + 1, 0.75 Y - 0.12975651 Zl 0.57735026 Z - 1.5 YI

(C25) LOC3 : NUMVAL(EV(IL12, X - Y) + Z * (GRADVECT(PL1) - GRADVECT(PI-2)) h
(D25) [- 0.12975651 Z + 0.75 Y + 1, 1.28445704 2 + 0.75 Y , 0.57735026 Z - 1.5 YI

Intersecting L O C l with LOC2 and with LOC3, we obtain two lines LOC4 and LOC5,
respectively, on which such a sphere may exist. Of course it will exist in at most one of them, but we
do not yet know on which one.

((226) LOC4 : NUMVAL(PLANEINTERS2C T’,’ON(LOC 1, LOC2));
(D26) [- 0.87826’738 X - 27.657506, 0.914488+ X. .I- 2.8949957, - 2.2318895 X - 12.881254’71

((227) LOC5 : NUMVAL(PLANEINTERSECTION(L0C 1, LOCqh
(D2V [0.63169204 X - 1.08222031, 1.921 12805 X + 20.61 1853, 9.264817 - 0.97358996 X]

Now we proceed to find out whether there is any point on LOC4 or LOC5 that has the same
distance to, say, A and PLI.

((228) Q4A : NUMVAL(DISTANCE(LOC4,A)tZ);
(I3281 6.5889733 X2 + 164.071367 X + 2138.6957

(C29) Q5A : NUMVAL(DISTANCE(LOC5,A)tZ >;
(D 2 9 5.0376453 X2 + 21.8869693 X t 116.789719

(C30) Q41 : NUMVAL(DISTANCEFROMPOINTTOPLANE(LOC4,PL 1)T2);
(D 30) ABS(1.26766976 X + 22.310988)2

T h e last line is typical of some of the minor problems one frequently encounters. It is the price
one has to pay for using a system of such great generality. It still seems much less than the price one
pays with more conventional systems. So we try again.

(C3 1) Q 4 1 : NUMVAL(PART(DISTANCEFROMPOINTTOPLANE(LOC4,PL 1),1)T2 >;
0331) 1.60698665 X2 + 56.56593 X + 497.78019

(C32) Q51 : NUMVAL(PART(DISTANCEFROMPOINTTOPLANE(LOC5,PL1),1)72);
(D 32) 0.8313226 X2 + 29.262555 X + 257.51048

(C33) REALROOTS(Q41-Q4A);
(D 33) [I

(C34) REALROOTS(Q5l-Q5A);
(D 35) [E34, E351

So we know there is no such sphere on LOC4 but there are two of them on LOC5. Now we
proceed to determine their centers and radii.

(C36) C N T l : NUMVAL(EV(LOC5, E34));
(D 36) [- 4.2238372, 11.0574374, 14.10680721

(C37) CNT2 : NUMVAL(EV(LOC5, E35));
(D 37) i3.1670384, 33.534875, 2.715683341

(C38) RADIUS 1 : NUMVAL(DISTANCE(CNT1, A));
(D 38) 11.5125996

(C39) RADIUS2 : NUMVAL(DISTANCE(CNT2, A));
(D 39) 22.1804 1

470

Finally let us check for the sphere in CNTl whether it actually fulfills the conditions of the
problem.

(C40) NUMVAL(DISTANCE(CNT1, B));
0340) 11.5125997

(C4 1) NUMVAL(.DISTANCEFROMPOINTTOPLANE(CNT 1, PL 1));
(D4 1) 11.5125996

(C42) NUMVAL(DISTANCEFROMPOINTTOPLANE(CNT1, PL2));
(D42) 11.5125997

Yes, it does so! Also we have good reason to be happy with the numerical accuracy of the
answer. Notice the use of symbolic evaluation in the commands ((228) through ((232).

CONCLUSION

T h e foregoing routines are useful for interactive calculations of three dimensional linear
structures. They could provide a model for practical interactive systems for architects and other
designers, which could be enhanced by the addition of graphic facilities. Also they shdw how
naturally vector calculus can be expressed in MACSYMA.

It is plain that the same approach can be used to express a lot more of vector calculus in
MACSYMA. Linear transformations and the like can be expressed most easily. O u r use of S O L V E
could have been handled also by LINSOLVE. But SOLVE can also be used for problems involving
curved surfaces. Differential geometry can be readily treated in this manner too, using also the
MACSYMA functions for differentiating and integrating.

Textbook problems in dynamics of solid bodies are typically expressed in the language of
vector calculus. Thus they can be naturally treated using this approach. A fun project would be to
work out a course in rational mechanics with MACSYMA by using also its ability to solve
differential equations.

47 1.

45
Varieties of Operator Manipulation

Alexander Doohovskoy

Laboratory for Computer Science

Massachusetts Institute of Technology

Symbolic operator manipulation began when program (d,differentiate,verb) was perceived as
data (D,Derivative,noun). Although this realization took more than 100 years (ref. 11, the nineteenth
century mathphysicists soon developed this perception in three major directions: direct and indirect
methods for the solution of differential equations, calculus of finite differences, and the fractional
calculus.

We propose a change in MACSYMA syntax in order to accommodate the operator manipulations
nocessary to implement these classical symbolic methods as well as their modern counterparts. TO
illustrate the virtue and convenience of this syntax extension, we show how MACSYMA’s pattern-
matching capacity can be used to implement a particular set of operator identities due to Hirota
which can be used to obtain exact solutions to nonlihear differential equations.

What is an operator calculus? The usual technical meaning involves an isomorphism between an
algebra of functions, say of the form

t(x) - C akxk

and an algebra of operators

fm) - X akxk

ruth that pointwise multiplication of functions goes into operator multiplication:

rcxlgcx, ””-> f(Xk(X)

1. This work was supported, in part, by the United States Energy Research and Development
Adminlstratlon under Contrrct Number E(ll-1)-3070 and by the National Aeronautics and Spaco
Admlnlrtratlon under Grant NSG 1323.

47 3

Th. isomorphism f(x) ---"* f(X) is also required to be linear.

Basically, this mans that expressions involving the operator X can be manipulated algebraically.
Oporator algebra thus bmcomes a tool for finding solutions to equations or studying their structure.
For example, consider the (linear) differential equation

(p(D)Xf(t)) = dt)

where p(D) is a polynomial in the operator D = d/dt over the coefficient ring K[t] . We might try to
solve this equation using various transform methods, for example, using the Laplace transform. This
is the typical lndirect method" which consists of translating the original problem into a
corresponding problem in some "image space", solving there, and then transforming back. I f g(t) =
exp(t*),however, the Laplace transform of the RHS does not exist. The "direct" methodpn the other
hand, deals with the original problem itself; one could consider a factorization of the operator
polynomial

and then return the answer in the form

f(t) - (0-rI)~'-(D-r,)-#"((t)).

The problem now is to give meaning to the inverse operators while preserving basic algebraic laws
such as:

k ing a slightly different language, one can view the evolution of "operator techniques" * as the
realization that something conceptually and computationally useful can be gained from imposing and
studying the structure of the dual algebra A* of operators or functionals acting on some given
algebra A. For example, A might be Q[xJ the ring of univariate polynomials over the rationals.
Typically, one introduces I) pairing

< , >t A' X A ------ > R

where R is some relevant ring of scalars. The next step is to define a product in the dual algebra.
There are various ways of doing this; one example is

<LILpv> = 2 bin(n,k) <Ll,xk> < L ~ , x ~ - ~ > (1)

The product is commutative and associative. The "evaluation" map (usually called the augmentation)

serves as the multiplicative identity in the dual algebra of functionals acting on univariats
polynomials

1. In some cases functional composition is also preserved under the map.

2. Also known as symbolic methods, symbolic calculus, functional calculus, operator
calculuspperational caIculus, functional operations

474

L - r.L - L

with tho product ckfinod as in (1) above. For generalized functions with the pairing given by

*Fa> - 1 F(xk(x) dx

and with I product defined by convolution

th. role of the identity is played by the delta function.

The duality between the algebra and the functionals d i n g on it is made more explicit by
defining the adjoint L* such that

<YL*V> = <Ltulp

It is also possible to contemplate the meaning of operations applied to operators, such as the
derivative of an operator (element of the dual algebra). Suppose that A is the algebra of
polynomials in one variable, then one meaning (refs. 2,.3) is given by

<L', p(x) > = <L# xp(x)>

A more familiar meaning of the derivative of an operator is found in the context of generalized
functions (functionals) F acting on a suitable space of test functions, +(th The pairing is given by

<F,+(tP - 1 F(t) +(t)

and in this case the derivative of the functional F is defined by

(to arrive at this one uses integration by parts and then forgets). Of course the great virtue of this
definition is that the meaning of F no longer depends on the meaning or existence of a derivative (in
the ordinary sense) for F. This is very convenient for functionals F which are defined as a limit of a
sequence of functions. Thus, the well-known delta function(a1) has a derivative which behaves as

Wt-a), +(tP = - +(a)

These are just some of the mathematical parallels between "operator" methods applied to the
difference calculus as well as the differential calculus. Rota (ref. 3) has refined the essence of these
ideas into a very general theory of operators which for example finally explains the somewhat
mysterious umbral operator calculus developed in classical invariant theory. In addition, it provides
a neat solution to the problem of computing "connection" coefficients between various classes of
polynomials.

In what follows we attempt to Illustrate the variety of applications and some of the common
themes in various operator calculi arising in pure and applied mathematics.. MACSYMA's pattern-
mitching facility, together with the extended syntax we propose, is ideal for implementing these
i&rr

475

2 W R A T m S IN MACSYMA

Let us examine some of the MACSYMA programming aspects of operator algebra. For example,
suppose we are dealing with a linear operator, L In MACSYMA, there are several ways of
expressing identities involving the operator L In order to say that L is linear, we must first define I
predicate to recognize sums:

SUMM(X):=IS(PART(X,B)I"+')

We can then define a simplification rule by

LET (L (SUM1 , L (FIRST tSUtl11 + L (REST (SUM1 I , SUMM, SUM)

An alternative method is to set up a rule using MATCHDECLARE and DEFRULE; in order to have
the identity applied automatically, one can use TELLSIMP. Or, finally, one can simply say

DECLARE (L , L I NEAR 1

The exigencies of these methods can be overcome with a little help from primers, advisors, etc.
(refs. 4, 5). Of course the last method is a response to the programming inconveniences of the first
two and also attests to the mathematical importance of the notion of LINEARity. Other basic '
algebraic properties of operators and functions which have been subsumed under the DECIARE
function include COMMUTATIVE,R-ASSOCIATIVE,L-ASSOCIATIVE, As an example, the following
MACSYMA command

(C33) DECLARE(L,LIMAR,~,COTATIVE);
(033 1 DONE

has the following effects

Now consider the following simple identity

~ l ip (x) - p(x + ai) (1)

defining a (linear) shift endomorphism Eli on the algebra of univariate polynomials (over some
convenient ring). How could we express this identity in MACSVMA? The problem is that we can't
oven write down the left-hand side of (1):

(C2) (E^(AtI l)) (P()O);
A

I
E
NOT A PROPER FUNCTION - HQAPPLY

The usual suggestion is to break up the operator E and append a,i as a new operands to rn
I.

function E defined by

E(p,x,a,ilr- p(x+atill

This has the unpleasant semantic consequence of destroying (at the user level) the unity rnd
identity of the operator E ai and introduces an unnecessary syntactic restriction upon a,i (recursively)
forcing them to be atoms since they now appear as formal parameters in a function definition. But
we may not want to apply the operator immediately. 'Perhaps a little simplification

(E~(E~(P)) = (E ~ E ~ X P) = (E ~ + ~ x P)

Will reveal the structure of interest to the user. That is, we may want to look at the consequences
Of the R-module structure given by

Ea(p+q) - Ea(p) + Ea(q)

(E~+E~xP) = + E%)

(E~*E~xP) = E~(E~(P))

- p

This is simply an abstraction of the axioms for a vector space over a field in which the mscalars"
are allowed to be elements of a ring R

It is this interplay between different dgebreic structures which leads to the mrthem8ticd
power Of operutor calculi and to the programming difficulties in their implementations.

TO take full advantage of culculus of operators acting on somd domain, one must respect the
dgebr.iC structure of BDTH the operators and the domain.

How can we enable the MACSYMA user to use compound expressions in the functional position?
In the current MACSYMA evaluation scheme, when a compound expression occurs in the functional
position rnd is not an atom or a subscripted function, MACSYMA errs out with the message as in the
example above. Instead, it is not unreasonable to return the original form with the compound
expression In the functional position simply appended before the given arguments (with an
"MQAPPLV"). With this modification the following kinds of expressions become possible in MACSYMA

1. In our exrmple R is the associative rins; of shift operators E'.

477

Numbers and lists of them can rct as operators:

These two examples suggest that the user can use the new operator syntax to conveniently
define the action of combinatorial objects. For example, in the study of the representations of the
symmetric group, [1,2,3,3] might represent the cycle structure of a conjugacy class. Many other
interesting discrete actions arise from classical invariant theory, differential geometry, and the
difference calculus.

.2.2 Identities for Nonrtoomic Operators

Consider now the iterates of a class of linear operators indexed in some way:

We would like to say that all these are linear. One could of course DEClARE(LD(J,LINEAR)3and induce
linearity for all the iterates. With symbolic exponents however, this is not possible. Using the new
syntax, we may proceed as follows:

(C611 MATCHDECLARE (NNN, TRUE) 8
K62l MATCWECLARE (UUU, TRUE) S
K63l TELLSIHP ((L CUUUl "NNN) (SUM),

(L [W U I WNN) (FIRST (SUM) l + (L W U J WNNl (REST (SlJt?) l 1 S

Then, 18 I result, we obtain the following automatic simplifications:

2. In future MACSYMAs one may be able to give meaning to such an expression directly through a
function definition.

3. I f and when DECLARE takes nonatomic arguments

478

W o w we give further examples of the new ryntm, involving operator forms arising in difforontirl
crlculus rrtd in the finite difference crlculus.

t 1 .1 1 . 2 1
t I
I D D I
t 2 . 1 2 . 2 1

4012)

1
(""_ 1 (F)
O + l

(0 + 0 1 (F, GI
K t

D
ZE

4 3 2
D D D

(-- + -- + -- + D + 1) (FI
21 6 2

479

I

3 NALUATICN AND SIMPLIFICATIOV OF WERATchp FORMS

Now that we can write down compound operator forms in MACSYMA, we are faced with the
task of telling MACSYMA what they mean. One convenient way of doing this would be to attach
properties to the non-atomic objects forming the operator part of an expression (the ability to
attach properties to non-atomic objects will soon be available in MACSYMA). Naively, one might
hope to simply write a function definition of the form

or use MACSYMA's pattern-matching facilities

MATCHDECLARE(CFFF,GGG,XXX,TTTI,TRUE)S

DEFRULE (NAtlEl , (0 CXXXI dl tTTTl1 [FFF,GGG), 26J CXXXI (01 FF (FFF, TTT) , GGGI 1 S

In either case, there are several ambiguities to be resolved.

1. How is MACSYMA to recognize instances of the LHS? What does the user mean when he
types the function definition? Does the user intend to specify a relation involving fixed mathematical
constants DDo,D[T] or does he intend to specify an identity involving the programming variables X,T
? When using DEFRULE, one uses MATCHDECLARE to restrict the sense of the variables used to
describe the pattern.

2. Even if the LHS could be recognized unambiguously, the user may still be forced to label his
gslmplificrtion' rules since the same LHS may transform to distinct RHS's. For example,

or
I (...g(opl,op2)...~ top) (f l

I (. . . (op1+0p2) . I (ev'al op f)
t 0 0 (opl+op2) 0 0 0 1 (opl (f 1 -"-> <

The last example reflects the possibility of making choices involving the order of simplification and
ovilurtion.

These choices arise because we mry have a relatively complicated (R-module) interaction

480

between tho algebraic structures of tho operators and the elements of the domain upon which they
act.

I f one views the world of (algebraic/MACSYMA) expressions as made up of operatorsjprogrrms
in Up applied to objects/data in Dom, then the intertwining of simplification and evaluation can be
ropresonted/defined by the diagram

Op x Do.
I
I
I

evaluation I
I
I
I
V

Ooa

(eimp.1)
"""""""""> Op x Doa

I
I
I
I evaluation
I
I
I
V

""""""""", Do.
eiap

which sometimes commutes:

evaluat Ion I
I
I
I
V

i

i
1 evaluation
I
I
I
V

(rirp.1)
(0 0-1) f "-""""-""-""> (0'101 f

I I
I I

evaluation I
I

I evaluation
I

I
evaluation I

I

I
I evaluation
I

9 v
f (t) - f (8) """"//"""> f (t)

r l r p

which says that

DD'lf # D%f

I t is clear that this noncommutrtivity is an impediment to the development of an operational calculus.

482

4 SyMBOuC METMWS IN DIFFEKNTIAL C A L W S

Historically, there have beon soveral approaches to the restoration of commutativity in the
abovo diagram Orw mathod is comoptually trivial. T h o . diagram can be made commutative by
redeflniy the operand

f(t) -"-> f(t) - f(0)

to havo vanishing initial condition. One can also define the inverse indefinitely by

and t r o d tho constants separately. This leads to the symbolic calculus systematically developed by
Murphy,Carmichael,Hargreave,Baole (ref. 6, 7) and others. Together with the Leibniz rule for
products ami the Taylor expansion theorem, the principal identities are (ref. 8)

F(D) orb) = ea(x) F(D + g'(x))

F(x + g'(D)) earn) = F(x)

F(D2) sinlcos (a x) - F(-a2) sinlcos (a x)

F(D2) sinhlcoeh (a x) = F(-a2) sinhlcosh (a x)

k i ng the extended operator syntax suggested here, one can easily implement these identities
and apply them to the solution of differential equations. We illustrate below some of the symbolic
methods which can be used to deal with ordinary and partial differential equations. One advantage
of these "direct' methods as opposed to %direct" transform methods is the minimization of existence
assumptions.

There are several methods available in MACSYMA to solve differential equations (refs. 9,101. In
this section we discuss the "direct" symbolic method applied to ordinary differential equations with
constant coefficients.

Let D be differentiation with respect to t and consider the differential equation

(D + l)f - t3

An operator approoch to the solution gives

M action of the operators1

f - t3 - M3 + D2t3 - $t3 + -
f t3 - 3t2 + 6t - 6

(often) yields substantial dividends by clarifying the structure of the problem and providing effective
means of computation.

Essentially we have used a Euclidean identity

applied to the given function g(t) = t3

[P(DwD) + R(D)k = g -----> P(DWD)g g

since we arrange R(D)g = 0 (by making the degree R in D high enough). We can then pick out .our
solution as f - O(D)S.

Now consider a slightly more general differential equation P(D)f = g (constant coefficients)
where g may not be a simple polynomial. One can still look for f directly by inverting P(D)

f = P'l(D)g

but the RHS may not be compactly expressible now. To remedy this one can generalize the previous
idea and look for a Q(D) such that

O(D)g - 0. 2

Then using the extended Euclidean algorithm to look for A(D), WD) such that

o m hopes that U(D) will be 1. If it is, then

and we can pick out the solution as f = A(D)g.

I f UD) z 1, then

[P(D)A(D) + B(D)CXD)] a = WD) g ; P(D) LT'(D)A(D) g = g

and we can again pick out our solution IS f - r1(D)A(D) g hoping that the lower degree of UD) will
make it easier to invet't than P(D). A(Dk may or may not be simpler than the original g to deal with.

1. This simple example is intended only to help specify the issue of interaction between the operator
algebra and tho module of functions

2 this statement (due to Robert Feinberg) formalizes what om does intuitively when solving
'equations by "inspection"

484

Of course, idepomknt of the Euclidean algorithm, one might try to find an operator L 2 ' s ~ ~ h
that an L1 can be found with the property that

p(D)Ll+ Lp I

fhsn the solution can be obtained as above.

As an example of the economy sometimes afforded by working directly with the differential
operators, consider the following equation (ref. 11)

(D4 + 2x ' lS - X - ~ D ~ +Px% - 1Xf) = 0

Uno can attempt a power series solution to this equation (ref. 10); but another approach is to factor
the differential operator as

(D2 + x'lD + l X $ + x'lD - lXf) - 0

Since tho two factors commute, one can find a solution of the form f = f l + f2 where

(D2 + x ' b + 1Xf1) * 0 , (D2 + x"D - 1Xfp) 0

These simpler Bessel equations then lead to the solution of the original problem:

f = clJa(x1 + C ~ Y ~ (X) + c g J e (i ~ 1 + c ~ Y ~ (~ x I

Thus, by taking advantage of the operator algebra instead of using brute force, one 'can
discover or preserve the inherent structure of a problem. Moses (ref. 12) has recently elucidated
this idea for algebraic algorithmsi it applies equally well to operational methods in applied
mathematics.

4.3 Limw Put id LXfforentid Equations

As an example (ref. 13) consider the initlal-value problem

I

= f(x-at,y-bt,z-ct)

using Taylor's theorem in operator form.

This example again illustrates the power and the economy of the symbolic method which takes
.dvantage of the inherent algebraic structure of the problem and returns a more meaningful result.

4.4 Nodinew Partial Dfferentisl EQuations

Recently, in looking for exact solutions to nonlinear evolution equations, Ryogo Hirota (refs. 14,
15) has developed a calculus based on the differential operator3

Using an appropriate substitution, one can express a given equation in terms of such differential
operators. The resulting forms are then amenable to a perturbation expansion which leads to the
solution.

Using this approach Hirota has been able to treat the modified Korteweg-deVries equation,the
nonlinear Schrodinger equation,wave-wave interactions,the two-dimensional K-dV equations,and the
two-dimensional sine-Gordon equation.

The differential operators (#) satisfy a number of identities which are used to repiace the
usual partial derivatives with bilinear forms involving the new differential operators. For example,

3. We use DIFFx to denote the partial derivative

486

(017)

(018)

PP1
PP1 d AA1

(0) (M1, 1) - -------
)(x1 PP1

d X X l

PF1 PF1 PF1

xx1 xx1
(0 1 (AA1, 881) L. (- 1) (0 1 (BB1, AA1)

cc1 0
xx1

(031) (XE 1 (AA1 (XXl) , BB1 (XX l) 1 881 (XX1 - CC1) AA1 ()OX1 + CC1)

cc1 0
cc1 OIFF X X l

XX1 881 (%E 1 (BB1, AA1)
(041 1 (%E)("-) * """"""""""""

A A l COSH K C 1 0 1 (AM, AA1)
xx1

0 (BB1, A A l)
BB1 X X l

("-) - """""""
AA1 2

xx1 A A l

2 2
(0 1 (BBl, AA1) BB1 (0 1 (A M , A A 1)

BBl xx1 xx1
A A 1

(044) ("-1 - """""""" - """"""""""
2 3

X X l xx1 AA1 AA1

(047)

2

xx1
(0 1 (AA1, AA1)

LOG (An11
X X l X X l

I """"""""

2
2 AA1

I

As on example of t b Hirota method, consider the two-wave interaction described by the
equations

lo181 I

(0182)

F1 V1 + F1 - F1 F2
X T

F2 V2 + F2 - F1 F2
X T

where the waves F1 and F2 propagate with velocities V1 and V2. The substitution

(C1031 EV(Dl~l,Fl=Gl/F,F2=G2/FI;
G1 . G1 G1 G2

(0103) (") v1 + (") I - ""-
F F 2

X T F

(Cle5) EV (0182,Fl=Gl/F,F2=GZ/F) :
62 62 G1 G2

(") v2 + (") .) -""
F F 2

X T F

yields the equations (using 042 here)

(C106) APPLYl (Dl03,RUCEH71) ;
V1 0 (G1, F) 0 (G1, F)

X T G1 62
(01861 """""" + """"_ = - "-"

2 2 2
F F F

(C107I APPLYl (0185, RULEH711;
V2 0 (62, FI D (62, F)

X T G1 62

2 2 2
(ole71 """""" + """"_ - ""-

F F F

Hirota now uses a perturbation analysis

5 4 3 2
(01881 F - F EPS + F EPS + F EPS + F EPS + F EPS + F

5 4 3 2 1 8

5 4 3 2

5 4 3 2 1
(OleSI G 1 - C EPS + G EPS + G EPS + G EPS + G EPS

488

5 4 3 2

5 4 3 2 1
(0118) 62 - H EPS + H EPS + H EPS + H EPS + H EPS

Upon substituting and equating like powers of e, one obtains the following equations in the first few
orders of e:

Surprisingly, the zeroth order solutions

GI Gl(x-Vit) ; H i - H~(X-V$)

induce an exact solution in a relatively simple way. All the higher order equations are automatically
satisfied if all the higher order terms are chosen to be zero and f i satisfies the equations

(01123

(0113)

F1 V1 + F1 = H
X T 1

FZ V2 + F2 -G
X T 1

These have a general solution

F1 = Ui(X - V i T) + U2(X - V2 T)

where (DIFFT+ V1 DIFFx)U2(X - V2 T) Hi(X - V2 T)

(DIFFT+ V2 DIFFx)Ui(X - V i T) - Gi(X - V i T)

and leads to the exact solution of the original equation

REFERENCES

I. Arbogast,LF.A.: Du Calcul des Derivations. Strasbourg, 1800.

2. Pincherle,S.: Operatori lineari e coefficienti di fattoriali. Alti Accad. Naz. Lincei, Rend. CI. Fis. Mat.
Nat. (6) XVIII, 1933, pp. 417-519.

3. Rota,G.: Finite Operator Calculus. J. Math. Analysis and Applications, Vol. 42, No. 3, Academic Press,
June 1973.

4. Genesereth,MR.: An Automated Consultant for MACSYMA Proceedings of the 1977 MACSYMA
Users' Conference, NASA CP-2012, 1977. (Paper no. 30 of this compilation.)

5. Lewis,V.€: User Aids for MACSYMA Proceedings of the 1977 MACSYMA Users' Conference, NASA
CP-2012, 1977. (Paper no. 28 of this compilation.)

6. Boole,A.: Treatise on Differential Equations. Chelsea,New York (reprinted from 1859).

7. Boole,A.: Treatise on the Calculus of Finite Differences. Dover,New York, 1960 (reprinted from
1872).

8. Stephens,€: Elementary Theory of Operational Mathematics. McGraw-Hill Book Co., 1937.

9. Golden,J.P.: The Evaluation of Atomic Variables in MACSYMA. Proceedings of the 1977 MACSYMA
Users' Conference, NASA CP-2012, 1977. (Paper no. 12 of this compilation.)

10. Lafferty,EL.: Power Series Solution of Ordinary Differential Equations. Proceedings of the 1977
MACSYMA Users' Conference, NASA CP-2012, 1977. (Paper no. 34 of this compilation.)

11. Martin,W.T.;and Reissner,E.: Elementary Differential Equations. Addison-Wesley Pub. Co., 1964.

12. MosesJ.: Algebraic Structures and Their Algorithms. in Algorithms and Complexity (J.F. Traub ed.),
Academic Press, 1976.

13. Liverman,T.P.G: Generalized Functions and Direct Operational Methods. Prentice-Hall Inc., 1964.

14. Hirota,R.: Direct Method of Finding Exact Solutions of Nonlinear Evolution Equations. in Backlund
Transformations, the Inverse Scattering Method, Solitions, and Their Applications (R.M.Miura ed.),
Springer-Verlag, 1976.

15. Hirota,R.: A New Form of Backlund Transformations and Its Relation to the Inverse Scattering
Problem. Progress of Theoretical Physics, Vol. 52, No. 5, Nov. 1976, pp. 1498.

46

PROGRESS REPORT ON

THE DETERMINANT OF A RANDOM MATRIX

F. A . Griinbaum

University of California, Berkeley

ABSTRACT

Let X1.. .X denote a random vector with Gaussian distribution with n
-

mean vector m and correlation matrix IR
i i j '

The exp l i c i t computation of moments of the type

i s best done by expressing the usual powers i n terms of Hermite polynomials

Hn(x) and computing the expectat ions.for these i n terns of multigraphs.

(See ref. 1.) Computations similar t o t h e s e are common i n quantum f i e ld

theory where: on: = %($).

Here we propose to descr ibe the use o f MACSYMA for dealing with a much

tougher but related problem, described below.

If A i s an n x n real matrix we want t o f i n d o u t what information

about A i s contained in the set of moments of the random variable.

Here E denotes an n x n matrix each of whose en t r ies i s a Gaussian random

49 1

variable with mean zero and some jo in t cor re la t ion mat r ix .

In the case of independent entries with a common non-zero variance

t h e r e s u l t -- par t ia l ly ob ta ined us ing MACSYMA i s

Theorem. The moments of det(A + E) determine exactly the singular

values of A and i t s determinant.

Crucial for t h i s work i s t h e p o s s i b i l i t y of computing quant i t ies

similar t o (1) where powers of Xi are replaced by powers of minors of

the matr ix E . We obtain some interesting multigraph expansions but the

p ic ture i s s t i l l far from complete and a good deal of extra experimentation

i s needed. We an t i c ipa t e t he MACSY"A will be quite valuable in this aspect

of our work.

REFERENCE

1. Grhbaum, F. A . : Inverse Problems f o r Nonlinear Random Systems. P a r t i a l

Differential Equations and Related Topics, Volume 446 of Lectures Notes

i n Mathematics , J. Goldstein , ed. , Springer-Verlag, 1975 , pp. 247-263.

492

BIBLIOGRAPHY

Ament, W.S.: Intensity Statistics for a Multiple-Scatter Model Via Computer Symbol
Manipulation. Naval Research Laboratory, Code 5404, Washington, D. C.

Ananda, M.P.; Broucke, R.A.; and Hamata, N.: Computation of Force Components of a
Gravitational Potential. Tech. Memo. 391-444, Jet Propul. Lab., California Inst. Technol.,
June 1973.

Andersen, C.M.; and Bowen, J.T.: A Computer Program for Anisotropic Shallow Shell Finite
Etements Using Symbolic Integration. NASA TM X-3325,1976.

Andersen, C. M.; and Darden, G. C.: Evaluation of Integrals for a Ten-Node Isoparametric
Tetrahedral Finite Element. Paper presented at the SIAM-SIGNUM Fall Meeting (San
Francisco), Dec. 1995.

Andersen, C.M.; and Noor, Ahmed K.: Use of Group-Theoretic Methods in the Development of
Nonlinear Shell Finite Elements. Proceedings of the Conference on Symmetry, Similarity,
and Group Theoretic Methods in Mechanics, Univ. of Calgary (Alberta, Canada), Aug. 1973.

Andersen, C.M.; and Noor, Ahmed K.: A Computerized Symbolic Integration Technique for
Development of Triangular and Quadrilateral Composite Shallow Shell Finite Elements.
NASA T N D-8067,1975.

Andersen, C.M.; and Noor, Ahmed K.: Free Vibrations of Laminated Composite Elliptic Plates.
Adv. in Engr. Sci., vol. 2, NASA CP-2001, 1976, pp. 425-438.

Barouch, E.; and Kaufman, GM.: Estimation of Undiscovered Oil and Gas. NSF Grant SIA74-
22773, Sloan School, Massachusetts Inst. Technol., 1976.

Barton, D. R.; and Zippel, R.: A Polynomial Decomposition Algorithm, 1976 Proceedings of
Symposium on Symbolic and Algebraic Computation, Assoc. Comput. Mach., August 1976. pp.
356-358.

Bender, C.M.; Keener, R.W.; and Zippel, R.E.: New Approach to the Calculation of F[ll(u) in
Massless Quantum Electrodynamics. Phys. Rev. (to appear), NSF Grant 29463, ERDA
Contract E(ll-1)-3090, and Alfred P. Sloan and NSF fellowships.

Bers, A: Symbolic Computation of Nonlinear Wave Interactions. NSF(GK033979Xl) and ERDA
(AT(l1-1)-3037), Bull. of Am. Phys. Soc., Xar. i'a75.

Bers, A.; Kulp, J.L.; Watson, D.C.: Analytic Studies of Nonlinear Plasma Problems Symbolic
Manipulation Programs on a Computer. Massachusetts Instit. Technol., Res. Lab. of
Electronics, Quar. Prog. Rep. no. 108, Jan. 1973, pp. 167-185.

493

Bers, A; and Relman, k. Nonlinear Interaction of Three Wave Packets in Time and Space.
Massachusetts Instit. Technol. Research Laboratory of Electronics, AEC Contract AT(Il-1)-
3070, Plasma Research Report, PRR-757, Apr. 1975.

Blau, Irwin: The Value of Information in Non-Zero/Sum Stochastic Games. Ph.D. Thesis,
Massachusetts Instit. Technol., May 1974.

Bogen, R.A.: Automatic Computation of Direct and Inverse Laplace Transforms Using Computer
Symbolic Mathematics. Univ. of Hawaii, O N R Contract N00014-70-A-0362-0006 and by NSF
Grant MCS75-22893,1976.

Bogen, R.A.; et al. : The MACSYMA Reference Manual, Version 8, O N R Contract N00014-75-C-
0661, Lab. for Comp. Sci., Massachusetts Inst. Technol., Nov. 1975.

Bogen, R. A.; and Pavelle, R.: Indicial Tensor Manipulation on MACSYMA. Lett. Math. Phys..
vol. 2, 1977, in press.

Caviness, B: F.; and Fateman, R.J.: Simplification of Radical Expressions, Proceedings of the
Symposium on Symbolic and Algebraic Computation, Assoc. Comput. Mach., Aug 1976, pp.
329-338.

Chattergy, R.: Reliability Analysis of On-Line Computer Systems Using Computer-Algebraic
Manipulations. ONR contract N00014-70-A-0362-0001 and NASA contract NAS2-8590, Univ.
of Hawaii, Aloha System Technical Report A76-1, Jan 1976.

Chow, S.K.; Hou, A.H.; and Landweber, L.: Hydrodynamic Force and Moment Coefficients of an
Elongated Body of Revolution Rapidly Approaching a Free Surface in Planar Motion.
Westinghouse Research Laboratories, Pittsburgh, PA., Research Report 75-IGO-LANCH-PI
[E$ 5751, Aug. 1975.

Chow, S.K.; Hou, A.H.; and Landweber, L.: Hydrodynamic Coefficients of an Elongated Body
Rapidly Approaching a Free Surface. Journal of Hydronautics, vol. 10, no. 2, Apr. 1976.

Chu, D.: Machine Inversion of Remote Sensing Data. SB Thesis, Massachusetts Instit. Technol.,
June 1975.

Cohen, J.: Symbolic and Numerical Computer Analysis of the Combined Local and Overall
Buckling of Rectangular Thin-Walled Columns. Comp. Meth. in Appl. Mech. and
Engineering, vol. 7, 1976, pp. 17-38.

Dagalakis, N.: Electromechanical Design and an Inertial Spool Superconducting Generator. Ph.D.
Thesis, Massachusetts Instit. Technol., Nov. 1974.

Djaferis, T.E.; and Mitter, S.K.: Exact Solution of Lyapunov's Equation Using Algebraic Methods.
Proceedings of the Decision and Control Conference, (Clearwater Beach), Fla.. Dec. 1976.

494

Djaferis, T.E.; and Mitter, S.K.: Exact Solution of Some Linear Matrix Equations Using Algebraic
Methods. ERDA grant D(49-18)-2087 and NASA grant NGL-22-009-124, Electonic Sys. Lab.,
Massachusetts Inst. Technol., ESL-P-746, May 1977, 22 pp.

Fan, P.Y.: Computational Problems in Modeling the Oil and Gas Discovery Process. S M T h e w ,
Massachusetts Instit. Technol., June 1976.

Fateman, R.J.: Optimal Code for Serial and Parallel Computation. Communications of the Assoc.
Comput. Mach., vol 12, no. 12, Dec. 1969, pp. 694-695.

Fateman, R.J.: T h e User-Level Semantic Matching Capability in MACSYMA. Proceedings of the
Second Symposium on Symbolic and Algebraic Manipulation, Assoc. Comput. Mach., 1971,
pp. 311-323.

Fateman, R.J.: A Case History in Interactive Problem Solving. SIGSAM Bulletin no. 28, Dec. 1973.

Fateman, R.J.: O n the Computation of Powers of Sparse Polynomials. Stud. in Appl. Math., vol.
53, no. 2, June 1974, pp. 145-155.

Fateman, R.J.: An Algorithm for Deciding the Convergence of the Rational Iteration
xb+lI=f(xbl). Accepted for Publication, Assoc. Comput. Mach. Trans. on Math Software.

Fateman, R.J.: The MACSYMA 'Big-Floating-point' Arithmetic System. Proceedings of
Symposium on Symbolic and Algebraic Computation, Assoc. Comput. Mach., Aug. 1976, pp.
209-213.

Fateman, R.J.: An Algorithm for Deciding the Convergence of the Rational Iteration
xb+ll=f(x[nl). Accepted for Publication, Assoc. Comput. Mach. Trans. on Math Software.

Forman, E.H.: Statistical Models and Methods for Measuring Software Reliability. Contract
N00014-67-A-0214, Tech. Memo. TM-64805, George Washington Univ., Dec. 1974.

Fuller, S.H.; Gaschig, J.G.; and Gillogly, J.J.: Analysis of the Alpha-Beta Pruning Algorithm.
Contract N00014-67-A-0214, Dept. of Computer Science Report, Carnegie-Mellon Univ.
Pittsburgh, PA., July 1973.

Gosper, R.W.: Acceleration of Series. ONR contract no. . N00014-70-A-0362-0005, Massachusetts
Instit. Technol. Art. Int. Lab., AIM-304, Mar. 1974.

Cos, Blake Alan: Modulation by Mode Conversion with an Electrooptical Substrate. SB Thesis,
Massachusetts Inst. Technol., May 1973.

495

Guibas, L.J.: The Analysis of Hashing Algorithms. Xerox Palo Alto Research Center, CSL-76-3.
July 1976.

Herschcovitch, A.; and Politzer, P.A.: Time Evolution of Velocity-Space Instabilitles on
Counterstreaming, Magnetically Confined Electron Beams. NSF Grant ENG. 75-06242,
Phys. Rev. Letters, vol. 36, no. 23, June 1976.

Hirshman, S.P.; Sigmar, D.J.; and Bers, A.: Application of MACSYMA to the Neoclassical
Transport Problem of Impurities and Alpha-Particles in Tokamaks. Massachusetts Instit.
Technol., Plasma Dynamics Internal Memo 18, Mar. 1974.

Howard, J.C.: The Formulation of Simulation Models of Aeronautical Systems. Ames Res. Cen..
NASA, Seventh Annual Conference on Modeling and Simulation, Univ. of Pittsburgh, Apr.
1976.

Karney, C.F.F.: Parametric Coupling to Low Frequency Plasma Waves. SM Thesis, Massachusetts
Inst. Technol., Jan. 1974.

Karney. C.F.F.: Stochastic Heating of Ions in a Tokamak by RF Power. PhD Thesis.
Massachusetts Inst. Technol., May 1977.

Karney, C.F.F.; Bers, A.; Kulp, J.L.: Parametric Excitation of Ion Waves by Waves Near the
Lower Hybrid Frequency. NSF Grant (CK-28282X1), Massachusetts Instit. Technol.
Quarterly Progress Report No. 110, July 1973, pp. 104-117.

Khalil, H.M., and Ulery, D.L.: Multiparameter Families of Difference Approximations to the Heat
Operator in an Arbitrary Region. ONR Contract N0014-70-A-0362-0001, Adv. in Comp.
Meth. for Part. Diff. Equations, AICA, 1975, pp. 304-311.

Knuth, D.E.: Notes on Generalized Dedekind Sums. NSF Grant GJ 36473, O N R Contract N00015-
70-A-0362-0001, Stanford Univ., STAN-CS-75-480, Feb. 1975.

Knuth, D.E.; and Pardo, L.T.: Analysis of a Simple Factorization Algorithm. NSF Grant DCR72-
03752 A02, ONR Contract NR 044-402, and IBM, Stanford Univ., STAN-CS-76-538, Jan.
1976.

Knuth, D.E.:. Evaluation of Porter’s Constant. NSF Grant DCR72-03952 A02, ONR N00014-70-A-
0362-0001, Comp. and Math. With Appl., Feb. 1976, pp. 137-139.

Kong, J.A.: Optics of Bianisotropic Media. Proceedings of Optical Society of America,
Washington, DC, April 1974.

Kong, J.A.: Analytical Studies of Electromagnetic Problems with MACSYMA. Proceedings of the
Joint Conference of the Union Radio Science Internationale and the Institute of Electrical

496

and Electronic Engineers, Atlanta, Ga., Joint Services Electronics Program Contract 8142,
June 1974.

Kong, J.A.: Probing the Earth with Microwave Remote Sensing: An Example of Semi-Numerical
Studies of Electromagnetic Waves by Computers. Massachusetts Instit. Technol., Res. Lab.
of Electronics Progress Report 114,1974, pp. 81-85.

Krajcik, R.A., and Nieto, M.M.: Bhabha First-Order Wave Equations. V. Indefinite Metric and
Foldy-Wouthuysen Transformations. ERDA, Phys. Rev. D., vol. 14, no. 2, J u l y 1976.

Kulp, J.L.: Use of Symbolic Computation for Nonlinear Wave Interactions. SB and SM Thesis,
Massachusetts Instit. Technol., Aug. 1973.

Kulp, J.L.; Bers, A.; and Moses, J.: New Capabilities for Symbolic Computation in Plasma Physics.
Proceedings of the Sixth Conference on Numerical Simulation of Plasmas, Univ. of
California at Berkeley, July 1973.

Kulp, J.L., Karney, C.F.F., and Bers A.: Symbolic Computation of Nonlinear Wave-Wave
Interactions. NSF Grant (GK-Z8282Xl), Massachusetts Instit. Technol. Quar. Prog Rep. no.
110, July 1973, pp. 86-102.

Lebne-Dengel, 2.; E. G. Njoku; and J. A. Kong: A MACSYMA Study of Waves in Uniaxial
Media. Massachusetts Inst. Technol., Res. Lab. of Electronics Progress Report 114, July 1974,
pp. 86-87. ’

Lee, C.E. and Carruthers, L.M.: LARC-I: A Los Alamos Release Calculation Program for Fission
Product Transport in HTCRs During the LOFC Accident. LA-NUREC-6563-MS, Los
Alamos Scientific Laboratory, Nov. 1976.

Levner, D.: Mathematical Tools for Markov Modeling of System Availability and Reliability.
Carnegie-M.ellon. Univ., Pittsburgh, Pa.

Lewis, V. E.: Introduction to ITS for the MACSYMA User. Lab. for Comp. Sci.. Massachusetts
Inst. Technol., 1977.

Massachusetts Instit. Technol. World Oil Projeck Oil Supply Forecasting Using Disaggregated
Pool Analysis. Working Paper No. MIT-EL-76-009WP. May 1976.

Metcalfe, Ralph: Spectral Methods for Boundary Value Problems. Ph.D. Thesis, Massachusetts
Instit. Technol., Sept. 1973.

Moses, J.: Algebraic Simplification: A Guide for the Perplexed. Comm. Assoc. Comput. Mach.,
vol. 14, no. 8, Aug. 1971, pp. 527-537.

497

Moses, J.: Symbolic Integration: The Stormy Decade. Comm. Assoc. Comput. Mach., vol. 14, no. 8.
Aug. 1971, pp. 548-560.

Moses, J.; and Yun, D.Y.Y.: The EZ CCD Algorithm. Proceedings of the Assoc. Comput. Mach.
National Convention, Aug. 1973.

Moses, J.: T h e Evolution of Algebraic Manipulation Algorithms. IFIP 74, North-Holland Pub.
Co., 1974.

Moses, J.: MACSYMA - The Fifth Year. Proceedings of the Eurosam 74 Conf., Stockholm, Aug.
1974.

Moses, J.: T h e Current Capabilities of the MACSYMA System. Proceedings Assoc. Comput.
Mach. National Conference, Oct. 1975.

Moses, J.: Algebraic Structures and Their Algorithms. Proceedings of the Symposium on
Algorithms and Complexity: New Directions and Recent Results, Pittsburgh, Apr. 1976.

Moses, J.: An Introduction to the Risch Integration Algorithm. Proceedings Assoc. Comput. Mach.
National Conference, Oct. 1976.

Noor, AK.; and Andersen, C.M.: Mixed Isoparametric Elements for Saint-Venant Torsion. Comp.
Meth. Appl. Mech. and Engr., vol. 6, 1975, pp. 195-218.

Odlyzko, A.M.: Lower Bounds for Discriminants of Number Fields. Ph.D. Thesis, Massachusetts
Instit. Technol., 1976.

Parrish, W.; and Pickens, J.R.: M.1.T-Mathlab meets UCSB-OLS, an Example of Resource
Sharing. NIC 17161, RFC 525, June 1973.

Pavelle, R.: General Static Curved Solutions of Einstein’s Equations for Spherically Symmetric
Metria. Perception Technology Corp., Winchester, Mass. ARPA Contract DAHC15 73 C
0369, 1974.

Pavelle, R.: Yang’s Gravitational Field Equations. Perception Technology Corp.. Winchester,
Mass., Phys. Rev. Letters, vol. 33, 1974, p. 1461.

Pavelle, R.: Unphysical Solutions of Yang’s Cravitational-Field Equations. Phys. Rev. Letters, vol.
34, no. 17, Apr. 1975, p. 1114.

Pavelle, R.: Conserved Vector Densities and their Curl Expressions. J. Math. Phys., vol. 16, May
1975, pp. 1199-1200.

Pavelle, R.: Multiple Covariant Differentiation - A New Method. Cen. Relativ. and Gravit.. vol.
7, no. 4, 1976, pp. 383-386.

Pavelle, R.: Unphysical Characteristics of Yang’s Pure-Space Equations. Phys. Rev. Letters, vol.
37, no. 15, Oct. 1976, pp. 961-964.

Perception Technology Corporation Use of Symbolic Manipulation Techniques to Examine
Gravitational and Unified Field Theories. Final Technical Report, Contract No. DAHC 15 73
C 0369, June 1974.

Pless, Vera; and Sloane, N.J.A.: Complete Classification of (24,12) and (22,ll) Self-Dual Codes. Lab.
for Comp. Sci. TM-49, Massachusetts Inst. Technol., June 1974.

Pless, Vera; and Sloane, N.J.A.: On the classification and Enumeration of Self-Dual Codes. A R P A
order no. 2095 and ONR contract no. N00014-70-A-0362-006, J. of Combin. Theory, Series A,
vol. 18, no. 3, May 1975, pp. 313-335.

Ramakrishnan, R.: A Study of Pool Model Ambiguities and of the Statistics of Paranjerer
Estimation, with an Application in Nitrogen Metabolism. Ph.D. Thesis, Columbia Univ.,
1974.

Reiman. A.; and Bers, A:: Stability Analysis of a Finite Difference Scheme Using Symbolic
Computation. Massachusetts Instit. Technol. Res. Lab. of Electronics, PRR-756, April 1975.

Robbins, K.A.: Disk Dynamos and Magnetic Reversal. Ph.D. Thesis, Massachusetts Instit.
Technol., June 1975.

Rosen, B. and Roycraft, T.J.: Automation of Meteorological Perturbation Theory. A R P A Grant
DA-ARO-D-31-124-73-Gl38, Stevens Inst. Technol., Prog. Rep., Dec. 1973.

Rosen, B. and Roycraft, T.J.: Finite Amplitude Baroclinic Waves. Stevens Inst. Technol., March
1976.

Rumore, F.C.: The Rotating Air Gap Armature Machine as a Superconducting Induction Motor
for High Speed Ship Propulsion. SM Thesis, Massachusetts Instit. Technol. Aug. 1976.

Stoutemyer, David R.: Analytical Optimization using Algebraic Manipulation. Univ. of Hawaii,
T h e Aloha System, TR A74-3, July 1974.

Stoutemyer, D.R.: Computer Algebraic Manipulation for the Calculus of Variations, the
Maximum Principle, and Automatic Control. Univ. of Hawaii, Aloha System, T R A74-5,
Nov. 1974.

Szeto, Ellen W.: Dumbbell Model for the Classical Radiation Reaction. BA Thesis, Mount
Holyoke Colt., Mar. 1977.

Townsend, J.C.: Second-Order Small Disturbance Theory for Hypersonic Flow Over Power-Law
Bodies. Ph.D. Thesis, Univ. of Virginia, Dec 1974.

499

Trager, B.: Algorithms for Computing with Algebraic Functions. SM Thesis, Massachusetts Instit.
Technol., June 1976.

Trager, B.: Algebraic Factoring and Rational Function Integration. Proceedings of the
Symposium on Symbolic and Algebraic Computation, Assoc. Comput. Mach., Aug. 1976, pp.
219-226.

Underhill, Dwight W.; Reeds, James A.; and Bogen, Richard: Mathematical Analysis of Velocity
Programmed Chromatography. Analytic Chem., vol. 45, Dec. 1973, p. 2314.

Walton, I.G.: T h e Development and Application of the Rayleigh-Ritz and Galerkin Methods. MS
Thesis, Univ. of California, Santa Cruz, June 1975.

Wang, P.: Automatic Computation of Limits. Proceedings of the 2nd Symposium on Symbolic a n d
Algebraic Manipulation., Assoc. Comput. Mach., 1971.

W a n g P.: Symbolic Evaluation of Definite Integrals by Residue Theory in MACSYMA.
Proceedings IFIP 74, pp. 823-827.

Wang, P.; and Rothschild, L.: Factoring Multivariate Polynomials over the Integers. Math. Comp.,
1975, pp. 935-950.

Wang, P.: Factoring Multivariate Polynomials over Algebraic Number Fields. Math. Comp., Apr.
1976.

Wang, P.; and Minamikawa, T.: Taking Advantage of Zero Entries in the Exact Inverse of
Sparse Matrices. Proceedings of the Symposium on Symbolic and Algebraic Computation.
Assoc. Comput. Mach., Aug. 1976, pp. 346-350.

Werschulz, Arthur G.: Computational Complexity of One-Step Methods for a Scalar Ar1tonun1rt11~
Differential Equation. Carnegie-Mellon Univ., Sept. 1976, 21pp.

Werschulz, Arthur G.: Computational Complexity of One-Step Methods for Systems of
Differential Equations. Carnegie-Mellon Univ., Sept. 1976, 29pp.

Werschulz, Arthur G.: Optimal Order and Minimal Complexity of One-Step Methods fo r I n i t i a l
Value Problems. Carnegie-Meilon Univ., Sept. 1976, 34pp.

Yao, A.C.; and Knuth, D.E.: Analysis of the Subtractive Algorithm for Greatest Common Divisors.
Proceedings of the Nat. Acad. Sci., no. 72,1975, pp, 4720-4722.

Yilmaz, H.: New Approach to Relativity and Gravitation. Annals of Phys., vol. 81, no. 1, Nov. 1973,
pp. 179-200.

500

Yilmaz, H.: On the “Derivation” of Einstein’s Field Equations. Am. Journ. of Phys., vol. 43. no. 4.
Apr. 1975, p. 319.

Yilmaz, H.: Generalized Field Theory of Gravitation. Nuovo Cimento, vol. 31 B, no. 8, Feb. 1976.
pp. 211-218.

Yilmaz, H.: Physical Foundations of the New Theory of Gravitation. Annals of Phys., vol. 101, no.
2, Oct. 1976, pp. 413-432.

Yilmaz, H.: A Generalized Nordstrom-Reissner Metric. Lett. Nuovo Cimento, Sept. 1977.

Yun, D.Y.Y.: On Algorithms for Solving Systems of Polynomial Equations. SIGSAM Bulletin,
Sept. 1973.

Zippel, R.: Power Series Expansions in MACSYMA. Proceedings of the Conference on
Mathematical Software 11, Purdue Univ., May 1974.

Zippel, R.: Univariate Power Series Expansions in MACSYMA. Proceedings of Symposium on
Symbolic and Algebraic Computation, Assoc. Comput. Mach., Aug. 1976, pp. 198-208.

50 1

