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VECTORIZATION OF LINEAR'DISCRETE FILTERING ALGORITHMS

James R. Schiess
Langley Research Center

SUMMARY

Three existing linear filters, including the conventional Kalman filter and
versions of square root filters devised by Potter and Carlson (AIAA Journal,
Sept. 1973)f are studied for potential application on streaming computers. The
square root filters are known to maintain a positive definite covariance matrix
in cases in which the Kalman filter diverges due to ill-conditioning of the
matrix. tVectorization of the three filters is discussed, and comparisons are
made of the number of operations and storage locations required by each filter.
The Carlson filter is shown to be the most efficient of the three filters on the
Control Data STAR-100 computer.

INTRODUCTION

The state of the art of computers has been advanced with the recent devel-
opment of streaming computers, for example, Control Data STAR-100 and Texas
Instruments Advanced Scientific Computer (ASC), which process vector quantities.
Because of the new capabilities of these computers, existing algorithms must be
reevaluated to ensure that they perform efficiently on the new computers. The
purpose of this report is to compare the relative efficiency of several sequen-
tial linear filter algorithms on the STAR-100 computer.

Since the introduction of the Kalman filter in 1960 (ref. 1), a number of
optimal sequential linear filters have been proposed. The object of these fil-
ters is to estimate the state of a linear process in the presence of process and
measurement noise. The Kalman filter is considered the standard method for
solving these problems; various other filters are generally equivalent forms of
the Kalman filter (ref. 2). However, the Kalman filter requires subtraction of
nearly equal matrices in computing the covariance matrix. A not unusual result
is that, after a number of measurements have been processed, the covariance
matrix loses the required positive definiteness characteristics and the filter
diverges.

A popular way of avoiding the degradation of the covariance matrix is the
so-called square root filter. The square root filter was originally developed
by James E. Potter, the equations being given in reference 3, and subsequently
refined by others (ref. 4). The general approach is that the square root matrix
of the covariance matrix is propagated through the measurement times; whenever
the covariance matrix is desired, it is computed from the square root matrix.
Computed in this way the covariance matrix is assured to be positive definite.
However, the gain in computational precision for the Potter filter is compen-
sated by a 30- to 50-percent addition in computation burden (ref. 4) on scalar
computers.



More recently Carlson (ref. 5) has devised a triangular formulation of the
square root filter using a Cholesky decomposition which requires approximately
the same number of calculations as the Kalman filter. In this method the square
root matrix is always triangular in form so that various calculations involving
this matrix can be simplified.

This report presents a study of the relative efficiency of the Kalman,
Potter, and Carlson filters on the Control Data STAR-100 computer at the Langley
Research Center. In particular the number of operations and storage locations
required are compared to determine the most efficient implementation.

SYMBOLS

b(k+1) n-dimensional vector at (k+1)th time, defined by equation (15)

E{ } expectation of quantity in braces

f(k+1) n-dimensional vector at (k+1)th time, defined by equation (12)

H(k+1) m by n measurement matrix at (k+1)th time

i denotes ith element of vector or ith column of matrix

j denotes jth element of vector or jth row of matrix

K(k+1) n by m Kalman gain matrix at (k+1)th time

k denotes quantity evaluated at kth time

L number of results per clock (1 clock represents 40 nanoseconds)

£ length (number of components) of vector

m number of measurements at each time

N[ ] conditipn number of matrix in brackets

n number of state variables

P(k) n by n covariance matrix at kth time

Q(k+1) n by n process noise covariance matrix at (k+1)th time

R(k+1) m by m measurement noise covariance matrix at (k+1)th time

S(k) n by n square root matrix at kth time

s start-up time, clocks

t time for an operation, clocks



U(k+1) n-dimensional process noise vector at (k+1)th time

V(k+1) m-dimensional measurement noise vector at (k+1)th time

W(k+T) n by n matrix at (k+1)th time, defined by equation (10)

X(k) n-dimensional state vector at kth time

Y(k+1) m-dimensional measurement vector at (k+1)th time

a scalar defined by equation (13)

y scalar defined by equation (14)

AY(k+1) scalar measurement residual at (k+1)th time

<J>(k+1,k) n by n state transition matrix from kth time to (k+1)th time

Superscripts:

+ updated value

T transpose of matrix

-1 inverse of matrix

Caret O over a. symbol indicates an estimated value.

PROBLEM STATEMENT

Many dynamical processes are mathematically modeled as discrete linear
dynamical systems of equations; in the case of nonlinear processes, the models
are often linearized to simplify analysis and solution of the mathematical sys-
tems . For these reasons, the state and measurement equations studied herein are
given by the discrete linear system

X(k+1) = <j>(k+1,k) X(k) + U(k+1) (k = 0, 1, 2,. . .) (1)

where X(k) is the n by 1 state vector at the kth time, <|>(k+1,k) is the
known n by n state transition matrix from the kth to the (k+1)th time and
U(k+1) is the n by 1 vector of process noise at the (k+1)th time. It is
assumed that U(k+1) is a sample from a white noise process having zero mean
and known n by n covariance matrix Q(k+1).

Associated with the state equations are the linear measurement equations
given by

Y(k+1) = H(k+1) X(k+1) + V(k+1) ' (k = 0, 1, 2,. . .) (2)

where Y(k+1) is the m by 1 measurement vector, H(k+1) is the known m by n
measurement matrix, and V(k+1) is the m by 1 vector of measurement noise,



all three at the (k+1)th time. The noise vector V(k+1) is assumed to be a
sample from a white noise process having zero mean and known m by m diagonal
covariance matrix R(k+1). It is further assumed that the process noise and
measurement noise are uncorrelated and that X(k+1) and V(k+1) are
uncorrelated.

The filtering problem is given as follows. Given a sequence of measurement
vectors Y(k) (k̂ = 1, 2, 3,. . .), determine estimates of X(k) (denoted by
X(k)) such that )C(k) is optimal in some sense. For the filters considered
herein, X(k) is the optimal estimate if the mean square error in the state is
minimized.

In order to accomplish this objective, two ̂ further assumptions must be
made. First, an estimate of the initial state X+(0) is available. The sta-
tistical expected value of the state is usually used for this estimate. Second,
since the covariance matrix of the state P+(k) is propagated by the filters
considered, an initial value for this matrix P+(0) is also available. Gener-
ally, the initial covariance matrix can be any arbitrary positive definite
matrix since the filters are not sensitive to the initial matrix used. Usually
the initial matrix is chosen to be diagonal not only for simplicity but also
since correlations among the state variables are unknown.

KALMAN FILTER

The Kalman filter (ref. 1) was developed to propagate the statistical mean
(that is, X(k), the optimal estimate of state noted previously) and covariance
of the dynamical process described by equation ( 1 ) . By using the assumptions
given for the process noise U(k+1), the mean and covariance propagate from the
kth to (k+1)th time according to

k) X(k) (3)

kj P(k) {()(k+1,k)T + Q(k+1) (4)

In equation (U), P(k+1) is the n by n covariance matrix at the (k+1)th time
and superscript T denotes matrix transpose.

Equations (3) and (4) can be used to propagate the mean and covariance
throughout all time points of interest; however, neither equation makes use of
information contained in the measurement vector Y(k+1). The Kalman filter
accomplishes this by first computing the n by m optimal gain matrix K(k+1)
as follows:

H(k+1)T[H(k+1) P(k+1) H(k+1)T + R(k+1)]-1 (5)

The superscript -1 indicates matrix inversion. By using the optimal gain,
updated values of the state and covariance are given as

(6)

(7)



The superscript + indicates values updated by incorporating the measurements
at the (k+1)th time. Equations (3) and (4) are used in conjunction with equa-
tions (5) to (7) by first evaluating equations (3) and (4) with the updated
state and covariance values from the previous time step. Therefore, equa-
tions (3) and (4) must initially be evaluated by using the initial estimates

and P+(0) which were assumed available.

The matrix P+(k+1) must be a symmetric positive definite matrix since by
definition of covariance P+(k+1) = E{x+(k+1) X+(k+1)T} where E{ } is the
statistical expectation. In theory the equations given here will propagate a
symmetric positive definite matrix; however, because of the finite word length
of computers, the matrix subtraction of equation (7) often yields a nonpositive
unsymmetric matrix after propagation through a number of time points. The net
result of this numerical problem is that the state estimate ceases to be optimal
and in fact diverges from realistic values. The seriousness of this problem has
prompted the development of methods to avoid the degradation of the covariance
matrix.

SQUARE ROOT FILTERS

Various schemes have been developed to maintain the positive definiteness
of the covariance matrix. The most numerically effective techniques are those
called square root filters (ref. 5). In this approach the so-called square root
matrix S(k) of the covariance matrix is defined as follows:

S(k) S(k)T = P(k) (8)

Then appropriate equations are derived to propagate S(k) rather than P(k)
through the measurement times. Whenever P+(k) is desired, it is evaluated
with an equation comparable to equation (8'), P+(k) = S+(k) S+(k)T.

The advantages of using the square root matrix are twofold. First, even in
the presence of rounding errors, the product in equation (8) cannot be unsym-
metric or indefinite. Second, the numerical conditioning of S(k) is better
than that of P(k). (See ref. 4.) To show this, let N[S(k)J be the condition
number of S(k). The condition number of S(k) is defined as the ratio of the
largest to the smallest eigenvalue of S(k)T S(k). Because of equation (8),

N[P(k)] = NJS(k) S(k)T] = (N[S(k)]}2 (9)

On a computer with d significant binary digits, numerical difficulties can be
expected when N[P(k)] approaches 2d. However, because of equation (9), the
precision in computing P(k) from S(k) is effectively doubled since if
N[s(k)] = 2d then N[p(k)] = 22d. In other words, with the Kalman filter,
numerical difficulties may be encountered as N[P(k)] approaches 2d, but with
a square root method the difficulties are encountered as N[P(k)l approaches
22d.

The standard square root filter is the version derived by Potter (ref. 3)
and refined by Kaminski, Bryson, and Schmidt (ref. 4). In this filter, equa-
tion (4) for propagating P(k) is replaced by the following equations:



) S+(k) (10)

W(k+1)T + Q(k+1)1/2 (11)

In equation (11), the indicated square root denotes formation of the square
root matrix of the bracketed expression. The matrices W(k+1), S(k+1), and S+(k) ,
are all n by n matrices. For the Potter filter, a Cholesky decomposition is
applied so that the square root matrix S(k+1) is a (lower or upper) triangular
matrix (ref. 4). The following equations can be derived by substituting
S+(k+1) S+(k+1)T and S(k+1) S(k+1)T for P+(k+1) and P(k+1) in equa-
tions (5) to (7) and treating the case in which a scalar measurement is pro-
cessed (m = 1):

= ST(k+1) Hj(k+1)T (1 ^ j i m)

a = Rjj(k+1) + f(k+1)T f(k+1) (1 z j <, m) (13)

1
Y = - (1 $ j <> m) (14)

a + [a Rjj(k+1)]1/2

b(k+1) = S(k+1) f(k+1) (1 $ j < m) (15)

S(k+1) = S(k+1) - y b(k+1) f (k+1 )T (1 ̂  j < m) (16)

AY(k+1) = Yj(k+1) - Hj(k+1) X(k+1) (1 i j < m) (17)

AY(k+1)
X(k+1) = X(k+1) + — : - (1 < j z m) (18)

a

In equations (12) to (18), the m components of the measurement vector Y(k+1)
are processed individually as scalars. The notation defines Hj(k+1) as row j
of H(k+1), Rjj(k+1) as the jth diagonal element of R(k+1), and' Yj(k+1) as
the jth component of Y(k+1); the quantities a, Y» an(* AY(k+1) are scalars.
Both f(k+1) and b(k+1) are n-dimensional vectors.

For updating the square root matrix (refs. 4 and 5), equations (5) to (7)
which update the state vector and covariance matrix are replaced by equa-
tions (12) to (18) and the following two equations:

(19)

(20)

One time step of the square root filter performs as follows. Equa-
tions (1), (10), and (11) are used to predict the state vector and covariance
matrix. Equations (12) to (18) are cycled through once for each component of
the measurement vector; during this cycling, the state and covariance are
updated with information from the most recent scalar measurement. Finally equa-
tions (19) and (20) give the updated state and covariance for the entire state
in preparation for the next time step.



One of the reasons the Potter filter is considerably slower than the Kalman
filter is the need to cycle through equations (12) to (18) m times for each
time step. During each cycle three vectors and one matrix are computed. Ini-
tially S(k+1) is lower triangular, but after the first use of equation (16)
this is no longer true. If it were possible to maintain the triangularity of
S(k+1), the number of operations required to compute the vectors and matrix
could be significantly reduced. With this in mind, Carlson (ref. 5) devised a
version of the square root filter which maintains the triangularity of both
S(k+1) and S+(k+1) at all times.

In the Carlson filter (ref. 5), the prediction equations are identical to
the Potter prediction equations (eqs. (1), (10), and (11)) except that the
Cholesky decomposition generates S(k+1) in upper triangular form. The updat-
ing of equations (12) to (18) is replaced by the following equations:

= S(k+1)T Hj(k+1)T

ao = Rjj(k+1)

b0(k+1) = 0

«i " ai-1 + fi2(k+D

,n. . J/2

(1

(1

(1

j < m)

j ̂  m)

j S m)

(1 1 ^ j ̂  m)

(21)

(22)

(23)

(24)

(1 ^ i ̂  n; 1 ̂  j ̂  m) (25)

ci =

b±(k+1) = bi.

AY(k+1) =

bn(k+1) AY(k+1)

(1 S i S n; 1 ^ J < m) (26)

(1 ̂  i S n; 1 < j < m) (27)

(1 S i S n;- 1 S J S m) (28)

(IS J S m) (29)

(1 S j S m) (30)

Equations (19) and (20) are evaluated after cycling through equations (21)
to (30). In these equations, OLQ and o^, a^, and c^ for (1 ̂  i ̂  n) are
scalars, and bg(k+1) and b^(k+1) for (1 S i £'n) are n-dimensional vectors.
Further, (̂k+l) is the ith component of f(k+1), and S^k+D is the ith
column of S(k+1). Although the Carlson filter equations appear more complex
than the Potter equations, they require fewer operations since S(k+1) is
always upper triangular.

Specifically, because S(k+1) is upper triangular, the entries below the
ith entry of the ith column are zero. Therefore, during the ith inner cycle of
equations (24) to (28), the entries of b^(k+1) below the ith component need



not be computed. Further, updating the ith column of S(k+1) requires computa-
tions using only the first i entries of S-^Ck+l) and bj[_i(k+1). Finally,
the triangular form of S+(k) and S(k+1) reduces the number of operations
required by equations (10) and (21). Notice that the triangular form of S+(k)
does not eliminate the need for the Cholesky decomposition in equation (11)
unless Q(k+1) = 0 (zero process noise). The reduction in computations for the
Carlson filter with the triangular matrix compensates for the fact that the
Carlson equations require about m times as many square roots as the Potter
filter.

A comparison of the operations required by each filter for one time step
on a scalar computer is given in table I, which summarizes results given in ref-
erence 5. A comparison of the three filters indicates that the Carlson filter
requires fewer operations than the Potter filter. The Carlson filter is compar-
able to the Kalman filter for small m and n (ref. 5). An actual comparison
of the timings for the filters depends on the relative times required for indi-
vidual operations on a particular scalar computer.

VECTORIZATION OF FILTERS

A streaming computer such as the STAR-100 operates most efficiently by
streaming strings of consecutively stored data through pipeline processing
units. The increase in computational speed results from the fact that several
different suboperations of a particular operation are being performed simulta-
neously to different data in the pipeline processor. Thus, although it takes
a specified time to perform the entire operation on one number, the simultaneous
assembly line processing of many numbers reduces the total required time by a
considerable amount. Therefore, it is necessary to vectorize any algorithm as
much as practical in order to develop an efficient procedure. An indication of
this fact is given by the timing formula

i
t = s + - (3D

L.

where

t time for operation, clocks

s start-up time, clocks

£ length of vector

L number of results per clock

For the STAR-100 computer, 1 clock is 40 nanoseconds. From the formula
(eq. (3D) it can be seen that, because of the start-up time, one long vector
operation is more efficient than several short operations.

The hardware of the STAR-100 computer provides not only the basic vector
operations of add and dot product but also specially defined operations such as
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multiply, divide, and square root. For these latter operations, the entries of
the resultant vector are the product, quotient, or square root of the corre-
sponding entries of the operand vectors. Such operations are especially useful
for algorithms which utilize matrix equations.

Application of vector operations to most matrix equations is straightfor-
ward. For example, the product of a matrix and vector, as in equation (3),
yields a vector which is a linear combination of the column vectors of the
matrix. For equation (3), the entries of the vector X(k) provide the coeffi-
cients of the linear combination. In a similar fashion, the product of two
matrices can be written as a linear combination of column vectors from the pre-
multiplying matrix with coefficients from the postmultiplying matrix. As a
standard approach it is therefore assumed here that matrices are stored as col-
umn vectors.

Storing matrices by columns also produces a relatively efficient product of
a matrix and transposed matrix. For example, the product P(k+1) H(k+1)T in
equation (5) is defined by

n
Mij = 2Z Pih^k+1) Hjh(k+1) (1 ̂  i S n; 1 ̂  j < m) (32)

h=1

In terms of column vectors, equation (32) can be written as

Mj = 2Z Ph<k+1) Hjh(k+1) (1 ̂  j i m)
h=1

Computing the entire jth column is inefficient since as the sum ranges over h,
H(k+1) is accessed elementwise across columns. Instead it is more efficient to
vary j and add to each column of M before increasing h. In this way contig-
uous locations of H(k+1) are accessed, and physically transposing the matrix
is avoided.

Since the Kalman filter consists entirely of vector and matrix equations,
vectorization of this filter is straightforward. In the case of the Potter fil-
ter, vectorization is immediate although incomplete because of the scalar opera-
tions in equations (13) and (14). Since these scalar equations are unavoidable,
the accompanying inefficiency must be accepted.

Efficient vectorization of the Carlson filter requires modification of two
equations. The recursive generation of ot^ (O^i^n) requires that equa-
tions (22) and (24) remain scalar equations; however, equations (25) and (26) are
easy to vectorize. Once the values of a^ are generated in a vector of length
n + 1; the vector square root can be calculated. Then equations (24) and (25)
are vector equations involving n adjacent entries of the n + 1 dimen-
sional vector (O.Q̂ ,̂ a-\^^t. . ., a.n̂ ~̂). After computing the vectors
(a-), 33,. . ., an)

T and (c-|, 02,- . ., cn)
T, equations (27) and (28) are

cycled through as before. The remainder of the Carlson equations remain
unchanged .



In both the Potter and Carlson algorithms, the measurement matrix is always
accessed by rows. Therefore, it is most efficient to store this matrix as row
vectors for both algorithms.

The number of operations required to process one measurement vector by each
of the vectorized algorithms as a function of the dimensions n and m is
given in table II. The operation count does not include the operations required
to evaluate the matrices <j)(k+1,k), Q(k+1), H(k+1), and R(k+1) since these
matrices are problem dependent. The asterisk (») denotes operations on vectors
of length n or less; these are the operations in which the triangular matrices
S+(k) and S(k+1) occur. These operations then apply to vectors of average
length n/2; this is approximately equivalent to half as many operations applied
to a vector of length n (true equivalence does not exist because of the number
of start-up times). On this basis the Carlson filter is faster than the Potter
filter and apparently comparable to the Kalman filter.

It is of interest now to look at two specific cases of the dimensions of
the filtering problem. In most realistic problems n is larger or possibly
equal to m; in other words, there are usually more unknown variables than mea-
surements at each time point. Of particular interest are the extreme cases of
scalar measurements (m = 1) and of large measurement vectors (m = n). For sca-
lar measurements, operations on vectors of length m reduce to scalar opera-
tions. The operation counts in table III indicate that the Carlson filter may
be faster than the Kalman filter because of the fewer number of scalar opera-
tions. Table IV for m = n shows the Carlson filter comparable to the Kalman
filter because of the fewer vector operations required by the Carlson filter.
Both tables show that the Potter filter is apparently the slowest.

The number of storage locations used by the three filters are indicated in
table V. These results are based on the assumptions that R(k+1) is diagonal
and can, therefore, be stored as.an n-dimensional vector and that the matrices
Q(k+1), <t>(k+1 ,k), and P+(k) can be used as temporary storage when not serving
their nominal purposes. The expressions in table V do not consider savings due
to sparse matrices or other characteristics which are problem dependent. The
square root filters differ from the Kalman filter in that they do not require
the gain matrix K(k+1). The Carlson filter requires fewer storage locations
than the Potter filter since S(k+1) is triangular; S(k+1) can be stored as
a vector with entries defined by

Sg(k+1) =

for

Both square root filters use the same locations to store S(k+1) and S+(k);
both filters use P+(k) to store the quantities defined by equations (12) to
(15), (17), (21) to (27), and (29). The expressions in table V do not include
the locations required for counters, subscripts, and so forth.
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RESULTS OF STAR VECTORIZATION

In order to investigate the three filters under specific circumstances, the
filters were implemented on the Control Data STAR-100 computer. The concepts of
the preceding section were applied in order to enhance the efficiency of the
implementations.

Table VI presents the execution times required by the three filters to pro-
cess data over 1000 time steps. The given times exclude the time required to
evaluate the problem-dependent matrices <J>(k+1,k), H(k+1), Q(k+1), and R(k+1);
therefore, the results can be duplicated with any identically dimensioned matri-
ces. Aside from requiring R(k+1) to be a diagonal matrix, which is represent-
able as a vector, no particular structures are assumed for these matrices. Thus
for specific problems the matrices may be sufficiently sparse to permit use of
the sparse vector operations on the STAR; therefore, the speed of all the fil-
ters could be enhanced.

The values of n and m chosen for study are representative of the dimen-
sions of most filtering problems and are comparable to the values studied by
Carlson (ref. 5). With one exception, the values fulfill the common circum-
stance that m < n. In all but one of the dimensional problems of table VI, the
Carlson filter is faster than both the Kalman filter and the Potter filter. For
the small dimensional problem, the Kalman and Carlson filters are comparable.
In all the other problems, including the one when m > n and the ones in which
scalar measurements are used, the Carlson filter is faster than the Kalman fil-
ter. The largest timing differences between the filters occur when m = n;
these differences increase as m and n increase. Similarly, the timing dif-
ferences increase with increasing n for the scalar measurement (m = 1) prob-
lems. Generally, therefore, on the STAR-100 computer, the Carlson filter is
consistently faster than the Kalman filter except for small dimensional prob-
lems. On the other hand, in most problems the Potter filter is the slowest of
the three filters; this result follows from the square structure of S+(k+1)
and the extensive use of scalar arithmetic. The times for n = U and m = 8
suggest that the Potter filter may be more efficient when m > n.

CONCLUDING REMARKS

Three existing linear filters, including the conventional Kalman filter and
versions of square root filters devised by Potter and Carlson (AIAA Journal,
Sept. 1973). were studied for potential application on streaming computers. Of
these three discrete linear filters, the two square root filters offer the
advantage of greater precision since they are less susceptible to divergence due
to ill-conditioning of the covariance matrix. This study has indicated that a
vectorized version of the Carlson square root filter would require no more cal-
culations than the Kalman filter and sometimes even fewer calculations. Depend-
ing on the timings of various operations on a particular computer, the Carlson
filter probably requires the least time of the three filters. On the Control
Data STAR-100 computer the Carlson filter was consistently the fastest method
except for low dimension problems. In addition, the vectorized Carlson filter
requires less computer storage than either of the other methods.
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Because the Carlson filter possesses greater precision than the Kalman
filter and requires fewer computer resources than the Kalman or Potter filter
on a vector computer, the Carlson filter is the recommended filter.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
May 26, 1977
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TABLE I.- NUMBER OF OPERATIONS REQUIRED FOR ONE TIME STEP ON SCALAR COMPUTER

Filter

Kalman

Potter

Carlson

Number of operations

Add

3 , 3 , 1
- nJ + - mn' + -(3m - 1)n
2 2 2

5 , , 2
- nJ + 3mn' - - n + m

7 , 1 , / m 2 \
g n 3 * 5 < 3 . * i ) B 8 ^ 5 - - J B

Multiply

3 3 7
- n3 + -(m + On2 + - mn
2 2 2

- n3 + (3m + 2}n2 + [3m — In + m

1 3 f 5\ , / 2\
6 " + (*° + ij" + p * |)n

Divide

m

2m + n

(m + 1)n

Square root

0

m + n

(m + 1)n

TABLE II.- NUMBER OF OPERATIONS REQUIRED FOR ONE TIME STEP ON VECTOR COMPUTER

Filter

Kalman

Potter

Carlson

Number of operations on vectors of length n

Add
(a)

2n2 + 2(m + 2)n + m2 + 3m + 2

3n2 + (2m + 5)n + 2m + 2

n2 + 2n>2 + 3an* + 3n + 2m + 2

Multiply
(a)

2n2 + 2(m + 2)n + m2 + m

3n2 + Om + On + 3m

n2 + 3n»2 + n + 3mn* + tm

Divide

0

0

2m

Square root

0

0

m.

Number of operations on vectors
of length m

Add

n2 + (m + 2)n + m + 2

0

0

Multiply

n2 + (m + On

0

0

Number of scalar operations

Add

0

mm2 + mn + 3

mn2 5
+ - mn + 2m

2 2

Divide

0

2m

D

Square root

0

m

0

Asterisk (•) denotes operations on vectors of length between 1 and n.



TABLE III.- NUMBER OF OPERATIONS REQUIRED FOR ONE TIME STEP ON VECTOR COMPUTER WHEN m = 1

Filter

Kalman

Potter

Carlson

Number of operations on vectors of length n

Add
(a)

2n2 + 6n + 6

3n2 + 7n + 1

n2 + 2n»2 + 3n + 3n» + U

Multiply
(a)

2n2 + 6n + 2

3n2 + 5n + 3

n2 + 3n"2 + n + 3n» + 1

Divide

0

0

2

Square root

0

0

1

Number of scalar operations

Add

n2 + 3n + 3

n2 + n + 3

n2 5n

r + r*2

Divide

n2 + 2n

2

1

Square root

0.

1

0

aAsterisk (•) denotes operations on vectors of length between 1 and n.

TABLE IV.- NUMBER OF OPERATIONS REQUIRED FOR ONE TIME STEP ON VECTOR COMPUTER WHEN m = n

Filter

Kalman

Potter

Carlson

Number of operations on vectors of length n

Add
(a)

7n2 + 10n + 4

5n2 + 7n + 2

n2 + 5n"2 + 5n + 2

Multiply
(a)

7n2 + 6n

7n2 + tn

n2 + 6n«2 + 5n

Divide

0

0

2n

Square root

0

0

n

Number of scalar operations

Add

0

n3 + n2 + 3

. n3 5n2
— + + 2n
2 2

Divide

0

2n

n

Square root

0

n

0

aAsterisk (•) denotes operations on vectors of length between 1 and n.



TABLE V.- STORAGE LOCATIONS REQUIRED BY FILTERS

jr
oo

Filter

Kalman

Potter

Carlson

Storage

4n2 ,

4n2 H

7n2

K 2n

K 2n

5n

*" 2~

locations

+ 2mn H

•<• mn +

+ mn +

i- 2m

2m

2m

TABLE VI.- EXECUTION TIMES ON CONTROL DATA STAR-100 FOR

VECTORIZED FILTERS TO PROCESS 1000 TIME STEPS

Dimension

n

32
32
32
32
32
16
16
16
8
8
4
4

m

32
16
8
4
1

16
8
1
8
1
8
1

Execution time, sec, for -

Kalman filter

161.7
91.9
68.3
59-5
53-7
38.1
21.9
13.3
9-2
3.3
5.3
.7

Potter filter

134.8
98.5
80.4
71.3
64.8
31.8
23.3
15.9
7.7
4.0
3.0
1.9

Carlson filter

128.5
87.7
67.4
57.2
49.5
31.6
21.5
12.5
8.0
3.2
3.6
.7
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