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ABSTRACT
 

Walter Serrill Long, Master of Science, 1977
 

Major: Aerospace Engineering, Department of Aerophysics and Aerospace
 
Engineering
 

Title of Thesis: Two-Body Coordinate System Generation Using Body-

Fitted Coordinate System and Complex Variable
 
Transformation
 

Directed by: Dr. Joe F. Thompson
 

Pages in Thesis: 60 Words in Abstract: 335
 

ABSTRACT
 

The purpose of this research was to develop a body-fitted
 

coordinate system for two-element airfoil systems that will be 

suitable for numerical solutions to the Navier - Stokes 

equations along with obtaining potential flow results. A general 

description of the body-fitted coordinate system developed by 

Thompson, Thames, and Mastin is discussed. This type coordinate 

system has proved very effective in finding solutions for flows 

about single-body configurations. The body-fitted coordinate system 

method can be used ,to obtain coordinate systems for multi-body 

configurations.also. Using a wing and flap 'ombination, research 

was conducted to find the best way in which to arrange the airfoil 

segments on the transformed rectangular plie.' Seve' separate 

arrangements were tried and evaluated. Only two of the arrangements 

showed any success at all. These two coordinate systems are very 

marginal as they stand now. With the use of coordinate line attrac

tion they could possibly be made more acceptable.
 

Many different problems were encountered in the two-body
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research. One problem was to develop a coordinate system which
 

would have enough coordinate lines to -describe the flow field
 

between the two bodies. Another problem was the overlapping of
 

coordinate lines at sharp corners. Two techniques were developed
 

to relieve this problem. One method was to force the doordinate
 

lines not to overlap by controlling the temporary iterative values
 

of X or Y during the iteration process. Another method was to
 

adjust the position of order of the coordinate points describing
 

the bodies.
 

Because of the lack of success achieved in obtaining a
 

suitable coordinate system in the first seven cases, a new approach
 

was tried. This approach involved using a complex variable trans

formation of the original body coordinates. The two transformed
 

body coordinates were then entered into the body-fitted coordinate
 

system program and a transformed coordinate system was obtained.
 

This transformed coordinate system was then transformed back to
 

the original physical plane to obtain the physical coordinate
 

system. Three different airfoil combinations were studied. A
 

successful and suitable coordinate system was obtained for each
 

case.
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I. INTRODUCTION
 

In the past few years there has been increasing interest in
 

developing numerical solutions to the time-dependent, incompressible
 

Navier-Stokes equations. Originally the research began by develop

ing solutions to very simple body configurations such as the flat
 

plate and circular cylinder. In these cases a simple Cartesian
 

coordinate system or polar coordinate system could be used to obtain
 

the numerical solutions. However, as more complex and complicated
 

geometric shapes came under investigation the need for a more
 

general and better coordinate system became evident.
 

There have been many different approaches made in an attempt
 

to generate the perfect coordinate system. Some investigators
 

have tried the technique of conformal mapping. Others such as
 

Thompsoh and his ,co-workers decided on a different approach.'
 
. 

This was to generate a curvilinear coordinate system whidh would
 

have some coordinate line coincident with .eachboundiry of the
 

physical region of interest. This type of coordinate system
 

proved to be succesful and was referred to as the body-fitted
 

coordinate system. Many different flow solutions over single
 

body configurations have been obtained by utilizing this body

fitted coordinate system.
 

There have been few attempts to obtain solutions over multi

body configurations and the success of those that have been tried has
 

been limited. The major reason is that a suitable coordinate
 

system for these configurations has not been achieved. This re

search is concerned mainly with generating acceptable coordinate
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systems for two-body configurations. The first method to be
 

tried was to use the body-fitted coordinate system technique to
 

obtain the best system. This technique alone did not produce
 

very good results, so another approach was investigated.
 

This new approach involved using a combination of the body

fitted coordinate system procedure and a complex variable trans

formation method that has been used successfully in conformal
 

mapping.
 

The computer used in this research was a UNIVAC 1106.
 

The plots obtained of the different coordinate systems were
 

plotted by a GOULD 4800 plotter.
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II. BODY-FITTED CURVILINEAR COORDINATE SYSTEM
 

This section is concerned with the development of the type
 

of coordinate system used in this research. This type of boundary

fitted coordinate system may be genetated for general, multi

connected, two dimensional regions. The basic foundation of this
 

method of generating body-fitted coordinate systems was laid
 

by Thompson, Thames, and Mastin [1]. A very thorough and detailed dis

cussion of the method that has been used is given by Thames [2].
 

Therefore, an in depth discussion of the techniques involved
 

will not be given. However, an overview of the whole development
 

process and details to specifics concerned in this research will
 

be discussed in this section.
 

A. GENERAL DISCUSSION
 

The major purpose in numerically generating a curvilinear
 

coordinate system is to have some coordinate line coincident with
 

each boundary of the physical region of interest. In this case
 

an airfoil, circular cylinder, or an airfoil and attached flap
 

or slat may be the inner boundary and a large circle representing
 

infinity may be the outer boundary.
 

Suppose for example that the two-dimensional, doubly-connected
 

region, R, bounded by an inner airfoil and outer circle is to be
 

transformed onto a rectangular region, R*, as shown in Figure 1.
 

It is required that rI map onto rI*, r2 map onto V2*, r3 onto r3*,
 

and r4 onto F4. Region R is refered to as the physical plane
 

in X and Y, and region R* is the transformed reetangular plane
 



in E and n. It can be seen that the transformed boundaries
 

(F1* and F2*) become constant coordinate lines(n-lines) in the
 

transformed plane. The contours r3 and r4 represent an arbitrary
 

cut in the physical region R. These contours are coincident in
 

the physical plane and connect r, and r2. These contours are
 

refered to as reentrant boundaries in the transformed plane.
 

In order to achieve having coincident coordinate line and
 

boundary, the curvilinear coordinates must be taken to be solutions
 

of an elliptic partial differential system with constant values
 

of one of the curvilinear coordinates, n, specified as Dirichlet
 

boundary conditions on each boundary. The values of the other
 

coordinate, t, is specified in a monotonic variation over a bound

ary as Dirichlet boundary conditions, or are determined by Neumann
 

boundary conditions thereon.
 

The generating elliptic system used in this case is Laplace's
 

equation.
 

xx + y 0 (2.1 a) 

nxx + Tyy =0 (2.1 b) 

with Dirichlet boundary conditions
 

1 r(x,y , [x,y] e r (2.1 c) 

LTf, i [ 
2 
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where njl and n2 are constant and I(X,Y) and 2(X,Y) are speci

fied, non-constant functions on r1 and F2 respectively. F1 and
 

r2 correspond to the inner and outer boundaries respectively in
 

the physical plane or X,Y plane. and n are the variables in the
 

transformed rectangular plane.
 

Since it is desired to perform all numerical computations in
 

the rectangular transformed plane, the dependent and independent
 

variables are interchanged to yield the new coupled system of
 

equations,
 

aXU - 2$X n + 'Xnn = 0 (2.2a)
 

aYU - 2$Y n + yYn = 0 (2.2b)
 

where
 

2 2 
a= x + y (2.2c) 

=XEX2 + Y Yn (2.2d)
 

2 2
 
y = X + Y (2.2e)
 

with the transformed boundary conditions
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x1 (E n2 '[E' e r2*2 (2.2 g) 

I 2 Q n ) I 

Where F1 and r2 are the inner and outer boundaries in the
 

' ) '
 transformed rectangular plane. The function f1 (C 7)' f2 ( ' 
Ti


) (i' n2)
g1 ( ' n9P g2 are specified by the known shape of the
 

contours r1 and r2 and the specified distribution of theron.
 

Equations (2.2) are a quasi-linear elliptic system for the
 

physical coordinate functions, X (&, q) and Y (C, f), in the
 

transformed plane. This is the basic set of equations used to
 

numerically generate the desired coordinate system. The numerical
 

procedure involved is described briefly as follows. Second order
 

central difference expressions are used to approximate all de

rivatives in the transformed equations (2.2 a,b). A set of non

linear simultaneous difference expressions are used to approximate
 

all derivatives in the transformed equations (2.2 a,b). A set
 

of non-linear simultaneous difference equations are produced.
 

This set of simultaneous equations are then solved by utilizing
 

point SOR (successive overrelaxation) iteration techniques.
 

Control over the spacing of the curvilinear coordinate lines
 

in the field in order to concentrate more linear in the region of
 

expected high gradients can also be accomplished. This is accomp

lished by varying the elliptic system (2.2). A summary of this
 

technique is given by Thames [2] and a more thorough explanation
 

is given by Thompson, Thames, and Mastin [1]
 

For any shape boundaries the numerical generation of the
 

coordinate system is done automatically. The only requirement is
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the input of the points on the boundaries.
 

B. REGIONS WITH TWO - BODIES
 

This research is specifically concerned with obtaining a nu

merical solution of the Navier-Stokes equation for arbitrary two

dimensional multi-element airfoils. To be more specific, it is
 

concerned with two airfoils (i.e., a wing and flap combination).
 

In order to accomplish this, a suitable coordinate system has to
 

be developed for the two-body configuration.
 

The basic theory, procedure, and method discussed previously
 

for the single element airfoil may be extended to regions involving
 

more than one body. One transformation for two bodies is shown
 

in Figure 2. This is only one of many different ways in which
 

two-bodies can be transformed to the transformed planes. Other
 

configurations are given in reference [2]. These will be discussed
 

in more detail in a later chapter. The bodies in Figure 2 are
 

connected with one arbitrary cut and an additional cut joins one
 

of the body contours to the outer boundary. The main difference
 

in this case is that there is an additional cut between the two 

bodies, r5 and r'6. In the transformed plane these become the re

entrant segments F5 and F6 . The coordinate functions and their 

derivatives are continuous across these boundaries. Also body 

number 2 is defined by the union of r7 and r. in the transformed
 

plane.
 

The boundary-fitted coordinates for the two-body transform

ation are also determined by the solution of the set of equations
 

(2.2) but now there are these added boundary conditions required
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to define the additional body.
 

1 n1 ) ,[, nl e r7 
h2 ( , n1)

L1Ll ('n),[g,n] r 
2 i, 

The boundary conditions cannot be defined along the reentrant
 

boundaries F3* r4 r, since they are the field points
r5*, and r6* 


on the cut. Coordinate line attraction can also be utilized
 

with the two-body transformation,
 



III. PROBLEMS ASSOCIATED WITH MULTIBODY COORDINATE SYSTEMS
 

There are many problems that are encountered in obtaining
 

suitable coordinate systems for one-body configurations. However,
 

this research deals with obtaining coordinate systems for two

body configurations. The same problems that can be expected in
 

the one-body case may also be expected in the the two-body case
 

and could possibly be compounded. The number of difficulties en

countered in the two-body case may be expected because of the com

plicated geometry of the multiconnected domain.
 

One of the areas of concern is the region that lies between
 

the two airfoils. It is known that the interaction of the flow
 

between the two airfoils produces large perturbations to the flow
 

field. Therefore accurate results need to be obtained in this
 

region. In order to achieve this, there must be a concentration
 

of many coordinate lines in this area. This requirement can be
 

achieved, but in doing so other problems must be dealt with.
 

One of these problems is to select and generate the proper
 

initial guess of the coordinate system. This is not a very easy
 

or intuitive chore to accomplish. There are many types of initial
 

guesses that may be tried. Trial and error is about the only
 

way to find out which one best suits the configuration being
 

studied.
 

A problem that may arise from having an imperfect initial
 

guess is that of coordinate lines overlapping each other. This
 

condition occurs most prevantly on airfoils with sharp trailing
 

edges. This problem has been dealt with in two ways,
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One method is to adjust the point spacing on the airfoil that
 

is affected, or to rearrange the order in which the airfoil points
 

are read into the coordinate system program. The second method
 

is a little more specific and involved, but has proved very effec

tive. Suppose for instance that overlap was occurring along a
 

certain C-line in the X- direction as shown in Figure 3a which is
 

the trailing edge of some airfoil. This overlap may be eliminated
 

by checking to see if the temporary value of X evaluated at (I,J)
 

is less than or equal to the value of X at (1,J-1). If this is
 

true then the temporary value of X is set equal to the sum of some
 

fraction, A, times X (I,J-1) and some fraction, H, times X (1,J),
 

where H=l -A and A must be less than one. This is shown more
 

clearly below.
 

TEMPX = A*X(I,J-I) + B*X(I,J) (3.1)
 

where
 

A + B = 1.0 and A>O , B>O
 

After the field has converged, this constraint is removed and final
 

convergence is then obtained in one or two additional iterations.
 

This technique should produce coordinate lines as shown in Figure 3b.
 

Another problem which was encountered is determining in which
 

arrangement the two bodies should be transformed from the physical
 

plane to the transformed rectangular plane. There are many and
 

varied combinations in which the arbitrary cuts may be placed
 

and where the bodies and reentrant segments may be placed on the
 

transformed plane. In this research an NACA 643-418 airfoil and
 



flap were used for experimentation. Both airfoil and flap had
 

57 points each describing the body coordinates. Seven different
 

combinations were attempted in order to find a suitable coordinate
 

transformation. Only two of the seven showed any signs of success.
 

The first case to show promise is shown in Figure 4. Figure
 

4b shows the airfoil and flap combination in the physical plane
 

encircled by an outer boundary which is at a radius of 10 chord
 

lengths, Also shown as dotted lines are the arbitrary cuts.
 

Figure 4a shows the airfoil combination on the transformed plane.
 

Note that the flap was cut into two pieces and they were placed
 

on the C = 1 and C= 57 coordinate lines. Infinity lies on the 

) = 1 line and the large airfoil lies on n = 57 line. The reentrant
 

segments lie above and below the flap. This case was not run to
 

convergence, but to only 320 iterations. The optimum accleration
 

parameter in this case was found to be 6 = 1.4 . By observing
 

Figure 5 the results can be seen. The hole that appears between
 

the two airfoils can possibly be corrected by using coordinate
 

line contraction.
 

The second case physical plane setup is also shown in Figure
 

4a. The same airfoil combination was used here and the cuts are
 

also in the same place. However, the placement of the flap seg

ments and reentrant boundaries are different from before as can be
 

seen from Figure 6. The number of points on infinity are also
 

reduced. It may also be observed that by sliding the flap seg

ments down, more n-lines are placed between the two bodies.
 

This case was run to convergence (convergence criteria for x and y
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is 0.00001) in 388 iterations. The optimum acceleration parameter
 

was 6 = 1.8 . The results are shown in Figure 7. Note that the
 

diagonal straight lines on the plot are not part of the coordinate
 

system but are truncation lines caused by the plotter used.
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IV. COMPLEX VARIABLE TRANSFORMATION
 

Since the previous attempts at achieving a good two-body
 

coordinate system were not very successful, a new and different
 

approach was tried. This approach was stimulated by work done
 

by Ives and Liutermoza [3], Ives [4], and Grossman and
 

Melnik [5] . All three cases involved transonic flow over two

element airfoil systems. In all cases a form of conformal map

ping was utilized. This mapping technique caused the infinity 

boundary to be mapped to a single point and caused the smaller 

airfoil to be mapped inside the larger airfoil in the transformed
 

plane. Then by application of a Theodorsen transformation the
 

two concentric bodies were mapped to two circular rings. Then
 

a polar coordinate system was used in which to make calculations
 

in the transformed plane.
 

By observing this technique already developed, a similar
 

but different method was developed that utilized the body fitted
 

coordinate system previously discussed instead of a polar coord

inate system.
 

The first step in this new technique is to utilize a similar
 

mapping function that was used by Grossman and Melnik. This
 

equation is refered to as the complex variable transformation
 

equation.
 

7 + C (4.1) 
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where =X T + iY T (4.2) 

(in the transformed physical plane)
 

(4.3)
Z = xo + iYo 


(in the original physical plane)
 

and C = CR + iCI (4.4)
 

(a complex constant with real and imaginary parts)
 

It was determined during the experimentation that C had
 

very little control over the resulting coordinate system and
 

was therefore dropped from the original equation. The final
 

transformation equation was therefore,
 

.1 (4.5) 
z 

It is readily seen that as Z + , C 0. Therefore, any in

finity boundary is being transformed to a point in the trans

formed physical plane. If the infinity boundary is taken to be 

some finite size(i.e. a circle with a radius of 100 chord lengths),
 

then it must be transformed along with the two airfoil elements.
 

The result will be a very small circle in the transformed physical
 

plane, instead of a unique point. This may be more desirable
 

if a potential flow solution is being sought.
 

Now that the bodies and outer boundary have been transformed,
 

the new transformed body coordinates are read into the body-fitted
 

coordinate system program. The order in which the individual
 

points on each body are read into the computer program has to be
 

determined for each individual setup of airfoil combinations.
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This technique will be discussed in more detail later in a case
 

by case study. The coordinate system program is now run to
 

convergence with convergence criteria being 0.00001.
 

This coordinate system in the transformed physical plane
 

must now be converted to the original physical plane by use of
 

a reverse transformation. The reverse transformation is obtained
 

by evaluating equation (4.5) for Z.
 

1 (4.6) 

The values of XT and YT are known for every t,n point in the field.
 

By substituting these values into the above equation, the original
 

physical plane coordinates can be calculated as follows.
 

XT 

XO - -(4.7)


4 +Y
 

-YT
 

=
YO -(4.8) 
0 2 2 

The final coordinate system in the physical plane can now be
 

plotted and stored for further use.
 

This process of finding a multi-element airfoil coordinate
 

system is listed below in a step by step method. These steps
 

can be seen figuratively in Figures 8,9,11,and 12.
 

STEP 1. Determine the arrangement of the bodies to be investi

gated and the type of outer boundary to be used. A typical
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arrangement is shown in Figure 8. The order in which the points
 

describing each body are to be read in must be determined here
 

also. The point spacing on each body must also be determined.
 

STEP 2. Use equation (4.5) and transform the bodies and outer
 

boundary to the transformed physical coordinates. Figure 9 shows
 

a representative transformation from Figure 9.
 

STEP 3. Determine how this new system is to be placed on the
 

transformed rectangular plane by identifying the cuts (reentrant
 

segments). Input these transformed coordinates to the body

fitted coordinate system program and run the program to conver

gence. This coordinate system can be seen in Figure 11. If at
 

this point the plot of the coordinate system shows coordinate
 

line spacing not to be very good or if there are overlapping
 

coordinate lines, then a return to Step 1 will be necessary in
 

order to readjust the point spacing on the bodies or the order
 

in which the points are read into the program.
 

STEP 4. Use equation (4.6) to transform the coordinate system
 

obtained in Step 3 to the final coordinate system in the original
 

physical plane. The final result will appear as shown in Figure 12.
 

This type of approach has proved very successful and showed
 

much better results than any other approach that was tried.
 

Three different configurations of airfoils were set up and coordin

ate systems for each were obtained. Each individual case had
 

its own peculiarities and therefore required different techniques
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to obtain a desirable result. The three separate cases are
 

described in detail as follows.
 

CASE 1.
 

The airfoil elements that were investigated in this case
 

comprised a wing-flap combination with an outer boundary of in

finity. The airfoil used for both the wing and flap was an
 

NACA 64 -418 airfoil. The main airfoil and flap had 57 coordin3
 

ate points each describing the individual airfoils. Figure 8
 

shows this wing flap combination.
 

This two-body system was then transformed to the transformed
 

physical plane. This transfnrved wing-flap can be seen in Figure
 

9. It should be noted that the flap now lies within the bound

aries of the larger wing. Also infinity now becomes a point 

(X"= 0, y = 0) as represented by the small x in the figure. 

Next note that the cuts are placed from the leading edge of the 

wing to infinity and from infinity to the trailing edge of the 

flap. Figure 10 shows where the wing, flap, and infinity lie in
 

the transformed rectangular plane.
 

This setup was run to convergence in 1900 iterations with
 

& = 1.2 . A plot of the transformed physical plane coordinates
 

is shown in Figure 11 . Initially there were problems with over

lapping coordinate lines occurring at the sharp trailing edge
 

of the wing. This problem was overcome by using the method
 

described in chapter III. The coordinates were then transformed
 

to the original physical plane. Figure 12 shows the physical
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plane. Figure 12 shows the physical coordinate system. The
 

crossing lines on the plot are not part of the coordinate system
 

and should be disregarded. Figure 13 shows a blowup of the
 

region between the wing and flap. The coordinate lines are
 

concentrated very well in this region as well as being nicely
 

spaced. This will be necessary in order to obtain an accurate
 

solution to any flow problem.
 

CASE 2.
 

The airfoil elements that were investigated in this case
 

were also a wing-flap combination. The wing in this case was a
 

modified NACA 643-418 airfoil. The modification in this airfoil
 

is in the area of the trailing edge. The flap is also a NACA 643

418"airfoil but it is placed much closer to the wing than the flap
 

was in Case 1. The infinity boundary is a circle with a radius
 

of 100 chord lengths. Both wing and flap segments have 57 coordinate
 

points each. The outer boundary has 20 coordinate points.
 

Figure 14 shows this wing-flap configuration without the outer
 

boundary. The transformed physical plane diagram is shown in
 

Figure 15. The corresponding transformed rectangular plane dia

gram is shown in Figure 16. Figure 15 shows that the flap lies
 

within the boundary of the wing and the outer boundary appears
 

as a small circle within the bounds of the wing.
 

The overlapping of E coordinate lines at the trailing edge
 

of the wing proved to be very troublesome in early trial runs.
 

It was soon learned that this problem could be resolved by adj
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usting the point placement and spacing on the two bodies. This
 

problem and the technique used to correct it can be understood
 

more by referring to Figures 17 and 18. Figures 17 and 18 show
 

the trailing edge portion of the wing and the entire flap. Region
 

A, the curved portion of the trailing edge of the wing, and region
 

B, approximately the front one third surface of the flap, are
 

the regions of interest. It was determined that there needed to
 

be the same number of coordinate points in region A as there were
 

in region B. In the original setup A had much fewer points
 

than B since there was a high concentration of points on the leading
 

edge of the flap. Because of this many of the points on the lead

ing edge of the flap were connected by E-lines bent very sharply
 

around the sharp trailing edges of the wing. The bend that was
 

required was too sharp and overlapping of these c-lines
 

resulted. An example of this type of overlap can be seen in
 

Figure 17.
 

To correct this situation more coordinate points were added to
 

region A and some points were removed from other areas of the wing
 

to maintain the original 57 points describing the wing. Likewise
 

some points in region B were removed and placed somewhere else
 

on the flap. An example of the resulting non-overlapping of C

lines can be seen in Figure 18. This technique proved very ef

fective in eliminating overlap.
 

Once the overlap problem was overcome the coordinate system
 

was converged in 1823 iterations with 6=1.2 . The converged
 

transformed physical plane plot is shown in Figure 19. The
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original physical plane plot is shown in Figure 20. In this fig

ure the coordinate lines extending to the outer boundary have
 

been cut off the plot in order to enhance the size of the wing
 

and flap. Figure 21 shows a blowup of the region between the
 

wing and flap. This coordinate system should prove to be very
 

effective in helping to generate solutions to actual flow problems.
 

CASE 3.
 

The airfoil configuration investigated in this case is a
 

NACA 643-418 wing and a slat that was created by the author.
 

The infinity boundary is taken to be a circle of radius of 100
 

chord lengths. Both wing and slat have 57 coordinate points each.
 

Figure 22 shows this wing-slat configuration without the outer
 

boundary. The transformed physical plane diagram is shown in
 

Figure 23 and the corresponding transforied rectangular plane
 

diagram is shown in Figure 24.
 

Overlapping Cand n lines at the trailing edge of the slat
 

were prominent in early test runs. The E-line overlap was correct

ed by placing the arbitrary cuts in different places. In effect,
 

all this amounts to is changing the order in which the points
 

on the body are arranged on the transformed rectangular plane.
 

This was accomplished by reading the points describing the body
 

into the body-fitted coordinate system program in a different
 

order. In this case the order of the points on the slat were
 

changed. Originally the points were read in from the leading
 

edge going in a clockwise direction around the airfoil. It was
 

determined that the 15th point from the leading edge on the top
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of the slat would be a better starting point to input the slat
 

coordinate points. In Figure 23 the cut from the infinity circle
 

to the slat touches the slat on the top surface of the slat(In
 

the transformed physical plane the top of the slat lies on the
 

bottom side.)instead of at the leading edge as it did originally.
 

This procedure corrected the C-line overlap and gave a much better
 

g-line distribution.
 

The n-line overlap was resolved by using the technique des

cribed in Chapter III of forcing the lines not to overlap by con

trolling the temporary iterative values of both X and Y. Figure 25
 

shows the trailing edge of the slat in the transformed physical
 

plane. This plot clearly shows the p-lines overlapping the trail

ing edge. Figure 26 shows how the trailing edge looks after
 

applying the technique to remove the overlap. The results of
 

this procedure are very encouraging.
 

After these problems were overcome the coordinate system
 

was run to convergence in 1629 iterations with 6=1.2. The con

verged transformed physical plane plot is shown in Figure 27.
 

The original physical plane plot is shown in Figure 28 and a blow

up of the region between the slat and wing is shown in Figure 29.
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V. CONCLUSIONS AND RECOMMENDATIONS
 
a 

The two-body coordinate systems generated in the research
 

were generally acceptable. The ones that were unsuccessful were
 

not a total loss. They pointed out the faulty approaches and
 

shed light on new and better methods. In general the coordinate
 

systems generated by using only the body-fitted coordinate system
 

method proved less desirable than the ofies generated from the
 

complex variable transformation method. The complex variable
 

method may be a little more time consuming and arduous but the
 

results are usually much better. In all three cases very good
 

results were obtained by using this method.
 

The complex variable method is by no means perfect. Future
 

studies should be made to determine the optimum positioning of the
 

arbitrary cuts. Research should also be done to determine the
 

best coordinate point positioningfor different configurations.
 

Other methods for controlling the overlap problem should also
 

be investigated. There may also be a better type of complex trans

formation available. Once these methods have been refined and
 

improved, coordinate systems for more than two-bodies may be
 

obtained using these same basic methods.
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Figure 2. Field Transformation - Two Bodies
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T.E.
 

Figure 3a. 	Airfoil Trailing Edge With Overlapping
 
Coordinate Lines
 

TI 

Figure 3b. Airfoil Trailing Edge Without Overlapping
 
Coordinate Lines
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Figure 4a. 	Transformed Rectangular Plane View of
 

NACA 643-418 Wing-Flap Combination (1st Case)
 

Figure 4b. NACA 643-418 Wing-Flap Configuration
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Figure 5. Physical Plane Coordinate System of NACA 643-418
 
3
 

Wing-Flap Configuration(Ist Case) 
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Figure 6. 	Transformed Rectangular Plane View of
 
NACA64 -418 Wing-Flap Combination (2nd Case)
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Figure 7. Physical Plane Coordinate System of MACA 64 3-418 
Wing-Flap Configuration(2nd Case) 



Figure 8. Physical Plane Coordinates of NACA 643-418 Wing-Flap Configuration(Enlarged View)
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Figure 9. Transformed Physical Plane Coordinates of
 
NACA 643-418 Wing-Flap Configuration
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Figure 10. 	Transformed Rectangular Plane View of
 
Transformed NACA 643-418 Wing-Flap Coordinates
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Figure 11. Transformed Physical Plane Coordinate System 
of NACA 643-418 Wing-Flap Configuration
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Figure 12. Physical Plane Coordinate System of NACA 643-418
 
Wing-Flap Configuration
 



Figure 13. Expanded View of Physical Plane Coordinate System of NACA 643-418 Wing-Flap
 



Figure 14. Physical Plane View of Modified NACA 643-418 Wing-Flap Configuration
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Figure 15. Transformed Physical Plane of Modified
 
Wing-Flap
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Figure 16. Transformed Rectangular View of Transformed
 
Modified Wing-Flap Coordinates
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Figure 17. c-line Overlap at T.E.
 

Figure 18. g-line Overlap at T.E. Corrected
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Figure 20. Physical Plane Plot of Modified Wing-Flap 
Coordinate System 



Expanded View of Physical Plane Plot of Modified Wing-Flap Coordinate System
Figure 21. 




Figure 22. Wing-Slat Configuration 
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Figure 23. Transformed Physical Plane Diagram of Wing-

Slat Configuration
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Figure 24. 	 Transformed Rectangular Plane View of
 
Wing-Slat Configuration
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Figure 29. Expanded View of Physical Plane Plot of Wing-Slat Coordinate System
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