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PREFACE

The material included in this internal note was developed
by wWilliam M. Lear of TRW under contract with the Mathematical
Physics branch (MPB) at the Johnson Space Center (JSC). The
material was presented to MPB in the form of a TRW publication,
number 30759-6003-TU-00, dated June 1, 1977. The material was
prepared for JSC publication by Paul H. Mitchell of the MPb,
and the text is taken from the referenced ThkW document in its

entirety, with the following changes.

(a) The coefficient of n in equation 13 (page 4) was
changed from (Cpp + 2Cq2) to (Czpp + 2Cq3) to be consistent with
the expansion of equation 12 and the foflowing d=finitions.

(b) First person pronouns were changed to third person
pronouns on pages 11 and 18.

(¢) The concluding remarks were labeled as "8. CONCLUSIONS"
on page 19.
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LEAST SQUARES POLYNOMIAL FITS AND THEIR ACCURACY
By William M, Lear
TRW Systems Group

1. INTRODUCTION

Suppose we are given a table of data as n| t ! y*]
shown at the right. And, suppose we desire it % i y,j
to make a least-squares polynomial fit to ]. L ‘
this data. We will assume that ti-t, = aT ] 2 tZ‘ Y3

is a constant. That is, we have evenly t3l y§:

spaced tabular values of y*. Note that

t - t]

B gt e (1) % I
AT N tN yﬁ

We will assume that n is the independent variable in what follows. To make t
the independent variable we use Eq. 1 to substitute for n.
For the sake of explanation, let us assume that y* is given by the second

order polynomial

_ 2
yr=a,tan+ant +q (2)

where a, is a zero-mean, timewise uncorrelated random variable (noize) whose
variance is og, independent of n. In order to predict future measurements,
we need to know 3y 2y, and a,. Thus our state vector is

K

x=|a

J

Using ~ to indicate estimated value, we have for our estimated measurement

9n Sy ¥ é]n + 52n2 (4)

(3)

~



The measurement partial derivative matrix, P = ay/ax, will be

1
EEERE
| I
1 2 22
' |
P=iV 3 3 (5)
| |
) f
| ® ;
! R,
R N2
Note that we have a linear measurements problem,
y = Px (6)

That is, the estimated measurement vector is a linear combination of the
state vector elements.
The least-squares solution for x is given by

Ww=(p'p) el (7)
X=X+ Wy* - y) (8)
C = cg(PTP)'] (9)

where Eq. 7 is the equation for the residual weighting matrix, and Eq. 9
is the equation for-the state error covariance matrix, C = E[(gfl)(gfﬁ)TJ.
Eq. 8 for g is iterated until converged. But from Eq. 6 and Eq. 7, Eq. 8
becomes



-1 T

x+ (PTP) TR (y* - Px)

(P P)” P Px

1>
"

-1 T

x + (P P)

X = (PTP)']PTE:I (10)

which requires no iteration to find i, and is the least-squares equation
for solving for the state vector when 2_= P&. In the following sections we
will give the analytic expressions for (PTP)'] for various orders of polynom-
jals.

Now y; is given by

or

Yo " Yy * 0
n n n (1)

2
a 6+ a;n +ann

Yn

where ¥y is the error free value of the measurement. Suppose we wish to know
the accuracy of our estimate of 9n'

EL(Y,-y,)?] = ELi(ag-a,) + (a;-a,)n + (a,-2,)n%)?] (12)

E[(a -a ) + (a]-a ) n + (az-az)zn4

+ 2(a°-ao)(a]-a])n + 2(ao-a°)(52-a2)n2

+ 2(5]-a])(52-a2)n3]

But
~ R -
E[(ao-ao) 1 C]]
E[(3)-2,)°] = €y

E[(3,-2,)%) = ¢



E[(a,-a5)(a;-a,)] = Cyp = Cpy

El(ag-a,)(ap-2,)] = €4 = Cyy

I
o

EL(a)-a;)(ay-2,)] = Cp3 = Cqp

Thus we have‘

E[(}n-yn)z] = C]] + 2C]2n + (C22+2C13)n2
3 n4

+ 2C23n + C33

where, we remember that the matrix C was given by
C = oa(pTP)”!

Tge Cij

oq. Eq.

particularly interested in the values of E[(yn Yo ) ] at n

midpoint n = (N+1)/2.

noise variance og when we make a lTeast-squares f1t to obtain y

(13)

values will be functions of the total number of measurements, N, and
13 will tell us how much we are able to reduce the measurement

We will be
1, n = N, and the

We may also be interested in how accurately we can predict velocity and

acceleration in our above example. Observe that from Eq.

dy _dy dn _dy 1_

dt dn dt dn AT
and

gt¢ dndt - 42,02
From Eq. 12

= 27 (ay#23,n)

gté at? 2

1

(14)

(15)




Thus

Or

and likewise

the evaluation of P P.

E[(.;n'yn)z] > —]2' E[{(a-"a]) * 2(52'32)"}2]

AT

. z%;E[(él-a])z + 8(3p-a,)%n

+ 4(a;-a,)(a,-a,)n]

EL(y,~,)%] = Z%Z (Cpp + 4Cpqn + 4C, n%) (16)

EC(y,-5,)2] = o (7)

T

14243+, . . +N

12422432

3

13423433,

4 4

1442%43

5,555

17427437,

6,,6, .6

L i T

7 7

1

1842%438%

+37°4.,

+...*N

w2743

In the succeeding sections, the following equations have been used in

= 3 (1)
wl =N
= Mven) 2w

2
AN = %-(Nﬂ)2

o B (v (2n) (3NPeaN-1)

2

A = X ()2 (2nPeanen)
.de = T (N#1) (2N+1) (3N*46N>-301)
N = g; (N+1) 2 (an*+en3-N2-ane2)
8 = B (N1 (20) (SNB415NC o
-15N3-N249N-3)
5
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2. ZERO ORDER POLYNOMIAL, y = a,

Our first example is for a zero order polynomial.

=
1
P=|

(18)

(19)

(20)
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3. FIRST ORDER POLYNOMIAL, Yo =8y, tayn

In this case

i1 1
1 i
P=1|1 3 (21)
|1 N
i 2 [(nn)(zuﬂ) -3(N41) i
PP = —5—
MRS [ 3(NH) 6
; J
- 2 202 2
EC(y,~y,)] = m [(N+1)(2N+1)-6(N+1)n+6n°] (23)
202
= NTﬂITT (2N-1) forn=1,n=N (24)
. a:‘;/n for n = (N+1)/2 (25)

Note that n = (N+1)/2 yields the minimum value for E[(}n-yn)z]. That is,
our best value of 9n occurs at the midpoint of the fit interval.

2
5 120
EL(Y, 9,21 ——— (26)

AT™N(N®-1)

Notice that the total time, T, over which the fit is made is (N-1)aT.



4. SECOND ORDER POLYNOMIAL, y = a°+a]n+a2n2

[ 1
11 12
12 22!
2 |
p=11 3 3% (27)
<
#
1 N N

[ (N#1)(N42) (N243N42)  -6(N+1)(N+2) (2N41)  TO(N+1) (N+2)]

(PPt = 3, S6(NHT)(N+2) (2N41)  4(2N+1)(8N+11)  -60(N+1)
N(N“-1)(N"-4)
l 10(N+1) (N+2) -60(N+1) 60
(28)
2
b: 2 30q 2
EL(5,-v,)] = (V1) (N#2) (302 +342) (29)

N(N°-1) (N°-4)

S12(N+1 ) (N#2) (2N+1)n + 12(IN2+15N+7)n2 = 120(N+1)n3 + 60n%]

302 2
W%ﬂm (3N"-3N+2) forn=1,n=N (30)
302 2
= —--{}—-— (3N°-7) for n = (N+1)/2 (31)
4N(N“-4)

]202

[(2N+1) (8N+11)-60(N+1)n+60n°] (32)

> -
EL(7p-Yp)"] ATEN(N®-1) (N°-4)
1202 .

= E | (16N“-30N+11) forn=1,n =N (33)
ATEN(N®-1) (N°-4)

126°

"1?“1?11‘ for n = (N+1)/2 (34)

AT N(N"-1)
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Note that Eq. 34 is identical to its counterpart for the linear fit, Eq, 26.

2
7
200q

ATON(NZ-1) (N%-4)

:". . 2 -
EL(y,-y,)"] (35)
It is of interest to note that the maximum accuracy of 9n is not at
the midpoint of the fit interval. This can best be seen for N >> 1. Eq.
29 becomes

2
i 9
EL(5,-v,)2] = —% [N*-8N°n+28N2n2-a0Nn>+20n")
N
= fodroe- Pt -2 - PP p (36)
For % - %‘ =0 E[(&n-yn)z] = 1—% cs(zI (a maximum) (37)
For § - %= 1% E[(9n-yn)2] . 5% °<2; (a minimum) (38)



where

A

A

A

A

1

12

13

14

22

23

(P

5.

T

P)

THIRD ORDER POLYNOMIAL, y =
b1 g2 3]

1 2 22 3

1 3 3% 33

P:

' 2 3

L 1 N N N |
A
1 1 Ao

NN (N2-a) (N2-9) | A

8(N+1) (N+2) (N+3) (2N+1) (N2 +N+3)

Ayy = -20(N+1) (N+2) (N+3) (6N°+6N+5)
A3] = 120(N+1) (N+2) (N+3) (2N+1)
A4] = =T140(N+1) (N+2) (N+3)
= 200(6N*+2713+42N%+30N+11)
Agp = -300(N+1)(3N+2) (3N+5)

10

2 3
a *tan+a,n-+asn

14
24
34
44

(39)

(40)
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Ayq = Agp = 280(6N°+15N+11)
Agy = 360(2N+1)(9N413)

Mgy = Agg = -4200(N+1)

Agq = 2800

The accuracy of 9n is given by

2

E[(y. .-y )2] = ch— [(N+1)(N+2)(N+3)(2N+1)(N2+N+3)
n“n N(N%-1) (N°-4) (N°-9) |
-5(N+1) (N+2) (N+3) {SNZ+6N+5 )n+5( 42N +2130°+378N°+288N+91 }n?
S10(N+1) (7IN2+175N+96)n3+5( 286N2+525N+271 )n* (41)
-1050(N+1)n>+350n%]
802 3 .2
» mﬁ;‘z‘ﬂm (ZN -3N +7N-3) for n = ], r=N (42)
302 2

= ——d— (3N°-7)  for n = (N+1)/2 (43)

aN(N°-4)

Note that Eq. 43 is identical to its counterpart in the preceding section,
Eq. 31. In this case however, it is suggested that we have a minimum value
this time instead of a maximum value as before.

n



s [5(6N +27N"+42N
N(N-1)(N°-4)(N°-9)

EL (-5,

2

+30N+11)

-30(N+1) (3N+2) (3N+5)n+6 (150N>+315N+155)n’

-1260(N+1)n3+630n"]
For n=1and n =N
b s o 2000%/8T gk i
EC(y,-9,)] = 4 — (6N"-27N"+42N

N(N®-1) (N°-4) (N°-9)

For n = (N+1)/2
250%/aT2
q

A ¥ - 4 2
E[(y -y )] = - (3N7-18N +31
[3y-Tq) N(NZ-1) (N°-2) (N°-9) :

Acceleration error is given by

.. 14400l/aT
EL(y,-9,)] = ——— 75— [(2M1)(9N+13)
N(N“-1)(N"-4)(N"-9)
~70(N+1)n+70n2]
Forn=1and n =N
2, -4
144
O?Q(AT

E[(§n-9n)2] . (2N-1)(9N-13)

N(N°-1) (N°-4) (N°-9)

12

30N+11)

(44)

(45)

(46)

(47)

(48)



li ‘ For n = (N+1)/2
g 720g§/AT4
N(N°-1)(N°-4)

EL(F,-5,)%0 =

For ;jerk we have

100 8000§/AT5

’ Lo wi &
E -‘-" 8 -
( [0y Tp) ] N(N%-1) (N®-4) (N°-9)

13

(49)

(50)



Let n
results.

(—;RDER OF
FPOLYNOMIAL

EL(,5,)%)

! - ———
r

| & ..
[E[(yn-yn)zl
Lsny',,-"y'nﬁ

Let M = order of the polynomial fit.

our resuits to obtain the interesting

E[(yn-yn)zl

| EC(,-y,)?)

=N >>

6.

|

TABLE 1.

SUMMARY OF RESULTS FOR N LARGE

Then Table 1 summarizes the previously determined
Note that T = (N-1)AT=NaT.

SUMMARY OF RESULTS FOR n=N or n=]

1 2
402 ! 902
_l |
I L N
126%/72 I 1926212 E

N

72002/7

- e ]

|

equation for n =

= (M+])202/N

14

1 and n =

=
3
]602
N
1200:2”2 |
s |
2592002/T
100 8000§/T6 |
|
N
o

Then it appears that we may extrapclate

N.

(51)
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Also we note from Table 1,

when we go to the next higher order polynomial.
estimate at the end point of the fit interval,

polyncmial fit.

Now let n = (N+1)/2 >> 1.

results.

TABLE 2:

F?iﬁi”E'BF'""""

POLYNOMIAL

EL(y,-y,) 7]

!
EL(5, -5,)%]

| EL(F,-9,)2]

e e

EL(Y,-¥,)]

o
| o2
o

S S
N a
i

S B

SRS W

SUMWARY OF RESULTS FOR n = (N+1)/2
L S e g
N N N
120:/T ' 1202/72 7502/12
7200%/T 7200%/T
—— N
100 sooofl/r6
N

SO N

that there is a large degradation in yvelocity accuracy
Thus, when we desire a velocity
we should use the mi..imum order

Table 2 summarizes the previously determined

15



7. AN EXAMPLE

Let us make up a hypothetical example in which we let

2

¥ 1+ .1In

cq =]

Using a random number generator, we can produce a table of noisy measurements,
* = 1
Yp = ¥, ¢ q,, as shown in Table 3.

TABLE 3. LEAST-SQUARES FIT OF SECOND ORDER POLYNOMIAL

et g o - S
N [ Y ,[q RS LB 3 T i) F yy_ |
1L 1 | 1403 | 2.503 1.465 1.038 365
2 l 1.4 -3 | 1.046 1.790 748 390
300 1.9 | -.63 1.266 2.282 -1.016 382
¢ 26 16w | 3297 2.941 356 341
5 | 3.5 | -.686 | 2.814 3.768 -.954 268
6 | 4.6 | 1.375 | 5.975 4.762 1.213 162
7 ' 5.9 | .78 | 6.685 5.924 761 024
8 7.4 | -.963 | 6.437 7.254 -.817 | -.186
9 1 9.1 | .75 | 9.859 8.751 1158 | -.349
10 o -1.782 i 9.218 10.415 1197 | -.585
L T T LS O T ... 00 M. 00

We will fit
2

. i 4 An+a
Yy =3, t+ay an

to the noisy y* data, using the equations of Section 4.

16



From Eq. 27

¢ 9
o
§ 5 T TR T SO TS TR TR 1
ki Pl=]1 2 3 4 s 6 7 8 9 10 1!
1 4 9 16 25 36 49 64 81 100 IZIJ
.i h Using the values of y* in Table 3, we get
[61.600 |
|
) pTy =!488.203 |
4328.695j
Eq. 28 gives us the value of (PTP)'] for N = 11 of
[ 5174 -1794 130]
}
(PTP)™! = s |-1794 759 -60
| [ 130 -60 5
The estimated state vector is given by
T ~- =
a, 1.3083 + 1.1
X= | 51! = () TPy = | L0732 + .42
a .08375 + .034
| 2] ! S
i where the accuracy estimates were obtained by taking the square roots of the
i ¢ diagonal elements of the state error covariance matrix,

17
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¢ = o2(P'p)”"
q
2
=1
’q

The residuals are now estimated from

- 2
_y;-yn = y; - 1.3083 - .0732n - ,08375n

and their values are shov.in in Table 3. Note that

11
2 (yx - y,) = .00]
very commendable.
If we have a large number of measurements, 9n will approach Iy making
y¥ -y, an estimate of q. Thus

11 )
2 =J}—1 3 b=t =

a very good estimate for just 11 points, only off by 9% from the true value of
1. While éq appears to be quite accurate, the individual values of &n = y;-}n
are not nearly so accurate., It is desirable to have an equation to express
the accuracy of estimating % in the above manner, since it is frequently
used to obtain the noise statistics for measurement data. Perhaps such a
relationship will be found with the desirable accuracy.

The last column of Table 3 shows ;-y, the error in the estimate of ;.
As predicted by our previously derived equations, y is more accurate near the
middle of the fit interval than it is near the end points of the interval., That
is, from Eqs. 30 and 31

18
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T e L | L T N 1 0 AN LR R = ¢ e S TR

. I . .
\/I(y]-y]) ]l= \ﬁ[(y”-y”)z]= + .76

\ms-)’6)2] = 1 .46

8. CONCLUSTONS

One final thought to close this report., A Tot of data are needed to
reduce the measurement error standard deviation by a significant amount,
say by a factor of 10. In this example with 11 points of data, we saw
that at the end points, cq was reduced by a factor of .76, not much of
a reduction., To get a factor of 10 reduction would have required about
900 data points, a lot of points.

NASA-JSC
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