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PREFACE

The	 material	 included	 in	 this	 internal	 note	 was	 developed
by	 'William	 M.	 Lear	 of	 TRW	 under	 contract	 with	 the	 Mathematical

() Physics	 branch	 (MP6)	 at	 the	 Johnson	 Space	 Center	 (JSC).	 The
material	 was	 presented	 to	 MPb	 in	 the	 form	 of	 a	 TRW	 publication,
number	 30759-6003-TU-00,	 dated	 June	 1,	 1977.	 The	 material	 was
prepared	 for	 JSC	 publication	 by	 Paul	 H.	 Mitchell	 of	 the	 MPb,_
and	 the	 text	 is	 taken	 from	 the	 referenced	 TRW	 document	 in	 its
entirety,	 with	 the	 following	 changes.

(a)	 The	 coefficient	 of	 n	 in	 equation	 13	 (page	 4)	 was
changed	 from	 (C 22	 +	 2C12)	 to	 (CG 2	+	 2C 1	to	 be	 consistent	 withs, )
the	 expansion	 of	 equation	 12	 and	 the	 following	 d°finitions.

(b)	 First	 person	 pronouns	 were	 chanced	 to	 third	 person
pronouns	 on	 paees	 11	 and	 18.

• (c)	 The	 co^^cluding_	 remarks	 were	 labeled	 as	 "8.	 CONCLUSIONS"
on	 page	 19.
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LEAST SQUARES POLYNOMIAL FITS AND THEIR ACCURACY

'	 By William M. Lear

TRW Systems Group

j	 1.	 INTRODUCTION

^U

0.	
Suppose we are given a table of data as	 nn t Y*

shown at the right. And, suppose we desire

	

tl ylto make a least-squares polynomial fit to 	
1

this data. We will assume that t i -t i-1 = oT	 t21 y2

•

	

	 is a constant. That is, we have evenly 	 3 I t3; y3

spaced tabular values of y*. Note that

f	 t- t 1	 f	 I	 ^'	 ^

n -	 o	 + 1T 	 (1	 N	 JNyN

We will assume that n is the independent variable in what follows. To make t

the independent variable we use Eq. 1 to substitute for n.

For the sake of explanation, let us assume that y* is given by the second

order polynomial

	

	 I
I

i

yn = a o + a1  + a 2n 2 + q n	(2)

where q n is a zero-mean, timewise uncorrelated random variable (noi_Q) wioose 	
j

variance is aq, independent of n. In order to predict future measurements,

we need to know a o , a l , and a2' Thus our state vector is

1

l a
,

o

x = I al	 (3)

L a 2 J

Using	 to indicate estimated value, we have for our estimated measurement

2	y n = a  + a 
1 
n + a 

2 
n 	 (4)



0

u

The measurement partial derivative matrix, P = D , /ax, will be

I	 1	 1	 1211

	

1	 2	 22 i
i

	

P = i 1	 3	 32 i	 (5)

i I

I

	

L 1	 N	 N2

Note that we have a linear measurements problem,

Y = Px	 (6)

That is, the estimated measurement vector is a linear combination of the

state vector elements.

The least-squares solution for x is given by

W = (pTp)-1 P T	 (7)

x = x + W (YL - Y)	 (8)

C = Q 22 (P T P) -1	 (9)

where Eq. 7 is the equation for the residual weighting matrix, and Eq. 9

is the equation for-the state error covariance matrix, C = E[(x-x)(z-x)T].

Eq. 8 for x is iterated until converged. But from Eq. 6 and Eq. 7, Eq. 8

becomes

lip

2



x = x + (PTP) -1 PT (y* - Px)

= x + (PTP) -1 PTe - (PTP)-1PTPx

i
0

01 P

Ir	 •

)
4

or

x - (p
TP) -1 P e	

(10)C__ -which requi res no iteration to find x, and is the least-squares equation

for solving for the state vector when y = Px. In the following sections we

will give the analytic expressions for (P TP)
-1
 for various orders of polynom-

ials.

Now * is iven bi n	g	 y

Yn = Yn + q n	 (11)

yn = a o + a 
1 
n + 

a2 n2

where yn is the error free value of the measurement. Suppose we wish to know

the accurjcy of our estimate of y .
n	 g

w3

i

w
But

E[(Yn -yn ) 2 ] = E[{(ao -ao ) + (a 1 -a 1 )n +

= E[(ao -a o ) 2 + (al-al)2n2

+ 2(a
0
-a

0 )( a 1 - a 1 ) n + 2(a

+ 2(a1-al)(a2-a2)n3]

E[(ao-ao)2]	
C11

E[(a I
-a 1 )2] 

= C22

E[(a 2
-a 2 )2] 

= C33

3

(a2-a2)n2I ]
	

(12)

+ (a2-a2)2n4

-a0)(a2-a2)n2



P

t)
E[(ao-ao)(al-al)] = C 12	 C21

E [( a o - a o )( a 2 - a 2 )] = C 13	 C31

E [( a 1 - a I )( a 2 - a 2 )] = C23	 C32

Thus we have

E [(Yn -Yn ) 2 1 = C11 + 2C 12n + (C 22 +2C 13 )n 2	(13)

+ 2C23n 3 + C33n4

where, we remember that the matrix C was given by

C = 0q(PTP)-1

The C if values will be functions of the total number of measurements, N, and

aq. Eq. 13 will tell us how much we are able to reduce the measurement

noise variance aq when we make a least-squares fit to obtain y n . We will be

particularly interested in the values of E[(y n -yn ) 2 ] at n = 1, n = N, and the

midpoint n = (N+1)/2.

We may also be interested in how accurately we can predict velocity and

acceleration in our above example. Observe that from Eq. 1

!^X = ilydn = dy 1
	dt	 do dt do oT

	

2	 2

^ d it 2 12
	dt	 do AT

and

From Eq. 12

d TT(a1+2a2n)

d2V_2 [ 2a2
dt	 AT

4

(14)

(15)

iJ
y	 —

1



Thus

a

i	 I

•	 !

E[(Yn-i ) 2 ] -- -7 
E[{(a l -a l ) + 2(a 2 -a 2 )n)2 ]AT

eE[(al-al)2 + 4(52-a2)2n2

e^ )
+ 4(al-a1)(a2-a2)n]

Or

E[(Yn-yn)2] —^ (C22 + 4C23
  + 4C33n2)

eT

and likewise

E[(Yn-Yn)2]	
4

eT4 
C33	 (17)

In the succeeding sections, the following equations have been used in

the evaluation of PTP.

1+2+3+...+N = 2 (N+1)

1 2
+2 2+32

+...+N
2
 = 6(N+1)(2N+1)

1 3+23+3 3+...4N3 = 22 (N+l)2

1 4+24+34+...+N4 = 30 (N+1)(2N+;)(3N2+3N-1)

1 5+2 5+35+...+N5 = T-
2
2  (N+l)2(2N2+2N-1)

1 6
+26+36

+... +N° = ^-(N+1)(2N+1)(3N4+6N3-3N+1)

2
1 7+2 7+37+...+N 7 = N(N+l)2(3N4+6N3-N2-4N+2)

15+2g
+3°+...+Nt3 = 90 (N+1)(2N+1)(5N6+15N6+5N4

-15N3-N2+9N-3)

5

(16)

.
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2. ZERO ORDER POLYNOMIAL, yn = a 

Our first example is for a zero order polynomial.

0
	 11

0,	 1
	 i

P =	 1	 (18)

(PTP)-1 = N
	

(19)

E[( yn -yn ) 2 ] = Qq/N	 (20)

1	 ..

6

3
1^

I	 ti.	 i
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I

3. FIRST ORDER POLYNOMIAL, ;n = a 	 + a 1 n

r

In this case

^ r l	 1 ^
`s

I1	 2 1 1
U P= 1	 3 (21)	 I

L1
	 N

((N+1)(2N+1)	 -3(N+1)
T	 -1	 _

(P P) 2
(22)

N(N	 -1) [_3(N+l) 	 6

2
E [ (yn -yn )

202	 2
J =	 2	

[(N+1)(2N+1)-6(N+1)n+6n	 ] (23)

N(N	 -1)

202.
N N+	 (2N-1)	 for n = 1, n = N (24)

= aq/N	 for n =	 (N+1)/2 (25)

Note that n = (N+1)/2 yields the minimum value for E[(yn-yn)2].	 That is,

out, best value of yn occurs at the midpoint of the fit interval.
1

•
12a2

E[(yn-y ) 2 ]= —2--	 --
AT N(N -1)

(26)	 I

Notice that the total time, T, over which the fit is made is (N-1)AT.

O
7



4. SECOND ORDER P

I

P = 1

DLYNOMIAL, y  = ao+aln+a2n2

1	 1	 121

1	 2	 22 
1

1	 3	 3 2	(27)

1	 N	 N2I

L.^

-1

\'

k,-)

1	 ^	 I

r (N+1)(N+2)(3N2+3N+2)	 -6(N+1)(N+2)(2N+1)	 10(N+1)(N+2)I

(PTP) -1 =	 3
N(N -1)(N -4)	

I -6(N+1)(N+2)(2N+1) 	 4(2N+1)(8N+11)	 -60(N+1)

l10(N+1)(N+2)	 -60(N+1)	 60	 J

(28)

3a2

E[(yn-Yn)2][(N+1)(N+2)(3N2+3N+2)	 (29)
N(N -1)(N -4)

-12(N+.)(N+2)(2N+1)n + 12(7N 2+15N+7)n 2 - 120(N+1)n 3 + 60n4]

3a2

N(N+	 N+	
(3N 2 -3N+2) for n = 1, n = N	 (30)

3a2
=-- (3N2-7) for n = (N+1)/2	 (31)

4N(N -4)

12x2

E [(Y -Y ) 2 ^ _ --.	 --- [(2N+1)(8N+11)--60(N+1)n+60n 2 ^	 (32)n n	
AT`N(N -1)(N -4)

1?a2

	

-^---' q	 — (16N 2 -30N+11) for n = 1, n = N	 (33)
AT N(N -1)(N -4)

12x2
for n = (N+1)/2	 (34)

A	 N -1 )

8
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ll w. •	 ,,

Note that Eq.	 34 is identical	 to its counterpart for the linear fit,	 Eq,	 26.

E [(.Y	 -Y	 ) 2 ]n	 n

720a2

oT
(35)

N(N	 -1)(N	 -4)

It is of interest to note that the maximum accuracy of y  is not at

the midpoint of the

^-"

fit	 interval. This can best be seen for N >>	 1.	 Eq.

29 becomes

.

E [(yn-Yn ) 2 ] _

9a 2
—^ [N4-8N3n
N

+28N2n2-40Nn3+20n4]

- 9 a2[20(n
1 ) 4

- 	n
	 _	 1 ) 2	 1 ]2(
	 +^7

(36)

FI	 q	 N N

For 
n 

-	 = 0 E[(yn-Yn)2]
4N 

a q	(a maximum) (37)

ForN 	 + 20 E[(yn-yd = ^ aq	 (a minimum) (38)

t

0
01 F

a a

w



A ll A l2 A 13 A141

A21 A22 A23 A24^

A31 A 32 A33 A34

A41 A42 A43 A44

(PTP)-1 =
	 1	 1

N(N -1)(N -4)(N -9)
(40)

1	 e

1

U
0.

5. THIRD ORDER POLYNOMIAL,

	

1	 1	 12

	

1	 2	 22

	

I 1	 3	 32
P=

.2

	

1	 N	 N

y n = ac+aln+a2n2+a3n3

13 I

23

33

I

N3

i.

(39)	 ...

where

A 11 = 8(N+1)(N+2)(N+3)(2N+I)(N2+N+3)

A l2 = A21 = -20(N+1)(N+2)(N+3)(6N2+6N+5)

A13 = A31 = 120(Pl+1)(N+2)(N+3)(2N+1)

A14 + A41 = -140(N+1)(N+2)(N+3)

A22 = 200(6N4+27N3+42N2+30N+11)

A23 = A
32 = -300(N+l)(3N+2)(3N+5)

10
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a^

A24 = A
42 = 280(6N2+15N+11)

A 33 = 360(2K,-1)(9N+13)

A34 = A
43 = -4200(N+1)

A44 = 2800

The accuracy of Yn is given by

802

E[(Yn-Yn)2]2---q--2	 — 2 — [(N+1)(N+2)(Nt3)(2N+1)(N2+N+3)
N(N -1)(N -4)(N -9)

-5(N+l)(N+2)(N+3); iN2+6N+5)n+5(42N4+213N3+378N2+288N+91,n2

-10(N+1)(71N 2+175N+96)n 3+5(246N 2+525N+271)n 4	(41)

-1050(N+l)n5+350n6]

802

N N+	 +	 N+3 RN
3-3N2+7N-3)	 for n = 1, r = N	 (42)

302
_ ---- q	 (3N 2 -7)	 for n = (N+1)/2	 (43)

4N(N -4)

Note that Eq. 43 is identical to its counterpart in the preceding section,

Eq. 31. In this case however, it is suggested that we have a minimum value

this time instead of a maximum value as before.

r-

4	 11x

^i 1



IL

I

V

U ^i
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i

01

40x2 /AT 2
E[(yn -yn ) 2 ]

	

	 [5(6N4+27N3+42N2+30N+11)

N(N -1)(N -4)(N -1)

	

-30(N+1)(3N+2)(3N+5)n+6(150N 2 +315N+155)n 2	(44)

-1260(N+1)n3+630n4]

For n = 1 and n=N

2	 20002 /AT 2	 4	 3	 2

tr(y n -yn ) J	
— (6N -27N +42N -30N+11)	 (45)

N(N -1)(N -4)(N -9)

For n = (N+l)/2

25o2 /AT 2

E[(.Yn-.yn)2J = -	 (3N4-18tJ2+31 )	 (46)
N(N -1)(N -4)(N -9)

Acceleration error is given by

1440Q 2 /AT 4

E [(. n -. n ) 2 J = 2 -- 2
— [(2N+1)(9N+13)	 (47)

N(N -1)(N -4)(N -9)

-70(N+1)n+70n21

For n = 1 and n=N

1440o`/AT4

E [( yn -yn ) 2 J =(2N-1)(9N-13)	 (48)
N(N -1)(N -4)(N -9)



For n = (N+1)/2

72002 AT4
E[(:^On)2J

N(N -1)(N -4)

For ;perk we have
t

2	 100 80002/AT6

n o n	
N(N -1)(N -4)(N -9)

w

1

(49)

(50)

. I

13
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6. SUMMARY OF RESULTS FOR N LARGE

Let n = N >> 1. Then Table 1 summarizes the previously determined

results. Note that T = (N-I)AT = NAT.

TABLE 1. SUMMARY OF RESULTS FOR n = iv or n=1

ORDER OF --- -

	 - 0

	

1	 -	 2— -	 -	 3	 - --

POLYNOMIAL

!	 a2	 4o2	 912	 16c2

	

E[(Yn -Yn ) 2 J 	 j N	
i ^_	 N	 i	 N
t-	 - -	

12 
o2/T2	

--192a2/T2	

i 
1200x2/12 -

	

i E[ (Yn -y n )?J	 N	 Nq	 -g
i

	

721)a2q/T4	 25920c2/T4
	I E[lYn- yn)-J 	 ! 	 N

100 800aq/T6	 I

	

E[(yn-Yn )2J 	 l - -- N - -----1

J	 -^

Let M = order of the polynomial fit. Then it appears that we may extrapolate

our resuits to obtain the interesting equation for n = 1 and n = N.

Ê [(Yn -Yn ) 2 J = (M+1) 2a 2/N	 (51)

14

i
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Also we note from Table l, that there is a large degradation in velocity accuracy

~~`~^	 when we go to the next higher order polynomial ' Thus, when we desire a velocity	 ^

estimate at the end point of the fit interval, we should use the mi..|mum order 	 <
'

polynomial fit.

Now let n = (N+l\/2 '^ l ' Table 2 summarizes the previously determined^	 ^	 i
--	 results.	 |

 TABLE 2:	
^

_
^ 

90	 9C7

E[(--	
2	 '	 '	 '^` /T	 12- ' '	 '

^E[/y	 ^ > l	 |
| '' n - n' -	 |	 m	 n	 N.
|	 '

'	 | 
^	 |	 /2	 ^

^	 2	 |	 ^	
/ "v	 !

/E[/y' \ ln'n' -	 m
--__

`y -y '^n n	 m

w

w

lS

~~~~^~^~^ «



7. AN EXAMPLE

1

Let us make up a hypothetical example in which we let

Yn = 1	 +	 .1n2

n

Cy	 =

q
1

Using a random number generator, we can produce a table of noisy measurements,

Yn = yn + qn, as
shown in	 Table	 3. {

TABLE 3.	 LEAST-SQUARES FIT OF SECOND ORDER POLYNOMIAL

n y- q Y* y Y*-y y-Y--	 i- ...
1 1.1	 ' 1.403 2.503 1.465 1.038 .365

2 1.4 -.354 1.046 1.790 i -.744 .390

3 1.9 -.634 1.266 2.282 -1.016 .382

4 2.6 .697 3.297 I	 2.941 .356 .341.

5 3.5 -.686 1	 2.814 3.763 i -.954 .268

6 4.6 1.375 5.975 4.762 i 1.213 .162 i
E

7 5.9 .785 I	 6.685 5.924	 I .761 .024

8 I	 7.4 -.963 j	 6.437 I	 7.254 -.817 -.146

9 9.1 .759 9.859 I	 8.751 1.08 -.349

110 11 -1.782 9.218 10.415 -1.197 -.585

I',
13.1 -.600 L12.500 12.247

(

253 -.853

We will	 fit

Yn = a 	 + a 
1 
n + a2n2

to the noisy y* data,	 using the equations of Section 4.

16
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II I PJWRIPP-.^

U

From Eq. 27

r 1	 1	 1	 1	 1	 1	 1	 1	 1	 11

PT =	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11

L 1	 4	 9	 16	 25	 36	 49	 64	 81	 100	 121
J

Using the values of y* in Table 3, we get

x61.500 1
i

PTe =1488.203

4328.6951

Eq. 28 gives us the value of (P T P) -1 for N = 11 of

5174	 -1794	 1301

(PT P) -1 _ 1	
I-1794	 759	 -60

94 

130	 -60	 5

The estimated state vector is given by

- 0 1	 1.3083 + 1.1

i 
X = i a l ! = (PTP)

-1 PTe =	 0732 + .42

a
2J	

.08375 + .034

L 

where the accuracy estimates were obtained by taking the square roots of the

diagonal elements of the state error covariance matrix,

17
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C = a2(PTP)-1

C1 	 = 1
q

The re;Iduals are now estimated from
	

C. >
y*-y = y* - 1.3083 - .0732n - .08375n2
n n	 n

and their values are shov;n in Table 3. Note that 	 S

(yn . yn ) 	 .001

n=i

very commendable.

If we have a large number of measurements, y n will approach yn , making

yn - y
n an estimate of q. Thus

1	 11	 2
CTq =	 rr 

(Y,* - yn )	 _ .9111 n4

a very good estimate for just 11 points, only off by 9% from the true value of

1. While aq appears to be quite accurate, the individual values of qn 	 Y*-yn

are not nearly so accurate. It is desirable to have an equation to express

the accuracy of estimating a  in the above manner, since it is frequently

used to obtain the noise statistics for measurement data. Perhaps such a

relationship will be found with the desirable accuracy.

The last column of Table 3 shows y-y, the error in the estimate of y.

As predicted by our previously derived equations, y is more accurate near the

middle of the fit interval than it is near the end points of the interval. That	 I

is, from Eqs. 30 and 31

18
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E^( y l -y l ) 2 ] =	 EL(;
	 _Y]1)2]=
	 +	 .76

^/EL(y 6 -y6 ) z ] _	 + .46	 3

8.	 CONCLU:?ONS

One final	 thought to close this report. 	 A lot of data are needed to

reduce the measurement error standard deviation by a significant amount,

say by a factor of 10. In this example with 	 11 points	 of data, we	 saw

that at the end points, a  was reduced by a factor of .76, not much of

a reduction.	 To get a factor of 10 reduction would have required about

900 data points, a	 lot of points.

Y

0
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