
NASA Contractor Report 145110 

(N1ASI-CR- 1451 10) ACOUSfOEASTICITY N77-28908 
jPrinceton Univ., N. J.) 99 p HC 205/MF A01 

CSCL 20A 
Unclas 

__ 40720-G3/71 

ACOUSTOELASTICITY.
 

E.. H. DOWELL
 

PRINCETON UNIVERSITY
 

GRANT NSG-1253
 
July 1977
 

NASA 
National Aeronautics and
 
Space Administration
 

Langley Research Center
 
Hampton,Virginia 23665
 



-i-

ACOUSTOELASTICITY
 

-E.H. Dowell
 

Princeton University
 

Page

1
 

INTRODUCTION
I 

2
II HELIOLTZ RESONATOR 


7III COUPLED FLUID-STRUCTURAL MOTION OF AN"ACOUSTIC CAVITY WITH 

A FLEXIBLE AND/OR ABSORBING WALL 

17IV A VARIATioNAL FORMULATION 


V ACOUSTIC NATURAL MODES IN MULTIPLY CONNECTED CAVITIES 24
 

VI FORCED RESPONSE OF A CAVITY WITH A FLEXIBLE AND/OR ABSORBING 31
 

WALL
 

VII NUMERICAL RESULTS AND COMPARISONS WITH EXPERIMENT 46
 

58
VIII CONCLUDING REMARKS 


60
REFERENCES 


APPENDIX A ACOUSTIC NORMAL MODES OF A CAVITY WITH
 

63
RIGID WALLS 


APPENDIX B STANDING WAVES *INMULTIPLY CONNECTED
 

CAVITIES USING A GREEN'S FUNCTION APPROACH 68
 

71
FIGURES 




- ii -

LIST OF SYMBOLS 

A - wall area 

a - cavity length; panel length 

a n - velocity potential generalized coordinate; see equation 111-26 

b - cavity width; panel width 

Cnr - see equation III- 8A 

c - ambient (equilibrium) speed of sound 

d -,cavity depth 

F - nth acoustic natural mode 
n 

IA - acoustic actibn integral 

Ip - plate action integral 

Lnm - see equation 111-14 

- neck length of Helmholtz resonator 

N A nth acoustic generalized mass; see equation III-5 

m - structural mass/area 

n - normal to surface 

P n - nth acoustic modal pressure; see equation III-7 

p - pressure 

Qn - mth wall generalized force; see equation 111-12 

qm - th wall modal coordinate; see equation-III-11 

Mm - nth structural generalized mass; see equation 111-18 

TA - acoustic kinetic energy 

Tp - kinetic energy of plate 

t - time 
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U 
S- -fluidparticle displacement vector
 

VA - acoustic potential energy, 

VP - strain energy of plate 

V - volume 

W - work 

W - wall amplitude 

W- nth acoustic mode wall deflection;,see equation 111-7 

w - wall deflection 

xPy&z - cartesian coordinates
 

z - impedance
 

C - displacement of fluid 

* - velocity-potential 

y - ratio of specific heats 

A - see equation VI-33 

: th  h(structural) wall natural mode
 

S- density
 

4m 
th­

- m h structural mode (critical) damping ratio 

c 
n 

th 
- n acoustic cavity mode Ccritical) damping ratio 

W- frequency 

,EA 
m.m - see equation VI-33 

Subscripts 

o - equilibrium 

- perturbation 
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A - absorbent wall; acoustic
 

P - flexible wall
 

H - Helmholtz resonator
 

m,n,rs - modal numbers
 

.A - rigid wall
 

Superscripts
 

A - acoustic 

a,bc - cavity a,b,c, respectively 

E - external 

- acoustic cavity
 

* - complementary
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I INTRODUCTION
 

We consider internal sound fields, i.e. sound or pressure variations
 

inside of bounded enclosures. We proceed from the simplest geometry to
 

the more complex. Specifically the interaction between the (acoustic)
 

sound pressure field and the (elastic)flexible wall of an enclosure
 

will be considered. One might think of this as the.field of "acoustoe­

lasticity". A good introduction to this subject is given in "Sound,
 

1Structures and their Interaction" by Junger and Felt . Also the author
 

has briefly discussed this subject in his book, "Aeroelasticity of Plates
 

and Shells",2.
 

From the point of view of applications, such problems frecuently 

arise when the vibrating walls of a transportation vehicle induce a
 

significant internal sound field. The walls therfselves may be excited
 

by external fluid flows. Cabin noise in various flight vehicles and
 

the internal sound field in an automobile are representative examples.
 

The first physical model to be considered is a simple one; but one
 

which is famous in the acoustic literature.
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II HELM{OLTZ RESONATOR
 

The reader may also wish to consult Kinsler & Frey, Fundamentals
 
.3
 

of Acoustics, pp. 187-207, on this topic...
 

Consider a "small" volume (any linear dimension small compared to
 

the acoustic wavelength) so that we may consider all properties constant
 

within the volume. For example, consider a box with one vibrating iall
 

i 

We wish to relate the wall motion to the cavity -pressure change and 3ompute 

the coupled structural-acoustic natural frequency.
 

From the isentropic gas law
 

pk PT (1) 

and conservation of mass 

pV - constant (2) 

Consider small changes denoted by ( ) from an equilibrium con­

dition denoted by 00. 
P 00o+ P
 

p = p0 + p 

v -V 0 + (3) 
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Substituting (3)into (1)and (2), and linearizing in ( ). 

.	 (4)
 
p0 
 PO
 

0 	 + V 0 (S) 
PO V 

Combining (3)and (4)
 

p -Y	V 
V° (6) 

Now
 

Vo 	 Ad where A is wall area 

V 	 f f wdxdy
 

Thus
 

P- -Y ff wdxdy 	 (7) 
PO 
 Ad
 

This 	is essentially the "Helmholtz resonator" approximation. The
 

equation of motion of the wall is thus
 

m 	a - -2. ff wdxdy (8) 

We have ignored, the stiffness of the wall (which is valid for large
 

acoastical stiffness, e.g., small depths) and also ignored acoustical
 

inertia (which is valid for low frequencies, e.g., large wavelengths).
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One can -approximately solve (S)using Galerkin's method.
 

Assume
 

wsif--lr 	 (9) 

TXX A -i 	 ab 

Substitute above into .(8), multiply by sin M sin and integrate 
- a b 

over the plate area. The result is
 

d2W N 64 (20) 
U a pio 0 0-r 

Substituting VW a i Wt 	 we may compute .the natural frequency as 

2po 64 

Now .the problei we have just analyzed is not the one that Helmholtz 

analyzed. Helmholtz considered a bottle with a neck as in the follow­

ings sketch:
 

Denote by C the displacement of the fluid in the neck of the bottle. 

This fluid is considered incompressible and is treated.as a rigid-body. 

The equation of motion is 

http:treated.as


p Ad [290 Al]A 	 J12) 

The natural frequency is
 

y p A
 
2 	 (13)
 

0 Po 

2
c A

0
 

Vt 
0 

I­

It-is this problem which is usually termed the "Helmholtz resonator".
 

One can also consider the problem of an applied external pressure,
 

E,
 
p , acting on the neck. The equation of motion.is
 

Po I d 	 p0A + pE (14)
 
V
 

0 

For the particular case of simple harmonic motion where
 

ei Wt
=
pE 


one may obtain from (14),
 

T a
 

Thus an "impedance" may be defined as
 

http:motion.is
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+ Y p° ' A z H -t = --- = (15)
k +Y P0 .A 

- iwg V001W

=
where iwCg velocity amplitude and z is the impedance of the Helmholtz
 

resonator.
 

The internal cavity pressure, pC can be computed from the above 

for a sinusoidal external pressure as 

-1c
 
- a 1 (16)


pP 0tco2V -1 

or 1 

A, c0 2 

A similar expression can be obtained for the membrane example 

first considered. The significance of (16) for our purposes is that
 

it shows that for
 

AV .u2 <'2 then >1I 

Hence for low frequency excitations the internal cavity pressure 

will exceed the external pressure level. 

It is emphasized that the perturbation pressure is assumed not to
 

vary within the volume in this model. This is reasonable so long as the
 
acouticwar'lenthk=co 27 

acoustic wavlength, X - C , is much larger than any characteristic 

dimension of the volume. Also the fluid properties are assumed not to
 

vary within the neck.
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III COUPLED FLUID-STRUCTURAL MOTION OF ANACOUSTIC.CAVITY
 

WITH A FLEXIBLE AND/OR ABSORBING WALL.-


We consider again the enclosed vQlume which was considered in
 

connection with the Helmholtz resonator problem.
 

A direct and concise derivation of the acoustic pressure in a
 

closed cavity due to arbitrary motion of the flexible cavity walls
 

will be given. The pressure is expanded in terms of the normal modes
 

of the rigid-walled cavity. The result, which is valid for any cavity
 

geometry, is given in the form of-a :set of linear ordinary differential
 

equations for the response of each normal mode. For the sake of
 

completeness the equations of motion of the flexible wall are also
 

derived in terms of structural normal modes and-hence the complete
 

coupled fluid-structural equations of motion are given.
 

Most studies of the acoustic pressure within a cavity due to
 

6
5'
motion of a flexible wall have considered only simple harmonic motion,
4'


although implicitly the more general case of arbitrary motion can be handled
 

via the Fourier integral theorem. However, a very simple result for
 

arbitrary wall motions can be obtained directly from the acoustic
 

-equations using Green's Theorem without resorting to transform methods.
 

The end result of the -present method is.an expansion for the acoustic
 

pressure within the cavity due to motion of the walls, in terms of the
 

normal modes of the cavity with its walls assumed to'be rigid. The
 

derivation applies equally to all cavity geometries, and as such is a
 

generalization of the normal mode expansion (or "guided wave" expansion,
 



in the trmlnology used there) derived less directly and for rect-.
 

angular cavities only in [7].
 

Acoustical Problem
 

Let -the cavity occupy a volume V, and be surrounded by a-wall surface 

A, of which the portion A. is flexible, while the remainder A is rigid. 

If the fluid within the cavity is at rest prior to motion of the wail, 

the fluid ,pressurep satisfies the familiar wave equation, and associated 

boumdary condition: 

Vp - o 2 
Cl) 

P o n Ap C2)
 

-0 onA
 

In these equations p and c are the equilibrium fluid density and acoustic 

velocity-within the cavity, and w is the displacement of the flexible 

portion of the wall -inthe normal direction n (positive outward). 

tquation (1)has normal mode solutions Fne
iWt , n = 0,1,2,... 

with the following properties 

= ) (3) 

n. 0 on A _C) 
an 

*This is the perturbation pressure p, of course. The is dropped
 

subsequently for convenience.
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dv  
fvF o r' n - (s) 

A- r=n
 

A. thW is the n acoustical natural frequency and F its related natural 

mode. Superscript A is to distinguish wnA and M A from their structural
 

counterparts to be discussed in a later section.
 

Note that equation (3)-has the solutidn WA po j AA
 

other frequencies wnA , n = 1,2,... are positive and non-zero, however. 

A brief review of acoustical normal mode theory is given in Appendix A. 

The wave equation (1) can be transformed into a set of ordinary 

differential equations in time-by-using Green's Theorem in the form: 

ap
 

-VPV
F PFvp)dv = fA n~j-F 4)ThdA (6) 

By defining
 

P f
fpF dv 
n PnV n V 

(7> 

W I f wF dA 

and making use of the fact that p and Fm satisfy equations (1) and (3), 

and boundary conditions (2)and (4), the following ordinary differential 

equations for the acoustic modes are obtained from (6): 
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A2 ()*P -ap AFw n nn n V 

A dot (*)denotes differentiation with respect to time. The quanti­

--ties Pm(t) are the coefficients in an acoustical normal mode expansion
 

for the pressure:
 

. = Pn Fn (9)*
PoCO n MA 

n 

Since the normal modes Fn satisfy the homogeneous boundary condition
 

(4)on the entire wall surface A, the normal derivative of expression
 

(9)does not converge uniformly on the flexible portion A. of the wall 

surface. Expression (9)is suitable, however, for calculating the 

pressure itself throughout the cavity and everywhere on the wall 

surface, including the flexible portion. 

When one of the walls of the. cavity is highly absorbent it is 

usual to model it through a simple point-impedance model where it is
 

assumed that
 

P = ZA "A on A (10) 

where the A subscript is used to refer to the absorbent wall
 

characteristics, e.g.
 

wA - absorbent wall displacement
 

zA - absorbent wall impedance.
 

*Note that for n =0, we have the Helmholtz resonator result,.i.e.
 

F0 = 1
 

- fwdA P0 - WoAF
 

P' 2 fwdA~ Oc02o pco 0 V
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The .boundary condition
 

_pOWA (2) 

-on 
AA
 

still applies, of course. Using (10), (2).may be written for the ab­

sorbing wall as
 

zA on AA
 

Using the above in (6) along with (9), (8) becomes
 

•.A2 

.. 

P + pn +AApc
a 

P 
r 

Cnr 
7r 

- A
V­

1n (8A) 

S rr 
where Cn -f nrdA 

over AA -
Ta 

AA 

The effect of an absorbent wall is to couple all of the (rigid
 

wall) acoustic modes. Of course, as we will see explicitly in what
 

follows, the flexible wall also couples all of the acoustic modes
 

as well. 

Structural Modal Expansion 

In many technical applications the flexible portion A. of the 

cavity wallinay be a structural element, such as a plate or shell.
 

In such cases the wall deflection w is often expressed as a series
 

of the form 

w - Z %'m (11) 
m 
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in which the modal functions '' are defined over the region A, their
 

properties being determined by'structural considerations, Using (11)
 

a set of structural modal equations describing the wall motion are
 

derived. As will be shown subsequently, in these equations the
 

cavity acoustic pressure, p, appears in the form of generalized
 

forces
 

%EJB VmP dA (12) 

First, however, the quantities W appearing in (8) and (8A 

can be expressed using (7) -and (11) as 

Wn L q. (13)
rim 

where
 
L E na Fn Tm dA (14) 

Hence, (8A) becomes the acoustic modal equation 

A 4 p +Aop c2 E p C Z A L=m qm (15)Pn n n A00 r nr 

r
 

These can then be solved in conjunction with the companion structural
 

equations to be derived in the next section.-


Structural Considerations
 

When the structure may be represented by a linear structural
 

model the total fluid-structural interaction may be treated in a
 

simple way. Let the structure be represented by a linear 

(partial, differential) equation.
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a2w E 
S w + m --- . pC - p (16) 

S is a linear differential operator, representing structural stiffness.
 

For example, for an isotropic, flat plate, S B DV4, where V4 is the
 

biharmonic operator. The second term on the left-hand side is the
 

structural inertia, m being structural mass per unit area. On the
 

right-hand side we have two pressure loadings, the first due to the
 

cavity acoustics, the second due to some specified "external" 

agent. 

For simplicity, we assume that the structural modes, *m (cf (11)) 

are normal structural modes satisfying an eigenvalue equation 

. S m - m *mWm . 0
2 
(17)
 

and associated orthogonality condition
 

f m*r dA EM for m r(8 

- 0 for m r 

is the tai m its associated normal
mi: t mth structural natural frequency and 
mode.
 

Substituting (11) into (16), using (17), gives
 

ME d~qm-(19) + 2q]P CE 
P 

.
 

Multiplying through by tn and integrating over A., gives, using (18), 

dBqM+ m (20)
2Id + m + 

where (recall (12))
 

pcCm dA
p (21)
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f P M d% - JE (22) 

From (9) and (21-)-, 

S Lnrm (23) 
n 
 7n, 

Hence the structural modal equations, (20)', may be rewritten using
 

.(23) as 

+w 2% qm -p &2 A ZPInm +B (24}0 n ­

n 

with ESummarizing the key relations are (15) and (24) 

from its definition, (22). (15) and (24) are coupled acoustical-struc­

tural ordinary differential equations which may be solved by any stand­

ard method. Since we,normally are dealing with systems,under forced 

motion, %, the initial conditions on q and Pn will usually be 

the trivial ones. 

~dPn 
qm=_--_-= Pn = U_-= at t =0dq dP n t =
 

Of course, any physically meaningful initial conditions, could be
 

accommodated.
 

It should be noted that in applications, the use of normal
 

structural modes may not always be convenient and hence direct
 

structural coupling may occur. Of-course, this will always be true
 

for a.nonlinear structural model [7] since the -concept of normal
 

modes loses much of its significance there.
 

Finally, although the acoustic pressure is obviously the physical
 

variable of the greatest interest,- some additional insight into the
 

nature of the structural-acoustic interaction can be obtained by
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considering instead the acoustic velocity potential. The two are
 

related through Bernouilli's equation
 

p s O;-(25)
 

If * is expanded in its natural modes (they are obviously the
 

same modes as for p from the above)
 

ESa F (26) 

one can from (9), recall 

p PPC 2 ! P p F0 0 n nnl) 

MA
 
n­

(25) and (26), determine that
 

c 0 nAnA -a (27) 

Using (27) in (15) and (24), one obtains
 

A [a + A2
 

*AA Poco r Cnr m nm 

Mm [m + 2 qm -pOAF E n Ln+24)* 

The underlined terms are the structural-acoustic coupling terms.
 

The coefficients are anti-symmetric (to within a multiplicative constant)
 

and this characteristic, combined with the first time derivatives of
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q. and %, means that the equations possess gyroscopic coupling.
 

Thus it is known that (if AA 0 so that there is no absorbing wall)
 

the coupled structural - acoustic natural frequencies are real, i.e.
 

the system without absorbing walls is an undamped resonator. More­

over Meirovitch8 (in a different physical context) has shown how
 

one may use conventional matrix eigenvalue methods to determine
 

the natural frequencies of gyroscopically coupled systems.
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IV A VARIATIONAL FORMULATION
 

The'same results may be obtained through -a-variational formulation.­
9-11 12-13

-Previously Gladwell and later Craggs-have considered variational state­

ments in the context of finite element representations for the coupled
 

structural (wall) - acoustic (cavity) problem. Craggs' work has been
 

carried furthest and we use it as a point of departure for our discussio#.
 

Even though we shall obtain the same results-as before, the variational
 

statement in its present form is somewhat awkward. Hence the author's
 

preference is for the previous formulation using.Green's theorem for
 

the cavity. Others may feel differently, however, or perhaps be in­

spired to develop a more elegant and/or simpler variational statement.
 

Hence the following brief discussion. Following Craggs, consider an
 

action integral for the plate
 

t2 
I f [T - V (W -W)] dt (28)I t1 . ' E A 

where ­

8w 2T p 1/2 ft m ( )dxdy Plate Kinetic Energy of Flexible Wall 

2D - 2w 32w -2 i2W 92W )2 2
w 


D __+ (=74) + 2v -- +-2(l-v)(t=- ]d-

Strain.Energy of Wall
 
B -H 

6W - ff p E wdxdy Virtual work due 
to External pressure 

6W . ff pc .6w dxdy " (29) 

or Virtual work due
 
A r ff :6w dxdy to Acoustic Cavity
 

f 
 pressure ­

Bernoulli's relation his been used to obtain the last line, i.e.
 

If =- Po0; 
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Using Hamilton's Principle on IP (with pE and pC not varied) one obtains 

tkwt+D V4 Ws pE+ pC (30)-

with appropriate boundary conditions on the plate edges involving w
 

and its derivatives.
 

The action integral for the acoustic system with a prescribed
 

motion at the cavity surface is
 

t 2 

IA= f CTA-V - W*A)dt (31) 

where U- (vector) particle fluid displacement 

TA = 1/2 fff P " U dxdydz Acoustic Kinetic Engery
 

(32)
 

-VA 1/2 1ff - dxdydz- Acoustic Potential Energy
 

6W*A- f w Sp dxdy 

6W*A is the complementary work done by the virtual forces (acting 

through the real displacements) at the structural-acoustic interface. 

Introducing the velocity potential, *, 
u - VO
 

and recalling Bernoulli's relation
 

pc= - O; 

the above may be written as
 

TA - 1/2 fffpO(V .V )dxdydz
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V-- 1/2 ' 2 dXdydz(33Ai Cd
 

wA = - ffw p06 dxdy 

Using Hamilton's Principle with respect to I (with w not varied)
 

one obtains
 

V2 * -1/C2 0 (34) 
0
 

with the boundary condition
 

w;(35)
3z 

­

on z a 0 (flexible wall) 

As the attentive reader will already have noted, our use of
 

cartesian coordinates is a matter of convenience and the results
 

readily carry over to cavities and flexible walls of arbitrary shape.
 

The necessity for considering both virtual work, 6WAP and
 

complementary virtualdWA* makes this variational statement appear
 

somewhat cumbersome to the author and it is for this reason that
 

the earlier approach using Green's Theorem is preferred.
 

It is worth noting that an absorbing wall in the cavity can
 

also be included, specifically in-6W*A. We add a subscript, A, to
 

all quantities to denote absorbent. The complementary virtual
 

.work due to the absorbing wall is
 

SW*M - - ff wA pOt$dxdy 

Realizing that in Hamilton's Principle the above will appear as
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:t2 
f 6W*AA dt 

one may integrate by parts to obtain
 

t 2 

f 6W*AA dt =fff ;A p06 dxdy dt
 
t1
 

Further if we model the absorbing wall through a simple point­

impedance model then 

P- ZA WA (36) 

or 
- POO zA WA on AA 

where zA - absorbent wall impedance 

Thu W*Adt - -fff r& dxdY dt 

Using the Above and proceeding through the formalism of Hamilton's
 

Principle one obtains for the boundary condition on the absorbing sur­

face (e.g. say z - d) 

2=.= 

S;A 
(37) 

or 

un -O on = d 
z zA
 

Modal Equations
 

'Modal expansions are now made for w and *.
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-w E-%(t) *aCx,y) 

* a E an(t) F (x,yz)
n n 

It is simplest conceptually and generally most efficient 
computationally to-choose the in vacuuo plate modes for *. and the 

rigid wall modes for m . Other possibilities exist, of course, but
 

they shall not be pursued here. Using the above choice, one has
 

Tp =1/2 Z Mm n2.
 
m
 

(38)
 

VP =1/2 SM w 2,2 

m 

where Mm ffm m2dxdy generalized plate mass
 

m - Mth in vacuuo natural plate frequency 

Here we have used the orthogonality of the 'm' i.e. 

fm *m Vn dx4y = 0 for wm # wn 

Also to obtain Vp an integration by parts has been used along with 

the fact that *mJ Wm satisfy the Euler-Lagrange equation 

DV - W 2 = m m
 "
 

and appropriate boundary equations for m on the plate edges:.
 

One also has
 

SWE Z QmE 6q (39) 

where dxd 

m f p pm y 
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and 6W.A AP p PIadq.L~I 
n m
 

where Lnm =ff Fn 0$dxdy 

over A. (40) 

AF E total area of (flexible) structural wall. 

Using Hamilton's Principle one obtains, in the usual way, the
 

structural modal equations
 

_MmEm+ Wm2 %J+%Q - A. ZXa LrM =0 (41)
 

Turning now to the determination of the acoustic modal,equations,
 

one may construct 

2
TA = 1/2 V POEZ A2 MA a 
- n nn n

c2

0 (42) 

VA = 1/2 V POZ M A2
 

C0
 
2
where A fffF dxdydz
 

V 

-and V = total cavity volume, wnA- nth natural (rigid wall) cavity
 
frequency
 

and SW*A - ZAqm am LM 
m n 

f SW*AA dt=- AA fp a 6a C dt 
n r nnrt 
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where Cn -ff 'FnF dxdy
n r on n--'-

SA A 

and AA E total area of absorbing surface
 

In constructing TA and VA, we-have used'the orthogonality of Fm, i.e.
 

1ff ByrF dxdydza=O forwOnA 0 A 

and the fact that Fn WnA satisfy the Euler-Lagrange equation, , 

V2F + wA 2 

n n n 

c0 

and appropriate boundary conditions on the cavity walls.
 

Using Hamilton's Principle one obtains
 

A.A2 (43) 
m
 

C22 A Za C =0
 

0r nr
 

Equations (41) and (43) are the same asequations (24)* and 

(15)* which were obtained previously. 



- 24 -

V ACOUSTIC NATURAL MODES INMULTIPLY CONNECTED CAVITIES 

For definiteness we consider two rectangular cavities although
 

it will be clear that the basic method is applicable to fairly general­

geometries. See sketch.
 

CtaTry Q-k%%cry 

Our interest here is in the acoustic natural modes of the two
 

cavities connected by an opening of area AF. In this opening
 

there is, in general, a flexible.structural member which deforms
 

(as indicated by the dashed line) and-thus permits sound transmis­

sion from one cavity to the next. All other portions of the ca­

vity walls are rigid. As before the structural member-has a
 

displacement, w, with a modal expansion
 

w m %C)TWo &z) 
m 

and the acoustical pressures in cavities a and b have modal
 

expansions
 

2Pa C0 . pa F (x,y,z) 

n . 
(2) 

n 

Pb = PO ' nbn
n M Ab
 

n 

C 
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The-modal equations of motion for the acoustic pressures are then
 

(recal Sections III and IV)
 

a Aaz a _ a 
n n n V- m 

a 
(3) 

j-b +Ab 2 

n .A 
~b * Ap 

V. 
m 

Lb 
M 

and for the structural wal-l 

MMo 0 C0 n Lnm 

U na (4) 

Mhb
n 

The + sign in the second of (3) and the - sign in the right hand 

side of (4) is a result of the normal to the opening being outward 

from cavity a and inward to cavity b. 

As in Sections III and IV one may introduce a velocity potential 

through Bernoulli's equation 

pa,b = _ PO ;a,b CS) 

with a modal expansion
 

ab . Za, F (6)
n n 

(3) and (4) then become 
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a a na a 
m 

(7)
 
2 Lbv-bb AbA b 

P. 0F m n Imna un + " O[an + W 

and
 

M [a + W2 aJ- -p A, E aa L a 
a m a r a1 m 

(8) 

O0 AF bn Lb 

n 

(7) and (8)are in standard form for use of Meirovitch's algorithm
8 

to determine the natural frequencies (eigenvalues) and modes (eigen­

vectors) of the two coupled cavities.
 

Of special interest is the case with a pure opening between
 

the two cavities, i.e. one with zero mass and stiffness. In this
 

case substantial further simplifications are possible. Thus
 

M =WM = 0 and (4)becomes (one could deal alternatively with
m 

(7)and (8))
 

paLa pb Lb 
n nm A Z -n '"nm -0=. (9) 
aM' n 

n n 

To dextermine the natural frequencies, one assumes
 

= e i ~qm qn 
= e (10) 

pa,b . rab eiwt
 
n n 

Thus from (3) we may determine 
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-2- La,b
-
- 7,b 

n 	 F m. n 

ab -. 2. Aab 2 
n
 

Substitution of (10) and (11) into (9)gives (before-substitution
 

one should replace the summation index, m, in (11) by r to avoid
 

confusion with the m in (9))
 

1:qmQm= 0 r.= 12,3,... 
m 

where -1 La La 
- nr nm 
v a Aa 

(12)
 
1 b Lb
 
+b V n£nr nm
 

b 2Ab
 

n
 

The natural frequencies are determined by the condition that
 

the determinant of coefficients must vanish
 

IQ I-0. 
 (13)
 

(13) is a non-standard eigenvalue problem 'because of the form
 

that w2 takes in.Qm, see (12). However, it has one overwhelming
 

advantage as compared to the standard (modified for gyroscopic couplingB)
 

eigenvalue approach embodied in (7)and (8): 
 the size of the matrix
 

in (13) 41l be much smaller than that-in (-7) 
 and (8). This -i-s because the 

number of two-dimensional opening modes, m , may be much smaller than 

the number of three-dimehsidnal cavity modes, Fa, Fnb, to achieve a 
n n
 

given level of accuracy. :This advantage will persist even when the,­

opening is a structural member of finite stiffness and mass, but the
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mathematics are a bit more cumbersome.
 

In closing this section we quote, without detailed derivations,
 

two general-izations of the above results.
 

For an external wall of cavity a whose motion, wEa , is pres­

cribed (sinusoidal motion is assumed for simplicity)

Ea Ea ,
 
a q a P(14)
 

mm
 

The equation of motion is
 

-£ %- + - 0 + QEqm Qm r(15) is 
M 

where -E AEt:z4a La La 
Q~rV n k qk nk Lnr
 

a nk AIaj_,2+,aW
 

forced motion will be discussed in much greater depth in Section VI.
 

For three cavities, a, b, an c, which are interconnected by
 

openings (all other walls rigid) the counterpart of equation (12)
 

becomes­

£ Lab ab bc bc(ab)
m Q+Z %Q =0
 
m F- m
 

ab ab~c *tbE% sQ(b; +ZqmCQ;; =0
 

where
 

aab 
'
.ab_ A aZ La (b) La(b)
 

11 nr Tm
 
.a 
 lat(_2+)Aal)
 

AFab Lb(a) b(a)
 
-a rL -L -


Vr nb .2n
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bc¢ b (c)


bc(ab) + b(a)
 
r; n r Lnb
 

n 
Vb n 9 b(_W2 + AbZ]

b n mAb(42+Ab2)
 

n n 

F SL b(c) )
 
nm
 

(-bc) Ab(c L bIc)b 

nrnr 

Vb mAbC2 Abt 

nbn 
cc c.2.nC 16 

AFbc ZLcb ~
 

r n1fA n mAl(16)
 

where - is area of common opening to cavities a and b, etc. 

The generalization to any number of interconnected cavities should 

now be clear. 

The relationship of this analysis to other methods also deserves
 

brief mention. Morse and Ingard6 have considered two coupled cavities
 

'employing a Green's Function approach. The final result is the same
 

as that obtained here, (12). See Appendix B for details. Alternatively,
 

in the context of the variational formulation, as far as computing
 

acoustical natural frequencies of multiply connected cavities with
 

pure openings and otherwise rigid wails is concerned, the qm may be
 

considered a Lagrange multiplier which enforces the constraint that
 

the pressures in cavities a and b must be equal at their common opening.
 

Hence the present analysis aay be thought of as a component mode synthesis
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where the components are the individual cavities. The results are
 

entirely analogous to those previously obtained in strudtural vibrations,
 

except the roles of force and deflection are interchangedl4_ In
 

structural applications, the Lagrange multipliers are forces of con­

straint enforcing common deflections where two structural components
 

are connected;in acoustical applications, the Lagrange multipliers
 

are deflections of constraint which enforce common forces (acoustical
 

pressures) where two acoustical components (cavities) are connected.
 

With the combined, equivalent single cavity modes determined by
 

the method described in this section, it is sufficient to consider
 

a single cavity in the subsequent discussion of forced response in
 

Section 'X., 
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:VI FORCED-RSPONSE OF A CAVITY WITH A FLEXIBLE AND/OR ABSORBING WALL
 

Basic Model
 

Here a single cavity is considered; multiply connected cavities can
 

be treated by first determining their combined single cavity natural
 

modes as in Section V.
 

The total pressure loading on the structural wall is now the
 

sum of the internal acoustic cavity pressure and an external (pres­

cribed) pressure loading. Hence, the structural modal equations
 

are
 

Mm(%m + 2r;Mwm &m+ wm2qmJ M -(I) 

where g A ' m dxdy 

P PC +9 E 

and p - PnFn (2) 

MnA 

p, the prescribed external pressure, is the new element in the 

theoretical model. % may be written 

QM U Pc2A Z Pn Lnm + Qm (3) 

where Q m ff pE *m dxdy" (4)
 

Combining (1) and (3),
 

" +2 mm4 ,,Zqa'q]-OOA n n m+QEHm (5) 

Mn­
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'"The cavity modal equations are 

Pw +_AA %%2r-P.nrnr A0 (6)-
A2 0 r __,S Lnm'qm 

r 

One can write (S) and (6) in an attractive matrix form by again 

introducing the velocity potential, 4. Bernoulli's equation is 

p 0 (7) 

Using an expansion for 4, 

E=Ean Fn (8) 
n 

(5) and (6) may be written 

CMk +E[G{± + [cJ +±LK){a (9) 

where
 

MM0• 0 p A Lr 

[M ]1Io Lc:ApL o ] 

2[c}0 AA~~ ] [ M~~w 0A2 

These equations can be solved numerically by standard methods8.
 

In the remainder of this section, simplifying assumptions -are con­

sidered which allow useful but approximate analytical solutions
 

to be obtained. These should suffice for a rough ,estimate and-also
 

serve as a guide for more accurate and more elaborate numerical
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solutions,.-in allcases'sinusoidal excitation is,assuned,i.e.
 

where wE is the excitation frequency.
 

Because our model is linear any other time history can be considered
 

through superposition of sinusoidal excitation. Random excitation
 

may be considered using the sinusoidal excitation results and power
 

spectra methodst
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Simplified Models
 

One may anticipate the largest response will.occur when-the
 

excitation frequency is near a structural or-cavity resonant fre­

quency.
 

(1)Exciting Frequency = Structural Wall Resonant Frequency.
 

If w , s where s denotes a structural resonant (natural) 

mode, then only qs will be important and all other qn may be neg­

legted. Then, from (6) 

P - AF 'ns q s (10) 

V_W 2+Wj
 
5 n
 

and from.(10) and .(I)
 

M [s+2cw +Wq cg .2 +qE e t (11) 

A 2"AA 
Mn (-w-s A 

From the right hand side of (11) it is seen that if A2 >
 

then the ntn cavity mode gives rise to equivalent mass, while
 

SA2 < then the, nth cavity mode contributes an equivalent
 

stiffness.
 

Note that the n = 0 cavity mode always contributes equivalent
 

stiffness.
 

Inimany practical examples the structural wall resonant.
 

frequencies will be unchanged by-the cavity per se, e .g. the sum on
 

the right hand side of (11) can be neglected. The circumstances
 

under which this is not true will beconsidred in Section VI, part
 

(2). Making this assumption for now, from (11) one computes as
 



qs QsE 

Ms [2 5ss2]i 

(12) 

From (12), (10) and (2), the cavity pressure may be computed 

pa P0 c0 AF 

Zcsi V 

X 

n 

n L 

nA.A 

s Q 

%/ F f-w 
Az 

2+w n t 

(13)* 

If W2 << lowest non-zero acoustical resonance, then 
S 

need be considered in (13). Hence (13) simplifies to 

1 ,sdA 

only U - 0 

m2A Us2(L) i2ca. AF (14)* 

Representative numbers are 

mAF 

= C0 

W V 
= , S . 

f sdA 
AF 

-2 

7-A 

2 d A  1/2 
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Thus P 5 pE, i.e. typically the sound pressure in the cavity will be
 

larger than the external sound pressure, if ws r A. For ws > A 

one must compute pc from (13) .and typically pc <E. 

(2)Structural Resonant Frequency Changed by Coupling with Cavity Modes.
 

In most cases where there is a significant change in a structural
 

resonant frequency due to the cavity, only the n = 0 cavity mode will
 

be important. Hence (11) may be simplified to
 

2 q5 [q5 + 2 w qs+w e 

-0 c 2 A 2 Ls qs + eiw1t0 

V 

The effect of the cavity (within our approximations) is to modify
 

-the structural stiffness term, i.e. the total term is now
 

MsW + p0
2c0

2 A. L2s 

Hence (15) may be written in the more compact form
 

M s q- Q eitt (16) 

where the. coupled structural-cavity natural frequencytis 

C2 2+ pOCAA2L2 7)*Ws. A C1*
s oOaq s 

MV 

(17)'generalizes an-earlier result ,byDowell and Voss4 for structural­

cavity coupling. Using .(17)-the results in Section VI, part 1, e.g. (13)-,
 

can now be generalized to include structural-cavity coupling. 'By
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examining the ratio of the two terms in (17), one can assess when 

cavity effects on structural resonances are important. 

PO 'C'02,AF 'sd 

lf ' 2]E 
Using our previous estimates for the integrals, the ratio becomes
 

Clearly the lowest frequency structural mode will be most affected
 

by the cavity. In extreme cases 5 more than one structural mode may be 

significantly affected.
 

-Another less frequent case where the structural frequency may be
 

changed due to acoustic action is when a.structural mode frequency and
 

acoustic mode frequency are close together. Clearly this is an undesire­

able situation, since large-sound levels would be anticipated at this
 

double resonance. This special case is considered in (4)below.
 

(3)Exciting Frequency - Cavity Resonant Frequency. 

When wE w , then Pn will be the dominat pressure mode. 
-nI
 

But (inthe absence of absorbent wall damping) if Pn is finite, then
 

from (6)one concludes that
 

E Lnm qm 0 (18) 
m 

The structural equation, (5), becomes 

A 
n 
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Solving (19) for qm gives 

S(20) 

~A,M C w,Az + 2Cw iw 2] 
m n . mm n m 

(20) into (18),. gives
 

2 2 A
.pc 0

A2 iA W2] A]
mm n m. 

n -E 0
 

ionon Aim__ ___
n -"n_2___ i A 


MA r QmE Ln
m 

mu
 

nmaA 
A2 A2
2 - A i++ (22) 
a enn mmn 

For the special case whefe E- then the'sums
o r for some m, 


can be we11 approximated by A single term and the above relation­

ship simplifies. E~ven when An 0 Wm for any m, there may be a pre­

dominant structural mode in which case the sum could-be approximated 

by a ingle term. First, however, we digress to consider another
 

important limitin case.
 



If n and p are constants over AF . then a very interesting 

result obtains, namely 

n
Q.E PE !dAM L.= F dA_ 

the ratio of sums simplifies and using (2) and (22).
 

pC -n piE (23) 

InAe01on AF 


=
Clearly, if p 0 = PE then w 01Io
n 


To see this.in detail recall that.
 

c Pn Fn (2)
 

MAc2
0 0 n 

which can be simplified to 

P Pn Fn (for nth cavity mode (2) 

dominant) 
c 2 M AP0c0 n 

Using (4) and (22) in (2) one concludes 

PcI = + pE and w E O 

Ion AF q.e.d. 

Note that if 
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~nonA.,CHFn I 

then the same result holds, namely 

PCI n PE -andw - 0 

If Fn constant, but PE j constant,, then a similar calculation 

gives 

pC ,- 1 f pH*md ft4.A­
" n andw 

POc021 POco2 Mm [. ..] 
_______(23o 0 [0 

n 

H [. ..1
 
m 

Note that pC is constant over A. Only if there is a single dominant 

structural mode will this simplify further. Now return to (22). 

Single Dominant Structural Mode: 

For a single dominant resonant structural mode, m, C22) becomes 

- . nA Q'H (24) 

pOc02 AF L 

and pc .Fn j pE %mdA (25)* 

f Fn m 'A 

If P. CFnon then p p on AF and w- 0 as before. 

Note that, within reason, 'Pm may be selected as an appropriate linear 

combination of natural modes. Hence a dominant structural mode assumption
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is quite useful.
 

ihe central conclusion to be drawn from the above-is that in 

simple terms, we may think of the cavity as acting as a vibration
 

absorber for the structural wall when the external exciting frequency
 

is equal to the cavity resonance frequency. Hence, at most, the interhal
 
cavity pressure will be equal to the external pressure and indeed, 

if m >> 	WnA for all m, and/or p varies significantly over the flexible 

wali then pc << pE. 

(3a) Effect of Cavity Wall Absorbtion (Damping). 

In our model the absorbtion characteristics are modeled by an
 

16impedance, zA. For representative acoustical materials 

zA = 1-10 

Again we 	 shall assume a single cavity mode dominates. Then an 

.equivalent damping ratio of the usual type may be defined
 

n- 00 A nn 

v WA A 

c 

or 2 n P 0c 0 
- c0 AA f FJFn dA 

z VWAA A-A 
- A n An

ffJtn2 dV 
V 

Typically Cc woudbe .03 - .3. 

Using an equivalent m (6)becomes 

A2 ~ c A_in 2 n2
Wn 

S "A 	 Ei inm qm (6a) 
m 
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E A 
As w + nA , (6a) becomes 

ZQS P=4 ':L% (26) 
m 

V 

Using (20) in (26), 

V2 Cj = poc02 A Z L 21 

..... Pn 0- Lr: +2C WWA±+W2] •.-F 2M A.- 2] n 

------ -- n +mn m j 

+£ L 

A2 
-E n + 2mcmiw + a 2 j (27) 

For wn to . retain only one term in sums and thus 

A2 V TnM = n
 

n rn m 0oo AI
0(28) 
H A
 

R 

Solving, 

1r (~m29) 

0nm l za4r 4cm cw mMAp0 C 2A~F L~ 21 At 
nA]V~m

2A ^ c ^2'L2 / 

Hence effect of cavity damping is to decrease internal pressure field.
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However, the numerical effect is typically small.
 

(4)Exciting Frequency = Structural Wall and Cavity'Resonant 

Frequencies in Close Proximity. 

For simplicity we ignore any absorbing wall-and: consider a single
 

dominant structural wall mode and also a single dominant cavity mode
 

whose natural frequencies are very near each other. From -(9) the
 

equations of motion are
 

- H( g2cw ;.gW.2%3+%E - AtOa2 Ln= (30) 

A2 2 
VMVA fa% a] - c A. qLnm 0 (31) 

For a single cavity mode 

pC anFn (32) 

(30), (31) and (32) may be solved to obtain
 

E 2
 
pc 


m n
 
E2 + E2
E2 - E [-n ,2 (33) 

WM + 2Cmfl M + 1][f + ~ 
'nmA
 

QE E
where 
 m I' 

QlA .- A/
 

m n W
 

""
 A p0c0 
2 A2 L2
 

VMA MmW2
 
VM 
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Note that
 
A - POV 

co 

From (33) the coupled structural-acoustic resonant frequencies
 

may be determined and the associated cavity pressure. For the
 

special case of
 

A
 

and X << 1 (typically A < 1)
 

particularly simple results may be obtained. The resonant frequencies.
 

are then
 

1 Al 2
a m 1+ (34)
 

and the cavity pressure at resonance
 

P (35)*
 

2C 

L AF
 

The left hand side of (3S) is approximately p /pE Hence for
 

typical ;m and A not too small, pc/p > I when a cavity and structural
 

wall mode coincide in natural frequencies.
 

(5)Convection Effects on External Sound Sources and Internal Sources.
 

The results discussed to this point are for a stationary external
 

sound source. Here a few brief (cautionary) comments are offered with
 

respect to other sound sources.
 

If substantial convection of an external sound source is present,
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hydrodynamic coincidence effects may occur and also radiation
 

damping in the external flow may be important
17'
 

.For sound sources inside the cavity itself, the wall absorbtion'
 

will play a much more important role than for the external sound
 

sources studied here16 .
 

(6)Summary of Key Relations from Simplified Models to Determine Cavity
 

Pressure.
 

Exciting frequency = structural wall resonant.-frequency.
 

For w ,(13)* or (14)* modified by (17)* as necessary.
 

Exciting frequency = cavity resonant frequency.
 

WE 
 dominant structural mode) (25)* 

Exciting frequency = structural wall'and cavity resonant fre­

quencies in close proximity. 

For WE 4 Ws = A (35)* 

When the external excitation frequency is well separated from all 

structural or cavity resonant frequencies, there may not be a'single
 

dominant structural and/or cavity mode. However,, some simplification
 

may still be possible by neglecting the interaction between structural
 

wall and cavity, i.e. one may first determine the structural wall
 

motion and then use that result to determine the internal cavity acoustic
 

pressure. In this approximation the effect of the cavity sound pressure
 

on the structural wall motion is omitted.
 

It is also worth emphasizing-that 'for off-resonant exciting fret­

quencies, .although the numerics may be more elaborate due to the
 

necessity of accounting for multiple modes, the basic theoretical model
 

may be more accurate because the uncertainty with respect to.structural
 

and/or acoustic damping values will be less important.-


For .A(single 
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VII NUMERICAL RESULTS AND COMPARISONS WITH EXPERIMENTS 

For a inlcavity with a flexible wall and an external sound
 

source, the theoretical model has been verified experimentally by
 

5 18'19 20'21
 several authors
4 ' ' ,
 

Here we assess the capability of the model to describe accurately
 

the acoustic natural modes in multiply connected cavities. Once
 

the combined natural modes of the multiply connected cavities are
 

determined and verified experimentally, they may be treated as one
 
20 21
 

single cavity. Hence the earlier work for a single cavity
4 ,5,18,19 , ,
 

then may be taken as experimental verification for the forced exci­

tation of multiply connected cavities as well.
 

Acoustic Natural Modes in Multiply Connected Cavities.
 

The experimental studies were conducted by Smith22 who has con­

sidered several geometrical arrangements for two acoustic cavities
 

with rigid walls and a partial opening between them,see Fig.l. In Pig.2
 

the lowest found longitudinal resonant frequencies from theory
 

(Section V) and experiment are shown vs partition size, YC, normalized
 

by cavity height, d. As may be seen the agreement is good with the ex­

ception of the 10* mode for 1l .4 where a mechanical resonance of
 

the loudspeaker used to excite the acoustic modes contaminates the
 

data. In practical terms this is unavoidable as both theory and
 

experiment show that 10= .5 0 as the partition is closed, yc
-S ­

0 + .5. In these experiments, co . 1117 ft/sec, a = d = 10" and 

the width dimension was 4" to provide two-dimensional conditions in the
 

frequency range of interest. The thickness of the partition (assumed
 

*lo means there is 1 longitudinal nodeline and 0 lateral notelines, etc.
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zero in the theoretical calculations) is .5" as is the thickness of
 

all external walls. The cavity is constructed 'rom 'plexiglass.-


InFigure 3 for a constant aperture (opening) size, ya/d .5,
 

the effect of aperture location is studied.. Both theory and experiment
 

show a small effect.
 

A second configuration studied by Smith consists of two acoustic
 

cavities, one twice the dimensions of the other., with rigid walls and
 

a partial opening between them. In Figure 4 the lowest four longitu­

dinal resonant frequencies from theory and experiment are shown vs.
 

normalized partition size, y, d. Again the agreement is good. In
 

Figure 5, the longitudinal pressure distributions (along with their
 

resonant freqiencies) are shown for the first seven (synmetric with re­

spect to height) acoustical .moaes with a full opening between cavities.
 

The agreement between theory and experiment is very good.
 

Altogether one concludes the theoretical results are a faitE­

ful description of the physical model. For more detail the reader
 

should consult Reference 22.
 

Forced Response of a Cavity with a Flexible Wall
 

Experimental Arrangement:
 

For this discussion, Gorman's work18'19 is used; however, also
 

see Reference 4,5,20 and especially 21. The experimental arrangement
 

is shown in Figure 6. The flexible wall panel was a 10" x 20"1 x 0,.05"
 

aluminum alloy plate that was bonded onto a rectangular frame consisting
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of aluminum channel members welded together at their ends. By bonding
 

the-.plate to the cavity in this way, a clamped edge boundary condition
 

was approximated. A sealed cavity, also 10" x 20", was constructed
 

beneath the'panel in such a way that the cavity depth could be varied
 

in 2 inch increments from 12" to 2" deep. The cavity itself was
 

made of 0.5" thick plexiglass and was supported by four plexiglass
 

"feet". 

The panel was excited acoustically 'by a Wolverine LSlS, 20 watt
 

loudspeaker driven by a B & K Beat Frequency Oscillator, type-1022.
 

The external sound field was set at 100 dB at the mid-point on the
 

plate surface for all measurements. By using a single speaker, an
 

external field distribution that was variable in space was obtained.
 

See Figure 7.
 

Initially, there were two basic measurements that were felt
 

to be important: the measurement of panel amplitude and the.measurement
 

of cavity pressures-due to a sinusoidal driving force. As work pro­

gressed, however, the need arose for two more measurements: the
 

measurement of panel and cavity damping ratios. The reasons for
 

these latter measurements will become apparent later.
 

Panel Amplitude Measurement:
 

The panel motion was measured by the use of a Bently Nevada
 

motion pickup, Model 302, that was mounted on an aluminum frame 

located above the panel. The frame allowed movement of the-pickup
 

to any point on the surface of the panel, and also allowed variation
 

of the distance between the pickup and the panel. As the panel oscil­
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lated, the voltage generated by the motion pickup was fed through an
 

amplifier and recordedon a amplitudevs. frequency-plot. Such aplot­

is.shown in Figure 8, for a cavity depth of 12".
 

For the measurement depicted in Figure 8, the motion pickup was
 

positioned at.the center of the panel. By positioning the pickup in
 

this way, one may obtain deflection measurements for the symmetric
 

panel modes, i.e., the modes which have a peak at the panel center,
 

but not for the antisymmetric modes, i.e., those modes with a node
 

at the panel center. The dominant features of the plot
 

are the three resonant peaks, corresponding to the first, third and
 

fifth panel modes, occuring at 113 cps, 210 cps and 410 cps. Modes
 

above the fifth mode have an amplitude that is negligible compared to
 

the first three symmetric modes. Above 500 cps, the panel
 

is essentially motionless. The dominant
 

panel response is at the panel fundamental mode, as is expected.
 

Cavity Pressure Measurement:
 

The sound pressure level within the cavity, when the panel
 

has been excited by the loudspeaker, was measured using a B & K 1/4"
 

microphone, Type 4136 with a Type 2615 cathode follower with Type UA
 

0035 3;onnector. This microphone was installed in holes that were drilled
 

in the side of the cavity. As with the panel motion pickup, the voltage
 

from the microphone due to excitation of the cavity was recorded on a
 

amplitude vs. frequency plot. Such a plot is shown in Figure 9, for
 

a cavity depth of 12".
 

For the measurement depicted in Figure 9, the microphone was
 

positioned ,in the hole located at the 3" cavity depth level. Since
 

all.theoretical calculations involve the cavity pressure at a point
 

just beneath the panel, the 3" depth level was chosen to place the
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microphone as close to the undersurface of the panel as possible.
 

In Figure 9, the cavity pressure is plotted against 

frequency, where this pressure is the difference between the dB 

level inside the cavity and the dB level outside the cavity on the 

upper surface of the panel. Again, the dominant features are the 

three primary resonant peaks occuring at 113 cps, 210 cps and 

518 cps. The first two resonances correspond to the first and 

third panel modes, and thus indicate that the panel is driving 

the cavity at these frequencies. The resonance at 518 cps is the 

fundamental cavity mode. Note that this mode occurs above the 

frequency at which the panel becomes motionless C500 cps), and thus, 

in effect, the cavity is acting as a rigid cavity with no flexible
 

walls. Theoretically, since the panel is motionless, the pressure
 

level difference between the external and internal measurements
 

should be zero. This is practically the case in Figure
 

9, the slight variation from zero due to the very slight motion of
 

the panel at this frequency. Note also, that, as with the panel
 

amplitude, the greatest cavity response occurs at the panel funda­

mental frequency, with the second greatest response occurring at the
 

cavity fundamental frequency.
 

Damping Ratio Measurement:
 

The damping ratios of the panel and cavity can be measured
 

experimentally in.two different ways: the first, by using the
 

"peak method", and the second, by using the "decay method".- The decay
 

method was the method used to determine experimentally damping ratios.
 



The actualmeasurement of damping ratios was as-follows: using an.
 

oscillograph, a plot of amplitude vs. time.was obtained. As the
 

oscillograph was recording, the voltage,to the loudspeaker was cut off,'
 

thus eliminating the external sound field, and the classic exponential
 

decay plot was obtained.
 

Figure 10, plots the damping ratio of the panel with a 12"
 

deep cavity as a function of frequency. The experimental points
 

were measured at the first, third and fifth panel modes for this
 

panel -cavity configuration. The curve obtained is consistent
 

with a theoretical model, which says that for damping that is propor­

tional to panel velocity, the damping ratio varies as the inverse of
 

the frequency. The slight variation from theory at the higher
 

panel frequencies is probably due to coupling between the panel and
 

cavity modes.
 

Figure 11, plots the damping ratio of the cavity (12" depth) as 

a function of frequency. The experimental points were measured at 

the first, second and third cavity depth modes. The curve obtained 

suggests that the cavity damping ratio at a constant cavity depth 

varies as the inverse of the frequency squared. This result is incon­

sistent with Sheshadri23 , concerning -the damping of Helmholtz resonators, 

and also does not agree with the variation of panel damping with fre­

quency at a constant cavity depth. As yet,.no explanation can be given 

for this damping result, other than to conclude that such a result seems 

to indicate a more complex damping mechanicsm than that of the panel. 

For the -panel, the damping was assumed to be proportional to -the 
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velocity of the panel. For the cavity, such a simple relationship cannot
 

be assumed.
 

Results:
 

.Panel Frequency Response
 

Since the panel-cavity system being discussed is an integrated
 

system, one must investigate the coupling effects between the panel.
 

and cavity. It is well known that the cavity effect on the panel will
 

5 20'21 
become more pronounced as the cavity depth decreases ' ' in
 

Figure 12. the panel deflection, normalized about the mid-point of
 

the panel, has been plotted against the panel length, normalized
 

with the total panel length,, for the fundamental mode of the panel
 

backed up by a 12" and a 2" deep cavity. Figure 13, plots a similar
 

response, only normalized about the one-third point of the panel, for
 

the third panel mode. These graphs depict the effect of intermodal
 

coupling at shallow cavity depth3. The panel response at the 12"
 

depth for both the first and third panel modes is very close to the
 

"in-vacuo" curve given by Dowell and Voss,21 inter alia, indicating
 

,that a 12" deep cavity approximates an infinite cavity fairly effectively
 

for the panel size investigated here.
 

For a cavity depthof 2", the mode shapes vary considerably. In
 

the case of the panel fundamental mode, the response is more concen­

trated about the center of-the panel than for the 12" depth case.
 

The response can be seen to be approaching the shape of the third
 

mode, indicated intermodal coupling at this shallow cayity depth.
 

Indeed, if the cavity was made more shallow, thepanel fundamental
 

mode would take on the modal pattern of the third mode by having two
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 nodal points4 , . For the third panel mode at the 2" cavity .depth,
 

thechag in modal shape is less dramatic; However, there is some
 

effect, especially around the mid-point of-the panel, and this measured
 

effect corresponds to the results of Dbwell and Voss. Again, if the
 

cavity were made, more shallow, the effect would be more dramatic with
 

the probable elimination of all nodal points, indicating intermodal
 

coupling between the first and thirdpanel modes.
 

Aside from affecting the mode shapes of the panel, -the cavity
 

also affects the natural frequencies of the panel due to the stiffness
 

and virtual mass efiects discussed previously. In Figure 14, the
 

panel fundamental frequency is plotted against cavity depth. Note
 

that, as the cavity depth decreases, the panel fundamental frequency
 

is an excellent example of the stiffness effect, for, as the cavity
 

depth is decreased, the cavity becomes stiffer, thus raising the
 

panel natural frequency. Figure 15, plots the panel frequencies vs.
 

cavity depth-for the third and fifth panel modes. Note that there
 

is apparent a slight stiffness effect on the third mode, and the
 

lack of any stiffness effect on the fifth mode. In fact, the fifth
 

panel mode displays features of the virtual mass effect, for as the
 

cavity depth decreases, the natural frequencies decrease also. This
 

fact also indicates that the virtual mass effect is present in sym­

metric panel modes,'and not just in the antisymmetric modes. The 

frequency response for the third and fifth panel modes is consistent­

with theory, which states that the stiffness effect becomes less 

for the higher symmetric modes and that the virttual mass effect is pro­

.sentin all modes.4,5,21 
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In Figure 16, a comparison between theory and cxperiment is made. 

The ratio of panel frequency (modified by coupling with the cavity) to 

"in-vacuo" panel frequency is plotted against panel length to cavity 

depth ratio, a/d. The ."in-vacuo" panel frequencies were computed 

from Warburton's theory,24 and the panel frequencies' variation with 

cavity depth were computed from Dowell and Voss' theory 21 which is an 

earlier version of the present analysis. There. is excellent 

agreement between theory and experiment at the large cavity depths, with 

some variation from theory occurring at shallow cavity depths. One 

or two panel modes plus 'the cavity Helmholtz mode were used in the 

calculation. This agreement between theory and experiment seems to 

indicate that below an a/d of 10, for a panel with similar size, thick­

ness and material properties as the one investigated here, a one-term 

panel mode approximation to the panel natural frequencies may be used 

with good accuracy. For a/d > 10, higher term approximations must be 

employed. More generally, for Xca/d > 10,000 higher term approximations 

must be used to compute panel natural frequencies for a panel length 

5,20

to width ratio, a/b) of two.
 

Cavity Frequency Response
 

The cavity also responds in certain characteristic modes. Theo­

retically, at low frequencies below the cavity fundamental, the cavity
 

pressure should be constant over the cavity depth since the cavity is
 

responding in its Helmholtz mode. Figure 17, plots the cavity pressure,
 

normalized with the external pressure, along the cavity depth at the
 

panel fundamental frequency. Apparent is the fact that the cavity pressure
 

distribution is not exactly constant, but is approximately so.
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Figure 18, plots a similar normalized pressure distribution at
 

the cavity fundamental depth frequency. Theory predicts 'that the
 

cavity should respond in a cosine mode, with the internal and
 

external pressures equal at the top and bottom.of the cavity
 

and with the response undergoing a phase shift with cavity depth.
 

Note that the experimental pressure distribution in the cavity at
 

-the cavity depth fundamental follows the theoretical cosine courve
 

fairly well except at the deepest part of the cavity.
 

Panet Displacement and Damping Effect
 

There are three types of damping that will be referred in this
 

ditcussicn: constant damping, frequency damping, and experimental
 

damping. Constant damping is the value measured for d = 12" and assumes
 

that there is no variation of panel modal damping ratio with cavity
 

depth. Frequency damping allows for variation of damping 'ratio with 

frequency and employs the data measured at a 12 " cavity depth -for
 

various panel resonances. Thus, the only effect changing this type
 

of damping is the variation of panel modal frequency with cavity depth.
 

Experimental damping is the damping ratio measured for the exact con­

- ditions under investigation. 

Figure 19, plots the panel damping ratio due to the effect of
 

increasing frequency alone, and from experiment. Note that the
 

frequency effect forces the panel ddmping ratios lower, whereas, the
 

.experimental damping ratios are higher, as the cavity depth is
 

reduced. The reasons for this behavior not readily apparent; however,
 

it is felt that, if there were some -leakage from the cavity thus
 

creating more losses in the system, the effect -Would be,to make.
 

http:bottom.of
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the panel respond less ideally, i.e., to increase the damping ratio.
 

Experiments show that the cavity pressure increases with ,adecrease
 

in cavity depth. Thus, if there were a leak present, the effect
 

would be greatest at the shallow cavity depths. This reasoning is
 

consistent with the experimental results depicted in Figure 19.
 

With the panel damping ratios determined, the theory may be
 

used to compute a one-term solution for the panel amplitude, for
 

three casbs: constant damping, frequency damping and experimental
 

damping. These results have been plotted in Figure 20, along with
 

the measured panel amplitudes. The constant damping
 

and frequency damping cases predict the correct panel amplitudes
 

only at large cavity depths; however, the experimental damping
 

ratios predict the panel amplitudes well throughout the range of
 

cavity depths tested. From this, one may conclude, that, gven the
 

proper damping ratios, a one-term approximation for the panel
 

amplitudes is accurate within the range of cavity depths tested.
 

A similar result was seen for panel amplitudes for the third 

and fifth panel modes. Again, the experimental damping ratio pre­

dicted the panel amplitudes more accurately than the frequency 

damping effect. 

Cavity Pressure and Damping Effects 

As with the panel amplitude, the theory may be used to compute
 

cavity pressures. Figure 21, plots the.variation of cavity pressure
 

with cavity depth for constant damping effect, frequency damping, and
 

experimental damping. The exciting external frequency is equal to
 

the panel resonant frequency. Recall that the damping ratios used
 

in these calculations are the effective panel damping ratios and not
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those of the cavity; the latter were neglected. Even though
 

cavity damping has not been considered, there is excellent agree­

ment between experiment and the experimental dimping case. This 
-

indicates that, for the fundamental panel mode, and the range of
 

cavity depths tested, the use of one-term panel theory, the Helm­

holtz cavity mode and only panel damping ratios will predict cavity
 

pressures accurately.
 

Similar results -have been obtained for random external pressure
 

excitation19 . Pretlove has made measurements of panel natural
 

frequency variation with cavity depth; Guy and Bhattacharya 21 have
 

measured cavity pressures and panel natural frequencies. Generally
 

good agreement with theory has also been shown in Ref. 5, 19 and 21.
 



VIII CONCLUDING REMARKS
 

A comprehensive theoretical model is developed for-interior
 

sound fields which are created by flexible wall motion resulting
 

from exterior sound fields. Including in the model are the.mass,
 

stiffness and damping characteristics of the flexible wall as well
 

as the mass, stiffness, and damping (due to absorbing interior
 

walk) of the acoustic cavity. Full coupling between the wall and
 

cavity is permitted although detailed analysis, numerical results
 

and experiment suggest that it is the exceptional (though perhaps
 

occasionally important) case when the structural wall dynamics
 

characteristics are significantly modified by the cavity.
 

Based upon the general theory, an efficient computational
 

method is proposed and used to determine acoustic natural fre­

quencies of multiply connected cavities.
 

Simplified formulae are developed for interior sound levels
 

in terms of in-vacuuo structural wall and (rigid wall).acoustic
 

cavity natural modes.
 

Comparisons of theory with experiment show generally good
 

agreement. The principal uncertainty remains the structural and/
 

or cavity damping mechanisms. For external sound excitation,
 

cavity damping is demonstrated to be generally unimportant; how­

ever, it may be of substantial importance for interior sound
 

-sources. No systematic experimental data are available for
 

cavity damping to assess the validity of the present theoretical
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model in this respect. 

The results of the present work, as well as those of Wolf, 

Nefske and Howell25 using finite element .techniques and Howlett 

and Morales;6 (based upon earlier work by Cockburn and Jolly27 

using modal analysis for a particular wall and cavity geometry,
 

suggest that effective analytical models are available subject
 

to the uncertainties concerning damping previously discussed.
 

For a further entree to the literature one may consult Reference
 

25 and additional references cited .therein.as well as the recent
 

work by Petyt, Lea and Koopman.
28
 

http:Koopman.28
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APPENDIX A
 

ACOUSTIC NORMAL MODES OF A CAVIY WITH.RIGID WALLS.
 

Here we consider a representative, but simple, calculation of
 

acoustical normal modes.
 

Normal Modes of a Rectangular Acoustic Cavity
 

We shall seek non-trivial (i.e. non-zero) solutions for a
 

cavity with rigid walls. As usual the equation of motion is
 

P 2 1- = o C)
0 

with the boundary condition 

= 0 on all (rigid) walls (2) 

3n 

where n is coordinate normal to any wall. For a rectangular 

cavity with dimensions and coordinates shown below, 

the boundary conditions are
 

0 on x = O, a ax
 

(2)
0 on y = O, b 
ay 

P = 0 on z = 0, d
 az
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We assume simple harmonic motion 

;(x,y,z,t) = F(x,y,z) e Wt (3) 

and seek the frequencies, w = wm' for which non-trivial solutions 

are possible. These are called the normal mode (or natural) fre­

quencies. Mathematically speaking they are the eigenvalues of the 

problem. The corresponding solutions for F, F = Fm(x,y,z) are the 

normal or natural modes or eigenfunctions. Assuming a separable 

solution for F, 

F(xoy,z) = X(x) Y&y) Z(z) (4) 

we may substitute (3)and (4)into (1)to obtain (subscripts denote
 

differentiation with respect to that variable)
 

+ 22 + zz + (WI 2 
C
x Y Z 

Introducing separation constants,'kx, k , (5)becomes 

Xxx = - k 2 

x 

= - ky (6) 
Y 

Zzz = k 2+ k 2 - k2" (This defines k in terms of 

z and vice versa);-
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Solving (6)
 

X = A cos kx + B sinkxx 

Y - C cos ky± D sin kyI 

Z = E cos k z + F sin k z (7) 
2 z 

To determine the constants, A, B, etc., k etc., we satisfy the
 

boundary conditions (2). In terms of X, Y, Z, these are
 

X a 0 on x - 0, a
 

Y a 0 on y = O, b
y 

Z = 0 on z = 0, d (8)z 

Using (7)and-the first of these we have
 

kx [-A sin kxx + B cos kxJ 0 x 0, a
 

or kx B = 0 (9) 

and k [-A sin kxa + B cos ka]= 0 

Thus B = 0 and either 

A a 0- or (10) 

sin k a = 0 - k a = 0,r, 2n, 3r, 

The latter is the alternative which corresponds to non-trivial
 

solutions. The corresponding X is
 

X A-cos kxX = A cos mxVX , where mx = 0,1,2,3,... (11)
 
a 
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similarly for Y and 2
 

kymb m , 0,1,2....
 

Y = Ccos my (12)
 

b
 

kzd =rmz , m = 0,1,2,...
 

Z sE cos mz z
 

d 

Hence from (4)and (6), using (10), (11), (12), 

- F (x,y,z) cos m Irxcos mITY cos minn x x-' (13) 
a b -d 

and wa 2 (2[m)x2(tn2(mZ)Z 

Co 

Note Fin is only determined to within an arbitrary constant. Also
 

we use for shorthand a single modal subscript * m , on F and w
 

Of course, each m coresponds to a single triplet combination of
 

integers, mx, m, in.
 

One of the most interesting and useful properties of the Fm is 

their "orthogonality", i.e. 

fffFF dxdydz = 0 for m n C14 ) 

This can be proved most directly using Green's Theorem for Fm and Fn­.
 

ff1 [Fn V2 Fm- FmV2Fn]dxdydZ 

ff [Fn 3n- m ) 
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Now m - 0 fro.C2) 
- n 0 

from (1) 

V2F =-C n Fn
 
0-


Hence (15) becomes 

2 w2 ) fff Fn dyrdz 0 (16)
in mnm 

and hence for m 9 n, 

a wn 

and Jff F Fndxdydz = 0I~t inq.e.d. 
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APPENDIX B
 

STANDING WAVES IN MULTIPLY CO1MTNCTED CAVITIES
 

USING A GREEN'S FUNCTION APPROACH
 

An alternative description of the cavity sound field in terms
 

of its influence or Green's function is sometimes useful. This will
 

be briefly considered here. For further discussion, see Morse and
 

Ingard, Chapter 9, pp. 554-5646
 

Green's Function Determination
 

Let- w(x,y,z) = 6(x-t) 6(-n) d(z-c) ei t ~ (1)
 

i t  
Then from II- (7),Wn(t)= 1 pn(g,n,c) e (2) 

and from II- (8),P nn = (iw)2 eiwt F C ,ic) (3) 

V [W 2 - W2] 

Thus from II- (9), p = E F (9.n,)Fn x,y,z)[-(iO2]e Wt (4) 
PoCo n 2]
Mn[% 2-_w V
 

The summation
 

- iLw2 Z F (C,n, )F -(x,y,z) E (5)
n 


n
V 

Mn[wn _ w2]
 

T 

may be thought of as a Green's function giving the pressure at x, y, z 

due to a point harmonic displacement of unit amplitude at , 

Two Coupled Cavities 

The Green's function may be used 

4:k- 6 to treat two cavities connected 

AP by a opening. For definiteness 

we consider rectangular cavities, 

" although it will be clean the.basic
 



- 69 ­

method is applicable to fairly general geometries.
 

Consider two volumes or cavities with their,'respective Green's.
 

functions and a common "wall area", A."
 

a (X y z)
G - Ciw) 2 Z Fna (a,rn)Fn C6)a -- n [ -(-6) n 

V nn 

-

a'z 
[fwn w2J 

2 
+ _ (io) b (C,n,c) Fb(x,y,z)'Gb + (iw)2Z Fn .(,; nb 7).Z 

n- bn _ 21 

There is a + sign on Gb because of the sign convention for normal to 

Ar. Also note that only on A do both G and % apply. 

Now 

a (xy,z = 0 on A.) Iff Ca Cyz = 0 on A;EnC 0) 

O2 over A.
 

(E,n,c = 0) d~dn (8)
a
 

and
 

'b xyz = 0 on AF)= ff Gb(Xy.z = 0 on A; nc 0)Pover b 

00Q
 

w C-,n,C =0) dCdn (9)
a
 

Now further we have on A., the physical continuity conditions
 

W = w. = wb and a =Pb (10) 

Thus using (8) - (10) 

ff [G - Gb ddn=0 ()
A.
on 
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This is a homogenuous integral-equation for w. It.is an eigenvalue
 

equation which can be solved in several ways,. e.g. collocation method
 

-
or modal methods, for the coupled'cavities natural frequencies.
 

,One may also consider further complications due to the wall in 

one cavity moving in a prescribed way. For example at z - da 

in room a, say, w= a(,n). Note AF now includes-both walls, ;=O 

and - d. Then 

p (x,y,z = 0) =ff Ga(x,y,z=O; ,n,C=0)wa(C,n~d~dn 
aa
 

+ ff Ga(x,y,z=0;Cic'= - d);ad(f,n)dCdn (12)' 

and from (9), (10), (12) 

ff: [Ga-Gb]ddn +ff G (Xyz=0; &,nsc -da )w dd = 0 (13) 

oAAa a a Q (3on AF;=0z=0 on A.
 

d
Given wa , one may solve for Wand hence from (8)and (9), 

determine p in both cavities. In particular if w and w are now ex­a 

panded in terms of structural modes, *m , and one uses (6) and (7) in 

(11) and (13), (11) becomes CV-12) and (13) becomes (V-1S). These 

same results are derived in a more compact way using the approach
 

of Section V.' Hence the present discussion will not be pursued"
 

further.
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