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LIST OF SYMBOLS
wall area
cavity iength; panel length |
velocity potential generalized coordinate; see equation III-26
cavity width; p;nel width
see equation III-SA

ambient (equilibrium) speed of sound

-‘cavity depth

nth scoustic natural mode

acoustic action integral

plate action integral

see equation III-14
neck length of Helmholtz resonator

nth acoustic generalized mass; see equation III-5

structural mass/area

normal to surface

nth acoustic modal pressure; see equation ITI-7
pressure .

2*® wail generalized force; see equation ITI-12

nth wall modal coordinate; see equation III-11

nth structural generalized mass; see equation 1II-18

accustic kinetic enexgy
kinetic energy of plate

time
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a ~ fluid particle displacement vector
VA - acoustic potential enexgy.
Vp ‘- strain energy of plate
'} ~ volume
W - work
W - wall amplitude
Wn - nth acoustic mode wall'deflection;.see equation III-7
W - wall deflection
X,Y.2Z - cartesian coordinates
z - impedénce
£ - displacement of fluid
é - velocity. potential
Y " - ratio of specific heats
A - see equation VI-33
wm - th_(structural) wall natural mode
o) - density
;m ’ - mth structural moﬁe‘(critical) damping ratio
cnc. - nth accustic cavity mode (critical) damping ratio
w - frequency
Q\E Q AL see equation VI-33
m’nm !
Subscripts
- - equilibrium

- perturbation
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absorbent wall; acoustic

A -

F -~ flexible wall

H - Helmhoi;z resonator
m,n,r,s -~ modal numbers

R - rigid wall

Superscripts

A - acoustic

a,b,c - cayiiy a,b,c,-respectively
E - external .
¢ - acoustic cavity

* -

complementary
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I INTRODUCTION

¥We consider internal sound figlds, i.e. sound or pressure variations
inside of bounded enclosures. We proceed from the simplest geometxy to
the more complex. Specifically the interaction between the (acoustic)
sound pressure field and the (elastic)fleiibie wall of an enclosure
will be considered. One might think of this as the.field of "acoustoe-
lasticity”. A good introduction to this subject is given in "Sound,
Structures and their Interactionh by Junger and Feitl. Also the author
has briefly discussed this subject in his book, "Aeroelasticity of Plates
and Sheils"?,

From the point of view of app}ications, such problems frequently
arise when the vibrating walls of a trensportation vehicle induce a
significant internal sound field. The walls therselves may be excited
by external fluid flows., Cabin noise in various flight vehicles znd
the internal sound fiéld in an automobile are representative exampleé.

The first physical model to be considered is a simple one; but one

which is famous in the acoustic literature.
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11 HELMHOLTZ RESONATOR
The reader may also wish to consult Kinsler § Frey, Fundamentals

of Acoustics, pp. 187-207, on-this-topic§‘.-

Consider a "small' volume (any linear dimension small compared to
the acoustic wavelength) so that we may consider all properties constant

within the volume. For example, consider a box with one vibrating wall
/%.mg\ .
AV

Y

e

We wish to relate the wall motion to the cavity pressure change and compute

the coupled structural-acoustic natural frequency.

From the isentropic gas law
Y

p=k ¢ (1}
and conservation of mass
pV = constant (2)

Consider small changes denoted by ( ) from.an equilibrium con-

dition denocted by ()0. .
p=p,+o

P=P,*P

‘V =V +V (3)
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Substituting (3) into (1) and (2), and linearizing in ( ),

o »

P o. oy (4)
Po Po
L % = () (s)
o ¢
Combining (3) and (4)
~ 'TG
- v .
%o v, (63
Now
V, = Ad where A is wall srea
9_ = ff wdxdy
Thus
-B 5 -y wdxd; (7)
Po Ad
This is essentially the "Helmholtz resonator" approximation. The
equation of motion of the wall is thus
2 ¥P
n %€§- = - Iag' J wdxdy (8)

We have ignored, the stiffness of the wall (which is valid for large
acoustical stiffness, e.g., small depths) and also ignored acoustical

inertia (which is valid for low frequencies, e.g., large wavelengths).
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One can -approximately solve (8) using Galerkin's method.
Assume
.l’iﬂ’.
w = W sin s Sin g o)

A = ab

Substitute abovE into (8}, multiply by sin gi- sin %x-and integrate

_over the plate area. The result is

azW . W 64 ; (10)
B LYl w0 . :
Substituting W = ﬁ'eimt, we may compute the natural frequency as
' Yp, 64
o 11
e T o

Now the problem we: have just analyzed is not the one that Helmholtz
analyzed. Helmholtz considered a bottle with a neck as in the follow-

ings sketch:

Denote by £ the displacement of the fluid in the neck of the bottle.-
This fluid is considered incompressible and is treated.as a rigid body.

The equation of motion is


http:treated.as

d?e AE
Po Al Fres [—Tpo v—'] A . .(12)

(13)

It is this problem which is usually termed the "Helmholtz resonator'.

One can also consider the problem of an applied external pressure,

E’ . . .
P ., acting on the neck. The equation of motion.is

.d2 Y p, A
R R 1)
o

For the p&rticular case of simple harmonic motion where

pEBFEelwt
£ E-E'-eimt
one may obtain from {i4),
Yy obta (14) _ ¥ Py A
—p£m2+

F, ° v
= o
€ 1

Thus an "impedance" may be defined as


http:motion.is

Y B,-A
2y = —_ = P % du+ (15)
: iwg Vo iw

_where iwf = velocity amplitude and 2 is the impedance of the Helmholtz

resonator.

LT

The internal cavity pressure, pc, can be computed from the above

for a sinusoidal external pressure as

™
- 1 (16)
P polwzv -1
P
or = 1l
we -1
A coz

A similar expression can be obtained for the membrane example
first considered. The significance of (16) for our purposes is that

it shows that for

W w2 < 2 then |p° > 1
AT c 2 . E
¢ b

Hence for low frequency excitations the internal cavity pressure

will exceed the external pressure level.

It is emphasized that the perturbation pressure is assumed not to

vary within the volume in this model. This is reasonable so long as the
acoustic wavelength, X = o 2n » is much larger tham any characteristic
m .

dimension of the volume. Also the fluid properties are assumed not to

vary within the neck.
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111 tOUPLED FLUID~STRUCTURAL MOTION OF AN .ACOUSTIC .CAVITY

WITH A FLEXIBLE AND/OR ABSORBING WALL. -

We consider again the enclosed volume which was éonsidered in
connection with the Helmholtz resonator problem. N
A direct and concise derivation of the acoustic pressuré in a
closed cavity due to arpitrary motion of the flexible cavity walls
will be given. The pressure is expanded in terms ¢f the normal modes
_of the rigid-walled cavity. The result, ;hich is Yalid for any cavity
éeémetry, is given in the form of-a ‘set of linear ordinaiy differential
eauations fér the response of each normal mode. For the sake of
completeness the equations‘of motion of the flexible wall are also
derived in terms of structural normal modes and- hence the complete
coupled fluid-structural equations of motion are given.

Most studies of the acoustic pressure within a cavity due to

motion of a flexible wall have considered only simple harmonic mation,4’5’6

although implicitly the more general case of arbitrary motion can be handled
via the Fourier integral theorem. However, a very simple result for

arbitrary wall motions can be obtained directly from the acoustic

.equations using Green's Theorem without resorting to transform methods.
The end result of thehpfesent method is an expansion for the acoustic
pressure within the cavity due to motion of the walls, in terms of ;he
normal modes of the cavity with its walls assumed to be rigid. The
derivation Appiies equally to all cavity geometries, and as such is a

generalization of the normal mode expansion (or "guided wave" expansion,
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in the ‘terminology used there) derived lgss directly and for rect-.
angular cavities only in [7].

Acoustical 3rob1em

=~ Let ‘the cavity occupy a volume V, and be surrounded by a wall su;face
A, of which the portion AF is flexible; while the remainder AR is rigid.
If the fluid within the cavity is at rest prior to motion of the wall,

*
the fluid pressure p satisfies the familiar wave equation, and associated
boundary condition:

Vo -G e 0 W

2
B a.p 2H
3n po at on AF

- (2)
= on AR

In these equatiqns p and ¢ are the equilibrium fluid density and acoustic
velocity within the cavity, and w is the displacement of the flexible

portion of the wall. in the normal direction n (positive outward).

wt

Equation (1) has normal mode solutions'anl ,n=0,1,2,...

7

with the following properties -

AN2
iy,
2p o R :
L e (3)
o
aFn .
W 0 onA -(4)

-~

*This is the perxturbation pressure p, of course. The is ‘dropped

subsequently for convenience.



- (5}

'
o
H -
“w
3

1. ~
. v f \Il:]:'l-jnd"r

A
Mn Tr=n

Ht

mnA is the nth‘acoustical natural frequency and Fn its related natural

A

mode. Superscript A is to distihguish mﬁA and Mn from their_struqtural

counterparts to be discussed in a later section.
Note that equation (3) has the solptio'z‘xmoA
other frequencies mnA, n=1,2,... are positive and non-zero, however.

=0, Fy = i.‘ A1}

A brief review of acoustical normal mode theory is given in Appendix A,
The wave equation {1) can be transformed into a set of ordinary

differential equations in time.by-using Green's Theorem in the form:
2 2 aF‘n 3p.
v, - Frpan = f, ot -5, B ©

By defining -

P2 —m [ pF dv’
n POCGV v R

7

and making usé of the fact that p and Fm satisfy equations (1) and (3),
and boundary conditions (2) and (4), the following ordinary differential

equations for the acoustic modes are obtained from (g):



- 10 -

- Az .
P 4+ P =W
n nn n

(8)*

<o

A dot (°) denotes differentiation with respect to time., The quanti-
--ties Pm(t) are the coefficients in an acoustical normal mode expansion

for the pressure:

P . N
Pz p = X _n F 8)
poco b ;| ;A n
n i

Since the normal modes Fn satisfy the homogeneous boundary condition
{4) on the entire wall surface A, the normal derivative of expression
(9) does not converge uniformly on the flexible portion AF of the wall
surface. Expression (9) is suitable, howéver, for délcula;ing the
pressure itself throughout the cavity and everywhere on the wall
surface, including the flexible portion.

‘When one of the walls of the. cavity is highly absorbent it is
usual to model "it through a simple point-impedance model where it is

assumed that

Pz W on AA (10}

where the A subscript is used to refer to the absorbent wall
characteristics, e.g.

Wp - absorbent wall displacement
2, - absorbent wall impedance.

*Note that for n =.0, we have the Heimholtz resonator result, i.e.

FO 2 1
WO - !WdA PO - - WOA.F
s v
A
My =1 e p = pgeg?Py = - pﬂce2 [wdA



- 11 -

The .boundary condition

2 .
‘an P o¥a (2)

:on AA

still applies, of course. Using (10), (2) may be written for the ab-

sorbing wall as

3 .
sga-poa .
&\ on AA : (zAl

' Using the above in (6) along with (9), (8) becomes

- A2 9 o B
Pn + o Pn *féfocﬂ P X Pr Cnr" - ff. Hn (8
vV T e v
r
wvhere C__ = [f F_F dA
nz over AA nr

a

o>

The effect of an absorbent wall is to couple all of the (rigid
£y - ‘ .

wall) acoustic modes. OQf course, as we will see explicitly in what
follows, the flexible wall also couples all of the acoustic modes

&s well.

Structural Modal Expansion

In many technical applications the flexible portion Ap of the
cavity wa11~@§y_be a structural element, such as a plate or shell,
In such cases the wall deflection w is often expressed as a series.

of the form

wazqmwm‘ | (11)
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in which the modal functions ¥  are defined over the region AF' their -
properties being determined by’ structural considerations. Using {11)
a‘ set of structural modal equations describing the wall motion are
derived. As will be shown subsequently, in these equations the

cavity acoustic pressure, p, appears in the form of generalized -

forces Qm:

Q =/ ¥pda a
First, however, the quantities Hm appearing in (8) and (SA)

can be expressed using (7) -and (11) as

L . (13)

W =
nm

z
n m
where

.1 _
L =% f F ¥, dA _ (14)

Hence, (SA) becomes the acoustic modal equation

. A2 2 . " . ‘
Pn+mnPn+AApocoZPrEP-E_--—;:lA_F-Lmqm (.IS)
"V

T
v M
T

These can then be solved in conjunction with the companion structural

equations to be derived in the next section, -

Structural Considerations

When the structure may be represented by a linear structural
model the total fluid-structural interaction may be treated in a
simple way. Let the structure be representod by a linear

(partial, differential) equation,
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2
Swen §E§- = pt . pE (16}

S is a linear differential operator, representing structural stiffpess.
For ;xample, for an isotropic, flat plate, § = DV%, whére 7% is the
biharmonic operator. The second term on the left-hand side is the
structural jnertia, m being structural mass per unit area. On the
right-hand side we have two pressure loadings, the first due to the
cavity acoustics, the second due to some specified "external
agent,

fbf'gimplicity, we assume that the structural modes, y , (cf.(11))

are normal structural modes'satisfying an eigenvalue equation
-Svpm-mwmmmzao 17)

and associated orthogonality condition

f m ¢m¢r dA = M form = » (18)

Ap R

i

= 0 form# r

. th
wh is the m

structural natural frequency and wm its associated normal
node,
Substituting (11) into (16), using (17), gives
d2

\ E
m .

Multiplying through by wn and integrating over AF gives, using (18},

d? (4 E
R I @

where (recall (12))

Q:l z fp¢ v, A, (21) -
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Q" = - [ pFy, (22)

From (9) and (21),

€= oghin, @

n

Sl

Hence the structural modal equations, (20), may be rewritten using

{23) as
Mm[;m * wf‘l 9] = "o°% Ap i Pn :—;ln— + Qﬁ (24)
n

Summarizing the key relations are (15) and (24) with Qﬁ determined
from its definition, (22), (15) and (24) are coupled acoustical-struc-
tural ordinary differential equations which may be solved by any stand-

ard method. Since we normally are dealing with systems. under forced

¥

motion, Qi, the initial conditions on qm and Pn will usually be

the trivial ones.

d LI -
G=gg “Pp=qg =0 att=0

Of course, any physically meaningful initial conditions, could be
accommodated, -

It should be noted that in applications, the use of normal
structural modes may not always be convenient and hence direct
structural coupling may occur. Of course, this will always be true
for a nonlinear structural model [7] since the .concept of normal
modes loses much of its significance there.

Finally, although the acoustic pressure is obviously the physical

variable of the greatest interest, some additional insight into the

nature of the structural-acoustic interaction can be obtained by
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considering instead the acoustic velocity potential. The two are

related through Bernouilli's equation
p = - pgh (25)

If ¢ is expanded in its natural modes (they are obviously the

same modes as for p from the above)

¢ = Ia £y (26)

one can from (9), recall

P F. (9)

(25) and (26}, determine that

2P :

9B - (27)
M
n

Using (27) in (15) and (24), one ocbtains

VMn a + o an]
2 - = L]
+'AA poco : 2 Cnr CEAF g:z an UGy (15*
Ll 2 = » E
_Mm lay *+ of 5] = - pohp 3{- ket & (24)*

The underlined terms are the structural-acoustic coupling terms.
The coefficients are anti-symmetric (to within a multiplicative constant)

and 'this characteristic, combined with the first time derivatives of
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b
~

9 and & . means that the equations possess gyroscopic coupling.

Thus it is known that (if A.A + 0 so that there is no absorbing wall)
the coupled structural - acdustic natural frequencies are real, i.e.
the system without absorbing walls is .an undamped resonator. More-
over Meirovitch8 {(in a different physical context) has shown how

one may use conventional matrix eigenvalue methods to determine

the natural frequencies of gyroscopically coﬁpled systenms.
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IV A VARIATIONAL FORMULATION

The same results may be obtained through a-variational: formulation. -
Previously Gladwe?Iiénd later'Cragégiggve co#sidered'uariétional state-
ments in the context of finite element representations for the couﬁied'

" structural (wallj - acoustic (cavity) problem. Craggs' work has been
carried furthest and we use it as a point of departure for our discussiof.
Even though we shall obtain the same results.as before, the variational

statement in its present form is somewhat awkward. Hence the author's

preference is for the previous formulation using Green's theorem fér
the cavityl Others may feel differently, however, or perhaps be in-
spired to develop a more elegant and/or simpler variational statement.
Hence the folldhing brief discussion. Following Cfaggs, consider an

" action integral for the plate

t .
2 .
I f [Tp-Vpe (wE - wA)] dt - , (28)
tl " L. " -
where ’
Ty = 1/2 [{m %%Q dxdy Plate Kinetic Energy of Flexible Wall

D 32w. 2 32y 2 32w 32w : 32w 2

Strain Energy of Wall

W - - [f pﬁ 8w dxdy Virtual work due
( to External pressure
s = ff pS 6w axdy g ‘ (29)
S U to Acoustie Cavity
AL Po# oW dxdy ' pressure

Bernoulli's relation has been used to obtain the last line, i.e.

Pc ® - po¢
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Using Hamilton's Principle on IP {with pE-and p® not varied) one obtains

Bw+DV*w=-pE e pC - : : (30)
with appropriate boundary conditions on the plate edges involving w
and its derivatives.

The action integral for ‘the acoustic system with a prescribed

motion at the cavity surface is
t, )
= - - *
xAﬂtf (TpVy - W )t (31)
1

where “u - (vector) particle fluid displacement

T, = 1/2 155 poﬁ - U dxdydz Acoustic Kinetic Engery
. (32)
2
V=12 [ff ﬁEEz dxdydz- Acoustic Potential Enexgy
0%0 _

SH* = [] w &p dxdy

GN*A is the complementary woxk done by the virtual forces {(acting

i

through the real displacements) at the structural-acoustic interface,

Introducing the velocity potential, ¢,

Bt

= v¢

and recalling Bernoulli's relation
pc= - DO¢

the above may be written as

T, = 1/2 ]ffpo(v¢~v¢3dxdydz _
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e
v 172 [ff 25 )2 dxdydz ' (33)
G

Sy = - [[wpys ¢ dxdy )

Using Hamilton's Principle with respect to Iy (with w not varied)

one obtains
V2 ¢ -1/ 5620 (34)
CO - .
with the boundary condition

%% = (35)

on z = 0 (flexible wall)

* As the attentive reader will already have noted, our use of
éartesian coordinates is a matter of convenience and the results
readily carry o;er to cavities and flexible walls of arbitrary shape.

The necessity for considering_both virtual work, &W,, and
complementary'virtual'GWA* makes this variational statement appear
somewhat cumbersome to the authior and it is for this reason that
‘the earlier appraach using Green's Theorem is preferredi
It is worth noting that an abscrbing wall in tﬁe cavity can
" also be include&, specifically infGH*A. _We aﬁd a subscript, A, to

21l quantities to denote absorbent. The complementary virtual

.work due to the absorbing wall is

Mty = - 11 vy pgBidsay

Realizing that in Hamilton's Principle the above will appear as
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one may integrate by parts to obtain

t, .

{ gHe e = [ff w, po8¢ dxdy dt
1 .

Further if we model the absorbing wall through a simple point-

impedance model thea
(36)

or . . )
- po¢ = ?A WA on A.A
where Z, - absorbent wall impedance
t p3 .
Thus [  6W* . dt = -ff[ .—¢.6¢ dxdy dt
z
t, A
Using the dbove and proceeding through the formalism of Hamilton's
Principle one obtains for the boundary condition on the absorbing sur-
face (e.g. say z = d}
29 = w
z A
(37)
or

p2 ,
3¢=-"0 on z=4d

3z zA

Modal Equations

‘Modal expansions are now made for w and $.
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w = Iq(t)y Ly
¢ = Lag(t)F (xy.2)

It is simplest conceptually and generally most efficient
computationally to -choose the in vacuuo plate modes for wm and the
Trigid wall modes for.Fﬁ. Other possibilities exist, of course, but

they shall not be pursued here, Using the above choice, one has

= q 2
Tp 1/2 ¢ Mm q..“

m
(38)
= 2 .2 , _ . '
VP 1/2 & Mm I ,
m
where M = ffm wmzdxdy ' generalized plate mass
th .
w, - M in vacuuo natural plate frequency
Here we have used the orthogonality of the LA i.e:
ffm wm wn dxdy = 0 for W # W
Also to obtain VP an integration by parts has been used along with
the fact that L R satisfy the Euler-Lagrange equation
& 2 =0 -
bv Vo ¥y Y, =0
and appropriate boundary equations for b, on the plate edges.
One also has
0 =5 Qb g (39)
A N

where
E _ |
Q= - [ p u dxdy
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and dﬂA = . AF e i i a qu an
where an : ff Fn wm-dxdy
ov?r AF (40)

A

AF = total area of (flexible) structural wail.

u

Using Hamilton's Principle one obtains, in the usual way, the

structural modal equations
- E -
2 - =
'Mm[qm T qm] * Qm AF poﬁ % an 0 (41

Turning now to the determination of the acoustic modal equations,

one may construct

. Por A2 it a2
T, = W2 v Pz ol o a2
c2t
0
(42)
A "o
Vv, =1/72vPp M- a
A e n n
) 0
where A ”
M" = [ffF 2 dxdydz
v

-and V £ total cavity volume, wnA - nth natural (rigid wall) cavity
frequency

* = . >
and oW A pOAF ﬁ ﬁ 9 Eam an

t2 .

* = - 2 I
{ s+, dt A0 [tz a ¢a C at
1 ' ¥
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wh_ere Cop = ff  FF_ dxdy

on AA S

An

ana !l..A = total area of absorbing surface

In constructing ’1‘A and VA’ we -have used the orthogonality of Fm, i.e.

[ & - A A
fI{ Fo F dxdydz = 0 for o™ # w

and the fact that Fn. wﬁA satisfy the Euler-Lagrange equation, -

- : 2
g2 A
v ?n + _f%_ Fn = 0
c
G -
and appropriate boundary conditions on the cavity yallk.

Using‘Hamiltcn's Principle one débtains

A

A 2 2 . (43)
{an * % an] - <o A i UG an .

2 =
* 945 AA Z a C 0

Equations (41) and (43) are the same as’ equations (24)* and

{15)* which were obtained previously.
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V ACOUSTIC NATURAL MODES IN MULTIPLY CONNECTED CAVITIES

For definiteness we consider twe rectangular cavities although
it will be clear that the basic method is‘applicable‘to fairly general-
geometries. See sketch.
iy
o ©
F:\'F

'ﬁr“

e B

T
X

Our interest here is in the acoustic natural modes of the two
cavities connected by an opening of area AF' In this opening
there is, in general, a flexible structural member which deforms
{(as indicated by the dashed line) and thus permits sound transmis-
sion from one cavity to the next, All other portions of the ca-
vity walls are rigid. As before the structural member-has a
displacement, w, with a modal expansion

W= Iq (6, (v,2) y ' (1)
m

and the acoustical pressures in cavities a and b have modal

expansions

a ..a
P, = Py % X P F(x,y,2)

T . @

n 4

N 2 b.b -

Pb - po CO i Pn F]'l (X,)’,Z)
M Ab

n
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The. medal equations of motion for the acoustic pressures are then

(recal Sections III and 1IV)

a Aa? _a
P2+ 3 p2 =-_:_r-__ Iq L
a
(3}
b Abe .
pn * oo, n * ;E- i G an
b
and for the structural wall
= 2 a.a
"[qm" qm] "ocoAF :Pnan
Mﬁa {4)

- 2 b
© =05 %% Ap i g Lo

MAb

The + sign in the second of (3) and the - sign in the right hand
side of {4) is a result of the normal to the opening being outward

from cavity a and inward to cavity b.
As in Sections III and IV one may introduce a velocity potential
through Bernoulli's equatioen

e ®)

with a modal expansien

a,b a,b
=z a’’F (6}

n
{3) and (4) then become

¢



n n 3 ©
{7
b '\b "b nb = 3 ?Tb -
VoM Ly ey o *r - “m
and
*a .a
Mo Loy + o2 qle - oo A 1) I,
n
(8)
b .b
+og & T Ip,

(7) and (8) are in standard form for use of Meirovirch's algorithms
to determine the natural frequencies (cigenvalues) and modes {(eigen-
vectors) of the two coupled cavities.

Of special interest is the case with a2 pure opening between
the two cavities, i.e. one with zero mass and stiffness. 1In this
case substuntial further simplifications are possible. Thus
M = w, = 0 and (4) becomes (one could deal altermatively with

m
(7} and (8))

a.a b b
il Palm o (s
Aa VxS )
n M n M
n n

To determine the natural frequencies, one assumes

.= eiht
U =% ¢ (10)
Pa,b - -ﬁa,b eimt.
n n

Thus from (3) we may devermine



- 27 -

?) an

Substitution of (10) and (11) into (9) gives (before substitution
one should replace the summation index, m, in (11) by r to avoid

confusion with the m in (9))

g = 0 - r=1,2,3,..,
n U Qrm e

_ . .a .a

where Qrm = l;' i Lnr an )

v a, o Aa“]

Mn [-w rw,
(12}

i b .b

* ;B i Lor U'nn ]

M D[ou2ey AD?)

n o

The natural frequencies are determined by the condition that

the deteminant of coefficients must vanish

le, | =0 ' ‘ _ (13)
(13) is a non-standard eigenvalue problem because of the form
that «? takes in.Qrm, see (12). Hoﬁetgr, it has one overwhelming
advantage as compared to the standard (moéified.for gyroscopic couplings)
eigenvalue approach embodied in (7) and (8): Thp size of the matrix '

in (13} will be much smaller than that.in (7) and (8). This -is because the

number of two-dimensional opening modes, ¢m' may be much smaller than

the number of three-dimensional cavity modes, F;’ Fnb, to achieve a

given level of accuracy. 'This advantage will persist even when the-

opening is a structural member of finite stiffness and mass, but the
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mathamatxcs are a bit more cumbersome.

In c1051ng this section we quote, without detailed der1vat10ns,
two.generalizations of the above results,

For an external wall of cévity a whose motion, wEa, is pres-
cribed (sinuscidal motion is assumed for simplicity)

The equation of motion is

.. ’ ooE -
Doy Qy* Q=0 as)
where 55 = AEa LI qﬁa Lﬁi L:r

M"\a[m ]

Forced motion will be discussed in much greater depth in Section VI.
For three cavities, a, b, and ¢, which are interconnected by
openings (all other walls rigid) the counterpart of equation (12)°

becomes -

ab .ab _ be be(ab)
Doy Qv 1q," Q™ =0

o ab jab(be) o, . “bé  be

pX I . = {
2o Qs 5 g o
where
gb _ ab a(b) .a(b) .
Ue = - gf, i Lpr ~ Log -
-a M‘:a(_’mz,.,m‘::a )

- ab b(a) b(a)
. Ap .
‘v—' nr

n z
b H.Ab Cw2+ Ab)
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be(ab) 5 , A . o B(2) | bB(e)
Qr - T nr nm-

by 11§
Pt 2
_ b Mﬁb(_m2+w§b )

ab .
b(e) , bia)
F I Lnr an

i n
lﬁb . 2. Ab%
L (-w o, )

3]
o
~
[~
Le]
et
X

1]

-

b(c) , b(c)
E Lnr : an

n
b 5 AbZ
MP (-u2ea? )

2
o

_AS e el
-v— n nr nm -
¢ M;c{-m2+wﬁc ) | {16)

ab
where AF - is area of common opening to cavities a and b, etc.

The generalization to any number of interconnected cavities should
now be cleax. o

The relationship of this analysis to other methods also deserves
brief mention. Morse and Ingard6 have considered two coupled cavities
employing a Green's Function approach. The final result is the same
as that obtained here, (12)}. See Appendix B for details. Klternatively,
in the context of the variational formulation, a§ far as computing
acoustical natural frequencies of multiply connected cavities with
pure openings and otherwise rigid walls is concerned, the q, may be
considered a2 Lagrange multiplier which enforces the constraint that
the pressures in cavities a and b must be -equal at their common opening.

Hence the present analysis aay be thought of as a component mode synthesis
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where the comPoneﬂts are the individual cavities. The results are
entirely amalogous to these previocusly obtained in structural vibratioqs,
except the roles of force and deflection are interchange&14; In
structural applications, the Lagrange mul;ipliers are forces of con-
straint enforcing common deflections where two structural components
are connected;in acoustical applications, tﬁe Lagrange multipliers
are déflections of constraint which enforce commOn forces (acoustical
pressuxes)iwhere two acoustical components (cavities) are connected.
With the combined, equivalent single cavity modes determined by
the method described in this section, it is sufficient to consider
a single cavity in the subsequent discussion of forced response in

Section VI,
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: VI ‘FORCED -RESPONSE OF A CAVITY WITH A FLEXIBLE AND/OR ABSORBING WALL

Basic Model

Hexre a single éavity is considered; multiply connected éavities'can
be treated by first determining their combined single cavity natural
modes as in Section V.

The total pressure loading on the structural wall is now the
sum of the internal acoustic.cavity pressure and an external (pres-
cribed) pressure loading. Hence, the structural modal equations

are
Mylag + 28,0, G * w2an] = Q @

where Q= [f Py, dxdy

p =p%+pF

n

A

Mo

E . . .
p , the prescribed external pressure, is the new element in the

and p=p c2LPF (2)
¢0 4 n )

theoretical model. Qn may be written

G = Py I Py by ¢ O (3)
A
My

where ng z . ff pE ¥ dxdy‘ t4)

Combining (1) and (3),

‘Hm[am t 2 Ly am + uy® qm]'pgcoaAF i Pnlgg ¢ ng (5)
M

&
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'The cavity modal equations are

-.‘ Az . ‘ - 2 .o —_— -
B Py + Ay 0" TR G - A By (6}
Shvr AR Al -

M -
r

One can write (5) and (6) in an attractive matrix form by again

introducing the velocity potential, ¢. Bernoulli's equation is
pe-py & Q)
Us%ﬁg an expansion for $,
$ =La F : (8)

{5) ana (6) may be written
4
i - o]
where —
0 pDAFLn;‘
'COAF;nm - 0

[ ] _
[P o 16 [0 ]

A0 0 nr

TGN N

[ -
) M
+
o
[
| W |
:—"\—\

v ml
N
|

These equations can be solved numerically by standard-methodss.
+ In the remainder of this section, simplifying assumptionS'are‘COP;
sidered which allow useful but approximate analytical solutions
to be obtained. These should suffice for a.rough-estimate and- also

serve as a guide for more accurate and more -elaborate numerical
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solutions. JIn all cases sinusoidal excitation is assumed, i.e.

- pE ""EE ei_pEt'

where we is the excitation frequency.

Because our model is linear any other time history can be considexed
through superposition of sinusoidal excitation. Random excitation
may be considered using the sinuscidal excitation results and power

spectrahmothodsls.
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Simplified Models

One may anticipate the largest response will. occur when- the
excitation frequency is near a structural or -cavity resonant fre-
quency.

(1) Exciting Frequency = Structural Wall Resonant Frequency.
If mE e ms'where s denotes a structural resonant [natural)

mode, then only q will be important and all other q, may be neg-

legted., Then, from (6)
Pn X - ‘A_'F__ Lns qs (10)
v

and from (10) and .(1)

S tw2q 1= -0 c2 A2 D12 g
Ms{qs+2csm5qs+usqs] P2% AI-‘ ﬁ as s * Qs e E ’ (11)

A, 5 A2
My (rugrey )

S 2 _
From the right hand side of (11) it is seen that if w~ > -.u:;-,

tn . : . . . .
then the N~ cavity mode gives rise to equivalent mass, while

: A2 t : : .
if w < wg » then the.n h cavity mode contributes an equivalent
stiffness,

Note that the n = (0 cavity mode always contributes equivalent
stiffnqss:

In many practical examples the structural wall resonant’ -
freéuencies wil; be unchanged by-the cavity per se, e.g. the sum on
the right hand side of (11} can be neglected, The circumstances
under which this is not true will be considered in Section VI, part

(2). Making this assumption for now, from (11} one computes as
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E
q; = Qs (12}
P
Ms[z Csms ]i

From (12), (10) and (2), the cavity pressure may be computed

P = poco2 AF IF, L Qs asy”
FH _A s
2 iV M A
s n : A<,
MSIAF '["ms +wn I

1f m§ << lowest non-zerc acoustical resonance, then only n = 0

need be considered in (13). Hence (13) simplifies to

TR S b vl Py dA
ar, il) % e aor
& [ v 2aa
5

Representative numbers are
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Thus pc N5 Pgs i.e. typically the sound pressure in the cavity will be

larger than the external sound pressure, if wg % uA. For W >'dA,

one must compute pc from (13) and typicaily pc <va'
(2) -Structural Resonant Freqﬁency Changed by Coupling with Cavity Modes.
In most cases where there is a significant change in a structural

resonant frequency due to the cavity, only the n = 0 cavity mode will

be important. Hence (11) may be simplified to
b - 2
Ms[qs *2 b Wg 95 * Uy qs]

- t . )
- g St b 1, + T as)
v |

The effect of the cavity (within our approximations) is to modify

‘the structural stiffness term, i.e. the total term is now

2 2. 2 2
Msms * p0 CO AF LOs
V.

Hence (15) may be written in the more compact form
M[q, + 20, 4+ oS q) = qF e (16)
stis sS§ ' s ‘s s -
where the coupled structural-cavity natural frequency.is

c? 2 2 A2 1.2
wg = WSt poCy” AR Lo : az*

Hs v

(17) generalizes an-earlier result by Dowell and Voss4 for structural-
cavitf-coubling. Using .(17) the results in Section VI, part 1, e.g. (13),

can now be generalized to include structural-cavity coupling. By
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examininé the ratio of the two terms in (17), one can assess when

cavity effects on structural resonances are important.

A Rl b da
ava? | | ]
JI v 2da 2

A

i
Using our previous estimates for the integrals, the ratio becomes

s

2
pw%%- 3
2 2
mnY @y L

Clearly the.léwest frequency structural mode will be most affected
by the cavity. In extreme cases 5 more than one structural mode may be
significantly affected.

-Another less frequent case where the stfuétural frequeﬁcy may be
cﬁanged due to acoustic action is when & structural mode frequency and
acoustic¢ mode frequency are close together, Clearly this i; an undesire-
able situation, since large sound levels would be anticipated at this

double resonance. This Spec;al case is considered in (4) below.
(3) Exciting Frequency = Cavity Resonant Frequency.

Whenwt - "-’?: , then P, will be the dominat pressure mode.
But (in the absence of absorbent wall damping) if Pn is finite, then
from fs).bne concludes that

r;:.nmqm = 0 _ C1§)

The structural equation, (5), becomes

'“nlam"zcnf’mammilqm) * poc(za Ap Plam* Q: (19)
—

Mn



- 38 -

Solving (19) for q_ gives
‘q_ = p.c2A ‘3' L +QE
W 070 "F 'n nm Qm

A d
M. (20)

A2 A,
) Mm[- @ .+ 2w e tey ]

(20) into (18),. gives

2 F 2
i Lin . ,Pn %0 AF
. A2 A 'y
- 2
Hm[ W *27 o du +w ] M,
- E = 0
+ ﬁ -Qm LQP
_A? . A 2 (213
M.[-w n f 2gopoie s+ owp ]
Solving (21) for ?‘l'l,
A ~E '
Fn--un i Q Ly - S
2 AZ A 2
oo AF‘ M [-w +2; ) lmn + oo ]
I 12
m nx
M [-wA2+2c w i+w?] (22)
T n mm N m
For -the special case where wﬁ}\ivwm for some 1, then the sums

can be well approximated by 4 single term and the above relation-
ship simplifies. Even when wﬁé # w; for any m, there may ‘be a pre-
dominant structural méde in which case the sum could be approxim;ted
by a single term. First, however, we digress to consider another

important limiting case.
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result obtains, namelf

E

E o . ) .
m ¥ P / A s Lgp = Fy I bpdh. - s

.

the ratio of sums simplifies and using (2) and (22),

- Q

<

Mnf on A p.c.2

2
)

on AF

Clearly, if pc|0n Ap = Pg then w = 0!

To see this.in detail recall that.

[+
P = EP_F
n nn
2 A
poco Mn

which can be simplified to

p< = P F_ (for ath cavity mode
' ) dominant)
2 . A
p.C M
0o n

Using (4) and (22) in {2) one concludes
pcl o= a pE and wE O“
on AF g.e.d.

Note that if

£ E, and pE are constants over Ag, then a very interesting

(23)

163

(2)
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E =
P CFn

on AF
then the same result holds, namely

[

P pE ~and w =0

=
onA.F

1f Fn = constant, but PE # constant,, then a similar calculation

gives

€ a1 £ [ oy aa [y an

E—- ) n n L and w # 0

2 2 Mo[...]

Po%o on A, P0% o
r [f v da)? (23)
n—h-w--—l—ﬂ—u--—
M_[ ...

o

Mote that pc is constant over AF Only if there is a single dominant

structural mode will this simplify further. Now return to (22).

Single Dominant Structural Mode:

For a single dominant resonant structural mode, m, (22) becomes

AR (24)
"ocoz AF l-"mn
and pC=F [ 2" v, da (25)
f F_oy dA

1f pE= CFnIon A then p°© - pE on Ap and w = 0 as before,

Note that, within reason, L be selected as an appropriate linear

combination of natural modes. Hence a dominant structural mode assumption
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is quite useful.

‘The central ccjmclusion to be drawn from the above-is that, in
éimple terms, we may think of 1;he ca{aity as actiné as a vibration
absorber for the structural wall wheh the external .exciting frequency

is equal to the cavity resonance fred,uency. Hence, at most, the inte?'nal
cavity pressure will be equal to the external pressure and indeed,

if w, >> wn’\ for all m, and/or pE varies significantly over the flexible

r

wall, then pc << pE.

(3a) Effect of Cavity Wall Absorbtion (Damping).
In our model the absorbtion characteristics are modeled by an

impedance, z,+. For representative acoustical materia1516

f_A_ = 1-10

0%
Again we shall assume a single ca\iity mode dominates. Then an

-equivalent damping ratio of the usual type may be ‘defined

c

2o 2000t A €
vou A Mﬁé
or 2’;;“9"0‘ cg Ay JJ FF_ dA
-; v wnA T
[IfF 2av
v

Typically g would-be .03 - .3.

Using an equivalent cmc, (6} becomes

. A A?
Pat 2 0, Prvwy Py
= A ir"nmqm {6a)
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As usE - mnA » (6a) becomes
2z i “r"': =A. ‘IL_q
b * 'n ;Af_. 5 nm U
’ Vv
Using (20) in (26),

€iF = 2 2
Y 21,3 P, =0g% A iz‘nm

L ‘ B P
A A .2 A
ey Mm[—wn +21;mwmmn1+mm] . _Mn
B .-
+3 L
IS
] A . A 2
Mm[ W, + 2w de tow ]
A o .
For n = Yne retain only one term in sums and thus
Ay F oM o= 2 2 F L
- Ay Tt ¥OPn Mg omoegSet Ap L 35. * Q4 by
M A
n
Solving,
Fn - i bom 1
) A< A
po"% AF Lmi . [1+mn 4Cm“;rxc,'n'{llfvln ]
A 24212
M PoSa AF" L

(26)

(27)

(28)

(29)

Hence effect of cavity damping is to decrease internal pressure field.



However, the numerical effect is typically small.

{4) Exciting Frequency = Structural Wall and Cavity Resonant

Frequencies in Close Proximity.

For simpliéi;y we ignore any absorbing wall-and: consider a single

dominant structural wall mode and also a single dominant cavity mode

whose natural frequencies are very near each other. From {9) the

- equations of motion are

- - 2 E- - _
- Mh[qm¢2;mmm U * qm]+Qm AFpoan an =0

™ A
n

For a single cavity mode

pca-p a F
¢ n'n

(30), (31) and (32} may be solved to obtain

where

. A2 2 -
[an+mn an] - €4 AF q, an = 0

1]

B

i

(30)

(31} -

(32

(33)
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Note that

2
A v pOV .f? g

; 7
m AF ¥ Wy
From (33) the coupled structural-acoustic resonant frequencies
may be determined and the assoclated cavity pressure. For the
special case of

g =1
and A << 1 (typically A < 1)

particularly simple results may be obtained. The resonant frequencies.

are then

nEm ¥ + AI/Z

(34)

and the cavity pressure at resonance

4

11/2

T, 2 ¢,

Fn (35)*

nm  F

The left hand side of (35) is approximately pc/pE. Hence for

typical ;m and A not too small, pCYPE > 1 when a cavity and structural

wall mode coincide in natural frequencies.
(58) Convection Effects on External Sound Sources and Internal Sources.
The results discussed to this point are for a stationary external

sound source. Here a few brief (cautionary) comments are offered with

respect to other sound sources.

If substantial convection of an external sound source is present,
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hydrodynamic coincidence effects may occur and also radiation
damping in the external flow may ﬂe important17;

.For sound sources inside the cavity itself, the wall absorbtiom
will play a much more important rcle than for the external sound .
sources studied he;eiﬁ.

(&) Sﬁmmary of Key Relations from Simplified Models to Determine Cavity
Pressure.

Exciting frequency = structural wall resonant -frequency.

For wE + ws,(ls)* or (14)* modified by (17)* as necessary.

Exciting frequency = cavity resonant frequency. ‘

For mB - mnA.(single dominant structural mode) (25)*

Exciting frequency = structural wall and cavity resonant fre-
quencies in close proximitg.

- For wE + o = mnA ’ {35)*.

When the external excitation freqﬁency is well separated from all
structural or cavity resonant freguencies, there may not be a'single
dominant structural -and/or cavity mode. However,. some simplification
may still be possible by neglecting the interaction between sStructural
wall and cavity, i.e. one mﬁy first determine the structural wall
motion and then use that result to determine the internal cavity acoustic
pressure. In this approximation_the effect of the cavity sound pressure
on the siructural wall mofion is omitted.

It is also worth emphasizing that - for off-resonant exciting fre-
quencies, .although the nuﬁerics may be more elaborate due to the
r;ecessity of' accounting for multiple modes, the basic theoret:n;.cal model

may be more accurate because the uncertainty with respect to.structural

and/or acoustic damping values will be less important,.
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VII NUMERICAL RESULTS AND COMPARISONS WITH EXPERIMENTS

For a gégglg:cavity with a flexible wall and an external sound
source, the theoretical model has been verified experimentally by
several authors4’5’18’19’2 »21. ’

Here we assess the capability of the model to describe accurately
the acoustic natural.modes in multiply connected cavities. Once b
the combined natural modes of the multiply connected cavities are
determined and verified experimentally, they may be treated as one
single cayity. Hence the earlier work for a single cavity4’5’18’19’20’21
then may be taken as experimental verification for the forced exci-

tation of multiply-connected cavities as well.

Acoustic Natural Modes in Multiply Connected Cavities.

The experimental studies were conducted by Smith22 who has con-
sidered several geometrical arrangements for two acoustic cavities’
with rigid walls and a partial opening between them,see Fig.l, In Fig.2
the lowest found longitudinal resonant frequencies from theory
(Section V) and experiment are shown vs partition size, Yes normalized
by cavity height, d. As may be seen the agreement is good with the ex-
ception of the 10* mode for Q % .4 where a mechanical resonance of
the loudspeaker used to excite the acoustic modes contaminates the
data, In practical terms this is unavoidable as both theory and

10

0 - .5. In these experiments, c

experiment show that @, = .5 = 0 as the partition is closed, Yoy, =
d
= = = i
o 1117 ft/sec’ a=d= 10" and
the width dimension was 4' to provide two-dimensional conditions in the

frequency range of interest. The thickness of the partition (assumed

#10 means there is 1 longitudinal nodeline and 0 lateral notelines, etc.
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zero in the theoretical calculations) is .5" as is the thicknéss of
all external walls. The cavity és constructed from plexiglass.’
In Figure 3 for a constant aperturé (opening) size, ya/d = .5,
‘the effect of aperture location is- studied. Both fheor& an& experiment -

show 2 small effect.

A second configuration studied by Smith consists of two acoustic
cavities, one twice the dimensions of the other, with rigid walls and
a partial opening between them. In Figure 4 the'lowest four longitu-
dinal resonant frequencies from theory and experiment are shown vs.
noermalized partition size, yc/d. Again the agreement is good., In~
Figure 5, the longitudinal pressure distributions (along with their
resonant frequencies) are shown for the first seven (symmetric with re-
spect to height) acoustical moues with a full opening between cavities.
The agreement between theory and experiment is very good.

Altogether one concludes the theoretical results are a faith-
ful description of the physical model. For more detail the reader

should consult Reference 22,

Forced Response of a Cavity with a Flexible Wail
Experimental Arrangement:

_For this discussion, Gorman's workls’19 is used; however, also
see Reference 4,5,20 and eépecial}y 21. The experimental arrangement
is shown in Figure 6. The flexible wall panel was a 10" x 20" x 0.03"

aluminum alloy plate that was bonded onto a rectangular frame consisting
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of alumihum channel members welded together at their ends. By bondiﬁé

the-plate to the cavity in this way, a clamped edge boundary condition
was approximated. A sealed cavity, also 10" x 20", was constructed

beneath the panel in such a way that the cavity depth could be varied

in 2 inch increments from 12" to 2" deep. The cavity itself was

made of 0.5" thick plexiglass and was supported by four plexiglass

"feet',

The panel was excited acoustically by a Welverine LS15, 20 watt
loudspeaker driven by a B § K Beat Frequency Oscillator, type-1022,
The external sound field was set at 100 dB at the mid-point on the
plate surface for all measurements. By using a single speaker, an
exterﬁal field distribution that was variable in space was obtained.

See Figure 7.

Initially, there were two basic measurements that were felt
to be important: the measurement of panel amplitude and the.measurement
of cavity pressures-due to a sinusoidal driving force. As work pro-
gressed, howeve;, the need arose for two more measurements: the
measurement of panel and cavity damping ratios. .The reasons for
these latter measurements will become apparent later.

Panel Ampliﬁude Measurement:

The panel motion was measured by the use of a Bently Nevada
motion pickup, Model 302, that was mounted on an aluminum frame
located above the panel. The frame allowed movement of the -pickup
to any point on the Su¥face of the panel, ;nd also allowed variation

of the distance between the pickup and the panel. As the panel oscil-
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lated, the voltage generated by the motion pickup was fed through an
amplifier and recorded on a amplitude vs. frequency plot, .Such a. plot.
is.Shown“in Figuré 8, for a cavity depth of 12,

For the measurement depicted in Figure 8, the motion pickup was
positioned at the center of the ﬁanel. :By'positioning the pickup in
this way, one may obtain defléctiun measurements for the symmetric
panél modes, i.e., the modes which have a peak at the panel center,
but not for the antisymmetric modes, i.e,, those modes with a node
at the panel center. The dominant features of the plot
are the three resonant peaks, corresponding to the first, third and
fifth panel modes occuring at 113 c¢ps, 210 cps and 410 CPS. Modes
above the fifth mode have an amplitude that is negligible compared to
"the first three symmetric modes. Above 500 cps, the panel
is essentially motionless. ' . The dominant
panel response is at the panel fundamental mode, as is expected.

Cavity Presspre Measurement:

The sound pressure lev?l within the cavity, when the panei
has been excited by the loudspeaker, was measured usiﬁg a B & K1l/4"
‘ microphone, Type 4136 with'a Type 2615 cathoég follower with Type UA
0035 connector. This microphone was installed in holes that were drilled
iﬁ the side of the cavity. As with the panel motion pickup, the voltage
from the ‘microphone due to excitation of the cavity was recorded on a
amplitude vs. frequency plot. Such a plot is shown in Figure 9, for
a cavity depth ;f 12n,

Fb; the measureﬁent depicted in Figure 9, the microphone ;as
positioned 4in the holé located.at the 3" cavity depth level. Since

a1l .theoretical calculations invoive the cavity pressure at a2 peint

just beneath the panel, the 3" depth level was chosen to place the
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microphene .as close to the undersurface of the panel as possible.

In Figure 9, the caviziy pressureAis plotted against
frequency, where this pressure is the difference between the dB
level inside the cavity and the dB level outside the cavity on the
upper surface of the panei. Again, the dominant features are the
three primary resonant pcaks.occnring at 113 cps, 210 cps and
518 cpé. The first two resonances coxrespond to the first and
third panel modes, and thus indicate that the panel is driving
the cavity at these frequencies. fhé fesonance at 518 cps is the
%undamental éa;ity mode. Note that this mede occurs above the
frequency at which the panel becomes motionless (500 cps), and thus,
in effect, the cavity is acting as a rigié cavity with no flexible
walls. Theoretically, since the panel is motionless, the pressure
level difference between the external and internal measurements
should be zero. This is practically the case in Figure
9, the slight variation from zero due to the very slight motion of
the panel at this frequency. Note also, that, as with the panel
amplitude, the greatest cavity response occurs at the panel funda-
mental frequency, with the second greatest response occurring at the
cavity'fundamental frequency.

Damping Ratio Measurement:

The damping ratios of the panel and cavity can be measured
experimentally in.two different ways: the first, by using the
"peak method"”, and the second, by using the "decay method", The decay

method was the method used to determine experimentally damping ratios,
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The actual:measurement of damping ratios was as follows: using an.
oscillograph, a plot of amplitude vs. time was obtained. As the
oscillograph was recording, the voltage to the loudspeaker was cut off, -
thus eliminating the external sound field, and the classic exponential
decay plot was obtained.

Figure 10, plots the damping ratio of the panel with a 12"
deep cavity as a function of frequency., The experimental points
were measured at the first, third and fifth panel modes for this
panel --cavity configuration. The curve obtained is consistent
with a theoretical model, which says that for damﬁing that is propor-
tional to panel velocity, the damping ratio varies as the inverse of
the frequency. The slight variation from theory at the higher
panel frequencies is probably due to coupling between the panel and
cavity modes,

Figure 11, plots the damping ratioc of the cavity (12" depth) as
" a function of frequency. The experimental points were measured at
the f%rst, second and third cavity depth modes. The curve obtained
suggests that the cavity damping ratio at a constant cavity depth
varies as the inverse of the frequency sguared. This result is incon-
sistent with Sheshadrizs, concerning -the damping of Helmholtz resonators,
and also does not agree with the variation of panel damping with fre-
quency at a constant cavity depth. As yei,_no explanation can be given

€

for this damping result, other than to conclude that such a result seems
‘to,indipate a poré complex damping mechanicsm than ‘that of the panel.

For the panel, the damping was assumed to be'ﬁroportional to the



-~ 52

velocity of the panel. For the cavity, such a simple relationship cannot
be assunmed, N

Results:

I.Panél F?equency Response

Since the panel-caviiy system being discussed is an integrated
system, one must investigate the coupling effects between the panel.
and cavity. It is well known that the cavity effect on the panel will
beccme more pronounced as the cavity depth decrease_s?’s’zo’21 In
Figure 12, the panel deflection, normalize& about the mid-point of
the panel, has been plotted against the panel leAgth, noxrmalized
with thé total panel length, for the fundamental mode of the panel
backed up by a 12" and a 2" deep cavity. Figure 13, plots a similar
response, only normalized about the oﬁe—third point of the panel, for
the third panel mode, These graphg depict the effect of intermodal
coupling at shallow cavity depths. The panel response at the 12"
depth for both the first and third panel modes is very close to the
"in-vacuo' curve given by Dowell and Voss,21 inter alia, indicating
‘that a 12" deep cavity approximates an infinite cavity fairly effectively
for the panel size investigated here.

For a cavity depth of 2", the mode shapes vary considerably. In
the case of the panel fundamental mode, the response is more concen-
trated about the center of the panel than for the 12" depth case.

The response can be seen to be approaching the shape of the third
mode, indicated intermodal coupling at this shallow cayitf:depth.
Indeed, if the cavity was ﬁadé more shallow, thé‘panel‘fﬁndamental

mode would take on the modal pattern of the third mode by having two
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4’21._ For the thixd panel mode at the 2" cavity -depth,

nodal points

: ihé‘&ﬁéﬁgg in modal shape‘is less dramatic: Hodever, there is. some
effect, especially axound the mid-point:of.-the panel, and this measured
effect corfespoqu to the results of Dowell 'and Voss. Again, if the
cavit} were made more shallow, the effect would be more dramatic with
the probable elimination of all nodal points, indiéating intermodal
coupling between the first and third panel modes.

. Aside from affecting the mode shapes of the panelg-the cavity .
aiso-affects the naturai frequencies of' the panel due to the stiffness
and ;irtual mass eéfecté.discussed previously. In Figure 14, the
panel fundamental frequency is plotted against cavity depth. Note
that, as the cavity depth decreases, the panel fundamental frequency
is an excellent example of the stiffness effect, for, as the cavity
depth is decreased, the cavity becomes stiffer, thus raising the
panel natural frequency. Figure 15, plots the panel frequencies vs,
cavity depth for the third and fifth panel modes. Note_;ggf ihere
is apparent a slight stiffness effect on the third mode, and the
lack of any stiffness effect on the fifth mode. In fact, the fifth
panel mode displays fEafures of the virtual mass effect, for as the
cav;ty deﬁth decreases, the natural frequencies decrease also. This
fact also ind;cates that the virtual mass effect is present in syﬁﬁ

metric panel modes, 'and not just in the antisymmetric meodes. The
frequency fgsponse for the third and £ifth panel modes is consistent -

with theory, which states that the stiffness effect becomes less

for the higher symmetric modes and that the virtual mass effect is pre-.

‘sent- in'all modes. 4+ 5223
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In Figure 16, a compavison between theory and cxperiment 1s made.
The ratic of panel frequency (modified by coupling with the cavity) to
"in-vacue! panel frequency is plotted against panel length to cavity
depth ratio, a/d. The ."in-vacuo" panel frzquéncies were computed
from Warburton's theory,24 and the panel freguencies' variatio:x with

1 which is an

cavity depth were computed from Dowell and Voss' theory2
earlier version of the present analysis. There. is excellent
agreement between theory and experiment at the large cavity depths, with
some variation from theory occurring at shallow cavity depths. One
or two panel modes plus ‘the cavity Helmholtz mode were used in the
calculation. This agreement between theory and experiment seems to
indicate that below an a/d of 10, for a panel with similar size, thick-
ness and material properties as the one investigated here, a one-temm
panel mode approxiﬁation te the panel natural frequsncies may be used
with good accuracy. For a/d > 10, higher term approximations must be
employed. More generally, for lca/d > 10,000 higher term approximations
must be used to compute panel natural frequencies for a panel length
to width ratio, a/b, of two.s'zo
Cavity Frequency Response
"The cavity also responds in certain characteristic modes. Theo-
retically, at low frequencies below the cavity fundamental, the cavity
pressure should be constant over the cavity depth since the cavity is
responding in its Helmholtz mode. Figure i7, plots the cavity pressure,

normalized with the external pressure, along the cavity depth at the

panel fundamental frequency. Apparent is the fact that the cavity pressure

distribution is not exactly constznt, but is approximately so.
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Figure 18, plots a similar normalized pressure distribution at
the cavity fundamental depth frequency. Theoxry predicts-that the
cavity should respond in 3 cosine mode, with the internal and
external pressures equal at the top and Sottom.of the cavity,
and with the response undergeing a phase shift with cavity depth.
‘Note that the experimental pressure distribution in the cavity at
-the cavity depth fundamental follows the theoretical cosine courve
éairly well except at the deepest pért of the cavity.

Panel Displacement and bamping Effect

There are three types of damping that will be referred in this
discussicn: constant damping, frequency damping, and experimental
damping. Constant damping is the value measured for d = 12" and assumes
that there is no variation of panel modal damping ratioc with cavity
depth. Frequency damping allows for variation of damping”raﬁio with
frequency and employs the data measured at a 12" cavity depth for
various panel resonances. ‘Thus, the only effect changing this type
of damping is the variation of panel modal frequency with cavity depth.
Experimental damping is the dampiné ratio measuréd for the exact con-

* ditions under investigatiop.

"Figure 19, plots the panel damping ratic due to the effect of
increasing frequency alone, and from experiment. Note that the
frequency effect forces the panel damping ratios lower, wheréas, the

-experimental damping ratios are higher, as the cavity depth is
reduced. The reasons for this.behavior not readily apparent; however,
Tit is‘felt that, if there were some leakage from the cavity %hus

creating more losses in the system, the effect-would be to make.
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the panel respond less ideally, i.e., to increase the damping ratio.
Experiments show that the cavity pressure increases with.a decrease
in cavity depth. Thus, if there were a leak present, the effect
would be greatest at the shallow cavity depths. - This reasoning is
consistent with the experimental results depicted in Figure 19.
With the panel damping ratios determined, the theory may be
used to compute a one-term solution for the panel amplitude, for
three casés£ cons£ant damping, frequency damping and experimental
damping. These results have been plotted in Figure 20, along with
the measured panel amplitudes. The constant damping
and frequency damping cases predict the correct panel amplitudes
only at large cavity depths; however, the experimental damping
ratios predict the panel amplitudes well throughoué the range of
cavé.ty' depths tested. From this, one may conclude, that, given the

proper damping ratios, 2 one-term approximation for the banel

amplitudes is accurate within the range of cavity depths tested.

A similar result was seen18 for pénel amplitudes for the third
and fifth panel modes. Again, the experimental damping ratic pre-
dicted the panel amplitudes more accurately than the frequency
damping‘effect.

Cavity Pressure and Damping Effects

As with the panel amplitude, the theory may be used to eompute
cavity pressures. Figure 21, plots the variation of cavity pressure
with cavity depth for constant damping effect, frequency damping, and
exﬁerimental damping. The exciting external frequency is equal to

the panel resonant frequency. Recall that the damping ratios used

in these calculations are the effective panel damping ratios and not
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those of.the cavity; the 1a£ter Were neglected. Even_though
cavity damping has not been considered, there is excellent agree- -
ment between experiment and the éxperimentél ddmpiné case. ‘This .
indicates that, f&E the fundamental panel moaé, and the ‘range of
cavity depths tested, the use of one-term panel theo;y, the Helm-
heltz cavity mode and only panel damping ratios will predict cavity
pressures accurately.

_Similar results have been obtained for random external pressure

19. Pretlove5 has made measure@ents of panel natural

frequency variation with cavity depth; Guy and Bhattacharydzl have

excitation

measured cavity pressures and panel natural frequencies. Generally

good agreement with theory has also been shown in Ref. 5, 19 and 21.
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VIII CONCLUDING REMARKS

A compreheﬂsive theoretical model is developed for .interior
sound fields which are created by flexible wall motion resul;ing_
from exterior sound fields. Including in the model are the.mass,'
stiffness and damping characteristics of the flexibie wall as well
as the mass, stiffness, and damping (due to absorbing interior
walk) of the acoustic cavity. Full coupling between the wall and
cavity is permitted although deétailed analysis, numerical results
and experiment suggest that it is the exceptional (though perhaps
occasionally important) case when the structural wall dynamics
characteristics are significantly modified by the cavity.

Based upon the general theory, an efficient computational
method is proposed and used to determine acoustic ratural fre-
quencies of multiply connected cavities.

Simplified formulae are developed for interior sound levels
in terms  of in-vacuuo structural wall and (rigid wall) acoustic
cavity natural modes. \

Comparisons of theory with experiment show generally good
agreement. The principal uncertainty remains the structural and/
or cavity damping mechanisms. For external sound excitation,
cavity damping is demonstrated to be generally unimportant;'ﬁéw-
ever, it may be of substantial importance for interior souﬁd
~sources. ‘No systematic experimental data are available for

cavity damping to assess the validity of the present theoretical
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medel in this respect.

The results of the preseﬁt work, as well as those of Wolf,
Nefske and Howell%s using finite element techniques and Howlett
 4nd Morales?S (based upon earlier work by Cockburri and Jolly’’).
using modal analysis for a particu1a£ wall and cavity geometry,
suggest that effective analytical models are available subject
to the unceriainties concerning damping previously discussed.,
For a further entree to the literature one may consult Refereﬁce
25 and additional references cited therein.as weli as the recent

work by Petyt, Lea and Koopman.28
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APPENDIX A

ACOUSTIC NORMAL MODES OF A CAVITY WITH RIGID'WALLS.

Here we conéider a representative, but simple, calculation of
acoustical normal modes.
Normal Modes of a Rectangular Acoustic Cavity
We shall seek noﬁ-trivial {(i.e. non-zero) solutions for a

cavity with rigid walls. As u5ual the equation of motion is

2 . 32 - R
v2p ;/coza—t% 0 (1)

with the boundary condition

%2 = 0 on all (rigid) walls e)

where n 1is coordinate normal to any wall. For a rectangular

cavity with dimensicns and coordinates shown below,

e , X > X
el

the boundary conditions are

%E-a 0 onx=290, a

X .

P = (2)
3y 6 ony=20,0b :
I -

e 0 onz 0, d
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We assume simple harmonic motion

PX,¥,2,1) = F(x,y,2) e °F (3

and seek the frequencies, w = W for whicﬂ non-trivial solutions
are possible, These are called the normal mode (or natural) fre-
quencies. Mathematically speaking they are the eigenvalues of the
problem. The corresponding solutions for F, F = Fm{x,y,z) are the
normal or natural modes or eigenfunctions.' Assuming a separable

solution for F,
F(X,Y,Z) = X{x}) Y[Y) Z(z) (4)

we may substitute (3) and (4) into {1} to obtain (subscripts denote

differentiation with respect to that variable)

2
f&'ffxxnz_z_v(a_) =0 , (s)
X Y

<
Z 0

Introducing separation constants,‘kx, ky' (5) becomes

x = -k2

—_— X

X

Y .

Yy = - kyz (6)
Y .
Z 2 2 fu N 2 : '

zz =k “+ k e(-) 2 - k_ < (This defines k_ in terms of

x y €4 Z z

-~

. w and vice versa):
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Selving {g)

X = A ¢os kxx + B sin kxx

C cos kyy +# D sin kyy

[
[ |

St}
"

E cos kzz + F sin kzz (71

Tc determine the constants, A, B, etc., kx’ etc., we satisfy the

boundary conditions (2). In termS of X, Y, Z, these are

St
|

0 onx=20, a

Y. =0 ony=0,b

R
H

0 on z

1]
L]
[s9)

(8)
Using (7) and .the first of these we have

ke [-A sin k X + B cos kxxj'a 0 x=20, a

or k B=0 ‘ - (9

and k, [-A sin k_a + B cos k a] = 0

X X X
Thus B = 0 and either

Anﬁ‘ﬂ - (10)
sin kxa =0~ kxa = Q,r, 27, 3w, ...

The latter is the alternative which corresponds to non-trivial

solutions. The corresponding X is
4
mrx , where m = 0,1,2,3,... - (11)

X = A cos kxx = A cos
' a
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similarly for Y and Z

k b Ldo=0,1,2,...
yo T 0T e Ty

Y = C cos mwy - : (12)
Y
b

kzd = mzﬁ » mz = 0,1,2,...

Z = E cos mznz

d
Heﬁce from (4) and (6), using (10), (11), (12), .

- 3 ~ X COS m_TY COS m_Tz
Fm(x,y?z) cos m rX & mxi?

z
2 b .a - @9

2 2 - 2
2 2 ‘M Fy m m
and wy =7r[(”5) : (ﬁz)-b(_&) ]
. =2 a b d
]
Note Fﬁ is only determinéd to within an arbitrary constant. Also

we use for shorthand a single modal subscript , m , on F and o .

Of course; ach m corresponds to a single triplet combination of
intege;s, n., my, .

-

One of the most interesting and useful properties of the Fa is

their "orthogonality", i,e.

/1] Fo Fh dxdydi =0form#n (14)

-~ -~

This can be proved most directly using Green's Theorem for Fo and Fnl

A2 2 - ’ B
[I[ (¢ v*F - F V% }dxdydz
3F F;

= JI [k, §HE' - Fn §HEJ dA (153
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3F 3F

m - —-.-!.1-. 3 y
ND‘? . ° an =0 ‘ from‘. (2)
u 2 .
and V3F_ = - (5) F P
0 from (1)
2 w2
v Fn = - (—c--) Fn
0- :
Hence (15) becomes
2 _ 2 : -
@2~ w?) Iff F F dxdydz = 0 (16)

and hence for m # n,

m#wn

and fff Fm}'-‘ndx_dyc_iz =0
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APPENDIX B

STANDING WAVES IN MULTIPLY CONNCCIED CAVITIES

_ USING A GHREEN'S FUNCTION APPROACH

An alternative description of the cavity sound field in terms

of its influence or Green's function is sometimes useful, This will

be briefly considei’ed here. For further discussion, see Morse and

Ingard, Chapter 9, pp. 5'54_--56416 .

Green's Function Determination

Let - w(x,y,z) = §(x-£} 8(y-n) &(z-%) ei""t

Then £rom IT- (7),H (t) = 1 F, (§,n,2) gut

and from 1I- (8),P = - (iw)? et B, (5.,n.8)

v {muz - w?]
Thus from II- (9), _p_ , = z Fn(E,n.C)Fn(x,y,z) [-(iw)zleimt

poco n

2l
Mn[mn w*] v

The summation

- !im!2 IF (E.n:;)F (X,}',Z) =G
v " —&

n
M 2 _ .2
n[mn ® ]

may be thought of as a Green's function giving the pressure at x, y, 2

due to a point harmonic displacement of unit amplitude at £,n,3.

Two Coupled Cavities

1)

@

(3}

(43

(5)

»*

Tx The Green's function may be used
‘- (a8 b . to treat two cavit'ies connected
—:— by a opening. For definiteness
TP we consider -rectangular cavities,
_ » Z iy us .
P—— do,—‘ﬁ" although it will be clean the.basic
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method is applicable to fairly general geometries. -
Consider two volumes or cavities with their:respective Green's.

functions and a common ‘'wall area", A‘F

Ga=-E@?i%aGm£ﬁs&Jﬁ) (6)

v 4
i Mnal [mi - w?]
G, =+ (w2 2 FP (5,02 F° (£,y,2)

L
V n. Mnb [mnb - mzl -

)]

There is a + sign on Gb because of the sign convention for normal to
- 1

AF; Also note that only on A.F do both Ga and Gb apply.

Now ]

-l;a (x,y,z = 0 on A-F) = )rf Ga(xvY:z = 0 on AFEE,TI,C = 0)

o ¢ 2 . over AF '

00 ) : .

W, (E,n, = 0) didn ()

and

Fb (;c,y,z = 0 on A.F)= ff Gb(x,y,z = 0 on AF;E,n,K = Q)

)

— over A
o%o AF

W, (g,n,5 =0} dgdn (9)
Now further we have on AP’ the physical continuity conditions
WE W, W, and‘pa=pb (10)

Thus wusing (8) - (10)

/I 6, -G W dgdn =0 (11)

onAP
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L3

This is & homogenuous integral equation for w. It.is an eigenvalue
equation which can be solved in éeveral ways, e,g. collocation method i
" or modal methods, for the coupled cavities. natural frequencies.-
.One may also consider further complicatiéns due to the wall in
one cavity moving in a prescribed way. For example at z = - da
in room a, say, W= G;dfﬁ.nl- Mote AF now includes- both walls, =0

and § = - da' Then

—I;a(x:Ynz = 0) = !! Ga(x,}’:z=0;€,mC“U);a(i.n)déidn

c:o-da

=0, ,:z 7 é .
+ If G, (x,¥,2=0;€,n,5= - d.)W_°(£,n)dEdn (12)

= -d

and from (9), (10), (12)

[6,-G, Iwdedn +[] G (x,y,220; §,n,% = —daﬁad dgdn = 0 (13)

It
on A on Aﬁ

F;:o zz()

Given E;d, one ﬁay solve for ?ian& hence from (8) and (9),
determine p in both cavities. In particular if w and ﬁg are now ex-
panded in terms of structural modes, wm’ and one uses (6) and (7) in
(11} and (13), (11) becomes (V-lé) and (13) becomes (V-15). These
same results are derived in a more compact way using the approach

of Section V.' Hence the present discussion will not be pursued

further.
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