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DYNAMIC CHARACTERISTICS OF ROTOR BLADES

WITH PENDULUM ABSORBERS

By

V. R. Murthyl

DISCUSSION

The point transmission matrix for a vertical plane pendulum

on a rotating blade undergoing combined flapwise bending,.chord-

wise bending and torsion is derived. The gravitational effect

on the pendulum is taken into account. The equilibrium equation

of the pendulum is linearized for small oscillations about the

steady state. The summary of equations obtained is given below.

Nonlinear Equilibrium Equation of the Pendulum

	

1 2	 wA + yA$
0 - 2 (xA + 2 sin 0) cos 0 +	 2	 sin 0

+ R sin 0 = 0	 (1)

e'

Linearized. Equation of the Pendulum About the Steady State

	

^2	 xA	 z 	 w  + yA^A6 + R (sin 8 + 2 sin 6016 + 	 2	 sin B ° = 0	 (2)
o

Equation for Determination of the Steady State Angle

2 2 cos 6 ° (xA + 2 sin 6 ° ) = g sin 0 0	(3)

Uncoupled Pendulum Natural Frequency

z	 x

W  - l Q (sinA6 + 2 sine 60/J 	
(4)

0
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Pendulum Deflection in a Natural Mode of the Slade

m 2 (wA + WA) sin eo

6 =rr x

[Q2 lsinA6o + % sin e 6o) - 2m 2I

Transmission Matrix of the PenduluL

w 1 0 0 0 0 0 0 0 0 0 w

v 0 1 0 0 0 0 0 0 0 0 v

0 0 1 0 0 0 0 0 0 0

v 0 0 0 1 0 0 0 0 0 0 v

0 0 0 0 1 0 0 0 0 0

Psi P62 0 0 P65 1 0 0 0 0 MxMx

MZ P71 P72 0 0 P 75 0 1 0 0 0 M 

Pal 0 0 0 Pas 0 0 1 0 0 MyMy

-Vy 0 P92 0 0 Pas 0 0 0 1 0 -Vy

-VZ P101 0 0 0 P 1 0 s 0 0 0 0 1 -IV

x = xA x = xA

where

P 61 = —W2yAc1M

P62 = C(w2 + Q2)(ZA - % cos	 eo) + g1M

P63	 = -
1(W2_

+ S2 2 )ZA (ZA - 2 cos 60)	 + W2y2AC1 + gZAJM

P 71 =	 (W 2 + 0 2 ) y'	 cos	 6 0 vACM

P 72 = ^12(xA
+ R	 sin 60)M

P 75 = C(W 2 	+ Q 2 ) Q	 cos	 ea
y2 	 - 0,2 (xA + 2	 sin 60)ZAIM

P al = c2M

P as = czyAM

P ee =	
(W2	 + q2)M

P as = -(W 2 + Q 2) ZAM

2
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P 1 0 1 = to  c1M

P 105 = u12YAc1M

a1 = A, sin g 60

_	
a2 = Q 2 (xA/ sin eo + a,)

C = W 2 sin g 60 /( a2 - R.412)

c l = 1 + 2c

C2 = 12 2c (xA + 2 sin 6 0 ) + (W 2 + Q 2 )k cos 60(zA - 2 cos 80)c

Basic Transmission Matrix of the Blade

The differential equations of motion for a rotating blade

derived in reference 1 can be arranged into a ten first-order

differential equation as shown below.

dx iz(x)) = [A (x) jz(x))	 (7a)

where

r

[A(x)1 =+

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 A37 A 36 0 0

0 0 0 0 0 0 A47 A 46 0 0

0 0 0 0 0 Ass 0 0 0 0

A61 A62 A 63 1. 6 4 A 65 0 0 0 0 0

0 0 0 A74 A 75 0 0 0 0 0

0 0 A63 0 A6s 0 0 0 0 0

0 A9 2 0 0 Ag s 0 0 0 0 0

A1o1 0 0 0 A1os 0 0 0 0 0

3
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and where

a

A 37 = -(EI2 - EI 1 ) sin ^ cos S/D

A 38 = (EI 1 sin e S + EIz cos t S)/D

A47 = (EI1 cos t S + EIz sin e 0)/D

Ave = A37

D = (EI1 cos t S + EI 2 sin e S)(EI1 sin  S + EI2 cos t S)

- (EI 2 - EI 1 ) 2 cos t S sine S

Ase = i/GJ

Agl = -w 2me cos S

Ase = (w 2 + 0 2 )me sin S

A63 = 0 2mxe cos S

A64 = -0 2mx

((

e cos S

A es =
192

A65
	

- k2 ) cos 2S - w2mk2Ml	 MI
A7 4 = T

A75 = _Q 2mxe sin S

Ae3 = T

A es = 0 2mxe cos S

A 92 = (w 2 + 02)m

A 95 = -(w 2 + 0 2 )me sin S

Aioi = wzm

A loe = w 2me cos S

T (x) = fxR 02mxidx3

The backward transmission matrix is given by (ref. 2):

dx [T (x) ) = [A(x)] [T (x) ]
	

(7b)
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C

and

[T(G)] _ [1]	 identity matrix

Tension in the Blade When Pendulum is Attached

R
T = fx 0 2mx 1 dx l + Q 2M(xA + 2 sin Bo)	 x < r.A 	(8a)

R
T = fx 0 2mx 1 dx,	 x > xA	 (8b)

Transmission Matrix at Any Spanwise Location

Case 1.	 x < x 

The transmission matrix is given directly by the solution of

equation	 (7b).

Case 2.	 x > x 

=x [T] G	x(T]x
A

[P]	 [T] G (9)xA

Frequency Equations and Mode Shapes

Collective Modes.

T64	 T66	 + T 66/k^	 T68 T69	 T610	 + T61/D

T 74	 T76	 + T 75/k$	 T76 T79	 T710	 + T71/D

Teo	 Tab	 + T as/k$	 Tae Tag	 T810	 + T el/D = G

T 94	 T96	 + T 9s/k^	 T9a T99	 T910	 + T91/D

T 104 T 106 + T los/k^ T 1oB T109 T1030 + Tlol/D

w(x) = x 1 T 14( x ) + x 2[T16(X) + Tls(x) /k^] + x3T18(x)

+ x 4 T 19(x ) + x 6[ T llo(x ) + T11(x) /D]

v(x) = x1T24(x) + x 2[T 26( x ) + T2s( x )/kf] + x3T2a(x)

+ x 4 T 29( x ) + x s[T 21o( x ) + T21(X) /D]

Y
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$( x) = x 1 T 54(X ) + X2[T56(X ) + Tss(x ) /k4l + X3Ts8(X)

+ X 4Ts 9 (x) + Xs[Ts1o( x ) + Ts1(x)/Dl

where

	^X1	 T14 T 16 + T ls /ko T ie T19 Tile + T11/D	 1

	

x 2	 T64 T66 + T6s/k$ The T69 T610 + T61/ D 	0

	X3 = T74 T76 + T 75/k$ T78 T79 T710 + T71/D	 0

	

X4	 T84 Teo + Tas/k^ Tea Te9 Te10 + Ta1/D 	0

	

xs	 T94 T96 + T9s/ko Too Toe T910 + T91/D 	0

D = w 2Mv — kv

Cyclic Modes.

T63 + T 69 k^	 T66 + T 65/k^	 T67	 T69 + T 6z/D 1 	 T610

T 73 + T78kV	 T76 + T 75/k^	 T77	 T79 + T 7z/D 1	 T710

Tea + T aa kq)	 Tab + T es/ko 	 Te7	 T a 9 + T 82 /D 1 	 Tajo
	 = 0

T93 + T9ek>	 `1'96 + T 9s /k^	 T97	 Too + T 92/D I 	 T910

T303 + T10ak 1	T106 + T 10s/kO T107 Tlo9 + T102/D1 T1o30

:	 w(x) = X 1[ T 13(X ) + T 1a(x ) kWl + X2[T16( X ) + T1s(x)/kOI

I
	 + x 3 T 17(X ) + X4[T19(x) + T12(X) /Dll

_	 + XsT11o(X)

v(x) = xI(T23( X ) + T za(x ) k^l + X2[T26(X) + T2s(X)/k^l

• x 3 T 27( x ) + X4[Tz9(X ) + T22(x) /D1l

• X6T210(X)

O(X) = X1[T s3( x ) + T se( x)k l l + X2[T56( X) + Tss(X) /k^l

• x 3 T 57(x ) + X 4[ T s9( x ) + T52(X) /Dll

• xsTslo(x)

6
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where

—1
X1 `i'13 + Tlsk j 	Tie	 + Tls/ko T 17 Ti9	 + T31 /D1 	T13o 1 I

X2 T63 + T 6a k^	 T 66 + T6s /ko `1'67 T69	 + T 6j /D 1 	 T ejo 0

X3 = T73 + T 7e k^	 T 76 + T 75/k$ T 77 T79	 + T 71/D 1	 T710 of

X 4 Ta3 + T aa k V	 Tab	 + T 85/ko T 87 Tag	 + T aj/D 1	 Tejo
0^

X5 T93 + T 98 kV	 T 96 + T 9s/k $ T 97 T99	 + =X 91/D 1	 Tejo DPI

Di = w2MH — k 

Scissor Modes.

T 66 + T 65 /ko	 T67 T69 T69 Tejo

T76 + T 75/ko	 T77 T79 T79 T710

Tab + T as /ko	 Tel Tee Tag Tejo = 0

T 96 + T 95/ko	 T97 T 9 a T^9 T910

T jo6 + T los/k^	 T 107 T joe T jo g T1olo

W(X) = Xi[T16(X )	 + T 13(X)/kfl + X2 T 17(X )	 + X3T1a(x)

+ x4Tj9(x) +	 xsTlio(x)

V(X) = x i[T26(x)	 + T 25( X)/kO]	 + x2T27(x )	 4	 x3T2e(x)

+ X4T29(x) + X5T210(X)

^(X ) = x j[ T 56( X )	 + T ss(x )/k^]	 + X 2 T 57( X )	 + X3T5a(X)

+ X 4 T s9(x) + xsTsjo(x)

is
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X 1 	 T16 + T ls/k$ T17 T 18 T19 T130	 I

X 2	 T66 + T 65/k ^ 	T67 T6a T69 T 610	 0

X3 = T 76 + T 7s /kl T 77 T76 T79 T711	 0

X 4	 T66 + T 8s/k4 T 87 T aa Ta9 T 610	 0

Xs	 T96 + T 9s/ko T97 T98 T99 Tejo	 0

Articulated Modes.

T 63	 T64	 T66 + T 65 /ko 	 T69	 T610

T 73	 T74	 T76 + T 75/ko	 T79	 T710

T63	 T64	 Tab + T as/kph	 Tag	 T830	 = 0

T 93	 T94	 T96 + T 9s/k4	 T99	 Tajo

T 103	 T104 T106 + T 1os/ko Tlo9 Tlolo

w(x) = x1T13(X ) + x2 T 14(X ) + X3(T ls( X ) + Tls(X) /kol

q X4T 19(X ) + XsTllo(X)

r	

V(X) = x1 T 23( X ) + x z T 24(X ) + x3IT26( x ) + T2e(X)/kO]

+ X 4 T29(X) + Xs+219(x)

^(X) = X1 T 53( X ) + X 2 T $4(X ) + X3ITs6(x) + T5s(x)/kfl

+ x4Ts9(x) + x5Tslo(X)

where

r

—1
X1 T13 T14 T16 + T ls/kq T 19 T110 1

X2 T63 T64 T66 + T 65/k^ T 69 T610 0

X3 = T 73 T74 T76 + T 75 /k O T79 T/10 0

X4 Tag T94 T66 + T es /kO Tag Tajo 0

XS T93 T94 T9s + T 9s/k6 Tag T 910 0

8



RESULTS

A Fortran program was written for a special subcase of the

above formulation, ViZ, a vertical plane pendulum attached to

a uniform blade with flapwise bending degree of freedom for can-

tilever boundary conditions. The results obtained are shown in

s	 table 1. The frequency has a singular value right at the uncoupled

pendulum natural frequency and thus introduces two frequencies

corresponding to the nearest natural frequency of the blade with-

out pendulum. This behavior is shown in figures 1 and 2. In

both of these modes it was observed that the pendulum deflection

is large. one frequency can be thought of as a coupled pendulum

frequency and the other as a coupled bending and pendulum fre-

quency. The data of the system considered is given below.

span = 260 in.

weight per unit length = 0.69752 lb/in.

bending stiffness = 0.4 X 10 8 7.b/in2.

simichord = 10.5 in.

pendulum weight = 15 lb.

pendulum length = 26 in.

spanwise location of the pendulum = 130 in.

i

9 i
^ l	^



10	 1b`.

i

Table 1.	 Frequencies (rad/sec).

0	 r.:	 0 2 = 360 RPM 0 = 360 RPM
2 = 0 0 = 360 RPM	 Just Mass Just Mass Pendulum

No. No Mass No Mass	 Effect Effect Effect

1 7.74 40.19	 7.60 40.14 40.10

84.40

2 48.58 107.07	 45.04 101.56

121.54

3 136.05 207.81	 136.05 210.18 210.97

4 266.62 348.15	 249.56 329.33 355.00

5 440.77 528.64	 440.77 531.56 533.88
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APPENDIX

NOMENCLATURE

C H D distance of the lead-lag hinge from the axis of
rotation

E Young's modulus of elasticity Z

e distance between mass and elastic axes, positive
when mass axis lies ahead of shear center

F H D = distance of the flapping hinge from the axis of
rotation

G = shear modulus of elasticity

9 = acceleration due to gravity acting on the pendulum

I ll, 1 2 = bending moments of inertia about major and minor axes,
respectively (both pass through centroid of cross-
sectional area effective in carrying tensions

J = torsional stiffness constant 7

k H = horizontal spring rate of the horizontal restraint
of the blade at the root

k = polar radius of gyration of cross-sectional massm
about elastic axis,	 k 2 = k 2	+ k2m	 MI	 M2

k
km2

mass radii of gyration about major neutral axis andM I about an axis perpendicular to chord through the
elastic axis, respectively

k vertical spring rate of the vertical restraint of thev blade at the root

k control system spring rate

kill blade flapping spring rate

length of the pendulum

M mass of the pendulum

• H effective horizontal hub mass per blade

• effective vertical hub mass per bladev

MMx, M	 Mz resultant cross-sectional moments about x, y, z
y directions, respectively

13



m = mass per unit length of the blade

[P] =	 transmission matrix

P H D = distance of the pitch hinge from the axis of rotation

R = span of the blade

T = tension in the blade

b [T(x)] a = transmission matrix of the blade obtained by inte-
grating equation ( 7b) from x = a to x = b

[T] = transmission matrix of the blade obtained by inte-
grating equation ( 7b) from x = xo to x = R

Tij =	 (i,j ) th element of	 [T]

Tij (x) =	 (i,j)th element of x[T(x)]xo

V	 V = shear in y and z directions, respectivelyy,	 z

v = amplitude of simple harmonic in-plane displacement,
positive towards leading edge

w = amplitude of simple harmonic out-of-plane displace-
ment, positive vertically upwards

wA = out-of-plane displacement at the pendulum attachment
point in equations	 ( 1) and	 (2)

WA = amplitude of simple harmonic out-of-plane displace-
ment at the pendulum attachment point in equation
(5)

X, y,	 z = right-handed Cartesian coordinate system which
rotates with the blade such that x-axis falls along
undeformed elastic axis, positive towards tip, y-
axis positive towards leading edge, z-axis is ver-
tical axis, positive vertically upwards

x °	 = defined by the columns of transmission matrix
xo = C H D for II, IV, VII, IX columns
xu = F H D for I, II, VIII, X columns
xo = P H D for V, VI columns

x 	 = spanwise location of the pendulum attachment point

yA , zA	= undeformed cross -sectional coordinates of the pen-
dulum hinge

14
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s

a

S	 = blade twist prior.to deformation
t,

e	 = pendulum deflection from vertical position
n

e	 = amplitude of simple harmonic pendulum deflection

6 0	= steady state deflection of the pendulum

v	 = slope of deflection curve in the plane of rotation 	 3

$	 = torsional deflection, positive leading edge upwards 	 ^y

= torsional deflection at the pendulum attachment pointA	 in equations (1) and (2)	 1;

$A	= amplitude of simple harmonic torsional deflection
in equation (5)

= slope of deflection curve normal to plane of rotation

SZ	 = angular velocity of rotation
s
4)

W	 = frequency of vibration

denotes differentiation with respect to time	
}/ denotes differentiation with respect to x

ri

I;

t
15
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