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DYNAMIC CHARACTERISTICS OF ROTOR BLADES

WITH PENDULUM ABSORBERS

By
V. R, Murthy!®

DISCUSSION

" The point transmission matrix for a vertical plane pendulum

' on a rotating blade undergoing combined flapwise bending, .chord-
wise bending and torsion is derived. The gravitational effect
on the pendulum is taken into account. The equilibrium equation
of the pendulum is linearized for small oscillations about the

steady state. The summary of equations obtained is given below.

Neonlinear Equilibrium Equation of the Pendulum
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Linearized Egquation of the Pendulum About the Steady State
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Equation for Determination of the Steady State Angle

2? cos Bo(x, + £ sin 89) = g sin 8 {3)

Uncoupled Pendulum Natural Frequency
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Pendulum Deflection in a Natural Mode of the Blade
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Transmission Matrix of the Penduluws

1 0 g 0 0 0 0 0 © O \
4] 1 0 0 0 0 o 0 0 O v
0 o 1 0 0 0.0 0 0 O W
0 0 0 1 0 o 0 0 0 0 Vv
0 6 0 0 1 0 0 0 0 0 b
Pg1 Pgz 0 0O Pss 1 0 0 0o O MX
Ps, Pz 0O O Pgs 0 1 0 O O Mz
Bga 0] 0 0 Pas 0 0 1 0 0 MY
0 Pga 0 0 Pas 0 0 0 1 0 =V
_P101 0 0 0 Pipgs O 0 0 O l* -v
*p

~w?y,c1M

[(w2 + Q%) (2, - L cos &) + g]M

- [(m2 + Qz)zA(zA - L cos 8q) + wzy;c1 + ngJM

(w? + Q%)% cos 8¢ yaCM

QZ(XA + % sin 6,)M

sz + %)L cos 8¢ y;; - QE(XA + & sin eo)zA]M

C:M

czyAM

(w2 + Q%)M

2 2
{(w® + @ )ZAM

(5)

(6)



Pio1 = w?ciM

= a2
Piros w YACIM

a; = & sin? 8,
a, = Qz(xA/ sin 69 + ap)
c = w® sin? B84/(az - fuw?)

cy =1 + Lc

c, = 0%c (x, + & sin 64) + (0? + Q%)% cos 8o(z, - & cos Bo)c

A

Basic Transmission Matrix of the Blade

The differential eguations of motion for a rotating blade

derived in reference 1 can be arranged into a ten first-order

differential equation as shown belcw.

where

L {z00) = (AG)]{zx)] (7a)
[0 0 1 0 0 0 0 0 0 0]
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 Agy; BAzg 0 O
0 0 0 0 0 0 Ay7 Ays 0 O
0 0 0 0 0 Asg O 0 0 0

(A(x)] =
Ag) Aga Aga Ags Ass 0 0 0 0 O
0 0 0 A7y Azs O 0 0 0 0
0 0 Ags O Ags O 0 0 0 0
0 Ag, O 0 Ags 0 0 0 0 O
Big1 O 0 0 Aygs O 0 0 0 0




L3

and where
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The backward transmission matrix is given by (ref. 2):

LT = (AG)] [TG)] (7b)



R A

and

[r(o)] = (1] ., identity matrix

Tension in the Blade When Pendulum is Attached
R

— 2 2 .
T=f, 0fmxidx; + 0%M(x, + % sin 8;) x < x,  (8a)
R 2
T = j; Q°mxi1dx, X > Xy (8b)

Transmission Matrix at Any Spanwise Location

Case 1. X < xA

The transmission matrix is given directly by the soluticon of

equation (7h).

. >
Case 2 2 XA

(Mg = (T (2] (Tl (9)

Frequency Egquations and Mode Shapes

Collective Modes.
Tgy Tgs + Tes/kd Tse Teg Tg10 + Tgi1/D

T7y Ty + Tys5/kd T7a Tr9 Ts:10 + T7:/D
Tay Tae + Tes/ko Tga Tao Tgio + Ta1/D =0

Tay Tgs + Tgs/kod Tsa Tog Ter0 + Tg1/D

+

Tiosw Tios + Tias/kd Tioe Tios Tio010 T191/D

wi(x) = x1T14 (%) + X2 [T1s(x) + T1s(x)/k$p] + X3T1g(x)
+ Xy T1g(x) + X5([T110(x) + Ti11(x)/D]
vix) = x1Ta4(xX) + Xa[Tag(x) + Tas(x)/k$] + X3T2s (X)

+ XuTz9 (%) + Xﬁ[Tz1o(X) + T2 (x)/D]
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$(x) = x1Tsy(x) + X2[Tss(x} + Tss(x)/kp] + x3Tse (X)

+ x,Tse(x) + X5[Ts10(x) + Ts1(x)/D]

where
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Cvelic Modes.
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Tyos + Tiosk¥ Ties + Tios/kdé Tio7 Tires + Ti102/D1r Tio10

wix) = X1 [T13(x) + T1s(x)} kY] + %3 [T16{x) + Ti1s(x)/k]
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+ x5Ts10 (%)
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Scissor Modes.
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where

- - N
Xy Tis + Tis/kK¢ Ti17 Tis Tis Tiie 1
| X2 Tss + Tes/Kd Ts7 Tss Tes Te1o 0
: {x3¢=1] Ty6 + T7s/kd¢ T27 Tzys Tzs T710 0
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Xs Tgss + Tas/k$¢ Taz Tgs Tae Tsro 0
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-; Articulated Modes.

“ T 3 Teu Tsse + Tes/ko Tss Te1e
T7a Ty T75 + T75/ko T7s T710
Tgs Tauy Tses + Tas/kK¢ Tgs Ts1g =0
Tey Tex Tas + Tes/k¢ Tss Taro
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wix) = 21T13(x) + x2T14(x) + x3[T1s(x) + T1s(x})/ko]
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vix) = x1T23(x) + x2T2y (%) + x3[T2e(x) + Tzs({x)/ko]
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d(x) = x1Tsa(x) + x2Tsy(x) + x3{Tss(x) + Tss(x)/ke]
+ %4Ts59(X) + xsTs1¢(x)
where
-1
X3 Tis Tiy Tis + Tis/ke Ti1s Tii1o 1
X2 Tss Teuw Tes + Tes/k¢ Tsae Tsire 0
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Xy Taa Tay Tae + Tas/kd Taa Taro 0
Xs Tga Tgy Tes + Tgs/kd Tgsa Taio 0
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RESULTS

A PFortran program was written for a special subcase of the
above formulation, ViZ, a vertical plane pendulum attached to
a uniform blade with flapwise bending degree of freedom for can-
tilever boundary conditions. The results obtained are shown in
table 1. The frequency has a singular value right at the unccupled
pendulum natural frequency and thus introduces two freguencies
corresponding to the nearest natural frequency of the blade with-
out pendulum. This behavior is shown in figures 1 and 2. 1In
both of these modes it was observed that the pendulum deflection
is large. One frequency can be thought of as a coupled pendulum
frequency and the other as a coupled bending and pendulum fre-

quency. The data of the system considered is given below.

span = 260 in.

weight per unit length = 0.6%552 1b/in.
bending stiffness = 0.4 x 10°% 1b/in?.
simichord = 10.5 in.

pendulum weight = 15 1b.

pendulum length = 26 in.

spanwise location of the pendulum = 130 in.



Table 1. requencies (rad/sec).

L

Q= 0 2 = 360 RPM 2 = 360 RPM

2 =0 § = 360 RPM Just Mass Just Mass Pendulum
No Mass No Mass Effect Effect Effect
7.74 40.15 7.60 40.14 40.10
84.40

48.58 107.07 45.04 101.56

121.54
136.05 207.81 136.05 210.18 210.97
266.62 348.15 249.56 329.33 355.00
440.77 528.64 440.77 531.56 533.88
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APPENDIX
- NOMENCLATURE
distance of the lead-lag hinge from the axis of
rotation

Young's modulus of elasticity

distance between mass and elastic axes, positive
when mass axis lies ahead of shear center

distance of the flapping hinge from the axis of
rotation

shear modulus of elasticity

acceleration due to gravity acting on the pendulum
bending moments of inertia about major and minor axes,
respectively (both pass through centroid of cross-
sectional area effective in carrying tensions

torsional stiffness constant

horizontal spring rate of the horizontal restraint
of the blade at ths root

polar radius of gyration of cross-sectional mass

about elastic axis, k2 = k%2 + k2
.o m mi mp

mass radii of gyration about major neutral axis and
about an axis perpendicular to chord through the
elastic axis, respectively

vertical spring rate of the vertical restraint of the
blade at the root

control system spring rate

blade flapping spring rate

length of the pendulum

mass of the pendulum

effective horizontal hub mass per blade
effective vertical hub mass per blade

resultant cross-sectional moments about x, y, z
directions, respectively

13
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(Pl
P HD
R

T

b[T(x)]a

[T}

T, .
1]

Tij(X)

X, ¥, 2

Yar 2

e e e e — - - . . - e

mass per unit length of the blade

transmission matrix

distance of the pitch hinge from the axis of rotation
span of the blade

tension in the blade

transmission matrix of the blade obtained by inte-
grating equation (7b) from x = a to x = b

transmission matrix of the blade obtained by inte-
grating equation (7b) from x = xg to x = R

(i,3)th element of [7T]
(i,j)th element of x[T(X)]xn
shear in y and z directicons, respectively

amplitude of simple harmonic in-plane displacement,
positive towards leading edge

amplitude of simple harmonic out-of-plane displace-
ment, positive vertically upwards

out-of-plane displacement at the pendulum attachment
point in equations (1) and (2)

amplitude of simple harmonic out-of-plane displace-
ment at the pendulum attachment point in equation
{5)

right~handed Cartesian coordinate system which
rotates with the blade such that x-axis falls along
undeformed elastic axis, positive towards tip, y-
axis positive towards leading edge, z-axis is ver-
tical axis, positive vertically upwards

defined by the columns of transmission matrix
Xg = CHD for II, IV, VII, IX columns

X¢g = FHD for I, II, VIII, X columns

X9 = P HD for v, VI columns

spanwise location of the pendulum attachment point

= undeformed cross-sectional coordinates of the pen-

dulum hinge

14
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blade twist prior‘to‘deformation

pendulum deflectiohhfrom vertical position
amplitude of simple harmonic pendulum deflection
steady state deflection of the pendulum

slope of deflection curve in the plane of rotation

torsional deflection, positive leading edge upwards

torsional deflection at the pendulum attachment point
in egquations (1) and (2)

amplitude of simple harmonic torsional deflection
in equation (5) s '

slope of deflection curve normal to plane of rotation
angular velocity of rotation

frequency of vibration

denotes differentiation with respect to time
/ denotes differentiation with respect to x

15
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