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CHAPTER 1 INTRODUCTION

This report documents the research accomplished from May

16, 1976 through July 31, 1977 under the funding of NASA Grant

NSG-2145. The •seoearch conducted was concerned with the design

optimization of short haul and commuter airplanes as proposed in

i
i

i

i
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a
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1

References 1 and 2. 	 The intent of the research was to look at
t L
¢ the problem of commuter airplane configuration design for the

j minimization of Direct Operating Costs (DOC). 	 A more detailed

explanation of the purpose and objectives of this project is

provided in the following section.	 The status of the research

and finances of the project are discussed in Section 1.2.

1.1	 Purpose and Objectives

It was proposed to look at the problem of commuter airplane
i

configuration design from the following view points:

} Assume that a specific cabin volume is needed to meet
some mission criterion. 	 This will be called a utility
constraint.	 The investigation will focus on commuter
type airplanes with a crew of two and a passenger load
up to approximately thirty.

•	 Assume that specific stability and control requirements

e must be met.	 These will be called stability and control
constraints.

•	 Assume that specific mission profiles must be flown.
These will be called mission constraints.

•	 Assume that specific performance (for example, field length,
s minimum speed, single--engine climb, etc.) requiremenn must be met.

These will be called performance constraints. 	 Attention
' will be focussed on field lengths in the 2500 ft. to

A . 4500 ft. range.

•^ The problem then was to design an airplane configuration which

would have the lowest DOC. 	 Figure 1.1 illustrates the problem

The approach taken to the solution of this problem was along the

following lines:
r

aw

rry



Given:

I)	 0 0 0 0 o	 Cabin--Utility Constraint

Find:
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2) Mission Constraint

3)Stability and Control Constraints

4) Performance Constraints

The Confiquration Which Minimizes D. 0. C.
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a) Investigate methods for determining the fuselage shape
and size which would yield minimum fuselage drag and
weight. The fuselage was to be treated as three separate
sections (the nose, the cabin, and the tail cone), and

y	 methods for the design of each section were to be considered.
Chapter 2 discusses the configuration design approaches
considered for the fuselage.

b) Determine how the methods of item a) might be integrated
into the NASA-Ames General Aviation Syuthesis Program
(GASP). The GASP was chosen to be the most effective
way to apply configuration design methods to the overall
preliminary airplane design process. Chapter a discusses
the ways in which the Methods of item a) were to be
integrated into the GASP.

	

a.	 c) Determine the critical stability and control constraints
which needed to be integrated simultaneously into the GASP.
Chapter 5 discusses the stability and control constraints
that were considered and explains the ways in which they
were to be integrated into the GASP.

d) Perform a short study of wing sizing methods to consider
trade-offs in wing loading for effects on performance,
ride qualities, etc. One method in particular that was to
be considered for wing sizing was the method proposed in

	

.	 Reference 3. Also to be considered was a rational approach
to wing placement, bearing in mind weight and balance,
stability and control., passenger acceptability, and feasibility
of associated structural arrangements. These studies are
discussed in Chapter 3.

e) Consider the problem of estimating the drag of airplane
components submerged in a propeller slipstream. This
problem is discussed in Chapter 4.

	

-	 As has been stated, the GASP was to be the medium through which

all of the configuration design methodologies were to be applied.

	

.n	 Unfortunately particular difficulty was encountered in getting

a version of the GASP to run on the University of Kansas Honeywell	 ?

66/60 computer. For this reason it has not been possible to com-

plete the integration of the design methodologies into GASP. A

complete discussion of the transliteration process is presented in

Chapter 5.

r.	 1.3
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1.2 Research and Financial Status

1.2.1 Research Status

At the time of this report much of the work outlined in the

objectives has been completed. The fact that the GASP is still

inoperational has provided the greatest set-back. Revisions to the

GASP to include the newly developed methods could not be made with-

out_ first being assured that the GASP could be operated properly in

its existing form. Also, more research needs to be conducted in the

area of stability and control methods. Table 1.1 summarizes the

status of each research area. Also, Table 1.1 refers to the .chaptens

where each facet of the research will be discussed.

1,2.2 Financial Status

Tables 1.2 and 1.3 present the budgets for the two phases of the

project as proposed in References 1 and 2. Together, they represent

a total allocation of $50,590 through NASA Grant NSG-2145. Although

a complete breakdown of expenses through July 31, 1977 was not

available at the time of this report, it was possible to arrive at

an estimate as to the remaining balance as of that date. It is

estimated that as of, July 31, 1977 the balance of funds remaining in

NASA Grant NSG-2145 will be approximately $100.
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TABLE 1.1 DESIGN OPTIMIZATION GRANT STATUS
31 JULY 77

ITEMS AHD/OR OBJECTIVES	 ITEMS	 ITEMS	 ITEMS

PROPOSED	 ACCOMPLISHED	 PENDING	 TO BE PROPOSED

PROPOSAL I
	

PROPOSAL it
	

PROPOSAL III

I)Procedure to find fuselage/
empennage shape For min.
drag

a)Roskam/Fillman Method

1)Continued Cabin arra,.,
6 Baggage Compartment Studies

b)Cabin Arrangement and
Baggage Compartment
Studies

N
• c)Wetted Area Studies
lri

I)KU-FRL 902; Program

written and tested.
Results questionable
Chapter 2, this report

2)KU-FRL 901; Prelimin-
ary correlations
Chapter 2, this report

3)KU-FRL 901; Prelimin-
ary correlations
Chapter 4, this report

])Test Roskam/Fillman
Method with Wing

Balance included in GASP

2)Comparisons with

McDonnell Douglas and
Boeing Vertol Methods
Chapter 2, thin report

3)Correlation of Actual
Wetted Areas with
FUSE-computed Areas
Chapter 4, this report

2)Weight Estimation
Methods

a)Torenbeek's Method 4) KU-FRL 902; included
in Roskam/Fillman
Method Program
Chapter 2, this report

+)Checking use of GASP
Weight Estimation
Methods
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f TABLE	 1.1 DESIGN OPTIMIZATION GRANT STATUS (CONT'D)

ITEMS ITEMSAND/OR OBJECTIVES ITEMS ITEMS

PROPOSED ACCOMPLISHED PENDING TO DE PROPOStO

PROPOSAL I PROPOSAL	 If PROPOSAL	 III

3)Stabillty Constraints 2)Analysis of GASP designs 5)KU-FRL 902; Empennage 5)Looking at ways to I)Chapter 6,	 th!F	 report
Sizing by L	 E G replace GASP V methods,

ma	
nR

to	 include	 inertia

In the Roskam/Fillman est.	 to enable dynamic

Method stability analysis,
and to locate wing

li)5lipstream Drag 6)KU-FRL 902

Analysis Chapter 4

II 5)lnclude Methods 	 Into 7)KU-FRL 902;	 Flowcharts 6)Updating Cessna version

GASP of GASP to NASA version

Chapter 5, this report
3)Fuselage Config.	 Studies

a)Nose section model 8)KU-FRL 313 °3; FUSE 7)U5e of FUSE with NCSU

;.^ rn BODY Program to Analyze
Nose

b)Cabin	 sizing 9)Same as Above; Design

s
"

Mode of FUSE

Chapter 2,	 this report

V
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ITEMS AHD/OR OBJECTIVES
PROPOSED

PROPOSAL I	 PROPOSAL 11

$)kung Config.

a)Sizing

b)Placement

5)Develop algorithms
for GASP

N
V

ESIGN OPTIMIZATION GRANT STATUS (CONT'D)

i
ITEMS	 ITEMS	 ITEMS

ACCOMPLISHED	 PENDING	 TO BE PROPOSED

PROPOSAL 111

EO)Chapter 3, this report	 8)Loftin's Method to
be Considered

il)Chapter 3, this report	 9)Considering combina-
tion of GASP and
Torenbeek's method

12)Chapter 3, this report	 10)Finding that it Is
possible to simply
amend GASP methods

2)Complete addition of
developed algorithms
into GASP and check
them out
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Table 1.2 Proposed Budget

May 16, 1976 - December 15, 1976

NASA
	

KU
	

TOTAL

	

1,271
	

1,271
	

2,542

	

5,807
	

0
	

5,807

	

9,800
	

0
	

9,800

	

1,000
	

0
	

1,000

	

17,878
	

1,,271
	

19,149

	

1,29 ' 3
	

203
	

1,496

	

686
	

0
	

686

i

s	 `^

'`	 y

a

':	 1

' Salaries & SIages

L•_7

Principal Investigator (Roskam)
07 20% for 4 mos. academic*

L•J
67% for 3 mos. summer

1 Research Assistants (3 1/2),,
50% for 7 months

'	 C.7

Secretary
2 man-months

r_ 1]

Total Salaries & Wages

U^ Fringe Benefits

^- 16% Faculty & Staff
7% Students

Computer 2,000 0 2;000

a	 Supplies & Reproduction 200 0 200 

Telephone 200 0 200
b^

Travel (2 trips to Ames) 750 0 750

t	
Total Direct Costs

wtr
23,007 1,474 24,481

Indirect Costs - 53.6% of
Total S & W 9,583 681 10,264

Total Proposed Costs 32..590 2,155 34,745

*Principal Investigator's academic time cost shared by KU and NASA
equally.	 Each paying only 10% for 4 mos. academic time	 200.,

7 `

Salary Schedule FY76 FY77

Roskam 2,889/mo. 3,178/mo.
Research: Assistant 800/mo. NA

Secretary 500/mo. NA



KU TOTAL

Table 1.3 PROPOSED BUDGET

January 1_1977 - June 30, 1977

NASA

Salaries E Wages

F	
T

Principal	 Investigator -	 Roskam.
LJ 25% for 1 mo. academic FY 77 $	 416 $	 417 $	 833

75% for I mo. summer FY 77 2,500 0 2,500

Graduate Research Assistant
75% for 4.5 mos. academic 77 3,038 0 3,038
100% for 1 mo. summer 77 900 0 900
75% for .5 mo. summer 77 337 0 337

ao
Undergraduate Research Assistants ,_5
75% for 5 mos.	 academic	 77	 (1	 student) 2,62; 0 2,625
100% for 1.5 mos. summer 77 (1 student) 1,050 fl 11050
100% for .5 mo. summer 77 (1 	 student) 350 0 350

Secretary

^a
2.33 man-months	 (student) 1,398 0 1,398

Total	 Salaries and Wages 12,614 417 13,031

Fringe Benefits

17% staff 496 71 567
r 7% students 679 0 679

d Other Direct Costs

Computer 2,54+0 0 2,540
Supplies and Reproduction 400 0 400	 ^.
Telephone 500 0 500
Travel 1, 000 0 1,000

Total	 Direct Costs 18,229 488 18,717

Indirect Costs @ 53.6% of Salaries
& Wages 6,761 224 6,985

Total Proposed	 Costs $ 24,990 $	 712 $ 25,702

Less unexpended balance in NASA
Grant r 'SG 2145 6,990

TOTAL PROPOSED COSTS $	 18,000
a 4 /'

1.9
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CHAPTER 2 FUSELAGE CONFIGURATION STUDIES

It.3

As stated in Chapter l one of the objectives of the research

" program was to investigate methods for determining the fuselage

E shape and size which would yield minimum fuselage drag and weight.

A two-phase approach was taken to meet this objective. 	 The first

phase consisted of evaluating existing methods for sizing the fuselage

.	 j or, where the need arose, to develop new methods. 	 Also included in

this phase was an evaluation of existing methods for determining

fuselage drag and weight.	 The second phase of this approach was to
L

integrate the methods chosen as a result of the first phase into the

I' GASP and to perform trade-offs in the fuselage configuration design
I_

! to find trends from which optimum configurations might be determined.

In this manner it was 	 also	 hoped that it might	 become possible to

locate critical configuration determining parameters, and eventual-

ly to develop routines	 to optimize the fuselage directly,	 for

a given set of constraints. 	 Unfortunately, because of the difficulties

encountered in putting the GASP into an operational status, the second

phase of the approach has not been completed at the time of this report.

For this reason, this chapter is concerned primarily with the first

phase - the evaluation and development of fuselage design and analysis

methods.

To facilitate the fuselage design procedures, the fuselage was

considered to be composed of three distinct sections - the nose cone,

the cabin and the tail cone.	 This is illustrated in Figure 2.1. 	 Design

methods were considered for each section individually and then were

integrated to provide a method to determine the overall fuselage

shape and size. The methods considered for each section are discussed

in the following sections of this chapter. Section 2.1 compares

different methods for sizing the cabin given a specified number of

passengers. Section 2 . 2 describes a method for sizing the nose cone

and crew compartment. Section 2.3 discusses a method for determining

the fuselage/empennage configuration to meet specified static stability

a

I	 a

1

Z^

;I

i

2.1

i
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criteria. Section 2.4 presents the results of a study to determine

baggage compartment requirements for commuter airplanes and the

r.,
alternatives for satisfying those requirements. Finally a method for

sizing the overall fuselage is discussed in Section 2.5.

^a

=' 6

{y1

Figure 2.1 Definition of Fuselage Sections

1

2.1 Cabin Arrangement

The fuselage cabin design is primarily dependent upon the

	

`	 number and arrangement of passengers. However, possible use of the 	 !

airplane for cargo payloads, the location of the wing carry-through
a

structure, and location of main landing-gear storage can also

enter into the cabin design. Although the main emphasis

	

rn	 of this research was to determine and evaluate methods to size

the cabin for utility (i.e. passengers) constraints, a conscious
d.

attempt was made to keep other factors in mind.

Before looking at existing siring methods, or developing any

new ones, a survey was conducted to examine the dimensions of existing

commuter airplane cabins. The results of this survey are presented

in Table 2.1. In Table 2.1 the seating configuration is indicated

in an X/Y format where the values of X and Y indicate the number of

seats abreast on either side of a single cabin aisle. The sole

exception to this is the Britten-Norman Trislander which has no aisle.
I

2.2	 :t
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Table 2.1 Cabin Dimensions of Existing Commuter AircraftE	 -

Seating Passenger Cabin* Cabin* Cabin**
No Aircraft	 Config. Seats	 Width Height Length

(in.)	 (in.)	 (in.)

1 Beech 99

2 Cessna 402

C
3 Britten-Norman Islander

4 Swearingen Metro

5 Queen Air

6 GAF Nomad

7 Piper Navajo Chieftain

8 Saunders ST-27

9 Beriev Be--30

10 Pilatus Twin Porter

11 Mitsubishi MU-2L

12 Twin Otter

13 Short Skyliner SC-7

14 Falcon 30

15 Short SD3-30

16 YAK-40

17 Nord 262

18 Casa 0.212

19 Handley Page Jetstream

20 Piper PA35

21 Omaipol L -410

22 Fokker-VFW-614
$o	

23 Antonov AN-24

^p
	

24 Breguet 941c

25 deHavilland DHC--5

26 deHavilland DHC-7
i

1/1 15 55 57 276

1/1 7 56 51 174

1/1 10 43 50 156

1/1 19 62 57 306

1/1 7 52 57 108

1/1 15 51 62 331

1/1 8 51 52 -

1/1 22 54 69 336

1/1 16 60 60 264

1/1 8 46 50 120

1/1 11 59 51 -

1/2 20 63 59 222

1/2 22 78 78 223

1/2 30 96 73 445

1/2 30 78 78 372

1/2 33 80 62 336

1/2 29 84 70 300

1/2 18 82 70 192

1/2 i	 18 73 71 288

1/2 16 76 70 204

1/2 14 69 65 216

2/2 44 105 78 444

2/2 50 109 75 444

2/2 56 102 88 432

2/2 53 105 82 480

2/2 48 103 77 444

Inside Dimensions

L

4
r:

Approximate-varies with configuration

2.3



No Aircraft Seating Passenger Cabin* Cabin* Cabin**
Config. Seats Width Height Length

(in.) (in.) (in.)

27 Fokker F.27 2/2 52 88 79 -

28 GAC-100 2/2 32 98 75 372

29 Handley Page
Herald 2/2 54 109 76 -

30 Canadair CL-215 2/2 30 94 75 360

31 Hawker Siddeley
HS.	 748 2/2 52 97 75 558

32 NAMC YS-11 2/2 60 106 78 528

33 IAI Arava 2/2 18 75 68 144

* Inside Dimensions

** Approximate-varies with configuration

2.4
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Where the data were available seat, aisle and seat pitch dimensions

were also examined, in addition to the inside cabin width and height

dimensions. Figures 2.2 and 2.3 define the cabin and cabin seating

dimensions that will be referred to throughout this section.

Figure 2.2 Definition of Cabin Dimensions

Cabin inside Width, we

Single
Seat

W	 Aisle Width,
2	 ,ffldth, WS

-4-WA 

-n^

t

Body Width
W.

Cabin	 Body
Height, h,	 Height

H

-L

Seat
Pitch,

Figure 2.3 Definition of Seating Arrangement Dimensions

LJ
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L The cabin sizing problem is one of trading-off passenger comfort

and seat-miles for drag and weight. 	 Passenger comfort may be related

to the spacing between seats.	 As spacing is increased, so is pas-

senger comfort.	 However, as comfort, and for that matter the number

of total passenger seats is increased so are the drag and the weight

of the overall airplane, which tends to reduce cost-effectiveness.

Although this secticn only deals with sizing the cabin for specified

comfort levels and seating arrangements, the trade-offs will be
^.

considered to some extent in Chapter 4.

Comfort level is difficult to define. 	 In lieu of trying to

'7 survey passengers as to what might be considered as 'comfortable' or

not, and then having to extract the size--related factors from noise,

vibration, ride quality, etc., it was decided to take what data were --

^i available for cabin seating arrangements and attempt to define

general comfort levels. 	 A letter from the project technical monitor

at NASA-Ames, Tom Galloway (Reference 4), defined three comfort
a

levels	 as shown in Table 2.2.	 For the most part the data available

supported these values. 	 The one exception was in the case of aisle

width.	 A number of aircraft were found to have aisle widths lower

than 16 inches.	 For this reason the comfort levels that will be

< used in this report are as presented in Table 2.3.

Table 2.2	 Seating Arrangement

Comfort Level

{From Reference 4}
a.b

Dimension	 Minimum	 Adequate	 Maximum

Single Seat	 1801 	 22"
Width

iT
u2Y

Seat Pitch	 2$"	 30"	 32"

M^

Aisle Width	 16"	 18"	 20"
i

Standup Headroom	 64"	 70"	 76"

i

1 2.6



Figure 2.4 Geometric Definition of
Rounded- Rectangular Cross-sections

2.7
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Table 2.3	 Revised Seating Arrangement

Comfort Levels

Dimension Minimum	 Adequate	 Maximum

Seat Width 1811 22"

Seat Pitch 28"	 30" 32"

-' Aisle Width 12"	 1811

Standup Headroom 64"	 70" 76"

2.1.1	 Determination of Cabin Cross-Section

As was stated in Chapter 1, the GASP was to be the medium of

application for all design methods that were developed under this

project.	 The GASP presently assumes that the cabin may be represented

by a right circular cylinder of constant cross-section. For the
v^

purpose of this project the constant cross-section assumption was

maintained. However, the cross-section was not limited to circular

shapes.	 The smaller commuter airplanes frequently have cabin

cross-sectional shapes which are far from being circular.

S m
	 For this reason, circular, elliptical, and what will be referred to

as rounded-rectangular shapes were considered. This report will

.m
	 deal with the circular and round-rectangular shapes only. The

elliptically shaped cross-sections are inherently covered by the

:dv
	 methods that will be discussed here. The geometry for the rounded--

rectangular cross-sectional shapes is presented in Figure 2.4. mote

that the rounded--rectangular cross-section becomes an ellipse (or
a	

circle) for rtc and rbc = 1.

f

i



For both circular and rounded-rectangular cross-sections the

i;	 values for the inside cabin height and width were expected to be
Li

largely dependent on the seating arrangement selected and the comfort

level. To help in finding the best methods for determining these two

dimensions the data of Table 2.1 were plotted to correlate total

passenger seats and seating arrangement with inside cabin width and

height. These plots are presented as Figures 2.5 and 2.6.

From Figures 2.5 and 2.6 note first that for the range of airplanes

considered there seemed to be more or less definite passenger capacities

for which each seating configuration was used. Table 2.4 presents

the apparent passenger capacity ranges for each seating configuration.

Note also from Figure 2.5 that the cabin width ranges for each

seating configuration are well defined. These are also presented

in Table 2.4. The cabin heights for each seating configuration are

not so well defined in Figure 2.6. This would seem to indicate that

cabin height is not as dependent upon the seating arrangement as was

originally expected. This will be discussed further at a later point

in this section.

Table 2.4 Passenger Capacity and Cabin

Width Ranges for Seating Configurations

of Existing Commuter Aircraft

Seating	 Passenger Capacity 	 Cabin Width
Confi .	 Range	 Range (in.)

1/1	 0 - 22	 43 - 62

1/2	 15 - 33	 62 - 96

2/2	 30 - 60	 88 -- 109

It is interesting at this point to compare the cabin width

ranges of Table 2.4 with the comfort levels of Table 2.3. Using

values resulting from the sum of the seat widths and aisle width as

as estimated cabin width Table 2.5 compares the values for minimum

and maximum comfort levels with the observed cabin width ranges.

2.8
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Table 2.5 would seem to indicate that the comfort level criteria are

reasonable. The minimum comfort level does indicate larger cabin

widths for the 1/1 and 1/' confi ;; ,n tic n s , k ^*-^  ,"° ^n a number of

cases aisle width values lower than 12 inches were observed. Also

it should be noted that the 43 inch cabin width was the Britten-

Norman Islander which has no 	 -1c.

Table 2 . 5 Com arisons of Existin g

Cabin Widths with Comfort Level

Cabin Widths

Seating Cabin Width Minimum Maximum
Config. Range Comfort revel Comfort Level

(Table 2.4) Cabin Width Cabin Width
(in.) (in.) (in.)

1/1 43 - 62 48 64

1/2 62 - 96 66 86

2/2 88 -	 109 84 108

In an attempt to derive relationships for cabin width and cabin

height as a function of passenger capacity and/or seating arrangement

least-squares linear and logarithmic curve fits were applied to both

Figures 2.5 and 2.6. The results of these curve fit applications are

presented as Figures 2.7 through 2.9. Note that the cabin width

data are only presented in the "thumbprint" forat. This has been done

purely to add clarity to the figure:s. All of the curvefit calculations

are based on the data of Table 2.1. Note in Figure 2.7 that the 1/1

and 2/2 configuration lines are almost parallel and that thy. 1/2 con-

figuration line seems to represent a transition between the two. A

linear regression analysis was performed for each seating configuration

for the cabin height case but the resulting relationship reinforced

the conclusion made earlier that cabin height is not very dependent

upon the seating arrangement. Both of the logarithmic curve fits

(Figures 2.8 and 2.9) show that cabin width and cabin height may be

2.11
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related to total passenger capacity.

As both cabin width and cabin height may be related to total

passenger capacity but only cabin width may be easily related to the

number of seats abreast, then it was thought that perhaps cabin

height could be related to the cabin's other primary dimension,

Length. It seems reasonable, at least from a comfort point of view,

that the longer the cabin, the less passengers will like having to

put up with a low ceiling aisle. Figure 2.10 relates cabin height

with cabin length. Figure 2.10 does seem to indicate that there is

some relationship but the correlation is not as good as was expected.

No further research was pursued along this line.

2.1.1.1 Existing Cross-Section Sizing Methods

Only three existing cross-section sizing methods were available

for evaluation - the Boeing Vertol Method (Reference 5), the McDonnell

Douglas method (Reference 6), and the GASP method. Each of these

methods assumes a circular cross--section.

The Boeing V'ertol method is based on the assumption that a

circular cabin cross-section can be designed for a particular seating

arrangement that will clear certain body-seated control points. The

method was developed in the following manner. Five control points

were chosen to constrain the inner cabin wall about a seated passenger

as shown in Figure 2.11. Using these control points layouts for

different configuration layouts were made. An empirical relationship was

developed based on the number of seats abreast, seat width, number of

aisles, and aisle width using the data derived from the layouts.

This relationship is presented in Figure 2.12. The outside body

radius was then computed as a constant percentage of the inner radius.

A comparison of actual outside body radii and computed outside body

radii is presented in Figure 2.13.

Although reference will be made to the McDonnell Douglas method,

no actual sizing method was available. Instead the results of a study

of the operational requirements for medium density air transportation

were available. These results are presented in References 6, 7 and 8.

2.15
A,.

4



0
0

0
®m

NOTE: Logarithmic Curve Fit

h,= 22.164 + 15.985In(1u)
r2 = 0.501

Seat Arrangement
® 'u 111
® ^' 112
0 ti 212

Lv

500	 600100	 200	 300	 400

Cabin Length - . u (in.)

l
t

I

1^0

1.

i

a

100

2

.}.r

.C-1

ca

w

 50C/7

I

1

F

'y

a

i

^	 E

't
i

t

4	 ,.

3	
3



i

u

.^

W	 {

2 ^'	 2	 1
 a

rah	
rC	

1

80

^y

70	 I

60	 ---Points Calculated
•^	 ^-	 from Layouts

zU 50
..	 ^,	 Approx. Equation

40 r^ = 27.7 + 0.5 2 + . 00369 z ^2
for z < 70	 i.

r-10+1.011 for-70N.
NOTE:

w 112(N w+N • w I -11
20	 2 -	 s '	 ,a	 A

Where N. = No. of Seats Abreast

10	
w = Unit Seat width	 j

- rt	 NA= No. of Aisles
wA = Width of Aisle

0 0	 10	 20	 30	 40	 50	 60	 70
Semi-width N 2 (in.)

G

e {9	 r

Figure 2.12 Empirical Relationship for Cabin Radius by
the Boeing Vertol Method (Reproduced from
Reference 5)
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Figure 2 . 14 is a reproduction from Reference S of the cross-section

developed for the baseline feederliner of the McDonnell Douglas

study.	 The cross--section was designed not only with passenger
^d

seating in mind, but also to accept palletized cargo. 	 The only

E, control points specified to constrain the shape for passenger seating

were at the tangent to a seven inch circle drawn about the center of

the head for a 95 percentile seated man and at the Cop-center of 	 the

cabin.	 A further control point was defined at the base of the outer

seat leg, six inches from the seat center line.	 With the seat dimensions

^w and aisle height (i.e. cabin inside height), these points could be

located and the cross-section shape determined.

L^
Laving specified three control points on the inner wall of the

cabin, and defining these points relative to the cabin center point,

# the cabin cross -section is over-constrained.	 Only two constraints are

required, but by having three it is possible to choose which constraints

are critical in the case being considered. 	 Equations 2.1, 2.2 and 2.3

define the inside cabin radius from each control point in terms of the

seating configuration and the cabin center point:

a..
A.	 Ceiling Constraint (Control Point A):

r	 = h	 - z	 (2.1)
} c	 c

a^

B.	 Passenger Headroom Constraint (Control Point B):

»< rc	 [1/2((N$ - 1)ws + NAwA)] 2 + (48 - z) 2	(2.2)

C.	 Floor Constraint (Control Point C):

` rc = [ 1 1 2 ((NS - 1)ws + NAwA) + 61 2 + z 2	(2.3)

where, in the above equations,

N	 = number or Feats abreasts

»a
w 
	 = single seat width (in.)

NA = number of aisles

t

i	 ..

r	 4

i
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?E

E

Fi

E

wA = aisle width (in.)

z = vertical location of the cabin center point with respect
to the floor (in.)

he = inside cabin height from the floor (in.)

It is assumed that the only unknowns in equations 2.1, 2.2, and

2.3 are r  and z. The value of cabin height will be assumed to be

a given comfort level, value. To find the cabin radius any pair of

constraints may be chosen. By then solving the resulting pair of

equations for r  the cabin is sized for those particular constraints.

The third equation may then be solved to determine if the cabin

radius is adequate for that constraint.

In most cases, constraints B and C will probably be critical.

By solving equations 2.2 and 2.3 simultaneously for r  these constraints

can be met. However, in this case the cabin height must also become

a variable. After determining the cabin radius and the center point

locations, the cabin height may be checked. If the cabin height is

inadequate the cabin may be sized for new constraints.

Equations 2.4, 2.5 and 2.6 provide the solutions for r  for

each constraint pair.

Constraints A and B:

(221) 
2 + (48 -- h ) 2 - 49

r
C 205 -- h }

c

Constraints A and C:

L12(^ + 6
]
 
2 

+ hc2
r T 	 (2.5)
c	

2h
C

Constraints B and C:
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Table 2.6 Cabin Widths* for the

Minimum Comfort Level
L^

Seating Boeing McDonnell GASP
L, Config. Vertol Douglas Method

Method Method (Outside)

1/1 69.65 67.04 60.00:

1/2 80.97 79.26 78.00
f

2/2 93.49 93.53 96.00
i

Table 2.7 Cabin Widths* for the

Adequate Comfort Level

is

Seating Boeing McDonnell GASP
Config. Vertol Douglas Method

Method Method (Outside) i

ua

1/1 75.79 72.14 70.00

^

A^ 1/2 89.19 87.00 90.00

2/2 104.06 103.75 110.00

Table 2.8 Cabin Widths* for the

Maximum Comfort Level

Seating Boeing McDonnell GASP
Config. Vertol Douglas Method

Method Method (Outside)

era

1/1 79.66 74.90 76.00

1/2 94.96 91.88 98.00

2/2 112.05 110.77 120.00

Cabin Width in inches

-: 2.23
l±:Y
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The GASP method only sizes for the outside dimension of the
is

cabin. As with the other methods a circular cross-section is

assumed with a diameter determined as in equation 2.7. The constant

twelve inches are intended to account for clearances about the seats

and for the structure.

D = N s • w s + N A • wA+12
	

(inches)	 (2.7)
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where: D = outside cabin diameter	 (inches)
c
0

^a	

N = number of seats abreast
s

NA = number of aisles
a:4

ws = seat width (inches)

wA = aisle width (inches)

2.1.1.2	 Evaluation of Cross-Section Sizing Methods

To evaluate the application of the cabin sizing methods

described above to the design of short haul and commuter airplanes,

it was decided to compare cabin widths computed by these methods for

each comfort level with the data of Table 2.1 and Figure 2.5.,

As the cross--section is assumed to be circular at this point the

inside cabin width, wc , may be assumed to be equal to the inside

cabin diameter. Tables 2.6, 2.7, and 2.8 present the results for

yfl	 the minimum, adequate, and maximum comfort levels respectively.
^Y

Figures 2.15, 2.16, and 2.17 plot the results of each of these

a^
tables respectively on the seating arrangement thumbprints of

Figure 2.5,for each sizing method and each seating arrangement.

From Figures 2.15 through 2.17 it is apparent that the methods

generally size for cabins larger than those of existing aircraft.

This is especially true for the 1/1 configurations. In this case the

GASP method seems to do the best job when it is taken into consider-

,w	 ation that the GASP sizings are for outside widths. The Boeing Vertol
is

and McDonnell Douglas methods do fairly well for the 1/2 and 2/2

.,	 seating configurations however. It is also noted that the McDonnell

I

2.24

S

1

i
a

i

3



150 -

2/22/2
100 -

112

U

NOTE:
W 1) Cabin Sizing Method

50 . - Boeing (inside)

Douglas (Inside)

GASP (Outside)

2) Thumbprints Indicate

Actual Aircraft from

Figure 2.5

0 10	 20	 30	 40	 50	 60

Passenger Seats - PAX

Figure 2.15	 Comparison of Computed Minimum Comfort Level
Cabin Widths with Existing Aircraft Data

._	 ^ 2.25
4f

P.4,



r

60

100
z

V

G

V

50

212

112

I NOTE:

111	
I) Cabin Sizing Method
-- Boeing (Inside)
----^ Douglas (Inside)
---^-- GASP (Outside)

2) Thumbprints Indicate
Actual Aircraft from
Fiqure 2.5

D
0	 10 	 20	 30	 40	 50

q.,
Passenger Seating N PAX

.ad

_Figure 2.16 Comparison of Computed Adequate Comfort
Cabin Widths with Existing Aircraft Data

3

k	 2.26



100

U
c1^

50

r------	 --^ 112

I	 I
I
I
I	 111

150 

I
Ii
f	 212

NOTE:
1) Cabin Sizing Method

-•--^- Boeing (inside)
------ Douglas ( I ns ide)
-- GASP (Outside)

2)Thumbprints Indicate
Actual Aircraft from
Figure 2.5

0L

0
	

10	 20	 30	 40	 50	 60

Passenger Seating - PAX

,Figure 2.17 Comparison of Computed MaY'._.um Comfort Level
Cabin Widths with x4 _^ng Aircraft Data

2.27



f

Douglas and Boeing Vertol methods represent very similar results'

in all cases.

To determine why the Boeing Vertol and McDonnell Douglas methodsj
-	 over-sized cabin width for the smaller seating configurations (i.e.

j	 2 and 3 seats abreast), the extreme case was considered - the 1/1,

minimum comfort configuration. 	 The cabin was sized using both

methods in Table 2.6. 	 Figure 2.18 presents a drawing showing the

resulting cross-sections and seating arrangement.	 Note that for the

`	 Boeing Vertol cross-section control points B, C, and D are not

needed and that points A arfd E become the critical constraints. This

results in a large amount of wasted space between the outer armrest

and the cabin wall.	 The same occurs for the McDonnell Douglas

cross-sectioa.	 To provide the seated headroom constraints for these

"	 smaller seating configurations the width must be oversized.

Figure 2.19 shows the result of the GASP method which produced

a cabin width which was comparable with existing aircraft. 	 The ail
-h

seat used in both Figures 2.18 and 2.19 was a conceptual economy- .
class seat sized to the minimum comfort level dimensions of Table

2.3.	 The seated headroom constraint shown in Figure 2.19 is the same

as that for the McDonnell Douglas method. 	 The seven inch clearance

radius is drawn about the location of the center of a 95 percentile

seated man (48 inches above the floor at the seat center line). 	 As

the GASP method only sizes for the outside cabin dimension, the

Boeing Vertol method for estimating structure was used to determine the

inside cabin radius (See Figure 2.13). 	 Figure 2.19 indicates that

with these constraints it would be extremely difficult to fit a 95

percentile man in the cabin.	 Although seat dimensions for smaller

seats were not readily available, it is assumed that with such a }

seat (i.e. lower seat height, greater nominal recline angle, etc.),

such a cabin would become cramped but practical.	 Indeed, several

aircraft such as the Gates-Learjets already do this.	 For a pressurized

airplane where a circular cross-section means weight savings, this 3

then would be a viable cabin sizing method.

In the case of unpressurized commuters, a better solution is
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available. The rounded-rectangular cross-section of Figure 2.4

can result in a more comfortable cabin without giving up much in the

way of weight or drag. In this case, however it may no longer be

assumed that outside body width equals body height. Therefore each

must be sized. The valises of the round-off radii are for the mast

part a matter of preference.

Equation 2.8 may be used to determine the inside cabin width.

In equation 2.8 it is assumed that the window-side armrest of the

seat is placed directly up against the cabin wall.

we = Nsws + NAwA 	(2.8)

To determine the fuselage inner height (i.e. total outside

body height minus structure), first a control point is established

as in control point C for the McDonnell Douglas method. It is assumed

that to minimize fuselage inner height, the floor is to be placed

as low as this control point will allow (as shown in Figure 2.20).

Using the bottom round-off radius fraction, rbc , it should be

possible to determine the necessary fuselage height. Let the height

below the floor be represented as h f . The inside fuselage height is

then as represented in equation 2.9.

2 wC

E	 E

E

hj

Control Point

Figure 2.20 Location of Floor Control Point
for Rounded-Rectangular Cross-Sections

PAGE B^,.►^NB NOT g1I,l%' .
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The round-off shape is elliptical. Therefore at the control.

point:

27 2 + 2	 2= 1hr
bc 	 ^'^crbc

q J
where,

w rcbc	
ws 6

y	
2	

-- 2

a	 z W
hr

2 
c - hf

(2.10)

Substituting equation 2.9 and solving for h results in:

rbc _ rbc	
ws - 12_(w

sw

 - 12 2

2	 2 2 w r 	 r
h=	 c be	 c be	 + 1 h	 (2.11)

c
rbc rbc	

ws- 12	 ws - 12 2
 ( -1 + 2 + 2	 2 wcrbc	 wcrbc

Table 2.9, presents inside cabin widths and inner fuselage

height for each comfort level and seating configuration. In Table

2.9 round-off radii of rbc = -2, .5, .8, and 1.0 are used. From

Table 2.9 it is apparent that for large round-off radii, rbc , the

minimum inside body height, hb , required to meet comfort level

constraints can become overly large. Therefore it would seem that

if cabin wetted area is to be minimized, a smaller r bc would be

preferable.

To check that adequate room for a passenger is indeed provided,

the minimum comfort level 1/1 seating configuration was again used.

Figure 2.21 provides the resulting cabin cross--sections for upper

round-off radii values of r t = .2, .5, .8, and 1.0. In all cases
c

the lower round-off radius is rbc = 0.2. Note that this gives very

^^	 2.32
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S:  
t7	

L

-Comfort
Level
(Table 2.3)

Minimum

Minimum

Minimum

n,	 Adequate

Adequate

Adequate

Maximum

Maximum

Maximum

Table 2,9 Cabin Dimensions for

Rounded-Rectangular Cross-Section

a

Seat.	 Cabin Width, we	Inside Body Height, hb
Config.	 (in.)

rbc = .2	 rbc = .5	 rbo = .8	 rbc = 1.0

1/1 48 64.6 73.3 94.8 128.0

1/2 66 65.3 75.2 97.1 128.0

2/2 84 65.8 76.5 98.6 1.28.0

1/1 58 70.4 79.4 102.7 140.0

1/2 78 71.1 81.5 105.4 140.0

2/2 98 71.7 82.9 107.0 140.0

1/1 64 76.2 85.2 110.1 152.0

1/2 86 76.9 87.6 113.3 152.0

2/2 108 77.5 89.2 115.2 152.0



ry ^"

reasonable results for r tc < 0.8. Although other examples are

not presented here for the sake of brevity, in general it was found

that for rtc < 0.8 all seated headroom constraints could be met.

It should be noted again that this method sizes the inside

cross-section only for the minimum dimensions, given the comfort

level constraints. It might be desirable, for instance, to increase

the under-the floor height to allow for baggage, wing carry-through

structure or landing gear retraction. These considerations are not

inherently taken into account by this method.

Methods have been discussed to size both circular and rounded-

rectangular cross--sections. It was found that all of the circular

cross--section methods provided results which were reasonable for

a^

:SC]

AA

a^

i;

configurations with three and four seats abreast, but that appeared

to be either too small (GASP) or too large (Boeing and Douglas)

for configurations with only two seats abreast. Of these methods

only the GASP method did not directly account for adequate clearances

for a seated passenger. Of the other two methods the McDonnell

Douglas method seemed to provide the best results for the two-seats-

abreast case. Also the McDonnell Douglas method is slightly easier

to check and to alter should different seat sizes be chosen. For

these reasons it was decided to adopt the McDonnell Douglas method

to incorporate into GASP for circular sections, The rounded-rectangular

method also appears to provide reasonable results, and in this case,

particularly for the smaller seating configurations. This method has

the distinct advantage of providing a way of sizing short haul

aircraft for cargo payloads, also. The round-off radii may be input

as desired, although it was found that for round-off radii greater

than 0.8 a circular sizing method would be preferable. Therefore

this method will also be used to provide added versatility to the

cabin sizing process.

Up until this point only the inner cabin dimensions have been

dealt with. Only one method was found to account for structure,

2.35



upholstery, etc., in general. The Boeing method determined the inside

cabin diameter to be 94% of the outside diameter. Although this is

i'
somewhat conservative for smaller unpressurized airplanes, this method

will be used to determine the outside dimensions.

2.1.2 Determination of Cabin Length

At this point the cabin length will be determined only as that r
i

	t 	̂ length required for passenger seating. It will be assumed that for

short haul/commuter airplanes of size and range being considered that

cabin attendants and lavatory facilities will not be necessary.

	

^v	
Baggage compartment requirements will be considered in Section 2.4.

To determine the cabin length for passenger seating equation

2.12 will be used:	 ^-
s

t	
= NROW5 x Q

s	(2.12)

uPAX

where,

	

..	 N	 = number of rows of seats
ROWS

s

I	 = seat pitch in inches.
S

	.0	
2.2 Nose Cone Configuration_	 g

	

,	 The primary consideration in designing the nose cone and wind-

shield geometry is the cockpit arrangement and visibility. The cockpit

constraints must be met if the crew are to be able to fly the airplane.

Other considerations however include the drag increment resulting from	 r

the windshield, nose gear retraction, and some stability characteristics.

	

sa	
The main emphasis in this section will be placed upon the design of the

nose for adequate cockpit volume and visibility.

The GASP default* size for the cockpit has a flight deck 4.44 ft.
t

long. Based on the data available in References 9 and 10 this

	

u^	 might prove inadequate. Figure 2.22 presents the recommended

*Note: A "default" quantity is a value stored in the computer
routine which is used as the value of a particular
variable when no value is input by the user.

i.^

'
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Figure 2.22 Recommended Flight Deck Dimensions

For Transport Aircraft

(Reproduced from Reference 9)
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dimensions for the flight deck. Based on these dimensions it was
decided to design a standardized "crewbox" about which the nose mi.-ht
be shaped. The nose is to be modelled by superimposing two elliptical
cones as shown in Figure 2.23. The crewbox will be located on the
front of the cabin as shown in Figure 2.24. The shorter of the two

cones, or cockpit shell will then be sized for the flight deck.

Cockpit Shelf

Nose Shelf

Figure 2.23 Superimposing of Two Elliptical Cones

to Define Nose Cone/Windshield Geometry



Using the dimensions of Figure 2.22 it was possible to define

a more or Less standard shape for the crewbox. The dimensions for

this crewbox are presented in Figure 2.25. Note from Figure 2.25

that the width of the crewbox is defined as in equation 2.13. The

minimum distance between crew seat center lines for the class of

aircraft in question should be about thirty inches, according to

Reference 9. Also it is assumed that, as a minimum, the crew seats

are of the same width as the passenger seats.

wcb ^ w  + 30 (inches)
	

(2.13)

The length of the nose shell, i.e. the long thin cone of

Figure 2.23 is difficult to specify in any generalized form. It

was found that the best method is to specify the ratio of the

lengths of the two cones. In choosing a length ratio certain

factors should be kept in mind. Some of these are:

• Forward and downward visibility on approach

• Nose gear location and retraction method

• Possible installation of radar

Desirability of a nose baggage compartment

• Longitudinal and directional static stability.

Although attempts were made to develop a method to size the

nose shell based on these factors no successful method was derived.

Instead, the length ratio approach seems to provide adequate results.

It was found that for commuter aircraft the length ratio was normally

between 1.5 and 2.5.

2.3 Tail Cone/Empennage Configuration

In line with the objective of minimizing the fuselage/empennage

drag and weight while maintaining stability constraints, the Roskam/

Fillman method was chosen to be used to size the tail cone and

empennage. The Roskam/Fillman method as originally published in

Reference 11 represented an approach to optimizing fuselage and

2.39
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5

empennage size with respect to zero--lift drag while maintaining

certain stability and control characteristics. The zero-lift

drag of the fuselage is a direct function of the fuselage fineness

ratio, QB/D. if it is assumed that the size and shape of the aircraft

nose and cabin are dictated by the utility constraints then the

fineness ratio may be varied by altering the 'tail cone' length, Qc.

.^

	

	 If certain stability and control characteristics are specified

as constants, then the optimization process becomes a trade-off

eo	 between fuselage and empennage drag. Fuselage zero-lift drag may be

approximated by equation 2.14 (from Reference 12).

CD = Cf
0B	B	 (ZB/D)

[1 +	
60	

+ .0025 D ] 
{Wet) body	

(2.14)

3	 Wing

The zero--lift drag of either the vertical or horizontal tail

may be estimated by equation 2.15 (from Reference 12).

CD	= Cf [1 + L(t/c) + 100(t/c) 4 ]R ,S. SWet V or H (2.15)

0 Vor H	
Z	

Suring

As the fineness ratio, t B/D, is increased by lengthening the

tail cone the following occur:

Increasing 2
B
 /D will increase the fuselage Reynolds number

decreasing C 
S

.n

	

	
Increasing kB/D will decrease the value in the brackets of

equation (2.14)

Increasing ZB/D will increase SWet Body
Increasing QB/D will reduce the empennage wetted area

requirements, for constant stability levels.

One simplifying assumFtion made in the method as originally

published in Reference 11 was that the aircraft aerodynamic center

. location could be considered as a constant as the tail cone was

lengthened. The overall intent was to trade off a reduction in

empennage drag for an increase in fuselage drag in hopes of finding



the minimum drag configuration,

To use the Roskam/Fillman method to size the fuselage and

empennage for minimum weight and drag a number of changes became

necessary. Weight estimation of the fuselage and empennage was

added as well as a c.g. location method. With these additions

static stability constraints could be specified as a constant C
m

CE

for the longitudinal case and a constant C for the directional

case. As with the original method, it was assumed that the airplane

geometry forward of the tail cone would remain unchanged.

-	 To test the method a computer program was written in FORTRAN 1V

to facilitate the methods a:ppl ;_,:ation to both existing and conceptual

	

_	 aircraft. This section will describe the program methods and

discuss the results it produced.

2.3.1 Roskam/Fillman Program Description

A flowchart of the program is presented in Figure 2.26. A

program listing and an explanation of how the input data are prepared

are pre'sensed in Appendix B of this report. Explanations of theP	 P 

	

..	 F

methods used in each of the main subroutines are provided in the

following paragraphs. Rote that on Figure 2,26 Section numbers

	

..	 a
refer to the section in which a discussion of each method is pre-

s
sented.

2.3.1.1 Computation of Wetted Areas

The wetted areas for the fuselage and empennage are computed

in the following manner in the subroutine SUET.

The fuselage wetted area is computed in three components: the

_ cabin wetted area, the nose wetted area, and the tail cone wetted

area. The cabin is assumed to be a right circular cylinder. The

cabin wetted area is expressed as in equation 2.16.

	

-	 SWet Cabin J 
rDQu

(2.16)

.e
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INPUT:

AIRCRAFT GEOMETRY
(LIGHT CONDITIONS
STABILITY CONSTRAINTS

'Cm. AND C„p1

RANGE OF TAIL CONE

N	 VARIATIONS

w

ANALYZE BASE CONING:

1. LONPUTE WETTED AREAS 	 ISECT. 2.3.1.11
2. COMPUTE ICpp 1	 ISECT. 2.3.1.21

3. COMPUTE FUSELAGE AND EMPENNAGE
WEIGHT	 (SECT. 2.3.1.3)

4. LOCATE C. G. 	 ISECT. 2.3.1.41

ANALYZE NEW CONNG:

1. COMPUTE WETTED AREAS (SECT.2.3.1. It
2. COMPUTE FUSELAGE WEIGHT (SECT. 2.3.1.3)
3, COMPUTE EMPENNAGE WEIGHTS (SECT.2.3.1.3)

BASED ON LAST SIZING
4. LOCATED NEW C. G. {SECT. 2.3.1.41
5. SIZE EMPENNAGE BASED ON STABILITY

CONSTRAINTS ISECT. 2.3.1.51
6. RECOMPUTE WETTED AREAS	 (SECT. 2.3.1.11	 BVH

7. COMPUTE (Co I	 (SECT. 2.3.1.2.)
O BVH

OUTPUT:

1. BASE CONFG. DATA:
• FLIGHT CONDITIONS
a AIRCRAFT GEOMETRY

WEIGHT & BALANCE
sWETTED AREAS

2. DATA VS. TAIL CONE LENGTH:
WEIGHT & BALANCE
STABILIZER SIZE
VERT. TAIL SIZE
A. C. LOCATIONS
WETTED AREAS
ICpp

Figure 2.26 Flowchart of Roskam/Tillman
Method Program
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VARY
TAIL CONE
LENGTH?
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The wetted areas of the nose cone ai,d tail cone are computed

using Torenbeek's elliptical cone methods of Reference 9. This

approach is documented in Appendix A of this report. By using Figures

A-1 and A-3 of Appendix A to determine the shape parameters, y, '

for the nose and tail cones, it is possible to determine a wetted area

correction factor, k J , from Figure A--2 of Appendix A. The wetted

areas for the nose and tail may then be expressed as in equations

2.17 and 2.1$:

NOSE

(SIMT) NOSE	 ( w)NOSE 
Z 	 (2.17)

TAIL

(SWET)TAIL	 ( w)TAIL !Z
c	(2.1$)

The wetted area of the fuselage is then expressed as:

( SWET) B = (SWET)CABIN + (SWET)NOSE + (SWET)TAIL 	 (2.19)

The horizontal and vertical tail wetted areas were computed with

the aid of a surface area correction factor, K 	 from Corning

(Reference 13). This surface area correction factor is a function

of the airfoil thickness ratio, t/c, as shown in Figure 2.27.

2.10

Kp	 2.08

SURFACE

AREA 2.06

FACTOR

2.04

2.02

2.00 .	 I	 I	 I	 I	 I	 I	 I	 ,
0	 5	 l0	 15	 20 25

THICKNESS RATIO -%

Figure 2.27 Determination of the Surface Area Correction

	

Factor, K 	 (Reproduced from Reference 13)
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Using Figure 2.27 the wetted areas of the horizontal and vertical

t	 tails may be determined as:
l	 E

S^,TET	 y Kp ($) H or V
# i	 H or V
e

Where,

Kp = 0.520) + 1.987

`	 Ls 2.3.1.2 Calculation of Zero-Lift Fusels a/Empennage Drag

,r

The zero-lift drag of the fuselage and empennage are computed
o-a

in the subroutine CDO using equations 2.14 and 2.15 as stated

earlier.

Q	 (SWET)
CD 
o 

= Cf ^1 + b0

	

	
+ .0025	 (2.14)D S BODY

^	 D
B	

B	 ( £$/ )	 WING

(SWET)

CD = C f [l + L	 + 100( c)
.5.	

V or H

A or H	 \
-	 S1^ING

(2.15)

The mean skin-friction coefficients, C f , are a function of

Reynolds number, RN , and Mach as shown in Figure 2.28. The factors

L and 
RL.S. 

are as defined in Reference 11.

2.3.1.3 Calculation of Fuselage and Empennage Weight

}

	

	 The structural weights of the fuselage and empennage are mainly

dependent on their areas and the maximum speed of the aircraft. The

following equations were taken from Reference 9. The equation for

fuselage shell weight estimation is:

Q	 .2

WF	 VD b fh+ hf ^(SG	 Kl K
2 K3 K4	 (2.21)

(2.20)
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Where kWE _ .021 for W  in LBS

WE = Fuselage Weight (lbs)

VD = Design dive speed (kts)

SG = Gross shell area (ft2)

b  = Maximum fuselage width (ft.)

h  = Maximum fuselage height (ft.)

Qh = Distance i:rom wing quarter_ chord to horizontal tail
quarter chord (ft.)

K1 = 1.00 for unpressuri.zed fuselage

= 1.08 for pressurized fuselage

K2 = 1.00 for wing mounted engines

= 1.04 for fuselage mounted engines

K3 = 1.00 for main gear attached to wing

= 1.07 for main gear attached to fuselage

K4 = 1.00 for main gear bay in the fuselage

= 0.96 for no main gear bay in the fuselage

As can be seen from equation 2.21, the weight is dependent on the

square root of the dive speed and the wetted area to the 1.2 power!

The empennage weight is dependent on the load factor and the

square of the wetted area for dive speeds less than or equal to

250 kts.

_	 Z	 0.75
WEMP	

T,

ULT S EMP	 (2.22)

where KWT = 0.04 for 
VD 

inin KTS

WEMP in LBS

SEMP in FT2

rinT = Ultimate airplane load factor

SEMP = Empennage Planform area

t,
i	

2.47^
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For dive speeds greater than 250 kts. the empennage weight is a

direct function of the planform area and the terms F  and F  which

are defined below.

WHP 
^ KH • SH . f(FH )	 (2.23)

WVr = KV 
• IV . f(FV)	 (2.24)

where VD = Dive speed in kts.

S  = Horizontal Tail Planform area

IV = Vertical Tail Planform area

KH = 1.0 for fixed stabilizer

= 1.1 for variable incidence stabilizer

KV = 1.0 for fuselage mounted horizontal tails

= 1.0 + .15 SH_	 for T--Tails
V V

where bH W Height of Horizontal Tail above Fin Root

b  = Vertical Tail span

VB^SH^.2

F1,

1000 cos AH

VD

FV	

^SVI .2

)

1000 cos AV

where A = sweep in degrees at the maximum airfoil thickness

The values of the parameters dependent on F  and F  can be determined

from Figure 2.29. These equations were programmed and are used to

calculate the shell weights used in the Roskam/Fillman program in the

subroutines FUSWGT and EMPWGT.

(2.25)

(2.26)

i

i
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Figure 2.29 Empennage Weight Function

(Reproduced from Reference 9
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one of the input parameters for the Roskam/Fillman program is

the baseline airplane's gross weight. Using this gross weight and

the baseline shell weights of the fuselage and empennage, it is

possible to correct for change in gross weight due to the change in

tail cone and empennage configuration. This is done in the following

manner. Equation 2.21 shows that the fuselage weight is proportional

to fuselage gross wetted area to the power 1.2. It is assumed that

to approximate the shell weight of the tail cone equation 2.27 may

be applied,	 w

__ (SWET)TAIL
WTAIL 

(gWET)	
WF

BODY

(2.27)

This weight and the weight of the empennage are then subtracted

from the baseline gross weight to provide an adjusted gross weight,

NO'. It is then assumed that (WGR)' remains constant and that onlf

the tail cone and empennage weights vary.

2.3.1.4 Location of the Center of Gravity

The longitudinal c.g. location is required to size the empennage

for stability constraints. The e.g. location subroutine, SBARCG,

performs this function. The routine is not intended to locate the

e.g. accurately, but rather to estimate the shift in e.g. location

due to incrementally lengthening the tail cone. The equation used

to locate the c.g. was as expressed in equation 2.28.

2.49



X	 =
 ("GR 13 (Xcg). +( TAIL) (xcg )TAIL  + 

WH N)H	 + E
 + WV ^ cg)v J

C9 i

(
WGROSS	 c

g

Where,

WGR = adjusted gross weight (lbs) (See Section 2.3.1.3)

(X cg1 = baseline c.g. location relative to the nose (ft.)

r

WTAIL = tail cone shell weight Ubs)

1Xcg)TAIL = tail cone c.g. location relative to the nose (ft.)

WH	 = horizontal tail weight (lbs)

1 Xcg!
H

 = horizontal tail c.g. location relative to the nose (ft.)
1 

'IV	 = vertical tail weight (lbs)

^

rXcg^

= vertical tail c.g. location relative to the nose (ft.)
V

W
CROSS)
	

total gross weight for i'th tail cone/empennage

\\\\	 i configuration (lbs)

Ecg	 = c.g. correction found as the difference between
estimated c.g. location for baseline and actual c.g.
location for the baseline.

The tail cone c.g. location X 	 was located at the centroid
cg TAIL

of a body of revolution having a planform shape modelled by the equation:

(,,)n

a 

+ (Y)m

b
	 = 1	 (2.29)

With a cone shape of this type, it may be shown that the centroid

of the tail is located by equation 2.30.

2.50



Mi

Y

-	 1	 1- m	 _ 1- 3m+ 2m2	 1
2

1 
m(n -+2) ^4m (2n + 2)^	 6m3 On + 2)

Q
AIL	

_	 1	 1 - m	 _ 1 - 3m + 2m2	c	 t

^l m(n +1)^+ Vm2 (2n + 1)	 6M3 On + 1)}^

(2.30)
Y

Therefore, the c.g. of the tail, relative to the nose is	
r

located as:

x	
- QN + Z + xTAIL	

(2.31)
cg TAIL

The baseline c.g. locations for the horizontal and vertical tails

were input parameters, although for preparation of the data, where more

accurate data were lacking, it was assumed that the e.g. was at 60%

of the mean geometric chord,. To correct for tail cone length

changes equation 2.32 was used.

C
x1	 = X	 + AL	 (2.32)	 f

cg HorV	 cgoHorV	 c

where,

xcg	
= baseline e.g. location i-t.lative to the nose (ft.)

0

AQc	= change in tail cone length relative to the baseline

(ft.)

As stated before, this routine was intended to provide only

quick and dirty estimations for e.g. location based onthe limited

input parameters that the program used. It was anticipated that if

the method had been integrated into the GASP, that the GASP e.g.

location method would provide better.results.

2.3.1:5 _ Empennage Sizing

The horizontal and vertical tails were to be sized to meet

specified static stability constraints. The horizontal tail was to

be sized to provide a specific C m value, and the vertical tail a
a

2.51
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•	 i.

if	 ,

	

}	 specific C value. In addition to this, it was decided to optimize
n$

f`	 the effectiveness of the horizontal and vertical tails for each tail

	

-=	 cone length. These functions were performed for the horizontal and

	

j #	 vertical tails in the subroutines STABAREA and VERTAREA respectively.
i

The effectiveness of each surface was to be optimized by	 is

maximizing the product of the lift curve and moment arm for each

surface. The variable was to be the sweep of the surface. For

.° instance, by varying the sweep of the horizontal tail, both the;J

e	 horizontal tail, moment arm, ^ h, and the horizontal tail lift curve
sb

slope, Cb , are affected. The tail may be said to be most effective

	

a.o	
aH

where the product C
L
	X Qh is a maximum. The value of R h is	 ¢:-
aH	

f	
iii

	•°	 easily defined geometrically, and the value of CL , from Reference
aH	 f

14, may be expressed as-.

_	 2TrA
Ch	

i
a	

2+. —̀3	 1 + 
tan^^c/2 + 4	 (2.33)

where,

A = aspect ratio

	

-	 S = Prandtl-Glauert transformation, Z __M2

	

.a	 K = ratio of the actual section lift curve slope to 27

Ac/2= half-chord sweep

	

..	
The program assumes that the aspect ratios of the horizontal

f:

and vertical tails remain constant, allowing this procedure to be

more or less independent of the sizing.

The horizontal tail is to be sized for a constant C value.
M

a

From Reference 14:
t-

Cma = ^7{cg - X
ac) C

ha	 (2.34)

'J
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where all of the above values are total aircraft values.

From Reference 14:

C f
aH 	 SH	 dE

in 	 S	 XacHXac)	 +
_

1	 da }
WB	

C
L_

aS']B
ac	 ( 2.35)

C

LaH
sH
	 OE:

1	 +	 n H	 S L
aWB

Solving for SH renders: 3

ac)

{

Xac -
	

S
S	

-	
l	 (2.36)

H	
\\\ C

La
H	

nHX̂ac -Xac
H^

de
^1 _ dot s

C
L.
aWB

All of the variables on the right-hand side of equation 2.36

are determined using the methods of Reference 14. 	 In particular,

however, the 
X	

is determined as:
acWH

=	 X	 +	 AX	 (2.37)
acT,TB	 acW	 acB

of the sing, X	 is an input parameter, theWhereas the Xac ac
W

aerodynamic center shift due to the body, AX	 is computed by performing 
j

ac
B

a Multhopp strip--integration as described in Reference 14. 	 This is

accomplished in the subroutine KULTOP.

The total aircraft lift slope in equation 2.34 may be expressed as:
J

S 1

CL	 -	 CL	 +	 CL	 nH	 S	 (1 _ da	 (2.3$)
CL	 a	 a

WB	 H

i
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The program uses equations 2.36 and 2.38 to iterate to find a

value for S  which will meet the Cm constraint.
a

The vertical tail size is determined in a similar manner.

From Reference 14, the value for the C n of the aircraft may be expressed

as:	 a

C	 = C	 + C	 + C
ns	 n
	 n a V

where,

C	 =

n	
n

the body contribution to C	 (rad 1)

sB	
s

Cn	= the wing contribution to C n	(rad^ I )	 --

'W s

C	 the vertical. tail contribution to C 
n 

(rad 1)

n6V -
	 s

It is conservative to assume that the wing contribution is

negligible. Therefore, equation 2.39 becomes:

C	 = C	 + C
ns	

naB	 n a V

Or,

Cn6V = Cn^ - Cn^B (2.40)

From Reference 14 the body contribution may be determined as:

S B 
s Z 

C	 = -57.3 K	 K	 (rad 1}	 (2.41)

n 6	
Z S	 b

where,

K^ = an empirical factor for body and body + wing effects

determined from Figure 7.19 of Reference 14.

KR = a Reynold's number factor for the fuselage determined

from Figure 7.20 of Reference 14.

S$ - body side area (ft2)
s

QB = body length (ft)

2.54
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The side body area is computed using the methods of Appendix A

of this report.

The vertical tail contribution, C 	 may be expressed as shown

^V

in equation 2.42 (Reference 14).

QVcosa + ZVsina	
-

a
C	 -	 -C	 (rad(2.42)

f
n

5V	 YO 	 b

^- For an airplane in the cruise configuration it is reasonable
ug

to assume that the angle of attack is small. 	 Therefore:

as C	 =	 -C	 ^V	 (2.43)
nSV	 ySV	

b

From reference 14:
a

S

Cy 	-	 -kCL 	1 + d^ 	
S	

(rad 1 )	 (2.44)

$	 a
-• V	 V

where,

k	 =	 an empirical factor from Figure 7.3 of Reference 14. j

CL	=	 the vertical tail lift curve slope determined from
aV

equation 2.33 using A	
Aeff.	

The value of the effective

aspect ratio, 
Aeff' 

is determined by the methods of

Reference 14.

The value of the factor	 l + d$
	

n	 is assumed	 '-a approximately
e

1.0.

Substitution and solving equation 2.40 for S 	 renders:

Sb C	 +	 57.3	 -N Kr	SB	
Zns	

2)Q	 s	 B	 (ft

-^

S	 =	 (2.45)
V

kCL	
z

aV

" By 4terating between the equation for C L	and equation 2.45,
aV

the value for S 	 which meets the C 	 constraint may be determined.

E

} 2.55
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2.3.2 Results of the Roskam/Fillman Program

4d

ati

ar

i

The Roskam/Fillman method was tested using data for both actual

and conceptual baseline aircraft. Although preliminary results for

the Gn.tes-Learjet Model 24 seemed to verify the method, later results

for both other existing aircraft, and for the conceptual aircraft in

particular, were rather disappointing. For the sake of brevity

only a generalized discussion of the results and the conclusions

`eased thereon will be presented here. A more detailed discussion

of the airplane configurations tested and the results is presented

in Reference 15.

When the tests were made, as was expected the vertical tail

size required to maintain C  decreased with increasing tail cone

length. On the other hand, with many of the aircraft tested, as

the tail cone length waG increased so did the horizontal tail size

required to maintain C m	Thir was not as expected. As a result
a

the increasing drag and weight of the horizontal tail and tail

cone together over-rode the decreasing drag and weight of the

vertical tail.

After carefully evaluating the Roskam/Fillman algorithm the

following conclusions as to the cause of the difficulties were

arrived at. The method assumes that the wing may be kept at a

constant location relative to the nose of the aircraft. Because

of this and the fact that the aft portion of the fuselage has

very little effect on the shift in aerodynamic center due to the

body, the location of the wing + body aerodynamic center remains

relatively constant. As the Lail cone is lengthened the aircraft

c.g. moves aft. It is probable that inherent inaccuracies in the

"quick-and-dirty" method used to locate the c. g. pushed it even

farts,2r aft than should have been the case. It is also reasonable

to assume that the lift slope of the total aircraft is not going

to change drastically with changes in tail cone and horizontal

tail size. Therefore by referring to equation 2.34 note that

2.56
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as the c.g. is pulled aft by the tail cone, the aircraft aero-

dynantic center is also pushed aft to maintain the static margin.

Realizing this and the fact that the wing + body aerodynamic

center is more or less fixed, note that the numerator of equation

2.36 is going to become considerably larger. At the same time,

the(Xac   Xa ) factor in the denominator may also be decreasing,

compounding the effect.

The program was written so that some of the computations

a^	 made for each tail cone increment relied on some of the data from

the previous tail cone increment. This was done to reduce the

a y	 number of iterative cycles required. In particular, to locate

the c.g. at a new tail cone length, the empennage sizes from

the previous tail cone length were used. This was originally

felt to be reasonable as long as the increments in tail cone

a. length were small, Unfortunately, this also resulted in pushing

the c.g. even farther aft in light of the oversized horizontal

tail. Thus the problem was doubly compounded.

From this evaluation of the algorithm employed the following

conclusions and recommendation as to the usefulness of the method

may be made:

Before the method may be applied reliably to determine if

^m	 an optimum tail cone length (from a weight and drag viewpoint)

may be found:

A) An accurate c.g. location routine is needed. Also

if this is to be done, it would be wise to include

^Aa more accurate estimation of the component weights

and how they Fright be altered by changing tail cone

length.

B) The re-balancing 	 gof the win on the fuselage for each

new tail cone cone configuration might be investigated

to prevent the distance between the wing + body aero-

dynamic center and the total aircraft aerodynamic center

from becoming overly large. One disadvantage to the

'i i
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a

1:- re-balancing of the wing would be to reduce the effect

of an increased horizontal tail moment arm, with the

possible result that the overall objective of the

- method is cancelled.

a^ C)	 The algorithm needs to be revised such that the

calculations for each new configuration are independent

; a of all previous configuration data.	 This would reduce	 +

the probability of compounding errors.

The most obvious means of accomplishing these revisions was

to include the empennage sizing subroutines into the GASP and then

to change the tail cone lengths by external manipulations. 	 This
ao

would also allow checking the method both with and without re-

balancing the wing.	 Work was being accomplished to this end

before the writing of this report but,due to the difficulties

encountered in trying to put the GASP into an operational status,

-- could not be completed.

The technical monitor of this project at NASA-Ames, Tom Galloway,

performed some preliminary calculations using the GASP to test the

method's application.	 The empennage sizing method in this case was

the V method currently used by the GASP.	 The results from Tom

Galloway's study (Reference 16) indicate that the increasing weight

of the tail cone structure with increasing length will more than

^ overcome the decreasing weight of the empennage. 	 Drag, on the

other hand, did decrease as expected.	 The intent of this procedure,

it must be remembered, was to minimize DOC.	 However, DOC is much

more dependent upon weight than drag.	 Consequently, Tom Galloway's

s . results indicate that a shorter tail cone is better from a DOC

point of view.	 Nevertheless, we believe that by revising the GASP

in the manner suggested above to implement the Roskam/Fillman..
method, studies in this area might prove beneficial.

2.4 Baggage Compartment Study

It is necessary to allow enough room for passenger baggage.

Since the shorthaul/commuter airplane is frequently used to

a
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Figure 2.30 Baggage Dimensions

Table 2.10 Baggage Allowance

Large Suitcase	 x = 62 inches
Small Suitcase	 x = 55 inches
Total Weight -----70vounds

where x = t+ h + w
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transport passengers to the major airlines, it is desirable to

allow for the same amount of baggage as the major airlines specify.

The problem of storage location was investigated in Reference 15,

and three storage methods were studied, two of which were cabin

oriented and the other, tail cone oriented. For the cabin-oriented

storage methods the limitation was availability of required volume.

For the tail-cone storage method the critical consideration was c.g.

location.

To establish the baggage allowances for shorthaul/commuter

airplanes, several major carriers were questioned about their

baggage allowances. It was discovered that most major carriers

specify baggage allowance by the such of the baggage dimensions

and total weight rather than by volume. The major carriers allow

two pieces of checked luggage plus one carry-on piece. These

baggage allowances are summarized in Table 2.10. Figure 2.30

defines the baggage dimensions. One major airline allows 5.0

cu. ft. per passenger for its Trijet service.

To attempt to determine a volume corresponding to the

allowances of Table 2.10 a survey of baggage dimensions was

performed using the catalog of a major retail chain. From the

survey the dimensions listed in Table 2.11 were selected as

representative. The original baggage compartment study documented

in Reference 15 used the baggage volume indicated by Table 2.11.

In that study the required baggage compartment volumes for 12, 21,

and 30 passenger configurations were computed. It was assumed

that no additional allowances were needed for carry-on baggage,

as this baggage may be stored under the passengers' seats.

Table 2.11 Representative Ba gage

Z	 h	 w	 Vol.

Large Suitcase	 30 in	 22 in	 10 in	 3.82 ft3
Small Suitcase	 28 in	 18 in	 9 in	 2.62 ft

Total Volume ------------------------------------------ 6.44 ft 3
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(At u
) BAGGAGE = 4.566 ft

The result, although slightly small, looks reasonable.

This method will be used to size for the baggage compartment.

2.5 Fuselage Shape Simulation Program, FUSE

A computer program was written to simulate and design commuter

aircraft fuselages. The purpose of this program was two--fold.

First, the program was intended to provide a method for modelling

actual aircraft fuselages to provide node coordinates for use

with finite element analysis procedures. This modelling method

was to be simple to apply and versatile enough to be used with

most commuter aircraft slopes. The second purpose of the program

was to provide a means for applying and evaluation the design

methods previously discussed in this chapter. In addition to

these objectives for the program, an option was included to allow

for interactive graphic display of the resulting design or

simulation to ensure reasonable configurations. The final

version of the program at the time of this report is intended

to be used with a Tektronix 4014 or 4015 graphic display terminal

using the PLOT 10 graphics software package (Reference 18).

The computer program, which will be referred to as FUSE, was

written in FORTRAN IV for a Honeywell 56/60 timesharing system.

Appendix C of this report contains a complete listing and user's

guide for the program.

The program was originally documented in Reference 19.

At that time the program was only used in batch operations

for actual aircraft simulations and plotting of the simulated

fuselages was performed on a Benson Lehner plotter. Although

the design mode and the interactive graphics have been added

the modelling routines are essentially the same. Section 2.5.1

will discuss the approach taken to model the fuselage. Section

2.5.2 will provide the program description. Section 2.5.3 will

discuss the program results.

t
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The three methods of baggage storage considered in Reference 15

are shown in Figures 2.30 through 2.33. Reference 17 provides a

more detailed analysis of each method. The results of the analysis

indicated that only the fuselage lobe baggage compartment could be

considered feasible from a volume requirement standpoint. The

carry-on baggage compartment would have required that the cabin be

lengthened by approximately 50% and the tail cone compartment

resulted in center of gravity difficulties. One very important

factor was neglected in considering the fuselage lobe compartment,

however. No allowance was made in the study for either the wing-

carry through structure or the possibility of main landing gear

storage. This would be especially critical for the smaller

comaduter airplanes where the wing root chord is significant in

comparison with cabin length.

For these reasons another form of carry-on compartment

was considered. Figure 2.31 shows the baggage compartment to

be only on one side of the cabin. McDonnell Douglas found in

Reference 6 that baggage compartments on either side of the aisle

were more efficient from a design-to-cost point of view than the

fuselage lobe method. It was decided to try and develop a method

to define the length required for this type ofbaggage compartment.

Also, at the suggestion of Tom Galloway, the project technical

monitor at NASA-Ames, it was decided to limit the baggage to

5 cu. ft. per passenger.

It was assumed that the baggage compartment could be represented

by a trapezoidal cross-section for either the circular or rounded-

rectangular cabin sections. It was also assumed that an aisle of

1.5 the normal aisle width would be maintained. The resulting

effective baggage compartment cross-sections were to appear as

shown in Figure 2.34.

It will be assumed that the aisle-side of the compartment

is essentially equal to the inside cabin height, h c . The base

of each side may be represented as in equation 2.46, if McDonnell

Douglas control points are used:
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Figure 2.31 Carry-on Baggage
Compartment

.' -^D12
F,	 7

tia

^Y

{

'' 3

Figure 2.32 Fuselage Lobe
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Figure 2.33 Tail Cone Baggage
Compartment
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a) Circular Cabin Section



wbc = 2(N 8 - 1) ws - .5NA wA + 12]	 (2.46)

i
By solving the cross-section equations for a rounded-

rectangular section it is possible to find the wall-side compartment

height for both circular and rounded rectangular sections as:

- h - h	 --1 w
f - we+rtcwc 2

b	 c 2	
I	

t
r	 I 

4	
(2.47 )

e
c	

rtc wed

where	 #>

	

	 3
it

h = inside body height (in.)'

wf = floor width (in.) _ (NS - 1) W$ + NAWA + 12

Finally, the additional, cabin length required to allow for

5 cu. ft. of baggage per passenger may be expressed as:

(4!Z ) BAGGAGE =
	 720 PAX

U)	 - _	 - -	 -

_ h	 I w
f-wc + r tcwc 2

wbc	 2hc	
2 

(I -- r tc) 1- 4
	

rtcwc

where,

PAX = number of passengers

As a check of the method the baggage compartment length for

a 30--passenger cabin of the type presented by McDonnell Douglas

in Reference 6 was computed. The actual length was chosen as

the average of the lengths of the compartments on either side

of the aisle. In this case, that implied an actual baggage

compartment length of 5.375 ft.

Given:

we = 103 in.	 w  = 90.5 in.

WS = 20 in.	 N8 = 4

wA = 18.5 in.	 NA = I
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2.5.1 Approach to Fuselage Shape Simulation

For the majority of short haul/commuter aircraft, the

fuselage can be considered to be made up of three distinct

sections: the nose, the cabin, and the tail cone, as shown

in Figure 2.35. This was the basis for the development of FUSE.

The intent was to model each of these sections individually

and then assemble them. The methods used to model these three

fuselage sections will be explained in Sections 2.4.1.3 through

2.5.1.5. As all of the cross-sections will be modelled in the

same manner the cross--sections will be discussed in Section 2.5.1.2.

T#i

t'

1

{i..

i

^I

Figure 2.35 Definition of Generalized Fuselage Sections

2.5.1.1 Coordinate Systems

As FUSE was to be used to provide the nodes for finite-

element analysis methods, it was necessary to define a book-keeping

system by which the nodes might be located and used. As it was

hoped to use FUSE in conjunction with the NCSU BODY program of

Reference 20, the node numbering and coordinate system were chosin

i;	 to be compatible with the BODY program. The coordinate system

is such that x is positive aft, y is positive left, and z is

positive up. Tb-a aircraft is assumed to be symmetric about the



XZ-plane.	 Therefore, nodes are only simulated for half of the

fuselage on the positive-y side.

j	 The fuselage will be subdivided both in the lengthwise

direction, and radially about some specified c.:ntral axis.

'..	 The nodes will be numbered (i,j ) in a coordinate system,
4

i
where the value of i represents the number of the corresponding f

j

lengthwise subdivision and the value of j represents the number

}	 of the radial segment. 	 For each node, (i,j) values for x, y, and

z will be computed and stored.
i;

j	 The NCSU BODY program is written so that the number of

i s	 lengthwise and radial subdivisions are assigned to each fuselage

section (nose, cabin, or tail) individually as input parameters. -^

FUSE was written such that the number of lengthwise divisions

are input for each section, but that the number of radial divisions
0

is constant for all sections. 	 This facilitates the definition

of each panel. 1

2.5.1.2	 Cross-Section Determination, CRSSEC

The original program as documented in Reference 19 assumed
5

a

that the airplane cross-sections could be modelled by elliptical

or circular sections.	 Also the cross-sections for the nose, cabin

and tail cone were determined independently. 	 This sometimes

resulted in a discontinuity at the juncture of two fuselage

sectionL.	 To avoid this problem and to allow for round--rectangular

cross-sections, the subroutine CRSSEC was substituted for a" zross-

section calculations.

The approach taken to locating the cross--section nodes is

similar to that used in Reference 19. 	 The main difference is

that the method-has been generali2ed to account far the use of ^?

rounded rectangular cross-sections.

Figure 2.36 will be used to help describe the node location

procedure.	 It will be assumed that the cross-section center is

vertically offset from the y-z origin by some value, z o .	 The

2.67
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0

zcl

nodes will be located by rotating a radial line through 1800

(from —90° to +90° relative to the y--axis) from a center point

at y = 0, z = zOL .
 

The nodes will be located at the intersection

of the radial and the cross--section shape every 
u-
 degrees,

where "m" is the number of radial segments desired.

v 2

Figure 2.36 ?lode Location Method

The equation for the radial is as expressed in equation 2.49:

z = by + zCL
	

(2.49)

where,

b = tan	 TF -- 
2ir 
	

for j = 1, 2, 3 ..., (m + I)
1

m = number of radial segments

Note from Figure 2.34 that for z sb < z < zst , y = y',m. Similarly,
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for b < 0 and y < ysb' z = z  - zm, and for b > 0 and y < yst,

z = z  + zm . The values for 
yst , z

st' ysb' and z ,^ are easily

determined by equations 2.50:

yst = y	 )
m	 t

(1 - r	 (2.50a)

zst = z  (1 - r t ) + z 	 (2.50b)

ysb - ym (1 - rb)	
(2.50c)

zsb	 z  (rb - 1) + z 	 (2.50d)

where r  and r  are the upper and lower round-off radii expressed

as a constaf.t fraction of yfn and zm.

This reduces the node location problem significantly. Only the

rounded corners of the section must be dealt with. By solving the

cross-section corner equations at either the top or bottom corner

it can be shown that:

y = - 3	 B2 - AC	 (2.51)
2 A

where,

(bym)2

A = 1 + z
m

y 2
B - --2y' + 2b (z CL - z' ) Zm

m

	

^	 2

C = 2ymy I +

	

	 zCL z
	

- 1
 (Y )2

M

and where,

Y	 for b > 0
sty 	 ,

ysb for b < 0

zst	 nor b > 0
z'

zsb	
for b < 0

With a value for y at any radial position from equation 2.51, 	 j

the value for z is easily determined from equatinn 2.49.

2.69
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An added advantage of the subroutine CRSSEC is that the

discontinuities that could occur at the juncture of two fuselage
^	 nu

sections may be "faired-out." This has been done at the nose-

to-cabin juncture in the following manner. At any nose section

radial the node coordinates of both the nose and cabin are

determined as if the cabin shell hal been extended forward over

{	 the nose. The coordinates which ar .>. the least distant from the
center line of the fuselage are use(. This is not implemented

for the tail cone to allow for upsw(pt tails.

2.5.1.3 Nose Shape

The aircraft nose will be modeled as the locus of two

superimposed elliptical cones as shown in Figure 2.23. Each

of the elliptical cones is constructed such that the top and

side view planforms may be modeled by the generalized expression

of equation 2.51.

ral n +(Yb-) m=1

Fig	 2.3	

(2.51)

\/ure 7 defines the geometric parameters used to describe
the shape of the nose. Using the parameters shown in Figure 2.37

the coordinates at any point on the nose will be determined by the

following procedure.

Each of the elliptical cones used for the nose will be such

that the top and side view planforms may be described by the

general. equation 2.51. Appendix A of this report explains the

use of elliptical cones as described in Reference 9. Briefly,

the shape of the elliptical cone is determined as follows.

Given a specific cone shape, a rectangle may be superimposed

about half the planform as shova in Figure 2.38. By constructing

the diagonals, OS and CT, it is possible to define the shape

parameters 0, and 0,,. In general, the shape parameter ^, may
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defined as the bluntness parameter for the cone. These shape

parameters may be used to determine the exponents of equation

2.51 as described in Appendix A.

It will be assumed that Cone Nl may be described by its top

and side view shape parameters and that Cone N2 may be described

by only its side view shape parameters. The method for determining

these shape parameters for FUSE is discussed in detail in Appendix C.

After determining the proper shape parameters and the corre-

sponding exponents for equation 2.51, equation 2.51 may be applied

to determine the planform shapes for each cone. The planform

equations for Cones NJ and N2 are expressed in equations 2.52

through 2.55, as derived from equation 2.51.

OP	 OQ

OA	 OA

Figure 2.38 Definition of Elliptical Cone Shape Parameters

Side 'View:

_	 _ N1 J x ) 
N] 1/m[dl

zml ^ x 
J 

ZNl	
1	

^'Nl
(2.52)

2
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Top View:

1 (

yml1x = YNl	 1 -
	 N1Q	 (2.53)

N1

nyl 1/my

where: mil and 
nN1 

are derived from Cone N1 side
i

view shape parameters 
011 

and 
X21;

and:	 my1 and ny1 are derived from Cone N1 top

view shape parameters, 
0 Y 

and 0y2.

For Cone N2

Side View:

	

Q	 -- x nN2 1/^2
Z1 -	

Nl^	
for x > (QNl-^"N2)

N2	 J

zm2 
j x -

0	 for x < (ZN1-QN2)

(2.54)

Top View:

	

R	 -- x )nN2 1/12
^ 1 -	 Nlz	 for x > (RN1-QN2)

N2

Ym2Ix

0	
for x < (QNl-kN2)

(2.55)

where: mN2 and nN2 are derived from Ccne N2 side

view shape parameters.

With the planform values, y  and z m at any x, for both cones,

the cross-section shapes may be superimposed according to the

methods of Section -.5.1.2, As stated in Section 2.5.1.1, the

cross-section at each lengthwise segment will be divided into

a specified number of radial segments. To attempt to place the

2.73
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nodes as effectively as possible, for use in the NCSU BODY

program, the following method will be used.

Figure 2.39 pictures the orientation of cones Nl and N2.

A line, CL, has been constructed from the tip of Cone Nl to

the centroid at the base of Cone N2.

Z

Figure 2.39 Geometric Definition of the Centerline
for Radial Divisions

The equation for CL may be expressed as in equation 2.56.

zCL =
	

(-ZNO x f zN0	 (2.56)
Nl	 Yt

This line will be used as a centerline from which the radial	 E

divisions will be constructed.

For x < 
(Q
NI - QN2) nodes will only be determined for Cone Nl. 	 #±

For x > 
(Z
Nl - QN2}, the distance of the j'th node for each cone

from CL will be used to decide which node will be retained. The

distance will be determined as:
t

r =	 yz + ( z - zCb ) 2	(2.57)
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The node resulting in the greater value of r will be used.

2.5.1.4 Cabin (Utility Section) Shane

The cabin will be modelled by a cylinder of a constant

'	 cross-section. No offsets will be used for the cabin. The

length of the cabin will be represented as Z u . The cross--

Y !,	 section at any point may be represented by the method of Section

-	
2.5.1.2.

rr

2.5.1.5	 Tail Cone Shape

The tail cone shape will be modelled as an elliptical cone

f	 a

in much the same manner as Cone NI of the nose. At present, f`

the shape parameters used by FUSE for the tail cone are the

same for both the top and side plareform shapes. For this reason,

an average of the top and the side view shape parameters is I

4a	
advised for input data to the program. 	 This is discussed in

Appendix C in more detail.

With the shape parameters and subsequently the exponents

for the equation, the planform shapes may be expressed as in

,.	 equations 2.58 and 2.59.	 Figure 2.40 describes the geometric

parameters used to describe the tail cone.

em	 1/m

H	 X^	
nC	

C
Side View:	 zMCI	 =	 1 - (2.58) i`
c:

1/m

1 _^	

nc	

c
ymc^x y

(2.59)

s'

2
C

.ti	
Where:	 x 	 x	 (zN1 + zu)

^d	 As with Cone NI of the nose, to allow for upswept tail cone,

provision has been made in FUSE for a vertical of= fset for the tail

cone of the form:

2.75
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The cross-section will, again, be determined according to the	 {

method of Section 2.5.1.2. 	
f,

2.5.2 Program Description

Using the model developed in Section 2.51 a program was

written in the Fortran. IV computer language to compute the t

coordinates of nodes for finite-element analysis applications

for commuter aircraft fuselages. Figure 2.41 presents a simplified

flowchart of the program. A complete listing for the program is 	 4

presented in Appendix C of this report.

The program calls one subroutine to aid in the computation

of the node coordinates, CONSHP. CONSHP is a short iteration

subroutine used to determine the planform equation exponents

from the elliptical cone shape parameters, as stated in Section

2.5.1. A description of the method used in CONSHP is presented

as part of the explanation of the elliptical cone method in

Appendix A.

It should be noted that fuselage node coordinates are stored

in a three-dimensional matrix, SFUS ( I, 3, K). SF'US has been

dimensioned as a 60 x 30 x 3 matrix. This allows a maximum of

1,711 panels for each fuselage. Although this may appear to
f

be an excessive number of panels, the dimensioning was chosen

to allow maximum flexibility in choosing lengthwise and radial

segment distribu,ions for structural or aerodynamic applications.

The I value is the number of the lengthwise segment. The J value

is the number of the radial segment, numbered from bottom to top.

The K value is the x, y, or z coordinate, with the K -clues of

1, 2, and 3 corresponding to x, y, and z, respectively.

Although at present, they are not output, the coordinates

for the nose cones N1 and N2 are also stored in three-dimensional

-.e2.77
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^	 FUSE

1
	 ,

iNPUT PROGRAM MODE:

1	 1) DESIGN
2) SIMULATE
(I NTERACTIVE)

SELECT OUTPUT OPTIONS:

11 DIMENSION	 -
2) COORDINATES
31 TOTAL WETTED AREA

4) PANEL AREAS AND RATIOS

5) FUSELAGE PLOT

(I NTERACTI VE)

F	
T

SIMULATION? 

INPUT:	 INPUT:

DESIGN PARAME7iRS	 CONFIGURATION DATA

(INTERACTIVE) 	 (FROM PERMF I LE "03")

y	 i	
i

a

PRINT

e 
DIMENSIONS?	 F	 3

..	

T

OUTPUT:

CONFIGURATION

DIMENSIONS

2

Figure 2.41 Simplified Flowchart for FUSE
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DATA

F	 RESUBMIT	 T
SATISFACTORY? DATA?	 1

T F

3
5

1-
Ga

PI	 3.14159265

CALL CONSHP:
- DETERMINE

PLANFORM

EXPONENTS
^i

t

^. 12 -0
NRADXI a NRADX +1

4	 NF ° 1, NFUS

12	 12 + NFORX(NF)

.. NF	 NFU5	
T	 (2312+1

x

Iff° 11 +1 F

_ = I	 ° 1Q1,	 l2

'

do

NX ° NFORX(NF)

>	 2-NF	 <g
1

^g

COMPUTE: COMPUTE: COMPUTE:
NOSE CONE CABIN TAIL CONE

COORDINATES	 COORDINATES	 COORDINATES

-	 r-
a
1

Figure 2.41	 (contiiwed)
J
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OUTPUT:
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AREAS
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OUTPUT:
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DINATES? }
OUTPUT:

FUSELAGE
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"' PLOT -*'-
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FUSELAGE
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arrays.	 These arrays, SNOSI(I, J, K) and SNOS2(I, J, K), are

set up in a similar manner to SFUS. 	 The intent is to eventually

evaluate the individual nose shells for crew compartment volume,

visibility, landing gear stowage, etc.

The program may be operated in either a design mode or a

simulation mode.	 In the simulation mode, the program will read

shape parameters for a particular aircraft configuration from

` a data file already stored on disc. 	 The logical unit number

for the READ statements in this case is "03." 	 In the design

mode the program will ask the user to input the necessary variables

in a question-and-answer process.
G P

One of the original intents for FUSE was to prepare data for

use with the NCSU BODY program (or Reference 20) to enablef.

" parametric studies for fuselage drag optimization. 	 For this

reason the program will re-orient the fuselage coordinates and

^- output them to a disc permfile in a format useful to the BODY

program, if desired.	 The logical unit number for the WRITE

`
r

statements in this case is "07."	 Several other output options

are available as well.	 These are discussed in Appendix C.

2.5.3 Program Results

ee

	

	 To test FUSE, several simulations of actual aircraft were made.

Two of these simulations are presented here as Figures 2.42 and 2.43.

Figure 2.42 represents a simulation of the Gates-Learjet Model 35/36.
^a

Figure 2.43 represents a simulation of the Fokker--VFW F28 Mk. 4000.

In both cases, the simulation seems to represent the fuselage

-'

	

	 shape with reasonable accuracy. Discrepancies, however, are apparent.

Because of the straight-line-segment method used, for instance, the

nose and tail become pointed. The accuracy by which the windshield/

.,

	

	 body intersection is modelled depends upon the number of panels

specified for the nose section of the fuselage. Note, also, that

the "flat" portion of the F28 tail cone has been averaged into the

overall rounded shape. The wismatch of tail cone lengths is a

result of a miscalculation for input data.
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Figure 2.42 Gates Learjet 35/36 Simulation - 580 Panels
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gigure 2.43 Fokker F28 MK. 4000 Simulation — 600 Panels
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It is believed that when the analysis of the fuselages

is completed using BODY, the results will be close. Also, at

that time, to check the sensitivity of the method slight modi-

fications in the shape and geometry will be made to document the

effects of simulation discrepancies on aerodynamic predictions

of BODY. The most considerable problem to be encountered was

the choosing of the fuselage divisions to insure accuracy

according to the constraints of Reference 20.

Although several conceptual designs have also been made,

hard-copy plots were not available. Preliminary indications

are that YUSE-generated designs are reasonable.
^u

rr

^ o
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CHAPTER 3 WING CONFIGURATION STUDIES

The project objectives as outlined in Chapter l called for

performing a short study of wing sizing methods and considering

a rational approach to wing placement. 	 Although it has not been

=?	 possible to completely meet the objectives in this area, this ?

chapter will discuss briefly one alternative method to the GASP
s

'l
e	 i	 method for wing sizing, and a method that was considered for wing ?I

placement.	 Section 3.1 will discuss the wing sizing method, and

Section 3 .2 will describe the wing placement method.II'

3.1	 Wing Sizing

It was proposed to consider the methods of Laurencc Loftin i

ti	 of NASA-Langley (References 3, 21, 22, and 23) as an alternative

method to sizing the aircraft wing for optimization studies. 	 Time

permitted only a quick look at the methods involved, and no formal

evaluation was possible. I:

The methods described by References 3, 21, 22, and 23 may be
4

f:,
;•

applied to either jet-propelled or propeller-driven aircraft. 	 The

methods used are based on data collected from several aircraft in E

each category.
}

_
The propeller-driven aircraft sizing methods were based on

.i

F	 the characteristics of over one hundred forty different aircraft

in a gross weight range from approximately 1000 lbs. to over

100,000 lbs.	 The maximum speed ,range of these aircraft covered a

range from about 100 MPH to over 500 MPH. 	 The methods are intended 1

to size the aircraft to one or more of the following performance

objectives (Reference 21):
z

A.	 Airport Performance
^o

^.	 1.	 Stalling Speed
_t

2.	 Landing Field Length

3.1
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3. Take-off Field Length

4. Climb Performance

V	 B.	 Cruise Performance

1. Maximum or cruising speed usually at a specified

altitude and power setting

2. Range, again at a specified altitude and power

ba	 setting

3. Payload

°-

	

	 By specifying these performance objectives, and by using the

aircraft data and the analysis methods proposed, it is possible

to rapidly estimate the following aircraft characteristics:

Gross Weight

Empty Weight

Fuel Weight

Wing Area and Wing Loading

Power and Power Loading

Performance Characteristics at Values of Altitude and

Power other than those Specified

Figure 3.1 provides a simplified flowchart of the method as

applied to propeller-driven aircraft.

The performance and size estimation method for jet-propelled

aircraft was accomplished in a similar manner. The methods were

based on the characteristics of approximately 35 aircraft with

gross weight ranging from about 10,500 to 800,000 lbs. For the

-	 jet-propelled aircraft the Following performance objectives were

considered (Reference 22):

A. Airport Performance

:-^	 1. FAR (Federal Air Regulations) landing field

length including missed approach requirement

2. FAR take-off field length including second segment

climb requirement

1

ff	
3.2
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B.	 Cruise Performance

1. Cruise speed and altitude

2. Range

3. Payload

In this case by using the performance objectives, the aircraft

data, and the proposed analysis methods, the following aircraft

characteristics may be rapidly estimated:

' Gross Weight

Fuel Weight

Wing Area and Wing Loading

Thrust and Thrust Loading

Altitude for Cruise, if not specified

Figure 3.2 provides a simplified fl.awchart of the methods

as applied to jet-propelled aircraft.

Although a formal evaluation of the methods was not made,

a preliminary study of the method indicated that very good

results could be expected. The intent of Loftin's method was

to allow one person to rapidly estimate the performance and

size of an aircraft without having to rely on expensive computer

aids. As a result the method is very much oriented towards

graphical approximations. The GASP, on the other hand, accomplishes

the same basic objectives through computer applications. At

this time, it is not felt necessary to pursue the evaluations

of Loftin's approach for use in the design optimization of

commuter airplanes.

3.2 Wing Placement

When the proposal for the first continuation of this

research project was submitted to NASA-Ames in December 1976

(Reference 2), a misunderstanding of the wing location method

used by the GASP inclined KU--FRL personnel to believe that an

improved method was available. This method, provided in

3.4
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Chapter 8 of Reference 9, however, was in fact essentially

what the GASP already used. For this reason ^-,ork to incorporate

u1	 a wing location routine based on Reference 9 was discontinued.

One other aspect of the GASP wing location routine did raise

some questions. In locating the wing to provide a specified

static margin value, the GASP assumes that the aerodynamic

e^
	 center of the wing (alone) is at 25% of the MAC. This is

satisfactory for essentially upswept wings (ALE < 10 0 ) at low

Mach numbers (M < 0.3). For business jet configurations this

is not necessarily the case. The methods of Reference 14 were

to be used to locate the aerodynamic center, given a specific

wing geometry at cruise Mach number, but time did not permit

the completion of the associated routines. Also, it appeared

that, in the GASP, it was assumed that the effect of the body

is to shift the aerodynamic center aft. Subsequently it was
j:	

assumed in the GASP that any static margin allowed would be

conservative. On the other hand, the effect of the body is,

in fact, to shift the aerodynamic center forward, tending to

destabilize the aircraft. For this reason it was intended

to use the Multhopp strip integration routine mentioned in

Section 2.3 to compute the body effect and then to iterate

to find the wing location that would result in the proper

static margin. Figure 3.3 presents a flow diagram to illustrate

this approach.

As the GASP is still inaperational, these methods have not

yet been implemented.
S
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CHAPTER 4	 WETTED AREA, DRAG, AND WEIGHT STUDIES

Towards the objective of determinin g a minimum weight and drag

configuration to aid in minimizing DOC, studies were made to determine

whether a minimum drag cou_.71i'.;::	 could be defined for the fuselage.

Weight and drag studies were both to have been conducted using the GASP,

but due to the inoperational status of the program this has not been

possible.	 It was also hoped that additional drag data could have been

compiled to compare with the GASP results by using the NCSU BODY

program of Reference 20. 	 Higher priorities had to be placed on the

GASP program, and therefore the BODY program transliteration process

was put aside.

Wetted area studies were conducted using FUSE for both actual

and conceptual aircraft. 	 As wetted area may be related to both drag

and weight, some implication of the wetted area study may be used

to predict what might be expected with drag and weight. 	 The wetted

area study will be discussed in Section 4.1. 	 Section 4.2 redocuments

the slipstream drag study presented in Reference 15.

4.1	 Wetted Area Studies

The zero-lift drag of an airplane is proportional to its wetted

area as shown in equation 2.4.	 The weight of the fuselage structure

may be said to be proportional to its wetted area to the power 1.2,

as shown in equation 2.21. 	 Therefore by studying the wetted areas

of various airplane configurations, it should become possible to

derive some conclusions as to the trends in weight and drag to be

expected.

Early in the research program, an attempt was made to correlate

both total fuselage wetted area and fuselage section (nose, cabin,

and tail) wetted area with their characteristic length. 	 Data were

compiled using wetted areas either acquired directly from the

airframe manufacturer, or acquired by estimations from available

4.1
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drawings. In an attempt to derive mathematical relationships,

linear, exoonential, and logarithmic least--squares curve-fits 	
s

were applied to these data. These relationships are presented

as Figures 4.1 through 4.12. 	 The results of these correlations

were not very promising.

With the completion of FUSE (Section 2.5) another approach

to determining wetted areas became available. Several aircraft 	 ^;1

were modelled using FUSL" and the resultant wetted areas were

compared with their actual wetted areas. These results are pre-

sented as Figure 4.13. With the exception of the Fokker F2$,	 9

FUSE seems to provide good results.

Having determined that the wetted areas computed by FUSE

were reasonable, a quick study was performed to determine the

effect of cabin seating arrangement and total passenger capacity

on fuselage wetted area. Conceptual aircraft were designed by

FUSE to consider 10, 20, and 30 passengers in 2, 3, and 4 seats 	
7

abreast configurations. Also these designs were made for circular

cross-sections and for round-rectangular sections with a round-off

radii value of 0.5. In all cases the default values for a

piston aircraft were used for the shape parameters and ratios.

Adequate comfort level values were assumed, and baggage compart-

ments allowing for 5 cu. ft. of baggage per passenger were also	 r

included. The significant parameters for each confi.gurafi.on are

presented in Table 4.1. Figure 4.14 presents a plot of fuselage 	 is

wetted area as a function of passengers for the circular fuselage

configurations. Similarly, Figure 4.15 presents the results for

the rounded--rectangular fuselage configurations.

From Figure 4.14 note that for all of the passenger capacities

considered the number of seats abreast seems to be the controlling

factor. For the twenty to thirty passenger range, however, the

T

In figures 4.1 through 4.12, gross wetted area is the wetted
area of the entire fuselage; net wetted area is gross wetted area
minus the area of wing-body and tail-body intersections.

See footnote page
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4° ' 0 4 L- 4 C: 4	 f

Table 4.1 Conceptual Aircraft Design Parameters
for the Wetted Area Study

Note: 1) Adequate Comfort Level is Assumed

2) Baggage Compartment ti 5 cu. ft./passenger

Conceptual Total Seats Round-off	 Outside Outside Nose Cabin Tail Wetted

Config. Passengers Abreast Radii Width Height Length Length Length Area

(ft) (ft) (ft) (ft) (ft) (ft2)

A 10 2 1.0 6.40 6.40 9.19 17.57 22.38 878.17

B 20 2 1.0 6.40 6.40 9.19 35.13 22.38 1237.46

C 30 2 1.0 6.40 6.40 9.19 52.70 22.38 1494.43

D 10 3 1.0 7.71 7.71 10.87 12.43 27.00 1017.94

E 20 3 1.0 7.71 7.71 10.87 22.36 27.00 1264.58

F	 P 30 3 1.0 7.71 7.71 10.87 32.29 27.00 1526.47

`j	 G 10 4 1.0 9.20 9.20 12.09 8.98 34.11 1331.11

H 20 4 1.0 9.20 9.20 12.09 15.47 32.19 1403.99

I 30 4 1.0 9.20 9.20 12.09 24.45 32.19 1683.11

3 10 2 0.5 5.25 6.74 10.55 17.68 20.98 929.07

K 20 2 0.5 5.25 6.74 10.55 35.35 20.98 1328.55

L 30 2 0.5 5.25 6.74 10.55 53.03 20.98 1686.99

M 10 3 0.5 6.92 6.88 11.54 12.78 24.15 955.47

N 20 3 0.5 6.92 6.88 11.54 23.06 24.15 1201.46

0 30 3 0.5 6.92 6.88 11.54 33.33 24.15 1470.86

P 10 4 0.5 8.58 6.99 11.78 9.40 27.26 1017.50

Q 20 4 0.5 8.58 6.99 11.78 16.30 27.26 1198.44

R 30 4 0.5 8.58 6.99 11.78 25.70 27.26 1460.11
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wetted areas for the 2 and 3 seats abreast configurations are very

close. Considering drag, in this case, the 2 seats abreast config-

uration is still b-st. A longer fuselage length results in higher

Reynolds numbers and therefore lower skin Friction coefficients.

From a weight standpoint, as weight may be considered as propor-

tional to wetted area to the power of 1.2, the 2 seats abreast

configuration also prevails.

Figure 4.15 produced some rather unexpected results. Note

here, that the wetted areas for the 2 seat's abreast configurations
au

rapidly become very much greater than the other seating arrangements.

Checking Table 4.1, it is apparent that the nose cone lengths for

	

oU	

this configuration appear overly large. This might indicate that

the standard crewbox is too large for this configuration. Looking

at the 3 and 4 seats abreast configurations, note that 4 seats

abreast become more efficient, from a wetted area standpoint above

	

p	 lb passengers. This could mean a drag trade-off as the 3 seats

abreast configurations will have longer fuselages and therefore

	

,a	lower skin friction coefficients. From a weight standpoint the

4 seats abreast configuration is still preferable.

These assumptions and conclusions are of course based solely

on the wetted areas. Such factors as comfort, pressurization,

ease of construction, etc., should also be considered before

selecting a configuration.

	

9	 4.2 Approach to the Prediction of Zero-Lift Drag in a Propeller

Slipstream

When a rotating propeller is working in the presence of a body

(wing, nacelle, fuselage), the flow through the propeller disc and

about the body will change. The flow through the propeller disc

will change because it will work in a perturbed flow field. These

perturbations alter the local angle of attack and effective airspeed

at each blade section, and thus the overall propeller characteristics.

4.19



The flow over the body will change due to the existence

of a slipstream. The body can be either immersed in the slip-

stream or be close to it; in either case the airflow about the

body will change. As a result, lift and drag of the aircraft

parts in the slipstream and propeller thrust and power-required

will change.

L+AL

N
p

T+AT

V

Figure 4.16 Change in Aerodynamic Forces
due to the Slipstream

The lift dependent drag is affected by propeller power in the

following ways:

1.	 The components of propeller thrust and normal force that

are parallel to and have the same direction as the wing
lift reduce the wing lift required, thereby reducing the

wing drag due to lift. A method to compute the magnitude

or this effect can be found in Reference 24.
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u
4.2.1 Zero--Lift Drag

Methods to predict the increase in zero lift drag of bodies

immersed in a propeller slipstream are presented in several publi-

cations. According to all these publications, the drag increase

^tr	 is proportional to the average increase in dynamic pressure in the

slipstream and an appropriate drag area.

Reference 24:..	
ACD - 

l r 
CD OqS dS	 (4. 1)

0 Sq. Sl f
..	

where: Aq S = ThrR2

S l = area, immersed in slipstream

Reference 28:	 VR = PO + Vl casaT ) 2 + Vl2 sin2aT (4.2)

where: VR = resultant velocity about body

"°	 Vl WfV2i2T+ 
	
- V

2. The propeller slipstream modifies the downwash and dynamic

pressure over portions of the wing thus changing the wing

drag due to lift. Two different methods are available to	 i

compute the magnitude of this change in drag: a) Reference

25,Section 4.6.4 (essentially empirical.) and b) theoretical

methods, for example: Reference 26.

Sophisticated methods exist that predict lift dependent drag

changes. Therefore, the topic of this investigation will be: changes

in zero-lift drag and propeller performance.

E3

u

c: a
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i

i

i

a

Except for an additional correction factor, this method is the same

as the methods of References 24 and 28 because these Can also be written

as follows:

with: Aq = T/wR2

Tr	 D7--
AD = AgCDSI

Instead of 4 a factor of 1.558 is used in the Reference 27 method
rr

(22% higher). In all these methods the slipstream is represented

as shown in Figure 4.17.

A --- A

Area A

I..
V = const.

Figure 4.17 Representation of Slipstream.:;
a

4.2.1.1 Theoretical Considerations

Theoretically it can be proven that the spanwise axial velocity i
distribution behind a propel-Ler is as shown in Figure 4.18. These

results have been verified experimentally.



9d

H

r!^
l.1fi2

----	 !SW
- —^

- ---	
Q

`-"--`°-	 766
I

1 4T

6

5

^

I 1 + ^ ^^

dD

7.0

1 1

I
I ^l

—

60

VI I

+

50

tO

.ZO

I 2

J

!7

-.!

-4,

!

I'

^I 11 i
__ ^--^

- 1 f

!'

ZD

i
.tq

TO

^. r.. I _

l I I	 i I	 I+ I	 Ij I ,, 1 1 -- _ 1.	 i
I	 I

t	 i	 l
i	 I	 I I I

--f-'^

2 -7 I .5 .6

1

.Y	 -8 .9 t.D _3 ^^ ^, e

I
r

t

3
t

^	 }1
}

I

f r,

4{	 w.

^n

a..

I

L`;3

c+r:-

f'

era

R c.

ti^e7

F^ ncs

x;

Li
i

Figure 4.19 Curves of H/q against x for NACA cowling

Figure 4.19 (from Reference 29) shows distributions of total
pressure increase (H) divided by q (ambient-dynamic pressure).

Considering these curves it seems unlikely that both slender

and wide bodies are equally affected (as far as drag increases are

concerned) by a slipstream. This suspicion is reinforced by experi-

mental results presented in Figure 4.20 from Reference 30. 	 i
Apparently, the drag increase of bodies with a small propeller

(high dJD) is higher than the increase in zero lift drag of bodies

with a larger propeller at the same conditions (i.e. same Aq 5 and

q0)
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(a) 48-in. propeller; 12-in. nacelle (with spinner); d/D = 0.25
(b) 48-in. propeller; 12-in. nacelle; d/D = .25
(c) 48-in. propeller; 16-in. nacelle; d/D = .33
(d) 36-in. propeller; 12-in. nacelle; d/D = .33
(e) 36-in. propeller; 16-in. nacelle; d/D = .44	

J.

Figure 4.20 The variation of slipstream-drag coefficients with
apparent propeller thrust-loading coefficients.

N.B. T
OAD ADfus /PV

0 
2 D 

P 

2	
Tc a 

T/pV
0

 2D 
P

2

4.24

. ......... 	
7	 7



l.7

	

1

An obvious explanation for this phenomenon has not been found.

It appears necessary to know the development of the slip-

stream in streamwise direction accurately, in order to provide

better predictions of zero--lift drag increases than those presented

in Reference 24.
Reference 29 presents dynamic pressure contours in the plane

of the elevator hingeline of some propeller driven airplanes. Some

of the results are shown. in Figure 4,21,

4- !^	
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Figure 4.21 Dynamic pressure (q/q ) contours and inclination
of the air stream in the plane of the elevator
hinge line. ,Vectors show deviation of air flow
from the free-stream direction. View looking
forward. Circle shows projection of propeller
center.
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These figures show the velocity distribution in a cross--section
L

of the slipstream some distance behind the propeller.

It can be seen that in this case (*.where the slipstream is not

influenced by a body) the slipstream diameter some distance behind

the propeller is stir, the same as the propeller diameter. The dy-

UO namic pressure distribution however is quite different from the one

right behind the propeller, suggesting that mixing processes can be

quite important. The results shown in Figure 4.22 are similar.

Such a slipstream development rules out quick, but accurate,

predictions of its influence on drag.

Detailed theoretical or experimental investigations appear neces-

sary to yield an accurate prediction method. A simplified approach is
tiry

given in Section 4.2.1.2. At the moment, however, it seems best to use

the average Aq (cross sectional) in AC 	 calculations.
a:	 0

The use of this "easy" method seems even more attractive, after

.o	 looking at Figures 4.23a and b, showing dynamic pressure contours of

slipstreams that have been influenced by bodies.
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Figure 4.23 Dynamic pressure (q/q o) contours and inclination of
the airstream in the plane of the elevator hinge line.
Vectors show deviation of air flow from the freestream
direction. View looking forward. The McDonnell air-
plane.
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	 stream direction. View looking forward. Circles
show projections of propeller centers. The four-
engine pusher model.''

a

It is hard to tell what the influence on fuselage drag is, of a

slipstream, the dynamic pressure distribution of which has changed

from the one shown at the beginning of this section, to the ones

shown in Figure 4.23.

Q;	 It is therefore suggested to use an average Aq 8 = T/7R2 in

ACD calculations, possibly together with one of the following car-
0	 '!

uQ	 rection factors:
T -

AD = Aq s
 CD 

9
I x k	 (4.5)

.a	 where Aq s = T/rrR2

k = 1	 (Reference 24)

or: k = 1.224	 (Reference 27)

or: k	 5.8 d/D (Reference 30)
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'AP	 = iT/7TR2
max

F

An attempt has been made to show that dynamic pressure changes

in streamwise direction due to mixing, etc. do exist and make accurate

drag predictions virtually impossible (i.e. in a fast and simple way).

But, even when a very simple theory is used (Momentum Theory), neglect-

ing all effects like mixing and viscosity, it can be shown that the

dynamic pressure (and static pressure) change in streamwise direction

(Figure 4.24).
	 i --

VaxiaZ

d Aqs	= T/nR2
max

Figure 4.24 Change in Pressure Behind a Propeller

In the region of the fuselage nose, Aq S is apparently lower than

far behind the propeller, while AP S is higher.	 The influence of both

effects on fuselage drag however can be approximated by assuming that

AP = 4 and Aq S = constant = A 	 far behind propeller.	 This assumption

might lead to erroneous results when short fuselages with a blunt nose

are considered.

4.2.1.2 A SimplifiedApproach to Zero-Lift Drag Prediction

An approach to the zero-lift drag prediction problem might be: 1:	 3

1.	 Calculate velocity distribution in slipstream (using continuity,.
expression).

2.	 Determine dV/ds at nacelle boundary (s = distance to nacelle

boundary) (Inviscid).

3.	 Determine influence of dV/ds on boundary layer development and

wall skin friction.
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Figure 4.25 Velocity Profile in a Slipstream

This approach has not been developed completely. The following expla-

nations might help in such a development.

If local speed at a particular blade section is V O+Va. , then there
x

must be a speed V0+2Va. ; in the fully developed slipstream. These speeds

are along one slipstream line.
i

s

FdU

Vo+2Vai

0+Va

With the continuity expression it follows: 	 (4.6)

prr(rp i - rp i-1) 
x VPay.r -r
	

pn(rsi rsi-1) x Vsay.r	
r	

s

P^ pi-1
	
S.-), 

si-1

where: 
rpi-1 

and rpi are ends (inboard and outboard) of a blade section.	 j

VPay.	 = average speed at this blade section = V 
0 
+V 

a.

rpi rpi-1	
x

r	 and r are boundaries of streamline tube (boundaries of
s i-1	 si

which at propeller disc are: rpi-1 and rpi ) in slipstream.

V
say.	

average speed through this streamline tube =
-

rrsi-1	
V0+2Va.

i
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Figure 4.26 Velocity Profile in a Streamline Tube

Therefore: (rpi-rpi2l) x (2V +Va a+V +V	 )2=	 (4.7)
z	 i--1

(rs - rs 2 ) x (2VQ+2Va. +2Va	)2
x-1	 x	 i-1

With the known axial velocity distribution at the propeller disc

(theory or experiments), the velocity distribution in the slipstream

about a nacelle can be obtained by numerical integration.

^I



t

u

^a

e^

L^
At nacelle boundary: V = V 0 (inviscid!).

According to boundary layer theory:

f s ( aL + ay) 
dy = 0 } V(S) - V(0) = - f S au dy	 (4.8)

0	 ax	 ay	 p	 ax

N.B_ S is distance to wall, where viscous speed u is

equal to inviscid local. speed U = speed according

to 1 of Section 4.2.1.2.

p fS fax
 (U2) + ay (uv) - u e -- v a2y ) dy = 0	 (4.9)

3Y2

where: - v f$ a2 u dy = v((au)0 - (du)S) - p - v ay0 ay2 	Y	 Y	 Y

Rewritten:

a { fS u(U--u)dy) - au
	

f a (U-u)dy - v (au) = T D	 (4.10)
ax	 p	 ay 0	 ay S - p

Assuming that U hardly changes over the boundary layer, and that

dy ¢ 0 and can be determined by the method explained in Section
3.1.2.1, the increment in skin friction drab can be determined

using boundary layer theory.

A first order approximation (assuming velocity profile in boun-

dary layer doesn't change) is:

au
AT = pv(ay)8	 - Cv( ay) at wall	

(4.11)

according

to l

Reference 30 presents a method to compute changes in lift due to a

propeller slipstream. In the first part of the method velocities at

the propeller disc and in the Slipstream (including swirl) are calcu-

lated. This method is more complicated than the one explained above,

but could also be used instead of the method in Section

yield similar results.

4.2.2 propeller Blockage.

Only Reference 27 gives a method to account for propE

age effects:
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`fie€f r	 (1-h)	 ,his	
(4.12)

V=
where is -

A

1-h = 1-.32g S

i

By rising 
J
eff instead of d is in propeller performance charts (for

isclated propellers), thrust and power required of a propeller

(operating in a flowfield that is perturbed by a body) can be found.

4.2.2.1 Theoretical Considerations.

In the presence of a body, the axial velocity relative to a blade

section is not the velocity of advance V 	 but a velocity u caused by

the blocking effect of the body.	 As a result, the geometric pitch

will be modified:

'	 instead of:	 P/D = V/nD	 (4.13)

P/D V/u = V/nD

It means that the blade sections will work at a different angle of a

attack.

According to Reference 29, the true propeller efficiency may be

computed according to the following relation:

Z	 dC
u	 T

f	
dx 

p	 V dx '•

T1 - q	 dC	
(Approximate!)	 (4.14)

S

..	 is	
I dx

a	 dx

In order to calculate n, both the velocity distribution through the

propeller disc and the spanwise propeller load distribution have to
4

be known.	 Both can be found either experimentally or theoretically.

A Blade-Element theory could be used to predict theoretical load

distribution.	 Source-sink distributions can be convenient when cal-

culating velocity distributions in the propeller disc.	 Figure 4.28

shows the body shapes that can be simulated by a combination of 1 sink

and 1 source.

Figure 4.29 shows some u/v distributions in the propeller disc

according to this potential flow theory.
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v	 Figure 4.28 Body Shapes Simulated by a
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4.2.2.2 Experimental Results.

Some of the results presented in Reference 29 are shoran in Figure 4.30.

to

.B

J7

.4

Figure 4.30 Comparison of apparent propeller efficiency
envelopes for four body shapes.
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Figure 4.31 Velocity distribution of propeller (pro-
peller removed). V, 93 miles per hour.

Depending on the accuracy required, either the method of Reference 26

can be used, or a blade element theory combined with a method that ?i edicts

velocity distributions in the propeller disc.

Further studies should be conducted to develop this approach to the

estimation of slipstream drag (along with the approach of Reference 26)

into a programmable method. Eventually the intent is to include this

method into the drag estimation portion of the GASP.
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CHAPTER 5 THE GENERAL AVIATION SYNTHESIS PROGRAM, GASP

As has been stated at several points throughout this report,

the means by which all of the design optimization methods were

to be implemented was the General Aviation Synthesis Program (GASP)

developed for the NASA-Ames research center by the University of

Minnesota. The KU-PIL research staff has been working continuously

now for approximately one year to put an up-to-date version

of the GASP into an operational status on the University of

Kansas Honeywell 66/60 computer. At this time the program is

still not implemented on the University of Kansas facilities,

although it is believed that for reasons that will be explained

in the next section, this will be accomplished in the near future.

The difficulties encountered in putting the GASP into

operational status have also prevented the KU--FRL research

staff from making revisions to the GASP to reflect the research

that has been completed. This chapter will therefore discuss,

first, the steps taken in attempting to transliterate the GASP,

in Section 5.1,and second, how the design constraints were

to be implemented in the GASP, in Section 5.2. 4

5.1 Transliteration Process

A copy of the GASP was first received at the KU-FRL in

June 1976. The program was forwarded to the KU-FRL by Tom Galloway

at NASA-Ames on magnetic tape. Also provided with the magnetic tape

r^	 were a complete listing, a copy of Reference 31 describing the

general flow of the program, a description of input parameters, and

a sample output. Unfortunately, the magnetic tape parity was

incompatible with the University of Kansas computer system. The

Tape was returned to NASA-Ames for a copy with the proper parity.

The new magnetic tape was in the following format:

IBM compatible

9-track



'	 1600 BPI

EBCDIC -80 BYTE records
4;J

'	 No Label
i

°
i

Even Parity

Transliteration procedures were started for this tape; and

although all compilation errors were finally eliminated, the program

could not be coerced to execute. 	 At that time no explanation was

available.

.a A card deck version of the GASP was acquired from the Cessna

Aircraft Company with the assistance of Don Halverstadt. 	 This

version was designed to be run on an IBM 360 computer system.

After completing preliminary transliterations it was determined

that the free-field input routines of this version and the previous

. NASA version were incompatible with the Honeywell 66/60 system.

The Cessna input routines proved easier to revise. 	 In early

^ March two runs were made of the Cessna version with only minor
i

difficulties. `II

The Cessna version of the GASP was an older version and

consequently it became necessary to update the program to reflect

NASA revisions.	 Revisions were made to the program using the

Honeywell 66/60 timesharing system editor and by storing the

GASP on disc subroutine by subroutine.	 This process was proving

to be extremely	 time consuming with no guarantee of success. .	 4

- It was decided to acquire a new magnetic tape from NASA-Ames

with the intent of splicing the revised Cessna input routines

onto a transliterated NASA version. 	 This was the status at

the end of June 1977. 	 Fiscal year end administration difficulties

prevented the completion of this process.

Negotiations have been carried out with the University of

Kansas Computation Center to gain what is referred to as

r "internal project status" for the GASP.	 This status has now

been assigned by the computation center, and they will implement

..
the program using its more experienced staff at no charge.

•	 i

f	
}
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Previously it was understood that such status would not be possible

for the GASP. To have the GASP implemented on an "external project

status" would have resulted in prohibitive costs. It is expected

that the GASP will be finally operational by the end of September.

5.2 Implementation of Design Constraints

In Chapter 1 it was assumed that the aircraft configuration

could be designed to meet four specific constraints:

a) Utility Constraints

b) Stability and Control Constraints

c) Mission Constraints

d) Performance Constraints

The GASP already will account for the last two constraints

adequately and therefore those constraints will not be discussed

here. The utility and stability and control constraints were

in need of some revision, however. The methods that were to be 	
ll

used to revise the GASP accordingly will be discussed in the

following paragraphs.

5.2.1 Cabin-Utility Constraints

In Chapter 2 a number of methods for sizing for the utility

constraints were discussed. These methods were brought together

in the form of the design mode of the program FUSE. It was

intended to replace the fuselage sizing portion of the subroutine

SIZE in the GASP with a call to a subroutine FUSIZE. FUSIZE

would have consisted of the design mode and wetted area calcu-

lation portion of FUSE. This could have been readily implemented

with one minor exception. The Honeywell 66/60 allows only 59

arguments for SIZE. This would mean that to add the needed data

for FUSIZE, a namelist input method would be necessary. This,

however, should present no great difficulties.

A {
	 5.3

owi
od -.



t

5.2.2 Stability and Control Constraints

Two forms of stability and control constraints were considered

for implementation in the GASP--static constraints and dynamic

constraints. The methods that were considered for each will be

discussed in turn.

The static stability and control constraints that were

considered were: longitudinal static stability in the stick--

fixed case, implemented through C m ; and directional static
c

stability, implemented through C  . Both constraints were to
s

have been accomplished in the empennage sizing process in the

following manner. The first time the SIZE is called, the weight

and c.g. data are usually lacking. As the c.g. location is

required for both constraints, it was intended to use V methods

to size the empennage. The next time SIZE is called, when a

c.g. location, is known, the subroutines STABAREA and VERTAREA

(Section 2.3) would be used to size the horizontal and vertical

tails for the stability constraints. In this manner the prelim-

inary use of a V method would provide the required "seeds" for

the iterative processes of STABAREA and VERTAREA.

The dynamic stability and control characteristics presented

more of a problem. To determine the dynamic characteristics of

the aircraft all of the non-dimensional stability and control

derivatives, and the airplane inertias must be known. It was

intended that rather than to attempt to constrain the design

for dynamic characteristics, the configuration would simply

be analyzed for dynamic stability and control characteristics.

To accomplish this the non-dimensional derivatives would be

determined using the methods of Reference 14, and the analysis

would be implemented by appending the appropriate portion of

the program described in Reference 32 to the GASP. An inertia
c.J	 S

determining routine would also be required, but this was not

felt to present any great difficulty.
L^

These characteristics, plus a number of others, will be the
S

subject of the next chapter.'Y	 i
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CHAPTER 6 PROPOSED FUTURE RESEARCH

With the exception of integrating the design methods into

the GASP, most of the design constraints mentioned in Chapter 1

were accounted for. Only the stability and control constraints

have not been adequately enforced. Considering this, a proposal

for the continuation of the project was submitted to NASA-Ames

(Reference 33), placing sole emphasis on stability and control

methods. This chapter will present what is essentially a reprint

of the stater it of work of that proposal.

Care will be exercised not to duplicate any work already

done in this area by other GASP investigators.

6.1 Objectives

It is proposed that work on the design optimization of short

haul and commuter airplanes be continued with the following objectives:

a) To determine those stability and control characteristics

which are critical to the preliminary design process.

b) To evaluate stability and control analysis methods

currently available to determine those methods most
4'.

appropriate for the preliminary design function which

GASP performs.

c) To determine how the methods of b) may be used to

provide the proper constraints and/or analysis functions

for GASP.

d) To develop the appropriate subroutine; for the methods

of c) and how they may be appended into GASP.

In line with these objectives, emphasis will be placed on

the stability and control characteristics of both jet and propeller
n

driven airplanes. Also specific attention will be given to the 	 i

determination of the following stability and control characteristics

in the preliminary design process:

6.1



a) Static longitudinal stability;

b) Static directional stability;

c) Engine-out control;

d) Calculation of rotation velocity, VR;

e) Longitudinal dynamic stability;

f) Lateral-directional dynamic stability;

g) Trim at low speed and forward C.G.

7(

V

i

The following section will outline briefly the approach that

will be taken to meet the objectives with respect to the above

stability and control characteristics.

6.2 Stability and Control Analysis Methods

The primary references that will be used to determine and

evaluate the stability and control analysis methods will be

References 9, 14 1 24, and 34. In the following paragraphs each

of the stability and control characteristics listed in the previous

section and its proposed analysis method will be discussed briefly.

6. 2.1 Static Longitudinal Stability

Using the methods of References 14 and 34, the configuration

Will be analyzed for static margin (dC m/dCL), static longitudinal

_	 stability (C ), and the neutral point for both and stick-fixed
ma

.w	 and stick-free cases. To facilitate the calculation of these

values a simple Multhopp integration procedure for the body (and

engine nacelles in the case of wing-mounted engines; see Section

2.3) will be used. Correlations with on-hand tunnel data actual

configurations will be made.

~F

	

	 Using Equation 4.35 on page 4.23 of Reference 34, the stick--

fixed neutral point will be defined as in Equation 6.1. The stick-

free neutral point will be defined by Equation 5.99 on page 5.47

t "	 of Reference 34 as shown in Equation 6.2. In both cases the variables

are as defined in Reference 34.

j
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Stick-Fixed Case:

C

X
AC

WB
LaH

+
TI	 S 	 X
H	 ACH {1 -

de
da)C

L
S

X	 = N.F. =
CtWB

(6.1) c.g.
(Cm	

= 0) CL

a	
1 +

aH

n	
(l - Via)

ry

	 ^I

H	 5

•a

aWB

Stick-.Free Case:

CLaH
SH

ChaTE'
XACS + n	 XH	 ACH (l dE

-	 (1 -	 )aa )	CC
S

_
X	 = N.P.

^aWB
hse

c•g•(CM	 = 0)
a

C

LaH S 
C.h	 E

1 +
CL

r^	 (l - dE ) (lH	 SH 	da -Ch'

%1B
S e

(6.2)

Propeller effects will be accounted for using the method of

Reference 34, Chapter 4.
^I

'I
6.2.2 Static Directional Stability

Values for static directional stability, C D  will be computed

using the methods of References 9 and 14. Also propel.l s .r effects

on directional stability will be considered using the methods of

References 9, 24, 34, and 35.
i

3

6.2.3 Engine-Out Control

The methods of References 9 and 34 will be used to analyze the
1

configuration for the minimum engine-out control speed, V mc . Engine-	 j

out control will be considered from both the single-degree-of-freedom

t
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and three--degree-of-freedom points of view. Drag due to stopped

engines and/or propeller will be accounted for.

6.2.4 Calculation of Rotation Velocity, V 

<a

The speed required to rotate on take-off, V R , will be calculated

using the method of Reference 9.

6.2.5 Dynamic Longitudinal Stability
v.,

Dynamic longitudinal stability characteristics will be considered

^m
using the methods of both References 9 and 34 for the stick-fixed case.

The dynamic longitudinal stability characteristics upon which primary

emphasis will be placed will be the short period damping and undamped

natural frequency. Phugoid damping and frequency will also be

considered. The methods considered will include both the two-

'	 degree-of-freedom short period and phugoid approximations and

j

	

	 the complete three-degree-of-freedom solutions of Reference 34.

Also the relatively simple dynamic stability relationships of

Torenbeek in Chapter 9 of Reference 9 will be investigated as

?.^	 to their validity.

One possible method for analyzing a configuration for dynamic
1 ^

stability in the GASP that will be considered will be a revised

version of the dynamic stability and control analysis program

document in Reference 32.

6.2.6 Lateral-Directional Dynamic Stability

In analyzing the dynamic lateral-directional stability the

a	
._

characteristics of the spiral, roll, and dutch roll modes will

be considered. using the methods of Reference 34, these methods

will be analyzed from the approximate and complete three-degree--

of-freedom points of view.

i
I
1

i

a
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APPENDIX A USE OF POLYNOMIALS WITH

FRACTIONAL EXPONENTS TO APPROXIMATE

EXTERNAL AIRCRAFT LINES

ua
	 Appendix B of Reference 9 describes a method for

approximating the external lines of aircraft for the

estimation of wetted areas, volumes, cross-sections,

etc. This appendix will discuss that method and how
d.	

it has been applied to fuselage shape simulation.

Al General Background

-	 In Reference 9, Torenbeek uses polynomials with

fractional exponents to approximate the external lines

of aircraft fuselages. These polynomials are of the

form expressed in equation A-1.

^aln +	 m = 1; m, n > 1	 (A-1)

Figure A-1 presents a generalized curve of this

type. In Reference 9, To -enbeek assumes that the

plan view curves of aircraft may be generalized by

equation A-1. As shown in Figure A-1, a shape para-

meter ^ may be determined from the plan view of an

aircraft's external lines. This shape parameter may

then be used to determine certain factors, kA , kC , kv

and kW , according to Figure A-2. These k-factors may
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Figure A--1 Definition of Shape Parameter, c, for the
Generalized Curve
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Figure A-3 Fuselage Geometry Used to Define Characteristic
Areas and Volume

A.2



be used to calculate the characteristic areas and

volume. Using the geometry of Figure A-3:

Cross--sectional area*:
x7 p

AC = kA bf	hf	 (A-2)
max max

J

Circumferential length of the cross-section:

Cf = 2kC (bf	 + hf	 )	 (A-3)
max	 max	 1 -^

Fuselage volume:

Vf = AC (Q c + kV Q n f kV jzt)
n	 t

(A-4)

Fuselage wetted area:

'	 S f	 =	
t

	

wet	
C f(z + kW, 

n 
2n + 

k`Y Qt)	 (A-S)

It may be noted that Torenbeek's method precludes

the necessity of knowing the values of m and n in

equation A-.,.. To use there curves to simulate fuselage

shapes, however the values for m and n become a pre-

T	 requisite.

*At the fuselage station where the width and height
are maximum
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^i 
OP	

(^z = OQ

	

OA	 OA

igure A-4 Definition of Elliptical Cone
Shape Parameters

A,4

I{
1

As the intent was to develop a program to aid in

the preliminary design of fuselage shapes, it was

desired to find a method to specify cone shapes for
YJ

the nose and tail that was relatively easy to use.

tiv	
The use of m and n in this regard proved to be rather

cumbersome, as it was difficult to develop a 'feel'

for their values. As an alternative, the shape para-

meter, ^, was chosen to specify the shapes. In addition
l`b

a second shape parameter was defined to enable the

determination of the values of m and n within the pro-

gram. Figure A-4 defines the geometry of the two

shape parameters, 0 l and 02.
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From Figure A-4 it may be seen that ^1 may be con-

sidered to indicate the taper characteristics of the

cone, while ^ 2 indicates the bluntness characteristics

of the cone.

These shape parameters may be used to determine

the values of m and n in the following manner. From

Figure A-4 it may be seen that the line OS may be

represented by the equation A--6.

y = a x	 (A-6)

Similarly the line 5T may be represented by
I 

equation (A-7).

y = 2 x	 (A-7)

i

Substituting for y in equation A-1 gives the 	
s

following:

ila n 	 la/m	 1	 (A-°a)
i

n

1a^ + ((	 1	 (A-8b)
12a^-

At the points S and T,x equals A l a and ^2a

respectively. Substituting these values for x into

equations A-8 a and b respectively renders:

A.5

w—	

rs:



"l ) n f (0 2 ) m = 1
	

(A-9a)

(^ 2 ) n + 1
!2 ) =

	
(A-9b)	 i 

f

i.

By solving these two equations for m:

1n L l -- (^l)n1
M

in ^l

In [1 - (02)n1
M =	 ^

in

(A--10a)

(A-10b)

Equations A-10 may be used to solve for m and n

by iteration. Such a method was used in the subroutine

CONSHP, for which the listing; is presented in Section

A3. It should be noted here that the . exponents m

and n are purely a function of the shape parameters

and a completely independent of the cone fineness

ratio, a/2b.

A2	 Example Cone Shapes	
^.

u	 To provide a 'feel' for the cone shapes resulting

from various shape parameters a program was written

for a Hewlett-Packard 9100B desktop calculator that

a	 would compute the exponents for and plot various cone 	 1

shapes. Figures A-5 and A-6 provide cone shapes for

ss
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cones of fineness ratios (a/2b) of 1.5 and 2.0

j respectively where ¢ l is held constant and	 2 is

varied.	 Table A-1 provides the values of m and n for

these figures.	 Figures A-7 and A-8 provide cone shapes

:i Q

for cone fineness of 1.5 and 2, where ^2 has been

`a
held constant and ^1 is varied. Table A-2 presents

on the values of m and n for these figures.

It is interesting to note that for each value of
..

1, there is a practical range for ^ 2 .	 If ^2 is too

small, the value of m drops below 1.0 and an inflection

occurs near the nose of the cone. If ¢2 is too large,

-- the value of a drops below 1.0 and an inflection occurs

near the base of the cone.	 It has been found that the

 windshield shape can sometimes best be simulated by

the former of these two cases. The inflection that

_,. occurs in cone N2 will normally be buried in cone Nl.

4
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Table A--1 Values of m and n for

Various Shape Parameters

C,

01 ^2 

.55 .65

.70
a .725

.75

.60 .70

.75

y. .80

.85

•	 .70 .80

.85

., .90

.95

.75 .85

.875

.90

^o

.95

t„

m n
°r

.2350 3.3990'

.7523 1.6987

1.1320 1.1874

1.5982 .8118

.2375 4.2468.

.7808 2.1769

1.6865 1.0749

3.0995 .4498

.2970 6.4413

1.0216 3.3258

2.3345 1.6001

4.7857 .5613

.3810 7.8740

.7802 5.576u

1.3559 3.9285

3.3668 1.6596

n
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Figure A--7 Various Cone Shapes
for a/2b = 1.5

b
c:
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a

a) ^2 = 0.70
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0.70
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Figure A-7 (continued)
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Table A-2 Values of m and n for

Various Shape Parameters

I

^2 01 m n

r„ .70 .55 .7523 1.6987

.575 .4482 2.7038

.60 .2375 4.2468

.625 .0902 6.7696

ati .75 .55 1.5988 .8118

.575 1.1494 1.3620

.60 .7808 2.1769

.625 .4841 3.3876

.

.80 .55 2.9056 .3239

.60 1.6885 1.0734

.65 .8597 2.72-25
o-

.70 .2970 6.4413

.85	 - .60 3.0982 .4502

.65 1.8974 1.3526

.70 1.0216 3.3258

.75 .3834 7.8530

.90 .n5 3.5879 .5566

.70 2.3345 1.6001

" .75 1.3559 3.9285

-^ .80 .5768 9.4732

.95 .70 4.7857 .5613

.75 3.3668 1.6596

.80 2.1867 4.2647
m .85 1.1343 10.9631



9^

A3 Listing for the Subroutine CONSHP

This section contains a listing of the iterative

subroutine used to determine the values of m and n.
^:1

x -	 i SUBROUTINE	 CONS HP ( PHIIPPH12iTOL . MpN)	 -^
2 REAL MvH.M1iM2

1-1""	 1
4 J=1_

6 D 142•=	 10.0
10 M1	 =	 ALOG(1.0	 -CPHI	 *"'r	 LOG(PH1

8 M2	 =	 ALOG(I.0	 -{PH12	 N))/AL0G(PH	 2 /2.0}

°	 10 IF(J.E0.100)	 GO	 TO	 80'
M1-M2	 ^^	 -

_ 	 12 IF(DM1.LE.0.)	 GO	 TO	 30
3 IF(DM176T.DM2) GO TO 50	 -.

14 N N	 =_N+(0.05/I)_
15 DM2 = -DMT

16 GO	 TO	 10
r	 17*-------30 IF( ABS( -6(ffY.LTTTOL)GO To 60

18 1	 =	 1*5
T	

_
11 7 4U N= N-	 I
20 M1	 =	 ALOG( 1.0 	 -(PHI1**N))/ALOG(PH113

- -^-21 F:2 ^ ALOG^C1.0	 CPHI2t+iV)^1-AIOG {PtiT2'/
22 J	 =	 J+1

.	 ^"e" C F (:1". E i) ; [ 0 0'^1̂ 0—T 0 8
24 DM1	 = M2-M1

IF(DA1_.LT.U.)	 GO TO
26 1F(ABS(DM1).LT.TOL)	 GO	 TO	 60_
27 G 6 -T 6 1
28 50 WRITE(6.1)

9 hf -= -1 -
30 N	 =	 1 .0_

_GGO—fi0
32 60 M	 =	 (M 1 	 +	 M2)*0.5

3— 70-RETURN
3 14 80 WRITE(6.4)	 1_	 35— —

'"GO-.TO" 60- 	;1
36 1 FORMAT ( IOX,'***ITERATION	 FOR	 M	 AND	 N	 DIVERGES ***'/ 15X.'SET-	 M=1.0

—37 XrT22z;'N=1.
38 4 FORMAT(10Xo'***100 	 STEPS	 COMPLETE---DID	 NOT	 CONVERGE***'//)

- 39 RETUr,N	 --^

4 0	 _-_ - EN D

t`

1 .J

S	 j	 111 q!	
4	 (
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APPENDIX B THE RlMCMI/FIJIAN PROGR9I42

r,.

t

This appendix documents the Roskam/Fillman program's use

and provides a copy of the listing. Appendix B1 will define all

input and output acronyms and explain how to prepare the input	 i

data. Appendix B2 will provide a complete program listing.

Appendix B3 provides an example output.

i
a

B1 Preparation of Input Data

Table B-1 defines all of the input and output computer

acronyms.

Table B-2 presents the input card formats. All input cards

must be in the order specified by Table B-2. Data for more than

one baseline aircraft may be input by stacking data decks. For

multiple data decks the last card of each set of data corresponds

with the first card of the next set of data. The last card of

the total data deck must be blank. This tells the program that

the next set of data is a null set and terminates execution.

Of particular interest axe K1, K2, K3, K4, MM and KEAP2.

These correspond with the weight correction factors of Section

2.3.1.3. In this case an input value of zero will result in a

correction factor of unity. An input value of one will result

in the corresponding non-unity correction factor.



Table B--1 Roskam/Fillman Program

Input/Output _Acronyms

1^.

i
Acronyms	 Variable	 Description	 Units

AEFF A Effective aspect ratio of
the vertical tail (Reference
14) I

AIRCRAFT -- Aircraft or configuration i

name

AH
,a

All Horizontal tail aspect ratio

ALT h Altitude ft ,I

AV AV Vertical tail aspect ratio

..	 AIV A 'ding aspect ratio

BHO bh Baseline horizontal tail
span ft

BVO by Baseline vertical tail span ft

BW b Thing span ft

CBAR c Wing -ran aerodynamic chord ft

CIIO
CH

Baseline horizontal tail MAC ft

014 C Static longitudinal
moc stability rad 1

CNB C Static directionaln^ stability rad 1

CVO cv Baseline vertical tail MAC ft ".

DENSIT p Atmospheric density slugs/ft3

DFUS D Fuselage equivalent
outside diameter ft

a

tB,2



Table B-1 Roskam? = illuaii Program

Input/Output Acronyms (Cont'd)_

Acronym Variable Description Units

DIVE VD Dive speed Knots

EP - Tail sizing span tolerance
for iteration process ft

ETA Dynamic pressure ratio at

as
the empennage qE/qW

FUSHGT H Fuselage outside height ft

FUSWID W Fuselage outside width ft

Hl hl Fuselage height at .259.B ft

H2 h2 Fuselage height at .751B ft

. 	 HH hH Vertical distance from
aircraft center line to
horizontal tail root chord

. (positive down) ft

IF - Number of different tail
cones to be considered

K k Empirical vertical tail
^. factor from Figure 7.3 of

Reference 14

Kl,K2,K3,K4 - Weight estimation constanta
controls for fuselage (See
text)

KAPAH K Ratio of horizontal tail
section lift slope to 2n

KAPAV K Ratio of vertical tail
section lift slope to 2n

KAPAW KW Ratio of wing section lift
slope to 2n



Table F-1	 Roskam/Fillman Program

Input /Output AcronL-ms (Cont'd)

L7 Acronym Variable Description Units

KEMPl I Ernpennage weight estimation 1^.

u: -.onStant control (See text)

ICW2 'IV 17,Wnnage weight estimation
U^ -- constant control (See text)

LBOLD j^B Baseline Fuselage Length ft

^b LCl - Abmimmm tail cone length to
be considered

LCF -- Maximun tail cone length to
be considered

LCOLD Qc Baseline tail cone length ftI

R.
LHOLD sB Baseline horizontal tail

moment am ft

LN 2 N Nose length ft

LU ^u Cabin length ft

LVOLD IV Baseline vertical tail
MMnt arm ft

IMA.0 H M Mach nwber

PHIC1 OCl
^ Tail cone shape parameters

PHIC2 OC2 i
y a

PHIN1'V]

Nose cone shape parameters
PHIN2

SBSCI _ Side view projected area
- of the baseline tail cone ft2

i B.4



Table B--1 Rosk^Fillman Program

Input/Output Acronyms (Cont'd)

Acronym Variable Description Units

SBSN - Side view projected area of
the nose ft2

SBSU - Side view projected area of
the cabin ft2

SHO SH Baseline horizontal tail y
area ft2 a

SW SV Baseline vertical tail area ft2

SSV S Reference wing area ft2
s

StiVPHO A
L%

Baseline horizontal tail
leading edge sweep deg

S;VPVO - Baseline vertical tail
leading edge sweep deg

TAPRH aH Horizontal tail taper
ratio

TAPRV aV Vertical tail taper ratio

TAPRW h Wing taper ratio

TAS VT True airspeed ft/sec

TEST - Test run number

THICKH (t/c)H Horizontal tail thickness
ratio

THICKV (t/c)V Vertical tail thickness
ratio

1

TOL - Tolerance for the iteration
in OOIISHP (See Appendix A3)

ULTLOAD n'ULT
Ultimate load factor g's

B.5

wop

t



Table B--1	 Roskam/Fillman Program

Input Output Acronym (Cont'd)

Ou	 Acronym Variable Description

VISOO,S u Kinematic viscosity
zn	

WGROSS WG Gross weight

s^	 WSIVPLE ALE Wing Leading Edge Sweep

XBARHO - Baseline horizontal tail
aerodynamic center location

as a fraction of c

XBARiV (X	 ) N ing aerodynamic center
a c W location as a fraction

of c

XCBAR - Location of the leading

edge of c, relative to the
nose

XCG X Baseline e.g. location 
C9 relative to the nose

XCGH (X	 ) Baseline horizontal tail
cg H e.g. relative to the nose

XCGV (Xc ) Baseline vertical tail e.g.
s g V location relative to the

Ao

nose

i'.

I B.6
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Units

ft2/sec

lbs.

deg

ft

ft

ft

ft



^' 1

Table B-2 Roskam/Fillman Program Input Card Formats

I N PUT CA R D NO. 1- QW, A2)
TEST	 AIRCRAFT

1	 7	 80

INPUT CARD NO. 2 - (7F10.0)
TA 	 MACH	 DENSiT VI SCOS	 ALT	 WGROSS

1	 11	 21	 31	 41	 51

INPUT CARD NO. 3 - (7F10.
SW	 BIN	 AW	 CBAR	 WSWPLE TAPRW XCBAR

1	 11	 21	 31	 41	 51	 51

I N PUT CARD NO. 4 - (7F10. 0)

	LBOLD	 DFUS	 LN	 LV	 LCOLD FUSWI D I=USHGT

1	 11	 21	 31	 41	 51	 61
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INPUT CARD NO. 5 - (X=10.0)

H1	 H2	 PHIN1	 PHI N2	 PHICI	 PHIC2	 TOL

1	 11	 21	 31	 41	 51	 61

INPUT CARD NO. b - (412)

KI	 K2	 K3	 K4

Q	 1:1 Elco

	

	
3	 5	 7

INPUT CARD NO. 7 - (X'10.0)

SHO	 BHO	 AH	 SWPHO TAPRM THI CKH

i	 11	 21	 31	 41	 51

INPUT CARD N0. 8 - (71`10.0)

LHOLD	 HH	 CHO

1	 11	 21	 31

i	 ^
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-Table B-2 (Continued)

INPUT CARD NO. 9 - (7F10.0)

SVO	 BVO	 AV	 SWPVO TAPRV THI CKV

1	 11	 21	 31	 41	 51

INPUT CARD NO. 10 - (7F10. 0)

LVOLD	 AEFF	 K	 EP	 CVO

1	 11	 21	 31	 41

INPUT  CARD NO. 11 - (412)
KEMP1	 KEMP2

q q

1	 3

INPUT CARD NO. 12 - (71~10.0)

SBSN	 SBSU	 SBSC1	 DIVE	 VLTLOAD

1	 11	 21	 31	 41



J	 -x
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Table B--2 (Continued)
i

INPUT CARD N0. 13 — (7FI0.0)
XC6	 XC6H	 XC6V

1	 11	 21

INPUT CARD N0. 14 — (7'F10.0)

XBARIN XBARHO	 CMA	 CNB

1	 11	 21	 31

I NPUT CARD N0. B — (1F 10.0)

KAPAIN KAPAH KAPAV	 ETA

I	 I1	 21	 31

INPUT CARD N0. 16 — (3FI0.0, IX, 13)

LCI	 LCP	 IF1	 IF

1	 II	 21	 3132
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Table B-2 (Continued)

INPUT CARD N0. 17 -SHOULD BE BLANK AS THE LAST CARD OF THE TOTAL DATA

DECK. OTHERWISE, THIS CR °v i',ORRESPONDS WITH

THE INPUT CARD NO. I OF THE NEXT DATA SET.
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B2 Program Listing

This section provides a couplete listing of the RoskamtFijh=

Program.
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1 DIMENSION	 LCOD(500),L ( 500)rSVL ( 500),SHL ( 500),LCODO ( 1),LO(I),CDO(1
® 2 ;)PCDL)L(500),SVO(1),dVO(1),SHO(1)rdHO(1),SWP110(1),SWPVLi1),SWETFO(I

3 •), SWETEO( 1)r SWETNO(1),SWETCO(1)r5WETUO(1),WAITFO(1),WAITEO(1),BVL
4 +(500),61M 500)sSWPHL(500),SWPVL(500), SWF(500),SWE(500)-SWC(500),SW

1« 5 *NC 500),SWU(500),WAITF(500),WAITE(500),LeL(500),XCGL(500),CBH(500) fl
0 +,CBV(500),SWH(5(10),SWV(500),SWT(500),LABELi(14)rLABEL2(14)0

- --	 ------ _ - __ +LABEL3{14}rARCRFT(13)
B 8 DIMENSION	 XBW(500),X88(500) , XBWt3 ( 500),XBH ( 500),XBA(500)

9 COMMON TAS,AMACH,VI SCOS,SW,BW , AW ICBAR,WSWPLE,TAPRW,XCBAR,LBOLDI
10 1OFUS,LNeLU,LCOLD,FUSWID,FUSHGT PHI ,H2,PHINI ,PHIN2,PHICI	 PillC2,TOL,
11 2K1,K2,K3 ,K4,SHO , BHO, AH,SWPHO,TAPRH,THICKH,LHOLD,HH,SVO,BVO,AV,	 -
12 3SWPVO,TAPRV,THICKV,LVOLD,AEFF,K,KEI•iPI,KEMP2,S8SN,S8SUrS13SC1,DIVE,

- - -'	 3 - -""" `"	 - 4ULTLOAD , XCG,XCGH , XCGV , XBARWB,XBARHO,CMArCN0,KAPAW,KAPAHIKAPAV,
N 14 5E TAP DELTLCPEP 0

15
_

COMMONI STAB/ XBARW,XBARACPDX ACS, XBARH
16 COMMON/RHO/DENSIT
17 C014MON/WEI6HT/WN,WU, WC,WF , WH,WVrWEMPrCGERR , WGROSSrWGR	 -	 -	 -
18 REAL	 LCOD,L,LCODO,LO,LBL,LNrLUrLCOLD,LIJOLD,KAPAW,KAPAH,

._	
-----------+LV0LDPL0OLDrKAPAV ► LCrLrLC	 • LBNEW,LCNEW

!i 20 REAL	 LEI #LCF,IF1
21 DATA	 ( LA6EL1 ( I),I=1,5)/6HLCOD	 V,6HS.	 CDO,6 H 	- SCA,6HLED	 VA,
22 14HLUES!

$ 23 DATA	 (LABEL2 ( I),1=Io5)16HLC VS.r6H	 SH	 -	 ,6"SCALEDP6H	 VALUE , IHS/	 -
24 DATA	 (LABEL3(I)rI= 1,5 )/6HLC	 VS.r6H	 SV	 -	 ,6HSCALED,6H	 VALUE,IHS/

-	 -	 25 - - . .-	 --	 - DATA -TERM/6H	 ---
. "I 	 ---	 -	 -	 -

0 26 10	 READ(5,1)TEST,(ARCRFT(I),I = 1,13)
27 IF(TEST.ED.TERM)	 STOP

M 28 READ( 5,2)TAS , AMACH,0ENSIToVIS COS rALTrWGROSS
p	 W 29 REAM 5,2)SWrBW,AW,CBARiWSWPLE,TAPRW,XCBAR

30 READ( 5,2)LBOLD,DFUS,LN,LUrLCOLD,FUSWIDrFUSNGT
31 - ---	 -	 READ( 5,2)H1,H2,PHINI , PHIN2rPHIC1sPHIC2,TOL	 -	 -	 --	 -	 -'

32 READ (5,3)K1,K2rK3,K4 ^p
33 READ(5,2)5HO,OHO,AH,SWPHO,TAPRH.THICKH 	 ---
34 READ(5,2)LHOLD,HH,CHO

iq 35 READ(5,2)SVO,BVO,AV,SWPVO.,TAPRV,THICKV Q
36 REAV(5,2)L VOL D,AEFFrK,EP,CV0
37 -'R E AD ( So 3)KEMP1,KEMP2

-

sl 38 READ(5,2)SBSN,595UrSeSC1,DIVE,ULILOAD
39 READ(5,2)XCG,XCGH,XCGV	 -
40 READ(5,2)XBARW	 ,XBARHO,CMArCNB
41 READ(5,2)KAPAW,KAPAH,KAPAV,ETA
42 READ(5r4)LCI,LCF,IFI,IF

44 DELTC	 =	 0.
45 CALL	 SWET(PHINI,PIIICI,SHO,SVOrLCOLD,SWETNO,SWETUO.SWETCOr
46 •SWETHO,SWETVO)

ek 47 SWETFO=SWETNO+SWETUO+SWETCO q

48 SWETEO=SWETHO+SWETVO
44 -"	 -	 CALL	 COO (LBOLD.SWPVrSWPH;SWETHO'iSWETVDiSWETFOfCHO/CVO/CDOBHV)` "- - 	 --- '

ek 50 CALL	 FUSWGT(SWETFO#SWETtJOoSWETI)O,SWETCOo'dFtWN,WU,WC) iD
51 CALL	 EMPWGT(SWETHO ♦ SWETVOrSWETEO,SHO,BtIO,SVO,BVO,SWPH,,SWPV,WV,WH,
52 *,WEMP)

1n ,• •

e^
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--- 53 -CALL	 XBARCG(O,YbCG}
-

^^^
^.

54

55

SWPV	 = WSWPLE	 =	 57.3
WRITE( 6.5)TEST v ARCRFT

56 WRITE ( 6.6)ALT,TAS , AMACH , 0EN51T.VISC0S R
^► 57 WRITE ( 6,7)SW , BW,AW , CBAR , XCBAIirSWPW , TAPRW

' 58 WRITE ( 6,8)LBOLD ,LN,LU , LCOLD , FUSWID , FUSHGT,DFUS
-- -- 59

_	 ..
wRIFE ( 6.y)SHO , BHO,AHrCHO.TApRH , THI[K}{

60 WRITE(6,11)SVO , BVO,AV,CVO,TAPRV,THICKV
61 WRITE(6,12)TEST,ARCRFT,WGR0SS

62 WRITE(6,13)WN,WU,WC,WF,WH,WV,WE.MP,XSCG_	
63 WRITE(6,14)TEST,ARCRFT
64 WRITE ( 6.15)SWETNO . SWETUOrSWETCOrSWETFO , SWETHO , SWETVO,SWETEO
65-- SWPH----SWPHO

66 SWPV=SWPVO_.._._.	 67	 ._.._...-._., -	 SWETF=SWETFO
68 SWETN=SWETNO
69 SWETE=SWETEO
70 SWETC=SWETCO

71 SWETU=SWE7U0

72 SH =	 SHO
73	 » -- 8  = BHO
74 SV =	 SVO

4	
_ --- 75	 -- _	

BV = BVO
76 CH=CHO

---•------ -77—__T
-CV-CVO-	 ---...._--. -- - _--._	 -	 -------'•--=--------'----._.. 	 ..-'-----._.	 ... --	 .^—._.-_- _.--_

78 LCODO(I	 =	 LCOLD/DFUS
79	 - CDO(1)	 =	 CDOBHV
80 SVO(1)	 =	 SVO_

.^	 Gd — 81 ----' --- SNU(i)	 =	 SHO
F 82 BVO(1)	 = BVO

-4<---- 83 B1i0(1)	 =-AHO

i 84 SWPHO(1)	 =	 SWPH	 ► 	 57.3
85 SWPV0(1)	 =	 SWPV	 *	 57.3

86 SWETFO(1)	 =	 SWETFO

u 87	
-	 -._..._.SWETEO(1} =	 SWETEO

88 SWETNO(1)	 =	 SWETCO
-- ---- ---_—_—	 .	 ----- SWETCO(1)-.

	 =	
SWETCO-	 --	 -	 _----......-	 -	 --........	 __.._..__._......._.._

90 WAITFO(1)	 =	 WF
91 WAITEO ( 1)	 =	 WEMP
92 LO(1)	 =	 LCOLD
93 DO	 100	 I=T,IF
94 LC2=LC1+((I-1)•DLC)

- -	 — 95	 --- -- - -- - LHNEW	 =	 LN+LU+LC2

V 96 DELTLC=LC2-LCOLD
97 CALL	 SWET ( PHINI,PHICI ♦ S>t ,SV,LC2 , SWETN , SWETU , SWETC,SWETH , SWETV)
98 CALL	 FUSWGT ( SWETF.SWETN , SWETU , SWETC , WF,+lN,WU,WC)

U 99 CALL	 EMPWGT ( S'BETH , SWETV , SWETEPSFioBFi o SVrBV , SWPH,SWPV , WV*WH,WE(4P)
100 CALL	 XOARCG(I,XBCG)

*•++ • w -1451	 DO LOOP	 INDEX " PLAY	 NOT	 HE	 REDEFINED	 IN	 CALL	 OR	 ABNORMAL	 FUNCTION

A

3? ^
fir} sr

101 CALL	 STABAREA(Xt)CG,HSWPLE,SH,BIi,CH) ^7
102 CALL	 VERTAREA(VSWPLE,SV,BV,CV)
103 CALL	 SWET(PHINIIPHICI,SH/SV,LC2,SWETN,SWETU,SWETC•SWETH,SWETV)

.q ^
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• JU4 5WLIF	 =	 5WETN + SWETU + SWETC

f4p 105 SWETE = SWETH	 4 SWETU
106 BALL	 COO (L8NEWrVSWPLEeHSWPLE . SWETHeSWETVeSWETFe CU P CV*CDOBHV)
107 SWV(I)	 =	 SWETV

-	 108 SWH ( I)	 =	 SWETH
109 SWT(I)	 = SWETF	 +	 SWETE

----- 1 --- `LCODCi)	 =	 L[2lD-FU5-	 _ ,_-----	 --	 ----... --

111 L(I)	 =	 LC2
-- 112 X8W ( I)	 m	 XBARW .-

113 XHB ( I)	 = DXACB

ar = XUARWB
115 X811 ( I)	 =	 XDARH
116 —'StBAtI)	 = XBARAC

Jr 117 SVL(I)	 =	 SV
--- 118 SHL(!)	 =	 SH	 -	 -

119 CDUL(1)	 =	 CD08HV

y! 120	 -	 - - -	 81M I l = 8 V
121 BHL[I)	 = BH

-_______.._...._122---______—SWPNL[I3 	 = HSWPLE	 + 57.3 --°-
10 123 SWPVL(1)	 =	 VSWPLE	 57,3

-	 124 SWF(I)	 =	 SWETF
. 125 SWE ( I)	 = SWETE

x111 -	
126 _ __.-_^_- -

SWC(I) - =	 SWETC___
127 SWN ( I)	 = SWETN

)" =

40 129 WAITF ( I)	 =	 WGR	 + WC
-	 - ---- 130	 --- WAITE(1)	 =	 WEMP

131 LBL(I)	 = LBNEW
132 "-- -- -	 - XCGL( t)	 =	 XBCG

:p 133 Call( I )	 =	 CH_	 ^ ..---- ----- • -134 -^. _..—_
{©U (I)	 r is V `_^---

Lr`
:Yd 135 100	 CONTINUE

136 -	 WRITE(6F16)TEST.ARCRFTeWGRe((I.L(I).LBL(I)eWAITF(I).WAITE(I)e
137 AXCGL(I))FI=1.IF)

yy 138	 - --	 WRITE ( 6.17)TEST , ARCRFT . CMO,AHF1'APRt!
139 WRITE(6e18)[(I PL( I).SHL(I)e(7F1L(I)#CBH(I)eSWPHL(I))rI=1.IF)
-- _CALF.	 1415A(2rLeSHLPIFeLOPSH0e7eLA8EL2 )

---_-----.-

k'	 .^ 141 WRITE ( 6s19 ) TEST.ARCRFTeCNBP AV ► TAPRV
- 142 WRITE ( 6.18)((I , L(I).SVL(I).BVL ( I)eCBV(I)eSWPVL ( I))eI=IeIF)
143 CALL	 M15A(2eL.SVLeTFPL0iSV0e7.LA13EL3)

"' - 144	 -" -	 WRITE(6e25)	 TESTeARCRFTsCMA
745 WRITE(6e26)((1eL ( I)eX8W ( I) ♦ XB8(I)eX8W8(I}eX8H(I)FX::A ( 1)vXCGL(I))F_._._—.---- ----_._146 _ 7.IF)	

_	 -..	 .	 ._. 	 - 	 .__-___-_- .	 -	 ..-_ -.	 .	 _-	 _	 . 	 .	 ...--_+ I_	 _____^_._^___ ___

147 WRITE(6.2i)TEST,ARCRF1
148 WRITE ( 6e22)((I e L(I)eSWF ( I)eSWH ( I).-SWV ( I).SWT ( I)),Ig1eIF)
149 WRITE(6.23)TESTeARCRFTeCD0[1)

y^ 150 -	 WRITE(6.24)((I.L(I)FL000(I)FCDOL(I))eI=1.IF)
151 CALL	 MISA ( 2eLCOOFCDOL . IFeLCODOFCDCIoLABELI)
15E	 - -- --•---GOTO	 70	 -	 -	 -	 --	 -	 -	 --	 -
153 1	 FORMAT(13A6.A2)
154 2	 FOR4AT[7F10.0)I,I
155 3	 FORMAT(4I2)

I
I
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d	 '
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156 G	 FORMRT(3F10.O,1x,13)
157 5	 FORMA T(IH1,1 OX, *TABLE	 ',A6,'.IA	 ROSKAM--FILLPIAN	 METHOD 	 127X,12A6,
158 *A2 / 27X*'ORIGINAL	 FLIGHT	 CONDITIONS	 AND '/27X,`GEOMETR IC	 DEFINITIONS
159 01110x,65(•*1)//)
160 6	 FORMAT(1OX,'fLIGHT	 CONDITIONS'//15x,'ALTITUDE',T50,FIO.3,'	 FT'/3

_161 *15X, ' AIRSPEED' , T50,FiO . 3,'	 FPS	 ' 1 15X,'MACH' , T50,F10 . 3115X, ' DENSITY
-	 _-'-^- 162 - - -*` T5D.F10.5,'	 SLUGS /CU.FT.'/ 15X,'KINE M ATIC	 VISCOSITY',T50,F10.5,

163 *`	 SO.FT./SEC'//) O

164
- 7	 FORPIAT(1DX,'GEOMETRIC'//15X,'WING'l2OX,'REFERENCE	 AREA'rT50,FIO.3,

165 *'	 SO. FT. '/20X,'SPAN',T50rF10.3,' 	 FT'120X,'ASPECT	 RATIO ',T50,F1G.3/
yy 166 T	 +20X,' M. A.C.',T50,F10.3,' 	 FT' /22X#, 	F.S.'-TSO * Fl 0.3,'	 FT'/20X,'L.E. ®	 :'

167 *SWEEP',T50,F1O.3,'	 DEG'/20X,'TAPER'#-T50eFlO.3//)
168 8	 FORPIAT(15X,'FUSELAGE'/20X,'OVERALL 	 LENGTH',T50,F1U.3,'	 FT'/20X,
169 *'NOSE	 LENGTH',T50sF10.3,'	 FT'120X,'CAB1N	 LENGTH',T50sFiO.3,'	 FT'/ Q
170 *20X,'TAIL	 CONE	 LENGTH',T5O,F1O.3,'	 FT'/20X,'HAX	 WIDTH',T5O,FlO.3*
171 +'	 FT' / 20X.-'MAX	 HEIGHT' , T_50,F1O.3,'	 FT'/20X, ' EQUIV.	 DIAMETER',T50,

-- ---	 172	
-' --	 -	

*F1D.3,'	 FT'//)
173 9	 FORMAT( 15X,'HORIZONTAL 	 TAIL'l20X, ' REFERENCE	 AREA' , T50,F1D.3,

-- - -- 174- *'S0.FT.'/20 X,'S PAN ',T50,F10.3,'	 FT'120X.'ASPECT	 RAT10',T50,F10.3/

^r 175 *2OX,'M.A.C.',T50,F1O.3,' 	 FT'/

176 *2OX,'TAPER',T50,F10.3120X,'THICKNESS`:T50,F10.3/1)
177 11	 FORMAT( 15X,'VERTICAL 	 TAIL'/20X,' REFERENCE	 AREA' rT50PF10.3,

-- 178 - 	 *'SO.FT.'/ZOX,'SPAN',T50,F10.3,'	 FT'/20x,'ASPECT	 RATIO',T50,F1O.3/
_179 +20X,'M.A.C.'eT50,F10.3,'	 FT'/

*20x.'TAPER',T50,F1O.312OX, 4 TttICKNESS',150,F1O.311) 	 T
181 12	 FORPtAT ( 1H1,1Gx,'TABLE	 ' , A6,'.1B	 R05KAM - FIB!-MAN	 METHOD' 127x,72A6,
182 *A2/27X,'ORIGINAL	 WEIGHT	 AND	 BALANCE	 STATEMCNT'//1Ox,65('*1)/1
183 *T52,'(LBS.)'/l10x,'GROSS	 WEIGHT',T55/,F10.3

b3 y	 - 184 -_ 13	 FORMAT(IOX,'APPROXIMATED	 SHELL	 WEIGHTS',	 1115X,
185 *'FUSELAGE '// 20X,'NOSE	 SECTION' , T50,F10,3/2OX, ' CABIN	 SECTION',T50,

----1$6 -► f1O .3/20x,'TAIL	 CONE	 SECTION',T50,F1O.3/i2uX,'TOTAL 	 FUSELAGE , 	T 50.-
	 -_-

L 187 * F10.3//15X , ' EMPENNAGE '/120X, ' HOHIIONTAL	 TAI L' - T50,F10.3l20X,
188 *'VERTICAL	 TAIL',T50,F10.3//2OX,'TOTAL 	 EMPENNAGE',T50,F1O.31/10X,
189 *'CENTER	 OF	 GRAVITY	 --	 FRACTION	 OF	 M.A.C.',T50,F10.3/1)
190 -	 14	 FORMAT (I III ,IOX,'TABLE 	 ',A6,'.1C	 ROSKAM-FILLMAN	 METHOD , /27X,12A6,
191 •A2127X,'ORIGINAL	 WETTED	 AREA	 0REAKDOWN'/1lOXs65f'*')//)

-
__,	

192 1S FORMAT( 10X, 'FUSELAGE ',T51,'(SR.FT.)'//15X,'NOSE 	 SECTION',T5U,F1O.3
193 *115X,'CABIN	 SECTION',T50,F10.3/15x,'TAIL	 SECTION',T50,F10.3//
194 *15X,'TOTAL	 FUSELAGE',T50,F10.3//TUX,'EMPENNAGE'//15X,'HORIZONTAL 	 T
195 *AIL',T50,F10.3./15X,'VERTICAL 	 TAIL',T50,F1O.3//15X,'TOTAL	 ENPENNAG
196 *E',T50,F10.3//)
197 16	 F0R11AT( IH1,10X ,'TABLE	 ',A6,' . 2A	 A0SKArd -FILL MAN	 1`4FTH0D`/Z7x,12A6,

- 198-_^ -	 *A2127x,' OPTIMIZATION	 WEIGHT	 AND	 BALANCE'/27X,'STAiEMENT0/ /1O X,65('
199 **')//10x,'GROSS	 WEIGHT(	 W/O	 TAIL	 OR	 EM p .) 1 sT55 , F1O.3,'	 (LBS.)'
200 •	 i/T12,'I',118,'LC',T31,'LB',T41,'FUSELAGE',T54,'EMPENNAGE',T69,

201 *'C.G.'/T44,'WT',T58,'WT'/T17,'(FT)',T30,'(FT)',T431'(LB)',T57,

1i
202 •'fLo) ',T67,'(FR	 C BAR }'/1(1 OX, I3,	 5(F 10. 3, 3X)/))

203 17	 FORMAT [I Ill ,1 OX, 'TABLE	 ',A6,'.28	 ROSKAM-FILLMAN	 MET HOD' /27x,12A6,
-' -"-------""

_ -
204"-----`'--	 *R2/27%,'OP1IMIIATION	 57ABlLIZER'127x,'STZING'/127x,'CNA	 =	 ',T55,
205 6F10.3/27X,'ASPECT	 RATIO	 =	 ',T55,F10.3/27X,'TAPER	 RATIO	 =	 ',155, m
206 *F1O.31/lOx,65{'•')//T12,'I',T1B,'LC ',T31,'SH',T44,'8H',i57,'CBARH'
207 *,T68,'SWEEPH'/T17,'(FT)',T28,'(SO.FT.)',T43,'(fT)',T58,'CFT)',T69,

I
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-
""_208 As-(DEG)'!/)

209 18	 FORMAT((10XpI3.5(Fl0.3o3X)/))
210 19	 FORMAT(1H1r00Xr'TAOLE	 'rA6,'.2C	 ROSKAM-FILL61AN	 METFIOD'127Xol2A6•

211 +A2 / 27Xr ` OPTIMIZATI0N	 VERTICAL	 TAIL' /27X, ' SILING ` //27Xr'CNB	 =	 '.T55
40 212 *, F10.3 / 27Xr'ASPECT	 RATIO	 = ' ,T55 , F10.3/27Xr ' TAPER	 RATIO	 =',T55, m

213 *F1O . 3//10Xr65('*')//T12,'I ' rT18,'LC',T31r ' SV'rT44r ' BV',T57r'CBARV'
-" ----- 214 --*.T68r'SWEEPV'/T17,'( FT) '.T28.`(5Q.FT.)':T43r'{ FT) ',T58o' (FT 3'rT69i '--	--- —

0 215 *'(DEG)'//)
_ 216 21	 FORMAT ( IH1,10Xr'TABLE	 'rA6r'.3A	 ROSKAM - FILLMAN	 METHOD' / 27X,12A6,

217 *A2 /27X,'SENSITIVITY	 OF	 WETTED	 AREA' 127X,'TO	 TAIL	 CONE	 LENGTH'//1	 X

4 218 *.65('*')//T12,'i',T20,'LC',T29,'FUSELAGE 'rT42,'HDRIZ',T55,'VERT'
219 *rT67, 'TOTAL '/T19r'(FT)',T29r'(SQ.FT.)'.T41r'(SQ.FT.)'..T53r'(SO.FT.

-	 -	 - --- -- —"_220-_w_— ,.)'.T65,' (SO	 "FT. )'//)	
--- -- ---	 . -_ 	 ^.- --- - --

so 221 22	 FORr4AT((I0X,I3,2X,5(F10.3r2X)/))

222 —_23	 FORMAT ( 1HI,10X,'TABLE	 ' ,A6r' . 3H	 ROSKAM-FILLMAN	 METHOD'127Xr12A6,
223 n A2 /27X,'SENSITIVITY	 OF	 ZERO-LIFT ' r/27X, ' DRAG	 TO	 TAIL	 CONE	 LENGTH'

40 224 *//27X,'ORIGINAL	 CDOBHV',T50,F10.5

225 *//10x,65('*')//T12,'I' rT23r' LC' ,T35r 'LC/0',T47r'CDOBHV'/T22r'(FT)'
--	 -	 -

40 227 24	 FORMAT	 ((11Xr23,2Xr2(FIO.3,3X),F10.5/)) i

25	 FOR;4AT(IH1.10Xr 'TABLE 	 ' rA6,'.20	 ROSKAM - FILLMAN	 (4ETHOD' / 27X,12A6,
229 *A2r127X, ' STATIC	 MARGIN	 COMPONENTS '// 27Xr ' CMA	 ='#T50,F10.3//

_ — 230	 --- ---	 *10X,65('* 1 )11) 410
231 26	 FORMAT(12X,'l'•5Xr'LC'.6X,'XOW',4Xr'XBB',4X,*'XBWB',2X,' 	 XBH'r4X,__	 --------232--------krXBA'',4X,rXBCG'//IIOXiI3,F10.3-0.6F7.3!))

-

yr 233 FUD
=*r+*W	 1470	 EQUALITY- OR NON-EQUALITY	 COMPARISON MAY	 NOT	 BE	 MEANINGFUL	 IN LOGICAL	 IF	 EXPRESSIONS

tri

4

9

40
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39967 01 10-18-76 09.904	 LABEL SWET	 PAGE 7	 !)

— - - -	 —" 1 - "`T- — SUBROUTINE	 SWET (PH INnPHIC , SH.SV.TALLGT.SWETN . SWETUsSWET'Ci
f^ 2 *SWETH,SWETV)

3 -	 COMMON	 TAS*Ah1ACH,VISCOS,SW, BWPAW,CBAR,WSWPLE,TAPRW,XCBAR,LBOLD,
4 10FUS,NOSLGT,CAOLGTiLCUI_O,FUSWlOrFUSHGT,HI,H2,PHINI,PHIN2ePHIC7,

''V81 5 h	 PHIC2,	 TOL,
6 2KloK2eK3•K4,SHO,BHO,AH,SWPHO,TAPRH,THICKH,LIIOLD.,HHPSVOeBVO*AVO

- ----	 - ^-----7-- —3SWPVO,TAPRVIT14ICKV ,LVAL0iAEFFpKrKEMPImKEMP2iSBSMPS8S0iSESC1PDIVEr
'^ B 4ULTL0AD,XCG,XCGH,XCGV.X8ARWB,XBAR110, C1-1 A,CNB,KAPAW,KAPAHr • KAPAV, ®.i

- 9 -- ---- - 5ETA,DELTLCPEP
10 REAL	 KW,KV,KC,KA,NOSLGT

-	 11 DATA	 P113.141591 O
12 CIRCUM =	 DFUS	 *	 PI

---- ___13 _SWETU .=	 CIRCUM	 . CA3LGT
14 CALL	 CONPAR ( PHIN , KAiKV , KC,KW) ail

SWETN	 =	 CIRCUM	 *	 NOSLGt	 *	 KW	 --	 -

16 CALL	 CONPAR ( PHICrKA*KV , KC,KW). 17	 ._... _ _	 _-	
SWETC	 =	 CIRCUM	 *	 TALLGT	 *	 KW

18 CKP =	 . 52	 *	 THICKH	 +	 1.987
-79 - '"- —SWETH-= CKP'*	 5H
20 CKP =	 .52	 *	 THICKV +	 1.987 O
21 --	 --	 SWETV	 = CKP *	 SV
22 RETURN

-- ___23 --- -------------END	 ..------	 -	 ---	 _	 __	 ...	 .--....	 -----	 - ^ ^

I

r

I,	 U10

'I

.W m



If*
"i

ti 39967 01 10-18-76 09.904	 LAUEL	 C00

SZBROUTINE	 to 	 iALB. SWPVTiSWPHTrSWET III T . SWETVT , SWETF.CBAAH.00ARV,`-

kf 2 1CDOBHV)
-_"-'	 3	

_
COM M ON	 TASIAMACIirVISCOSr$W/BW:AW / CBAIIrWSWPLErTAPRWrXCBARrLBOLDr

4 1DFUSrLNrLJ.LCOLDrFUSWIDoFUSHGTrHIPF12rPHINI,PHIN2rPHICI 	 PHIC20TOLO

' S 2KIrK2rK3rK4rSHOrBHO/AHrSWPHOrTAPR}frTHIC Kilo LHOLDrHHrSVOrOVO.AVr

6 3SWPVOrTAPRVrTHICKVrLVOLDrAEFFrKrKEMPIrKEMP2rSBSNrSBSUrSBSCIPDIVE.o
- - 7-- 4ULTLD ADAXCGrXCG1 4 0 XCGV•XOARWBrXBAR110rCMArCNBiKAPAWr9APAHrKAPAVr-	

- -

8 5ETArDELTLCrEP
9 -	 RENUM"r	 = RENUM(DENSIT•VISCOS.TAS.ALB)

10 CFMO=0.455/(ALOG10(RENUMF)**2.58)

*0 11 -"	 CFCI.1=6.899*AMACH-16.226*AMACH**2+15.741*AMACH**3-5.4894*AMACH+*4
12 SKIN	 =	 CFMO	 *CFCM

- --- - -1 3 _,
..-	

FINE - ° ALB '/._ D F {15'-- _	 - --- --- -- - ----- ----_ ___ ... - - -----_----- --------- 	 -._

14 CDOFUS	 =	 SKIN*SWETF/SW*(1+60/FINE +*3+.0025*FINE)
-	 15 RENU14H	 = RENUM(DENSITrVISCOSrTASrCBARH)

V 16 CFMO	 =	 .455/(ALOGIOCRENUP110-2.58)

"0
77. -	 SKIN	 =	 CFMO	 *CFCIa	

-	 -

18 HSWPC3=ATANC(SIN($WPFIT)/COS(SWPFIT))-(4./AH*(.333*(i-TAPRH)/
-	 - -^ -- _.,	 ---.-_.

20 VSWPC3=ATAN((SIN(SWPVT)/COS(SWPVT))-(4./AV*(.333*(1.-TAPRV)/
21

..	 ..__....	 -	 +(1.+TAPRV))))	 '
22 SWPH	 COS(HS'dPC3)__..23.....__-_

_-SWPV	 =	 COS (VSWPC3)	
- -	 -	 -	 - 	 -	 -	 -	 --	 -	 I .--- -	 -

24 IFCAMACH.LT.0.25)	 GOTO	 650

-	 --- - 25 -----	 Y=13.36-79.39*AMACH+212.8*AMACIi*+2-232.9*AMACH**3+94.3 *AMA CH**_4_.----.----
26 RLIFT=Y-16.12*SWPH +33 . 15*SWPH **2 - 27.82*SWPH**3+8.32*SWPH**4

_- 27  GOTO	 660	 -

28 650	 RLIFT=3.541-16.12*SWPH+33.15*SWPH**2-27.82*SWPH**3+8.32*SWPII**4
_	

29' -- --660-CDOHT=SKIN*SWETHT/SW*RLIFT*(1+1.2*TIIICKH+100*THICKH**4)
• 30 RENUMV =	 RENUM(DENSIT.VISCOSrTASrCOARV)
+^	 --- -	 - --- 31-- -	 CF(40	 = 0.455/(AL0G10CRENUMVI+*2.58)	 - --- ----	 -	 -- - -	 ----	 - - -

32 SKIN	 =	 CFMO	 *CFCP1
-	 33 IF(AMACFI.LT.0.25)	 GOTO	 670

34 RLIFT=Y- 16.12 * SWPV +33.15*SWPV**2-27.82*SWPV**3+8.32*SWPV**4
-	 35 --	 -	 GOTO	 680	 -	 -

36 670	 RLIFT=3.541-16.12*SWPV+33.15*SWPV**2-27.82*SWPV**3+8.32+SWPV**4
- `37 --- '°'- 680- CDOVT = SKIN * RLIFT I SWETVT/SW*(1+1 . 2+THICKV+100 * THICKV++4) --"`-	 -----

38 CDOOHV = CDOFUS	 +	 CDOHT	 + CDOVT

i 39 -	 -	 RETURN	 -

40 END

_-	 ...._w^..Irv._....--•--...-.^___--_-_^-.,.^"_-_-......_.,^.^	 -	 _._ ..
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`!r{ 39967 01	 10-18-76 09.905 LABEL FUSWGT	 PAGE 1	 0 w
--- _. .	 -	 -	 -	 ---	 _- ----	 -SrUBRDUTINE	 FUSWGT(SWEIF,SWETN,^SWETU,SWETCiWF,WN,WU,WC1 -

r	 k. ---- --
2 COMMON	 TAS,AMACH,VISCOS,SW,BW,AW,CBAR,WSWPLE,TAPRW,XCBAR,LBOLD, ®
3 IDFUS , LN,LU , LCOLD,FUSWID , FUSHGT , HI, H2,PHINI,PHIN2,PHICI , PHIC2,TOL,
4 2K1,K2 .K3,K4,SHD.BHO , AHiSWPHO . TAPRH , THICKHrLHOLD,IIH.SVO O BVO,AV•

y 5 3SWPV0., TAPRV • THICKV , LVOLD , AEFF , Ko-KEf4PloKEMP2 , SUSN , SBSU,SBSCI , DIVE, 0
6 4ULTLOAD , XCG,XCGH,XCGV,XBARWB , XEIARHO,CMA,CNB , KAPAW , KAPAH , KAPAV,

—. SETA,DEL7LC,EP-----
I 8 REAL	 LHOLD

10 C THIS	 SUBROUTINE,	 FUSWGT, ESTIMATES	 THE	 FUSELAGE	 WEIGHT	 WIfEN HTE
yy 11 C DIVE	 SPEED,	 WETTED	 AREA,	 FUSELAGE	 GEO?1ETRY,	 AND	 FOUR	 CORRECTION 0

't2 C FAC T ORS	 TO	 ACCOUNT	 FOR PRESSURIZATION ., 	ENGINE LOCATION,	 AND
13 C LANDING GEAR - LOCATION ARE KNOWN._

to 14 C

15 C

16 C DETERMINATION	 OF	 FUSELAGE	 CORRECTION FACTORS	 FRO M OPTIONCODES

18 IF(KI-1)130.120.130
-19 -----12 D -" FU SK 1 =1 . 0 8 - -- ------

wy 20 GOT0140

21 --^ 130 -	 FU SKI=1.00
22 140 IF(K2-1)l60,150,160

-	 23 _	 150 FUSK2=1.04	
...._.	 - 40

24 GOT0170

26 170 IF(K3-1)190.180.190 4
27 - 180 FUSK3-1.07
28 GOTO2 00

y 29 _
_- —_ 190

FUSK3-1
;^ 30 200 1F(K4-1)220,210,220 

0 -- FU SK G =0. 96 	------o
32 GOT0230

• _..	
33 - 220 FUSK4=1.	 -

34 C

vl^
35 C FROM	 THE	 INPUT	 DATA AND THE FUSELAGE	 CORRECTION FACTORS,	 THE
36 C ESTIMATED	 FUSELAGE WEIGHT	 CAN	 BE	 COMPUTED

38 230 FUSK	 =	 FUSK1 • FUSK2 + FUSK3 R FUSK4 i	 '.
39	

_
OCWHT	 =	 LHOLD +	 DELTLC

40 A	 = DIVE	 n	 OCWHT
41 B	 = FUSWID	 + FUSHGT
42 C	 = A /B

- -- -	 -43-- --DW= SWETF*•I.2----- 	 -	 - --- - -	 - -	 ---
44 E	 =	 SRRT(C)
45 WF	 =	 0.021*FUSK+D+E
4i AFUSK	 =	 WF	 /	 SWETF

47 WN =	 AFUSK	 a	 SWETN

48 WU =	 AFUSK	 i	 SWETU

- -- - - - - -49r-------WC =	 AFUSK	 - S Sd E T C	 - - -	 -	 ----	 -
50 'RETURN
51 END



39967 01 10-18-76 09 , 905 LABEL	 EMPWGT	 PAGE	 1

- —"- -7- - SUBROUTINE	 EMPWGT ( SWETHISWETVPSWETEPHTAREA.- HTSPAN,VTAREA.;VTSPANi	 -- -	 ,

10 2 *HSWPLE a VSWPLE.VTWGT . HTWGI . EMPWGH) 0
3 COMMON	 TAS.AMACH . VISCOS . SW•BW / AW.CBARPWSWPLE . TAPRW,XCOAR.LBOLD.
4 1DFUSILN.LU.LCBLDIFUSWID I FUSHGT . HI.H2 . PHINI . PHIN2 . PHICl,'" IC2.TOL•

40 5 2K1.K2 . K31K4.SHD/OHO,Ali . SWPHO.TAPRFI . THICKH.LIIOLD.HH.SVO.OVO.:V.
6 3SWPVG , TAPRVoTIiI C KV.LVOLD.AEFF . K.KEFIP1.KEhIPZ . SBSN . SBSU . SBSC1,D1VE.

-' -'-	 - " - 7	 -- -	 - '- 4ULTLOAD . XCG.KCGH . XCGV , XBARWB r XBARHO . CMA.CIJB.KAPAW / KAPAFi.KAPAV.

10 8 5ETA.DELTLC.EP ^p

9
C..

10 C THIS	 SUBROUTINE.	 EMPWGT.	 CALCULATES THE	 ESTIMATED	 WEIGHT	 OF AN
11 C EMPENNAGE	 WHEN	 THE	 DIVE	 SPEED,	 WETTED	 AREA * 	AND EMPENNAGE Y
12 C GEOMETRY ARE KNOWN

- - -

k d 14 C EMPENNAGE	 WEIGHT	 FOR DIVE	 SPEED LESS THAN 250 XIS
15 C

j 16 IF ( DIVE.GT . 250)GOTO500
17 EMPWGH=.^':*(ULTLOAD*SWE TEA *2)* *.75
18 HTWGT	 =	 <APWG11*SWETH/SWETE

EMPWGLI+SWETV/SWETE-..
w 20 GOTO	 630 0

21 C -	 -

22 C EMPENNAGE	 WEIGHT	 WHEN DIVE	 SPEED	 GREATER THAN 2VO KTS
23 C
24 C DETERMINATION	 OF	 EMPENNAGE	 CORRECTION	 FACTORS

26 500 IF (KEt4P1 -1)530.520.530
-27---- -	 520 EMPKH=1 .1	

_	 _._

28 GOT05 40
- --	 29 ---- 530 EI•IPKH=1.

30 540 IF(KEMP2-1)560.550.560
-'--- 31- 550—"EMPKV=1.+. 75* (HTAREA * HTSPAN MAR EA'/VTSPAN)--` - `-	 ---	 -	 -----	 -

WY
r 32 GOT0570

33 560 EMPKV=1.	 —

34 C

35 C DETERMINATION OF	 HORIZONTAL	 AND	 VERTICAT TAIL	 CORRECTION	 FACTORS

`
36 C

- -- - "-37---570 *.2*DIVE/1000./ (SO R T( CC 5(HS14PL-E)
38 VTCF=V7AREA **.2 +DIVE/1000./(SQRT(COS(VSWPLE)))

-I 39 - IF ( HTCF.GT.1.40 ) GOT0580
40 HTW'yT=(3.9*HTCF-.419)*HTAREA*EMPKH

IIW1
41 G OTD590

` 42 580 HTWGT = 15.?4-2.29 * ALOG ( HTCF)1*HTAREA * EMPKH
- ^ 43 —5 n ' -- TF(VTCF.GT.I - 40)GOT0600 -----

44 VTWGT=(3.9*VTCF-.419)*VTAREA*EMPKV

45 600 VTWGT=(5.74-2.29*ALOG(VTCF))*VTAREA*EMPKV

46 GOT0610
47 610 EMPWGH = HTWGT	 +	 VTWGT $1
48 630 CONTINUE_-- -	
49------- RETURN-- -—.------ -^

50 END



7 SETAr0 CL" TLCIEP
8 COMMON / WEIGHT / WNrWUrWCrWFrWHrWVrWEPIPrCGERRrWGROSSoWGR
9 COMMON/CEEGEE/XCG1

10 COMMON / SHAPE / MN.NNrMCo NC

MY 11	
_	 .... C

12 C THIS	 SUBROUTINE ESTIMATES THE 	 LOCATION	 OF	 THE	 C.G.	 OF	 THE
13 C AIRCRAFT -'ALONG 'THE	 LONGITUDINAE - AXIS.	 THE	 METHOD	 USED	 IS	 NOT______
14 C INTENDED	 TO	 ACCURATELY LOCATE	 THE C.G.,	 BUT	 RATHER	 TO AID

I 15 C IN	 LOCATING	 THE C.G.	 SHIFT	 DUE	 TO INCREMENTALLY	 LENGTHENING	 THE
16 C AIRCRAFT	 TAIL	 CONE.	 INPUTS	 REQUIRED	 FOR	 THIS	 SUBROUTINE

yy 17 -` C ARE	 LISTED	 BELOW,	 AND MUST	 BE	 ENTERED	 INTO THE	 SUBROUTINE
18 C THROUGH	 EITHER	 READ	 STATEMENTS OR COMMON.

-	 NOSE	 LENGTH"	 (FT)__ ----	 ---	 ----	 --

20 C LU	 CABIN LENGTH	 (FT)
21

C ..	
LC	 TAIL	 CONE	 LENGTH	 (FT)

22 C WFUS	 FUSELAGE	 WEIGHT	 (LB)

WEh1P	 -	 - EMPENNAGE	 WEIGHT - 	 (LB)
24 C PHIN1r	 NOSE	 CONE	 SHAPE	 PARAMETERS

C, _	 PH IN2 --	 --	 --- -	 -	 -	 -----_-----	 - ---	 _,

26 C PHIC1r	 TAIL CONE	 SHAPE PARAMETERS
-_27

C._..--	 P H I C 2

28 C XCGH	 HORIZ.	 TAIL C . G.	 LOCATION	 (FT)
w

4 29	 - — C —__- XCGV	 - VERT.	 TAIL	 C.G. LOCATION	 (FT)------
(v 30 C I	 TAIL	 CONE	 INCREMENT NUMBER

32 REAL	 MrN .LNrLU*LCrMN.NNrMC•NCrLCCLD

}

X(ArMrN)- =(. 5 - (1.O/(hlr(N+2.0I))+C1.O -M)/(4.0*(4**2)*(2.0*

-

33
34

-

_
n N ► 2.0)) - ((1.0 -3.0*M+2.0* M** 2)/(6.0* (Mk n 3)*(3.0*N+2,0))))*A/C1.0-C1

35 +.0/(M*(N+1.0))}+((1.0-M)/(4.0*(M*+2iuC2.0*N+1. 0)})-(1.0-3.0*M+2.0*
36 *(M**2))/(6.0*(M**3)*(3.0*N+1.0)))

- -	 37---- — C --

38 C COMPUTE	 FUSELAGE	 COMPONENT	 C.G.	 LOCATIONS
39

.._ _ C

40 LC	 =	 LCOLD	 •	 DELTLC
41 CALL	 CONSHP ( PHIN1 * PHI N2rTOLrMNrNN)
42 1F(I.GT.0)GOTO	 50
43

WGR	 =	 WGROSS '	 (WC+WV+WHI	 ..

44 50	 CALL	 CONSHP ( PHIC1rPHIC2rTOLrMC,,NC)
45 XC =	 X(LC * 14C•NC)	 + LN	 +	 LU

46 ARM1	 =	 WGR	 *	 XCG	 + WC	 *	 XC{I!/.
47 C
48 C COMPUTE	 EMPENNAGE COMPONENT	 C.G. LOCATIONS

i 50 XV	 =	 XCGV +	 DELTLC
51 XH =	 XCGH +	 DELTLC

p , 52 ARM2	 = WH*XH	 +	 WV*XV

4

•

•

0

•

•

49

a

f?^
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39967 01 10-18-76	 09.905 LABEL XBARCG	 PAGE	 1 r 8

„ I SUBROUTINE	 )( OAF tG ( l _X3tG}
2 COMMON	 TAS.-AMACH r VISCOSrSWr9WrAW*CBARrWSWPLErTAPRWrXC13ARrLBOLDr

-	 3 1DFUSrLNrLUrLCOLOrFUSWIDrFUSi!GTrH1rH2rPHIN1rPHIN2*PHlCI*PHIC2rTOLr
4 2K1rK2rK3rK4rSHOr8HOrAHrSWPH0rTAPRHrTHICKHrLHOLDrHHrSV6rBVOrAVr
5 3SWPVOrTAARVrTNICKUrLVOLDrAEFFrKrKEMPirKEMP2rS85 No, SB SUP, SBSC1rDIVEr
6 4ULTLOADrXCG • XCGkirXCGVrXBARWBrXBARr10rCr4ArCNBrKAPAWrKAPAHrKAPAVr

4

.^	 ..	 - ..._._...
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39967 01 10-18-76 09 . 905 LABEL	 XOARCG	 .PAGE	 2

53 C

54 C ESTIMATE	 AIRCRAFT	 C.G.	 LOCATION ^J
55 C
56 WEST = WGR + WC + WH + 	 WV

- 57 XCGEST	 =	 (ARM1	 + ARM2)/WEST
58 IF(I.GT.0)	 GO	 TO	 100
59 C

60 C COMPUTE	 CORRECTION	 FACTOR --	 CGERR
61 C
62 CGERR	 =	 (XCG	 -	 XCGEST)
63 XCG1	 =	 XCG
64 GO	 TO	 200
65

_
100 XCG1	 =	 xCGEST	 +	 CGERR

66 200 XBCG	 =(XCG1	 -XCBAR)/CBAR
E 67 RETURN

68 END

n

^:.-1

up
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39967 01 10-18-76 09.905 LABEL STASAR	 PAGE

1 ^—SUBROUTINE	 STABAREA ( XBARCG,HSWPLE*SNPBHoCH)
2 COIIMON/STAB / XBARW,*XBARACPDXACBiXBARH
3 COM11ON	 TAS • AMACHrVISCOS • SW*UW.-AW . CISAItJWSWPLE/TAPRW / XCBARILBOLD/

4 lDFUSoLNPLUtLCOLDrFUSWID/FUSHGToHloH2pPIlINIpPHINRoPHI•ClIPHIC2/TOL/
5 2Kl*K2•K3.K4rSH0 . Hli0rAH.SWPHO♦ TAPRH • THICKHPLHOLD • HH.SVO,#BVO.AVO
6 3SWPVOPTAPRV*THICKViLVOLD .AEFFPKPKEMPlRKEMP2rSBSNPSBSUP SBSCI.DIVEr
7 4ULTLOADrX C GIXCGH,, XCGV/XBARWB IX BARHO ♦ Cf-1A * CNB.-KAPAW&KAPAHiKAPAV.-
8 5ETAPOELTLCoEP
9 COMMON/ CLDATA / ASPECTiBATAPSWPCa,rKAPPA

10 REAL	 LIIOLD • LHNEW I HII,KWBiKAPPA,KAPAH •KAPAWPKA.KTAPR#KH
11 SH=SHO
12 Bit=BHO

13 HSWPLE=SWPHO
14 C

15 C TRI	 S	 PART	 OF	 THE	 PROGRAM OPTDT4IZES	 THE	 SeIEEP	 ANGLE	 OF	 THE
16 C HORIZONTAL	 TAILr	 FIRST	 WE CONVERT	 THE	 INPUT	 VALUE	 OF	 THE LE	 SWEEP
17 C TO THE HALF-CHORD	 SWEEP	 ANGLE
18 C

14 " — -'- 11SWPC2=A TAN( ( SIN[HSWPLE) I C0S(H5WPLE))- ( 4.IAH*I.5 *( 1.-TAPRH)/
20 *[1.+TAPRH))))-	 21 C . .._

I 22 C FIRST	 WE	 CONVERT	 THE	 INPUT	 VALUES	 OF SURFACE SWEEP	 ANGLES
23 C TO	 USEABLE	 FORM	 FOR	 CALCULATION	 PURPOSES
24 C

25 — WSWPC2 = ATAN( ( SIN(WSWPLE)/COS(WSWPLE))- ( 4./AW*(.5 * C1.-TAPRW)

3̂ _._	 26 -	 - -*/(l.+TAPRW))))
27 WSWPC4 = ATAN( ( SIN(WSWPLE) /COS(WSWPLE ) )-(4./AW *(. 25*(1.-TAPRW)
28 */(1.+TAPRW))))
29 8ETA=SQRT(1.-AMACH**2.)	

_.-

tv 30 1	 CLLli1 =0.
`	 ---- -- 31 _	 HSWP1=0.	 _	 ---	 —	 ------	 --	 ----	 --	 -_	 ---	 -

32 Do	 10	 1=1.181
33 - HSWP2=HSWPI+.008727
34 ASPECT=AH_..	
35 BATA=BETA

36 SWPC2=IISWP2
37- --- KAPPA=K,.PAH

-

'^ 38 CALL	 LSLOPE	 (SLOPE)39 _	 _
CLAH-SLOPE

40 LHNEW=LIIOLD+DELTLC+(( ( Bii/6.)*(1.+2. * TAPRH)/(1.+TAPRH))*
41 +((SIN ( HSWP2)/ COS (HSWP2 	 l)-( SIN (HSWPC2)/COS(HSWPC2)I))

CLLH2=CLAH*L114EW
-	 '^--- '-43 --- 1F	 (CLLHl.ISE.CLLH2	

)	
G CF . TO	 20 -

44 CLLHI=CLLH2
45 10	 HSWPI=HSWP2
46 20	 CONTINUE
47 C
48 C NOW WE	 COMPUTE	 THE PARAMETER:.	 TO	 THE EQUATION FOR	 SH

- --	 ----- 49r _C__ _	 ---.	 -__.
FIRS1 - WE	 COMPUTE	 CLAW 

50 C

51 SWPC2=HSWPI
52 CALL	 LSLOPE	 (SLOPE	 3

L 6

1	 V

^J

EJ

i



y^ 39967 01 10-18-76 09 . 905 LABEL STABAR	 PAGE	 2 Qi

-_CLAN=SLOPE	 -

,^ 54 C

55 C NOW WE	 COMPUTE	 XOpRACH
56 C
57 XEi ARH=XBAR11O+DELTLC / CBAR+(( ( BH/6.)+(1.+2. * TAPRN)/(1.+TAPRH))•
58 *((SIN ( tiSWP2	 )/COS(HSWP2	 )l-( SIN(HSWPC2) / COS CHSWPC2)))) / CBAR

" 59 -	 C -

'W 60 C NOW WE	 CALCULATE	 D EPSILON	 / D	 ALPHA B
61 C

62 ASPECT	 =AW

:W 63 SWPC2 =WSWPC2 O
64 BATA=BETA65_

-KAPPA=KAPAW---------------------
66 CALL	 LSLOPE	 ( SLOPE) Q
<.' CLAWN-SLOPE
68 BATA=1.
69 CALL	 LSLOPE	 (SLOPE) !/
70 CLAWO=SLOPE

/AW)-(1.1(1.+AW*k1.7))

yrt 72 KTAPR = ( 10.-(3.*7APt1W)) /7.

73 KH=(1.-(HH/BW))/((2.*LHNEW)/BW)**.3333
74 DEPUAL=(Ci.AWPI/CLAWO)*(4.44k(KA*KTAPR*KH*SORT(COSCWSWPC4)))**9,19)

— 75 - - { -

74 C NEXT	 COMPUTE	 CL ALPHA	 WD

i 78 KWB	 =	 1.-(.25*(DFUS/HW)**2)+.025*DFUS/BW 0_-	
79 CLAWB=KWB*CLAWM
80 C

bd 81 C- - -` NEXT	 COMPUTE	 THE	 TOTAL AIRPLANE	 CL	 ALPHA 0

i 82 C

"^y 84 C
CLAA=CLAWS+CLAI1*ETAkSIt/SW*(1.—DEPDAL)

-
fi` 85 C COMPUTE	 XBARAC

86 C '	 -
87 - XBARAC = XBARCG-CMA /CLAA
88
 --- --"---

CALL	 MULTOP(LHNEWo-CLAWM,*DEP DAL o-DXACO)
--- -_r

89 xBARWB	 =XBARW	 4DXACI3

Wi

90

C
--	 -	 - - * d'91 -

92
C
C

NOW THAT ALL PARAMETERS	 ARE KNOWN WE CAN COMPUTE THE NEW AREA

+.^ 93 SHNEW =( X8ARWB-XBARAC )ICE XBARAC - XBARH ) k(CLAH/CLAWB)*
94 kCETA / Sw)*(i.-DEPUAL))
95 ------ ----- --BHNEW=SORT ( SHNEWkAH)	 ..----"--	 --	 -- --	 -	 ....	 - -	 --	 -	 -

46 BHDIF=ABS(BHNEW-Bit) py+^ 18
97 IF	 (BHDIF.LC.EP)	 GO	 TO	 3C ^[]

`
98 SH=SHNEW +
99 BH=aHNEW 0
100 GO	 i0	 1

— i01 30	 CONTINUE -

'', 102 SH=SHNEW
103 BH=9HNEW
104 IH =( 4.• Sit) ! (3. * B10	 I .+TAPRH+TAPRH **2.3/(1 .+TAPRH)*k2.)

}.^Up .;E .̂ra< ri•'	 •1^y
,̂
7',.ki, ,^}P	 °•	

.'F- •j^	 y'?	 .r. ,"	
^.i,^	 '•k	 ^	 r `

-, ^:"	 '	 ,}^A }F	 ^r	 Fi	 't'ii r• 	 ^	 .1^^z,'̂N: :ndlw L^ iG^ „.	 -ni •`5:^	 --"..5 vr'^;`^a R.ai^d	 it^..^.S.r	 ^7.^i4::p?;^:5	 A .,c^	 _,̂ ^'...:	 ^N	 ^.,	 r	 "f  1
Aj .;:^:.,...l^vi

4 ^c,4't^'^. ^L'^ :}'f ^	 r_..
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339967 01 10-18-76 09,905	 LABEL	 STABAR	 -PAGE

— 105 ---HSWPLE=ATAN((SIN(HSWP1)/COS(14SWP1))-(4./AH*(-.5t(1.-TAPRH)/
106 W .tTAPRH))))
107 SWP =	 HSWPLE	 •	 57.3
108 RETURN
109 END

V

d

-i
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.̀0 39967 01	 10-18-76 09 . 9116 LABEL	 VERTAR	 PAGE	 1

SUBROUTINE	 VERTAREA ( VSWPLE . SV.UV*CV)1
2 COMMON TASPAMACH•VISCOS,#SWoBWP AWPCBARPWSWPLE•TAPRWeXCOARPLOOLDr ®1
3 1DFUSPLNPLUPLCOLDiFU5WIDiFUSHGTPH1PH2iPHI141iPHIN2PPHICIoPHIC2rTOL0
4 2K1.K2PK3iK4iS HOPE "OP Ali i5WPH0.TAPRH•THICKH0LHOLD•NH.SVOrBVOrAVr

® 5 3SWPV0•TAPRV.THICKVILVOLD/AEFFPK•KEMPI.KEMP2• SOS N•S9SUp SOS C1eDIVE• fl
6 4ULIL0ADrXCGPXCG Ito XCGVPXBARY 1 B.XBA RHO •CMA. CUB s,KAPAW.KAPAH.KAPAVf

-"-- ----7 -"	 5ETA.DELTLC•EP
® 8 CC:::40N/CEEGEE/XCG1

9 REAL	 KPLVOLDiLVNEW . KN,*KRLiKA,LCOLD • LCNEW . LBOLD•LBNEW •LB2SBS
10 REAL	 H1iH2rH1H2 ♦ o-11.HWRAT.hi2,KAPPAFKAPAV•KVo-KCsKWiLN
11 COMMON/ CLDATA/ASPECIPUATA*SWPC2.PKAPPA
12 HV=BVO i

VSWPL E=SWPU
.O

74 C15 C THE FIRSI PART	 OF	 THIS	 ROUTINE	 OPTOMILES THE SWEEP	 ANGLE	 OF
16 C THE VERTICAL TAIL	 FIRST WE	 CONVERT	 THE	 INPUT	 VAL0. 5	 OF	 LE	 SWEEP

® 17 C- --TO HALF CHORD SWEEP !$^
18 C

- ----- -- ---	 19 VSWP0=ATAN((SI -N(VSWPLli)/COS(VSWPLE))-(4./AV*(.5*(l.-TAPRV)/ - -

20
*(1.+TAPRV))))

21 8ETA=SORT(1.-AMACH**2.)
22 1	 CLLV1=11.

ffi 23	 - - -	 VS lip 1 =0.
24 DO	 10	 1 =1.181

-	 ---- -- - --- - 25 --- VSWP2 = VSWP1 +.DpH727

® 26 -" ASPECT=AEFF
—_ 27 BATA=BETA

28 SWPC2 -VSWP2 
t

11D qa ------ — 29-__-_..__-----KAPPA=KAPAV	 __	 --	 - - - _--____.___-	 ----- ----- ---- -

` -- --- 30 CALL	 LSLOPE	 (SLOPE)--"-
V 31.-- C L AV- 5L O PE	 _ _..	 . _ .......--- -	 ----	 -	 — --- - --- --- ------ -- 	 -	 -	 --

^_^ Ep 32 XVOLD	 =	 LVOLD	 -	 (XCG1-XCG) (Ij-
33 LVNEW=XVOLD+DELTLC+(((BV/3.)*(2.+Z.*TAPRV)	 1(1.+TAPRV	 ))k

' 34 *((SINCVSWP2)/COS(VSWP2))-(SIN(VSWPC2)/COS(VSWPCZ))))
- ---- 35---- ---- ---	 CLLV2=CLAVkLVNEW

36 IF	 (CLLVI.GE.CLLV2)	 GO	 TO	 20
-, -- ------	 - 37

38

---- LLLV1 =CLLV2 -

1a	 VSWPI=VSWP2
39 20 CONTINUE	 -
40 C
41 C

_	
THIS	 PART OF	 THE	 ROUTINE COMPUTES	 THE NEW VERTICAL	 TAIL AREA

42 C AND VERTICAL	 TAIL	 SPAN
43 -w C FIRST	 WE ' CALCULATE	 K R L
44 C
45 LVNEW=LBOLD+DELTLC
46 RE MUM F=AENUM(DENSIToVISC OS * TASrLBNEW)
47 KRL=	 -1.830754+.20494 k ALOG(RENUMF) r

48 C j
WE	 CALCULATE	 THE	 OO 'DY SIDE	 AREA OF	 THE	 NEW	 AIRPLANE

50 C
51 LVNEW=LCOLD+DELTLC
52 CALL	 CONPAR	 (Pill CIPKARKV.KCPKW)

r

dF

i M



39967 01	 10-18-76	 09.906 LABEL	 VERTAR	 PAGE	 2	 49

53"  SBSECI=KA*LCOLU*DFUS
54 SBSRAT	 =	 1.00 S
55 S05EC2=KA*LCNEW*DFUS
56 CALL	 CONPAR ( PHIN1 • KAjKV . KC•KW)

10 57 SBSN	 =	 KA*LN*DFUS
58 S13S=SBSNtSBSU+SOSRAT*SdSEC2
59

C

0 60 C NOW WE	 CALCULATE	 Y.N	 BY	 A	 THREE	 STEP p

61 C METHOD	 IT	 WAS	 ARRIVED	 AT BY	 APPLYING CURVFITTIWG	 TECHNIQUES
62 C TO THE	 CHASE	 AROUND	 CHART	 IN DATCOM

0 63 C 4
64 L42SUS=LBNEW**2./S8S

- - 65	
__ _

---1 f" (LB2SBS.GE.8.)	 GO	 TO	 30

0 66 SIIIFTI=6.0942-1.3516*LB2SBS+.13525*LB2SBS**2.^-.0062*LB2SUS**3.+ 0k 67 _..
--*.0001 *L.B2SBSkA'.. 

68 60 TO 50

0 69 30	 IF	 (L02SBS.GE.12.)	 GO	 TO	 40
70 SHIFTI=-.12*LB2SBS+1.91

-- --- -- 77 __---- .._..GO
	 TO '50	 -----	 -	 -

tl 72 40	 SHIFTI = - . 05875*LB2S8S+1.175 40
73 50	 CONTINUE j

74 YVALUE=2.8333*xCG/LBNEW-.41667+S:IIFT1

75 -	 H1H2=SORT(H1/H2)

76 M1=3.6497-3.5796*H1HZ-.39*H1H2**2.+2.0149*H1H2**3.-.6946*H1H2**4.
--- -- ---- 77---•------- ZVALUE=YVALUE/M1	

_	 - -

0 78 HWRAT =FUSHGTIFUSWID
79 - -	 M2=(°1.0147+4.4649*HWRAT -3.3626 *)IWRAT* *2.+1.0794 *FIWRAI **3. - .1217=
80 *HWRAT**4.)*.001

0
-	 81'"	 - - -	 KN=M2*IVALUE-.00(15

W	 82 SWPC2=VS'jlP1
.----	 S3 -- --- CALL	 LSLOPE-(SLOPE)	 -	 -	 - ----	 -°--	 - _,_

tt	 0 o^0	 84 CLAV=SLOPE
85

C	
_ --

86 C COMPUTATION	 OF	 THE NEW	 PLANFORM PARAMETERS87 C

88 SVNEW= ( SW*BW*CNB+57.3*KN*KRL * SBS*LBNEW )/(K*CLAV* LVNEW)
89 -----C

-	 y 90 C CALCULATION OF	 THE	 NEW	 SPAN AND	 COMPARISON	 WITH	 THE	 TOLERANCE
91 C OF	 THE	 ITERATION

` 92 C

10 SVNEW =SORT(AV*SVNEW)
94 BVDIF=ABS(BVNEW-BV)
95'- - IF	 ( OVOIF .LE.EP)...GO-TO
96 SV=SVNEW
97 OV-SVNEW
98 GO	 TO	 I
99 110 C 014T I NU E

100 SV=SVNEW
- -- --- -..^ i01- - - ---TlV=SVNEW 	-	 ...__.	 _...	 ..

f•, 102 CV=(4.*SV )/( 3.*BV)*((1. + TAPRV+7APRV**2.)/(1.+TAPRV )** 2.)
103 VSWPLE=ATAN((SIN(VSdP1)/CO5(VSWP1 	 ))"'(4./AV*(-.5*(1.-TAPRV)/
104 *(1.+TAPRV))))

y1

•M-1, x 	
Fes'-	 ^,_,$''

-I;s^. >.	 1	
s	 b	 jRi,^l

	 -s',R̂ '	 , r•	.^ -^.	 t	 a3-	 ....	 -:r•..:^:rI,sS'z.,'-..i'	 i'	 I	 -

L.
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39967 01 10-18-76 09.906	 LABEL VERTAR	 PAGE	 3

SWP	
VSWPLE	 57.3

106 RETURN
107 END

tp
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10	 39967 01 10-18-76	 09,906	 LABEL MULTOP ,PAGE	 1

-T 1 SUBROUTINE	 111aLT90( LHNEW,CLAWi4,DEPDAL,DXACB)
;, ® 2 COMMON/RHO/DENSIT

3 COMMON	 TAS•AMACH,VISCOS,SWiBYJ,AW,CBAR,WSWPLE,TAPRW,XCBAR,,LBOLD,,
4 1DFUS,LN,LU,LCOLD,FUSWID,FUSJiGT,fil,lJ2,PHINI,PHIN2/PHICI/PHIC2,,TOL/

® 5 2K1 ,K2,K 3,K4,SH0,B+IO ♦ AH, SWPHOPTAPRH, T111 CKH,LHOL D,JJH,SVO,BVO,AV,
6 3SWPVO , TAPRV,T+IICKV,LVOLD •AEFF,K,KEMP I e KEMP2 , SBSN , SBSU , SBSCI.DIVE,

- 7
_

4ULTLOAD , XCG,XCGH , XCGV ,XIIAIIWB,XBARHO , CMA,CNU , KAPAW,KAPAFI,KAPAV,
8 5ETA,DEL"LC.EP
9 COJ+MON/.RAPE/MN,NNrMC,NC

10 DATA	 CO,C1,C2,C3,C4	 11,90.-1.6958,1.5759,-0.7292,0.13021

11 DATA	 OO,Dl,D2,D3,D4/6.2503,-23.0908,60.3553,-7B.4540,3B.2895/

12 REAL	 LfJ,FJN,MN,LT,LBOLD,LCOLD,LCNEW,NC,MC,LH,LiiIJEW

---- - — 13 FOLY(X -,CrC1.C2,C3"PC4}=C+L1* x+ C2* x* *2.+C3*%**3.+C4*X*+4'._
14 CLAWM	 =	 CLAWM/57,2958

15 QBAR	 =	 0.5*DENSIT +TAS*TAS
I 16 XLE=XCBAR-(((BH/6.)*(1.+Z.*TAPRH)/(1.+TAPRiI))-•.5*DFUS)SSIN(WSWPLE)

*****W 412	 BH	 IS	 NOT DEFINED
17 */COS(WSWPLE)

-; 18 C 	 =	 1.5*C BAR *(1.+TAPRW)/(1.+TAPRW+TAPRW**2)

ca 19 CRF	 =	 DFUS*CR*(TAPRW-1.)/BW	 +CR

-
20 DxI	 m	 XLE/50.
21 SUM = 0.

22.. --	 L1n	 100	 I=1,,50
23 XI	 =	 XLE	 -	 (Dxl*0.5)-	 Dxl*(I-1)

j 24-- --	 IF(XI.LE.CXLE-LN))	 GO	 TO	 10

i^ 25 WFI	 =	 OFUS*((1.-(((LN+XI-XLE)/LN)**NN))**(1./MN))
26 ._.-GO

	 TO	 20
3 27 1C	 WF1	 =•	 DFUS
Q m --- 28 - -- 20	 XCF =	 x I I C R F

29 DEDA	 =	 POLY (XCF,CO,C1,C2,C3,C4}
30 IF(I.GE.45)	 DEDA	 =	 POLY(XCFrD0rD1rD2,,D3 ,D4)

®
CD

31 DEDAI	 =	 DEDA*CLAWM/4.58
32 100	 SUM	 =	 SUM	 +	 (DxI*WFI*WFI*DEbAI)
33

—	 34
LT	 =	 LBOLD	 +	 DELTLC -	 XLE	 -	 CRF

— -	 -	 DxI	 =	 LT150.
4 35 LCNEW	 =LCOLD	 +DELTLC

--- ....-- - 36 - -- -- DO Z10	 I=1,50
37 X1	 =	 DXI*(I-1)+(0.5*DxI)
38 1F(XI.LE.CLT-LCNEW))	 GO	 TO	 30
39 WFI	 =	 DFUS *(( t.-(((LCNEW +XI-LT) / LCNEW)**NC))**(1./MC))
40 GO	 TO	 40
41 30	 WFI	 =	 DFUS_-
42 -- 40	 LH	 _	 LCNEW-CRF+.25*CBAR+(CBW/6.)*(1.+2.*TAPRW)/(1.+TAPRW)-DFUS /2.) 

_

43 * *S1N(WSWPLE)/COS(WSQPLE)
44 DEDAI	 =	 (1.-DEPDAL)*XI/LH

45 200	 Sum	 =	 SUM	 +	 (DXI*WFI *WFI*DEDAI)
-^ 46 DMDA	 a	 CQBAR/36.5)+SUM

47 DXACB	 =	 -1 .*D(4DA/(QBAR*CBAR*SW+CLAWM)

",	 I 49 END

Goo

.`̂̀V

to

^d

I
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39967 01 10-18-76	 09.907	 LABEL CONSHP PAGE	 1
r

r
SUBROUTINE - CON SHP (PH II PH12,TOL.M,N)

,^	 2	 REAL M,N,r41,M2

	

3	 I=7

	

4	 J=1
f^	 5
	6 	 DM2 = 10.0

---	 = ALOG(1.0 =(PHI1**NM ALOG(PHIl)

	

8	 M2 = ALOG(1.0 -(PHI2**N))/ALOG(PH12/2.0)9 - '-	 J = J+1
	IG	 IF(J.EO.100)	 GO TO BO	 k
'4w	 11	 DM1 = 141-M2
} -	 12	 IF(DM1.LE.0.) GO TO 30	 --- -- - ----_ ---	 _.-^-	 -.	 -	 -	 -	 -	 --

	

3	 iF-(Dil1	 r.Dr^2?_. GC . TO 50 ^-
^_	 14	 20 N = N+(0.0511)

	

15	 DI-12 = DM1
	16	 GO TO 10

	

17	 30 IF(ABS(DMI).LT.TOL)GO TO 60	 •
	18	 I = I*5

----19'----'--40 N = N - (0_0571)
	20	 Ml = ALOG(1.0 -(PK11**N))/ALOG(PHli)

	

- 21	 -- — T- M2 = ALOG(1.0 --(PHI2**N))/ALOG(PH12/2.0)

	

22	 J = J+123 .....	
lF(J.E0.100)	 GO TO 80

F	
24	 D141 = M2-141

-	 ---	 25—	 IF (DMl. LT.O. i Gfl TO 20	 --'-	 ____----- -_-- -'	 -- --- ---
E^	 26	 IF(ABS(DM1).LT.TOL) GO TO 60

	

27	 -	 - GO TO 40
td	

29 - _ - 
54 MRITE(6,1) -

	 - --- -----	 _	 - -	 --	 - --	 j
ti	 30	 N = 1 . D	 -^!

	32	 60 N = (P1l + M2)*0.5

	

_ . 33	 - - ---' 70 RETURN

	

34	 80 WR IT  (6r4)	 ^"^

	

35	
_	

GO TO 60
	36	 1 FORMAT(10x,'***ITERATION FOR M AND N DIVERGES***'	 '	 ^

	

/15x, sET- M=t.o	 °n
— ---w-----	 ' -	 --'--'- --•--	 _	 ...... ___. --	 --___--	 -	 -

37--	 x'722x,'N=1.0'11) ^- -	 -	 . ---
	38	 4 FOrr14AT(1(1X,'***100 STEPS COMPLETE--DID NOT CONVERGE***'//)

	

39	 RETURN	 -

** n **Y1	 209 STATEMENT CANNOT BE REACHED

	

40	 END	 {^
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® 39967 01	 10-18-76 09.937 LAI3EL	 CONPAR
3

PAGE	 1	 1=—

-- -- -- 5UUROU7INE	 CONPAR(PHI,KA,KV,KC,KW)
2 REAL.	 KA,KV,KC,KW ^I
3 C THIS	 SUBROUTINE	 COMPUTES THE AREA CORRECTION	 FACTORS
a C KAs	 KV. KC•	 AND	 KW WHEN THE SHAPE	 PARAMETER PHI	 IS	 INPUTTED
5 C THIS	 SUBROUTINE	 WAS	 DERIVED	 FROM	 TORENOEEK	 PG.	 447 eo
6 C

-	 — "-- "7 "------- -DATA	 AK,AKI,AK2,AK3,AK4 /-0.59,3 . 8109,-5 . 721,6 . 4163x -2.9167/
8 DATA	 VK,VKI,VK2,VK3,VK4/-.9095.5.803.-13.0927,16.5927.-7.41)74/ @1

! 9 DATA	 CK,CKI,CK2,CK3,CK412.96*-12.0488,22.8752,-18.3335,5.5556/
! 10 DATA	 WK,wK1,WK2,WK3.WK4/-172.721,1008.8388.•-2162.25.2023.9877,-69

11 k7. 9097/ E^J
12 POLY (X,C * Cl ,C2,C3,C4)=C+C1*X+C2*Xk*2.+C3*X0,k3.+C4*X**4.
j KAcPOLY ( PliIs11K , AK1,AK2 , AK3,AK4 )^
14 KV=POLY(PHI,VK,VK1,VK2,VK3,VK4)j
15 KC=POLY(PHI,CK,CKI,CK2,CK3,CK4)
16 K W=P OLY PHI,WK,WK1	 WK 2,WK3,WK4)

- - — - 17 -------
-	 —

--CONTINUE i^J a

' 18 RETURN..	 --	 ---._.-_14--•- _-------- ---END

AD
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'1 A 39967 01 10-18-76 09.907	 LABEL	 LSLOPE	 -PAGE

- - ---- ------ ---	 - - SUbilOUTINE	 LSLOPE	 (SLOPE) --
® 2 REAL	 KAPPA

3 COMMON	 /CLBAIA/ASPECToOATAjoS'WPC2•KAPPA
4 SLOPE=(?..*3.14159*ASPECT)/ (2.+ SORT((ASPECT;*2.*BATA**2./KAPPA**2.)

g 5 **O.+(((SIN ( SWPCZ) / COS(SWPC2 ))*( SIN(SWPC2) / COS(SWPC2))) / DATA ** 2)) ^t
6 *+4.))7

P,ETURN
® 8 END 6L

I.
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39967 01 10-18-76 09 . 907 LABEL.	 RENUM	 PAGE	 1

FUIJC7IDN	 RENUM(DENSIT • VISC6S YhS -A- ALLVGTH) —
2 C u^

3 C THIS	 FUNCTION COMPUTES	 THE	 REYNOLDS NUMBER	 OF A BODY c
4 C

5 RENUM=(TAS*ALNGTIi) / VISCOS
6 RETURN
7 END

I'

L

j
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B3 Example Output

q.A
	 This section provides Roslmm /Fillman Program output for a

conceptual aircraft configuration. This conceptual aircraft is

not to be confused with any of those mentioned in Chapter 4.

r,.
lop



TABLE	 2. 15.1A	 ROSKAM- FILLMA14	 METHOD
CONFIGURATION	 J	 (31	 PAXi	 212)

- - ------	 --	 ----- ORIGINAL FLIGHT CONDITIONS
L	 GEOMETRIC	 DEFINITIONS ^}

# i #iii ! i # # ! # a*** # # i i # # k i # ! ! # i # i i ! # i i # i i i i i ! # # # # k # # i # # # # i # # # i # # # # # ol

+
+Ir   3

FLIGHT	 CONDITIONS

ALTITUDE	 25000.000 FT
AIRSPEED	 -	 -	 366.750 - FPS -	 -
MACH	 0.361

^	 DENSITY	 -	 -	 0.00107 -SLUGSICU.FT.	 -	 -	 - -	 -	 -	 -	 ---- - iJ	 ,
KINEM ATIC VISCOSITY	 0. 00030 SQ.FT ./SE C

GEOMETRIC J

WING
REFERENCE AREA 440.000	 SO.FT.
SPAN 66.330	 FT

--------- -- ---ASnECr -Rnrro--	 ------------- t0. o0n—^------- ---------------------- ---------------- - -
M.A.L. 6.880	 FT

-	 F.5.	 -	 - -	 - 19.840	 FT -	 -	 -	 -	 -
L.E.	 SWEEP U.	 DEG
TAPER	

.__..-_	 ._ _ __'-^-	 ----	 _._ 0.500 ---- 	-----	 --
-.r	

'

OVERALL	 LENGTH 56.350	 FT I
O5E L E NG TH 74:620	 fT	 --	 ---------------

CASIN	 LENGTH 20.000	 FT
IL td	 TAIL CONE LENGTH FT---------

J
MAX	 WIDTH 8.080	 FT

- rn----- ----	 MAX HE I GHT ---- 8. 080 -F^ -------- -- — ---	 --- ---	 - - -- - - -	 --
EGUIV.	 DIAMETER 8 .080	 FT

HORIZONTAL	 TAIL
REFERENCE	 AREA 55.6OGS0.FT,	 -

SPAN 14.910	 FT
ASPECT-- RATIO' 4. 000— -

'^	 M.A.C. 3.870	 FT !1
TAPER	 ____..	 _..	 .. -	 -	 ----_...... . --.	 ...-	 0.500
THICKNESS 0.090

L .J
VERTICAL	 TAIL

REFERENCE" -AREA- —48-380510.FT-.---	 ------ ---	 ----- -	 _ -__	 -_ ----	 -_-	 .._._....	 _--
SPAN 6. 960	 FT
ASPECT	 RATIO 1.000
M.A.C. 7.210	 FT
TAPER 0.500
THICKNESS 0.090



L, ' f TABLE	 2.15 .113	 ROSKAM-FILLM`N METHOD

3_____-_._._CONFIGURATION (31	 PAX•	 212)
- ORIGINAL	 WEIGHT AND BALANCE STATEMENT	 --- _

	
-	 ---- ---	 - --	 - -	 -	 -- ----	 _	 --	 r

..	 d ?'
-	 --#kk#}t4#kii Rt kii#Rk lk4 k}i}k #k4 ii#kR4i 44R Rt 4**Rif*}*ii#Rk*tt#iR}!! --~p

(LES.)
UI

c+

-	 GROSS WEIGHTLL--- 22000.000

i APPROXIMATED	 SHELL	 WEIGHTS

^J FUSELAGE -	 -	 -	 -

NOSE	 SECTION 754.560

J CABIN	 SECTION 1246.399
TAIL CONE	 SECTION 1264.082

r - TOTAL FUSELAGE'- —
-...	

3265.04D ------

- -	 - ---- EMPENNAGE ----	 — -_- -	 - _---- - -	 - -.. - -- - ---	 -- -	 --	 -

HORIZONTAL	 TAIL 115.226
VERTICAL	 TAIL 330.43114 - ^

-	 -- TOTAL EMPEN NAGE 4 45.657	 - -

'C

^I—
--	 —

CENTER OF	 GRAVITY	 --	 FRACTION OF M.A.C.	 0.250

—^- —

•

;$
u

L

C J

C '

C s

c •
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TABLE	 2.15.1C ROSKAN-FILLMAN METHOD	 J
;.	 CONFIGURATION J (31 PAX. 212)	 —

----------- OR IGCFJAL- - IJEYTE6 _ AREA - BREAK DOWN
—_-"..._..,_^___^_^_____-__-__.._

'	 ik Rkitkkliti*lRiiiiklt*t!*itt!!4*4ii!!il kR Rl Ak *Rkk****iR*R*#A*!*! 	 ,

11!

FUSELAGE	 -	
(SO.FT.)

cr

NOSE -SEE TI	 -307.346----- ----" - -"- --

	

`	 CAUIN SECTION	 507.681
TAIL SECTION	 -	 514.883

TOTAL FUSELAGE	 -	 1 329.910

---EMPENNAGE-------------	 —	 —	 — - ---- —	 -- ---	 _

" HORIZONTAL TAIL""-- 	 113.079 -- --- --
`	 VERTICAL TAIL	 98.395

TOTAL EMPENNAGE	 2 11.4 75

td



1 TABLE 2.15.2A ROSKAM- FILLMAN METHOD ^---
CONFIGURATION J	 (31	 PAX• 212)
OPTIMIZATION WEIGHT	 AND BALANCE

---
	 -	 -- `------_

	 -- `

STATEMENT

f;;; 1 A A; k f A!;• f! i f A A A i f k f i; i f R A k A; A A f f i A f! f f f A A A A* A .Y i i* i f! i k f f f#{ „I
_	 .

ti

	 J

L
GROSS WEIGHT(	 W10 TAIL	 OR	 EMP.) 20290.261 (LOS.)

I LC LB FUSELAGE EMPENNAGE C.G.
WT WT

(FT) (FT) (LB) (LB) (FR	 CBAR)

1 15.000 49.620 21066.239 439.115 0.148

2 15.250 49.870 21062.912 793.682 0.205 a

3 15.500 50.120 21080.119 832.915 0.216

4 15.750 50.370 21097.460 797.579 0.214

5 16.000 50.620 21114.933 791.82 0.217 i

6 16.250 50.870 21132.538 788.696 0.221

` 7 16.500 51.120 21150.275 786.583 0.224

8 16.750 51.370 21168.142 784.563 0.228

9 17.000 51.620 21186.141 782.504 0.232

10 17.250 51.870 21204.269 782.219 0.236

w 11 17.500 52.120 21222.527 780.213 0.240
kD

II 12 17.750 52.370 21240.915 777.981 0.243

r 13 18.000 52.620 21259.432 775.626 0.247

14 18.250 52.870 21278.077 773.334 0.251

` 15 18.500 53.120 21296.850 771.047 0.255

16 18.750 53.370 21315.751 768.685 0.259

17 19.000 53.620 21334.780 766.367 0.263

18 19.250 53.870 21353.936 764.168 0.267

19 19.500 54.120 21373.218 761.934 0.271

20 19.750 54.370 21392.627 759.563 0.275

21 20.000 54.620 21412.161 757.193 0.279

L ^.
22 20.250 54.870 21431.821 754.873 0.283

23 20.500 55.120 21451.606 752.560 0.287

24 20.750 55.370 21471.516 750.194 0.291 r--^

L.ĥ r ,
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25 21.000 55 .6.20 21491.551 747.872 0.295 --

26 21.250 55.870 21511.709 745.562 0.299 a^

27 21.500 56.120 21531.991 743.249 0.303 [I

28 21.750 56.370 21552.397 740.889 0.307 :I

29 22.000 56.620 21572.926 738.564 0.312 1

30 22.250 56.870 21593.578 736.295 0.316

'i
31 22.500 57.120 21614.352 733.949 0.320

32 22.750 57.370 21635.248 731.628 0.325 4

33 23.000 57.620 21656.266 729.313 0.329-_
t

34 23.250 57.870 11677.406 726.967 0.333

35 23.500 58.120 21698.667 724.654 0.338 #

36 23.750 58.370 21720.049 722.344 0.342

37 24.00D 58.620 21741.551 720.008 0.347

i
38 24.250 58.870 21763.174 717.7011 0.351 0

39 24.500 59.120 11784.916 715.396 0.356

- 4) 24.750 54,370 21806.779 713.066 0.364

j 41 25.000 59.620 21828.761 710.760 0.365 -	 0

42 25.250 59.870 21850.862 708.514 11.369

43 25.500 60.120 21873.081 706.203 0.374

44 25.750 60.370 21895.420 703.907 0.379

45 26.000 60.620 21917.876 701.620 0.383

46 26.250 60.870 21940.451 699.313 0.388

47 26.500 61.120 21963.143 697.024 0.393

f 48 26.750 61.370 21985.953 694.747 0.398

.: .i
s. 49 27.000

_ -. ^
61.620

---

22008.880 692.450

-----

0.402

SO 27.250 61.870 - 5 --22031.92 640.174__ -0.407

51 21.500 62.120 22055.085 687.907 0.412

J
52 27.750 62.370 22078.362 685.621 0.417

53 28.000 62.620 22101.756 683.353 0.422

54 28.250 62.d70 22125.265 681.076 0.427

r

pp

a



r

55 28.500 63.120 22148.890 678.815 0.432
e

56 28.750 63.370 22172.630 676.561 0.437 n

57 29.000 63.620 22196.486 674.343 0.442
Y

58 29.250 63.870 22220.457 672.099 0.447

L 59 29.500 64.120 22244.542 669.854 0.452

60 29.750 64.370 22268.741 667.599 0.458
L

61 30.006 64.620 22293.055 665.359 0.463

4

m



- -- 	 .-	 --	 - 6 - - 16.250__,___._._.51:23$ -------14.316------- 3.71Z__.^.-_...19.854 -^------------------,..---- --- ----_...- -	 -- - - -	 -	 -	 _ _	 J

ti..
TABLE	 2.15.28 ROSKAM-FILLMAN METHOD

CONFIGURATION J	 (31	 PART 21 2) ----
SIZINGw

CMA = -1.000

ti ASPECT	 RATIO = 4.000 -	 -
TAPER RATIO = 0.500

^ #•kR^*.#!A##k##Rt*f!^##M*k4#ti!i #A AAMMt,tk#k#At111#!i#f*1Y##ttk#*#irA Rk

I LC SH BH CBARH SWEEPH

(FT) (SO.FT.) CFT)--
_

(FT) (DEG)w

_...._------• ----1---1-5 : non-_
•
--3^ .^3"r--- ^^ :^^ a ^ •-3 ^ tr3 ^•^i-8 : 4 7 z-	 --

2 15.250	 -- -- -- 49.33$ "- --	 14.048	 - -	 3.642 - --	 19.854
3 15.500 _51.615... 14.369	 -	 --3.725 -- -.	 19.854	 -	 ---

- - - -^- 3 5;75 -----50:722 ----74:230 _•.-3:68.9_-_-'19:85"4"-	 -	 -	 ---

5 16.0011 50.847 - ..._	 14.261	 -.._.. --- 3.697 .	- -	 19.854

w
- - - -. ^- ------ 7 --1 6 :500°---ST :667- 1 4:3?6-•----- -- 3: TZT "-19; 3 94-""`	 ----	 -	 ----

8 16. -15 0	 - -	 --52.0$1.._.._... _ ..	 1 4.433	 .. -3:742 --- --- 19.394 -._..

9 - --17.000-- -° 52:492.-__-_-_-14:490 - -7 57 -19.394-----	 -- - -	 ----.	 _.w
1 --N-----------• 1Q ---'[7:250 ---- 557" -3:774 -"'-19::
w	 11 17.500.	 ._... - 53.388 14.613 3.789...._._._ .	 19.394	 -	 -	 -	 -	 -

^, 12 _ _	 17.750-- _. --- 53.786-- - ----14.668	 -- - - --	 3.803 _-.__._ 79.394 "- --------	 -	 ---- -	 -

I.5 18.UUU '14.ifY 14./CI ].01! IY.]yes

` 
r

14 18.250- 54.574 14.775 3.831 - -	 19.394	 -	 --

15 18.500 54.935 14.824 3.843 19.394 ....	 -	 ----- - -	 -
"€ yr

-.._..._16 18.750----55.346'-------14.B79	 ---3. 858 -	 --- 19:394- .... --- _.	 ---- ..	 ----	 -

17 19.000 55.776 14.937 3.872 18.933

' 18 19.250 56.192 14.992 3.887 18.933` s w

'i
i9-.--14:500	 - ---56:556'- -- ----15 . 0 4 1	 --	 3.899 -	 -	 78.933 ---

20 19.750 56.941 15.092 3.913 1B.933

21 20.000 57.326 15.143 3.926 18.933

23 20.5110 58.099 15.245 3.952 18.933

1 m
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d

4
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-	 f

s 54	 28.250 69.958 16.728 4.337 18.008
4

-	 ------ 55 --- 28 -:500----70;339 -- --16.774
._ --_	

-4.349 -- 18.008''_---

56	 28.750 70.738 16.821 4.361 17.544

57	 29.000 71 _121 16.867 4.373 17.544

59	 29.50il	 - - - - 71.BB5 16.957- 4.396 17.544

60	 29.750-	 - -- 72.266 17.002 ...... _.	 -	
4.408 17.544

- -- s1—	 3 D•: 1709 _ 77-Q 4 7"	 : LSO--_'17:5 4 4	 ---- __

... w aA^	 ..
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TABLE 2.15.2C	 ROSKAM-FILLMAN METHOO

CONFIGURATION J	 (31	 PAX* 212)
------ IMIZATION VERTICAL-TAIL------ ----	 --- -- ---	 -- -- ..	 ___----- - -	 r

SI ZING .V
r.

CNB = 0.120

ASPECT	 RATIO = 1.000 L 140

TAPER RATIO = 0.500

. ;t;Rt;f;l•; ;;;;**,Y#*;kti k;;i•; *;f; ktr;i ks;i •i k*;R;**;;kkfiR i;4 AN**

I LC	 SV i1V CBARV	 SWEEPV

(FT)	
-...	

- (SO.FT.) (FT} (FT).
	 _	 . _-

(DEG)

5-.-0110`' " _` -f TT a 1 . 9 --1- 0  27--^ f . 2^^ --	 --- --d 9:183

' 2 15.250	 -	 117.577	 - -	 10.843 11.245 6 9. 183	 ---

'
3 15.500	

_...	
110.428 10.508 10.898'---	 -- 68.272..-----	 --. _	 ... _-_..---	 - ►

:.,
--.-------4--75:750__	 -l07:78E"."" rtQ:G78 __10-866-...-68:272

---------..-..._.._ .-----------__.----	 ----_--_-- -------

5 16.000.	
..	 _	 109.238-..- -^--	 12).452

. ._..10.839_--	 --.- 67.971--- ---- -

_.

---- ---- -_ -8- - 16.750
.......---- 

107:614	
._._

..----10:374 -	 -	 10.758 67.080

'	 - --9 -

-.
Ul

y 11 17.500	 106.244 10.307 .-10.689 66.203

'
12.. -17.750'- _.._ 105.658- -- 10.274 -- -	 70.660--.. _ 66.203 -- ---- -	 - -	 --	 ---------	 ---

ur

•	 .-	 ._.------.	 _13 -" -
18:2700------ 105":085--------10:251 ---10:b31 65:9i4-	 -------.	 - . ^_--	 ---------.._.__----..._	 _-----

%6o
14 18.250	 104.511 10.223 10.602	 - 65.626

}

15 18.500	 103.940 10.195 - 10.573 65.340

-16 - 18.750-----103.355--.

i
17 19.000	 102.780 10.138 10.514 65.054

18 19.250	 102.207 10.110 10.484 64.770 1p

-14---- ]'9.500	 101:633-	 -.' 10;081-- --- -'10.455--- -64:488

~ 20 119,750	 Oi.050 1	 50.0	 2 70.425 4	 4 8b	 8

21 20.000	 100.475 10.024 10.395 64.206 !.

-22_.__.- 20.250----99.901	 _ -__`9.995---- --10.365'---- 63.926

s.+ t®-
23 20.500	 99.318 9.966 10.335...._ 63.926

v o



24 20.750 98.743 9.937 10.305 63.647

25 - 21 .000 98.170 9.908 10.275 63.369

26 21.250 97.596 9.879 10.245 63.092

7 21.500 97.015 9.850 10.214 63.092

21 .750 96.441 9.820 10.184 62.816

29 22.000 95.868 9.791 10.154 62.541

30 22.250 95.289 9.762 10.123 62.541

31 22.500 62.26794.716 9.732 10.093

32 22.750 94.144 9.703 10.062 61.994

33 23.000 93.567 9.673 10.031	 -- 61.994_4

---`34 ---23:250-------92:995 1 D.- O 721

35	 23.500	 92.424 9.614 9.970 61.450

36	 23.750	 -91.849 9.584 0.90 61.451)-------'-'

3 7-74-.- 0	 1-.77 8--9-. 5 5 80'

38	 24.250.. 	 90 .70 9 9.524 9.877------ 6G.910 -- --- ---

39	 -	 24.500 66.916-'
bd

9A14'--60.641_ -
CrN

41 25.000 -88.998 9.434 9.783 60.373

42 25.250 88.426 9.404 9.'7 52 60.373

3 -25.500 --8 1.-.a50---'--9 -.-37 1---9.720--- -60-. 1 b5

44 25.750 87.292 9.343 9.689 59.838 

45 26.000 86.722 9.312 9.657 59.838

-46--

47 26.500 85.592 9.252 9.594 59.307

48 26.750 85.024 9.221 9.562 59.307

50 27.250 83.896 9.160 9.499 58.777

51 27.500 83.330 9.129 9.467 58.777
-------	 ---

2 7.750----- 8 27. . 7 6 -9. 0 9 8 -----9.- 4 3 5 5 8-.5 13

53 28.000 82.203 9.067 9.402 58.513

vt
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TABLE 2 . 15.20 ROSKAFI- FILLMAN	 MET1100 p	 ;
CONFIGURATION	 J	 (31	 PAX&	 212) a

STATIC '-MARGIN LOt4PONENTS ----- 	-	 ---	 --- -	 -----	 --- ___-----'---.--	 !

CMA o	 -1.000 i.

t!#M RRR^i rr Mkt# ###!#f##*RRliit##YRkkk # t#A lwtYR##!## * A!***A##t###.1 Ak

111

^i^

_-_ _---------
I__.__---LC--- XB4[	 XS>I•-----XBtJO---x 13H_.-'.....YtBA-""7C'3CG_--_-__ 'i

1 15.000 0.230 -0.023	 0.207	 3.771	 0.333	 0.148

2 15.250 0.230 -0.023	 0.207	 3.821	 0.388	 0.205

_-_-^_3^__T5:5D0-0.230 =X0'23 ` ' 0.207- 3;E58--0:398-0":2i6-

r . . 4	 -_ 15.750- 0.230 -=0.023	 0.207	 -3.894' - 0.396	 '0.214	 --	 - -- _	 -- ---'_-	 --...	 _ -------_--.._-_

v 5 16.000 0.230 - -0.023	 0.207 .- 3.930	 0.399	 0.217

--6_ -1-6:250--0:230 = 13-.023--0.2a7 7-3 	 -	 _	 -	 ---- -	 ----- ------- -- ---
^. of

i 7 16.500" 0.230 -0.023	 0.207	 3.999	 0.406 - 0.224
_.	 8	 _ 76.75{] ._ 0:230	 -0.023 -- 0.207	 4.035	 0.410--0:228a.

T.DDO-0-230" =0:1723 --O.Z07--'4 :07T ----D: ^ 13`0-:232--------'_---

10 17.250 0.230' - -0 -.024 - 	0.206 -4-108	 0.417	 0.236" -	 -	 -
lw

v	 tb 11 . 17.500 0.230 -0.024 -- 0.206- 4.144	 0.421_-0.240 ----	 - - - - - -	 - - -	 - ------ -	 4w

--^ ----T2--'1'7.750-0:T3I1 ='^^24-D.-206--^^ i81- 0=42-5-D:-243_	 -___	 _ ------	 ----....----	 _..------

.:
'

13 18.000 0.230	 -0.024	 0.206	 4.217	 D.4 28 - 0.247	 -
I

' 14 18.250 - 0.230 - -0.024 -- 0.206	 4.253	 0.432-0.251

15 -78:500 --0:230-= 0.024-0:206-- 4 -.290-"0'.4-36-D:235------

16 16.750 0.230 -0.024	 0.206	 4.326	 0.440	 0.259
i
t' 17 19.000 0,.230	 -0.025	 0.205	 4.358	 0.443	 0.263

--18- . 19.250 0:25u--0.025---0.205__ . 4.395 -0.447

19 19.500 0.230 -0.025	 0.205	 4.431	 0.451	 0.271

20 19.750 0.230 -0.025	 0.205	 4.467	 0.455	 0.275

' 21__. - 20.000 - ' -. 0 .. -
230 - -Q:D2S 	 0.205--4'.504	 0.459	 0.279

22 20.250 0.230 -0.025	 0.205	 4.540	 0.463	 0.283

23 20.500 0.230 -0.025	 0.205	 4.576	 0.467	 0.287_

= 0:026-0:204""-4:613 _-0.471--0.291--- --- - 	 ---- - --	 --- -	 - -	 _	 _ ._

J.230 -0.026	 0.204	 4.649	 0.475	0.295(^. 25 21.000

- i •,



4- 26 21.250	 0.230 -0.026 0.204 4.686 0.479 0.299 aG}

T --- 27---- 21300----0.230 -0.026 0.204 --.. 4.722 -- 0.483 0.303	 -
t

28 21.750	 0.230	 -0.026 0.204 4.758 0.487 0.307

' 29 22.000	 0.230	 0.026 0.204 4.790 0.491 0.312
-1

--22_Z50 --0.230 --0-.026 --- 0.204---'4.827 -- 0.496--0-.-3-16--

31 22.500	 0.230 -0.027 0.203 4.863 0.500 0.320

. ` 32 22.750	 0.230 -0.027 0.203 4.899 0.504 0.325

34 23.250	 0.230 -0.027 0.203 4.972 0.513 0.333

^. -- 35 -23_500	 4.230 --0.027__
.

0.203 5.008 0.5170.338
------.__---

..__ --__ --
33__

._.
.3_750._ 0 :230 =-0;627--- r^:^0^_-5..:045_..0.521 ---0:-342

37 24.000	 0.230 -D.OZ7 0.203 5.081 0.526 0.347

38 24.250	 0.230 -0.028 0.202 5.117 0.530 -0.351__

_24:50Q"-0':230-	0:028- 0:202 5.151,_

--40 -- 24.750 - 0.230 -0.028 0.202 5.190 0.539 0.360

41 25.000	 0.230 = 0.028 0.202 5.222._'0.543- '- 0.365	
_

ro

43 25.500	 0.230-0.028 0.202 5.294 0.5`2 0.374

44 25,750-	 0.230 -0_028 0.202 5:331 0.557 -0.379--____

- -	 45 -..._ Zb:Q00-0.230-=-0:029--- 0:201--5-. 367---p.56Z--â :383----._..__-
_._.....^__^.__-.-_ ^

46 26.250	 0.230 -0.029 0.201 5.403 0.566_--0.388----

47 26.500	 0.230 -0.029 0.201 5.440 0.571 0.393

48 - --26 -:750--0.230 -= 0:D29 : 0.201 5.476 â.576 " D.398	 - - _ - - --	 - --------- -- --- --- -- -.._..------ -

4
49 27.000	 0.230 -0.029 0.201 5.512 0.580 0.402

i 50 27,250	 0.230 -0.029 0.201 5.549 0.585 0.407 i

53 - .._- 27.500 - 0.230--0.029--- 0.207-- 5.585 0.59[T-D:412

52 27.750	 0.230 -0.030 0.200 5.621 0.595 0.417

53 28.000	 0.230 -0.030 0.200 5.658 0.600 0.422
_-....

-	 54 - -	 28,250-- 0.230-0.0"30 - '0: 200 -- 5".b94 - - 0.605 - "4.427^	 -	 - y-:
r,

55 28.500	 0.230	 -0.030 0.200 5.730 0 .6 10 0.432

4

_	 r



i

r
S. 56 28.750 0.230 -0.030 0.200	 5.762 0.614	 0.437

ST----29.000__..0...230"' -0:030 4.200 - 5.79e - 0:6 19-x.442

58 29.250 0.230 -0.030 0.200	 5.835 0.624	 0.447

59 29.500 0.23D -0.031 0.199	 5.871 0.630	 0.452
o

L

--- 60 --- 29.758 - .. 0.230 -= 0:031 - 0.199" -- 5.4D7- 0.635`0.458----

61 30.000 0.230 -0.031 0.199	 5.944 0.640	 0.463 -

I

v ^ '
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^.	 to ♦o►

W

l

_



A	 r__..._..0	 C	 z..1
	

r^^	
^"1

TABLE 2.15.3A ROSKAM-FILLMAN METHOD
CONFIGURATION	 J	 (31	 PAXP, 212) -
SENS I TIVITY	 OF	 WETTED	 AREA ---- -	 -- -	 --	 -	 ---_	 _ _---.---	 f

TO TAIL	 CONE	 LENGTH n wJ	 '

irli!liiRR k!#+i+ltlk+***li+kiikk #k!!*!!+#!kl tk kk ki #+R lk k+kR*R# +!+  .
:i

iJ
I LC FUSELAGE	 HORII VERT TOTAL

tFT) [SD. FT.)	 (SQ.FT.) -- (SQ.
_

FT.) ( SO. FT, y	----- »	 ---

1 15.000 1169.956	 69.834 238.400 -	 1478.190

i 2 15.250 1175.871	 100.344 239.129 1515.343

i
'i

Off-TI BT TB 67-- DV. -9? G ^ + : $^--^ 5^ 1 : 3 5 i j

4 15.750 1187.702	 102.955 223.282 1513.939
...5	

-  16.000 -1193.617------103.413	 -- -" --222,95H ------ 1519.198 ^ !
6--1b.250-- '11 -99;5.33	 1'OC-208-- 22I-A69- 1524':869

€
7	

-
16.500 1205.4 48	 105.081 219.96 7 1530.496 - - ------ - -- --	 _

8 -16.750 1211,364	 105.923 218.865 1536.152

10 17.250 -	 1223.195	 107.746 217.239 - 1548.180

» 11	 -- _-	 77.500 1224: 110- -	 --- 708:561 ----- 216.078 '--1553.770 ------'
T 

--------- --

^-. "-"^` 1 Z 1235:^2d-	 ^i09; 340--`21 4:897-1559:3tl2--1T:75tl--

13 18.000 1240.941	 110.189 213.721 1564,851

14 18.250 1246.857	 110.992 212.555 -.{1570.404_

16 18.750 1258.688	 112.562 210.203---- 1581.453

17 19.000 1264.603	 113.438 209.035 1587.076 J

Je

19 19.500 1276.434	 115.023 206.701 1598.158

20 19.750 1282.350	 115.807 205.515 1603.671

. _--- 2 TZ0:000-"""- 1288.265 ----"- 11 6.590 - ---- 204:346"- 1609.207

22 20.250 1294.181	 117.377 203.178 1614.736

f	 ^, 23 20.500 1300.096	 118.162 201.993 1620.251

24	 - 20.750---1306.012-`	 118.943 -- 200.824 -- 1625:778"

25 21.000 1311.927	 119.727 199.655 1631.312

^-	 --t	 : -	 P-,I	 TT• n..;. ,
II,

t=sr•	 't



1- 1

^^	 L 26 21.250 131 7.842 120.511 198.492 1636.845
R

27 21.500 1323.758 - 121 .294 -197.309-. - 1642.361__

28 21 .75J 1329.673 122.070 196.142 1647.886

29 22.000 1335,589 122.885 194.976 1653.450

30 _ -_	 22,250__-1343:504______123.665 --- ----193.800

31 22.500 1347,420 124.440 192.634 1664.495	 -
i

32 22.750 1353.335 125,217 191.471 1670.023

- 33 23.000 - --	 1359.257

34 23.250 -1365.166 126.767 189.134 1681.068

35 23.500 1377.082 127,543 187.972 1686.598

-__ -^. _,.-- 36-----23;75Q-"""-137b-99T- 128;374 786:802----•1692:778._._-.-
	 __-._^- -_...----...----- ..___-_	 .---_ _ .	 ------ -.--

y

37 - 24:000 1382.913 129.093 185.642 1697.647	 -	 -

38 24 .2 50 1388.828- 129.866 184.483 _____.7703.178

'
39 - --' " 24 -:509 """- 7394:7-44---I

40 ----24.750 -- --1400.659 -	 131.411 182.159 --	 3714.228	 --	 -'	 - -	 -._-----_	 -"-

41 25.000 --1406.575 - 132.220__
-

ed

' - 4 2 -	 _ 25.250'-1412:490"
.-

132:948 -_ `179:BL7 --E725:329 ---	 -	 -	 -- --	 -	 _

43 25.500 1418.406 133.770 178.687" 1730.862

•^ 44 25.750 1424.321 134.543 177.535 1736.399

-^ -	 -	 --. 45	
_
..____.. 26.000 " -- -1430:237 ---__ 135.317 -- --- 776:376""`__'1747-.930-----'------------^_

1

46 26.250 1436.1 52 136.088 175.225 -"1747.465 {

s^ 47 26.500 -	 1442.068 136.862 174.076 1753.006	 -

:.
- --	 - 48	 - 26.75(1----1 447.983-- --t37.837-- ---_172:92t-----1758:54"1----------._-- ---'-	 -------	 --^	 ""-	 --	 -	 ---- _	 -	 -	 --	 - -	 .__._-	 .

49 27.000 1453.899 138.410 171,774 1764.082

SD 27.250 1459.814 139.184 170.629 1769.627 J

1	

_...._
51	 - - 27.500 -- 1465.729 139.960 -169:477 1775.166

' ' `r 52 27,750 1471.645 140.732 168.333 1780.710

53 28.000 1477.560 141.506 167.185 1786.252

-.,	 -..---------	 - -._.._54--µ__- 28
-.250---1 4.83.4- 76 ---147.280 - - 165.043 -- 1791.749

t

55 28.500 1489.391 343.055 764,943 1797.350 ;-

F es.. . ' 	 ..	 ...	 _ _.	 - ,	 .....	 .	 ..	 ........._.. -	 ..	 ..	 ..._...	 -.-...	 ...,	 ._..	 ,.. .._..	 ....	 _..	 .	 ....	 ........:,.	 _.	 ..-..	 ..._.	 ^_	 _



_ `^	 ti7a':^`.l	 4. ^_	 ^w_,	 ]'	 '	 1	 k 	 i`	 ^	 _,-- -. c -[	 .	 -	 r t	 .	 9 r	 =	 F •	 - e	 r  a	 :	 -	 ^'

56 28.750 1495.307 143.866 163.759 1802.932

f

---57 - ' - 4.000
..

1501:222..-	 - 144.645 -- ---162.621	
—

..1808.488	 - -	 —	 -	 — --	 — --	 -'	 -	 -... -	 -	 --	 --
kv	

..

58 29.250 1507.138 145.422 161.484 1814.044'

59 29.500 1513.053 146.199 160.343 1819.595

f

(P)'I

6s3 29.750LL -1518:969	 -	 - 146.975 — 154:269- 1825.152

61 30.000 1524.884 147.753 158.070 1830.707 _-

` M i

y J

-

Ln ^I

y

t

C
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TABLE 2.15.33	 ROSKAM-FILLMAN METHOD
C011FIGURATION	 d	 (31	 PAX * 	212) -	 - ---
SENSITIVITY	 OF	 ZERO-LIFT	

_..,	 -	 -	 -	 -	 - ..	 --	 ----	 - ----	 ---..- ---" --- - !

DRAG	 TO	 TAIL	 CONE	 LENGTH	 -
u

ORIGINAL 	 CDO13HV	 q .00437

A R k w R ; k ; iF ; A A i ; ! ! t ; ; i ; ; f R k . A ; R k A ; ; k ; ; ; ; ; ; M ; ; • * ; i ! ; t i ; ! ; A ! ! k t ^ R ; ; A * ^i

I LC	 LC/G	 CDOOHV
[FT)	

-

y 1 15.000	 1.856	 0.00894

-- - -- Z 5-.-? 50	 -1 ;B 87	 II.009 T1—	
_	 —	 --	 - - ----- -- -- - --	 - ----- -

.A
3... 15.500	 -	 t .918	

.._..	
0.00909-

4	 .. 15.750	 1.949	 0.00909

-""-_ - -------5-- 'f6'.000-	-7-.98II---0.00910--	 - _.. ---- ---- Y - -----	 -- -	 _	 __ -	 - ----

^b

6 15.250.
	

2.011	 0.00911-

7	 _.... . 
1:. _ 500 .-, -	 2 .042	 0.0091 2

--	 - 8-- -- 1fi^75 f)	 —2.073-	 0;00913--------. ^w
9 17.000	

-_- -.	
.__2.1d4	 -... -- 0:0091 5

_ 10	 - 17:250 -	 - - -2.1 3 5 -- — 0 :00917	 -	 --	 ----- — .-.. ---	 _ ,

-

J
12 17.750	 2.197	 0.00919	 -	 ----	 - -

13 18.000	 -	 2.228	 -0.00921u
.. 14	 -- 18:250 "_	 00923-	 -----	 ----^__	 -	 - ---

d
ti

15 18.500	 2.290	 0.00924	 - --

:. 16 18.750.	 2.321	 0.00926	 - a;

17	 - 19.000 -- -- 2.351-77.00928------ -- ---- --
J

18 19.250	 2.382	 0.00930

19 19.500	 2.413	 0.00932

20	 _ _19.750

21 20.000	 2.475	 0.00935

22 20.25U	 2.506	 0.00937
v

_-	 23---- 20:500	 2.537----0.00939 	 --------- --___^	 - --	 -	 _.. -
,J

24 20.750	 2.568	 0.00941
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APPZDIN C FUSELAM SHAPE SIMMATION PROGRAM,

t, FUSE

ry This appendix docturents the program FUSE and how to use it.

'y Appendix C1 will describe the preparation of input data for both

the simulation and design modes of the program. 	 Default values

for the design mode are also documented in this section. 	 Appendix

C2 will explain how the program was operated on the Honeywell

65/60 timesharing system and about the different operation options

that were available.	 Appendix C3 provides a copy of the program

listing.

- E
1
5

Cl	 Preparation of Input Data

FUSE may be operated in either of two modes--the simulation

mode or the design mode.	 In the simulation mode input data are
i

read from a separate disc file set up like a card data deck

(Logical unit no. 03). 	 In the design mode data are input by

means of an interactive question and answer sequence.	 Each of

". these ►Methods will be dealt with in turn. 	 To aid in understanding

the input computer acronyms, Table C-1 has been prepared.

4

^n

1

_rte

-.,	 n=1

9

 -
	 5

C.1

f	 ^^



Table C-1 FUSE,  Input Acronyms

Acronym Variable Description Units

H H Cabin height ft

LHfl zB/D Fuselage fineness ratio

LC z Tail cone length ft

LCD Qc/D Tail cone fineness ratio

LLN ^N-11^'N2 Ratio of nose cone lengths

LNTI
QN1 Cone N1 length ft

LN2
"N2 Cone N2 length ft

LU Q.a Cabin (utility) length ft

NFORX . - Array containing number
of lengthwise divisions
per fuselage section

NFORX(1) - Number of lengthwise
divisions for the nose

NFORX(2) - Number of lengthwise
divisions for the cabin

NFbRX(3) -- Number of lengthwise
divisions for the tail cone

PIFUS -- Number of fuselage sections
to be simulated; < 3

NRADX - Number of radial divisions

PH11 Oil Cone Nl taper shape param-
eter (Side view)



i

i

Table C-1	 FUSE Input Acronyms (Cont. 'd) ..'

Acronym Variable Description	 Units

LD PH12 X12 Cone N2 taper shape param-
eter (Side view)

^ PFM2 X22 Cone N2 bluntness shape
parameter (Side view) =:

t PM Cone NI taper shape param-
eter (Top view)

PHY2 Y2 Cone N1 bluntness shape
° parameter (Top view)

PHU ^C1 Tail cone taper shape }
parameter

PHC2 C2 Tail cone bluntness shape
parameter

. QC1 qCl Coefficient of (x') for
the cone offset equation

° QC2 qC2 Coefficient of (x') 2 for
the tail cone offset

-• equation

Q qNl Coefficient of x for the
cone Nl offset equation

- QN2 q Coefficient of x 2 for the
cone Nl offset equation

RBI rbl Cone NI round-off radius,

^-a

bottom

RB2 rb2 Cone N92 round-off radius,
bottom

i3s+

RBC rbc Cabin round-off radius,
s

i

bottom

' RBT rbt Tail roihkd-off radius, s
M bottom



'	 I

Table C-1 FUSE Input Acronyms (Cont d)
i

Acronym Variable Description Units

RT1 rt1 Cone N1 round-off radius,
top

RT2 rt2 Cone N2 round--off radius,
top ']

RTC rtc Cabin round-off radius, top

RTT rtt Tail round-off radius, top

`Y w Cabin width ft
t

YN1 y Half width of Cone N1 at
X = -N1

ZNO O Vertical offset of Cone Nl
at x = 0 ft

ZN1 Z Half height of Cone N1 at
X	

"N1 ft

2ZZC oB Tail cone offset
H

ZZN 22^11/H Ratio of nose cone heights



Cl.l Simulation Mode Input Data

As was stated, in the simulation mode data are read from a

disc file set up like a data card deck. In other words, each line

of the file represents a different data card. The file must be

sequential. Also only one simulation data deck may be run at

uJ	 a time. Table C-2 provides a guide for the "card" formats.

Most of the input data required for FUM are relatively

simple to derive from a drawing of the fuselage desired. The 	 q

nose, however, and the offset cones in general can sometimes

}
present difficulties. In checking out FUSE several methods

for determining the shape parameters for the nose were tried.

The method that will be described in the following paragraphs

consistently produced the best results.
i

i

Figures C-l. and C-2 provide the top, side, and front views

for the nose of the Crates Learjet 35/36. These views will be

used to determiTe the nose shape input parameters for FUSE. :s

The length of the nose, Z.x, is chosen to extend to the

point where the fuselage cabin cross--section can best be said

to becorre constant. Usually this will occur just aft of the

crew compartment. die elliptical cones are modelled such that

the planform curves are perpendicular to the cross-sectional

plane at the base of nose section {x = Z^:rl }. This should also

be considered when the nose section length is chosE :n. 'Ehe

length of Cone N2gt	 , LM , is determined by fairing the windshield

curve down to the fuselage centerline as shown in Figure C-1. 	 s

c.5



Table C-2 Simulation Mode Input Data

INPUT CARD NO. 1 - (513)
NFUS	 NFORX	 NRADX

1	 2	 3

1	 4	 7	 10	 13



Table C-2 (Continued)

INPUT CARD NO. 5 - (7FI0. 0)
PHYl	 PHY2

I	 II

INPUT CARD NO. 6 - (7FI010)
YNI	 ZNI	 ZNO	 QN1	 QN2	 QCl	 QC2

I	 11	 21	 31	 41	 51

INPUT CARD NO. 7 - (7FI0. 0)
RTI	 RBI	 RT2	 RB2

1	 11	 21	 31

INPUT CARD NO. 8 - (7FI0.0)
RTC	 RBC	 RTT	 RBT

I	 --I	 -	 -	 I -	I	 I
1	 11	 21	 31

i
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NOTE: SCALE: 1/40

NOSE SHAPE PARAMETERS (SIDE VIEW)

INl -	 10.58 ft. z0 -	 --1.83 +	 .195x -- ;. 00834x2

9 =	 5.63 ft. 011 =	 0.651

H 5.48 ft. X 21 =	 0.825

zNO
= - 1.83 ft.

.012
=	 0.598

zN1 ..	 1.90	 ft. X22 =	 0.749

I
:^

7p	 `.' t
1

,y

CALC^. L7, W .	 MAit REVISED DATE Figure C-1 Gates Learjet 35/36
CHECK	 Nose Shape Input Parameters
APPD	 (Side View) .
APPO	

PAGE30	 UNIVERSITY OF KANSAS
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The values for the Cone NZ shape parameters, 4 and ¢22,

are easily calculated by constructing the box and diagonals of
LD

Figure A--4 around the windshield cone. This has been accomplished

'	 in Figure G1. The values for these shape parameters are also 	 i
i,

presented in Figure C--1.Oil	 -.

As Cone N1 is deformed and offset, the procedure becomes

slightly more difficult. The first step is to fair the curve

of the upper surface back to the base of the nose section.

Again, in accomplishi-ng this it should be remembered that the 	 i

planform curves must be perpendicular to the cross-sectional

plane at the base of the nose section. The centerline of the

deformed cone is then constructed. By applying a parabolic

curve fit routine the equation for z  is established. In this

case a.-parabolic  regression analysis was performed using a curve

fit routine in the BASIC language. A listing of this program

is provided in Appendix D. All offsets are referenced to the

.	 centerline of the fuselage.

The half-height of Cone N1, zN1 , measured as shown in

Figure C-1. This will always be a positive value.

The shape parameters, X11 andX21
, cannot be properly

determined from the deformed cone. Instead the cone is projected
4^

.0	
onto a straightened centerline of length,sr 	 as shown. The

shape parameters are then calculated by the rectangle and diag-



Figure C-2 pictures the top and front views of the nose

section.	 The front view, is used to determine what the maximum

width of Cone 1n at the nose section base must be. 	 To avoid

discontinuities at the base of the nose section, y,,,l	 should be

uq
no greater than the y--value of the cabin a distance ZNl above

the bottom of the cabin.	 This has been demonstrated in Figure

UL3 C-2.	 The shape parameters 0 y and 0y2 are then calculated in

the usual. manner.

The cabin input parameters are relatively straightforward

and should be easily determined. 	 The length of the cabin is

z  - or that part of the fuselage which n%y be simulated by a

., cylinder.	 The width of the cabin. is W at.d the height is H.

The tail cone shape parameters should be couputed in a manner

similar to that of the nose cones. 	 The only differences are

that the taper shape parameter, ^1C, is calculated as the average

of the top and side view taper shape parameters, and that the

,. bluntness shape parameter, ^2C , is the average of the top and

-° side view bluntness shape parameters.

a ' Table C-3 below provides a listing of the input data file

s,
for the Gates-Learjet 35/36.

Table C-3	 Listing of the Data File for the

^p

Gates-Learjet 35/36
^n

3	 7	 7	 15	 10
GATES-LEARJET 35/36 --- 590 P^',IIFLS
1E.55	 5.63	 10.34,	 25.33	 5.4c	 S-413
O— C-51	 0 • a25	 • 5900.77?0.77?
U.6LI4	 .e0 5

2.61	 1.96	 -1.9A	 x.195	 -^•d^J83r^	 0.009- 17 	 1^.g1^238_
1•	 1-	 I•	 I-

i
4
	 C. 11



C1.2 Desip 42ode Input Data

Design Mode data are input by an interactive question and

answer sequence. The most effective way to describe this procedure

is to follow the procedure for an example design. Such an example

Nill be provided here. In this example underlined statements are

those typed by the operator. The symbol "+ " will be used to

indicate a carriage return. Note that all of the following

questions and answers documented here occur after the program

has been compiled and execution begun.

DESIGN OR SIMULATION  MODE?
ENTER D OR S
D ^

PRINT DIMENSION-S?  Y FOR YES • N FOR NO
r 4,

PRINT FUSELAGE COORDINATE? Y OR M

PRINT TOTAL WETTED AREA? Y OR N

2RIMT PANEL PREPS AND PATIOS? Y OR N

PLOT FUSELAGE? Y OR N
=Li
BU I MESS .SET 13R 

PISTON 
COMMUTER?

ENTER J OR P

The questions about printing data and plotting the fuselage

are asked for either the design or simulation mode. They are

included here for the sake of coninuity but will be discussed in

detail in Appendix C2. The question as to whether a jet or piston

aircraft is to be designed determines which default values are

^'	 to be used when needed. These values will be discussed-later.
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NO-	 OF RA El AL EIV. FAC*I	 ILF?

ELL.I'•''"I CAL	 0?	 C j ^FG17T., f,_'	 C r_ ;3C C , C T7(-r- j, -C?	 tr	 nC	 -

rO^' r r-11	 Rot r;r-flFF ?r-., r_? ::	 -0	 - 0^^cTT^r^

a C^:lF N2	 1?flt.°']F-07F'F r r.1	 70!^.vBO"IOM

F0L 1Vr— OFF ?At::I:	 "'0?,s 70770i'l

If the question, "ELLIPTICAL OR CIRCMAR CROSS-=ION?",

had been answered with yes, FUSE would have assumed that all

round-off radii were equal to 1.0.
I

• SF.^!T WI DTHj !^:_ "LE' WIDTH

' DESIRED INS-I DF CAM,, 11FI'?H 7 ?	 (l.".)
=70 ^ r:

MSELAGF V!V—?- =	 6-92 .FT	 ŝ

- SHOULD H  ? Y 0? 1

1NPUT H ? Y	 07 V	
^lr ^i^^

?:VSZLAGE HrI M4T =	 c• L" T" f

u ° INS!DF [;ABIT" B=FIS?7 =	 70.00	 IN.	
r

i

If the operator had decided that-	 should equal W, then the

desired inside cabin height s.s over-ridden. 	 In this case the inside

J

C.13
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cabin height is computed according to the McDonnell Douglas method

documented in Chapter 2, and is output. Due to a progranm ng

oversight, if H is chosen to be input, the desired aside cabin

height is output although this may no longe- be valid.

y	v=^nnC C0m?A'!''3'!e RJT? Y OF P°

=Y

r..^7^ AwI t,-H^I,"'F?I2jPx-22 cYI	 I; 1T12

4'7

	

h	 For this example a baggage compartment was chosen to be

included. The baggage compartment is sized according to Section

2.4. The shape parameters were chosen to be default values in the

example above. The use of commas alone implies values of zero

for each parameter. A value of zero tells the program to select

the appropriate default value. The parameters above are all

	

Ar	 defined in Table C--1.

With the data as input above the program will determine the

	

m	
aircraft size and compute the node coordinates.

The default values that have been mentioned are tabulated

	

A	 in Table C-4. These values have no statistical value. They were

r
chosen during the program ing stage rather arbitrarily. At that

	

1J	 time it was felt that they did however generate designs which

were representative of each of these two airplane types.



Jet Piston

2.5 2.5

.75 .75

zo 
I

zo1	 -,^3C.2 N1
x

.65 .65

.825 .85

.60 .60

.75 •725

.64 .65

.825 .85

6.0 6.0

4.0 3.5

.75 .75

.60 .60

.775	 .80

C.1.5

Table C-4 FUSE Default Values

Variable

LLN

ZNO

l:

OH

v^
021

[s b

r`

i X22

:.r

o yl

^Y2

e LBi}

LCD

.^
ZZC

^ - Ole

-
ib b

02c

64



C3 Program Operation

This program was written for the Honeywell 66/60 timesharing

system. Consequently, many of the corr=ds that will be described

here will not be the same or perhaps even applicable on other

systems. An attempt will be made to explain the reasons for each

so that it will be possible for the reader to evaluate his own	 :I

application.

C3.1 Program Initialization

As FUSE is written to be used with the Tektronix PLOT 10
	 a

graphics software package, and because it is sometimes necessary

to read from, or write to, other disc files, it is necessary to

link the program file with several others before compiling. 	
a

This is accomplished as described in the following paragraphs.

Three files were required to operate the PLOT 10 package.

The names for these on the University of Kansas system were

ADEOLIT, ADEIN, and OBJECT. To be linked with FUSE these files

had to be placed on the Available File Table (AFT) for the KU--FRL

project computer account. Each project account is identified by

what is referred to as a Project Identifier (PI). To place a

file in the AFT three things must be given: the Plunder which
is

the file is stored; the catalog name (if any) under which the

file is stored; and the filename. Then the comd is:
c'
i
 GET PI/CATALOG/FILENAME +



C^

i

i
s	 j^

when it is stored in the AFT, then the command becomes:

GET PI/CATALOG/FILENAME"L" t

For the case of FUSE this might be accomplished as:

SYSTEM? GET 7684WALLACE/PLOT10/ADEOUT t

SYSTEM? GET 7684WALLACE/PLOT10/ADEIN t

SYSTEM? GET 7684WALLACE/PLOT10/OBJECT t

SYSTEM? GET 7102DESIGN/LEARJET"03" t

SYST&M? GET 7102DESIGN/LEARCOORD"07" t

This would gather the PLOT10 files, and L EARJE T' and LEARCCORD

onto the AFT. LEARJET would he assigned the logical unit number "03"

(to be read from) and IEAROOORD, the logical unit number "07" (to be

written to).

To load FUSE onto the AFT for use as a FORTRAN program the

coa nand was:

SYSTEM? FORTRAN t

OLD FILE OR NEW - OLD FUSE t

And to compile and execute:

RUNH	 ADEOUT; ADEIN; OBJECT +

FUSE, in this case, is referred to as the star-level file;

hence the * after the end RUNH. T EARM and LEARCOORD are input/

output files to be referred to by the program and therefore are not

needed in the run command. Having completed these commands, the

program is compiled and executed.

C.17

i'.

i

is

l

e^

r^



1

a	

..	 1 f

.l

t

C2.2 Output Options

There are six output options available for both the design

and simulation modes:

1) Print Dimensions

2) Print Coordinates

3) Print Total 'Vetted Area

4) Print Panel Areas and Ratios

5) Plot Fuselage

6) File Data

if dimensions are output, the result will appear either as

in Table C--5a or as in Table C-5b, depending on whether the design

or simulation mode is selected. Note that at the end of each

printout, the operator is asked whether the data were satisfactory.

If not, he is given the choice of resubmitting his input or

texsninating execution. When the dimensions are satisfactory, he

may choose to file data.

If coordinates are output, the result will appear as in

Table C-6. The Z and J value locate the node longitudinally

and radially, respectively; and the X, Y, and Z values provide

the coordinates in feet.

Total wetted area of the fuselage appears as shown below:

I

^r

{

TOTAL 41ETTED AREA =	 t ^ ^ . 5C

♦ o^^ *s ♦ s•aos^^► soa► +ao•r

C.18
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a

Panel areas and ratios are output as shown in Table G-7.

In this case, the I and J values locate the panels longitudinally

and radially. The area of the panel is in ft z . RATIO J is the

t	 ratio of the area of that panel to the (I,J-1) panel, and RATIO I

is the ratio of the area of that panel to the (I-1,J) panel.

If a plot is requested, the fuselage is plotted on the graphics

terminal similarly to the plots presented in Figures 2.43 and 2.44.

The major difference is that the actual aircraft fuselage lines

are not superimposed.

If it is requested that data be filed, the fuselage coordinates
i

are filed in a manner cormatible with the input data formats of the

NCSU BODY program of Reference 20.



v
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' Able C-5a Dimension Printout for Design Mode
Y,

.FUM PP.JGrA._; nOE	 -- t; a

q

PA.DIAL ' (	 r, LF F79FI A z.F). r G^

*_ EtIGTH?•1I `= F

Apt; 7

CABIU i2
"PAZ L t' a.

CASIU CONFFGWATION

! liC. OF ?A717- ?GFFr %?S
^. S FATg P FP 70',

No.	 OF 71 0 7 75 9

1 *sr^^ r COn. r	 _	
I

- ^^

L 7r !G*7% I ^ . c1 E
'T GL F F71r_ c; q AS

I	 i C'. F•,^f'

PI-^^ I	 -	 - r 0 =r

NOSE COME N2
LENGTH 6.26

-	 SHAPE P ?nMFT`v!-

I 2
rP•F

0 . 6	 r,

L `'PiG"IF TP. I7
.... H Fl GHT 5.44

5

TrT i TU F 	 G; r, J,.

u. 7AIL COMF -

LENGTH
SF APr 1'f^^rns rrr'^ c

w:
L7F.'('^ T' .^^fr

CATA CA T I S'"t WOPY? V 0

n
C. 20
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Table C--5b Dimension Printout for Simulation Mode

• "USE WOG Pal >. WE

r-I r.i CI ONE

..	
Fc VIrgV IVALF FPSEL.!-U )	 it
s EDl STSV I S F

72WASE. UAW=
NOW COME mi

FAQ HFIGHT

1	 1 ^; CTH

ci PF 7r FAMFTSF
nr--1I

Ii-I
pity I
PGYC

r'^S E cW F r n
L F?: r_TH

PH 12
L`S.f^^

C Z I is

H FI CHT

i

j

to - su
I.: 9 0
2.61

0.61

u•E^-4

5.63

0-749

10 .34
5.48

'	 S • 4'3

..• TA I L CON E
L ENGTH 2 G b:,:

' SHAPF ^ G °Iz^i ET Ccc d
i

. OF C2 ' 0.773

ciyt'rr•rt^^aF	 r^+, r• ^7	 ^^	 rev	 ra ^

NI

j
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Table G7 sample of Panel Area and ratio Output

f I ?j

AFEA

(I ^ J)
APER

_	 (' I ,.J) __.

RPER

(I ,•J:)

RREA

(I 9,J) 
APES

RRTIOJ FPRTIn.J PIRTISJ RATIOJ RMTI©J
RRTIOI RATI13I RRTIDI RATIDI RAT 1131

-------------------------------------------------------------

i9	 1 29	 1 39	 1 4,	 1 5 s	 1
-, ki. 5 1 2 E IIki kk . 1 kl	 E 1i 1 Ck.1SEE fk1 ki . 1 	 OE C11 0,^'	 :;:E 0 1

0.10E 01 0.1OE 01 CI. 1CIE 01 0.10E Ck1 0.10E G1
0.10E 01 0.21E 01 {.1'.3E 01 0.1'2E 01 0.-1iE 01

. 1 9	 2 2, 2 ._,,	 2 4s 2 5, 2
L, 0.5377E 00 0.112E 01 0.147E 01 0.1.75E 01 0.199E 01

0.10E 01 0.10E 01 0.10E 01 0.14E 01 0.117E- 01
0.101E 01 0.21E >31 0.13E 01 0.12E 01 17.11E 01

r 4	 3
0.580E 0fk 0.118E 01 0. 15SE 01 0.181E 01 0.215E 01

i0.11E 01 0.11E 01 C1.1 OE 171 0.10E 01 0.11E 011
a 0.10E 01 0.2 CIE 01 0.13E 01 0.12E 01 0.12E 01

_... 1,	 4 29 4 .'.	 4 4, 4 5, 4
0.622E 00 11.12:I.'E 01 0.157E 01 0.184E 071 0.193E 01
0.11E 01 0.113E 01 0.10E 01 0.10E 01 0.9CIE 00

. 0.10E 01 0. 20E   01 0.13E 01 0 ,12E 01 0.11E 01

4. 1 9 	 5 29 5 3, 5 4, 5 5, 5

0.641E 00 0.12:E 01 0.156E 011 0 182_E 01 0.204E 01
0.10E 01 0.10E 01 0.10E 01 0.99E 00 k_k.11E 01
0. 1 1] E 01 0.19E 01 0.13E 01 01.12E 01 1 0.11E 01

6 :3,	 h 4, 6 5, h k,

0.622E 0 C 0.1i.k_kE 01 0.151E 01 0.174E 01 0.207E 01
0.9 FE 00 0.97E 00 0.97E 00 0,..47E f10 0,10E 01
MOE 131 0.19E 01 0.13E 01 0.12E 01 0.12E 01

1,	 7 2,	 Ir 3,	 f 4, i 5, 7 }

0.562E 0Ck 0.110E 01 0.1`37E 01 0.15E 01 0.214E 01
0. _=+ Ck E Gig 0.92E 0 0 1i .90E 0 0 ii.2:;E O ki 0.10E 01

0.10E 01 0.201E 01 0.12E 01 0.11E 01 0.14E 01

1,	 = 2,	 .3 3	 ;3 4, G 51 8 x
0.4_.'9E 0 CI 0 ,964E 0 0 0 .11 8 E 01 0.144E 01 0.22 0E 01
0. 87E 00 MOE 00 0.76E 00 0 . 94E 0 0 0 .10E 0 1 €	 ,
0.1 0E kit 0.20E 01 0 .12E 0 1 O. i2E 01 0.15E 61

19	 9 2,	 '? _,	 9 4, ? 5 9 9
a

0.431E 00 0.854E 00 C+.104E 01 0.147 E 01 0.22"3E 01
0 -- E 00 0.139E- O ra 0.8:::E 00 C1	 10E 01 0.10E Ck1 ;
0 .10E 0 1 C 1 .2 0E 01 0.1 2E 01 0.14E 01 0 .15E 01

1,10 c91Ck 391Ck 49117 5910
0 .401E 1) 1) 1) .79AE 40 Ek ,ilE 00 0 .15 0E 0 1 0.2L5E 0 1

0.'?:-'E 00 ki .9:3E 00 0.93E 00 13. 1 OE C1 1 0.14E 01 :`	 1
0.10E 01 .0.20E 01 0.12E 01 0.16E kit 0.15E Ek1 t

-----------------------------------------------------------
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o)rcnsloia rFbRx ( ^^ay osT^tri: . sn,! ). slvosti ^ ;sJ- 3)rSkff 6'.) i0i5 GUOfifl UY	 -
K4MAx ( 2) rI:T ITLE' ( I c0*DEFAl1LT ( 2r13 ) .xx(150R ) , YY( IS 001 * 12:( 150C)• LG] L;(,u20
S1 .043 J o'St') . . A 4 ( SR,3r')of.WRITE[57).RAI : IOM(S'CCYsRATif1N. ( 5 .3C') cwj-uc73

^r *E'41, lNirLN?,L0 ,o4NTrFlNVpi "N7.•FIN?PMC	 fJCvL,CrLL'I,LRD-	 -- 	 ---	 •--•--	 ----	 --- • __.._.__.._._.._ _ ., Lb3ant.a. VMk£ A L MY1rrlYlrLiQ
`.._^

Cr)ARACTER POOF&406'CKrTYFE,T . YPCKr1'9UT,01 0030G065
DAI4	 RO pEr'TYFErIOUT/1NSe1NPr.1HY/ COOl^Cu7l OF
p Ai4	 CRI11r Ci3H2^C i )L1/ 4.33^ 3r?	 12'S.1'^rS 	 !^/ Lfl:i0GG3O
DATA	 ( ' DF F 1►.IfL i (till . I =1rl?)I1.75r , 75r.65r.n25. . 6r.7	 .

i b4

.0

CrM ;
'.r.^R75rS.fr.7rr.:br..775r4.!'/ 	 _ L0390197

DATA	 ( tlEfAllLTt7,f},1 = T.1?)/? . 75..T; .•.65•.85,,.6r.7Z5, $0]^7t1l13	 't
vJ]0f1120	 ^;t

do
'

TAn (it f=sItal:x)%cnsIi -)
COfkcx,r #.rNikr^1}	 =.'3r(.(.1.	 (xLA)R•P^+eI1./R')) 000.00140

2r 1TYFY1 00005.0
I.PTL :1	 -- ---- 0 310016D
bPR s7 003 0G 173

LU73L19:
T P A =' fi0O .0.02:1J
I 	 LE 00020213

F# PRIN T "Df S. I'6N OR SJMULATIOR MOO-E?" t;[#G0 12Z^
PRIHT:'•EFlIER D t7R S" CG3` G233
R E AD: NlOQCK.	 _ Ct}] Uf1243
PRINT	 "P:R7NT p ' INFNS INS? Y FOR YESr N FOR 140" co	 2 50 JgFAD • 01 CO54026J
I FA OT. EQ. I-O.UT)bPRs

OP. P11INT':"PRy!kJ	 FUSEL:AGF	 C I)ORDINATES?	 Y OR N" 0p[?0728U v/READ:O ' T CODOG29J
I - F (OT . £ O. COuT) l C0 u 1. L` 0J G0 3!;^

CIA	 PRINT:'" PRI11T TOTAL WETIEO AREA? 	 V OR N"	 —	 - OiC'fJJ31
_.	 R.EA0:Oi CU.30-L 320

1F(OT . E4.IGUT)	 IAR'EA=1 G030033U
v PRI ftT:" fRT'kT FANFL AREAS AND RATIOS? Y OR N"

--	 ---- - 311G0]3 47 _ -
	 --

J
READ:Oi' -•GG7uG35^
CFI;OT.Eo.touT)	 I:PA:=1 cDDO:C3.6.3

r! PR:INT,"PLOT FUSELAGE? 	 Y 01 N" prJG^7J377 ^^
+iE11 D •4,T G03.0.0330
IF(OT.E%SOUT)Mal UG]F].0390

N' IF:(K0,b CK. F0 . iMO0F.) GO TO 90	 --
-

L'^ QG4	
—NFUS=3 LU]G041J

PR tf41: ~91lS fJES S_J:EETT OR PISTON C^OT +IU tER?" G00014 ZJ
P PRINT:'"ENTER J	 04 P" 60300433

+jREAD- TYPCK UO30044.0
I'F.(TVPC*,F'4.TYPF )	 I TYP-Z 000C450

f1 _	 PRI147:"TI.ILE?" Cf]L0i44'.' i
R .EADt5. 11 )( .1TJTLEI):1rI al * 14): 0{10047:#
FRINT-. " fiJ'?f: R R	 OF	 PAN EL S?" a f1G J3'4.3::;

_ PR I NT: "FIQ.	 OF R A DIAL	 DIV.	 EACH S!`D E?" rlE_GU^5L^!
READ:NRA04 EP05005117

R _ IFNL xPN_L 	 _ _ _  0030.0523
lu- YPR)hi, " FLLIPTICAL	 OR	 CIRCULAR	 CROSS-SECTI tr : h:. OR K" GJGDJ53: ► ^.

RED 0 . 0^I_ L_0 JJi.540
tr(4l..rlF..IGUT}G0 T .G. I 5 LCI:C55J	 ----', ^,

_ 1 '	 — -- ---.—. --. 4100.11056a.
UODG5 77

}
Rt3?=T. E[l.hJS'ii

t

:^4w^rxye!,,:^rk^a + ua^ -̂awraaxraracaa^a:^:^u:er>^., ^^sc	 -

.a
=,^a•..^a,.^.i.^..,^^.^S.:iv^,^^^^s3ih^fi%ki^r^`^



r	 V ,^,^_	 ^..:.	 ^.:, ns aw -a•-._ a*.	 i +'T^i^	 s^a425"r.'.sat r^ ,^vn:..t .E*•^cirn-	 ^	 "°^9`^"'c'.'''^c^F 'P76 	 y

_-	 n

_ AWC*I  LUJU[IGU
R IC =1.  007.00610-
RTT at C-01300.6:20
ROI i1 , # i13[l[^b37
GO	 T^	 tr t^3 ' LtS64i,	 -- '- --

2S	 P_RII:T.: "C O r1F	 [T1	 R I)UND-O F F RA DII:	 TIY.HO^TTOM " C 0I^U0653
READ:RT1.*"I	 -_
	 -	 --- -- -- ------ (1037{1657

ON14F:"CONE 11? ROUND-OFF RADII:	 TO Pi90ITOM" 00500 6?a
REAM V12 .RP2 ' T	

-	 - - ---	 ---
COD0 583

PRJW:"C431N ROUND-OFf RROH:	 FAP•OOTTOM" 	 ._	 _	 _- -	 CO330693^{. -	 -	 --READSR'TC.R!?C--	 ------•--	 -.	 _ _ -	 ^	 _ (;93L^07f,]
PRINI: " T + iI.	 R,RUND -OFF.	 RADII:	 TOP.ilOTTOM" C,0000i,Ia

'^, REAd:RTT.RuT	 -	 --	 -- LC^t1C72;; d
3C PRINV:	 ER7F A • PaSSf#tGE.VS . S EATS AHR A ST.PI TCH

._	 ^_	 -
L030073.3

READ. iPA p sISR'rP 003[[07.4:9.
^,. -	 RI N T: "S£AT 41 1)7N. 'AISLE W IDTH"	 _ 0 0 3 00 7 511.	 -- Q

READ WSPAS C0}0Fi76u
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APPENDIX D PARABOLIC LEAST-SQUARES

CURVE-FIT ROUTINE

This appendix presents a listing for a, time-

sharing program in BASIC to compute" the coefficients 	 1

for a Least-squares parabolic curve-fit of the general

form:

2Y = a0 + a I x + a2x.



l:a

+ 11 11; D IM D 1 f] ±`	 A	 B _-_ ,C,
is

PP I NT"NUMBER  GF DFiTH POINT -
0 13'.3 0 1 NP LIT (9
f ii40 PRINT "INPUT DATA;	 ,Y'*

.;	 C, 05 '_I FOR I=1 TO r'4
'.. 060 INPUT D(I!,1)ill(I^2)

0 rl '7 0 NEXT	 I
i

' 0@80 FOR I = 1 TO N	 ^#
0090	 PRINT D(I,I)-, D(I, 2 )
0 1 Of_! NEXT	 I

T	
0 121	 X2=0.
0130	 ;' '2, = O .	 r
0 1 4 0	,0`4=!;I .
0150	 ,Y,1 =1E.
0 r_'.!	 Y2=0.	

4

01 70 Y3=0.
01_;0	 ''1'4=0,	 a	 9

Y	
0190	 Y!5=0.
11200 SI = O.	 ^1

021 0 S2=0.^
.	 +	 ^ 221=1 

FOR
	 1=1 TO N

1	 0230 Xl=Xl+D(I,1)
11248	 '.x 2=,;E+L1 . I ,1:'' *D	 I., I
I°I,w*50	 ,,^=.1:+TIC:i-l) +D( I , 1`^ +D( I•1`^

^.. _
0 27 0	 4i' 1 -Y 1 + IC is I + c' 

+`

1280	 '•I''=,,1;-+fit( I i 1 )+D(I ,`)
j	

1290	 Y3 =Y3+II(I , i) +D (I,1)+I!(I,2)
.. 1-13 1 1 011 0 	 Y5= °If 5+II (I „_ ) +TI < I , 2 )

i! 3 1 0 	 r-lE: T	 I ....^._.

0330	 B (1:='r1	 s

- O'S.
.A. c 0	 F ( 

3 _.,
 =Y:3

0611	 A<1,1) Ti's

13 38 II	 FI(152)=X 1
1390 A(2i 2 )=X2	 1

u ♦ 	 4

041 0 	A(W ,1:^_:;c
Cl	 Lfl	 HC L , • •̂	 =	 3	

i	

J

0460 MAT C =A+F

C'A

I.	
D.2

S1 

r.

i

i

y.:'4s

J



T '41-104 FOR.	 I =1	 TO N
(11 ( 1	 2, —Y4) t2

0510 NEil-e T	 I
13520 SI=Y/N
(15:30 R2=1 .-3'x21
054 0 PRINT	 "AO ="!,C(l)
055 0 PR I NT " R !  =	 C( E

7' 0560 PRINT "A' =	 C
0520 PRINT "COEFF. OF DET. ,Fa
'80 STOP
OS 0 Eta]

\ \ \ ^	 ^
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