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Definition 

T temperature ('R) 

V velocity (ft ~ s e o )  

x radial distance (ft) 

Q! angle of attack (deg) 

B angle ot yaw (dsg); also 

ON 
nozllle angle (deg) 

8 angular orientation in jet (deg) 

P density (lbm/fi3) 

Y ratio of specific heat 

(P momentum parameter (Ibf) = YP M~ A 

Subscrf~ts 

amb ambient con$tfons 

c rocket chamber condition 

i initfal condition or  conditions at point i 

j jet exit conditions 
1 local condition or  rolling moment 

MAC mean aerodynamic chord 

M any force or  moment coemcient 

m pitahing moment 

n yawing moment 

N normal force 

o total conditions 

Y side force 

P peak 
Q) free stream condition 

interaction increment due to plume interaction 
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Subscripts (contld) 

impingement increment due to plume impingement 

oms8 coupling increment due to combined jets interacting 

thrust thrust terms 

totai sum of all terms 

Superscript8 
- mean value or averaged value 
* throat condition 



SUMMARY 

This report is the flnd technical report md documeilts the work performed 
through 1 May 1977 under NASA Contract NAS9-14095. 

The space shuttle orbiter has forward mounted and rear mounted Reaction 
Control Systems (RCS) ~vhich are used for orbital maneuvering and also 
provide control during entry and abort maneuvers in the atmosphere. RCS 
control effectiveness is critlcal to orbiter flight performance and safety. 
The effect of interaction between the RCS jets and the flow over the vehicle 
in the atmosphere is the subject of this study, This report presents the 
analysis of test data obtained in the NASA Langley lt'iesearch Center 31 inch 
continuous flow hypersonic turu~el at a nominal Mach number of 10.3 and the 
AEDC continous flow hypersonic tunnel lfB" at a nominal Mach number of 6 .  
The data was obtained with 0,01 and ,0125 scale force models with aft RCS 
nozzles mounted both on the model and on the s t b g  of the force model 
balance, Tlie plume simulations were accomplished primarily using air in 
a cold gas simulation through scaled nozzles, however, various cold gas 
mixtures of Helium and Argon were also tested to obtain RT ratio effects. 
The major test parameters included: number of nozzles, tests of combined 
RCS controls, aerodynamic control d6flections, nozzle geometry, and RCS 
plenum pressure. 

The data shows that RCS nozzle exit momentum ratio is the primary 
correlating parameter for effects where the plume impinges on an adjacent 
surface and mass flow ratio is the parameter when the plume interaction is 
primarily with the external stream, An analytic model of aft mounted RCS 
units was developed in which the total reaction control moments a re  the sum 
of thrust, impingement, interaction, and cross -coupling terms. 
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INTRODUCTION 

The space shuttle orbiter has two reaction controls systems (RCS), as sl~oivn 
in Figure 1-1, which are used for orbital mrtneuvering, The rear RCS protdtles 
control during entzy until the aerodynamic surfaces have sufficient effectiveness 
to assume full control of the vehicle as shown in Figure 1-3. Both the front and 
rear RCS units are  also used during abort maneuvers to separate tlie orbiter 
from the tank, to pitch it to entty attitude, and to control it until aer*oclynanxic 
control is established. Thus RCS control effectivenestj is critical. to the space 
shuttle orbiter flight performance and safe$. 

The studies performed in References 1 to 3 and wind tunnel data on the present 
baseline orbiter have shown that the control effectiveness of the RCS system is 
appreciably changed by the presence of air  flow over and around the vehicle. 
These RCS - flow interactions have acted in directions such that the net RCS 
system effectiveness is much lower t!lm the thrust moments alone and it is 
critical to flight safety and performance to know what the induced RCS - flow 
interaction moments are caused by and to develop m~thods to predict them, 
These are  the basic purposes of this study conducted under NASA contract 
NAS9-14095. .This report is the final report of the work performed on t l i i ~  
contract through Aprii 1977 and documents the data analysis and analytic model 
development for RCS flow interference prediction. The data used for these 
analyses came principally from the space sliuttle orbiter tests designated QA82 
which was documented in Reference 3 of this contract, Test MA22 documented 
in Reference 4, and test OA169 documented in Reference 5 ,  These data were 
obtained from tests conducted by Rockwell International personnel within NASA 
and AEDC test facilities, primarily the NASA-LRC 31 inch continuous flow 
hypersonic tunnel (CFHT) at a nominal Mach number of 10.3 and AEDC von 
Icarman Facility tunnel "B" at Mach number of 6.0. The data was obtained at 
Langley with a 0.010 scale force model with the RCS nozzles mounted on the 
sting of the force model balance and with a. ,0125 scale model at AEDC where 
the RCS nozzles were mounted on the model as well as on the sting. The plume 
simulations were accomplished primarily using air in a cold gas simulation 
through scaled nozzles, however, various cold gas mixtures of Helium and 
Argon were also tested to obtain (RT) ratio effects. 

This report will concentrate primarily on the data analyses and analytic model 
development and contains 6 parts: 

a) Test Data Summary d) Analytic Program Description 
b) Data Analysis e) Full Scale Error  Analysis 
c) Analytic Nodel Development f)  Study Conclusions 

The data presented in this report is data for the aft RCS unit only. 
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Figure 1 - 1. Reaction Control Subsystem Elements. 
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TEST SUMNAIIY 

REAR 31OUNTED RCS DATA BASE 

Data from all rear mounted RCS tests was provided to Csnvair by NASA-JSC for 
compilation and analysis under this contract, T l d ~  rear mounted RCS data base 
represents 13 tests as summarized in Table 2-1. The PRR configuration data ivns 
obtained by General Dynamics/Convair in the test program reported in Ref. 1 
and all of the remaining test data has been obtained in tests conducted by Rockwell 
International as part of the space shuttle orbiter development and the cinta for each 
test has been o r  will be reported in the DA'EAMLL? reporting system for tho shuttle. 
The principal sources of data for this analysis were tests designated CjAPP, JIA22, 
and OA169. 

2.2 CONI?IGUR44TIQN AVD REFERENCE DIIhlENSIBNS 

Figure 3-1 presents the Space Shuttle Vehicle 102 Qrbiter configuration used in 
these tests, The geometry of the model is defined in detail in Ref. 6 . The 
model was s a l g  mounted in all tests in m arrangement similar to the XEIIC VKF 
tunnel B installation shown in Figures 2-2 to 2-4. The presence of the sting .and 
of the sting mounted nozzle block used in tests OA82 md ILIA22 (Figure 3-5) pre- 
vented full simulation of the vehicle base geometly during all rear RCS tests. 
However, 3s much as possible the major features were maintained. Possible 
effects of sting mounting \yore shown in Ref. 3, but no f ~ ~ r t h c r  data has been 
obtained to clarify this issue. 

All orbiter data used in this report are referenced to an axial location of 00': of 
body length and a vertical water line 25 inches below the fuselage reference line 
shown in Figure 2-1. In full scale vehicle dimension: 

a) Vehicle nose station 238 
b) (X) Moment ref. center station 1076.7 
c) (2) Moment ref. center waterline 3753. 
d) (Y) Moment ref, center butt line 0. 

All data used in the analysis were reduced to coefficient form using the orbiter 
wing area as the reference area, the wing mean aerodynamic chord (5)  as the 
longitudinal reference length, and the wing span (b) as the lateral-directional 
reference length. : 2 

a) S,f = Swing = 2690 Ft. (249.9 meters2) 
b) E = 39.567 Ft. (12.06 meters) 
c) b = 78.058 Ft. (23.79 meters) 

WIND TUNNEL MODELS 



3 . 3  1 OAH2/'11fA%3 . 01 Scale Model 

The .01, rjicnle model used in tests  OAH2 and MA22 was nn aluminum rnotlel whosc 
geometry ia defined In Rof. 6 . The model was attached to n force balance mottnteJ 
on a sting up through the base of the modol aE shotvn in Figure 2-5. The plenum 
ahamber and nozzle block assembly was also mount;ed on the sting close to the baae 
of the model but not attached to it. Thus the force halance measured model forces 

*and moments and the loads induced by RCS operation but not the RCS jet moments. 
Grounding strips were mounted in the gap I~etween the plenwn and the model to insure 
that the model did not ground on the nozzlegi during the tests. 

This model was equipped with removable nozzle blocks which were changecl to test  
RCS jets firing in different directions, to change numbers of nozzles, and to change 
RCS nozzle geometry. A number of different nozzlos were usccl throughout the tests 
and Tables 2-2 to 2-4 present tho nozzle code numbers and a brief sumn1al.y of the nozzle 
characteristics. A11 nozzles were tested wing cold gas supplies located external 
to the tunnel and piped in through n pressure regulation system which was used to 
control the pressure in the plenunl chamber manually during a tunnel data run. The 
pressure in the plenum chamber was measured by a pressure tap in the chamber cons- 
nected to a pressure transducer mounted externally to the tunnel in most tests. The 
test  gas used was air for  all tests exc~lrt  for 12 runs on test OA88 where helium and 
Argon mL,utulVes were used to vary the gas constant (R) of the test gas. 

The model was equipped with elovons and a body flap which wepe attached to the 
model by metal brackets which could be changed to other pre-bent sets  to obtain 
elevator angles of i.10 degrees and -30 degrees and body flap angles of c13.75 degrees 
and -14,25 degrees. 

The effects of elevator angle and body flap angle were tested in test 31A22. 

3 . 3 . 2  OAlG9/IA23 ,0125 Scale Model 

A steel model of the space shuttle orbiter was constructed for these tests using 
the preliminary lines for vehicle configuration 102 as  the baseline. This configuration 
is shown in Figure 2-1 and defined in detail in Ref, G . The model contained an 
internal force balance and was sting mounted through the bgse region of the orbiter 
a s  shotvn in Figure 2-4. The orbiter main engine nozzles were partially simulated 
on the base of model as well as  the most aft side fi1311g nozzle and all vernier 
nozzles or. the OhlS pods as shown in Figure 2-4 . .%n external tank model was also 
built and was used for mated orbiter/extomal tank tests in 6 A  3169 and for tank 
separation tests in IA22. 

The elevons were mounted to the orbiter model using pre-bent brackets so that 
elevon settings of 0, * 10, and i 15 degrees were tested. The body flap, rudder, 
and speed brake were set at 0 degrees during these tests. Two umbilical doors 
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were pt.ov1dc.d on the model as  shoiw in Figure 2-6 , md some 13CS data was obtained 
with those doors either pst%inlly open or  full open, 

Twenty-seven (27) RCS thrusttor8 were eimulzrted on this model. 'i'hesc inclatde 9 in 
the liolse md 9 in each of the two rear orbital maneuvering system 1031S) as sketcltfid 
in Figure 1-1. When the flow-through belmce was used, the 1iCS simulation air- 
flow was dueted up the support sting and entered the model through the balance. l'lre 
l~alsmee flow was then ducted to 3 plenums within the model; one in front ta feed the 
forward RCS thrusters and one for each of the rear OMS pod assemblies. Al l  nozzles 
wvlthin a pod shown in Figure 1-1 sre  connected to the plenunt and can be operater1 in 
my combination, Nine (9) ports coilnect the individual nozzlse to tho plenum atd are 
plugged \vlien a given nozzle is not; being used on a particular run. Indicldual ~tozzlc 
geometry is fixed and the primary test variai)les an? numbers of nozzles operating in 
a given direction, thrust direction, and combinatioits of nozzles. The nozzles are all 
metric (thrust measured in balance loads) when the flow-through ' *lance was unetl. 
.An alternate method allowved the rear RCS units to be fed by a non-metric supply fixture 
on the sting, When this armngement; was usecl, the rear  RCS units were non-mtotric 
also, Nozzle definitions are given Tahles 2-2 *o 2-4 ;tilere nozzle numbers XtiEi, 396 ,  
a d  N97 a r e  used for the 1, 2, md 3 nozzle cases rospectively. 

TEST SUMMARf ES 

2.4.1 OA83 Test Program Summary 

The aft ZiCS test dosibqated OA82 was performed at the NAS,4 Ilnngley Research Center 
Continuous Flow Hypersonic Tunnel (CFEIT) wvlrere it carried the test number CFIIT113. 
The test was performed at a nominal Mach number of 10.3 using n .03 scale cnoclel of 
139B orbiter to obtain 6 component force rtnd moment data using a cmld gas simulation 
of the RCS exhaust flow, The major test variables included: 

a) tunnel dynamic pressure iq = 75, 100, 125, 150, 200 FSF) 
b) RCS chamber pressure (Poj 0 to 700 PSIA) 
c) test gas (air, He, Argon, ,85 He. 10A, .90 Eie. 10.4) 
d) RCS control direction . 
e) number of RCS nozzles 

I Pitch dorm 1, 2, 3 
n pitch up 1, 2, 3 
III Y awv 2, 4 

All aerodynamic control surfaces were kept at zero degree deflection throughout tbc 
test. The angle of attack range tested varied from -10 clegrees to +35 ctegsees. 



3.4 .3  MA22 Test Program Summary 

The aft RCS test designated MA22 was performed at the NASA Lmgley Research 
Center Continuous Flow Hypersonic Tunnel (CFIn)  where it ccarrieri the test 
number CFHT 118. This test used the same model a d  test conditions lsummarizctl 
above. The major test variables includeff: 

a) Tunnel dynamic pressure (q = 125, 150 PSIA) 
b) RCS chamber pressure (Po) = 0 to 700 PSW) 
C) RCS control direction (pitch up, pitch down, yaw) 
d) RCS nozzle geometry (Table 2-2 to 2-4) 
c) Number of RCS rrozzles 
f ) ' elevatar angle ( 6, = '105 0 O, -30') 
g) body flap angle ( ~ B F  ' '13, So, o", -14.25') 
h) Combined RCS control directions 
i) Jet off repeat iws 

Air was used as the test gas for all RCS exhaust simulations in this test. 

3 .4 .3  OA169 Test Program Summary 

The test designated OA16Q was performed at the Arnold Eaglneering Development 
' Center von K a r m a  Facility Continuous Flow Hypersonic Tunnel B where it carried 
a facility test number V41B-DSA. The test used the ,0125 scak  model defined in 
Section 3.3 and was performed at a nominal Mach number of G .  0. The primary 
purpose of the test wafi to provide data for Shutble "Return to Launch Site" abort 
separation maneuvers from the external tank. The test thus inclucted data of 
the forward, a&, and combined forward and aft RCS units firing both with and 
without the external tank attached to the orbiter. The portion of the test of 
interest to this part of the RCS study are those runs of raar RCS only ~vitl~out the 
external tank, The principal test parameters for the rear RCS only runs were: 

a) RCS Chamber Pressure (Poj = 0 to 1150 psia) 
b) RCS control direction (pitch down, pitch up, yaw) 
c)  Number of RCS nozzles 
d) combined RCS control directions 
e) umbilical door position 

Data was taken from -10 degrees angle of attack to 4 5  degrees using one sting 
pre-bend to obtain data from -10" to -15 and another from 15" to 45". Yominal test 
conditions were: 

a) Mach number = 5.89 
b) TO= = 850°R 
c) qor, = 93.6 PSI" 
d) Re = 1 1o6/ft. 



2.5 DATA REDUCTIO?o" PBQCEBURE 

The test data from all tests was reducsd by the wind-tunnel personnel. into hotly 
ads fogre a ~ d  motnent corfflcicnts (Cx , 

' 4 1 '  'm , C , , C . Cy) wit11 the llCS 
11 

thrust farcee and moments rcmuvod. Thus, the tasChd3 al~tdned tvitll the non- 
metric RCS jets war; reduced directly from meneurect balance data since tho EiCS 
jet thxust was not included in the halanee loads, 'Eliese data included a11 of the 
data on tests OA82, MA22 and some runs of CdAlGS, The OAlG9 data obtained with 
the flow-through balance had metric jets turd these data were reduced at the wind 
tunnel by removing thrust effects using wvincl tunnel static oalihrations of measured 
thrust efccts . 
The net result is that all data received from the wind tunnel reprcsentcd the basic 
vehicle aerodynamic forces and moments plus any inclucod loads resulting either 
from RCS jet impingement o r  from changes to tho vehicle flow causetl by the RCS 
jet plumes. Tllerefore, the incremental induped effects are computed by removing 
the basic vehicle charachristics from tho jet-on data: 

where A CSfi = induced force o r  moment hcyement 

%xj = measured force o r  moment coefficient tvith jet on 

%Io = measured force or moment coefficient with jet off. 

Because the incremental values can be very small and thus sensitive to data 
scatter, the mean values of the jet off coefficient data were used as the best 
estimates of the data in the previous analyses (neference 3 ) However, 
because of the large number of sanlples of data to be compiled in this analysis, 
the approaclr taken was to allow all scatter to remain in the data and to use one 
reference jet-off iun as the base from tvhich jet-on differences were ol~tained, 
It turnecl out not to be possible to use one jet-off nm because of the umbilical 
door configurations on OA160 mi1 thus 3 jet-off runs were used as the reference 
jet-off conditions : 

a) Tests OA82 md MA22 used MA23 run 5 as base 
b) Test Oh169 ldgh angle of attack range data used OA164 rim 20 as base 
c) Test CIA169 low angle of attack range data used QAlBS r1.111 33': as base. 

Angle of attack differences between tlie jet-ou data md the jet-off data were 
tteco~mted for by passing a 3rd degree polynorninal through the jet-off base data 
with the nearest inem value angle of attack data as the midpoint of tho curve fit 
aid the biterpolation is made to the jet-on angle of attaclr. Interpolation of the 
base line jet-off data was tised since this method results in the same base val1-1e 
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wvlthoiit regard to nozzle used, jet p res~uro ,  or posrjiblc jot-on angle of attack 
effects. Difference data was generated and a~tllyzed for all 6 f o i w  moment 
components. 

During the data analysis tho inducf?d data increment wnB broken into an impitlgement 
cornpollent md a flow interaction component; whoso the interaction ccln~poncnt was 
obtdned by 

whore 
-= induced force o r  moment resulting from 

A ':'3nteraction RCS t~ow/flow field interactions 

C = predicted force or  moment due to 
'9mpingement plume impingement 

and where tlie plume impingement of the rr~orlel nozzles was predicted using tho 
model to be diecussed in Section 4. 

Nozzle thrust was computed using the calibration data on tho model llozzles given 
in Tables 2-3 to 3-4 wvliile tlie other uozzle flow parametors were comptlted using ideal 
nozzlo equations. 

The discharge coefficient was computed foi* each test nozzle as tho ratio of tho 
calibrated thrust to the theoretical thrtrst as defined in Equation 3: 

where CD = discharge coefIicient 

AT = nozzle throat area 

BE = nozzle erdt area 
ICy = nozzle calibration coefficient = Tmeas 

Po; 
J 

y = exhaust gas qeclfic? heat ratio 

p = nozzle chamber pressure 
oj 

RN = static pressure at nozzle exit 

pll = ambient pressure 

Tmeas = measured thrust 



and this discharge coefficient was used to define an effective total pressure when 
con,putlng nozzle flow parameter8 and Impingement components, 

This effective nozzle total pressure assumcte that the principal reason for the 
difference between a real nozzle and its theoritlcal performance is dug to a loss in 
total pressure. This approach was taken when the data analyses showed that it was 
the best method of accounting for scather between data from different nozzles not 
otherwise accounted for using nozzle simu1af;lon parameters, 

2. G SUMMARY OF TEST RESULTS 

2. fi, 1 Pitch Down Jet Induced Data 

The pitch down jet data was generated primarily with the nozzle set designated N4, 
whose principal characteristics are defined in Table B-2 .This nozzle was mounted 
on the left side of the model as were all the other pitch nozzles used in this test 
except for the tests of symmetric pitch down jets. The thrust moments thus would 
be nose down pitch (-i and right wing down roll ( +\ in the body axis data sign con- 
vention. 

Figure 2-7 presents the effect of supply pressure for nozzle Ndg for freestream 
dynamic pressure of 125 PSF. The uominal values of the RCS thrust moments are 
tabulated with the run symbols on each plot. These data show that the induced pitch 
and roll oppose the thrust moment and they are large compared to the contrd moment; 
therefore, the total control amplification factor will be low. The lowest pressure 
data on Figure 2-7 cluster very c l o ~ e  together indicating a non-linearity in the 
induced effects and the data shows very little sensitivity o r  change with angle of 
attack. These data are typical of ,!~e pitch down jet incremental data shown in 
Reference 2. Symmetric down firing jet data was primarily obtained during the 
OA 169 test using nozzles N95, N96, and N97 of Table 2-2 with only one other case 
being obtained on test OA82. Symmetric firing of the pitch down jets results in an 
induced moment which is greater than twice the value for one side by a significant 
amount indicating plume/plume flow interaction in the base region of the model 
around the sting mount, These data indicate that a better representation of the 
base region is needed for the pitch down RCS simulation. The roll jet data of 
Reference 2,  showed that the normal force and pitching moment effects are derived 
primarily from the pitch down jet, the side force and yawing moment are derived 
from the pitch up jet, and the induced roll increment as the sum of the single jet 
induced effects . 



2.6,2 Pitch Up Jet Induced Data 

Ths pitch-up RCS data was generated primarily tdth the nozzle designated as N52 
whose principal characteristics are defined in Table 2-3. All pitch up nozzles were 
mounted on the right side of the model and the nozzle sets exhausted vertically 
upward past the vertical fin which is approximately 9 nozzle diameters laterally 
from the nozzle centerlines, Figure 2- 8 presents typical data of the induced 
forces and moments resulting from RCS jets firing uptvard. The pitch axis data 
shows some jet interaction effects at negative angle of attack where the upper 
surface is completely exposed to the flow but very little at higher anglea of 
attack. The trends are much clearer In the lateral-directional data ;v:a.dh shows 
strong interactions at negative angles decreasing as the angle of attack increases 
to approximately 10 degrees. A ~ J O V ~  this angle the induced effects become 
relatively insensitive to angle of attack. This data could be interpreted to show 
that a jet interactiou type of flow occurs as long as the free stream flow is attached 
to the fin and when this is no longer true the interaction is primarily plume 
impingement on the fin where the plume shape is modified by freestream flow 
over the vehicle. 

2.6.3 Yaw Jet Induced Data 

The yaw jet data obtained in tesc OA82 and MA22 were obtained primarily with the 
nozzle set designated N85 whose characteristics are defined in Table 3-4. All hw 
nozzles were mounted on the left side of the model and exhausted perpendicular 
to the fuselage centerline in a plane parallel to the wing and approximately 13 
nozzle diameters above it. Figure 2- 9 presents yaw RCS data at two supply 
pressures and these data show little flow interaction at angles of attack below 
5 degrees except in yaw where there appears to be some amplification of the 
thrust moment due to jet interaction. At higher angles of attack, pitch up and left 
wing down moments are induced by the yaw jet but the effect appears to be non- 
linear in that the initial thrust created a larger change in moments than that 
caused by increasing thrust. 

2.6.4 Combined Control Data 

Combined control data was obtained during these tests for the following control 
combinations : 

a) Symmetric Pitch down (left and right down firing) 
b) Symmetric Pitch up (left and right up firing) 
c) Symmetric roil (left down and right up) 
d) Pitch up plus yaw (right up and right side yaw) 
e) Pitch down plus yaw (right down plus left side yaw) 



The combined control data was ohtained in limited amounts only and was correlated 
against the sum of the individual control components to determine if there was any 
plume-plume interactions to be considered. 



TABLE 2-1 
RCS TESTS 

OA8S ! Force + 

OAlO5 i Foroe 

W60 Force Orbiter + Tylk 

.010 ' CFHT 

RCS Simulations 



TABLE 8.2 PPTCH DO\W RCS NOZZLES 

NOZZI.' No. of Expursionj Exit Exit ' .L Outboard Aft 1 Test 
1.D Jets Ratio ( Dlmetor Angle( I Caut cant1 

Sfdo 
Us& 

I 

NZ1 2 30' lC* hft 0.473 
N32 L, 0.  00 " I S  

N31 I1 12s " LA25 
U ? 2  , 

334 t I, LA25 ' 
1 I MA22 

N35 I , " Right LA25 
N38 I t  II t ,I I' 

I, 

30. " 
N42 I I, OA85 
N43 I t  

I 12. Left OA85 

i I s w 2  
I 

N45 ,I I, 
I " I .GO24 I 30' " OA85 

N46 11 

f l  1, 

12. Rlght OA85 
X47 " Left OA65 

I SIA23 

N49 I 6.43 t I t  IA60 
I QA82 
I OA85 

I, I, 

I MA22 

N50 " 1. 'I 1.00412 
I I OA82 

, OA85 

N60 1 ,  7 .7  OAY5 
N79 1 

I 

,, N63 3 " j ,00452 I 

NO5 
N96 2 I, I " 

:q97 3 I 

N98 3 



TABLE 3-3 PITCH UP RCS NOZZLES 

Used 

1 
N23 i 2 1.159 ,144 

N32 " I 1.155 . OD9 I *t I 1t I t  " ' .00138 i 
I I MA22 

I I 

! 

N81 2 I " " ,00452 t It Left '0A82 1 
N82 3 t 

It ,00452 , " I 1  I) OA85 
I I 'MA22 

i 1 I N84 2+2 " " .00443 I t  " Bight OA82 
I 
I ' Up +Yaw MA22 



TABLE 2 4  YAW RCS NOZZLES 

Outboard hft ' 

" .00792 I t  I I t  II 

9 .00300 

N51 4 4.43 34.25 ,00405 

N61 2 7.697 31.75 ,00221 

N85 " 4.43 34.31 .00452 

N95 1 12.5 ,136 , 13.01 ,001687 (1  ' !I 1 ,  

" .001318 I t  't 

N100 3 4.43 



Figure 2-1. 139B Orbiter Configuration 
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Figure 2-5.  OA82/MA22 Sting Mounted RCS. 



I 

.-=-. 

"-F- 
TANK IN H A M  
WlTIoW 

QpelTUl LWiR SUWACS; WORti 3 1 W  IN THE 
L'L(rjED (lme) PclsITICN 

Figure 2 - 6 .  On169 Urmbilical Door C s~figurat ion.  

2-10  



THRUST 

$8 

-k 
0 
'' pen80 

!2 
tsl 
P ..a40 
t; 
Z 
Id 

W 
U = - .or0 E 
cl 

-so. 0 $0.  20. 10. 

ANGLE OF ATTACK (a ) - DEG 
Figure 2-7a. Effect of Supply Pressure at U = 125 PSF. 



5 I  
0 
3 .o 

9 
2 ..or0 
8 
E 
P ..OZO 

S 
Y 
3 -,OSO 

P I I I I I I 1 
-10. 0 10. 0 0 .  SO. 40. 

,040 

2 
.2 - .OtO 

It 
W B .. 
u 
5 
W -.oza 
P 

.LO. 0 10. LO. 80. 

ANGLE OF ATTACK (a I - DEG 

Figure  2-7b. N49 Effect of Supply P r e s s u r e  a t  Q = 125 PSF. 

2-21 



- 

Figure 2-8a. NS2 Effect of Supply Pressure at Q = 125 PSF. 
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DATA ANALYSIS 

3.1 SUMMARY OF PREVIOUS RESULTS 

The analytic model developed in Reference 3 assumes that the total control folu3e 
o r  moment of a. RCS control is the linear sum of the jet force o r  moment ,uld an 
induced force o r  moment which is itself the sum of a term contributed by the direct 
impingement of the RCS plumes on adjacent surfaces and an interaction term which 
is the plume flow interacting with the external flow over the vehicle. 

- 
C ~ t o t ; r l -  jet + ' ~ i m ~ i n ~ e m c i n t  +  interaction 

where 
= total control force o r  moment coefficient 

C~ jet 
= RCS force o r  moment coefficient 

= force o r  moment coefficient due to pluine 
impingement impingement on ad j acent surf ace a 

C~ interaction 
= force o r  moment coefficieiit caused by plume 

interactions with the flow over the vehicle. 

The reasons for dividing the RCS induced effects into an impingement and ,an inter- 
action component are  that the vehicle geometry is such that the RCS jets exhaust 
toward many surfaces such as  the wing upper surface, the body flap, the main 
propulsion engines, and vertical fin. The vacuum test data (Ref. 7 ) showed that 
there is plume impingement on these surfaces; but, the analysis of Reference 3. 
showed that the total induced forces and moments a= larger than that which is 
predicted by plume impingement alone and thus there exists a plume interaction 
with the flow field around the shuttle orbiter. In order to derive this interaction 
term, however, it is necessary to know o r  assume the impingement term and to  
subtract it from the total induced term. This was done in these analyses by using 
the analytic plume impingement model presented in Section 4 to predict the plume 
impingement for the model nozzle, test gas, and wind tunnel conditions and to 
remove it from the induced data as shown in Equation 2 of Section 2 ,  

3.1.1 Previous Pitch Down/Roll Resultr 

The analysis reported in Reference 3 established a number of basic facts for  the 
left side, pitch do%n/roll jet data. These are: 

a) Angle of attack is a relatively insensitive parameter 
b) (RT) ratio effects are not important 



C) &.lomentam ratio appeared to be the 11eet 
correlating parameter 

d) Number of nozzles could be accounted for hy using 
an equivalent area in the momentum ratio parameter. 

Baoed on the first fact, the data was broken into 2 ranges of angle of attack md 
correlations were made for the data below 15' and above 15". The second fact 
verified that cold gas simulations are acceptable to define reaction control effects 
but did not eliminate mass flow ratio completely as a parameter since almost all 
of the data was based on one nozzle geometry and thus a11 nozzle parameters were 
directly related to each other in a constant manner. The equivalent nozzle momentum 
ratio was related to wing area as the reference area and the inomentum ratio equation 
became : 

3.1.2 Previous Pitch Up/Roll Results 

The analysis of the pitch up/roll jet data reported in Reference 3 established a 
number of facts about the flow interaction which include: 

a) The interaction is relatively insensitive to angle of attack at 
b16h angle of attack 

b) The interaction shows a peak value at low angles of attack 
C) There is a region between these two angles of attack where the 

data appears to be independent of nozzle flow parameters 
d) The equivalent nozzle momentum ratio appeared to be the primary 

parameter although mass flow ratio seemed to correlate better 
for the values of normal force and pitching moment at dl angles 
of attack. 

Figure 2-8b presents a sample of rolling moment increment data plotted as a 
fitnction of angle of attack. Above 15 degrees, the data appears much like the pitch 
down data in that angle of attack effects are small. As angle of attack decreases 
below 15 degrees angle of attack, all the data appears to follow one curve until 3 

peak value is reached and the data decays along separate curves. The peak values 
and the angles of attack at which they occur appear to be functions of some nozzle 
related parameters. The pitch up RCS data was broken into three parts for 'analysis 
based on these observations which were: 

a) high angle of attack 
b) peak values 
C )  below peak values 

The division between the high angle of attack data and the other regions was 
arbitrarily chosen as 15 degrees and the data was averaged in this region to 
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obtain ldgh angle of attack correlations. Those data were treated it1 the same may 
as the pitch dotvn data in ~vhicli it was assumed that the total induced force o r  momelit 
was the sum of an impingement tolm and an interaction t o m .  X tlieoreticsllg pre- 
dicted impingement term was tlien subtracted from the induced terms in order Lo define 
the interaction terms for correlation with nozzle parametors. Jlomenfxtn ratio as 
defined in Equation 3 above appeared to be the better parameter for all data except 
normal force and pitching moment where mass flow ratio was chosen as the parameter, 

The model for predicting the effects in the low angle of attack region consisted sf tho 
following ~ t e p s  : 

a) predict; peak value as a function of nozzle parameters, 
k) predict peak angle of attack from peak value, 
c) if the mgle of attack i s  above that for the peak value, predict intoractton 

value from angle of attack vs peak value curve 
d) if the mgle of attack is below that for the peak, predict i~itoraction based 

on n decay from p e a  curve fit. 
The peak values of side force, rolling moment, md yawing moment showed excellent 
correlation with momentum ratio while the peak normal force data tended to show good 
agreement with mass flow ratio but the peak pitching moment showed only poor agree- 
ment with either paranzeter. Steps b and c listed above required curve fits of peck 
values versus angle of attack which were made also. 

Figure 3- 1 showed that the interaction data decayed to a reduced level at angles of 
attack below that of the peak value. h limited amount of analysis was per-fo~med in 
this reglon because the number of data points is very small particularly for the higher 
jet pressures where the peak vdue was reached at o r  very near tlle lotvest value of 
angle of attack tested and the curves depend on the lowest pressure data ivhere cri%r 
effects become large. 

A model was tentatively selected for this region which used the peak value and assumcd 
that the interaction increment goes to zero at 20 degrees below the peak. 

where 
C~ 

= pitch up force or moment coefficient 

= peak pitch up force or moment coefficient 
' ~pea lc  

sl = angle of attack 
3.1.9 Previous Y atv Restilts 

Very few yaw RCS data were available to analyze in Eeference 2 , These data 
did establish the follo\ving facts ai3out yaw RCS jet interaction: 



a) The data showed moderate sensitivity to 
angle of attack 

b) (RT) ratio effects are important anrl mass 
flow ratio appeared to be the better correlating 
parameter. 

The data was divided into a low angle of attack model (a c 16') and a high angle 
of attack model and was avgraged over each angle of attack range. The parameter 
which appeared to work best was mass flow ratio as defined in EquatSon 4 
and curve fits were made using it as the parameter. 

The limited amount of data, however, showed a fair amount of scatter and 
confidence in the results was low. 

3.1.4 Previous Combined Control Results 

A very limited set of combined control results were analyzed in Reference 3 
and a set of corrections were obtained ~vhicli in general ratioed the! combined 
effects to the data for the single axis controls. Cross-coupling effects were 
found in the following cases : 

a) symmetric pitch down 
b) sy'nmetric roll 
c) pitch up plus yaw on same side 

3.2 PITCH DOWN/ROLL RCS INTERACTION 

Section 3.1.1 briefly described the previous results obtained from data from test 
OA82 at Mach 10. The test labeled NA22 added considerable data to the pitch 
down data base particularily through the testing of a large number of nozzles 
ranging in expansion ratio from 1.15 to 7 . 7  as ;hewn in Table 2-2. Test OAkG9 
then added to the data base with Mach 6 data and a nozzle of an expansion ratio 
of 12.5. These data removed the previous limitations on nozzle simulation 
parameters (i. e. , that they were all directly related because only one nozzle 
geometry was tested) and it was decided to start the analysis over again as in 
Reference 3 to ascertain the best interaction correlating parameter. It1 addition 
since a large body of data was available it was decided to account for angle of 
attack effects by eliminating the high-low model tvith its attendant data averaging 
and to curve f i t  all data within selected angle of attack bands. Another purpose 
of this approach was to obtain good estimates of the true data scatter within a 
given angle of attack range so that the standard deviation of error  could be 



computed, The data intervals were chose us D degrees starting from -10 degrees 
angle of attack to 35 degrees with a .Tj degree buffer on both endfi of tlie interval 
to insure all ciato on the end of an interval occurred in both samples. The data 
above 35 degrees (up to 43 degrees) were taken in one interval. 

The re-analysis of tho new data base confirmed the fact that the equivalent area 
momentum ratio described in Equation :! was the best parameter for the pitch 
down-roll RCS interaction data, Considerable scatter was found between differcnt 
nozzles operating at the same nominal momentum rrltis md a number of second 
order parameters were trlied to correct for this. The resolution of this 
problem rvhich resulted in the greatest reduction in this kind of scatter was to 
account for the actual nozzle characteristics in the momentum ratio th~ougli the 
use of a coefficient wvhich accounts for the actual nozzle perform~nce raioed to 
its tl~eore~calperformance. This coefficient is defined in Section 3 , Equat;ioii 3 
and is called a discharge coefficient in this analysi~,  Thus effective momentum 
ratio is defined: 

where 
CD 

e ff theoretical 

= discharge coefficient (Section 3 ,  Equation 3) 

= ideal nozzle momeiitum ratio (Equation 3) 

and my further reference to momentum ratio in this section refers to the Equation 5 
definition. 

Al l  data were curve fitted with both a quaclratic and cubic least square curve fit 
and the one with the lowest root mean square e r ror  was chosen to represent the 
data. The cubic curve has the general form: 

where A C = any force or  moment due to interaction 

a. to ag = curve fit constants 



In addition a mcudmum md minimum value of momentum ratio are specified over 
which the equation applies. All data presented hr-we are  at zero elevsn and body 
flap control deflection, Control deflection effec. a Lire treated incrementally and 
wlll be presented in Section 3.6 and 3.7. 

3.2.1 Pitch Down Axial Force Correlations 

Table 3- 1 presents the coefficients for tbs ten (10) angle of attack intervals over 
which the data was curve-fitted while Figrlres 3-la to 3-19 present the correlations 
between the curve fits and the data base. These curves show that the lowest number 
of points within an angle of attack interval was 99 and the greatest number was 153 
both numbers are  sufficiently large to insure a goo& statistical sample. The root - 
mean-square e r ro r  was computed from the least square curve fit and is tabulated 
on each plot as the standard deviation (sigma). Also plotted are the 2 sigma er ror  
band limits around the least square curve fits to show how the data scatters within 
the e r ro r  band. 

All data shows the same trend that increasing RCS jet momentum ratio results in 
a decrease in M a 1  force up to a momentum ratio (Equation 5 ) of approximately 
0.1 which is close to the upper limit of data obtained. The best fit as measured 
by lowest root mean square error  'occurs in the 25 to 30 degree angle of attack 
range while the worst occurs from -10 to -5 degrees angle of attack although the 
valezos of sigma for both are close. The intercept (%) does not approach zero 
below 10 degrees angle of attack and probably represents a measure of average 
difference between the jet-off data and a total test base jet-off average. As such, 
one approach to using these curves muld be to set this term to zero and in effect 
adjusting the data to obtain zero interaction at the no flow condition. The QA169 
data can be seen on these curves to be well within the scatter of the Mach 10 data 
except perhaps at 15 degrees angle of attack where the 8A169 data itself showed a 
discontinui@ between the high and low range angle of attack data. 

3.2.2 Pitch Down Normal Force Correlations 

Table 3-2 presents the equations for the curve flts of normal force versus 
momentum ratio shown in Figure 3-2a to 3-.:?j, These curves a re  plotted in 
the same manner described for the axial force above and show that exhausting 
the RCS clow~ toward the wing results in a negative normal force being generated 
at all angles of attack which is proportional to the equivalent rzozzle effective 
momentum ratio. The data, below 20 degrees angle of attack sho\vs excelle:,lt 
correlation with a small root-mean-square errors, however, the data above 
20 degrees shows increasingly more scatter with increasing angle of attack. This 
was shown in Reference 3 to come in part from the sizeable differences in jet- 
off data at high angles of attack and is seen primarily in the Mach 10 data. The 
Mach 6 data is well within the error  band of the total data indicating no discer~~nt~le  



Mach effect and it is po~sible  that a fit of the Mach 6 data only at high angles ~f :ittack 
fvould be a better curve. 

3 . 3 . 3  Pitch Down Side Force Correlations 

Table 3-3 presents the equations of the side force due to downward oxhnusting IiCS 
nozzles while Flgures 3-3a to 3-3 j present the cot-relating curves. ill1 pitch doim 
RCS ciata was 0i~tQined from nozzles mounted on the left side of the model so that 
a11 interaction result in a positive side force increment, The equations fit the 
data about equally well at all angles of attack and no Mach effects can be seen. 

3.2.4 Pitch Down I'itcling Moment Correlatione 

Table 3-4 md Figures 3-4 a to 3-4 j present the corirelation of pitcldng moment 
induced by the RCS unit exhausting toward the wing, These data are for the HCS 
units on one side only; the symmetric pitch down case will be considered in Section 
3.5. The data shown in Figures 3-4 a to 3-4 j show that exhausthi RCS jets toward 
the wing results in a nose up pitching moment being indttced 011 the vehicle kt all 
angles of attack which counteracts the thrust moment being generated. The p o r e s t  
correlation occurs at the l m e s t  angle of attack but the RZrE eerrqr is still close to 
the rest of the data. The Xach 6 data in the 10 to 15 degree angle of attack range 
appears to lie along a different line t11m the Mach 19 data but this is  the only angle 
of attack interval where this occurs. 

3.2.5 Pitch Doin Rolling Moment Correlations 

Table 3-5 and Figures 3-5 a to 3-5 j present the correlations of rolling moment across 
the ten (10) angle of attaclc. intervals. The pitch clo~vn/roll RCS data was all taken 
with the jets exhausting dovmrvarr' >n the left side of the model so that I\ negative 
rolling moment indicates the induced moments counteract the thrust moment. TIE 
curve fits appear to be uniformly consistent across the angle of attack range wit11 the 
RMS error  slightly larger in the lov~est range a ~ d  best at the highest angles of 
attack, 

3 . 2 . 6  Pitch Down Yawing Moment Correlations 

Figures 3-6 a to 3-6 j show that the yawing moment induced by pitch do~vn jets is  
dependent on the jet momentum ratio only up to a momentum ratio of about . O 4  
where it becomes constant. The scatter in the data is large relative to the small 
values of measured induced moment due to taking the differences between two 
small numbers. The curve-fit equations of Table ?-6 only apply to the maximum 
value and are assumed constant at this value at momentum ratios above the 
maximum. 



3 . 3  PITCH UP/RO%L RCS 1R;ITERACTIQN 

Section 3.1.2 briefly summarized the previous pitch up/roll reaction control 
system results and models. The additional data base obtained in test 31.43% 
expanded the correlation of nozzle parameters since a s  shown in Tablo 2-3 
a number of different nozzle geometries were tested. Tlie QAlG9 data at 
Mach 0 added Mach number as a correlation variable as well ara ilici.easing tlw 
nozzle expansion ratio range ,and numbers of nozzle data to the base. The 
data to be reported in this section was obtained from nozzles exhausting up- 
ward past the vertical fin on the right side of the model, 

Tlie approach taken in this part of the study was similar to that of Section 2,2 
basically to start over wlth the new data base and to rcmalyzo all of the data 
together rather than to make the data fit the old modol. 111 this case laiigc! c11:tnges 
to the model have resulted from this appmaeh. First  the longitudinal date 
(cN, cA, cm) were found not to have peak values at  low angle of attack l ~ u t  
were better correlated by the approach used for  pitch down data ill Section 3 . 2  
that is to break it up into intervals by angle of attack and corzwlate each interval. 
The longitudinal data using this approach was also found to correlate better ndth 
momenhm ratio than mass flow ratio as  previously modeled making it consistent 
wvith the other pitch up RCS correlations. The occurmce of s peak value st low 
angles of ;Ittack still remains in the 13terql-directional data (Cy , C1 , Cn). 

3.3.1 Longitudiiral Data 

3.3.1.1 Pitch Up Axial Force Interaction 

Table 3-7 ,and Figures 3-7n to 3-7j present the correlations of induced axial fomc 
versus equivalent nozzle effective momentum ratio (Equation 5 ), These figures 
show a relatively small char~ge (reduction) in axial force occurs when the jets 
exhausting upward a re  fired but good correlations are  obtained at  all mgles of 
attack with momentum ratio, The smallest number of data points obtained within 
one interval was 77 and the largest 123. The Mach G data tends to scatter at the 
edge of the data band at low mgles of attack, ho:vever, it occurs on both edges 
(Figures 3-7cl and e) and no significant SZach effect can be ascertained. 

3.3.1.2 Pitch Up Normal Force Interaction 

The additional data base obtained in tests MA32 and CIA109 have changed the normal 
force interaction from a peak model at low ~ n g l e  of attack correlated tvitlr mass flow 
ratio to a model based on momentum ratio with no peak value. Table 3-9 and 
Figures 3-8a to 3-8j show the correlation. If we consider the higher angles of 
attack first (Figures 3-8f to 3-8j), we see that only a small induced uorrnfsl force 
results from the plumes exhausting upward and the lllgh angle of attack data scatter 
largely masks it. Only the Nach 6 data appears to show any trend. In contrast at 



low angle8 of attack wvldle tho force is r;mdl the corrclatior~ ie clear  for* the Mach 10 
data but tho very limited Nnch O data tends to show no induced normal t 'or~e .  Thc? 
model sliofvn 111 Table 3-8 was choson to follow tho data ccdrr*olatlons up to 25 degrees 
and assumes no effect beyond this angle of attack. Those data showv that the ilicluoeti 
force acts in the snmo directtoll as  the thrust and tlds enhmccs control powor. 

3.3.1.3 Pitch Up Pitching Moment Interaction 

Table 3-9 and Figures 3-93 to 3-94 present the! induced pitching moment resulting 
from fizlng the pitch up RCS units. Figure 3-!la 8110~s that the thrust moment is 
en11,wced by the interaction at negative angles of attack wherc the upper sur9n66 
is fully exposed to the flow, however, this amplification discippenrs at te ro  ,angle 
of attack (Figure 3-9b) and some very small nose down motnents appear. It !vould 
seem that the mlv source of these small moments could be the reduction it1 ,2ui:il' 
force (Figures 3-7a to 3-7j) acting on the base of the missile but the effect i n  clouded 
by possible sting effects on any base flow. ' 

3.3.3 Lateral-Directional High Angle of Attack Data 

The lateral-directdona1 data at angles above 18 degrees has been eorrslated tvith 
momentum ratio just as  the longitudinal data, The peak value corrolatioli for. low 
angles will be treated in Section 3.3.3. . 
3.3.2.1 Pitch Up Side Force Interaction 

The pitch up RCS data was obtained from RCS simulations all exhausting upwvnrd 
past the zlght side of the vertical fin thus, ,my interaction would expected to ! ~ e  
with the fin and have a negative sign. Table 3-10 and Figures 3-10n to 3-10e illdicate 
that such an interaction does occur and that it correlates well with momentum ratio 
as defined by Equation 5 .  None of these curves shows that a maximum value 
occurs wvithin the range of measured data and this makes it difficult to lsnow how far to  
e.xtrapolate to the limiting low dynamic pressure case. 

3.3.2.2 Pitch Up Rolling JIomellt Interaction 

The incremental induced rolli~llg nlomcnt clata is presented in Figures 3- l la  to 3- l le  
md the corresponding curve fits in Table 3-11. These data show that the induced 
moment counteracts the desired control moment from the thrust of the RCS units. 
The curve fits of the data again show no maximum values and it is critical to the 
roll control to know how far  these curves can be extrapolated in the very lo\v 
dynamic pressure cases. . 

3.3.2.3 Pitch Up Sawhg Moment Interaction 

F i g ~ r e s  3-13% to 3-12e and Table 3-12 present the yawing lnomeilc data for the 
pitch up RCS at high angles of attack whici~ shows the same trends as the other 
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lateral-directional data. In dl three lateral-direconal components the curve fit 
mutine chose to pass closer to the 8 8 2  nozzle data at the highest measured 
momentum ratio in preference to the N53 data at a momentum ratio of .08. The 
fairing of the curve in this range could be critical to roll control at  high angles 
of attack and low dynamic pressure during entry as will be discussed further in 
the error ,analysis. The oquations at present do not extrapolate the data 
beyond a momentum ratio of .I. 

3.3.3 Lhteral Directional Low Angle of Attack Correlations 

Figure 3- 1 showed that the reaction control system-flow field interaction 
exhibited a range of peak values at lower angles of attack. The analysis of 
Reference 3 showed that the peak value md the angle of attack at which it 
occurred are dependent on nozzle momentum ratio, The present analysis 
arrived at the same results except chat considerably more data was available 
to give higher confidence in the fact that momentum ratio is the primary 
oorrelathg parameter and new curve fits of peak value data were obtained. 
The model for predicting the RCS interactdon lateral-directional effects in 
the peak value region proceeds in the following manner. 

a) .Predict peak force or moment coefficient as a function 
of momentum ratio (Table 3-13) 

b) Predict the angle of attack at which the peak value 
occurs as a function of peak value (Table 3-14) 

c) If present angle of attack i s  greater than peak angle, 
recompute interaction coefficient as a function of 
angle of attack (Table 3-14) 

d) If present angle of attack is lower than that of the peak 
value, combclCe interaction based on decay from peak 
value model as a function of peak value and incremental 
angle below peak value. (Table 3-15). 

Tables 3-13 to 3-15 su:nmarize the coefficients for the equations used above and 
the momentum ratio used for peak values is defined by Equation 5 .  

3.3.3.1 Peak Interaction Coefficients 

Figures 3-13a to 3-13c present the correlations of peak values ot tne side force, 
rolling moment, and yawing moment. Only one point was obtained on a data 
run so the number of samples is low compared to other data correlations discussed 
earlier, however, the sample size of 43 --mints is still large enough to be an 
excellent measure of the true nature of the data. The curves show very little 
scatter at low values of momentum ratio where the O M 6 9  Mach 6 data shows 
good agreement with the Mach 10 data indicating no significant Mach effect. 
The yawing moment and rolling moment peak interaction curves do not reach 
maximum values within the measured data range so the limit of a momentum 
ratio of .1 is applied as a limit on these curves. 
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3.5.3.2 Peak Value Angle of Attack Correlations 

The sample data shown in Flgure 3- 1 show that the angle of attack at which 
the peak value occurs is directly related to the peak value and through that tc 
nozzle momentum ratio. Attempts to correlate p e a  value angles of attack 
with momenturn ratio demonstrated that a better f i t  was obtained by fitting the 
peak value of coefficient against the angle of attack at which it occurred ns 
shown in Figures 3-14a, 3-14c, and 3-14e. These ctirves show good correlation 
in which increasing momentum ratlo which increases peak interaction 
(Figure 3-13) also causes it to occur at lower angle of attack, Better correlation 
would have required more data at angles of attack below -10 degrees for the 
higher momentum ra?Aos and smaller intervals in angle of attack near the 
peak values. The curve f i t  of peak value versus angle of attack is fairly flat 
ahd the angle of attack interval was usually 2 degrees so that chosing the peak 
value ctnd its angle of attack ~tould be very prone to error and more scatter 
would have been expeated, 

The data tends toahow and the model assumes that all data at angles of attack 
above the peak value but below the high angle of attack range collapse into one 
curve which can be described by the peak value versus angle of attack 
correlation. Figures 3-14b, 3-14d, and 3-14f present correlation of the avail- 
able data at all momentum ratios tested from ,004 to .09 starting from the 
peak value and terminating at 15 degrees angle of attack. The shape of these 
data curves shows good agreement with the peak value curves and the collapse 
of all curves inio one is verified. 

3.3.3.3 Correlations at Angles of Attack Below the Peak Value 

The data sample of Figure 2-8 shows that the interaction decreases at angles 
of attack below that where the peak value occurs. The value of interaction at 
any of these angles appears to be tied to the peak value and the angle at which 
it occurs, The first correlation developed in Reference 3 correlated the ratio 
of the present 'value to the peak value against the incremental angle below the 
angle of the peak ~ a l ~ ~ e ,  Fiwres 3-15a, 3-l5b, and 3-1Bc present similar 
correlations made for this analysis of the expanded data base. A large scatter 
is to be expected in this analysis since the data base i s  primarily derived from 
the data where the peak value occurs at the higher angles of attack. These data 
were obtained at the lowest momentum ratios tested and would be expectbd to have 
the greatest scatter. Scatter results from the 4 terms in this correlation, 
however no other correl~~tion was found which worked any better. Tn this analysis 
the peak value correlations of Figures 3-13 and 3-14 were used to generate the 
peak interaction coefficient and the angle of attack at which it occurred to help 
rGduce the scatter, Cubic curve fits were applied to the data, whose coefficients 
are defined in Table 3-15. The rolling moment data (3-15c) shows that the 
interaction decreases until no measureable interaction occurs at approximately 
15 degrees below the peak value. The Mach 6 data appears to agree with the 
Mach 10  data in this region also. 
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3.4 YAW RCS INTERACTION 

Sectlon 3.1.3 described the previous yaw reaction control system interaction 
results and gives the definition oi mass flow ratio used in that analysis, The 
ymv nozzle data obtained from the nozzles defined in Table 3-4 for test MA22 
resulted in a large increase in the range of nozzle parameters obtained compared 
to that from previous tests wh~'  the OAlG9 data added to the data base Mach G 
data and extended the data of the effects of the number of nozzles within a cluster 
to a large degree. All data was obtained from nozzles on the left side of the model 
exhausting outboard parallel to the left wing, 

Analysis of the data showed that the number of nozzles was not a parameter in 
the correlation but that nozzle e3dt angle was a parameter. Mass flow ratio 
proved to be a better plrameter than momentum ratio when modified to the 
follo\ving fom. : 

9 = y j ~ , ~ ,  ( c ~  pi M. A - ) ~  s i n ( e N )  w - - - - *  

(7) 
YCOR j T j (Pco Maa Sref 

In general the correlations worked best with the mass flow parameter giiven in 
Eqaatio:~ 7 above although the appears to be weak for much of 
the longitudinal data, 

3.4.1 Yaw RCS Axial Force Correlation 

The previms model reported in Reference 3 did not attempt a correlation of 
the induced axial force due to yaw reaction control system operation. Figures 
3-16a to 3-16j show that there is  at best only a doubtful relationship established 
at the higher angles of attack. It must be pointed out that a strong one was not 
expected since the yaw RCS flow is away from the fuselage and its large base 
area. The lower angle of attack data is consistent only to the extent that 
low mass flow data show a slight increase in axial force. The coefficients of 
the equations in these figures are giren in Table 3-16. 

3 . 4 . 2  Yaw RCS Normal Force Correlation 

The yaw jets exhaust over the upper surface of the wing so that the expected 
result of an interaction would be a ~~egative normal force increment. Figures 
3-17a to 3-17j shows that this does occur and that the data trends at lower 
angles of attack are much better defined than the axial force data. The equations 
of.the curve fits on these figures are given in Table 3-17. The fact that 
number of nozzles in a yaw cluster i s  not a parameter is shown by the agree- 
ment between the N51 (4 nozzle) and N85 (2 nozzle) data at Mach 10 and the 
N95 (1 nozzle), N96 (2 nozzle), and N97 (3 nozzle) data at Mach 6.  The 
addition of nozzle exit angle into the mass flow parameter resulted from trying 
to get the N33 and N37 to fit into the correlation of the other data. 



The high angle of attack data shows the same problems wvih the scatter in the 
'iLlrtoh 10 data noted previously in both the pitch clown data (Section 3.2.2) and in 
the pitch up case (Section 3.3.1.2). 

3 .4 .3  Yaw RCS Side Force Correlation 

All yaw jet data was taken with jets exhausting out of the left side RCS pod of 
the model md the positive side load increments shown in Figure 3-18a to 3-18j 
indicate an interaction which enhances the side force generated by the yaw 
thrusters. The data scatter is worst in the negative angle of attack range but 
becomes very consistent at positive angles. Since this positive interaction side 
force is generated on the OMS pod,there mwt  be a negative angle of attack where 
na force is generated and this may be the reason for the scatter at negative angles. 
The fact that numbers of nozzles is not a parameter and that exit angle is a 
parameter is confirmed by these curves. Table 3-18 gives the coefficients of the 
least square cubic curve fit of these data. 

3 . 4 . 4  Yaw RCS Pitching Moment Correlation 

Table 3-19 md Figures 3-19a to 3-19j show that a nose up pitching moment is 
induced by operation of the yaw reaction control units. The trend is clear at 
negative angles (Figure 3-19a) and again at angles above 18 degrees (Figures 
3-19f to S-19j). No correlation was f w d  for angles of attack from -5 degrees 
to +15 degrees where interestingly the induced normal force showed its clear- 
es t  trends. This evidently occurs because the induced moments are so low they 
cannot be resolved from the data scatter. The standard deviation for these data 
are  similar to those of the pitch down data sho~vn in Figure 3-4 so that both sets 
have comparible accuracy. 

3 . 4 . 5  Yaw RCS Rolling Moment Correlation 

Firing the yaw jets over the left wing of the orbiter results in a leB wing down 
induced roll which i s  small at low angles of attack but becomes much larger 
with increasing angle of attack. This i s  shown in Figures 3-30a to 3-20j where 
the data above 15 degrees is fairly sensitive to angle of attack a s  well as the 
nozzle mass flow parameter defined in Equation 7.  The coefficients of 
the curve fits are tabulated in Table 3-20. 

The low level of induced roll in the l ow r angle of att,. ck range is a consistent 
result with the pitching moment data of the preceeding section since both would 
arise from interactions with wing upper surface flow, thus, confirming the 
pitching moment results. 

3.4.6 Yaw RCS Yawing Moment Correlation 

Table 3-21 and Figures 3-21a to 3-21j present the induced yawing moment data 
resulting from yaw jets exhausting from on the left OMS pod on the model. These 
data show that the thrust moment is enhanced at all, angles of attack but the 
greatest amount occurs at low angles. 



3.8  COMBINED CONTROL 

Combined control refers to the use of more than one cluster of RCS units operating 
at one time, Numbers of jets operating within one cluster has been accounted 
for in the analysis to this point generally through the use of the equivalent nozzle 
momentum ratio (Equation 5 ) or  as in the case of the yaw RC8 shown not to be 
a factor. Combined aontrol includes the symmetric pitch control cases whem 
both side jets are fired together, the pure roll case where one side is fired up 
and one down, and the combined pitch, roll, yaw cases. 

Data was not obtained an all possible control combinations but data was 
obtained on the most important combinations including: 

a) Symmetric pitch down 
b) Symmetric pitch up 
c) Pure roll 
d) Combined pitch up and yaw 
e) opposing pitch elo~vn and yaw 

The approach taken in the analysis of these data was to compare the sum of the 
correlating curve fits and associated e r ror  bands from Section 3 , 2  to 3 . 6  with 
the combined control data. The estimated standard deviation error  was com- 
pt~ted as the square root of the sum of the squares ~f the individual control errors 
and plotted on the curves to determine whether the measured data was within 
the expected scatter o r  not. 

I -.-- - 
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When a difference was taken, it was computed as the difference Setween a 
least squares curve f i t  of the data and the basic data curve fit .  

3 . 5 . 1  Symmetric Pitch Down Correlation 

One symmetric pitch down data run was obtained in test OA82 at Mach 10 and 
was the basis of the previous analysis of Reference 3 .  Ten (10) additional 
data runs were obtained at Mach 6 in test OA169 but only 4 were obtained in 
the high angle of attack range. Figures 3-22a to 3-22 1 present the data 
correlations obtained from 15 degrees to 4 2 . 5  degrees angle of attack. Samples 
of the axial force correlations are shown in Figures 3-223 to 3-22d. These 
plots show that the Mach 6 data indicates a sizeable increase in the incremental 
axial force due to plume interaction occurs when both sides are fired symmetri- 
cally however, the limited Mach 10 data shows much closer agreement with the 
single side data. Since the region for this interaction is across the base of the 
model, the effect of the sting is a large unknown \vhich(as in Reference 2) 
remains to be resolved. 



Samples of the incluced normal force are shown in Figuras 3-22e to 3 -22 h and 
of the pitching moment in Figu1.s~ 3-23 to 3-22 1. Tile~e data also 8how 
additional force md moment aro induced by pitch down jets firing an both sides 
of the model. Since other available data ctoes not cover a large lVLmgo of 
momentum ratios it was decidecl only to use the l bea r  term of tho tlifferonccs 
in curve fit equations between the single side culd the symmetric clata. These 
data are tabulated in table 3-22 and show very little vazlation due to mglc of 
attack. The model then uses an average value for the linear coefficient 
independent of angle of attack where the independent val3:it;tle i s  the average 
momentum ratio of both clusters of down firing jets. 

Tl1e lack of data at higher momentum ratios severly limits tlus model ns does 
the unknown effect of the sting. 

3 .5 .2  Symmetric Pitch Up RCS Correlation 

Reference 3 sho\ved that the ~ymmetric pitch showed no appreciable effect 
compared to single side data and a similar result war; obtained during this 
analysis. 

3.5.3 Coupled Pitch Up/Pitch Down RCS Roll Correlation 

The limited case analysis of Reference 3, concluded that there might be 
additional interaction cross-soupling resulting from pure 1-11 type of reaction 
control operation, These data have been re-analyzed along with additional 
data from tests MA 22 md OA169 md with expected e r ror  bands assigned 
from the errors  measured in the single side analysis as defined by Equation 8, 
Figures 3-23a to 3-23d preesent samples of the &a1 force data to show that 
most of the data is within the expected e r ror  band. Figures 3-23e io 3-23 h 
show the same is true for normal force while figures 3-23i to 3-23 1 repeat 
the same result for  pitching moment. The rolling moment results are 
summarized in Figures 3d23m to 3-23p where the lower momentum ratio 
results show good agreement with the sum of the predictions but one data 
point of N78N79 data pulls the curve fits apart at the higher momentum ratios. 
It was decided that one data point does not prove a difference. 

This analysis shows that there is no cross-coupling between the pitch up and 
pitch down jet interactions in the coupled roll control case. 

3.5.4 Combined PStch Up and Yaw Correlation 

The initial analysis reported in Reference 2 computed cross-coupling terms 
resulting from both pitch up and yaw nozzles being operated on the same side 
of the vehicle. Added data was obtained on test 3W22 a ~ d  all the data was 
re-analyzed with the errpected e r ror  bands assigned. These correlations are 
shown in Figures 3-24a to 3-23 dd and all confirm that no measurable cross- 
coupling exists. 



3.8.5 Opposing Pitch Dowvn/Yatv RCS 

Test data was obtained wvith pitch down jets e.xhaustlng over the right wlng and 
yaw jets over the left rvlng. No measureable cross-coupling was seen in these 
data. 

3.6 BODY FLAP INCREMENTAL EFFECTS 

Data was obtained dudng test MA22 of RCS effects with aerodynamic aontrol surface 
deflection, Although the aerodynamic corltrols axe not used until tho flight dynamic 
pressure becomes large enough for them to be effective, deflection may be desirable 
prior to that time if significant changes in induced reaction control system effects 
can be achieved, All data in earlier sections was correlated at zero contz.ol deflection 
md the purposes of the nexl; t-vo sections is to derive corrections to the correlations 
to account for control deflection, The approach is d e f i ~ d  as 

Chrysler DATAiiAN analysis of QA77/QA78 test results (Reference 8) showed tlmt 
considerable scatter did exist in aerodynamic control increments derived from other 
hypersonic tests, Thus the method used to analyze these results was changed to 
include the measured jet-off increments into the least squares curve fit.  This approach 
was taken as the best way to account for scatter in aerodynamic control increments. 
Thus the curve f i t  equation is 

where 
ACM = my force o r  moment increment 

-. - 

x = independent parameter (usually momentum ratio) 
aoto ag = lease square curve f i t  coefficients where a. is 

the jet off 6, effectiveness 

l~llere a. then represents the best estimate of the aerodynamic control increment. 
Comparisons of the differences between the interaction data with the controls deflected 
to that of zero deflection was done by making the a. terms the same, md plotting the 
zero deflection correlation on the same curve with that of the control deflection. 

Data was obtained for the body flap deflection 13.75 degrees trailing edge down 
and for 14.25 degrees trailing edge up for both pitch down RCS jet operatioil 
and yaw jet operation. No measurable effects were found in the yaw jet data. 



3.6.1 Pitch Down RCS Interaction at -14.25 Degrees Body Flap 

Figures 3-25a to 3-3Bj show that the induce4 axial force remains within the 
probable error envelope around the zcro coxitrol detlection correlating curve 
and no measurable change in intoraction has occurred, 

Figures 3-2Ga to 3-2Gj present the normal force correlations. No measurable 
effect is seen at angler below 15 degrees, however, above 15 degrees an increase 
in the normal force intor. ction is seen. Table 3-23 presents the coefficients for 
the difference betwpm :411e -14.28 degree least square curvc fit and the zero degree 
curve fit as a functi~n 61 momentum ratio. This approach sllows the l~asic data 
to be defined by the zrbrc deflection correlations md n control deflcctioti to be 
added to it. 

TaIil~le 3-34 and rlgures 3-27a to 3-275 present the pitching moment correlations 
which show the same kind of results as the normal force increments, 

3,G,2 Pitch Dotvn Interaction at +13,35 Degree Body Flap 

No consistent change in the axial force interaction due to a positive control deflection 
was found and as is seen in the sample data of Figure 3-28a to 3-28d. Some change 
in interaction was found in normal force at negative angles of attack (Figure 3-28e 
and f )  but no consistent trend at positive angles of attack (Figures 3-28 g to 3-28 j) 
so no modeling was done. No effect was seen in pitclling moment as sliorvn in 
Figures 3-28 k to 3-28n ancl none was seen in rolling moment. 

Thus it is concluded that trailing edge dotvn body flap control deflections do not 
make measurable changes to the pitch down r?CS plume interaction, 

3 .7  WING ELEVON DEFLECTION EFFECTS 

The plume interactions of t l ~ e  Pitch Down RCS and Y aJV RCS which cxllaust cloic~i 
toivard the wing in the first case and over the ~vjlig in the second case \vsuld be 
expected to be changed by moving the elevon. As seen in FFf@r@ 2-1, this 
represents a significant portion of the Wing t r a i h g  edge. Data was obtained 
for both reaction control modes with the elevon set at -30 degrees (trailing 
edge up) ancl at +lo degrees (trailing edge dotvn). Arnalysis of the data was 
performed in the same manner as that of the body flap described in Section 3 . 6 .  

3.7.1 Pitch Dotvn RCS Interaction with -30 Degree Elevsn 

The effect of deflecting the elevon surface up into the plume & low angles of 
attack results in no change in the induced axial force (Figures 3-s9a to 
3-295). The data above 15 degrees indicates that the axial force increment 
is increased by the co~xtrol deflection. Table 3-24 a gives the coefficients of 
the difference between tlie zero deflection data and the -30 degree deflection 
data as a function of momentum ratio. 



Tlie normal force interactton is summarized in Table 3-25 and Figures 3-203 
t;r~ 3-30j where n decrease in interaction results from the control deflection. 
The increase of axial force occurs because sf the added axial area component 
of the elevon but the decrease of normal force most likely results from the changes 
in the upper sur£ace flow field uear the ~vlng tip induced by the trailing edge elcvon 
because of the change seen in rolling mogent data. Table 3-25 summarizes the 
incremental change coefficients. 

Table 3-26 and Figures 3-31 a to 3-31j show that a reduction in the induced pitch- 
ing moment interaction occurs \vhich appears to be related mostly to the reduction 
in normal force. Table 3-27 and Figures 3-32 a to 3-32j show that the largest 
recluctions in interaction occur in the rolling moment and this occurs at all angles 
of attack as contrasted wlth the pitching moment change which is strongest at the 
highest angles of attack. Deflectdng the elevon trailing edge up must change the 
wing flow near the wing tip enough to make it less sensitive to RCS plane effects. 

3.7.2 Pitch Down RCS Interaction With 4-10 Degree Elevon 

Deflecting the trailing edge of the elevon down away from the RCS plume results 
in a decrease in axial force at negative angles of alkaclr but no change at positive 
angles (Figures.3-333 to 3-335). The normal force data shown in Figures 3-340 to 
3-343 shows an initial small reduction in normal force interaction at negative 
angles of attack and no consistent trend a positive angles. The incremental 
coefficients for normal force are given in Table 3-28. The pitching moment data 
tends to show a slight increase in interaction in the middle of the angle of attack 
range (Figures 3-35a to 3-355 md Table 3-29) md ag~oement wit11 this trend 
is seen in the rolling moment interaction increments of Figures 3-36a to 3-3Cjj and 
Table 3-30. 

It appears from these analysis that deflecting the elevon trailing edge up reduces 
plume interaction but a trailing edge down deflection makes no major change in 
pitch down RCS plume interaction. 

3.7.3 Yaw RCS Interaction With -30 Degree Elev 011 

Figures 3437ato 3-33 present the data correlation of the ymv RCS plume inter- 
action effects on axial force coefficient. These data show that the elevon 
deflection does cause a small increase in interaction mostly in the angle of 
attack range from 0 to 20 degrees. Table 3-31 summarizes the deflection 



correction coeffieielits between the zero degreo case and -30 degrees, 

No clear trends are  established in the nolmal b r e e  interaction showmi tn Fignres 
3-38a to 3-385 and the correction curves (Table 3-33) were generated only to 
account for the differences seen for the highest mass flow parameter case. 
Deflecting the elevon up does result in some recluction in the pitching moment 
especially at angles of attack above 15 degrees, The data which shows these 
trends is shown in Figures 303% to 3-393 and the difference coefficients are 
tabulated in Table 3-33. 

The induced rolling moment data of Figures 3-403 to 3-40j s lo~vs  t l~at thcre is 
a reduction in induced rolling moment at the lower mass flow ratios, Table 
3-34 summarizes the reaulting difterence coefficients. 

3.7.4 Yaw RCS Interaction with +10 Begreo Elevon 

The axial force interaction increments plotted in Figures 3-413 to 3-41j show 
a clear trend of increasing interactfotl due to -10 degree control detlection. 
The coefficients of the control deflection correctio~i are glven in Table 3-35. 
Tlr1s trend is also shown in the induced normal force coefficients shown in 
Figures 3-42a to 3-42j at my:es of attack al>ove 10 degrees. Table 3-36 
summarizes the coefficients. Table 3-37 and Figures 3-433 to 3-433 shot .hat 
the trend in pitching moment interaction is a small increase due to elevon 
deflection. The rolling moment increments due to plun~e interaction presented 
in Figures 3-445 to 3-445 show that deflecting the eleven do~vnwart1 does result 
in tin increase in tho interaction particulorily at angles of attack near 15 degrees. 
The curve fit coefficients are given in Table 3-38, 

Thus, the data indicates that yaw jet interaction is reduced by deflecting the trxil- 
ing edge of the elevon up a d  increased by traling ocige down dellection. 

3.7 .5  Combined Elevon and Body Flap Effects 

Data was obtdned with both elevoil and body flap deflection to ifetemnine if further 
interaction cross-couplings could be found caused by elevon to body flap inter- 
actions. The scatter in the data was found to be such that no measural3le 
difference could be ascez.t;alned. 
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TABLE 3-5 Pitch Down RCS Incremental  Rolling 1Ioment Equations 
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TABLE 3-9 pitch up RCS Incremental ~ltchiaq >[omen: Equanons 
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T B L E  3-11 pitch Up RCS High .ingle of .Attack incremental 
RolIing >foment Equations 





. TABLE 3-14 Pitch Up RCS Peak LaterniiEirectional Component Equations 

T-aEE 3-13 Flteh Cp RCS Peak Iocrementol Loteral,'tlrecefon31 
Component Equations 3t Low .Ugle of Attask 

2 3 
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TABLE 3-15 Pitch C'p RCS Laternl,/Dlrectional Component 
Equations Below Peak Valves 
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T U L E  3-19 Y ~ W  RCS Incremental Pitching :~ornent Equations 
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X momentum ratlo 

NOTE: Thrse vnluee are for one side only. 
Gymmetric coupllne; riqufns ueOg the 
average momentum rndo of one side 3nd 
tnulttply the resulting corer coupling by 2. 

T-4BLE 3-22 pitch p own RCS Incrementd Correction for 
Symmetria Rtoh Down Contml 
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T,QLE 3-30 Pitch Down RCS Sncremontd Roilin, * ?,Iornent Due to 
+I0 Degrees Elevon 
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FROX 36 T9 42.5 DEGREES ANGLE OF ATTACK; Y.4WIXCi JIOLlE?rT 
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XGURE : P'fI'CIi DOWN RCS NCREJIENTAL EFFECTS DUE TO 
-14.26 DEGREE BODY P U P  DEFLZCTldH FROJt 5 

TO 10 DEGREES ANGLZ OF ..1TTTT.1Ch'; . b .  FORCS 
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FIGURE 3-2sg. : PITCH DOWN RCS INCRE3bENTAL EFFECTS DOE TO . 
-14.25 DEGREE BODY FLAP DEFLECTION FROM ?O 

TO 2S DEGREES ANGLE OF ATTACK; PITCUING MOBEXT 
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FIGURE 3-27h- : PITCR WFVN RCS NCRESaXTAL EFFECTS DUE TO 
-14.1 DEGREE BODY FLAP DEFLECTION FROM 25 

TO 30 DEGREES ANGLE OF rSTTACIC; PITCBING SZObEXT 
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FIGURE 3-283- : ppfCB DOWN RCS MCREmWAL EFFECTS DUE TO 
+13.75 DEGREE BODY FLAP DEFLECTXON FROM -10 

TO -5 DEGREES ANGLE OF .%T?.\CX; AXUL FORCE 
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FlGURE 3-28 b. : PITCB WWX RCS MCRE?iQZ?JTAL EFFECTS DUE TO 
+13.75 DEGREE BODY FLAP DEFLECTION FROM - 3 .  
TO 0 DEGREES ANGLE OF .4TTACX; .L'QAL FORCE 
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FIGVRE 3 - 1 8 ~ .  : PPTCH DOWN RCS NCREJZEXI'AL EFFECTS DL% TO 
+13.75 DEGREE BODY FLAP DEFLZCTiON FROM 30 

TO 35 DEGREES AXGLE OF ,4T?.4Ch'; ,C-L SQRCZ 
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+13.76 DEGREE BODY P U P  DEFLECTION FRO1 -10 

' TO 4 DEOREES ANGLE OF ATTACXi NORXAL FORa 

FIGURE 3-2Sf. : ;?ZTCH DOWN RCS INCELCSZEST.lL EFFECTS DLTI TO 
+13.75 DEGREE BODY F W P  DEFLECT108 PROX -5 
TO 0 DEGRCES ANGLE OF AZTACX ?IOR";WL FORCS 
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XGVRE 3-29p. : PmCX COW4 RCS N C R E 3 l E m A L  SFFXCTS DUE TO 
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FIGURS 3-23! : TfiG3 DOm: RCS WC-%ZILF:;TAL ZP?f CTS 3'f?E TO 
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FIG= 3-29m : PITCH DOWN RCS MCICEJSESTAL E F ~ C M  DUE TO 
*13.75 DEr3UE BODY FLAP EEFLECTION FROX 30 

TO 36 DECiREES ANOLZ OF ATTACK; PfiCHINO 3foblkXT 

FIGURE :3-L8U : VITTCH DOWN BCS i?SCRE39E2IT.%L EFFECTS DUE TO 
-1r.75 DEGREE BODY FWP DEFLECTIGN !%OX 335 

TO 49.5 DEIEGREES ANGLE OF ATTACK; P'TZCBLVG 5IO;MEm 
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FZGL-E 3-29cq : ineCH DOWN RCS INCREXENTAL EFFECTS DUE TO 
-SO DEGREE ELEVON DEFLECTION FRGM 0 
TO 8 DEGREES ANGLE OF ATTACK : AXIAL FORCE 

FIGURE 3-59d. : PSTCH DOWN RCS MCRESIEXTXL EFFECTS DEE TO 
-30 DEGREE ELZVQN DEFLECTION FROX 3 
TO 10 DEGREES ANGLE OF ATTACK; .=AL FCIRCE 
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FIGURE 3-29h. : PfiCB DOWN RCS DJCRE3fEXTAL EFFECTS DUE TO 
-30 DEGREE ELEVON DEFLECTION FRORZ 3 
TO 30 DEGREES ANGLE: OF ATTACK; AXAL FORCE 
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;FIGCRE 3-33c. : PITCB DOWN RCS IXCREmXTAL EFFECTS DLZ TO 
+lo DEGREE ELEVON DEFLZCTION FROM 0 
TO 3 DEGREES ANGLZ OF ATTACK; AXIAL FORCE 



SOZZLE XtEdBZR TEST 5-R 

F I G ~ S  3-33 e. : RCS NCREmZPTAL EFFECTS DUE TO 
-10 DEGREE ELEVON DEFLECTION FROJf 10 
TO 15 DEGREES AXGLE OF ATTACK; L'ML FORCE 

Z'IGCiZE 3-33 f. : PSTCE DOWN RCS NCREJlEXTAL EFFECT3 DUE TO 
+lo DEGREE ELEVi?N DEFLECTIOB FROM 15 
TO 20 DEGREES ASG'LE OF AT-ICK; .C=L FORCE 
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XGURE 3-03 t. : PITCB DOWN RCS IXCRENEXl!AL EFFECTS DUE TO 
+10 DEGREE ELEVON DlSFWECTION FROM 30 
TO 31 DEGREES ANGLE OF ATTACK; AYML FORCE 
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!?!CURE 3-3&1. : PfTm WWN RCS WCNJZESTJL EFFECTS DUE TO 
-10 DEGREE ELFVOX DEFLECT?ON FROM -10 
TO -3 DEGREES ANGLE OF ATTACX; XORJUL FORCE 
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WGURE 3-34c. : mTCH DOWN RCS IXCIIEYIESTAL EFFECTS DUE TO 
*lo DEGREE ELEVON DEFLECTION FRO31 0 
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ZGC'RE 3-341. : TITCS i)~)w acs WCREXEXTAL ZFBECTS DL% TO 
-10 DEGREE ELE:'ON DEFLECTIGS PROJZ 5 
TO 10 DEGREES AXGLE OF .YI!TACX; :TOIGML FCRCF, 



FIGURE 3-31.. : PITCS DODOWN RCS rncRE~NTAL.tF~Cn DC'E TO 
+I0 DEGREE ELEVON DEF LECTZON FROM 10 
TO 15 DEGREES ANGLE OF ATPACXI NOEML FORCE . 
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ZGC'RE 3-351. i mTCB DOWN RCS M C N E S S T A L  EFFZCTS DUE TO 
+10 DEOLLEE ELEYON DEFLECTLON FROX 30 
TO 3 DEGREES ANGLE OF ATTACX; N O W L  FORCE 
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XOZZLZ -1L TEST NVMaSCI 

FIGURE 3-33 3. : PaCH 30WN RCS INCILE?bENTAL EFFECTS DUE TO 
+lo DEGREE ELEVON DEFLECTION FROM -10 
T O  -e DEQREESANGLE OF ATTACXi PfiCBINQXOMENT 

FIGURE 3-35b. : PiTCH DOWN RCS IXCREJ6EWAL EFFECTS DUE TO 
+I0 DEGREE ELEVON DEFLECTION FROM -3 
T O  0 DEGREES ANGLE OF ATTACK; PITCfflNG l%o&E?ST 



FfGU8E 3-35u. : PnCR DOWN RCS INCREX3CNT.U EFFECTS DUE TO 
*10 D E W E  ELEVON DEFLECTION FROM 0 
TO 5 DEGBEES ArVGLE OF ATTACS; PlTCEIYHb JrOMXXT 

XGC'RE 3-356. : PITCH DOWN RCS MCIZESEYl'AL EFFECTS DUE TO 
-.10 DEGREE ELEVON DEFLECTION FROXZ 3 
TO 10 DEGREES A H G U  OF .U'TACK; PlTCRCJG YOXEXT 
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XOZZLE XuaCPsB TEST ?mJcTBEB 

FIGURE 3-33r, : PETa WWN iZCs WCRE31EmAL EFFECTS DUE TO 
+10 DEGREE EUSVON DEBUGTION FROM 10 
TO 15 DEGREES A N G U  OF ATTACK; PITCfIING XOMENT 
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FIGURE 3-36 1. : PITCH W m  RCS mCRE?vfEWAL EFFECTS Dbz TO 
+I0 DEGREE ELZVON DEFLECTION FROM 15 
TO 20 DEGREES ANGLE OF ATTACK; PT'rCEI?IG SXOXEW 



XOZZLE NUJllBER TEST 

FIGURE 3-35 g. : PfiCE DOWN RCS DICREXE?JTAL EFFECTS DUE TO 
+10 DEGREE EIEVON DEFLZCTION FROM 20 
TO 25 DEGREES ANGLE OF ATTACIT; PrrCHfNG JXOMENT 

-FIGURE 3-35 h. : PlTCB DOWN RCS INCREMENTAL EFFECTS DUE TO 
+lo DEGREE ELEVON DEFECTION FROX 25 
TO 30 DEGREES .iNGLE OF ATTACK; PlTCHING JfO?rIEXT 



FIGURE 3-351. , : PZTCH DOWN RCS INCXEXENTAL EFFECTS DVE TO 
+lo DEGREE ELEVON DEFmCTION FROM 30 
TO 35 DEGREES ANOIZ OF ATTACK) PrTCSINi3 X O r m w ~  
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FIGURE 3-35 j .  : PITCH COWN RCS I N C = = ~ - 4 ~  EFFECTS DUE TO 
'10 DEGREE ELZVON DEFLECTION FROM 35 
TO 42.3 DEGREES ANGLZ OF -4TTACX; PfiCEmJG JIOltEXT 
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FIGCaf 3-36 a. : PnCX DOWN RCS INCXEmNTSTAL EFFECTS DVE TO 
+I0 DEGREE ELEVON DEFLECTfON FROM -10 
TO d DEGREES ANGLZ OF ATTACK; ROLLIllG SlOME?PT 
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WGCRE 3-36b. : PfiCfi ~ ' F i T i  RCS N C R G a N T d L  E F a C T S  DUE TO 
+lo DEGREE ELEVON DEFLECTION FROM -3 
TO 0 DEGREES ANGLE OF .iTTACK; ROLLING JIOXEN! 

FTillJRE 3-36c. : PfiCH DOWN RCS CiCXEXEXTXL EFFECTS DC'E TO 
-10 DEGREE ELZT:ON DEFUC'ZON FROM 0 
TO S DEGiiEES ANGLE OF ATTACK; ZOLLIXG J ~ o a m  



nGVBE 3-30 d. : PmCH DOWN RCS INCBEXEMPAL EFFECTS DUE TO 
-10 DEGREE ELEVON DEFLECTION FROM 5 
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FIGURE 3-3Ba : PECH WWN RCS WCREJdENTAL EFFECTS DUE TO 
+I0 DEGREE ELEVON DEFLECTION FROM 10 
TO 15 DE W E S  AXGLE OF ATTACK; R O L m G  ?4Obl!Zm 
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FIGURE 3-961. : PlTCH DOWX RCS INCiZESIEXTXL EFFECTS DL?: TO 
+lo DEGRZE ELGVON DEFLECTION FRO%% 15 
TO 20 DEGREES ANGLE OF ATTACK; ROLmG 3IOMEXT 



WGVRE 3-385. : PITCB POW RCS eSCELES6EXTbL EFFECTS DCZ TO 
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NOZZLE ~~~~ 

FIGURE 3-36 j. : PmCIZ DOWN RCS INCREXESTAL EFFECTS DUE TO 
+m DEGREE ELEVON DEFLECTION FROM 36 
TO 42.5 DEGBEES AN- OF ATTACK; ROLLING XOWXT 
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F I G ~ B E  3-37 a. I YAW RCS mCECEJ1[ESTAL EFFECTS DUE TO 
-30 DEGREE ELEVON DEFLZCTION FROU -10 TO 

-5 DEGREES AXGLE OF ATTACL A.CML FORCE 
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FIGUilE 3-37d. : YAW RCS I?JCllE?mENTAL EFI'ECTS D L i  TO 
-30 DE0RE.E ESVOX DEFLECTIOX FROW 3 TO 

10 DEGlUES AIYGLZ OF ATTACK; LXAL FORCE 
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FIGURE 3-370, I YAW RCS MCREJQImAL EFFECTS DI;E TO 
-30 D E N E  EZZVON DEFLECTION FROX 20 TO 

28 DEGREES ANGLE OF ATTACK; IL'CUL FORCE 
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n G C R E  3-3%. : YAW RCS I??CRESIE?PTAL EFFECTS DUE TO 
-30 DEGREE ELEVON DEFLECTION FRO31 25 TO 

30 DEGREES ANGLE OF ATT.4CK: .L=L FORCE 
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FIGURE 3-37!. : YAW RC3 INCREmTAL EFFECTS DM TO 
-30 DEGREE ELEVON DEFIZCTION PROM 30 TO 

35 DEGREES ANGLZ OF ATTACK; .. a- iL FORCE 
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FIGIXlE 3-38a. r YAW RCS IXCREJIENTAL EFFECTS DUE TO 
-30 DEGREE ELEVON DEFLECTION FROM -10 TO 

-5 DEOREES ANGLE OF ATTACK; NORSIAL FORCE 
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FIGURE 3-38 b. : YAW RCS NCRE3EXTAL EFFECTS I'LT TO 
-30 DEGREE ELZVON DEFLECTION FROM -5 TO 

0 L)EOREES XIiGLE OF ATTACK; XOPdXAL FORCE 
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FIGURE 3-38'.?. r YAW RCS NRE3lENTAL E'FFECTS DOE TO 
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FIGURE 3-384. : Y.17 .rCS INCRE3fEXTAL EFFECTS DUE TO 
-39 DE ;=-E ELEVON DE_FLECTION FROM 5 TO 

LO DECREES ANGLE OF ATT.$C:<; XOFMAL FORCE 
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=CURE 3-38 f. : YAW RCS INCRENENTAL EFFECTS DUE TO 
-30 DEGRgE ELEVON DEFLECTION FROM 15 TO 

20 DEGREES AXGLE OF ATTACK; XORJML FORCE 
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FIGURE 3-380. : YAW RC3 WCREmWAL ZFFECTS DUE TO 
-30 DE-GEEREEE EI&VON-DRFLECTION FROM ?C TO 

25 DEQiEES ANGLE OF ATTACK; X O W L  FORCE 
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FIGURE 3-3911. : YAW RCS INCREmZJTAT, EFFECTS ZlU" TO 
-30 - DEGm-EEZEVON DEXLECTIQN FRO% -10 TO 

-3 DECJZEES AMJLE OF ATT ?CK: PITCM1;G XO?iIEXT 

FIGVRE z-395. : YX'N BCS IXCREJIEXT.\L CBTECTS DUZ TO 
-30 D E G g E  SLEVOX. i3EFLZCTXOX TZCX -5 TO 

0 DEGREES AXGG OF ATTACK: PITCEIXG JIO3E:;T 
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FfGUfiE 3-390- : YAW RCS ECXEJIENTAL EFFECTS DUE TO 
DEGREE ELEVON DEFLECTION FROM 0 TO 
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FIGURE 3-39d. : Y.iW RCS INCEIE3ENTBL EFFECTS DW TO 
_ DEGWE ELEVON.DEFLECTION FRON 3 TO 

10 DEGKEES ANGLE OF ATTACK; PTTCHCiG 410SlEXT 
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ANALYTIC MODEL DEVELOPMENT 

4.1 GENERAL DESCRIPTION 

The analytic model was initially developed and reported in Reference 3. The data 
analysis described in Section 3 refines the basic model in a number of ways but 
the basic approaoh remain6 the same. In general the total control effectiveness 
of a given conthl  ir def ied as  the aum of a number of parts as shown in Equation 1. 

C - C + C  +c + C  
%otal Mthru8t . %nPingement Minter action "cro#s oaupling (1) 

where 

C~ 
= RCS force o r  moment component 

and the resulting control effectiveness called control amplification is defied as 
an arnpliflcation factor which is the total control moment divided by the thrust 
moment 

where 

K~ 
= RCS force o r  moment amplification factor 

In addition to the effects in the thrust direction, the RCS controls induce out of 
plane forces and moments which are the sum of some terms given in Equation 1. 
The data of Section 3 showed that each time any reaction control thruster is fired 
measurable aerodynamic interactions occur in all 6 force and moment components 
which change the total effect on the vehicle, The 6 aerodynamic forces and moment 
components induced by either interaction o r  impingement must be added together 
on each suds to determine the total value of the induced moments. 

The data was obtdned and correlated in a normal force (CN) - Ma1 force (CA) 
body axis system. The analytic model, however, has converted these coefficients 
to a true body axis system as shown in Figure 4-1 where the vertical force is 
C z and 1ongi.I;Udinal force is given as CX which are positive in the directions shown 
in this figure, 

One basic assumption which relates to all parts of the reaction control system 
model is that if a discharge coefficient is defined it is always applied to the nozzle 
chamber pressure as a correction as given in Section 3 Equation 4, 



The componenta of thrust used in Equations 1 and 2 a re  computed using the 
reaction control system nozzle geometry, operating characteristics, its 
location relative to the vehicle reference moment center, and the mounting 
~mgles of the nozzle relative to the vehicle mcia system, 

The t h m a  waa computed as 

where 

T = Thrust of cluater 

NN = Number of nozzles flrlng in a cluster 

poj - CD poj 
= Effedlve chamber pressure 

C~ = Nozzle discharge coefficient (Section 2, Equation 3) 

P A 4  = Nozzle chamber pressure 3/ 

p~ = Pressure at; nozzle exit  

3 = Nozzle gas specific heat ratio 

PCO = Ambient pressure 
AT = Nozzle throat area 

AN = N.ozzle exit area 

and thrust coefficient as  

whore 
q = Freestream dynamic pressure 

Sref 
= Reference (wing) area 

4.2 INTERACTION COMPONENTS 

4.2.1 Zero Deflection Computaticns 

Tables 3-1 to 3- 22 present the coefficients for the zero control deflection 
curve fit equations. The equations are evaluated in the form: 



CASD-NSC -77-003 

where 
ACM = Any RCS interaction force o r  moment coefficient 

so to ag = Curve flt coefilciant~ 

x = Independent parameter for force o r  moment 
being fitted 

In additlon to the coefflcienta of the flt, each table has a specified minimum and 
maximum value of the independent variable, These values are used to limit 
the range of extrapolation of the curve fit and if x is greater than %, then 
x *, is used to compute the interaction and the same is true on the 
minimum value. These maximum and minimum values were chosen as 
maximum o r  minimum points of the curve flt equations if such occnr in o r  
near the measured data range, If there are no maximum or  minimum points the 
Umitr are generally set to the limits of the measured data range. 

Each curve fit expression was developed for a given range of angle of attack 
which was u.sually a 5 degree interval, The question of how to treat different 
angles of attack within a given interval wan treated by assuming that the curve 
fit reprenents the beat flt for the angle of attack in the middle of the interval 
and linear interpolation is performed for other angles between curve flts. 
For example if ac = 15' 

where 

A C 1  15 = RCS interaction at 15 degrees 

12.5 
= RCS interaction curve fit result at 12.6 degrees 

"M 17.5 
= RCS interaction curve fit result at 13.5 degrees 

The data was obtained in 5 degree increments at the higher angles of attack and 
this fitting of data at the mid-points of such intervals meant that 2 sets of data 
were incorporated into each fit increasing the sample size for the fit. This 
approach also results in smoother interpolation between angles of attack since 
each angle of attack sample was used in two fits one above and one below the 
nominal measured angle. No extrapolation for angle is made above the midpoint 
of the last interval (37.5")ut extrapolations are made below the midpoint of 
the lowest interval. 



4.2.2 Control Deflection Cormctionr 

Tabler 3-29to 5138 give the cosfncientr for tho corrsctionr to the interaction 
term8 generated in Section 3. Control deflectton curves were generated ar  the 
difference between the zero deflection curve fit and a curve flt through the data 
wlth the colrtrol deflected, Thua, the 

ACM 'Acme* +ACwe + AC 

who re 
A CM = RCS interaction force o r  moment 

L 

AC = RCS interaction correction for zero control deflection 

A = RCS interaction correction for elevon deflection 

"@BF 
= RCS interaction correction for body flap deflection 

Oe = Elevm deflection 

8~~ = Body flap defleotion 

'BFREF 
= +13,75 o r  -14,25 * depending on sign of bBF 

The ratio of elevon angle and body flap angle to reference conditions is needed 
to accounf; for angles other than t h o ~ e  tested which a re  the reference angles 
listed above, The ,75 power shape of the interpolation far angle is based 
largely on jet-off data of elevator effectiveness such as Figure 4-2 which shows 
that the elevator effect is nonlinear. 

4.3 INTERACTION CROSS COUPLING COlvIPONENTS 

The present model of interaction haa eliminated all cross -coupling interactions. 
between RCS units except for the symmetric down firing RCS case. This 
correction was also generated as  a difference in curve fits between the one side 
firing data and the symmetric case so that the effect of each side alone is 
computed and then the cross-coupling correction added separately. 

The case of 2 nonequal numbers of down firing nozzles being used is taken into 
account by using the average momentum ratio between the sides to compute the 
correction, 



4.5 PLUME IMPINGEMENT INCREMENTS 

Figure 2-4 rhowed a view of the apace shuttle orbiter which empharizen the 
clorenesr of the rear  RC8 packager to the bane area of the vehicle. It i n  
evident that the aft RCS enginerr may impinge on the vehicle wing, vertical tail, 
bcdy flap, main propulrion englne nozzler, and porsible fuselage nides, depend- 
ing on the nozzle set flred and on the altihtde and other flight conditions affecting 
plume nize. Reference 3 showed that plume impingement war a sizeable term 
in the earlier analytic modeL while Reference 7 shows the same for the prerent 
configuration based on a vacuum chamber test (Rockwell Test OA99) and 
impingement predictions for the vacuum case, 

Two modeln of plume impingement were developed for the earlier analytic model 
of Reference 3 and have been refined for this updated model. Both are  included 
in the prediction computer program presented in Section 5. The first model was 
developed from the OA99 vacuum chamber test and rep \sent8 flts of measured 
impingement test data. It is limited in that control deflection effects are not 
included nor are  free-stream effects on the plume, The second is an rtnalytic 
predictLon technique which computes impingement forces on a flat plate representa- 
tion of the vehicle using a simple plume model to generate the local plume flow 
characteristics on each plate. It can handle control surface deflection but i n  
limited in accuracy by the number of plates uaed and free stream distortion of 
the plume is only approximated. 

4.4.1 Vacuum Test Data Model 

The first model developed is based on the aseumption that the range of interest 
of flight conditions for full scale RCS estimation is sufficiently close to the 
vacuum case that the teat data amplification factors from test OA99 reported in 
Reference 7 can be used directly from the thrust and thrust moments. Con- 
verting the data into coefficient form, the impingement increments from the 
pitch up jets are given in Equations 9 to 14 in body axis form: 



whom 

c~~ " (total t h w t  of pitah up enplnen)/(q tiref) 

Xm = X location of c l u r t e ~  relative to moment center 

Y~~ 
= Y location of cluster relative to moment center 

Q = Fwstmram dynamic pmnnum fa PSF 

The QF factor defhed in Equadon 16 was added to the vacuum model a8 an 
empirical approximation of the decay in impingement due to increasing flight 
dynamic prenrum, during entry, The 20 PSF cut off war developed from the 
prediction8 of Reference 3 u rhg  the analytic model which rhowed no impingement 
a t  dynamic pmrrrures higher than that, All sips rrhown in these equations reflect 
in RCS unit being fired on the left side of the vehicle and X, Y and Z distances 
a r e  negative numbers, 

The pitch down rsactioa control jet impingement increment8 are  given by 
Equation 17 to 22 where QF comes from Equation 16. 

where 

"pD 
= Total pitch down thrust coefficient of cluster 

XPD = X location of pitch down RCS cluster relative to moment center 

=PD = Y location of pitch down RCS clueter relative to moment center 



Thcl yaw rorc#on control iarplngrrnent ecpatlonr am: 

where 

C~~ 
= Total yaw RCS thrust coefficient of engines in cluoter 

XY - X locatloo of yaw thmlter  cluster relative to moment center 

zy = Z location of yaw thruster c l u a r  relative to moment center 

This model could not account for the difference in impingement due to nozzle 
geometry changes in the wind tnnne1 data and was not used to make the impinge- 
ment corrections in that data. Because of thid mother model wae developed 
to  analytically predict: the impingement components in the And-tunnel data and 
to  correct for it when deriving the in&rac$ion components. 

4.4.2 Analytic Plume Impingement Model 

The plume impingement model developed in Reference 3 and which was refined 
for this expanded analysis of the wind tunnel data consists of 4 parts which are 

a) Equivalent nozzle plume centerline decay model 

b) Off-center line shape 

C) Plume pressure model 

d) Surface presaure integration 
This discussion will concentrate primarily on the changes to that model. 



4.4.2.1 EquZvalent Nozcle Plume Centerllno Decay Model 

The plume model developed In Reference 3 ured a vacuum plume eource 
flow apprordmation for tho nozzle denrity dirtribution far from the nozzle: 

where: 
X - Mltance from nozzle exit 

d* = Nozzle throat diameter 

f ( 8 ) Off-caterline model 

where the constant B wan shown to be principally a function of plume limiting 
turning angle, 

where Jet exhrult plume pas ipecific heat ratio 9 
8% = plume ~im~.thg turning angle at nozzle 

A cluster of more than one nozzle firing wae treated by an equivalent nozzle 
approach in which the throat diameter (d*) waa computed from the sum of the 
throat; areas of the nozzles in operation. 

Examination of the test data shown in Reference 3 shows that the impingement 
appeared to be over-predickd at  the higher nozzle pressures and the Mach 6 
data analysis confirmed thia. A re-examination of the plume model resulted 
in a change in the expression of the conf3tant B which became 

The equivalent nozzle assumption also appeared not to work well for a line of 
nozzles lying in a stream-wise direction, 

A modified equivalent nozzle definition was chosen such that 



where 
J* = Equivalent nozzle throat diameter e 

A* - Single nozzle throat area 

NH = Number of nozzles operating in a cluater 

4.4.2.2 Off -Centerline Plume Shape . 
The plume characteristics off the centerline of the nozzle were modeled in 
Referenoe 3 using Simon's model which deflned E ( 8  ) in Equation 29 as: 

where 
8 is angle from nozzle centerline in degreea 

Reduction of the wind tunnel d a ~ a  showed that the plume limiting tumlng angle 
( 8,) did not in a number of cases exceed 60 degrees, so a correction was 
generated to the fixed 60 degree limitation given for the vacuum model 

f(e) = cos10 ( n ~  /250) for o c e 0' (35) 

8' = , 8 d  ~ for O< 8,< 60' (37) 

8' = 60 for 60°C 8- 

where 8, = plume limit turning angle 
4.4.2.3 Plume Impingement Limits 

The plume is assumed to stop in all cases when it will no Ionger interact 
with th3 external stream. This condition is computed as the condifAon where 
the 



local values of ambient pressure and dynamic pressure in the plume equal 
thoae of the free-stream. The effect of thin limiting condition ia most 
apparent for the plume exhausting upward paat the fln (pitch up RCS) and 
outboard over t b  wing (yaw RCS) in terminating the plume before the moat 
distant platea are reached, As dynamic pmsnure increases, tbia limit 
reduoea tha plume to the point where i t  no longer impinges on any surface 
and impingeme~t ceases, As  the vacuum case is approached, the limit 
disappears and only the plates not exposed to the plumo sea no impingement. 
A further check on this limit is made in computation of impingement prensure 
coefficients, If the impingement pressure i s  lees than free atream ambient, 
the plume is terminated and zero pressure coefficient is assxmed. 

4,4,2,4 Plume Impingement Forces 

The highly underexpanded flow from the nozzle expanda very quickly to high 
Mach numbers at small distances from the exit and this aupernonic flow will 
be undistrubed by an impingement surface until it is c l o ~ e  to the surface. 
A detached shock wave would be formed by the high Mach number flow imping- 
ing on the surface with a region of subsonic flow between the strong rrhock and 
the surface where the flow is turned to a direction paralleling the plate. The 
pressure on the surface of the vehicle was assumed tq be related only to the 
plume conditions at the point in question and to the local slope between the 
surface at; tht  point and the plume flow vector emanating from the point source 
at the nozzle exit (radial flow 'approximation). It was also assumed in 
Reference 3 that the surface pressure could be predicted by a modified 
Newtonian pressure law because of the high plume Mach numbers and large 
turPing angles, 

where 

pwi 
= Plume impingement pressure at i th point on bodsr 

pji 
= Plume ambient pressure at point i 

Mji 
= Plume Mach number at point i 

= Local slope between plume flow and surface at point i 

"j 
= Plume exhaust gas specific heat ratio 



=E(l- 
C P ~  Yj 

fi ) = Lee's stagpation pressure 
( Y j  + a )  Mj approximation (41) 

If the local slope ie negative, a limited hypersonic flow ewansion law approxi- 
mation from Reference g ie used: 

Here the 1imifAng check on local presaure being less than free-stream will 
terminate the pressure computations before the slope becomes large. 

The local plume impingement pressure is then converted into a pressure 
coefficient related to ambient flight conditions to put it into the same referonce 
as the vehicle aerodynamic coefflcients and is integrated to obtain vehicle force 
and moment coefficients resulting from impingement, 

The integration of impingement pressures waa approximated in the analytic model 
by breaking elements of the vehicle into flat plates of known centroid location, 
area, and local slope, the plume impingement pressures at each point were 
computed, the local force and moment coefflcients computed by applying the 
impingement pressure across the area, and the total vehicle values obtained 
by summing the local values. Onl? one side of the vehicle is represented to 
increase the accuracy by having a larger number of plates which will have 
impingement but to reduce the computation time for plates not affected. 
Reference 3 presented sketches of the plates used in this model. The method 
of computation was revised to keep track of the flat plates representing the 
elevon and body flap and rotation of these around their hinge lines was aided 
to  account for the effects of control deflection. 

This solution was checked against the OA99 test data and a meth~d of character- 
istics solution in Reference 3 and close agreement was obtained. 

4.5 ERROR ESTIMATION 

The analysis performed in Section 3 resulted from least square curved 
fits being generated through relatively large numbers of data points. In 
addition to the curve f i t  coefflcients being generated, the root-mean-square 
e r ro r  of all of the points t;o the curve fit was generated. When the number 
of points is large it is expected that the RMS er ror  is a good measure of the 
standard deviation of, the data e r ror  and these values were retained with each 
curve as the basis for the estimation of the error. 



Figure 4-1, Body Axis Sign Convention 





A8ALYTIC COMPUTER PROGRAM 

5 . 1  GENERAL DESCRIPTION 

An anlytic computer prediction model for rear  mounted reaction control system 
effectivenear waa developed and reported in Reference 3 . This computer program 
was completely revised based on the data correlations of Section 3 and the resulting 
changes to the analytic model diacuaaed in Section 4. 

This digital computer program named PRED will predict reaction control system 
effectiveness on a space shuttle type vehicle for any combination of Rear RCS 
engines firing at any angle of attack and flight condition up to the vacuum case, 
Numbers of RCS Engine, engine size, engine operating conditions, exhaust gas 
properties, and nozzle geometry can be varied as  input parameters. Engine 
location on the rear  of the vehicle and cant angles can also be varied, however, 
the analytic models were developed from one configuration (Figure 2-1) and large 
departures from these RCS locations wil l  invalidate the models of interaction 
and cross coupling terms, 

Figure 5-1 presents a flow diagram of the program which consists of a main pro- 
gram and 14 aubrautbes. The program was divided into this large number of 
subroutines so that modification of any part could be more easily accomplished 
without disrupting the whole program. The names of the subroutines are: 

1. INPUTT 6. THR 11. DEFL 

2. JET 7. IMPINGE 12. NEWT 

3. PARCEO 8. VACPLU 13. CCOUPL 

4. ATMOS 9. INTER 14. AMPL 

5.  EXPAN 10, CUBIC 

The name of the main program is PRED and FORTRAN listings of all parts ctf the 
program are contained in Appendix A; Each subroutine will be briefly discussed 
in the sections below with the input subroutine and input key presented last. 

5 . 2  MAIN PROGRAM PRED 

Figure 5-1 shows that the function of the main program is to drive the subroutines 
in an orderly fashion first to obtain the input to start the problem, to define the 
equivalent nozzles firing upward, downward, and side ways, to  define the flight 
conditfons and resulting nozzle flow parameters for a single nozzle and then 
proceed to define the various components of total RCS effectiveness for each set 
of equivalent nozzles fixing up, down, and sideways. The program proceeds to do 
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all remaining computatfona up to 0 timea aa required in the following order: 
1. Pitch up lea aide nozzle torma 
2, Pitchup rlp:ht aide nozzle tarma 
3, Pitch down lei% aide nozzIe tema 
4. Pitch down ~ Q h t  side nozzle terms 
5, Yaw left side nozzle terms 
6. Yaw right nlde nozzle terms 

where the numbera of nozzlea and their locatfon in each plane are defined the 
input. Cbcka a re  mads for  the number of nozzles in each group to avoid the non- 
flring sets and to minimize computation time, The data from the right and lei% 
sides for each type are summed into total for that type (i. e. , pitch up), The 
cross collpbg terms are  t b n  determined and all of the components of data are 
summed into the 6 total RCS aerodynamic force and moment coefficients and the 
amplification factors determined. The 2 sigma errors  are  estimated for each 
component sum and the program returna to the beginning to start the next caae. 
All input comes into the program through the INPUTT subroutine, but the main 
program handles most of the output printing at various stages throughout its length. 

The program is eet up to aaaume all RCS nozzlea are on the left nide of the vehicle 
when viewed from the rear  looklng* forward in order to standardize the data for the 
impingement calculation and to set the signs of the interaction models, The signs 
of the data for nozzle8 on the rlght side of the vehicle are  corrected when the right 
and left compone1.2es a m  zummed for ctaah control axis (1, e, , pitch up), The axis 
system used is a body axis system shown in Figure 4-2 and the component data 
has these designations CX, CY, CZ, CL, CM, CN as the first two letters of the 
variable name where CN refers to yawing moment, Finally where the component 
force o r  moment is derived from is specified by the two middle letters of the 
variable names and IM is an impingement force o r  moment component, IN is an 
component, and CC is a cross-coupling component. The thrust terms have no 
component designation and thus are 3 letter variable names while the others are  
5 letter names. The RCS directions are designated by the last letter of a variable 
name in the listing, where upward firing has a U as the last lotter, downward 
f l a g  is  designated by a D as the last letter, and side firing designated by a Y 
as  the last letter. The program always assumes that there are some upward, 
downward, and side firing nozzles in each problem so that all of the components 
a re  computed for all three sets before the summation of terms is made. 

A typical example of a variable name is C3lIMU wvhich is the pitching moment 
induced by plume impingement of the upward flring nozzles, Figure 5 -2 shows that 
the program assumes that a downward firing set, an upward firing set, and a side 
firing set exist for a given problem, A set of nozzles is defined in this program 
as the actual number firing ia a given cluster on one side of the vehicle. It is 
not the total number available to flre on one side nor the total number firing on 



= ACTUAL NUMBER OF 
DOWNWARD FIRING NOZZLES 
OPERATION IN ONE CLUSTER 
ON LEFT SIDE (L) OR RIGHT 
SIDE (R) 

= ACTUAL NUMBER OF UPWARD 
NONWrnt 

FIRING NOZZLES, ETC. 

NoNoZYL = ACTUAL NUMBER OF SIDE 
NoNoZYr' FIRWG NOZZLES, ETC. 

FIGURE 5-2 NOZZLE ShT CONVENTION 



both sides in a aymmstrlc flrlrag cam, Six number8 must be input for each 
coluflon: 

a) NONQZUR = number of nozzles Bring in pitch up cluster on right side 
b) NONOZUL = number of nozzles firing in pitch up cluster on lei2 side 
C) NONOZDR = number of nozzles firing in pitch down cluster on right side 
d) NONOZDL - nurnber of nozzle firing in pitch down cluster on left ride 
e) NONOZYR = number of nozzles ilriag in yaw cluaGr on right side 
f) NONOZYL = number of nozzles firing in yaw cluster on left side 

The input data required for a first case is all of the d ~ t a  deflning tha vehicle, RCS 
units, and flight conditions, however, once this has been defined only the parameters 
which are to be changed need be input for additional cases, The data must all be 
input for a full scale vehicle but the program will rescale the solution to any model 
~lcale if  desired. 

The main program computes the mass flow and momentum ratio parameters for 
each set  of nozzles and drives the r~olutlon through the thrust, impingement, inter- 
action, and cross coupbg routines to obtain the individual components of each 
generated by the pitch up nozzles, pitch down nozzles, and yaw nozzles and which 
are printed out. When all of these components are obtained a summat;lon is made 
of the total values of'the 6 aerodynamic force and moment coefficients resulting 
from the reaction control system operation and these are printed out. 

Provisions have also been made to estimate the e r ror  associated with each of the 
components of the total aerodynamic forces and momenta in terms of a standard 
deviation, These then a re  totaled aa for each aerodynamic coefficient as 

a 
totalc = JC u2 component 

M 

where 

' component = Standard deviation of any aerodynamic 

C~ 
force of moment from an individual nozzle cluster 

0' 
totalc = Standard deviation of total RCS aerodynamic force 

M 
or  moment. 

A Un=z -1 set of amplification factors are  computed and printed out and the last 
thing the main program doe$ is to compute and print the 95q (2 u ) er ror  band of 
each aerodynamic force and moment coefficient, The program then proceeds to 
the next case. 

A general description of each subroutine and its function to the main program will 
now be presented. 



5.3 COMFWTE JEZ' EMT MACH NUMBER (SUBROUTINES SET AND PARCEO) 

After the program has received input defining the reaction control aystem engine 
in terms of nozzle expan8ion ratlo (A/A*), e;:fectlve chamber pressure tPtoj) 
chamber temperature (Toj), and exhauat g u  s ~ c i i l c  heat ratio ( y ), the aubrcutine 
JET ia called to determine the nozzle exit conditions for thia engine. The exit 
condieionn are exit Mach Number (Mj), 8tatSc pressure (Pj) and rtatic temwrature 
(Tjb 
Exit Mach number ir computed by aolvfng the Prmdtl Meyer expaneion ratio Mach 

Jet solves this exprsssion by. computing expansion ratio for increasing jet Mach 
numbers until the correct expansion ratio has been passed saving the last 3 values of 
each, When the correct expansion ratio is passed, JET calls the subroutine 
PARCEO to put a quadratic curve flt through the expansion ratio-jet Mach points 
and PARCEO returns the coefficients of the equation which SET then solvea for 
jet Mach number, With jet exit Mach number determined the jet exit static pressure 
and temperature are computed from isontropic flow relations, In addition JET 
computes some constants which are related to specific heat ratio, pressure ratio, 
and thrust from the flow through the nozzle throat for use in later routines. 

Equation 4 in Section 2 defined the effective chamber pressure as the actual 
pressure multiplied by the nozzle discharge coefficient. Since it was desirable 
to compute both wind tme l  results and flight results this correction is used in 
the INPUTT subroutine and all computations based on chamber pressure have 

.this correction in t h m .  

PARCEO is  a standard quadratic curve jet routine which will give the coefficients 
for a curve through any 3 sets of points defined in the call statement. The main 
program defines the throat diameters of the single equivalent nozzles for each 
cluster of upward (DSTARU L, DSTARUR) downward, (DSTARDL, DSTARDR) , 
and side (DSTARYL, DSTARYR) Bring sets and the equivalent nozzle exist area 
(AEXU L, etc. ) before proaeeding to the definition of flight conditions. 

5,4 COMPUTE FLIGHT PARAMETERS (SUBROUTINE ATMOS) 

The input subroutine provides data required by the program at this point to define 
the flight conditions in one of four allowable ways defined by an input parameter 
(IOPT) : 



a) IOPT = 1 altitude, Mach, and angle of attack specifled 

b) IOPT = 2 altitude, velocity, and angle of attack apecffied 

c) IOPT - 3 altitude, freestream dynamic prerrure, and angle 
of attack specified 

d) IOPT = 4 Mach, ambient preaaure, ambient temperature, 
and angle of attack rpecified 

The first 3 optionr requim an atmosphere model to  define ambient pwrrure  and 
ambient temperature and the program currently contains a subroutine ATMOS 
which provldes there data from the 1962 US Standard atmosphere model. The 
fourth option is a means of expressing an arbitrary flight condition from some 
other atmorphere model or  for a wind tunnel test. 

Subroutbe ATMOS can provide a number of flight parameters not currently used 
in thie program including local g r a m  for an oblate earth model, atmoaphere 
denrrity , local speed of sound, dynamic pressure, absolute viscosity , kinematic 
viscosity, and ntagnation temperature on a reference sphere. The program 
conaistr of curve fita of atmospheric properties from sea level to 230,000 meters 
(754,600 ft) and all conditions are set to zero above thia altitude, 

The vacuum case (Pm = q = 0) i n  treated in a special way in the program to avoid 
dlvfsiolr by zero. A flag: i r  set in the program and dynamic pressure (q) is set 
equal to .OOOO1 PSF. The interaceion terms a re  not computed for the vacuum case 
nor are crosa coupling terms which are  not related to impi ement. The force -'5g and moment coefficients printed are based on a q of I x 10 PSF while the 
amplification factors are independent of q. 

With the flight conditions defined, all the required data is in the prc,gTam and the 
RCS effectivf. ess computed. In order to do this the RCS nozzle parameters must 
be compu1;eu. 

5.5 COMPUTE SINGLE NOZZLE PARAMETERS !SUBROC'TINE EXPAN) 

The nozzle parameters necessary to compute the RCS effectiveccss include RCS 
engine thrust coefficient (TCOEF), jet exit momentum ratio parameter [RMFS), 
and jet mas6 flow parameter (FMR). These are  all computed for a single nozzle 
and then multiplied by the number of nozzles in each set to obtain parameters for 
the slx nozzle clusters within the main program where the equivalent nozzle 
effective jet exit momentum ratio is deflned in Section 3, Equation 5 
and the mass flow parameter is defined in Section 3, Equation 7, 31omenturn 
ratio relationships are used for pitch up and pitch down nozzles exclusively w t ~ l e  
the mass flow parameter is used for yaw RCS only. 



Plume limit turning angle (TURN) ir a180 required to define the plume decay 
characteriaticr a r  well ar the extent of the plume for impingement calculatlonr, 
it however ie not related to the tlumber of nozzler but rather to jet exit and frw- 
rtream carditlons, The limit turning angle is computed in subroutine EXPAN 
barred on Prandtl-meyer expansion of the flow from RCS chamber condition8 to 
freeatream ambient prerrum minus the expanmion in the nozzle plue the nozzle 
exit angle. 

Tbo program printa the flight condition8 ar  we1 a8 a larger number of nozzle 
parameterr for tho single RCS unit at thin point in the main program winding 
up wlth the important nozzle interaction parameters for the nix clusters. 

3,6 COMPUTE THRUST TERMS (SUBROUTINE THR) 

The thrust for a single RCS nozzle was computed when the other nozzle parameters 
were computed and the aerodynamic coefficients of thrust moment for the three 
RCS directione are now computed urring the subroutine THR. The main program 
goes through a three atep do loop to do pitch up, pitch down, and yaw components 
in turn, Subroutine THR is called 3 time8 and containn within itself a two step 
loop which computes the data for the left side thrust cluster then the right side 
cluster, The 6 aerodynamic forces and moments from both left: and right sides 
a r e  summed before the subroutine returne to the main program on each pass, 
The valuee of all coefficients are first set to zero to remove the data from previous 
caaea prior to the call for THR. Subroutine THR computes the thrust coefficients 
for  each RCS Plrlng Qrection and multiplies these by the direction cosines of the 
thrust vectors to obtain the thrust force coefficients. The program assumes that 
the nozzle clusters are all on the left side of the vehicle in determining the direction 
cosines of the thrust vectors and appropriate sign corrections are made when the 
right and left side data are summed. The nozzles are allowed an outboard and an 
aft cant angle in the computation of direction cosines. These are defined in 
Figure 5-3. The direction cosinas are  the angles of a unit vector along the 
centerline of the plume in the body axls system. The thrust mome?its ars the?; 
computed about the body reference moment center accaunting for cant angles and 
position relative to that moment center, 

The pitch up, pitch down, and yaw contributions are all saved as components and 
the program moves on to impingement prediction. 

5 . 7  COMPUTE IMPINGEMENT INCRENENTS (SUBROLTINES IXPING 
AND VACPLU) 

* 
The main program first sets the impingement components to zero to remove my 
from a previous case and then proceeds into a 3 step do loop which calls the 
impingement routine for the pitch up cases, pitch down cases, and yaw cases 
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in that order. Wlthin the impingement routine mother do loop performs the left 
aide and right side computations for each of the control directions a d  sums them 
prior "xt returning to tha main program. 

Three choicen of plume impingement computation are  available within the plume 
, impingement mutlne baaad on an input parameter IIMP, 

a) No impingement 
b) Modifled vacuum data from OA90 
c) Plume impingement model, 

The flrst option simply eats the impingement term8 to zero and proceed8 to the 
interaction computation. The second choice is a computation based on the 
modified OA99 teat equations glven in Section 4 as Equation 9 to 28 and 
compute the impingement increments as  functionrr of thrust coeEPTcient and free- 
atream dynamic presrure, 

The third choice causes the program to make its own prediction of plume impinge- 
ment by computing the pressures on the vehicle from the s i x  nozzle cluster plume 
separately and integrating each pressure diertributlor. to obta*.~ the 6 comp~nent 
impingement increments, No plume/plume interaction is accounted for the three 
directions of RCS firing from the aame cluster. 

The flat plate description of the vehicle entered into the program in the INPUTT 
routine is used to make these computations and the cards are listed in Appendix A. 
These plates are different than those of ~ e f e r e n c i  3 because the order of the 
plates is extremely important for the first 23. Plates number 1 to 18 are the 
upper surfme of the left elevon while plates 19 to 23 are the left half of the body 
flap. The subroutine proceeds through each plate in turn first rescaling it to 
model scale if required and in the case of the elevon and body flap rotating them 
about their respective hinge lines to the correct deflection angles. Both right 
and left elevon angles are input so that both elevator and aileron control deflections 
are accounted for. 

IMP~NG selects the correct dimensions for the nozzle set being used, zeros the total 
coefficients and proceeds to use VACPLU to predict the plume pressures on a set 
of flat plates representing the lefi side of the vehicle, The plume local static and 
dynamic pressures are uaed to compute the local surface pressure through the 
pressure laws defined in Section 4, Equation 40 to 42 , and the loca~ pressure 
is ~0nv~rf ; sd  to a pressure coefficient based on free stream conditions. The pressure 
coefficient is multiplied by the local area and the direction cosines of the plate to 
obtain incremental force coefficients. The local force coefficients are used to 
compute local plate moments about the moment reference center and all of the 
local values are summed up to obtain total vehicle vahes. 

Since this integration is accomplished by summing up local values for a series of 
plates, a large number of plates is desirable for good accuracy as well as to 
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minimize the prerrum change on a plate, This is one of the principal reasons for 
c d n i n g  all predictions to one side of the plane of symmetry of the vehicle, 
Reference 3 shows the spacing of approximately 280 plater reprerenting the left 
side of the orbiter, Each plate is dellned by 7 variables which a m  the location of 
the plate centroid from the moment reference center (X, Y , 2) , the local area 
(SLOC), and the direction cosinee of the o u a r  unit normal vector from the plate 
with respect to the body ards ryatem as is shown in Mgure 5-4, The directdon 
cosines define the local slope of the plate which aombined with the mgle of the 
plat@ to the nozzle dete&inea the local slope of the aurfaoe to the flow and the 
prest~ure at th& point from the presrure law8 Equations 40 to 42 in Seotlon 4. 

INPING dependa on subroutine VACPLU for its deflnitlon of plume charactelriatics 
at a given point on the vehicle by sending VACPLU the location of the point in a 
nozzle based ordinate sy-m by in terms of didance from the nozzle exit plane 
and the angle from the centerline as well as the equivalent nozzle thrust size and 
the engine operating characteristics. VACPLU then computes the plume local 
ambient pressure, dynamic pressure, and Mach number using the model defined 
in Reference 3 with modifications described in Section 4,4,2, and by assuming 
isentropic flow relations, If the angle from the centerline of the plume is greater 
than the limit h~rning angle, the plume pressures are  set to zero mi the limits 
of the uxtent of the plume are  desqribed in Sections 4.4.2.3 and 4.4.2.4. 

5 .8  COMPUTE INTERACTION INCREMENTS (SUBROUTINES INTER, DEFL, 
NEWT, CUBIC) 

As in the earlier terms the main program zeros the interaction increments from 
:t previous case and then performs a 3 step do loop to compute the interaction 
coefficients for the pitch up RCS units, pitch down RCS units and yaw RCS units 
respectively. Each step results in a call to the subroutine INTER which then 
performs a two step loop to define the left and right components of each control 
direction and sums them up. 

All  of the zero deflection curve fit data are stored within the 'INTER subroutine in 
DATA statements and are computed using the CUBIC subroutine to evaluate them. 
Control deflection corrections are made in INTER by calls to the subrouthe DEFL. 
Since the pitch up lateral directional data is based on a peak model rather than curve 
flts for intervals of angle of attack the subrouthe NEWT is called to evaluate these 
data from INTER. 

5.8.1 Pitch Up RCS Interactions 

The first entry into the subroutine MTER is to obtain pitch-up RCS interaction terms. 
The routine computes the upper and lower subscripts for the angle of attack interval 
in which the angle of attack occurs and a check is made on angle of attack to see 
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whether t b  angle is above o r  below the peak value regime. if the angle of attack 
ie below 15 degrees the subroutine NEWT is used to predict the lateral-directional 
interaction component8 and the curve flt routine to evaluate the longitudinal com- 
ponents. When the angle of attack is high all interaction t e r n s  a re  computed 
using the curve flt routine (CUBIC). There are  no control deflection effecta 
computed and interpolation for angle of attack as defined in Section 4, occurs 
in CUBIC, 

The wind tunnel data was computed in a normal force body axis system so that 
the sign of the normal force increment must be reversed for all RCS directions, 
The upward firing pitch nozzle data was generated on the right side of the vehicle 
in the testa @d the lateral-directional increments must be reversed to the left 
side convention used in this  program. 

5 .8 .2  Pitch Down RCS Interactions 

The second entry into the surbroutine INTER is to obtain the pitch down RCS inter- 
action terms first for the left side units then for the right side and sums them up, 
All pitch down data at zero control deflection data are  curve fits for intervals of 
angle of attack as functions of momentum ratio. These are  evaluated by computing 
the indexs of the curve fits above and below the present value of angle of attack and 
by calling CUBIC to evaluate and interpolate for angle of attack. 

After evaluating the zero control deflection interactions the corrections for deflection 
are generated using the curve fits stored in the surbroutine DEFL first for body 
flap effects than for elevon angle effects, 

5 .8 .3  Yaw RCS Interactions 

The third entry into INTER is to compute the yaw RCS interactions. The approach 
is the same as for the pitch down RCS case with the exception that the mass flow 
parameter is the curve fit parameter. 

5 . 8 . 4  Subroutine CUBIC 

All curve fits are  defined by seven coefficients. The first four are the coefficients 
of the cubic expression defined in Section 3, Equation 6. The fifth value is the 
maximum value of the independent variable for which the curve fit applies while the 
sixth in the minimum value. The seventh value is the standard deviation of the 
curve f i t  as determined from the analysis of Section 3.  This routine is called and 
given the name of dependent variable curves, the value of the independent variable, 
two subscripts defining the two curves to be evaluated and interpolation factor to 
be applied to both. Each curve f i t  is checked to see that the indepez:dent parameter 
lies within i s  appllca5le range or  that it i d  made to cad is then evaluated. A linear 



interpolation is then made using the interpolm#ng factor given in the input, The 
ataadrrd deviation irr evaluated also and Interpolated between the angle of attack 
rangea . 
5.8.5 Subrouthe NEWT 

The subro&e NEWT contains the equations of the pitch up RCS peak value lateral- 
directional models defined in Seotion 3, Peak side force, rolling moment, and yawing 
moment are defined as functions of equivalent nozzle effective momentum ratio and 
are evaluated directly. The flrst entry into the routine results in the computation of 
peak yawing moment. w3 inverae solution of the peak yawing moment versus angle 
of attack curve is made to deternine the angle of attack at which thia peak value 
occurs, If the present angle of attack is greater than the peak angle. All threc 
lateral-directional components are computed as functions of angle of attack only. 
?X the present angle of attack is lower than the peak, the peak values of side force, 
and rolling moment are computed and returned to INTER which applies the below 
peak model defined in Section 3, 

5.8.6 Subroutine DEFL 

The control deflection correction models defined in Section 4 .2 .2 ,  for the pitch 
dowi RCS and yaw RCS are contained in this subroutine. The coefficients of the 
curve flt equations are all stored in this subroutine through the use of data state- 
ments and are applied by calls to the CUBIC subroutine. The curve fits are  
broken into: 

a) Body flap trailing edge up for pitch down RCS 
b) Elevon trailing edge up for pitch down RCS 
C)  Elevon trailing edge down for pitch down RCS 
d) Elevon trailing edge up for yaw RCS 
e) Elevon trailing down for yaw RCS 

The interpolation factor defined in Section 4.2.2, is also computed in this sub- 
routine and allows no extrapolation at deflections angles above those for which 
the models were formulated. Interpolation for angle of attack between fits is done 
in CUBIC. 

5.9 COMPUTE CROSS COUPLING INCREMENTS (SUBROUTINE CCOUPL) 

The final incremental terms needed to complete the RCS effectiveness prediction 
are the cross coupling terms which are computed in CCOUPL, This subroutine 
has only the symmetric pibh down model defined in Section 4.3 since all other 
data correlation showed that no coupling existed within the measured data accuracy. 



1 0  SUM COMPONENTS AND COMPUTE AMPLIFICATION FACTORS 
(SUBROUTINE AMPL) 

The principal product of thin computer program are the total RCS aerodynamic 
coefficients as computed aa the sum of the increments from all sets of nozzlea and 
printed out by the main program. Since it is alno desirable for some cases to 
relate these total coefficients to RCS thrust, the ampliflcation factors as defined 
by Equation 2 of Section 4.1 are computed in the Subroutine AMPL, 

Since ampl5;flcat;lon factors can be very confusing when used to relate the out-of- 
plane induced forces and moments to the thrust; terms needed to cancel them, 
this subroutine was limited to computing the amplification terms in the plans of 
thrust moments being generated, 

This subroutine checks the summation of the thrust terms to see if  a thrust corn- 
ponents exists in a given direction (1. e ,  , pitch up, pitch down, roll). If one exists 
than an amplification is computed as the total force o r  moment in that direction 
divided by the thrust; force o r  moment. 

The computatfona are now completed and the program returns to the place specified 
by input parameter INEXT either for another case or to terminate the program, 

5.11 PROGRAM INPUT (SUBROUTlXE INPUTT) 

The preceding sections have given a summary of the program operation and given 
a brief outline of the data required for the program to execute. This data is loaded 
into the program. through a subroutine called INPUTT which will be briefly described 
in this sectdon while a detailed clescdption of the input data will be given in the next 
section. 

The input subroutine is called at three different places in the main program and 
provides different data at each point based on a parameter INE.V. Three types 
of data are  required for a full loading of the program: 

a) Vehicle surface plates 
b) Nozzle definitions (namelist IN) 
c) Flight conditions (namelist FC) 

When the program is first loaded o r  if INEXT = 1 all of the input is required. \.%en 
INE,YT = 2, nozzle definitions and flight conditions changes must be input, and if 
INEXf = 3 only flight condition changes can be made. 

The vehicle flat plate data is input using formatted read statements while the remain- 
ing data is entered through namelist. The use of namelist was made to minimize 
the input required for multiple cases. No input for a given variable in a namelist 
leaves that variable at its present value and as much as possible default values 
are defhed by DATA declarations within INPUTT so that the full scale data of the 
shuf;l;le orbiter exists within the program (except for the flat plates which must be input), 
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INPUTT initdalizes all of the data, computes the direction cosines of the nozzles, 
computes the discharge coefficient if a wind tunnel test nozzle is specified, corrects 
chamber pressure for nozzle discharge coefflcimt, and rescales nozzles data to 
model acale if required. The subrouthe then provides these data to the main 
program, 

5.12 INPUT DATA DEFINITIONS 

A new problem atarts with first loading the vehicle flat plate surface data as 
formatted data at a maximum of 8 words per card with an F10.3 format. The 
vehicle must be input in full scale dimensions on the left half of the vehicle. 

Card 
lLlll 

Column Variable Deacripion 

1 to N-1 flat plate surface cards one plate per card up to 300 allowed (at least 
one must be input;) 

1-10 DNX (I) X direction coaine of flat plate I. plates 
are counted as Input ia used. See 
Figure 5-4 for definition of direction cosine, 

11-20 DNY (I) Y direction cosine of flat plate I 

21-30 DN Z (I) Z direction cosine of flat plate I 

31-40 x(i) X distance of centroid of plate I from 
reference center, See Figure 4-2 for 
defition of axis system, Units are feet. 

41-50 y (1) Y distance of centroid of plate I from 
moment reference center. Units are feet. 

51-60 z fl) Z distance of centroid of plate I from 
moment reference center. Units are feet. 

61-70 SLOC (I) Area of plate I in square feet. 

1-10 2.0 Last card of flat plate input is signified by 
DNX(N) being greater than 1.1, 
This ends flat plate input. 

Order of the cards is important. The first 18 cards represent the upper 
surface of the left elevon. Cards 19 to 23 represent the upper surface of the 
body flap. All  other plates are not order dependent. 

The remaining input is by namelist rather than formated read and so no card 
need be specified. A namelist specification at Convair is made by a $ in 
column 2 of the first card of the l i~ t  followed by the namelist name, Each 
variable name to be loaded must appear followed by an equal sign and the value 



of the input wlth conmaa separately variable apaciilcations. The list can extend 
over a number of cards and is cloued by a $. The order of narnsn within a list is 
not important and namer can be rspeabd if newer d a a  becomes available. Them 
are two namelists within INPUTT having the names IN, and FC and they load in 
that order on a new job. 

The namelist l[N dePlnea the RCS engine, the locations of the aets and the geometry 
of the firing arrangement 

Namelitst Variable Deacrtptfon Default Value 

IN * RCS Engine Characteristics 

IN G J Speciflc heat of jet 1.3 

XN ARJ Expansion ratio of jet, 'exit area-toothroat area 22. 

IN . POJSA Chamber preeraure of jet (PS'IA) 152 PSIA 

IN RJ Jet  gas con&ant (R A i r  = 53.35) 75 

lB TOJ Jet chamber temperature (Deg) 4873OR 

IN DEXtO Je t  e%it diameter (Ft) ,8013 Ft. 

I N .  THETA Nozzle exit angle (angle of bell mouth nozzle 12" 
wall) (Deg) 

IN DCOEF Nozzle discharge coefficient 

IN NOZNO Nozzle number (&put if Tests OA82, MA22, - 
o r  OA169 are  to be duplicated) 

IN * Nozzle locations and geometry (all sets 
must be input and left side locations 
specified if default; values not used) 

IN SCALE Scale of model for test simu1at;rons 1. 

IN XREUM X coordinate of upward firing nozzles, -37.69 
exit plane reference center of left cluster (Ft) 

Dl YREUM Y coordinate of upward firlng nozzle exit -11. 

IN ZREUM Z coordinate of upward fidng nozzle exit -9.864 
from moment reference of left cluster (Ft) 

IN XREUS, YREUS Coordinates of upward f i rhg  nozzle 
' ZREUS cluster on right side 



Nameliat Variable - D6r c ription Default Value 
RJ XREDM, XREDS X coordinate of left/rlght aide -37.69 

downward flring nozzle cluster 

IN YREDM, YREDS Y coordinate of left/rlght down -9.25 
bring cluster 

IN XREDM, XREIZ Z coordinate -5 417 

IN XREYM, XREYS X coordinate of 1eft/right yaw -37.69 
cluuters 

IN YREYM, YREYS Y coordinate -12.4625 

IN ZREYM, ZREYS Z coordinate -7.003 

The moment reference center is all speciflad to XCG = 1076.7, YCG ' 0. * 
Z c G  " 375, 

IN c Nozzle angles eee Figure 5-3 
for positive directions 

N THAFTU Aft cant angle of upward £iring 0" 
nozzle (Deg) 

IN THAFTD Aft cant angle of downward firing -12O 
nozzle (Deg) 

M THAFTY Aft cant angle of sideway firing Oc 
nozzle (Deg) 

3N THOUTU Outboard cant angle of upward 0" 
firing nozzle (Deg) 

I N  THOUTD Outboard cant angle of downward -20" 
£iring nozzle (Deg) 

IN THOUTY Upwar+ cant angle of sideway firing , 0 O 

nozzle (Deg) 

IN * Nozzle set definitions 

IN NONOZUL Number of upward firlng nozzles (causing 0 
pitch up) operatingiin a set on left side 
of vehicle 

IN NONOZUR Same as above on right side 0 

I N  NONOZDL, Number of downward firing nozzles 0 
NONOZDR (causing pitch down) operating in a 

set  on left/right side of vehicle 



Nllrrolist Variable 

IN NONOZYL 
NONOZYR 

Default Value 

Numbsr of downward flrfng nozzles 0 
(causing pitch down) operating in a 
set on left/right aide of vebicle 

Impingement Model Selector 

DeClnes the type of mathematical model 
to be used, 

= 1, Use the empircal impingement model, 
= 2, No impingement model used, 
= 3, Use the semi-empirical Impingement model 

(Modified Newtonian pressures plus vacuum 
plume model) IIMP = 3 is the default value 

The flnal namelint in is called FC and contains the control deflections, flight . 
conditions and an indicator which dotarmines the input options on multiple caees. 

FC IOPT Defines the flight conditions to be read 4 

= 1, Mach number, angle of attack (Deg) and 
altitude (Ft) muat be inptit, all others are 
not used 

= 2, Velocity (FPS) , altitude ( F't) , and angle 
of attack (Deg) must be input 

= 3, Dynamic pressure (PSF) , altitude (Ft) , 
and angle of attack (Deg) must be input 

= 4, Ambient pressure (PSF) , temperature iDeg F) . 
' Mach number and angle of attack cDeg) must 

be input. This is default value. 

E'C MIN F 

FC PINF 

FC TINF 

Free stream Mach number none given 

Free stream ambient pressure t PSIA) none given 

Free stream ambient tempera- none given 
ture (Deg F) 

Free stream dynamic pressure {PE e; none given 

Angle of Attack (Deg) 'la 

Altitude ( Ft) none given 

Velocity (FPS) none given 



Namelirt Variable 

FC DELTEL 

FC DELTER 

FC DELTBF 

Elevon of left elevon 
( 0  trdling i rdge up)  DO^. 

same aa drove - right elevon 

Body flap deflection angle 
(- t ra i lhe  edge up) Deg. 

Deflner content of next set of data 

Default Value 

0' 

= 1, All data are  to be read 

= 2, Nozzle deflnitione and flight 
conditions (namelists IN and FC) 
muaf; be read 

= 3, Flight conditions only (namelist FC) 
are to be read 

= 4, No more data will be read in, 
program stops 

5.13 OUTPUT DATA DEFINITIONS 

The data printed out from a sample run ia shown in Figure 5-5. Not shown in this 
figure is the listings of input which occur because of the use of the namelist input 
option and the names are defined in the preceding section. The output starts with 
a defbition of the characteristics of the solution in lines 1 and 2. 

output 
Line Word -- Description 

1 SCALE Scale of solution ( 1- full scale) 

2 REFERENCE AREA Reference area used in this solution in F? 
2 REFSPAN Reference length for lateral directional moment 

in Ft. 

2 REF CHORD Reference length in pitching moment in Ft. 

3-5 Nozzle Characteristics Single RCS nozzle data 

3 EXIT DIA RCS nozzle exit diameter in feet 
(input as D E W )  

3 EXPANSION RATIO RCS nozzle exit to throat area ratio 
(input as ARJ) 
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Output 
Line - word - Dent ription 

EXIT ANGLE RCS nozzle exit lip angle in degrees 
(input a r  THETA) 

NOZZLE MACH Computed nozzle exit Mach number 

THRUST Computed RCS nozzle thrusf; in pounds 

CHAMBER PRESSURE RCS effective chamber pressure in PSW 

EXTI' PRESS Computed static pressure at nozzle 
exit plane in PSIA 

EXHAUST GAMMA Speciflc heat ratio of nozzle gases 
(input ars GJ) 

NOZZLE DISCHARGE Input o r  computed nozzle discharge 
COEFFICIENT coefficient (ratio of actual thrust to ideal) 

MACH NO Snput o r  computed freestream Mach number 

ANGLE OF ATTACK Angle of attack of this solution ,INPUT as 
ALPH degrees 

8 ELEVON ANGLES Wing mounted elevon angle8 input for this 
solution as DELTEL and DELTER in degrees 

9 BODY FLAP Body flap deflection input for this solution 
DEFLECTION as DELBF in degrees . 

10 P INFINITY Ambient pressure at flight condition either 
input o r  defined by standard atmosphere in 
PSIA (limited printout resolution) 

10 MACH INF Freestream Mach number 

10 GAMMA Freestream specific heat ratio 

10 ANGLE OF ATTACK Input angle of attack (ALPH) in degrees 

11 PRESSURE RATIO Single RCS nozzle jet exit pressure 
ratioed to freestream pressure (Pj/P,) 

11 MOMENTUM RATIO Single RCS Nozzle momenturn ratio 
(ratioed using wing area I L / 3,) 

J 

11 THRUST COEFF Single RCS nozzle thrust ratioed by dynamic 
pressure and tving area = T ,'qS 



output 
Line Word -- 
12 RT RATIO (R T J / ~ m  Tm ) : HCS ambient temperature 

ratio to freestream 

12 POJ/PINF RCS chamber preasure r Po$ ratioed to 
freeatream ambient pressure (Pa) 

13 FREESTREAM g =0.7Pm M: inPSF 
DYNAMIC PRESSURE 

RCS chamber temperature ratioed to freestream 
ambient temperature - Thayerfs parameter 

14-19 NOZZLES Number of nozzles firing in each cluster is defined 
hem 

14-17 MOMENTUM RATIO Total momentum ratio of cluster used to 
compute interactions 

14-19 THRUST Total thrust coefficient of cluster using 1 Ft2 
COEFFICIENT as reference area 

18-19 MASS FLOW RAT Mass flow parameter used to compute yaw 
RCS interactions 

The program now begino a printout of all terms which are combined into total 
control moments and amplification, This printout is in a systematic form in 
which any pitch up nozzle contributions are listed first (lines 20, 23, 26, and 29) ; 
then pitch down nozzles) lines 21, 24, 27, and 30) and finally yaw nozzle contri- 
butions (lines 22, 25, 28, and 31). The data is all presented in aerodynamic 
coefficient form so that the force terms are non dlmensionalized by dividing 
by dynamic pressure and wbg area and additionally the moment terms by the 
appropriate reference length, Column A presents rolling moment (C L) , column B 
presents pitching moment (C%l), Column C presents yawing moment ( c ~ ) ;  
Column D presents body axis axial force (CX), Column E presents side force 
(Cy), and Column F presents vertical force (C 2;) where Figure 4- 1 defines the 
sign convention of the force and moment coefficients. 

The thrust terms are  computed first and are presented first in lines 20 through 
22. These thrust terms have all nozzle cant angles included in their computation. 
The plume impingement terms are  presented in lines 23 through 25. If the input 
option is selected to ignore impingement a comment will be printed but output 
will still be listed. The interaction terms are presented in lines 36 to 28 and 
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the cross coupling terms in lines 29 to 31. The eummation of all components 
(Equation 1 of Section 4) listed in lines 20 to 31 are  then obtained and printed in 
line 32. 

Lines 33 to 38 then present the standard deviations of the total aerodynamic forces and 
momenta. Lines 39 to 42 prerrent the arnpUficatdon factors for the case computed 
where the thrust terms used a re  defbed in lines 20 to  22, Lines 43 and 44 present 
the total coefflciats (line 32) plus and mlnue 2 sigma where sigma is defined in 
lines 33 to 38 and represent the beat estimated of the 915 percent confidence band 
within which the true value of data will occur. 



DATA COMPARISONS 

The analytic model of Sections 4 and 5 resulted from the data analysis of 
Section 3 and modifies it to a certain degree, The curve fits generated in 
Section 3 showed varying degrees of correlation with the test data, aome 
correlationr were strong while others were not so strong. Thus the question 
arises how well will the computer model reproduce the test data results. 
The scatter within the test data i t s ~ l f  would make it unlikely that a single glven 
run could be reproduced point for point, however, the comparison can still be 
useful to _ohow the strong and weak parts of the model and to show the expected 
data scatter. 

The approach taken to make this comparison then was to compare the analytic 
model results for 3 nominal examples of data at zero control deflection in 
which a number of repeat runs were made. The comparison was made on a 
jet-on minus jet-off basis so that both impingement and interaction terms are 
included, 

NOZZLE N49 PITCH DOWN RCS COMPARISONS 

Figure 6-1 to 6-6 present the analytic model results compared to six runs of 
nozzle N49 data at the same nominal value of momentum ratio. The 2 standard 
deviation e r ror  bands a re  plotted on the moment data correlations. The test 
data scatter is shown in all plots and is particularily bad in the vertical force 
cotnponer~t at high angles of attack. The agreement or' the prediction with the 
trends of the data appears good, The model appears to overpredict the yawing 
moment slightly at higher angles of attack but all the data falls well within the 
2 sigma error  band. 

6 . 2  NOZZLE N52 PITCH-UP RCS COMPARISON 

Figures 6-7 to  6-12 compare ten runs of data obtained from nozzle N52 at the 
same nominal momentum ratio (. 015) with the analytic model results. The 
longitudinal data (CX, CZ, C,) where the correlations were weak show 
considerable scatter in the data. This is in part due to the low value of 
momentum ratio being correlated here. The pitching moment follows the trend 
of the data fairly well inspite of the scatter as does vertical force at low angles 
of attack. The lateral-directional data shows very good agreement between 
the model and test  data even through the peak value region and at angles below 
the peak value where the curve was fitted through large amounts of scatter. 



6,3 NOZZLE N85 YAW DATA COMPARISOP'S 

Data for 6 data runs obtained using yaw nozzle block N85 are  compared with 
analytic model predictions in Figures 6-13 through 6-18, The axial force 
(6-13), rolling moment (6-16), and pitching moment (6-17) show excellent 
agreement between the model and the test data. The vertical force data in 
Figure 6-14 shows only good agreement of angles of attack from 0 degrees 
to 20 degrees. Above 20 degrees the data sk atter becomes very large (as 
was the cam in all correlations) and the model stays cloee to the MA22 test 
data. At negative angles, Figures 3-17a and 3-17b show that the scatter again 
was large and the model was faired between the N85 data shown on these 
comparisons and N51 data which pulled the curve down, The side force com- 
parison shown in Figure 6-15 shows good agreement above 5 degrees angle of 
attack and the data scatter shown at -9 degrees in this figure results in the 
model being kept low at the negative angles. Figures 3-21 a to 3-21 j present 
the anglysis data for the yawing moment comparison of Figure 6-18. The 
scatter in low angle of attack data again results in some difference between 
model and data around zero angle of attack. 

Comparisons of these plots with the e r ro r  bands on Figures 3-17 to 3-21 will 
show that all differences a re  well within the expected error  band. 
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FULL SCALE CONFIDENCE 

SecfAonrr 3 to 5 develop a prediction model for determining reaction control system 
effectiveness barred on numerous wind tunnel data, Section d showed that the model 
will reproduce the witld-tunnel results. But such a model is of little use unless it 
can be extended to the flight regime with some degree of confidence. This section 
will attempt to address this question for the re-entry care only, 

7 . 1  TEST TO TEST VARIATION ERRORS 

The test to test variation between the Nach 10 tests OA82 and MA22 were carried 
over into the incremental jet data by using one jet-off run (&I22 run 5 )  for both 
aeta of data, Thus all differences between these tests are  accounted for in the 
curve fits of Section 3 and are computed into the estimates of data scatter given on 
each plot, 

The average jet-off differences for  the mean of all of the Mach 10 jet-off data 
compared to the mean jet-off run from OA169 is shown in Figure 7-1 a to 7-1 f .  
This difference which may be due to Mach number and/or test and models 
differences was too large compared to the RCS data to be left in and was removed 
from the data by using OA169 jet-off runs to obtain RCS increments for Mach 6. 
Section 3 shows that the OA169 incremental effects generally all fall within the 
error  boundaries of the Mach 10 data, Therefore there seems to be no test to 
test variation of induced RCS effect has which has ?ot been accounted for. 

7 . 2  MEAN VALUE DIFFERENCES 

There were 6 jet-off runs during test OA82 and 28 more obtained during test N.422. 
Since the data presented in Reference 2 showed there were measurable differences in 
the jet-off runs, the question can be raised as to whether all of this has been 
accounted for in the data sample and true mean difference curves obtai~ed, This 
aspect of the problem was investigated by Chrysler DATAMAN (Reference 10) 
in which all jet-off data runs were used to taka differences with all jet-on runs 
for a sample case, In this case nozzle N49 at nozzle pressures of 150, 300 
and 600 psia, When all the differences were taken for all jet-or. minus all jet-off 
m s  at a given pressure and angle of attack an average value and standard 
deviation were computed. 

Figures 7-2 a and 7-2 b present samples of the mean curves compared with the 
model results. The model accounts for many other nozzles and pressures so that 
the agreement is not perfect, but it appears close enough to verify that the model 
does a good job of representing the true mean value of the difference. 



7.3 STANDARD DEVIATION OF DATA SAhIPLE 

The derivation of mean vdulss discussed above also rer\llted in estimates of the 
standard deviation of error for nozlle 349 at the three 8upply presrurea, Figure 
7-3 prerent the computed values of tbs atandard deviations for all of the jet-on rune 
at the throe supply prassurea miaur all of the jet-off runs as computed in Reference 
10 , The close agreement between them at each angle of attack show# that they are 
good estimates of the true data acatter. In additlon the root-mean-square e r ror  
from the analytic model agrees quite well with them, The RMS value containn 
within it other nozzle data and OA169 data averaged over 5 degme interval8 and 
is slightly larger at all angle8 of attack. In addition the standard deviations of 
the jet-off runs for OA82 and W 2 2  are  shown on this plot and these again show that 
the RXMS error  of the analytic curve flts contain them. Thus it is concluded that the 
RMS values for the analytic curve flts are good estimates of the true standard 
deviation of e r ro r  of the population of reaction control incremental data, 

MACH SCALING L'NCERTAINTY 

The wlnd-tunnel data used in this analysis was obtained at Mach numbers of 6 and 
10, while the entry flight condition simulated is Mach 25. The question arises then 
whether the wind tunnel data is valid o r  needs to be scaled for Mach effects. 

The nozzle flow parameters (momentum ratio and mass flow ratio) have already 
been tested to full scale for nominal entry condttions as low as a q of 5 PSF for 
a 3 nozzle crtae and proportionally lower for fewer nozzles. A nominal condition 
of 280,000 feet at 26,100 feet per second is approximately 5 PSF and represents 
a momentum ratio of ,0954 for a 3 nozzle case while MA 22 test data was obtained 
to a momentum ratio of a~roximate ly  .12, The mass flow parameter at this 
nominal entry case is ,0437 whlle test data was obtalned to ,05, Thus the nozzle 
simulation does not need to be scaled, 

Figures 7-4 a to 7-4 c show Mach effect data for the jet-off conditions obtained from 
orbiter test 0A77/78, The only data to show a consistent Mach trend ie the pitching 
moment data, however, the difference between Mach 8 h d  10 is shown to be within 
the OA82-MA22 test to test variation and the OA169/MA22 difference cuts across 
both. Test to test  variation, thus, must be larger than any Mach effect. 

The OA169 data was shown in Section 3 to flt within the ;.Tach 10 e r ror  band and ' 

thus test to test variation is accounted for. In addition, data from Reference 3. 
showed that there was no Mach effect on RCS interaction at Nach numbers from 
2.5 to 4.5. Thus it appears that no further scaling is required for Mach number, 

7 . 5  REYNOLDS N U D E R  SCALING UNCERTANTY 
6 Most of the wind tunnel data was obtained at a nominal Reynolds Number of 1 y 10 . 

The nominal entry condition value for 280,000 feet and 36,100 feet per second 



5 velwity ir 1.6 x 10 baaed on vehicle length, 

A limited number of m r  were made during tart Oh82 to determine whether there 
is a Reynoldr number effect, but, all mearurable changer am within the data 
ac-r of the nominal data, Since the data war limited it war decided to replot the 
data at each angle of attack to compare trendr jurt; of there runs forgetting that they 
are all w i t h b  tha expected error,  FSgures 7-5 a fa 7-5 d protent the rerulta for pitch 
down nozzle N49 a t  tb one common value of momentum raflo obtained. No conristent 
trend can be dfclcurued 80 a t'worrt cars1' war chosen from the angle of attack that 
rhowed the most rlope and %orat cme" approx4mationr computed 

where 
Ac = Any RCS interaction force o r  moment at flight Reynolds 

5 3 .  number 

AC 6 
l d ( ~ e = ~ ~ 1 0  ) = Predicted interaction force o r  moment from model 

Re = Flight Reynold8 number based on vehicle length 

F = "Worst camt t  slope 

The 2752 nozzle data ie presented in Flgus 7-6 a to 7-6 c and the values of F for 
each component are: 

I Nozzle N49 

A C ~  F = ,6634277 

Z1 Nozzle N52 

A c ~  F = ,1787406 

AC9, F = ,4176398 



Mguro 7-7 prenenta tho 9vomt casett Reynoldr scaling effect on two cnsea; a 3 jet 
pltch up c w e  and a 3 jet pitch down case. Reynolda number scaling principally 
charngen the roll control power, This adverse change principally occurs on the 
pitch up fin interaction with the.il# w.d was derived from the data at 25 to 20 degreee 
angle of attack (F'igure 7-6 0) .  Since entry i n  to be made at angles of attack above 
35 degreer, it ia concluded that Reynolda scaling will not appreciably change the 
entry control effectivenen~. RTLS roll control effects, however, need to be examined 
3x1 tho llght of thir ttworat carre" effect, 

7.6 VEHICLE C , G. UNCERTAINTY 

Figures 7-8 to 7-10 present the effect of CG misalignments in RCS effectiveness 
in the sample cases of 3 jets in pitch-up and pitch down at nominal entry conditions. 
Tf the center of gravity ia  higher than predicted there will be some loss in roll 
effectiveness from tae pitch down jet clunter due to the sizeable amount that results 
from nozzle cant generated side force,on the order of 5% of the thrust moment for 
1 foot of error. The error in lateral C . G, location wlll also change the roll con~pcrnent 
as  is shown in Figure 7-10, However, a pure roll application wlll be self-compen- 
sating since the jets clusters will be on opposite sides rather than the same side as 
computed in Figure 7-10, 

All predictions shown in this section and made by the analytic program are done using 
a 1962 standard atmosphere condition. The seasonal high and low means and 1Cr 
extreme values for temperature and denaily obtained from the 1976 standard atmos- 
phere (Reference ll), were used to change the standard day conditions for the 
entry teat case at 280,000 ft. and the entry test case'was recomputed, Figure 7-11 
shows that seasonal means result in a variation in entry dynamic pressure at the 
altitude from 2.9 to 6 pounds per square foot and the two standard deviation extremes 
increase the range of dynamic pressure from a low of 1.7 PSF to a high of 7.3 PSF. 
The 3 jet on one side case momentum ratio at the standard atmosphere condition has 
a value of ,0945 so that there is no extrapolation o; interaction data. The lowest 
temperature/lowest density conditions result in lower dynamic pressures and an 
increasing momentum ratio td a value of .27 at the lowest extreme. The 1im.iting 
parameters on the interaction curves fits, however, keep the interaction terms 
relatively constant and the thrust beglns to predominate, Thus the control amplifica- 
tion shown in Figure 7-11 increases at the l ow r dynamic pressures, The higher 
temperaturehigh density conditions resuit in an increasing free stream dynamic 
pressure and a reduction in momentum ratio to a value of ,064, There is no extra- 
polation in the interaction curve fits moving in this direction, but the interaction 
terms are becoming more important as shown by the declining control amplification. 



The crouu-coupling tern which comea into play in the symmetric ptkh case shown 
in Mgure 7-11 ia nubject to considerable extrapolation since the limiting momentum 
ratio is .03 which is exceeded by all condition# at this altitude. It causes about a 
10% reduotion in pitch ampUcation uaing tho present .03 limit on the curve, 

Confidence that the predicbd value and the e r ror  band are cor , improves with 
increasing dynamic presaure nince there i s  no extrapolation cf d a t ~  involved. This 
curve points to the RTLS caae as the case of lowest RCS control power and the 
desirability of staging at as  low a dynamic presaurs a6 poslribls under that condition, 
This curve shown that a large vadatlon of roll controll amplification all result; in 
flight if standard day performance is used to make predictions fuel requirements. 
Similar comparlsbna of yaw control yaw ampli£icataon showed essentially no ehect. 

EXlY3APOLATION UNCERTAINTY 

The flight data of the preceding aection sectlon showed that no extrapolation of 
single aide data was required at the standard day 5 PSF entry conctition but that 
it was required for lower dynamic pressurers, The analytic program was modifled 
to remove all constraint8 on curve extrapolation and the case of Section 7.7 was 
repeated. The results of allowing unlimited extrapolatiorr are  shown in EYgure 7-13 
'where no problem is seen down to a dynamic preasure of 2 PSF. The roll amplifica- 
tion curves start to break at 2 PSF as the interaction terms grow !n an unbounded 
m m e r .  The vacuum solution will be an amplification of negative infinity for these 
unbounded solutions which the OA99 vacuum data ahows is unreasonable, The higher 
dynamic pressure cases where the extrapolation is limited to the symmetv+c pitch 
d o m  cross-coupling remain the more critical in t e r n s  of lowest control amplifica- 
tion. The cross-coupling term for symmetric pitch down cuts the pitch amplifcation 
by nearly 25% of the thrust moment and this points out the need for better symmetric 
pitch simulation especially for the higher dynamic pressure RTLS case. 



ANGLE OF ATTACK - DEG 

FIGURE 7-ia. DIFF ERENCE OF AVERAGED L TA (,TMA22/0A82 -0~169) 
AXIAL FORCE COEFFICIENT 



ANGLE OF ATTACK - DEG 

FIGURE 7-lb DIFFERENCE OF AVERAGED DATA (iMA22/OA82-OA169) 
NORMAL FORCE COEFFICIENT 
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ANGLE OF ATTACKNDEG 

FIGURE 7-10 DIFF EHENC E O F  AVERAGED DATA (hU22/0A82 -0A 169) 

PITCHING MOMENT COEFFICIELW 



ANGLE OF ATTACK DEG 

FIGLXE 7-ld DIFFERENCE OF AVERAGED DATA (MA22/OA82-0-4169) 
ROLLING MOMENT COEFFICXENT 



ANGLE OF ATTACK - DEG 

FIGURE 7 - l e  DIFFERENCE OF AVERAGED DATA (1L;A22/OA82 - OA169) 
YAWING MOMENT COEFFICIENT 



ANGLE OF ATTACK - DEG 

FIGURE 7-lf D E F E R E N C E  OF AVERAGED DAT.4 (&lA22/'0A82-0Al69) 
SIDE FORCE COEFFICIENT 



CASD-NSC -7'7-003 

ANGLE OF ATTACK - DEG 

FIGLXE 7-2a NOZZLE N49 MEAN LVCRE~IEAWAL DAT.4 FOR 
300 PSIA NOZ Z L E  EAcESSURE: PITCHIKG h1OMEXT 
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ANGLE O F  ATTACK - DEG 

FIGURE 7-2b NOZZLE X49 MEAX INCRE31ENTXL OATA FOR 
300 PSIA NOZZLE PRESSLX E: ROLLLNG ?VIO&l.IE NT 
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ANGLE OF ATTACK - DEG 

FIGURE 7-3a NOZZLE N49 STANDARD DEVL4TICJN OF TEST 
INCREMENTS 



ANGLE OF ATTACK - DEG 

FIGURE 7-3b NOZZLE N49 STANDARD DEVIATION OF TEST 
INCREMENTS 



E'IGLXE 7-3c NOZZLE N49 STAh'DARD DEVWTIOG OF TEST 
INCREAIrn TS 



ANG1.E OF ATTACK N DEG 

FIGURE 7 4 a  0A77/78 DIFFERENCES DUE TO MACH NUXIBER 



ANGLE OF ATTACK - DEG 

FIGURE 7 4 b  OA77/'iS DIFFERENCES DUE TO XACH NUJlBER 
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ANGLE OF ATTACK y DEG 

FIGURE 7-40 0A77/78 DIFFERENCES DUE TO MACH NUMBER 



FIGURE 7-5a NOZZLE N49 AXIAL FORCE CHANGE DUE TO REYNOLDS 
NUMBER 



FIGURE 7-5b NOZZLE N49 NORMAL FORCE CHANGE DUE TO 
REYNOLDS NUMBER 



FIGURE 7-6c NOZZLE N49 PITCHING MOMENT CHANGE DUE TO 
REYNOLDS NUMBER 



FIGLBE7-Sd NOZZLEN49ROLLINGAIO~IENTCHANGEBUETO 
REYNOLDS NUBIBFR 



FXGURE 7-6a NOZZLE N52 SIDE FORCE CHANGE DUE Tf:, 
REX NOLDS NUhlBER 

FIGURE 7-6b NOZZLE N52 YAWING MOMENT CIWXGE DUE TG 
REYNOLDS NUJIBEX 



FIGURE 7-6c NOZZLE N52 ROLLING i'4OMEhT CHAIYGE DUE TO 
REYNOLDS NUMBER 



ENTRY CASE 
r ; -35O 

H = 250,000 FT 
V = 26,100 FT/SEC 
0 = 3 NOZZLE 

EITCh UP 
<\ " 3 NOZZLE 

PITCfi DOWN 

FIGURE 7-7 EFFECT OF WORST CASE REYNOLDS NUMBER TRE-VD 



FIGURE 7-8: 

~ N T I E Y  CASE 
2 r ~0 

H 280,000 FT 
V = 26,100 FTt SEC 
0 " 3 NOZZLE 

PITCH UP 
Cr3 NOZZLE 

PITCH DOWN 

1060 108 0 1100 1120 

LONGITUDINAL C. G. - INCHZS 

EFFECT OF LONGITUDINAL C . G.  VARJATIOX 



ZNTRY CASE 
0 36' 

H = 280,000 FT 
V - 26,100 FT/ 

SEC 
0 = 3 NOZZLE 

PZTCH CP 
Q - 3 NOZZLE 

PITCH DOWN 

C. (3. - INCH ZS 

FIGURE 7-9: EFFECT OF VERTICAL C. G. ERROR 



ENTRY CASE 
2 r 350 
H = 280,000 FT 
V - 26,100 FT/SEC 
0 = 3 NOZZLE PITCH UP 
0 = 3 NOZZLE PITCH DOWN 

BOTH SETS ON LEFT SIDE 

FIGURE 7-10: EFFECT OF LATEIWL C,G, ERROR 



ENTRY CASE 
2 - 3s0 
H - 280,000 FT 
V - 26,200 FT/SEC 
0 - 3 NOZZLE PITCH UP 
0 3 NOZZLE PITCH DOWN 

DYNAMIC PRESSURE PSF 

FIGURE 7-11: EFFECT OF ATMOSPHENC VARIATION ON RCS 
EFFECTIVENESS 



ENTRY CASE 
r m 36O 
N = 280,000 E'T 
V - 26,100 FT/SEC 
A " 3 NOZZLE PITCH UP 
0 = 3 NOZZLE PITCH DOWN 

FIGURE 7-12: EFF ECT OF EXTRAPOLATION OF DATA ON 
RCS EFFECTIVENESS 



CONCLUSIONS 

Aaalysilr of wind tunnel data haa uhown that the aerodynamic interfewme between 
the aft mounted readion control nyntem plumeu and the flow over the vehicle i a  
sufBciently large to advernelj* affect vehicle control durbg low dynamic prerrrure 
£light. The data war analyzed to ahmv that the interference terma could be related 
to nozzle flow 6lmulaClon parrunefar6 and a predi~tlon model wrrr d e v e l ~ d ,  This 
model predict6 the total RCS control moment an the sum of the thrust tam, an 
impingement t e r n ,  an internotion tom, and a crors coupling term. A program 
which incorporates this model hws been written and is documented in thin report. 

f 

8.1 STUDY CONCLUSIONS 

1. Interactions between the pitch down jets and the external flow over the 
vehicle are shown to correlate best with an equivalent nozzle mommtztrn 
ratio, 

2, Data from many different geometry nozzles could be correlated together 
when the momentum ratio paramuter accounted for each nozzle dircharge 
coefflcient. 

3. The pitch down interaction data correlated well when broken in 3 degree angle 
of attack intervals and this elinlinated auy discontinuities in the model, 

4, The OA169 data correlated well the MA22/OA82 data eliminating Mach 
a s  a parameter. 

5,  The pitch up interacaon data correlated best with the momentum ratio 
parameter. 

6. No peak value was found at Iow angles of attack for the pitch up longftudinal 
plane data, 

7 .  Peak values were found in che pitch up lateral-directional data. 

8. The peak values correlated well with momentum ratio and occur below 
15' angle of attack, 

9, Ths lor gltudinal pitch up increments and the lateral-directional data above 
15' were broken into 5' angle of attack intervals which were correlated to 
momentum ratio. 

10, The OA169 test data for pitch up interaction agrees well Mth the 3IA22/OA82 
data. 



The yaw jet interacticmn correlated bent with a maan flow parameter in 
which number of nozzle# in a clunbr i n  not a part but the nozzle exlt angle 
is a part. 

The OA169 b a t  data md yaw inmractionn agreed well with the rW22/OA82 
b8t data. 

The yaw data waa broken into 5' angle of attack intervrdl~ for correlation. 

Trailing edge up deflection of t;ha body flap reaulta in increasing pitch 
interw1;ton for the pitch down reactSon control, 

Trailing edge down deflection of body flap resulted in no measurable change 
in RCS interaction. 

Trailing edge up deflection of the elevon deoreased the RCS pitch and roll 
interactions for ptkh down and yaw RPS. 

~ r a i l i h g  edge down deflection of the elevon increased pitch and roll inter- 
actions for th6 pitch down and yaw RCS, 

The only measurable croan-coupling between RCS controls was for the 
symmetric ditch d o m  caae. 

Possible sting interference effects need k be resolved in the pitch down 
cross coupling data. 

Symmetric pitch down cross coupling needs more data to refine the model 
since data was only obtained over a limited range of momentum ratios, 

Error bands were established for all data correlations and were shown to 
agree with error  bands for all possible difference combinations. 

:.io Mach Number effects could be found in the RCS data, 

~kynolds Number effects were shown to be slight for the entry case but of 
possible importance for RTLS. 

Uncertainty in vehicle center of gravlty was shown to be not important. 

Atmosphere uncertainty must be considered in determining propellant 
requirements for the entry case and will result in considerable changes 
in the expected control response, 

The RTLS abort maneuver appears to provide the most adverse flight 
conditions for RCS effectiveness and atmospheric uncertainty may be 
very important for this condition. 

With the exception of symmetric pitch down cross-coupling, the most 
critical case of high dynamic pressure involves no extrapolation of the 
test data giving high confidence that the data correlation will predict 
the true flight value. . 

8-2 



8.2 STUDY RECOMMENDATIONS 

1, A blade mounted model be built with a better represenWm of base geometry 
t0 ev~rluab 8fSllu b l b r f e r ~ n ~ ~ ,  

2. A vaouum ohamber teat of ayrnmetrlo plbh down RCS be performed with a 
good base geometry rapresentation (no 8 t h ~ )  'o evaluate symmetric pitch 
down crorr-ooupllng in the b a e  region, 
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APPENDIX A 
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ORIGINAL PAOE I8 
OF POOR QUALITY 
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I 'HIIJT~+uuSIP~I.(FIMINF~GIFIF~CLPH 

4005 C O R M A I ( ~ ~ 1 O t I l H  P I t l f - l N l r Y t F 2 U o R ~ 9 H  MAC11 tNFtF12mQ1hH GAMMAtF12.4r 
1 1 5 H # i # b L ~  OF AITACKIFLL*~)  
P R I M ~ Y ~ U ~ I P I ~ ~ H M F S ~  TCOhF 

rOuh FOHMAI(1WOtl~tlPHESSUHE RATfOtF2U.RtlSH MOMEE4TUM RATI01F20.f l t13H TH 
LHUST L ~ L F F ~ F L U ~ U )  
I ~ T R ~ I = ~ J * T J / ( H I * T I ~ ~ F )  
RfUHTI=lOJ*HfAAT/TJ 
POJPIt,=VOJ/PINF 
P H I N T ~ u u  7rRtHATtPOJPINlOI  

UUU7 FQHMAl(1UHO l t r  RATlOtF20eHt9H POJ/PIrJFtF20e&t25HFREE STREAM OYNAMI 
1C t'HtaStF20ed) 

P I i l 1 ~ 1 4 0 0 6 t H  IOHTI 
u008  FOl tMr\ l ( l  fl.10(1t*TOJ)/(R*TINF) tF13.5) 

FWH=(~$ /31* l~ I /HJ*T I I r l . ' / TJ * (  ( (PJ IXMJ*ANI / (~ I~~F*MINF*SXEF)  ) c + Z ) *  
l l j l l J (  ThEl A/RAUIAtJ) 
FMRZacH I t FWH ) 
FMIiYL=FMti 
FMHyH=FkH 
PRINT JUU6 
n ~ i c ~ = i t i ~ t u s f  ~~~UIJOZUL/WI/ (SCALE**2) 
PIt 1141 5UOl tt4OI4OZUL tHf4FSUI.r ARCS 
AliLb= l ~IHUST*IJOIJOZ\IP / ( d l  / (SCALE**2 ) 
PRINT FtUtt2r1~OllOZUR rtit4FSUH ,ARCS 
ARC== I klHUST*IIOl.(OZCL/OI/ (SCALE**2 1 
Ptt INI !jUU3t1.(UIJOLDL~HI*IFSIJL~AHLS 
ARCS= ~~I~UST*IJOIJ~ZDH/W I / (SCALt**Z) 
Plc l N 1  5UU4 t IJOI~OLDP r liI11FSDtf t AliCS 
ARCS= rI+rtusf*r~rurrozvL/oI/  ( s c A L ~ * * ~  
PHI IJ I  ~UOS~IJOIJOZYL~FI.~HYL P AIICS 
AHCSz I I~~UST*I~IUIIOZYW/~~)I/  tSCALE**2) 
PHINI  ~ U U ~ ~ I ~ U ~ J O L Y R ~ F M H Y W ~ P P L C ,  

5 0 0 1  FORMAT (LLJHO PITCtI IJP LEFT tIOI.ZLES =tFR. O t  1 1 ) ~  t LI+HMOt%,.tJTIIM HA I I O t F 2 I l  
l . U * l U ~ t  1914 I t I I I U S ~  COLF( ISOFT) tF15.6) 



90112 FJHMn I (Z'tHn PI  ICt i  I1P HGHT filULZLLS I,F'H*U, )OX, 1(1li~40)4tNTIJM GIRT ' IOtF?n 
1 - H t l O ~ t l ' l H  rtfHIJST C0t.F ( lSPFT1 r F i 5 t e )  

?UU $ FQWMA I ( dSH(1 PlTCH DES LEFT 'IOLLLE!, =,f H *UI LOX c 11,HrJnMLtIlllM RAT InrFPn 
l * n t l l r ~ t l Y t f  Itll*\J5t CI)LF( 1SnFTl t F  15.b! 

5UU4 FUHkrAl(d3Hn PlrCH Old H d h l  NOlZLE,S : ~ P R ~ U P ~ ~ X ~ L ~ H ~ ~ O M L N T I I ~  RATIOtF2II  
l I B t l U ~ t l U k  TttHUST CI)EC(lSQCTI ~ F l 5 . b )  

Sou5 F O R M A I ( ~ ~ H O  YAW LEFT FIOLZLES S t F l l r ~ t l O ~ t l 4 H Y A S 5  FLOW RAT tF20 
L * t ) b l l ) ~ t 1 9 H  IHUUST CUEFflSOCT) ,F15.bl 

90ub FOHMMI(C~HO Y A W  I~XBHT NOZZLES =,c~,ut  i n & +  ~ l t n t r r ~ s  ~ 1 . o ~  R A T  *F?O 
1.0, i u ~ ,  1 j~ r t i n u s t  COLF( IS~JFT) t F 1 S m e )  
F'tlIlJI SllUU 
P I ~ I I J I  ju90 
('N 1191 31,s L 
PHlNf JUbL 
PHIIJ13I1S3 

J05U FOHMAI (SStiO B31)Y AXtb FORCE AND MOMENT COEFFIC[EbIT5 AWL OUTPUT I 
JUSl  FOHMnftbbHO SlGP4 COtiVEMTION*XPOSlTfvE FWD *L P 0 5 I T I V E  OOwN + Y  PO51 

1 T l V I i  t(1bldT ) 
3052 FOHMA I ( .J 7HO PlTCtl  + IdOSE (If' *ROLL + NIGHT. WSNG DWN*YAk + WOSE RlnH 

1 T I  
All53 FOUWAl l S~)H~I.!O%NT I?EF CENTt?W*XZlt17he 7 L t J I S ,  I 

C LUI*IPU IL; ftlHUSt YOlllENTS 
CLJZU m 

CLu=U. 
CLY=u 
CMlJZU 
CMUZU e 
CMV=O, 
CIJOZU, 
CIJD=U * 
ct4y=u * 
cxu=u* 
Cxll=u. 
cxy=um 
cyu=u*  
cyo=u * 
CYY=U. 
CLU=u * 
CLUZU * 
CLY=u. 
[I0771 I: lt3 
I'IlJk = P I t~F*144 ,0  
CALL I H H ( I T t C X T ~ C Y T t C Z T t C L T t C ~ 1 T t C N T )  
PlNF S P I I J F / ~ & I , O  
x F ( i r , r l t . l ) b u  TO 75 

79 cLu=cLr  
CI*U=ChlT 
CIJU=LI+T 
CxuzLn r 
CYU=LY r 
C'?U=ck r 
GO 1 O  7 7  

76 I F t l I . E u t 3 ) W  fU 7b 
CLDZLLI 

' CMU=LF+T 
CiJu=Clur 
CXI)=LA r 
CYIJ=CY T 
CLU=L& f 
to I U  1 7  



. 

o o ~ e r r T : i , ~  
CALL I 4 P l l . l O t I  ~VCXT,CYTICLTICLT~CMTICNT) 
I F ( ~ T  , ' J L * ~ ) V O  TO 167 

18h C L I M u r C L T  
C:41MU%bM l 
C1JIbtuzclr)r 
CX IMU=Cx r 
C Y  IMUSCY r 
C L l M u t c ~ r  
GO 10 IbY 

187 1 F ~ I i r t ~ r 3 ) ~ 0  TO 1186 
CL1MOGCL.I 
CCILMULCM t 
C1IIMDZCIJl' 
C X l W Z C A  r 
C Y f M u r c ' r r  
CLXMDZCL t 
GO rtJ l d 9  

i b ~  C L i M Y z C L r  
C M I M Y r C k T  
CIJIMY r C l J T  
CX1MY;CXr 
CY IMYSCY T  
C Z I M y z C L f  

I & +  CON t l l # U t  
190 COIJT I t rUk  

CLI NUstl. 
CLIIJOZUI 
C L I N I S O  I 
c r l  I~JUTI~ ,  
CMlNUSf) 
CMINYZI I *  
CNINUtIt* 
C i I i I 4USl l  r 



C L I N Y r O r  
C C O M r U r t  r ~ u t a E  I I i T E H A C T  LON MOMLEJTS 

I F ( l U t S u r l ) ~ 0  TO 204 
D 0 2 u 3 1 T t l t 3  
C A L L  f 1 4 l t R t  A T  P C X O ~ C Y U , C Z ~ @ C L ~ ) P C M H ~ C ~ J U )  
I F ( l r , r r ~ ~ l ) a 0  TO 20L 

. CXCLU-U * 
CXCCIJ.=I) * 
CxCCY=U. 
CYCCU=U* 
CYCLtJzO* 
CYCEY=II,  
CLCLUZ~J  
CZCCD"U * 
CLOCYrU,  
CLCLU='J 0 

CLCCUZV 
CLCCY :IJ , 
CMCSUZII. 
CMLCUZI )~  
CCCCY GIJ * 
CIJCCU=U r 
CI . ICLU=~ r 
CtJCCY=O r 

C A L L  LCUIJPI. ( ~ ! ~ C X C C D ~ C Z C C ~ ~ L Y C C D ~ C ~ C C I ) , C ~ I C C U , L L C C ~ ~  
211 CONII I~JL 



lC14LCUtClrCCY 
PHtrrr 3uU1 

~ U u l  FORMA 1 4  l u l l 0  TtIIUST TtHMS 
f'RIlJf JulIZ 

3UU2 FOHMAI I llI1lt 17Xt 14HROLl.INt MOMEFIT t 3Xt 15klPITCHINd YOl.qE,NTr 5X t 13HYAWXpl 
1G MOMt.14; t 7Xt 1114 X FOHCEtBXt !OH Y CORCE,bX, LZH Z FORCE) 
PRINI 5uUSt CLUtCMUt CNUt CXIJICYV~CZU 
PHINt )UUY t C L D ~ C ! ~ ~ D ~ C ~ ~ O I C X O ~ C Y D ~ C Z @  
PUIIJT JUU5t CLY~CVYPCNY~CXY~CYY~CZY 

JUu3 FUuMAi (14HO Pl rCI t  UP rhF1H.b) 
3U04 FORMAl ( l4 l lO P I  lCH UOrN tbF1Bebl 
3UU5 FUHMAl(l4HO Y A W  t 6 F l B r b I  

P H u u  3uub 
3UOb F U H M A ~ ( ~ ~ H ~ X X X X X X X X X X X X X X ~ X X X X X X X X X X X X X X X X X A X X X X X ~ X X X X ~ X X X X X X % Y X ~ )  

PHlNl  3 ~ 0 7  
3007 FOHb+AI(d,lHO IMPINGEMENT FORCES ) 

PRINT 3uU2 
PHlrJf SU113t C L I M U ~ C M I M I I ~ C ~ ~ ~ M U ~ C X ~ ~ U ~ C Y ~ M U ~ C L ~ M I , I  
PHINl 5U046 C L ~ M D ~ C M I M O I C N ~ ~ ~ D ~ ~ X ~ M U ~ ~ ; Y I M O ~ C L ~ M D  
PItiIJf 3U351 CLIMYt CMIMYeCtJIMY tCXIMY ~CYIMYICLIMY 
PItINr 5UUb 
PHINr JuUB 

dUU8 FUHMAI (IYHO IIJTERACTION TERMS) 
PHINf 5U112 
1% 114r 3u03t CLlNUtCMIFIUtCFlTlJUtCXINUtCY INIJICZINIJ 
PRINT SUU4r CLl f lOtCMI t~OvCN1tdOtCXI t . ID~CYIhrntCLI tJ~)  
PRINT JUU!,l C L I H Y ~ C M ~ ~ J Y ~ C ~ J I ~ Y I C X I N Y ~ C Y ~ F I Y ~ C ~ I N Y  
Pk fN f  5Uc l t~  
PI(IIJI J u W  

JUf) 3 FuHMA l t L21ifJ Ci(OS5 COUPLlflb TERMS) 
PI t INI  $UlJ% 
FWIlrT .Iuu~* C L C C U ~ C M L C U I C ! J ~ C U ~ C X C C I J ~ C Y ~ L ~ J ~ C L C C I J  
PKIlJ l  5004 * C L C C I ) ~ C M C C D I C ? ~ ~ C D ~ C X C C O P C : Y C C D ~ C Z C C I ?  
PH1NT $ 0 0 9 ~  CLCCY tCMCCYrC?ICCY t CXCCY tCYCCY*CZCCY 
PHllJl .5IIUb 
PRINT SulO 

3UlO FbHMAi(I4Hfi rOrAL VALUES) 
P H l k r  5002 
P H l l ~ l  3 ~ 1 1 t  C L T * C I * l T t C N T t C Y T , C Y T t C ? T  

3011 FOHMAt t l H O r l ~ X * f > F l H a b I  
PHIhrr 5uu5 
U ~ b u u ~ C u c r = l t + ~  
s1(i=u, 
~IUSUUIAA ~ S = I  I 3 
EIu=.Z&rl+S~bl l l (  IAXISt lCOM)**ZtSIGI"I IAX lb t  I C U ~ ~ ) * * ~ + ~ ~ G T ~ ~ (  IAw15, ICOW 

1 ) * * 2  
500 CONrllrlJt 

S L G T O ~ I C U H ) Z ~ ~ J I ~ T ( S I L , ~  



t XCOM 
P H I I . ~ ~ ~ ~ I Y I ~ S I C T O ~ I C O ~ L  
C u t t ) r ~ l  f i t l U t  10tGlO ULV OF CX a tFl!ir?I 
63 10 hUu 
PC(I lrrg'~vl! tsAtTO( I C O ~ J  
COHMAI ( l r t O t  LbHSTD OLV OF C 2  r t F 1 3 r  7) 
60 I 0  bUU 
P H l ? t f ~ ' l l l 3 t 5 1 b 1 0 (  fCO+*L 
POHMAl(lt i0tluH!~T1) bEV OF C M  : t F 1 5 * V I  
GO TD 6UU 
P H l N f l ~ ~ ? ~ ~ t S l t r T 0 (  ICOM) 
F O H M ~ r ~ f l t i O ~ l a t l S t O  OLV OF L L  Z tFlrSe7t 
GU 10 aUU 
P H I I J ~ ~ ~ ~ Y ~ ~ S A ~ ~ U I I C O M J  
F O t t M ~ l f l H O t i b H S T 0  OEv OF CN s t F l ! 5 * 7 I  
so 10 hUI) 
PHIN~sYYu~SIUIO~ICOM) 
FOHMAI(LIlOtlbHST0 DEv OF CY X t F i S r 7 I  
COlJl I l r U t  
CALLULAIE AhPLIFICATION FACTORS 
CALL kdPL t 1 e AKXU: AKLIIt AKYllr AKVUr AKEtU, AKLU) 
PWIlJl 5 ~ 1 2  

3012 FOHMal (PJHU AMPLIFICATIO~~ FACTORS) 
P H I N I  3 ~ 1 3  

3U13 FOHMAl f lHnt29XZHKLt 16X2HEMt l6~2hKP1t  I I C X Z I ~ K X ~  1 6 ~ 2 l l K Y t  1 6 ~ 2 ~ ~ 7 )  
P H I  NT Ju43t  AKLlIt AKMUt AKtlLlt A K X b  AKYUt AKZU 

JU4J FOHMAIf1t4O~*AMPLIFICATION*tLOXtbF1B.1~ 
P H l N f  JuUb 
PRIlJT 5UUh 

C EPROA ANALYLIS UF DATA UASEL) OW 2 SIGMA tRRORS 
P H l N l v ~ l u U  
PH!Nfvuul 

VUUO FOHMAl(r3HO THC 2 S I l i M I  ElraOR WAND HESIJLTS I N  THE FOLL3WtNG COEFSI 
Y U O l  FOHkAlfbbHn +2 SIGMA COFF FIRST THEN -2 SIOMA DATA ARE PRLSENTflI 

t lObaUlhn=i  t 2  
we2 e 
I F f l t h e B T e I I ~ = - Q e  
CX~=LA~+H*SIOTO(I) 
C Z ~ = L L I + ~ * S L G I O I O L  
CMT:C~I~ + ~ * S 1 6 T 0 1 3 )  
C L T = C L T + d * S I ~ r 0 f 4 )  
C N T = L I ~ I ' + ~ * ~ I G T O ~ S I  
C Y T = C Y T + W * S I G T O ~ ~ I  
PHI tJ l  3UU2 
P H I N I  i ~ l ? t  CLTtCMTtCNTtCXTtCYTtCZf 
P k l l J i  JuUb 

660 C0NTl1rLlr 
I 'Hliul 5UU6 
P H I N l  .Nu6 
I f l J = I l r t A l  
GO TV ( l O O t l U l t l t 6 l ) t I I N  

b l  C A L L ~ A ~  l 
FlJU 



SUUHUUT 1 1 4  vAbPLtJ( T l t  l edAtl9 AMPIPLOC  LOCI 1 I I A l l  

f F t l ~ ~ l ~ ( r f  *IIIHNlfrfl 10 
PIEIJ~LUIS~ 
WtD.1. 
POHLIJo$*l940 
D S T I H S S U R T ~ A & / A R J * ~ * / P I & ~  
H ~ ~ U H ~ ~ ~ ~ I l o + l b J ~ L o l / 2 o * X ~ J * * i l l * * ~ ~ l o ~ ' I ~ d ~ 1 o l l l  
trUJf x ~ n , ~ u - u , n a u u i s r r t ~ r r * * a ~ / t ~ ~ u ~  { G J * ~ ) * (  I.O-LOS( ~IJRN/ 

1 37rZYlr8)))  
#ULlrljtbuJF/ftHORlIE 
XIJLIk3r~lrUT I xDLIq2) 
XUL Insxtr~ lMr**rJe bb 7 
UCLlt~trrnnD/U'J IAH 
ExPoN : f Ob~l t lE /%OLlM2l  **? 
fF Ik&PUlJofiloh?SoU) 60 To 2 
FTHA t : LKIJ t -hXPOIJ) 
GO l ( r  J 

2 F l l { A I  I 0 1 0  
3 THAT Z TlltT+t4ED*ASIN( leO/XMJl*FTHAT 
U I F (  fHAfoBTe 1UHN)00 TU 100 

TL=U~U*IIJHN 
t F f  lLoG7 *boo )TClhO* 
T T T T T ~ P I ~ * T L / U * ~ J ~ ~ ~  
FTHt l  t ICU~IPIE*THAT/T?TTT)I**~O~U 
IF(TliAt.LEoTCl GO TO 5 
EXPUIJSO r Ub4 4 I THAT-TC I 
f TtitTA :: EXP(-QXPON) 
F f l fhr  t 00042572*FTMETA 

5 CONliltclk 
P O W t 2 ,  
OCLLIJ~ : HAU/USTAR 
X F ( ~ L L I ~ . ~ ~ ~ ~ L , X Q L I M ~ ) C ~ O  TO 10 
I F ~ ~ L L l I ~ ~ ~ L t o X ~ L I M J ~ b O  TO IS 
IF (O~L I1~ teL t rXUL IM)GD TO 7 
HliOHAI=kI~Ef*Oeb*tHHOWHE/nCLlNE+HdJF/nCLINE**2l 
GO 10 11 

h CON1 l l r l l t  
puru=u e 3 
trtiJF=hlib14HE 



SUHIIOuf 1 JE JLT ( G A M ~ J ~  ARNr Pntlr)L ePt102 e TLE e TI!# r  h h o ~ ,  AN) 
I)lrrEik,lun P M ( J ) ~ ~ H ~ J ) * C C ~ ( S )  
COMMOI~/A/~OI~PU~~~PR~ e T l r P 7 7  
IJWL rtYUL 
P M ( 1 ) Z l r  
PM(d)=l, 
L M ( l ) & l r  
L d ( d ) - l e  
MIJOLZ 1, 
DM% l 1 
P O ~ S ~ U A M J * ~ ~ I / I ~ ~ * ( ~ A M N - ~ ~ ) ~  
n O l l 1 L F z l e  loll 
MNOd+uNUL+IIM 
\A5f=((~A~Ntlr1/2,)**PO~ 
A A S ~ Z A A ~ ~ ~ * M ~ ~ O ~ / ~ ( ~ ~ + U ~ ~ * ( ~ ~ A M N ~ ~ ~ ) + M N D Z * * ; ! I ~ ~ P O W I  
AAsr:l,/AASr 
Z w ( l l t & w ( Z )  
m ( z ) z z r ( J )  
L14 ( 3 1 ZMI~OZ 
Pt1(1I=PMI2) 
PM(2);Pn(JI 
PMIJ)=AMST 
IFcnAbr ,crE,r\rclJ,uO 10 112 

~ t t  CUI~~II*JL 
1 1 2  CALL ~*ANG€O (PMeLMeCOE) 

~ ~ ~ O L = L O L (  1) + C 3 t ( 2 )  *AHEl+COEf 3)  *ARt11)*2 
A A S T t ( ( ~ ~ A M t l t l e ) / p , ) * * V o w  
A A ~ ~ ~ A A ~ ~ * * M I J O L / ( ~ ~ ~ + U ~ S * ( G A M N ~ ~ ~ ~ * ~ I J O L * * ~ ~ * * P O W )  
AASf=&,/AASI 
P I J O L ~ P ~ ) ~ ~ U Z / ~  ( l r + O e 5 + ~ G A M N - 1 ~ ) + M N ~ 2 ~ + 2 ) * + ( G A k l t l / ( G A M N - l e )  ) )  
POWn2.r)rc)W 
P U U ~ =  ttiAl4Nmle I /GAMtJ 
~HT:(t~~Ju&/PVNOi I **POwl 
PHT=le-PHT 
T ~ = ( ( L ~ / ( G A ~ ~ ~ ~ ~ ) ) * * P O W I * ? ~ * G A H N + ~ ~ / ~ G A M F ~ - I ~ ~  
P,g TzAI.~/AAST*POIJOZ*~UHT ( f i*PHT J * 1 ~ 4  e 

T ~ x s T ~ E / I ~ ~ + u ~ ~ * ~ G A M I . I ~ ~ ~ ) * M N O Z * M ~ O Z )  
PLTUHlr 
EN0 

5 ~ t ) l i O ~ T I l l E  L U I ~ I C ( X ~ C I Y ~ I ~ J ~ X F A I  
Oi*tNbIb14 C L l r ) t l )  
C O M M O ~ ~ / L ~ ~ H ~ U / ~ ~ G ~ S I ( ~ M ~ ~ ~ ~ ~  tS IGI t1 (3eb)  t SIGIC1(3rb) e5IGTH(3e6) 

C CUtjIC CUHvt tOtlATION WHtr(E C(I~S)=LAHGELT VALUUE ALLOWED 
x l Z X  
I F ( x , L T , C ( I ~ O ) ) X ~ ~ C ( I ~ ~ )  
IF(Xeer.L(It$)lXl=C(rrSI 
Y ~ C ~ ~ ~ ~ I * X I * ~ C ~ ~ ~ ~ J + X L * ( C ~ ~ ~ J ~ + X ~ * C ~ I ~ ~ ) ~ J  
I F ( d e ~ l J e 1  )Gu TO 10 
x1=x 
I F L x . L T * C ( ~ * ~ I I X I = C ~ J ~ ~ )  
IF(X.bteC(Jr$)IXltC(J,J) 
Y ~ Y I ( ~ . - I F A ) + X F A * ~ C I J ~ ~ J + X ~ * ( C ( J , ~ ) ~ X ~ * ( C ( J ~ ~ ) + X ~ * C ( J ~ ~ ) J ) )  

10 S I U = C ~ I ~ ~ I * ( ~ ~ - X F ' A I + X F A * C ( J ~ ~ )  
RETUHt* 
ENU 



Suc)nOurIlJE P A H C L O t Y r L l t C G E F )  
I~IMkNslulJ Y ( 3 1 ,  D l 3 1  CO:Ff3) 

C---*-GIVkb c b t F F ! c l E ~ T s  FOR A t7AHAHOLIC F IT  
X l  = Y ( l 1  
x2 s r tr )  
X J  = l ( 3 1  
nj  ; U ~ L )  
02 * O t L I  



Cr)MMOrr/urN/lJONOZD, ~ I O ~ O L O L ~ N O ~ O ~ O ~  ,135 r A W L  I 051  ARUR I ALXOL I AEYDR r 
LHMF~uL r HMFSUH I UXt lOZO I OYIJOID OZtI0201 

- - - 
ID?NULL* u2tIOLL 
C O M M U I ~ / ~ ~ ~ ~ ~ ~ ~ M J I O J ~ A H J I A J E I ~ O J ~ R J I T O J I T ~ J H N I D S T A ~ I A N I I H E T A I O F X I T I  
lIIMP*bCUtP 
HEAL IJOIJOLUI~~OIJOZOI IJONPZY I NONOZUL t N O I t 0 7 U R r  tJtNOIOL 1 EION07DH rL~ON0Zi'+,. * 

ltlONUL IH 
REAL I * I I ~ F  

91 00 7 J t L t 2  
CTlrTtwUST/uI &REF 
IF(111&e1)00 TO 2 
IF(J*L'$*Z)GO r3 111 

11 NUNOtuzIvONOLUL 
XsXHhuL 
Y ZYHLUL 
ZftHEUL 
GO TO 1111 

11 1 hIOhu~ut~*L)t lO~uH 
XtxutuR 
Y=YHtllfi 

C T f  CI I+I.IU~JOLU 
DX=UXI IOLU 
OY=OYI~ULU 
rJZ=DLldoLU 
GO ro 9 

2 I F ( l * t O e J ) G u  TO 
IF4JetubL)GO TO 

22 PIONULU=I~ONOLUL 
XlXHhUL 
YZYHEuL 
L=ZkkLL 



DY=DYINLY 
oz=IJzI t oL  Y 

4 C X t - L I ~ U X  
CYt-C I*uY 
cz=-l; f .LbL 
CL:(L,.*Y+CY+Z~/B 
CM=(LA#&+CZIX) /C* ( -~ , )  
ClJ:tL y*x -CX*YI /B  
GO TI, o 

5 cx=u. 
CY=Oc 
C&=u* 
CLZU. 
CMZUe 
Cl lZU* 

6 I F ( J ~ L ( J , Z )  v(l r0 t ~ b  
C%l=EX 
cri=c'r 
C L l = C &  
C L l = C L  
CMlZLCo 
CNlZLI *  
00 I U  7 

hb CX=CXl+LX 
C Y = C Y l - I Y  
C z = L l l b c t  
CLI'CLI-LL 
CM=CI*IL c ~ b i  
CIJ=CIJ~-LI  J 

7 C U N T I I ~ ~ J ~  
PE t UHrd 
CNU 



ORIOINht PAGE 16 
OF POOR Q U W  

COMMOI~/HLF /bHEF IC t D 1 SCALE 1 XHE t YHE , ZHk 1 DxIIOZ ,OYllOZ * DZPJOZ t PXFIOZZ 
~OYNOLLI~ZNOLL 

C O M M O I J / ~ ~ O Z / X M J ~ O J I A H J ~ A J E ~ P O J ~ R J ~ T ~ ~ ~ T U H N I D S T A I ~ I A N ~ ~ H E T A ~ O E X I T ~  
111MP1~CutF  
COMMOIJ/LONTH/DELTER~UELTELIXELV~~ELVIXFLAIZFLAI 

1nELttF 

AEAL I~~)'~JOZUINOIIUZO t IJONOZY PNOIJOZUL INOPJOZUR I EIONOLDL t NoIIOPDR 1 NONOZYL I 
1I~IONULYH t IJONOZ 

D A T A X F L A ~ L F L A / ~ ~ ~ ~ ~ Y I ~ ~ & ~ / , X E L V ~ Z E L V / ~ ~ ~ ~ ~ S O I ~ ~ ~ ~ ~ ~ / * C C C / ~ ~ ~ ~ ~ ~ ~ ~ /  
1900 FOliMA1 ( l I1012151BFlY 04) 

0 0  18001U= l t2  
I F ( I I ~ P ~ N E I L ~ U O  TO 1&0 

C VACUUM PLUML IMPINGEMENT MODEL, 
QFALT=I.-C+I/2O* 
IF(UFHCI*LE.O*IGO TO 2000 

C A DYElAMfC PHESSUHE DECAY I S  FACTORED I N  SO THAT THERE I S  NO IMP I F  Q 
C I S  GRLATth lHAN LO PSF ON THE VACUUM MOOEL 

1 7 0  TCO=TliUUST/SHEF/QI*OFACT 
IF(L.IIE.I)GO TO 1720 

C P ITCI I  UP ~ U L Z L E  MOIJEL 
1 7 1  IF(IUeEU.2)bO TO 1 7 1 1  

I F  ( ~ J O I J O L I J L ~ ~ O . ~  GO TO 2000 
YI{E=TIiEUL , 
XUE=XItEUL 
C Z T =  rco*erorruLuL 
60 TO 1712 

1 7 1 1  IF(NUIIOLUR*CQ.U.)GO TO 2000 
YHkZYHEUU 
XHE=XNEUIt 
CZT=I'LO*IJON~~UR 

17  12 C2HS.t. rllV08h*CZT 
CXM=.Ollcbb*LZT 
CMH=-.O007A*CLT*xRE/C 
CLtJ=-oIJ*CZI *Y17E/B 
CYb=+o0b23lj*CLT 
CIlU=* eUS93*CLT*XRE/B 
GO T O  1700 

1720  I F ( L . L ~ J * ~ ) G O  TO 173  
1 7 2  I F ( I O ~ E U . Z ~ ~ O  TO 1 7 2 1  

C PlTCI4 D u w ~  IJOZZLE MODEL 
IF ( NVIJOLUL~LU .a. )GO ro  20011 
XHE=XI<EUL 
YHE=YliEbH 
CLT=-I CO*IJOIJOLUL 
GO 10 1722 

1 7 2 1  IFOUOIJOLO~*LU.O. )GO i 0  2000 
XHE:XHCUR 
YHE=YhtuH 
CL I=-I CU*EIOIJOLIIH 

1722 C L U = - . ~ ~ ~ O ~ * C Z T  
CXH=-,1U709*CZT 
C re=-. Jl1337*CLT 



CMH=+o JUlO*bLT *XRE/C 
C L U = * ~ C D ~ ~ * L L T * Y A E / U  
CidB=-,f)lu57*C~T r X R W  
GO tU 17UO 

575 l f ( l ~ ~ E ~ r Z ) ~ O  TO 17.51 
C YAW NOL&ti MOfle.~ 

IF (~OIJ~)LYL~~;VOI) , )GO T O  2000 
xIdE:~h~irL 
ZHt =LhE Y L 
C&T:-ICU*NOIJOLYL 
GO TO L I J 2  

1 7 3 1  IF(NOIJULVR.L~J~U. )GO T O  LOO0 
XUtXXUEl It 
c?(Ct+zlct;lH 
C L ~ = - I L ( ~ * ~ J ~ ~ J O ~ Y ~ )  

1732 CXB=-,UUdbH*tLT 
CiB:-,Ulo34*CZT 
CYU=*.UUU77*CLt 
CLM=+aUJr77*CZr*ZRE/b 
CMU=+,UUB~~*CZT*XRE/C 
CNU=-.I)U 13*bZT*XRE/U 
63 10 l ? U U  

1dU IF(l1kr)rNEnL)CiO TO 185 
C NO xMPIl~bcMtr4T COiJPUTEO 

nu T O  LUUO 
185 CONT 11rUt 

C NElrrTu14lAbJ IMPACT XMPINbEMENf MOOEL 
IF~L.IJC..IJGO ru 2 

1 COl~TllutJc 
O X r I O d ~ D ~ l ~ v X U  
RYlJOd=UV IJO?U 
L)LIJO&rl)LNOZU 
DXNOLL=L 
OYNULLZL 
r)zNOLL:- 1. 
XHE=XkEUL 
YHt=YntlrL 

A JE=AtXUL 
DELTAr=UELTt.L 
~IONOL~NUNOZUL 
I F ( l ~ o L i . 2 )  GO TO 4 
XHt=XkslJK 
YIIE: I I~EUH 
ZHk=Ll(tUK 
A JEZkt.r(Ut( 
DSTAHz35 I' ARuH 
rJELTAt=IrtLTcli 
I IOIJOL:IIUI JOZUH 
GO TO Ir 

2 I F ( L o t 9 . 3 ) 6 ~  TO J 
DLNU,LL=l r 
OYNOLLZ~. 
I)XNOZL=A. 
DLNOL=I)LI JOZb 
IIYNOL~OY IgOZlr 
t J & N u ~ = r f ~ i  1020 
Xl{k:Xltk~/L 
YHti=YlcEu~ 
%R~=LuELIL 
AJEZALXLIL 
D S T A H ~ I ) ~ ~  ARUL 
DEL TAL~UELTLL 
NQNUL=fJLJlb'OZUL 
IF(Icd.LI.2) GO TO @ 
XREZXhEUIi 
Ylili=Vl<ElJli 
LHt=LI(EUW 



criu=u. 
c I:EGIN CALCULA rxoNs OF COEFFICIENTS AND DERIVATIVES 

~ V l l S u I u = 1 t J  
b30 I = l U  

XXIx:x(l)*SCALE 
IY I Y=Y ( 1 ) *!%ALE 

C CuHMECTlON TO lku~ VkRTICnL C G  
L L I L = ( z ~ I ) - L ~ u ~ ~ ~ ~ ) * S C A L E  
SLOCCZ bLOb(I)*SCALC*SCALF 
I~IJXX I A=I)NI( ( 1 
D~JZLIL:UIVL ( 1 ) 
IF(Iu.BI*&~)GO T O  24 
I F (  lU*C;t:* 1 q l ~ U  TO 1'3  

C tLEVOlJ u t k L t E T  ION CURRECl 1014 
I F ( D ~ L T A ~ ~ E w . O . ) G O  TO 23 
1)ELtZLEL f AE/5 7 t dY5O 
r t iC=x tLv*SC~\L t  
LIIC=IL~LV+CLC* Y ( 1U) 1 *SCCLE 
GU TU 2 1  

C UOUY FLAP C U I + H ~ L T ~ U I ~  
1 3  IF(IJLLL~F.EO~O.)GO TO 23 

DtLt=bgLJF/57e29' jH 
XlfC=I(kLlr*SCt\Lk 
tHC:Lt Ln *SCALE 

22 U t f L = S ~ l f  ( ( X (  fU) *SCALE*XWC)**2+( Z (  I l l )  *SCALE-LtIC) + * 2 )  
xlclx~~t~L-~tl~*COS(Dt~t 
Z Z I L ~ L H C + O ~ L * S I N ( D ~ L E )  

C COHHECT~OIJ t i )  H t W  VERTICAL C E  
7ZIL=&L1L12. lJHJ33*SCALE 

OtJXXlI(=IJIJX( IU)*COS(DELk)+ONL( IU)*Sf i ) (OELE) 
I)I~ZLIL=U(JZ( IIJ~*COS(D~LE) -nwx~ IIJ)*SIIJ(D~LEJ 

23 CONTIIIJ~ 
Yw=YY 1 Y  
nvro = r ) ~ r  I I ) 

660 XU = 4 X l X  / d 



DX~XXIX-xHE 
o v = r o - v n t  
OL=Lt l t -ZH6 
D l b r t b l ~ t t  I ( D ~ r c * 8 + U ~ * r r l + D ~ * * 2 1  
I F ( O 1 b r r L Q * O p ) G O  TO 1150 
I F ( O t . * E r * 0 * 3 ~ 0  TO 6 
I F I ~ L I ~ O ~ Z V G I . O . I G O  70 1150 
GO TU 7 

6 ~ F ( O L I ~ O L Z * L ~ ~ O *  )GO TO 115n 
7 COIJTII~IIL 

o x r o T = o g / o I b r  
LIYTUT=I)I/C~ST 
OLT(rT=I)L/L I a t 
C ~ T A = L X ~ ~ T ~ U X N O Z + D Y T O T * O Y ~ ~ ~ ~ ~ O I : T O T * O Z N ~ L  
THk F=ACUS(C~IA)  +RADIAtJ 
I F I T H t T r c i k *  IUHtOGO TO 1150 
CALL vALPLU (TI~ETID~ST~XMPLUMII~LOCIQLOCITHAT) 
nxrcrrr l  = - o x r v r  
DYTOTP = -DYrOT 
O z r u r P  = -OZTOT 
I F  ( r t i A I  ,EQ*THET) GO TO 10 

C FI t lO l r f n t C T l u N  cOS1HES OF  JEW JET FLOW OIHECTION 

DYS 
DZS 
5 3 
x 3. 
Y3 

10 CETAZ = DX I O I P * O ~ ~ X X ~ X + D Y T ~ T P * O ~ ~ ~ J + D Z T O T P * D N L Z I ~ -  
PILF=k l l*F*149. 
I F ( L ~ ~ A L ~ L E * u . ) G O  TO 1050 
CPLOC = ( G J + J . O ) / ( G J + l . O ) * ( 1 . 0 - 2 * O / ( X M P L U M * X M P L I J M * ~ G J t 3 . 0 ) ) ) *  

1 CElAZ*CETA2 
GO TO 1 ~ 5 1  

1050 CPLUC=C~TA~/XMPLIJ~~/XMPLUM/*LZ~H 
1051 c w r  II+LJL 

PTJJ=rLuC+QLOC 
PT l r tF=t ' lLF+uI 
I F ~ I ' I J J ~ L ~ ~ P ~ I ~ J F ) ~ ~  TO 1150 
I F  (ULOL.LT.l.0) GO TO 1150 
CPLUL=(iPLOCcOLOC+PLOC-PIZF)/QI 
IF(CPLOL.LE.IJI)GO TO 1190 
DELW=-LPLOC*SRATIO 

LUOH DELCx=UtLCP*OiJXXIX 
DELLY=l)tLCP*ONQ 
llELC2zDtLCPLONtZIZ 
DELCL=3tLCZ*yB-DELCYrZR 
DELChzl)tLCX*ZC-DELCZ*XC 



ClrH=Oe 
1700 IF(IOeCIe11 60 TO 1750 

C LEFT Slut OATA JAVEU 

1751) COkl IldJt: 
C L t ~ t  slut ~uuErl 10 R I G T  51DE nATA 



r) lMt1~bIUt4 K I ~ O L ~ ~ ~ ~ ~ T ~ ( . ~ Y ) ~ F D ~ ~ ~ O ~ F K ~ S L S ~ ~ X ~ ( ~ L O  
RtAL 1.OI~c)ll lt i~OlJO20# NotrOZY ~FIOIJO?UL~ tJCIIJO7UR t~U1JOzM. * tJONb7Dl) r ItONOZYL r 

i r totroL I H 
IILAL h,Il.rF 
COMMOI~/CONSI /P IE IRAVIANIG~ r R f  r GO 
C O M ~ O I W / G H P ~ / ~ ~ J X ~ ~ ~ ~ ) ~ O N Y ~ ~ O U ~ ~ O N & ~ ~ ~ U ~  *XlSnU)~~(3nnlc7(3nn)rSLbCI* 

100)  r J  
C I ) M M ~ ~ I / ~ P / ~ I O ~ J ~ ~ Z U ~ N O I J O Z U L ~ ~ ~ O ~ ~ T ) Z ~ . ~ H  ~DSTARIJH~OST AHIIL~ ACXUL r AEXIJR r 

2XHEUL ( XktCIa, YHELILr YlltlJRr ZPECiLtlHtOR 
CUMMO,U/SIL;E/IJOIJOZY ~ I~~NOLYL~NONOLYW ~ O ~ T A Y L T A Y  ~ A E X Y L ~  A E X ~ R ~  

1 bi~IcYL#FhlttYHr 0K140ZY tOVfJO2Y rO7NOLY r 
~ X I ~ E Y L ~ X ~ C Y R V Y H E Y L ~ Y R E Y R * Z ~ E Y L ~ L R E Y R  

C I ) M M O I J / P L T / M ~ N F ~ P I ~ J F ~ T I ~ J F * ~ ~ L P H I  1OPTtOr ( H I  tV1NFr T11R'JSTtlfJEXt 
COMMOIV/I~EF/~H~FVC ,B*SCALEt XRE* YHE~7NLrI~XMOZrOYtJO7rDZNO7rDX~JOtZt 

LOYIJOLL t ULPdOLi 
C O M M U I ~ / t ~ O Z / A M J ~ U 3 ( A H J r A J E ~ P O J r H J ~ T O d ~ T I J R N t D ~ T A ~ ~ A f l r T H C T A ~ D ~ X I T ~  

l11MP1uCutF 
C O M M O I V / A / P O H ~ P U W ~ ~ P H T ~ T ~ ~ P Z T  
COMMUI+/COI'IT~{/~~LTER vdELTELr XtLV e ZELV r XCLAt tl. LAr 

LOLLBF 
~ ~ A M ~ L I S ~ / ~ ~ / O J ~ A R J ~ H J ~ T O J ~ O C O E : F ~ O E X I O ~ ~ H E T A ~ S C A L E ~ P ~ J S A ~  

lTHAF rut r i i A F r 0 t  THAF TY r THOUTllrTHOUTD~Tt.1OIITY * IIMPI 
2fJ3NOtuL r XftEUMr YHEUM t ZHEUM t pJONOLIIH P XHEIJS r  YREUS * ZREI IS t 
3FJONOLUL r XREUMI YHEDM, ZPEOMrFIOP4070H t XHEDS~ YR~!JS  * t.REUS r  
~ ~ ~ O N O L ~ L ~ ~ H E ~ M * Y H E Y M ( ~ R E Y M ~ ~ ~ O N O ~ Y R ~ X H E Y ~ ~ Y R E Y S P ~ ~ E Y S ~ N O Z N O  

NAMLLASI /FC/MIIJF*PIlJFr TINF*ALPHt IOPT , Q t  tHf  #VItuFr It lEXT 
I~U~LTLHIUELTEL~OELDF 

1MTA h t l U L / 3 l ~ J 2 r 3 3 ~ J 4 * 3 ~ ~ ~ ~ t 5 7 * 3 H c h U r 6 1 t 4 3 r 4 ~ r 4 b r L ) 7 r 4 8 r ~ c ) * R 0 t 5 2 t  
1 ~1t45rU2r?8r79~~Ar99~i)2t83rRItfl5~b4*1OO19b~97~95/ 
DATA I ~ / ~ * ~ o 0 ~ 2 ~ t b * U ~ 0 ~ 2 * ~ * U o ~ l ~ b 5 ~ ~ ~ U 0 I ~ b 7 , 2 * U ~ ~ 4 6 ~ t l O * ~ o ~ b ~ *  

1 3 * U ~ ~ I 3 ~ 7 1 /  
DATA k L ) / 3 * 0 o U ~ ~ t 5 * 0 ~ U R 7 8 ~ 4 * 0 o 1 2 9 ~ 3 * 0 ~ 1 1 7 ~ 4 * U ~ 1 ~ 1 1 3 ~ 2 * 0 ~ 1 2 Y ~  

1 lO*!Jo l413t3*O0136R/ 
OArA kK/S*ooOu7Y2~ U ~ O U Z h h ~ O 0 ~ 0 2 7 ~ 0 ~ ~ 0 2 b 1 t 0 e O D 3 ~  

1 u . n 0 ~ 7 ~ ~ . ~ 9 ~ ~ ~ ~ o 0 n 2 2 1 ~ ~ ~ . r ) n 2 5 ~ o o ~ ~ 2 ~ ~ ~ ~ ~ . ~ o 2 2 ~ ~ 2 ~ ~ e ~ n 2 3 ~ ~  
2 60004be0.IlOYk2t U o ~ l ~ 4 h ~ ~ t o ~ O ~ U ~ ~ O 0 O U ~ b ~ o ~ O O ~ ~ ~ t Q ~ ~ l J 4 ~ ~  
3 4 * ~ 0 f J O Y b r U o O U 4 5 t 4 * ~ 0 0 ~ ) 4 5 2 t f i ~ O 0 4 Y  f *  neUUU52~ 
4 o O ~ l ~ l ~ ~ * o 0 0 1 2 2 5 H * o O 0 1 6 ~ /  

DAlA ~ ~ / 2 * l . b b b ~ l o Q 7 2 * ~ * 2 e ~ ~ 4 ~ 9 * 3 0 6 3 5 ~ 3 * 3 ~ 4 i : 5 ~ 4 * 3 ~ 0 4 7 ~ % * 3 o h 3 5 t  
1 10*5oUb7*4r172*4olfil~4el72/ 

D A T A ~ ~ / ~ ~ ~ / ~ ~ U ~ J / Y ~ ~ ~ O / ~ P U J S A / ~ ~ ~ ~ / ~ A H J ~ L ~ ~ / ~ T H E T A / ~ ~ : . / ~ ~ E ~ ~ O / . ~ ~ ~ ~  
l/* THACTU/O I /  *TtlOlJTU/O./* THhFTD/-12./* T~~OIITT)/-~~I. /* ThAF TY/Or/ t THOlJT 
2 Y / O . / t X l ~ t U ~ / - ~ 7 r b 9 / t X R E U S / ~ 5 7 ~ ~ ~ 9 / r Y H t ~ ' J / ~ J 7 0 6 9 / ~ X R E R S / - 3 7 ~ h Y / ~  
~ Y K E U M / - ~ I ~ / * Y ~ ~ E U S / - ~ ~ . / ~ Y ~ ~ E D M / - Y , ~ ~ / ~ Y I ~ E ~ S / - ~ , ? ~ / * Y ~ E Y ~ ~ / - ~ ~ , ~ ~ ? ~ / ~  
~ Y H E Y ~ / - L Z ~ ~ ~ ~ ~ / ~ Z R E U M / - ~ O R ~ ~ / ~ ~ R E I J S / - ~ . ~ ~ ~ ~ / ~ Z H F , D M / - ~ ~ O ~ ~ / ~ ~ ~ ~ E F S / - ~  
~ ~ ~ ~ ~ / ~ Z ~ E Y ~ / - ~ O O ~ ~ / ~ L H E Y S / - ~ ~ O O ~ / ~ H J / ~ S ~ / * X ~ ~ L Y M / - ~ ~ . ~ ~ / ~ X ~ ~ Y S / - ~ ~ .  
bbY/ 

D A T A U ~ L ~ E P * U E L T E L ~ O E ~ ~ F / O O ~ O ~ ~ ~ ~ /  
DAIA~KOF tCOttt0/2690. t39. b7t7UolI5, j /  
OATA IJCULF/~*U/  
OATANUZI~O/~I/ 

c *******ur+r**&**+****$ IFIPUT UEFlNlTIOlJS &+**+***********************+++ 
C ALL GEOMcThV f!ATA MUST tJE INPIIT I P I  FULL SCALE ~ 1 T t t  UNITS OF FEET 
c ALL IIATA 1s SPELIFIED TO A Mok'rI~r HEFLHEIJCE C E ~ L ~ E H  A T *  
c x c a  = i f l ' lbof 
P YCC- = a. - 
C Z C t  = 375, 
C FRUM THE CENTER OF G R A V I T Y ,  X POSITIVF FORWARD* 
C Y POSITIVE TO THE RIGHT* Z POSITIVE DnwIIWAHn 
C ALL DATA tiAb 51Gl~S FOR LEFT 51nt BECAUSE T I E  PRvbHAM DOLS 4LL COMPUTATIONS 
C ON T H I S  SiUk ANu LOPHECTS TO PIGtiT SITE 

A-ID 



C * * * * ~ * 4 ~ * 8 4 ~ 4 4 ~ + + * * * * * * ~ * * ~ ~ ~ * * ~ ~ ~ ~ ~ ~ t * ~ ~ * 4 4 * * * ~ ~ * * ~ 4 * * ~ ~ * ~ 4 t * * + * * * * ~ ~ * * ~ * * * W * *  

C FfiHMATTEb INPUT 
C DNXg ~ t t f ,  DIJL AHHAY OC DIHECTIQ!I COSItlLS OF THC FLAT PLATE 
C 5lM~l.ATlQtl AWEAS 
C 8 1  'f, 4 ARt4AY OF CEt~TR0fn5 OC Thl: FLAT PLAlE 51MtlLATIfiN APEAS 
C SLOL ARkAI OF LOCAL FLAT PLAT? SIPIJLATlON APEAS ( S O  FT) 
c t 4 0 r ~  TII~ VHUER OF FLAT PLATES IS EY~>ORTAIJT THE FIHST ARE LEFT ELEVON 
C UPPER SUHCALL 
c THIE t a x r  3 ARE UPPER L ~ F T  SURFACE OF t t i t  BODY FLAP 

C NANtiLIST 114 (NOZZLk DIEStHKP CIOtJS) 
C IJOZZLL OtSCW 1PT ICN 
C OEXIO 2 ClJLL SLALE EXfT DIA FT **  DEFAULT VALUC *a013 FT 
C hHJ z NOdlLt  ExPANSlOtJ RATIO **  DtFAIJLT VALUE = 22, 
C THETA = I,OLZLE ELST ANGLE I N  OLG **  DtFAllLT VALUE = 12. nEcJ 
C 64 t EXAf GAS SPECIFIC HEAT PATIO** OtF6llLT VALUE = l r 3  
C tOJ Z NO6 lOTAL TEMP* 114 OLG RA~JKINE UtFAULT VALLIE = %Y0731 
C POJSA t it04 TOlAL PRESSURE PSIA CltFFIJLT VALUE z l 5 d r  
C R J  = kxn~U5.f GAS GAS COIJSTANT *+ OkFAlJLT VALUK t 7br 
C OCOEF t ~ O L  DISCHARGE COEFF DtFAtILT VALUE = 11000 
C IIOZLLES EAFlt ANULES I N  X-Z PLbNf AHE THAFTIJ FOR UP NO2 1 TIiAFTD FOR n3WN NnZ 
C AND THAF T Y  FOli YAW rJO2 
C NOlTZLE ~ A I J  f AtJGLES 114 Y-Z PLANE ARE THOtJTU, THOUTD, THOUTY 
C ALL i)tFAULf VALUES ARE (I. EXCEPT FOR THAFTO = -12. AND THOlJTO = -20. 
C IdOZZLt: LOLA\ ION OATA 15 GIVEN I I Y  THE VARIABLES %HE-- YRt--rZRE-- 
C THE FIN41 - 15 U FOR UP , 0 COH OOWPI OR Y FOR Y A W  
C TliE b t ~ O t l U  - IS 14 FOR LLFT S I t E  OATA A140 4 FOH RIGHT SXDf OATA 
C DEFAULT VALUES 
C XIIEuM ZXREUS : -37169 
C XREUM = XHEDS Z -37,bY 
C AHEYM = XfiEYS = -37,bQ 
C fREUM = YREUS = -1  1. 
C YREuM : YREUb -Qr25 
C YHEYM = tREYS = -1P.4625 
C LREUM = ZREUS 2-9rFlbb 
C L R E u I ~  = ZRED5 =-5.417 
C LRErM = ZPEYS =-7.003 
C fIOEJUL(j EIIJI*IL~EN OF UPWAHO FIItIrJG NOZZLPS (CAOSING PLTCli 111.') 
c OPLHATIIIG I ~ J  A SFT 
C NONOZUL = L tFT h I O t  tJOlrOLUH : PIGHT Slut 
c HO~JULU r l l i ~ r l ~ t n  OF UOWNY(ART) FIHI~IG FIOZLLF.~ ICAIJSIFIC PITCH QO~PII 
C OPtiiATIt.IG XEJ A SFT 
c rlouozoL= LEI- r 5 1 0 ~  IJOIIULUR = RIGHT S I D ~  
C IlONULr I l ~ J l a l i t f ?  OF LIDEwAY FIRING IlOLZLLS (LAUSItIq Y A C  1 
C UPtttnTlNG I I J  A SET 
C NOllOtYL = L t F l  5IbE IuOFIOZYP. = HlbItT %I.% 
c S C A L ~  $CALL FACTUH FUH T H ~  FLAT r ~ b r k  ~ ~ C U L ~ . T I O N  D F T A  
C I IMP DE6IEIES THE TYPE 3F MATIiEMATtCAL WDEL TO BE tISED, 
C = 1 t UbE THE tMPIHICAL IMPItIGME41T MOLIEL, 
C = 2, NO IHP~~JGMEIJT MODEL uSEU, - c = 3 t  USE THE ~EMI-E~PXRICAL IMPINGMENT MOOEL cvnor~reo 
C IJEWTONIALV PRESSURES PLUS VACUUfl PLllME MODFL) 
C NOZNO 15 NOZLLE CODE EJlJMBER I F  viT TEST RESULTS ARE TO RE COMP~~TFD 

C M I  NF FRLE STREAM MACH FIUMl$ER 
C PINF FRLE STREAM AMBIEfJT PQESSlJHE (PSIA I 
C 1 l k F  FkE. STREAM AMbIEplT TEMPERATIJItE I D t G  R )  
C Q I FRtE STREAM DYIgAbq,'IC PRESSURE IPSFI 
C H I  ALl ITllGE (FT) 
C VIf4F VELOCITY FPS) 
C DELTEH = kfGliT ELEVOIJ OEFLFCTIO - THAILIblG LOG[: UP 
C UELTEL 2 LEFT ELEVON PEFLECTI3hI - THAILIEIG EnGE IJP 
C OELUF = bOUY FLAP OEFLECTlOlJ - TRAlLINLi EDGE UP 
C IOPT DEF I t E S  THE FLIGHT COEtDITIOIJS bEIrtu IfiIPUTTEOt 



C t It MACH YUMbtRe firJDLL OF AT CACk ( O t G  J AND ALTITUDE (FT l  
C ARE 1tlpUTTL01 
C t 21 VELOCITY ( f P S ) t  ALTITWC t F T ) t  ANO AYOLL O r  ATTACK 
C (LEG)  A R t  IhPllTTCDt 
C t 3, UYIJAMIC PItLSLIJRL (PSlr) t ALrtTUnt (PTI t AN5 AfldLT O* 
C ATTACK (DEbl A R t  INPUTTLOI 
C t br AMIJICNT PHCSSIH)L (PSI)  # lE9#PCRATURF l n C t  P I  t MACH 
c rruuhPa AND WCLE w A ~ T A C K  (DEO) AHE rpJPuTtcn 
c 114~x1 L E ~  I~KS C ~ J ~ ~ ~ E N T  OF rlCxr SET or DATA# 
C t i t  ALL TYPES OF n4TA ARC fU bL INPUTTED~ 
C : 3, tJOtZLE OfFlNITtONS AND FL1I)HT CUNDIT~ONS (tlAHELISTS I N  
C At40 CC) ARC TO BL INPUTTL~I 
C t 3, PLIGHT COFtOITfONS ONLY (IJAMLLISf CCI ARE TO HE 
C I IJPUTTED t 
c : YI 140  ORE OATA WILL HE RLAU IN I P A O G A A ~  STOPS 
C * * * ~ & * B ~ l & 4 & * * * * * * * * * , * 4 * & & 4 * * & ~ * ~ & * * * $ $ * * * ~ & * * * * * 4 & * b * * & * * * * * * * * & * * ~ * ~ & * * * * * * * * *  

I F ( I l r P f t r l l t a O  TO 2 
1 COtJ 11 f*Ut 

dUBO F O H M A I ( ~ E l ~ s ~ 1  
J t U  

120 J=J+1 
I=J 
HEAU IS~POAUJ ~ N x ~ I ~ I D N Y ~ I ~ ~ D N Z ~ ~ I ~ X ~ I ) ~ Y ~ I ~ ~ L ~ ~ ~ ~ S L O C I ~ I  
I F I O & ~ t l ) r L l r l r l ) G O  TO 120 
JIJ-1 
RETUHI~ 

2 I F ( l l . t r r 3 ) ~ O  TO 3 
f'EAU(CJc l lJ1 
I F (  I I ~ ~ P ~ L E I O )  11YP13 
I F ( l l M P ~ G T r b ) 1 1 k P ~ 3  
IFtSLnLrrEQ*U,)SCALL=ls 
TATAF I=1  AN( IHAFTU/RAUI AIJ) 
TATOuT=rAN( ttlOl~Tu/fiAUIAH) 
ULPIULL-& eLCilS(ATAIl(S(3HT(T fiTAFT**%+TA rOtJf**2 I 1) 
OXNULz-1. *OLI~OZ~TA~AFT 
DYNOL=-A.*DLNUZ+TATOUT 
DXNOLU~~X~~OL 
DYIJULU:UYkOL 
~JLNOLU:LI~!~IOL 
TATAF I = I A l i l  It#AFfO/RAI)IANJ 
T A  TOUT= I A h  I THOOTD/RAUIAN) 
D L N U L ~ ~ ~ S * C U ~ ~ A T A ~ J ~ ~ O R T ( T ~ T A F T * * ~ * T A T ~ I ~ T * * ~ ) ) )  
f'XNOL=+l e *OL~~OZ*T b*WT 
l ' lYtJO~=t l  e *ULIJOL*TA tOUT 
IIXEJOLU=UXI.IOL 
DYNUZb=DYNOt! 
DZNUZb=1;LIJOd 
t A  TAF r= I A l ~ t  THAFTY/RAQIANI 
T A T O U I = ~ A N ( T H O U T Y I R A O I A ~ J I  
DYf4OL=-l *~COS(ATAN(SWRT( TATAFT**~+TATouT**~) 1 j 
DXbJUL=-l * *OYNOZ*tATAFT 
nZNOL=-1 *O?PlOZ*TA TOUT 
DxIJOZv=UXI+OL 
OYNUZY=DYtJOL 
DZhOL f=ULNO& 
GSAzbj 
IF(NUL:I~~EQ~OJGO TO 2222 
IJ=NOLI ,C) 

C CUCPIJTli D ~ S L ~ + A U ~ E  COEF FOll TEST NOZZLES 
YMISMlIIF 
POJSPuJSA 
n0100~=113b 
K2=K 
I F ( N ~ L U * K ~ ~ O L I K )  )tO 1 0  200 

100 COHllrrut 
c r= l .  
60 TO 2222 

200 IF(PU~.torn.)POJ=lhd.43 



GJXb5k 
C ADJUST CHHW~JLW P ~ t S s u n E  FOR OISCHAROk COCFFICIEI*~ 

POJrPoJsA*OLOi%F 
c ALL DATA 15 NESLALLU TO MODEL SCALE 
C SHEF REkLHEFICE AHEA ($(1 FT I 

SRtFrbdUF*ScALL*SCALt 
C tc W11rb SPAH 1HEFERE~Jl.t: LEl i f iTt i l  (FT I 

PrbU*bCALE 
f C M t ' l ~ r  ALt3ClnYNAMf C CtIOHll (RFFtRCrrCE LLN~;T t i  1 (FT 1 

C:CO*bCALE 
DEX 1 f zlJtX 1 G*Sf 1rLE 
XHLUL:X~LUM+~CALE 
%HkUr ( t~ lc t l lS*~CI \LE 
X I ~ ~ D L = X ~ L U M * ~ C A L E  
XHEIJ~=XM~DS*SCALE 
XAEVL;XHEYM*SCALE 
%HtYttsXntYS*SCALC 
YAEUL=YREUM*4CALE 
Y~EUH:YREUS*SCMLE 
YREDL=YHhtM*sCAL€ 
YttkUHrYkEOS*SCALE 
YHEYL=Y~~?,YM*SCI~LE 
Y R ~ Y ~ = Y ~ E Y S * S C A L E  
ZHtUL:LHLUM*SCALG 
tULU~=Zt4EUScSCALE 
ZHEDLrLkCOM+SCALE 
ZHEUK=LhUESa CALE 
LfcLrL=4ntYP rCALE 
bHEYH:tktYL*5CALE 

53 CUNrl lr i lk 
AJE=, I f $ ~ b * O t x l T * * 2  
RETUIiI, 

3 COt4TltJoL 
HEAUlbtkCI  
I F I  l N t r ( 1  *LE,ul ltrEXT=Y 
I F 1  X h t X i  * G T * r )  I tJEXTt4 
IF( l uC lT rL t *O)  IOPTZ4 
I F ( I O P T . C E * ~ ) ~ O P T Z ~  
w h l f L ( r > t  IN1 
WHITt(htFC!  
HETUHIJ 
Elit) 
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C  FMHV MASS FLOW RATIO F3H SIDEWAY FIHINO JETS 
no 99 IW= l?d  
C x B t O ,  
CYfJ=U r 
C'!L{-'U. 
CLLiZO. 
CMUEO * 
CNt.i=O 
X l C = ( k L P H + 7 ~ 5 1 / 5 *  
1 C : I F l X l x I C )  

U E L  f t = D t L T E L  
I F ( I O . E W ~ ~ ) U ~ L T E = O E L ~ E R  
I F ( I I * i l t * l ) b O  TO b4 

C  P I T C H  UP OATh 
10 PIONOLU=IJONOLOL 

RMFbUzRMFSUL 
I F  ( l u m L T e 2 )  60 TO 15 
NONOLU=~UHOLUH 
RMFSUzRkFSUd 

I3  ~ F ( N O ~ U L U . L L . U ~ )  60 TO 85 
X f C = ~ ~ L P l i ~ I f s S j / b ,  
J C = I F l X ( X I C )  
X I C =  F L U A T ( J C ) * 5 * + 1 7 r 5  
J C = J C + 1  
I F ( J L * L I * l ) J C = l  
1F (JC IGT .5 )JC=S 
KC=JC+l  
I F ( K C * G T . S ) K C = 5  
A R A L = ( u L f ' H - k I C ) / S *  
I F  I A L P ~ ~ * G T . A L P H I ~ K )  GO TO 60 

C LOW A N G L k  OF ATTACK 
C A L L  IdEw T  ( 2 t HMFSII t CNB , ALPEAK , A L P H  ) 
S I G M (  1 O t 4 ) = S I G  
C A L L  I+€* I ( 1  ~ H M F s U ~ C L U ~ A L P F A U  t A L P t i )  
S I G M ( l U t S ) = b I G  
I F \ A L P ~ I . L T . L u ~ ~ S ~ ~ G O  10 16 
C A L L  L ~ J ~ I C ( ~ ~ M F S U ~ C Y I U H ~ C Y P , J C I K C ~ A R A L )  
GO TO 1 7  

16 CON1 1fWt 
C A L L  IUE wT(3rHh1FSUtCYbrALPFAktALPh) 

1 7  CONT l t d J t  
S l G M (  l O t b ) = S l G  
I F  IALFI4.GT I ALPEAK I GO TO 55 
XALPh=ALPH-ALPEAK 
OOjOil~l?3 
IF(XALPH*LT*CUPRIIf~b))XALPH=CIIPH(IIt6) 
I F ( X A L P ~ ~ ~ G T . C U P U (  IIr5) )XALPH:CUPt \ ( I 1 t5 )  
R A ~ I O ( ~ I ) = C U P ~ ~ ~ I I ~ ~ ~ + X A L P ~ * ( L U P U ( I I ~ ~ ) + X A L P ~ I * ~ ~ U P R ~ ~ ~ ~ ~ ) + X ~ L P ( . ~ *  

l C U P f 3 ( i I t U ) ) )  
30 C O I J i l r ~ u t .  

S I ~ ~ M ( I U ~ ~ ) = S Q H T I ~ C U P L I ~ ~ ~ ~ ~ * C L ~ J ) * * ~ + S I G * * Z I  
SLGM(I(J~S)=~~HT~(CUPU(~~~)*CIII))**~+SI(J-**P) 
I ; I [GM( l t 3eh )=bc~HT(  (CUP(J(3c7)*CrH)**2+51G**2)  
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C A L L  LLJ~J  I C  I F M H Y r C A I Y L t C X I a t  I C t L C  t A R A T I  
S I b M ( 1 U e  l ) = b I G  
C A L L  C u b L C  (FMHYICMIYLICMI~I I C ~ L C ~ A ~ A I )  

ORIGINAL PAGE IS 
OF POOR QUALITY 

S I c i M ( i O e S ) = s I c i  
C A L L  LIJUIC ( F M K Y t C L X Y L t C L H t X C t L C t A R A I ~  
S I G M I I U t S ) = 5 1 6  
C A L L  L U b I C  (FkdY*CNIfLtCNLtICtLCtARAT) 
S I G M ( f Q t 4 ) Z b I G  
C A L L  b U b I C  (FMHYICYIYLPCYRI I C t L C t  A I I A T )  
5 1 6 h ( 1 f 3 1 0 ) = 5 1 6  

C CONTROL U ~ F L E C T ~ U E I  C O R R E C T I O N S  
C A L L  L E F L ( I T ~ U E L T E I L I C X C I C Y C I C Z C I C L C ~ C M C I C ~ I L I U ~ L ~  
CXt3=Lx r3 tCXC+OFL  
CYH=CvB+CYC*UFL  
C Z B = C L ~ I + C Z C * U F L  
C L B = C L d + C L C * U F L  
CMt l=CkU+CMC*UFL 
C14H:Cl~f3 +CNC+OFL  
GO 1 0  9 U  

n5 C Y B  = O e u  
C Z H  = 0 * 0  
CMH = 0 . U  
CNH = O . U  
C L U  = 0 .0  
CXB=O* 
D 0 8 5 5 1 S L = l t o  

055 S I G M l r Q t  I S 1  )=U. 
90 COFlT 1 l4 lJk  

C THE F b L L O W I N G  D A T A  MUST BE R E V E R S E D  I N  S I G N  S O  AS TO C O R R E C J L B  
C CORRELATE T t I E  U U I L T - I N  CURVE F I T  C O E F F I C I E r l T  UATA ( B A S E D  OM W I N D  
C TUNNEL TEST U A T A )  W I T H  UOOY A X E S  CONVEPJTION, 

C Z U  = -C& 
c x B = - ~ X t i  
I F ( f T . N L * l )  GO TO 97  
C Y B  = -CYH 
CNB = -CI+B 
C L B  = - C L B  

9 7  I F t I O * G I . l )  GO TO 9U 
c x l = c ~ u  
CYL=CYH 
C L l = c ~ i d  
C L l = C L H  
CMI=CPIH 
cb I1=c ra r  
GO TO 99 

98 CXI3=C&I  t C X f 3  
CYl3=CYl -CYU 
C L B = C L 1 + C z U  
C L B = C L l - C L H  
CMU=LPIL+CMH 
C lJU=L l r l -CNU 
00999151=1*0 

993 S I G ~ N ~ I I ~ I S I ) = ~ U R T ( S I G M ~ ~ ~ ~ S I ~ V * ~ + ~ I G ~ ( ~ ~ I S I J * ~ ~ )  
9 9  CON1 IltUL 

R E T U I I I ~  
€NU 



SUUKUUT 1I1E 14Ld I' (Jr X r W A X  r Y A r A L P H A )  
COMMOl~/tW~~~/SItirS~tM(2~blrSlOltJ(3r6)t~IGf~~3t6)1C;ICTH(3r6) 
F)lMtN!aIUl. l  C ( b t 7 )  

C C ( 1 r l ) Z V t A Y  t i O L L I N t i  MOMEldT AS A F U I I C T I O N  OF YOMt I JTUt l  R A T I O  
OAfA(L~ltI~tI=1r6)/-~1Q3112bbE-U2r-~4D2tl187rl~~lfi764~~ 

1 * 9 r S ' + Y J Y 1 6 # r l 2 # U , /  
C C (21 I J = P t A K  Y A w I N R  MOhqLIJT A5 4 FUNCl I O N  OF M0Mth(t1)M R A l  I 0  

O ~ T A ~ ~ ~ ~ t 1 ~ t 1 = 1 ~ 6 ~ / . 1 0 5 J 1 1 7 5 E - ~ 1 2 ~ ~ ~ 7 3 9 1 0 2 1 - 1 ~ 1 ~ e 9 ~ 0 a ~  
l ? ~ L M Y ~ l Y d * r l L ~ O . /  

C C ( 3 ~ 1  l = P L A K  Sink FORCE A S  A F U N C T I O N  O F  MOMtNT l lM  R A T  I0 
l)ATA(~(J1Iltl=lrb)/-~22b617bE-fi2r-l~l~Q3~5~-9~68~Q~78t 

l ~ b e H U U b * l I r l U b S 1 r 0 * /  
C C ( 4 ,  f l=l.'Ek& I i O L L I I J b  MOMLlJT AS A FIJNCT 1014 OF ALPItA 

O A T A ~ ~ ( r r X J 1 1 = 1 r 6 ~ / - ~ 0 l 0 b n 3 7 6 # . l U q ~ ~ U U 4 E - ~ 2 * - ~ r 2 5 ~ 4 9 4 E - I ) Y r ~ 4 8 2 7 7 6 9  
l l g k - U b r U * * 1 7 * 4 1 ~ 8 U /  

C t ( 5 r I ) Z P t i i I t  Y A n I I J G  HOMEIJT AS A F U t i C T I O t J  OF ALPt lA  
DATA(C~~tIl*I=lt6)/e~l7671924r-~l9~21~i74€~~~r~~23~Q37~~-Q4r 
1-,912td~U3E-UbtO*1ib*b353/ 

C C ( b t !  I Z P L A K  SIl)c FOPCE AS A F U r l C T l O N  OF ALPHA 
DATA~~(otI)tl=l1h)/-~U38418l8rT~~49O53OE-~21-~l7U847b~-~3r 
1-~3217nbdJE-~51~.tlUe9583~/ 
U A T A ( C ( 1 t ~ ) 1 1 ~ 1 t 6 ) / ~ U U 1 Y 9 ~ h 1 ~ O 1 l I ~ b 9 r . U 1 1 5 3 8 Q t ~ U ~ l ~ l 7 t ~ O ~ 2 3 4 t ~ O O U 2 U /  

C COMPtJTC P t A K  V A L U t  
I F I X ~ U T ~ C I J ~ ~ I ) X = C ~ J ~ ~ )  
Y M A X = L ( J I ~ ) + X * ( C I J ~ ~ ~ * X * ( C ~ ~ , J ) + X * C ( J ~ ~ ) ~ ~  
SIU=C I JI 7 )  
IF ( J e ~ ~ t , r ? ) C i u  TO 20 

C YAVIINC MOttoEIJT C U k V E  15 USED TO COMPUTE ANGLE Of ATTACK U F  PEAK V A L l l E  
C U Y  NEWTON-KAPHSON I T E R A T I O N  SO J = 2 f S  UOUE F I I t S T  
C COMPlJTE P L A h  ALPHA 

I L ' N I Z U  
XAZ0, 
ENHOH=, u U l  
r(=4+3 
6UEbb=( 1 1 4 A X - C ( K t l I  l / L ( K t 2 )  

5 A=XA+UJ~SS 
IF(krbt*L(K*f>))GVESS=(C(Ktf>)*XA)/2* 
X L N T = A C I ~ I + I  
x A a x ~ + G u t S S  
G U ~ ~ ~ = ~ I ~ ~ P X - ( C ~ K I ~ ~ + X A * ( C ~ K ~ ~ ~ + X A * ( ( ; ( K ~ ~ ) + % ~ \ ~ C ~ K ~ ~ I ~ ) ) ) /  

~ ~ C ( K I L ) + L * * L ( K I ~ I * X A + ~ ~ * C ~ K ~ Y ) V X A * X A )  
IF(Ad~(bJESbJ.tiT~ERHOHIG0 TO 5 
I F ( 1 L l r T . b E . I O U ) C O  TO 15 
IF(Xn.Gf~C(nrblJAA:C(K~bl 
IF ( A L P I ~ A . L E : , X A ) ~ ~ E T U I I I ~  
GU I 0  2 )  

It, P A I l ~ l k ~ ~ u t r t  ILIJTIXA 
cUUO F O t { M ~ \ ( ( r l H f l  IHOO13LE XFI PEAK VALUf. : . l E P k l I O t I  IF1 N T U ) T , I ~ I F ~ ? O , ? )  

x A = 1 s .  - -  
PETUUlr 

C COMPIJTE PtAn V A L o t  A S  A F I JNCTrQN OF AFJGLE OF A T l A C k  ~ I C C A L l S r  ANGLE I S  - - 
C ABOVE Pt l rh  v r \ L l J ~  

30 IF(ALt-'krfi.LE . X A  J ~ E T U H I I  
2 1  K=J+.$  

Y ~ ~ A X = L ( ~ ~ ~ ) + A L P H A * ( C ( K ~ ~ ) + A L P H A ~ ~ C ( K I ~ ) + A L ~ H A * C ( K ~ ~ ) ~ ~  
ktTU14I4 
r CIU 







100 I F (  lFLAP*GT,l)GO TO 150 
C UOUY FLAP CWHECTLOIJS Full - DEFLECTIONS OElLY 

IF(UCL.GE~OI tHETlJfifl 
UFL=(1,,EL/(-1%.25)1**.15 
IF (UFL.bT. l r )UFLZl .  
CALL L I J ~ I C  ( I i M F S I ) v C L P H t C Z t I C t L C t A R A I J  
CALL CUUiC ( I ~ F I F S D I C M P B ~ C M ' V I C I L C ~ A R A I J  
RETUHlr 

150 I F ( u t . ~ ) 1 0 U t 3 O U t l f S  
C LLEVATOH [JEFLEC 1 IOiJ CORItECtlOllS 

1b0 DFL=(UtL / ( -JOo) ) * * . fb  
I F ( U F L . b l . l r ) D F L = l .  

C TRAILING tDbE UP COHHECTSQFJ 
CALL L L I ~ I C  (tiMFSDt CZPJUt CZ t TCt LC* AitAT ) 

A-35 



CALL L U ~ I C ~ U M C S D I C A P J O ~ C X ~ I C I L L I ~ R A I I  
CALL ~ ~ l l r f C f ~ ~ ~ C t l r C t ' t ~ J ~ r C M ~ f L t L C ~ k R ~ t  I 
CALL L U D I C I N W F S U I C L P ~ ~ I L L I ! ~ ~ L C I A Q A I ~  
ItkRJh~d 

175 CuNll lrUt 
C tRAXLttJb LOU€ k I w l 4  

rJFL:t~kL/ln* I **a75 
I~(UC~.~QTI IOIOFL~~I  
CALL L L I U I C I H ~ F S U I C ~ P ~ O I C L ~ I C I L C ~ A R A ~ I  
CALL LLJIJIC (NMFSU~CMPLII~CM~ ~ C ~ L C I  ARAt 1  
CALL L ~ J ~ ~ C ~ H M I . S D ~ C L P L O ~ C L I I C I L C ~ A R A T ~  
PE f  UHll 

190 L C ( I ~ I * ~ . J I C O  TO 300 
2UO I F ~ ~ I . L A P ~ L T ~ ~ I R ~ T U H N  

C YAW CoHhtbTlUlJ FOH fLEVOt4 ONLY 
XF lD tL I~ lO*~UUe25O 

L lU OFL=(bCL/f-JO*l1*+*75 
I F ~ D F L ~ U ~ ~ ~ ~ I U F L = ~ ~  

C TkAlL lNt  Lf)bk IJP CORRECllONb 
CALL L ~ J u ~ C I F M H Y ~ C Z Y J U I C Z I ~ C ~ L C ~ A H A T ~  
CALL LU~ICIFMHYICAY~UICXIICILCIAHAT) 
CALL L ~ ~ ~ ~ C I I . W M Y I C M Y J U ~ C M I I C ~ L C ~ A H A T I  
CALL L~JUIC(FMMYICLYJUICLI~C~LCIAWLT~ 
RE TUMII 

250 UFL=( I~kL/ l0oI**e75 

CALL bU~/C(FMHYtCtYIU~CttICtLCtAUAf) 
CALL L ~ J ~ ~ C ( I - M H Y I C I I I Y ~ U I C M I  ICILC~ARAT I 
CALL C I J U ~ C ( F M H Y I C A Y I U ~ C X I ~ C ~ L C ~ A H F ~ I  
CALL L U ~ ~ C I F M H Y I C L Y L U ~ C L ~ I C I L C I A R A T I  

300 HETUHlv 
EIfU 



COMMU~~/b IOE/NDtJOZY , I ~ O ~ J O Z Y ~ . , ~ ~ O N ~ ) Z Y H ~ O S ~ A H Y L ~ U S T A R Y R  1 A L X Y L t  ACXYAr 
1 FMHYL#FMHYH #DXtJOLY PDYNOZY 8OtNOLY t 
~ A ~ ~ E Y L ~ x ~ ~ Y R B Y H E Y L I Y H E Y R ~ Z I ~ E Y L ~ ? H ~ Y ~  
If (11  . t l r * 2 1 6 0  TO 60 

P I T C t t  + r&# CUW tiAvr t4O COUPLl f lG  
C PX r C H  I I P  + r I T C I i  uOwN I bYMM ROLL ) l l A V t  t l n  COUIJLII IG 

50 C U N l  1 1 r l J t  
~ C ' ( N U I ~ U ~ U L ~ ~ . * ~ O ~ O D O H ~ N O ~ J O ~ ~ R ~ E O ~ O ~ ) G O  TO 60 
R ~ J F ~ U = ( I ~ M F ~ I I L * H M F S D R )  / 2 r  

C SYMM P I I L n  UOYlbl HAS COUPLI t lG  
C Y C t U *  
Ci&=U, 
C L C I I J .  
XMI~=HI.P~U 
I F ( X M l t * b r * n * 0 3 1 X M R = e U 3  
C ~ C r - , y g Y 6 3 d i * X W R  
C i C Z D 3 9 ~ 7 Q ? * X M R  
t 4 C Z .  Jc)t$\fl$LXMR 
cxc=-LYC 
GO TU 70 

b O C X L  = U I U  
C Z C  r U * U  
C l c ;  :: 0.d 
CkC = 0 . 0  
ClJC = 0.0 
CLC = 0 . * 0  

70 WETUHI~ 
EfJU 



SUt)hO~Tlhlk AMPL ( I # A K X # A K Z , A K Y I A K M ~ A K ~ ~ I A K L )  
C CALLULAlkS AMPLIFICI~~IOIJ FALTORS 

COkMO~4/l(tC/%+hkf 1Crd1 SCALE* XHEI Yht 1 7 k t r  t~XNOtcOYl~O7t SLNOt tIlYI.lO?Zt 
1DYWdt.t LJLFJOLZ 

COMMUIJ/JHCI)LF/ C A I I ~ C L U ~ C Y ~ ~ ~ L M U @ C ~ I U ~ C L I I I L X D ~ L Z D ~ C Y ~ ~ L M L ~ C ~ J O ~ C L I ) I  
1 C X Y ~ C L Y  ~ C Y Y  ~ C M Y  VCI~YILLY 

CUMMUIV/IOCO~F/ CX~ICLTICYTICWT~CNTICLT 
AKY:U, 
An Y:U , 
AKZZUI 
AKLZU e 
AKMZU , 
AKIlZU. 
P M I ~ ~ ~ I I U U  

lUUU FOHMA l t sSHnAMPLlF ICA C IOIJ 15 COMPUTEO FOR T tiHUST COMPQEIF~ITS ONLY ) 

Prc l r r t i uuL  
1002  FOHMAII~SHOT~~CHC ARE 22 POSSIHLE RCb CONTPnL COMnltlATInNS 

CLP=CLIJ+CZD 
PHINflOU5 

1003  FOHMAI('JSHOTHI5 COMBIHATIOY INCLUOES A PITCt l  UP OR UOhtJ COfAPOMNT) 
AKZ=CLF/CZP 
AKM=bt,T/CIL'P 
PHLNt ~ U U ~ P A K Z ~ A K M  

1OUQ FORMA] ( LUHOF~OHMAL FOMCE AMP = I F ~ ~ * B I ~ ~ I I P I T C H I P ~ G  MOM 'MP (F15,rO 
GO 10 1L 

10  COFlfllrUr 9 

PRINf LO03 
1005 FORM41 (53tiO Id0 PITCH COMPONkNT I S  COtJTAItJLD 114 Tt i lS COtIRINAT ION 1 

11 CLP:LLU*CLD 
C L ~ ~ S I = . U ~ D Y * C L U  
CLAtAb5(CLP) 
IF lCLA,LE~CLTEST~GO 10  12  

1 PHINf  LOU6 
lUUb FORMAl(55HOll i lS COMHlPtATIOY INCLUDES A ROLL LEFT OR RIGHT COMP ) 

AKL=CLT/CLP 
PRI IvT IOU~*AKL 

1007  FOHMAC(2SHO HULL AMPLIFICLTIO~J t tF15.R) 
60 TO 1 J  

12 C O l J l l ~ r U t  
PI?INl lOUH 

1000  FOHMAI (35HO NO ROLL COMPOPlKNT I S  ItJCLUOLn It4 1141s COMCrINATTON I 
1 3  CIJP=CIJY 

CNA:ALS(CNP) 
CNTEbl=-• OCJUcJ*CMD/O*C . 
IF(CNA*Lk*CIJfEST)GO TO 14  
CYP=LvY 

1003  FORMA1 (~5NO11 i lS  COMHINAT I O N  lNCLUOES A YAW LEFT 04 HfGl iT  COCPObJET) 
PRINT lOUY 
AKN:ClrT/ChrP 
AKY=CrT/GYP 
P H I N T L I ) ~ ~  I A K Y  IAKN 

1 0 1 1  FOHMAT(lYH0 510E FORCE AMP :IFI!J.HI~OHYA!J ~uME:IT AMP = t F l 5 . f i )  
dO T O  1 5  
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SUUHUUII~~E A T ~ O E ~ Z I T T I P I H H O I C I ~ ~ I V I A M I A M U I A ~ ~ U ~ G I G O ~ T S I T H E T I ~ B C I  
C LATt a1 LOMPILATIO~J UAtED b-27-72 
C UISW blANDAHU ATYOSPHEREtlQbZ 

ZM:d*u 31lL)H 
AUA~: -~~o0 !5~bdE-ob  
&BAR:? ,dSf+C-l l  
CUAH=-l*! I17t- l? 

C OhAVl I A  1 I O l J A L  F O R C L  iJtTfRMlPlEO FROM SMt  THSOkIAtl POLYEIOMIAL. 
IF (ObC) 1QtdUt lO 

10 T H I I P Z ~ U W U ~ I H E T  
THETPHz rt tETr/57,29578 
G O ~ ~ ~ U ~ ~ ~ ~ * ~ ~ ~ U - ~ ~ ~ ~ ~ ~ ~ ~ * C ~ S ~ ~ ~ O * T Y C T P R ) + ~ ~ U U O ~ ~ Q * ~ C O S ~ ~ ~ O * T H E T P R )  

& ) * * P I  
DHAH;-2.&7F-07 
EBAHZ~,UL'ID 
F U A H t o W ~ t - 2 U  
G=wUl*(bu+ ( A ~ ~ A I ~ + O t ~ A I t * C O S ~ ? w O * T H E T T ' R ~  ) kZM+(HbAH+ESAR*C(\5(2rII*THETPR 

l ) ) c d k ~ * d t ( C n n k + F R A R c r ; O S ~ 2 . O t T H E T P R ~ J * Z b 1 ~ ~ 3 )  
GO lo  3u 

20 60 = bO*50*4B 
G=O*Ol*tGO+AUAR*ZM+bUAR*ZM*ZMtCUAR+LM*7M*ZMI 

30 t IM%((r J&L~+AUAH*ZM*ZM/~. U + ~ ~ R A ~ ~ * Z M * Z ~ ~ * L M / J ~ U + C L ~ A R * ~ ~ ~ * L ~ * Z M + Z U / L )  ,O J/G 
10 
GUEZt b/JU W W  
AMO=.!o. ybbY 
RSM=d. 51430 
I F  Itrrn-1LOOu.u1 4 0 1 ~ u 1 5 u  

40 PA=lULJ*LF 
OHZHM 
TA=PBb 1 !I 

OlUH=-o. 9 
c;o I U  190 ,  

50 IF t~~r.~-dunol).ul  ~ t n u 1 7 0  
bO PA=220032 

T A = Y l t o o ~  
DTOtt=u r U 
Oll=Hu-1100O.U 
GO TO 1 r u  

70 I F  tllhs-5YI)oU.U) YOtBUt90 
60 PA=$* ,74i17 

TA=Ylb.u5 
31 L)H=l. U 
O ~ I = H M - ~ U U ~ ~  r U 
r;o ru tuu 

90 IF (Ii1.1-41On0.0) 1 0 0 t l 0 0 ~ 1 1 0  
100 PA;H*otiU 14 

lA=d2a. b o  
I~Tl)Hsz.d 
I)H=I1M- 5rOUO. U 
GO Tu l r o  

110 IF ,~~DI-S~UIIU.U) 1211, l i o t  1511 
1x0 PA=1.10~115 

TAZ270 b 5  
DTDHZU U 
OH=HM-47UOa r U 
GO TO I Y U  

130 fF (tilv-b1OOO.O) lY01140tLSO 
140 PAZO. $ l ? ~ U 0 5  

TA=27u w b 3  
0 I utl=-% . 0 
Oli=trM-5dU00 ,U 
GO Tb 190 

151) IF (H~I-~Y(~OO.O) l h 0 1 l b O t  170 
l bu  PA=0.1!)2U99 

TA=252.bb 
n r u ~ = - 4 .  u 
Dti=UM-blU00.U 
GO 10 1 r u  

170 f F  ( H k - b ~ f b 3 . J )  1 8 f J 1 1 0 ~ t 2 3 ~  
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i i t  r t - -  
S 7 * 3 U Z S E - U 7  

P = P t~*PPA*L .UW85QbY 
UHOZAl.t041a/ t i 545*31  ~ G O ~ * T E I  
A M U : B ~ T ~ ~ * ~ . ~ / ( ~ ~ ~ . ? ~ + T E I / ~ O E  
ANUzAPlu/HHO 
C = S ~ H ~ ( ~ . ~ * L ~ ~ ~ ~ ~ ~ * G O ~ * T L / A ~ O ~  
AM = v/L 
Q = O*7*P*Ah,AM 
T 5  = ~ ' ~ ~ ~ ~ E * ~ ~ * S O R T ~ H H O / O ~ ~ ~ ~ ~ H ~ * ~ V / ~ ~ ~ I ~ O O ~ ~ ) ~ * ~ ~ ~ ~ ~ * * O ~ ~ ~  
0 = t / U t J U 4 b  
GO = CO/JOm46  
RETURlv  

2 3 0  IF f2i.r-LU0nUO.O) 2 4 U t 2 4 0 t 3 5 0  
2 4 U  T M H = l u U * 6 5  

ALMZJ  0 U 
ZUK=YCI.U 
P B M  = l e b 4 3 6 E - 0 3  
AMB=Zb,yb49 
G M = - e u 0 ~ u Q  
00 TO Q D U  

2 5 0  I F  ( L b t - l l I ) O U O * U )  2 6 U t 2 6 U t 2 7 0  
260 IMH=zLIJ * b5 

I\LM=S. U 
ZBK= lU IJ  * 0 
PUM=5. UU 7 S E - 0 4  
A k B = Z u *  bd 
G M = - * u ~ Z  
GO TO 41lU 

2 7 0  IF ( Z ~ ~ - 1 2 0 n U U o O )  2 9 U t 2 R 0 t T 9 0  
2 U 0  T M t i = 2 t ~ U * 0 5  

A L M = l U * O  
Z B K = l l O . U  
P U M = ~ . J ~ ~ Q E - I J ! J  
AMB=aU, bb 
GM=-.UQY 
GO 1 0  YOU 

2 9 0  IF (~ i *1 -1500UO.U)  3 0 U t 3 0 0 t 3 l U  
3 0 0  TMB=JbU 0 65 

ALM=OU U 
LUK= ICO.U  
P B M = 2 * 5 ~ 1 7 E - 0 5  
AMI3=i!u, 0 7  
GM=-,b36533J 
GO rv YUU 

3 1 0  IF ( ~ t * t - i b O ~ U 0 . 0 )  3 2 U t 3 2 U t 3 3 U  
3 2 0  T M U = 7 ~ 0 * 6 6  

ALM=lb.U 
2 U K S l S O . U  
P U M = ~ . O U ~ ~ E - U O  
AMU=Ob. Y;! 
GI*~=-, u Z o  
00 TO QUO 

4 3 0  I F  (Lbs-' "JDU0.U) 3 9 U t 3 4 0 t 3 5 0  
3 4 0  TMU=1110 .65  



ORIGINAL PAGE 18 
OF POOR QUALITY 

ALM:Lu~u 
Z U K S l u O  v 
P U M t 3  a l l y 4  3 E * u 6  
AMt):i?o, oa 
GM=* r U a b  
60 TO 4 U U  

350 If ( L IF~ - lYUOUU*O)  3 6 1 ~  r 3 6 U t 3 7 U  
3 b 0  T M H = l d l U , b S  

ALMS7  6 1) 
ZBKI'l 70 s 0 
P B M = Z q 7 ~ l 6 E - O b  
AMU=20. 4 
6Me*,1!2?5 
00 TO 4Ukl 

3 7 0  I F  (LC1-2.5f)nUlI * 0 ) 5MU t 3 9 0  t 3 9 0  
380 T M H = ~ J s u * ~ ~  

ALM=!J . 0 
zl; lr=t~n,u 
PW- '1 ,b&S2k-l)h 
Al i i j  :Lb. US 
YM:*-. uZ& 75 
Gfi TO r u u  

391' C O N T l I ~ l J E  
D = 0.11 
P = 0 .0  
G Z b / U * J 0 4 ~  
60 = u0/3U.4&3 
RETUHl r  

4 0 U  CONT l r ~ t l t  
C COMPJfE K I N k l l C  T E M P t P A T U R F  

tK=LM/l l . !UO*O 
AdUAT=( 1 AMtl+b.FI* (ZK-ZBK) 1 / 2 0 , 9 6 4 4 )  
TMOLt l I . lM+l \LM* (ZK-ZUh) 
TT : IMuL~AMRAT*~ .Ao  

4 1 0  CON1 IIJIJt 
C C O M P U I E  S T A I I C  PRESSURE ' 

APZ ( f rhH/ALM) -ZUK 
P A U T A = ~ L K - Z ~ ) K ) * ( . ~ ~ ~ E - O ~ * ( Z K ~ Z ~ ~ J ~ - ~ ~ ~ ~ E - ~ ~ * A P - . ~ ~ . J ~ ~ )  
P A H T B ~ ( . ~ ~ R ~ - U S ~ A P * A P + ~ O O ~ ~ ~ * A P + ~ ~ B ~ ~ ~ ( I A L O ~ ~ ( Z K + A P ~ / ~ Z U K ~ A P ) ~  
AMO=ku,yb44 
US r ~ n z t j .  3 1 4 3 2  
COEF z - l \ LM*USf  AR/AMO 
PHLOb=(PARTA+PARTR)/COEF 
P=2.U~Nb460*P&M*EXPIPHLOG) 

4 2 0  CONT I l ~ l J t  
C C O M P U l E  U E t J S l T Y t  S P E L D  OF SOUND, DYtJAMIC PRESSURE 

RWO = P*AMHAT*%8.9644/ (1545.31*TT*GOt)  
C Z ~ U H T  (1  * '+*P/HHU) 
Q=O. k ~ * R l i U * V * v  

4 3 0  C o N r l l ~ U t  
C ' COMPUTE PlACll  IJUMOER, G R A V I T A T I O E I A L  F O R C E (  V I S C O S I T Y  + K I I J .  V 1SC"I'Y 

AM=V/C 
G = (~.lL5&-05)*ZK*Zk-.00325*ZK+9~Rl~ 
 ETA = 7 0 3 0 2 5 E - 0 7  
S U T H  '= 198.72 
AMU = H ~ T P * S U H T ( T T * * ~ ~ O ) / ( T T + S I J T H )  
AIJU=Ab.U/HHO/GOE 
AMU=AI.dJ/tiOE 
T S  = ~ ~ ~ 5 6 E + l b * 5 0 H T ~ H H 0 / 0 ~ O U 2 3 W ~ * f V / 2 h r ] O O ~ O ) * * 3 ~ ~ ~ ~ * * 0 ~ 2 5  
G=G/U.3048 
GO = b Q / 3 0 . 4 8  
HETUHl r  

4 4 0  FORMA 1 ( 32Hl) UPPER A L T  I TIJDE L I M I T  EXCEEDED ) 
EIJO 
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SAMPLE INPUT 
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C ASD-NSC -77-003 
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0. -y~~55E-I)l-1.r9~t-01-?~~U7E+0l-1~lTt~E+0~-l.2f~~E+01 
~ r 3 ~ 4 E ~ O Z ~ ~ ~ I b 3 E - 0 1 ~ 2 ~ 1 4 2 t ~ O l ~ ? ~ 5 7 1 E + O l ~ 6 ~ 8 l ~ E ~ 0 l ~ l ~ 3 5 l E ~ f ~ l  
U 0 -9~53lE-01-~.Pf~4t-01-2~PH~F+O1-1~~2~~E+O~J-l.2h~E+~l 

-1*239E-OL-Y*a99E I 
-1.320E~OI-~or)YfE-~r 5.54bi-Q2-3.985E+f) l -u.~n7E-01-1.b~~QE+01 
-l~4~2E-Ol-~rt3~3t-Ol 5~Y?S&-0Z~3*d37E+U1~7~8Q4E:~O1~lI7h~~E+01 
-lr37YE-Ol-y1C 5E-111 ~ ~ u O S E - ~ ~ - ~ ~ ~ ~ O E + ~ ~ - Y ~ R ~ ~ ~ - O ~ - I . ~ ~ Q E + O ~  
5.783E-02-Y*Yb-E- ~ ' - 6 ~ 1 6 b ~ - 0 2 n ~ ~ 4 b ~ E + 0 1 ~ l ~ 0 1 7 E ~ ~ ~ ~ I ~ 7 ~ > 4 E + O l  
~ . l 3 l E - U Z ~ ~ ~ ~ 6 3 E - f ) 1 - b ~ O 4 5 E ~ O 2 ~ ~ ~ l b 3 E ~ O 1 - Y ~ ~ ~ 1 U E ~ ~ 1 ~ l ~ 5 ~ ~ ~ + O l  
b. 145C-OL-9.973~ -6 ' -5~281E-Q2-30927E+U1-7* lfl\3E-Ol-l.7614E+(11 
5 ~ 4 b 4 E - ~ 2 - Y ~ ~ 7 2 E - 0 ~ - 5 ~ 1 A 1 E - 0 2 ~ 2 ~ 5 9 1 E + O 1 ~ b ~ 2 ~ ~ ~ ~ ~ ~ 1 ~ 1 ~ 5 ~ ~ ~ ~ + 0 1  

-l~L73E-OL-~.9OOC-01 6.1lYt-OZ-4*412t+01-L.Q~l7F-01-2.22~E+Ol 
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