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FOREWORD
 

This final report documents the Long Life
 

Coolant Pump Technology Program which was conducted
 

for the NASA George C. Marshall Space Flight Center,
 

Marshall Space Flight Center, Alabama, under Con­

tract NAS-8-28434. The work was performed by the
 

AiResearch Manufacturing Company of California, a
 

Division of the Garrett Corporation, Torrance,
 

California. Mr. Michael D. Leberman was the NASA-


MSFC Program Technical Monitor.
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SUMMARY
 

A program to investigate and improve Long Life Coolant
 
Pump Technology was started inAugust 1972 with the objective
 
of establishing pump technology suitable for space mission
 
durations of two years and greater. This work was performed
 
by the AiResearch Manufacturing Company of California, a
 
Division of the Garrett Corporation, for the NASA George C.
 
Marshall Space Flight Center, under Contract NAS-8-28434.
 
The work was an outgrowth of the Apollo Telescope Mount (ATM)
 
Long Life Coolant Pump Program, and design data from that
 
program were used as a.starting point for the work reported
 
here.
 

Based upon previous work with the ATM pump, design con­
cepts were investigated for improving coolant pump technology,
 
with particular reference to extending the period of reliable
 
life. A key item in these design concepts was an improved
 
bearing system for the pump rotating elements. -Designs were
 
prepared and an ATM coolant pump was modified to incorporate
 
such an improved bearing system. This bearing system consisted
 
of double conical bearings, pressurized with the working fluid
 
from pump discharge. After preliminary calibration tests, this
 
pump-was satisfactorily endurance tested pumping Freon 21 for
 
12,304 endurance hours, with testing terminated at the end of
 
the program in October 1976.
 

In addition, -anew, prototype pump was designed, using
 
various improved design concepts, and fabricated as-a non­
flight weight test article. This prototype pump was satis­
factorily endurance tested-pumping Freon 21 for 10,382 endur­
ance hours, with testing terminated at the end of the program.
 
In these tests, Freon 21 was selected as the working fluid
 
because it represented a viable candidate as a space system
 
heat transport fluid, and in addition it represented one of
 
the more difficult fluids from the viewpoint of achieving
 
pump life. For instance, pump bearings which operated satis­
factorily on Freon 21 could rather easily be converted to
 
operate on the Coolanol's or other typical space system heat
 
transport fluids.
 

This final report documents the approach, difficulties,
 
and achievements of the Long Life Coolant-Pump Technology
 
Program and, in addition, presents recommendations and sugges­
tions regarding possible future efforts.
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I. INTRODUCTION
 

The AiResearch Manufacturing Company of California, a Division of
 
the Garrett Corporation, conducted an investigation of Long Life Coolant
 
Pump Technology, under NASA-Marshall Space Flight Center Contract No.
 
NAS8-28434. The work was an outgrowth of the Apollo Telescope Mount
 
Coolant Pump Program, and design data from that program were used as a
 
starting point for the work reported here. In the program, concepts were
 
investigated for improving coolant pump technology, with particular
 
reference to extending the period of reliable life. A key item was an
 
improved bearing system for the pump rotating elements. Such an improved
 
bearing system was designed and demonstrated in two different pumps which
 
accumulated 12,304 endurance hours and 10,382 endurance hours respectively,
 
prior to termination of the program.
 

I.1 Introduction of Problem
 

Operational experience with the Apollo ECS Coolant Pump and the Apollo
 
Telescope Mount Coolant Pump well demonstrated the soundness of the basic
 
design approach which was common to both pumps. The basic concepts included
 
in this design approach were
 

* Redundant pumps to optimize system reliability
 

* Centrifugal type pump design
 

* Magnetic coupling drive
 

8 Dry motor
 

* Pump bearings lubricated by the working fluid
 

S Motor electrical rotor carried on grease packed ball bearings 

Figure I shows a view of the Apollo Block II ECS Coolant Pump Package,
 
825070, and Figure 2 shows a view of the Apollo Telescope Mount Coolant
 
Pump Package, 580745. Figure 3 shows an exploded view of the Apollo
 
Telescope Mount Coolant Pump Package, showing the typical design arrange­
ment, including the magnetic coupling drive.
 

The Apollo pumps were designed for relatively short missions, with the
 
longest design operational requirement being 278 days (6672 hours) for the
 
Apollo Telescope Mount Pump. However, itwas expected that future space
 
missions would require coolant pumps which could operate continuously for
 
durations up to three years with high reliability, and this prospect raised
 
two questions:
 

* What design changes would be necessary to the Apollo type coolant
 
pumps to provide a three year mission capability?
 

* Were there other pump design concepts which would be more nearly
 
optimum, or which may be required to meet potential differences
 
in future problem statements?
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Figu re 1-1. 	 Apollo Block 11 ECS Coolant Pumnp Package, 825070. 
Water - Ethylene Glycol Working Fluid, 200 PPH Flow, 

36 PSID Pressure Rise. Electrical Input 3 Phase, 
115/200 VAC, 400 Hz, 52 Watts Per Pump
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Figure 1-2. 	 ApollTo Telescope Mount Coolant Pump Package, 580745. 
Water Methanol Working Fluid, 900 PPM Flow, 31 PSID 
Pressure Rise. Electrical Input 3 Phase, 12.2/21.2 VAC, 
400 Hz, Quasi-Sine Wave, 125 Watts Per Pump. 
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Figure 1-3. 	 Exploded View of Apollo Telescope Mount Cooling
 
Pump Package, 580745. Showing Typical Design
 
Arrangement, and Magnetic Coupling Drive.
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These questions led to the initiation of the Long Life Coolant Pump
 
Technology Program, which had the following objective.
 

1.2 Program Objective
 

The overall objective of the program was to perform a theoretical
 
and experimental investigation to improve electrically driven long life
 
coolant pumps for space and cabin environments. Design areas of par­
ticular concern were:
 

* The potential for extended operational life at high reliability
 

" Optimization of pump performance
 

* Design flexibility, to accommodate various potential applications
 

* Serviceability
 

Primary emphasis in the program was to be invested in achieving the pump
 
life and rel-iability objective.
 

1.3 Program Approach
 

The program approach included three major tasks:
 

* A conceptual design study starting with definition of the bound­
aries of the investigation, and including a search for and identf­
fication of promising design concepts having the potential for
 
meeting the program objectives. This phase culminated in a con­
ceptual design review with NASA-MSFC, to mutually select promis­
ing concepts for further study.
 

" Detailed analysis of the selected concepts to permit selection,
 
with NASA-MSFC, of an optimum concept to be implemented in hard­
ware. Preparation of detailed drawings and fabrication of a
 
demonstrator pump unit.
 

• Development testing of the demonstrator pump in areas of concern,
 
plus endurance testing, within the limits of the available funding.
 

The program drew heavily on AiResearch past experience in the design,
 
development, and production of advanced technology pumps, motors, and controls
 
for spacecraft applications. In addition, the program was a logical continua­
tion of the NASA-MSFC program for design, development and qualification of
 
the Apollo Telescope Mount Coolant Pump, and design data from that program
 
were used as a starting point for the work reported here.
 

1.4 Program Accomplishments
 

Accomplishments of the program were as follows:
 

* A hydrodynamic problem statement was established for a future "typical"
 
space system coolant pump
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Freon 21 heat transport fluid.
 
100F pump inlet temperature.
 
Pump inlet pressure as required.
 
2400 'PPH pump flow.
 
60 PSID pump pressure rise.
 

* Alternative hydrodynamic configurations of different manufacturing
 
complexity were established and the hydrodynamic performance was
 
estimated. A simple configuration was selected to fabricate for
 
test demonstration in a prototype pump, although more complex con­
figurations offered the potential for increased pump efficiency.
 

* Alternative bearing configurations were considered for the pump
 
rotating group. The pump rotating group bearings were the highest
 
technical risk item in the previous pump expertence. A pressurized
 
double conical bearing configuration was selected for development,
 
and demonstration in a prototype pump.
 

* An ATM pump was modified to include the pressurlzed double conical
 
bearun for t e pump rotating grou-p to provide early demonstra­
tion of the feasibility of this concept. This modified ATM pump
 
was endurance tested for 12,304 hours, with Freon 21 working fluid.
 
No deterioration in pump performance or significant operating param­
eters was noted during the endurance test.
 

* A somewhat larger prototype pump was designed and fabricated,
 
using the pressurized double conical bearing for the pump rotating
 
group, and endurance tested for 10,382 hours with Freon 21 working
 
fluid. No deterioration in pump performance or significant operat­
ing parameters was noted during the endurance test.
 

1.5 Conclusions
 

Conclusions made at the ehd of the program were:
 

* The al.l metal pressurized double conical bearing was shown to
 
be feasible for long life coolant pumps, and a decided advan­
tage for use with fluids having a tendency to swell or other­
wise dimensionally distort non-metallic materials.
 

* Some improvement in pump hydrodynamic efficiency is achiev-­
able with configurations having greater manufacturing complexity.
 
Such configurations may be warranted for power limited space
 
applications.
 

* The magnetic coupling approach continues to demonstrate its
 
viability as a means of eliminating shaft dynamic seals, of
 
isolating the motor elements from fluids which may be active
 
solvents such as Freon -21, and of minimiz-ing rotating element
 
fluid viscous losses, compared to "canned" motor approaches.
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* Grease packed bearings for the motor electrical rotor, with a
 
properly designed installation, show very little change after
 
12,000 hours operation.
 

* Based upon an overall assessment of the results of the program,
 
it is concluded that reliable coolant pumps can be designed
 
for three year space missions (26,280 operating hours) with a
 
high confidence level.
 

1.6 Recommendations
 

Based upon the results of the investigation and upon the current state
 
of several other significant technological developments, the following
 
actions are recommended:
 

1.6.1 Flight Version of Prototype Pump
 

Prepare a flight weight design of the prototype pump, fabricate, and
 
test in the significant areas which were not covered in the program to
 
date. These additional test areas include vibration and acceleration tests,
 
plus any other significant tests required for a particular intended appli­
cation. Such a program, representing a modest amount of additional effort,
 
would provide a coolant pump design of demonstrated life capability, suit­
able for long duration space missions.
 

1.6.2 Continued Advanced Technology Program
 

Several recently developed advanced design concepts have the potential
 
for significantly reducing typical space vehicle coolant pump size, weight,
 
and electrical input power, while retaining a long life capability. Such
 
improvements naturally would have a significant impact on the design of
 
space vehicle coolant systems. Accordingly, 'it is recommended that these
 
concepts be evaluated and demonstrated in a "next generation" prototype
 
design pump, to establish and verify their range of applicability. These
 
recommendations include:
 

Investigate the use of a brushless DC motor of advanced design,
 
possibly operating at a higher rotational speed than that repre­
sentative of current coolant pump design practice. This recommen­
dation is based upon recent advances in brushless DC motor tech­
nology, and In solid state electronics, which have produced highly
 
efficient motor systems having excellent reliability.
 

The brushless DC motor would be a permanent magnet type, having
 
a basic motor efficiency of 0.91 compared to the 0.65 obtainable
 
with a 3 phase a-c motor in the size range typical for space
 
system coolant pumps.
 

The efficiency of the front end electronics for the brushless DC
 
motor is approximately 0.82, which is equivalent to the efficiency
 
of the DC to AC inverter required for AC motors operating on the
 
typical space vehicle DC power system. The resulting efficiency
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product of the electronics plus motor is then 0.75 for the brush­
less DC system, and 0.53 for the 3 phase AC system. This repre­
sents a 42% -improvement in the efficiency of the motor and electron­
ics, obtained by using the brushless DC motor.
 

The brushless DC motor can operate at a preferred rotational speed
 
determined by the pump hydrodynamics, and is not constrained to
 
certain particular speeds determined by the number of motor poles
 
and the electrical input frequency, as is the AC induction motor.
 
In some case this can be a distinct advantage if the hydrodynamic
 
requirements place the pump optimum specific speed (best efficiency
 
design) and desired rotational speed at a speed not readily achieved
 
by the AC induction motor operating at the available frequency. Also,
 
it should be noted that the motor weight and size are approximately
 
inversely proportional to rotational speed, presenting the potential
 
for significant reductions in size and weight. if it should prove
 
feasible to operate at higher design rotational speeds.
 

In addition, the speed of the brushless DC motor can be varied easily
 
by changing voltage level. This offers the potential for modulating
 
system cooling as required, by varying pump speed, while saving elec­
trical power during those periods when maximum cooling flow is not
 
desired.
 

Another advantage is that the brushless DC motor does not have a
 
significant amount of heat generated in the rotor, as AC motors
 
have. This greatly simplifies the problem of keeping the motor
 
bearings cool, which is one of the most significant requirements
 
for long life of the motor grease packed bearings.
 

* 	Investigate designing the pump hydrodynamics for a somewhat higher
 
specific-speed. A specific speed of approximately 1500 is recommended,
 
and this shows a higher theoretical efficiency. However, it results
 
in a smaller diameter, higher speed, impeller and the "normal" esti­
mate of the reduction in efficiency due to the size scale effect pre­
dicts that the higher efficiency will not be achieved with normal
 
manufacturing techniques. The use of improved manufacturing tech­
niques and much closer control of the geometric tolerances of the
 
pump hydrodynamic elements offers the potential of significantly
 
reducing the magn-itude of the size scale effect, permitting the
 
actual achievement of a higher efficiency coolant pump of smaller
 
size. The higher manufacturing cost of such a pump may be warranted
 
by power limited space vehicle applications.
 

" Investigate the use of an advanced samarium cobalt alloy for the
 
magnetic coupling, instead of platinum cobalt. The samarium cobalt
 
alloy has a magnetic strength maximum energy product (BH ) of
 16 16 max
 
23 X 10 Gauss-Oersteds, compared to 9.5 X 10 Gauss-Oersteds for
 
the platinum cobalt alloy. This permits reducing the size parameter
 
(02L) of the magnet system in direct proportion to the increase in
 
energy product, i.e., a reduction of 59%. Such a reduction in
 
magnet dimensions significantly reduces the viscous loss associated
 
with the pump magnet rotating in the working fluid, and it is expected
 
that a worthwhile increase in pump overall efficiency can be achieved.
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The samarium cobalt alloy is more active chemically than the
 
platinum cobalt, so a protective coating or plating will be
 
required. A cost advantage is the fact that the samarium cobalt
 
alloy is less expensive than the platinum cobalt by a factor of
 
15, and this can result in a very significant reduction in pump
 
cost.
 

* Investigate further design improvements to the pressurized bearing
 
used for the pump rotating group. In particular, the pressurized
 
journal bearing and flat configuration thrust bearing should be
 
evaluated in comparison with the double conical configuration,
 
since it may significantly reduce pump break-away torque, thus
 
improving the starting operational margin. In addition, it has the
 
potential for reducing the sensitivity of pump bearing operation
 
to pump bearing system axial clearance, and it would simplify
 
manufacture.
 

Properly worked out and integrated into a pump design, these advanced
 
design concepts offer the potential for achieving a superior "next genera­
tion" coolant pump for long duration space missions.
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2. DESIGN CONCEPTS STUDY
 

2.1 Objectives
 

The objective of the Long Life Coolant Pump Technology Program was
 
to establish pump technology suitable for space mission durations of two
 
years and greater, starting from the existing technology base which had
 
been established in the previous programs, particularly the Apollo Telescope
 
Mount (ATM) Coolant Pump Program.
 

The overriding design criterion in the investigation was to achieve
 
technology improvements which would extend the period of reliable operat­
ing life, since this was the only missing element for the application of
 
existing pumps to multi-year missions. Secondary design criteria also
 
considered in the study included:
 

* Improved efficiency through performance optimization.
 

* Design flexibility regarding flow and pressure rise.
 

* Pump compatibility with various working fluids.
 

" Serviceability.
 

In the ATM pump program, the non-metallic pump element bearings pre­
sented the biggest development problems, particularly in regard to the
 
dimensional changes caused by immersion in the methanol-water working fluid.
 
Accordingly, a specific study objective was to achieve a pump bearing system
 
which would not be subject to dimensional changes resulting from such ex­
posure to the working fluid, regardless of the fluid which was ultimately
 
selected.
 

2.2 Approach
 

The approach used in the design concepts study was to postulate a
 
problem statement for a future space vehicle coolant pump, and then to con­
sider alternative'design approaches for meeting this prbblem statement, keep­
ing in mind the ranking of design criteria discussed above. A selection
 
was then made of a design approach judged to be a best candidate for future
 
development.
 

The pump basic problem statement which was postulated for the study
 
included:
 

* Freon 21 working fluid. This fluid has good heat transport pro­
perties, and requires low pumping power because of its low vis­
cosity and high density, and hence is a strong candidate for space
 
vehicle heat transport. In addition, Freon 21 represents one of
 
the more difficult fluids from a pump immersed bearing viewpoint, and
 
a bearing developed to operate satisfactorily on Freon 21 could
 
rather easily be adapted for use with other fluids.
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* Pump flow 2400 PPH and pressure rise 60 PSID. These values were
 
selected because they were typical of the requirements of several
 
NASA space vehicle systems being considered at that time.
 

* Pump inlet temperature IOOF. This was selected as typical of the
 
requirements of several NASA space vehicle systems being considered
 
at the time.
 

* Pump inlet pressure; as required. That is, design freedom was
 
given to this item, and it would then become a specification item
 
for the remainder of the coolant system design.
 

* Pump overall efficiency, at least as good as existing designs.
 

* Pump size and weight, competitive with existing designs.
 

* Electrical input power, selected as 3 phase, 400 Hz, 115/200 VAC
 
for study convenience. It was recognized that the newer technology
 
in brushless DC motors should also be studied, but it was defined
 
as outside of the scope of the present effort.
 

* Operating life, two years minimum, at high'reliability.
 

2.3 General Design Arrangements
 

Coolant pump general design arrangements were reviewed, with result­
ing considerations as follows:
 

* In regard to the question of wet motor vs dry motor, the dry
 
motor was selected because it can be designed to yield a signifi­
cantly higher overall efficiency than the wet motor. The wet
 
motor-is subject to the viscous losses of the rotor running in the
 
working fluid. In addition, for the more active fluids as Freon
 
21 (which is a very good solvent), long life reliability would
 
probably require a metallic bore liner to keep the fluid from the
 
stator insulation. Such a bore liner increases the magnetic "air
 
gap" and reduces motor efficiency.
 

* The question of magnetic coupling drive vs dynamic shaft seal
 
was resolved in favor of the magnetic coupling drive. For long
 
duration missions of systems containing only a small amount of
 
coolant, even a slight leak presents a possibility of running
 
out of fluid and loss of the mission. The magnetic coupling drive
 
provides a fluid system which is essentially hermetically sealed,
 
and has proved to be reliable in other space system coolant pumps.
 
it eliminates the significant hazard of a leak from a dynamic shaft
 
seal. The magnetic coupling drive does require pump rotating group
 
bearings which operate in the working fluid. However, it was con­
sidered that a reliable solution to this problem could be found,
 
while the use of dynamic shaft seal would always pose a significant
 
element of risk.
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0 The question of pump type was resolved in favor of the centrifugal
 
type hydrodynamic pump, because it provides good efficiency and has
 
no sliding contacts which can cause frictional hang-up during starts,
 
and which can generate wear debris when running. The vane pump and
 
the gear pump can be adapted to the space coolant pump requirement,
 
but have the sliding contact problem.
 

2.4 Electric Motor Design
 

2.4.1 Electric Components
 

The motor design was selected as a 3 phase AC induction motor, with
 
a wound stator and cast integral rotor. This was representative of exist­
ing state-of-the-art which could provide the long life capability without
 
further refinement.
 

2.4.2 Motor Bearing System
 

The motor bearing system was considered to be a key item in achieving
 
the desired extended operating life at high reliability. One candidate was
 
the grease packed ball bearing, which is a reliable state-of-the-art item
 
and which has the potential for providing long life in properly designed
 
installations. However, the grease does have a limited life, and the life
 
is significantly influenced by operating temperature. If kept suitably
 
cool, the grease life can be extended for long missions. In addition,
 
extra wide bearings ("cartridge width") can be used to provide a 50% in­
crease in initial grease capacity, thus further extending the potential
 
operating life.
 

Another candidate for motor bearings for long duration missions is
 
the foil type gas film bearing, which does not have a lubricant life
 
problem. However, the gas film bearing has a significantly higher start­
ing torque, and is better suited for operation at higher rotational speeds
 
than that of the typical coolant pump. In addition, use in a hard vacuum
 
space environment would require hermetic sealing of the electric motor to
 
retain sufficient gas density to provide an adequate bearing film, and the
 
bearing operation would be extremely vulnerable to leaks in this hermetic
 
seal. For these reasons, cartridge width grease packed bearings were
 
selected for the motor rotor bearings.
 

2.4.3 Motor Thermal Design
 

Two objectives were paramount in the thermal design of the motor:
 
keep the motor bearings cool and keep the stator winding cool. These
 
requirements were established because of the close relationship between
 
bearing grease life and bearing operating temperature, and between stator
 
winding insulation life and stator winding temperature. These objectives
 
were achieved by designing to utilize the pump working fluid as a sink
 
for the motor heat, and the detail thermal design was carried out by com­
puterized analysis. Appendix A shows the thermal analysis for the proto­
type pump 581280, and shows coolant passages which were initially provided
 
around the stator housing, but which were later determined to be unnecessary.
 
A significant factor in the thermal design to keep the motor bearings cool
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was the use of bearing supports made of high conductivity beryllium
 

copper alloy.
 

2.5 Pump Design
 

2.5.1 Pump Hydrodynamic Design and Performance
 

The pump hydrodynamic design was investigated for three different
 
design speeds and three different type geometries, as shown in the follow­
ing matrix:
 

Configuration Rotational Speed, RPM
 

Shrouded Impeller, 7,766 11,600 23,300
 
3 Dimensional Blades
 

Shrouded impeller, 7 766 11,600 23,300
 
2 Dimensional Blades
 

Unshrouded impeller, 75766 11,600 23,300
 
2 Dimensional Blades
 

Table 2-1 shows the nomenclature used in the analysis and Figure 2-1
 
shows the pressure-enthalpy diagram for the Freon 21 working fluid.
 

Table 2-2 shows the pump performance parameters for the shrouded im­
peller configuration-with 3 dimensional blades, and Figure 2-2 shows
 
a plot of the estimated performance.
 

Table 2-3 shows the pump performance parameters for the shrouded impeller
 
configuration with 2 dimensional blades, and Figure 2-3 shows a plot of
 
the estimated performance.
 

Table 2-4 shows the pump performance parameters for the unshrouded im­
peller configuration with 2 dimensional blades, and Figure 2-4 shows a
 
plot of the estimated performance.
 

Figure 2-5 shows a schematic diagram of the shrouded impeller configuration,
 
compared to the unshrouded impeller configuration.
 

Review of the estimated performance data shows that the best effi­
ciency is obtained with a shrouded impeller design having 3 dimensional
 
blades, and operating at 11,600 rpm. However, for the purposes of the
 
immediate program having a major emphasis on pump bearing development,
 
the simpler unshrouded impeller design with 2 dimensional blades, and
 
operating at the same 11,600 rpm was selected for fabrication in a proto­
type pump.
 

~76-15009 
AIRESEARCH MANUFACTURING COMPANY 

OFCALIFORNIA Page 2-4 



Table 2-1 

NOMENCLATURE USED IN HYDRODYNAMIC ANALYSIS 

N 

Q 

H 

NPSH 

NPSP 

D 

U2 

g 

= 

= 

= 

= 

= 

= 

= 

= 

Rotational Speed, rpm 

Flow, 9pm 

Head, ft 

Net Positive Suction Head, ft. 

Net Positive Suction Pressure, psi 

Impeller Diameter, in. 

Impeller Tip Speed, fps 

Acceleration of Gravity = 32.174 ft/sec2 

2 - Head Coefficient, Dimensionless 

U 2 

N 
s 

= 

NQ/2_ 

- - Specific Speed
H3/4 

HQ/ 

S 
(NPSH) 

3/4 Suction Specific Speed 

V 

Re2 

= 

= 

kinematic Viscosity, ft2/sec 

DU2 

2--,= Reynold's Number, Dimensionless 

90 = Hydrodynamic Efficiency, Uncorrected 

Il Hydrodynamic Efficiency, Corrected for Re2 

= Hydrodynamic Efficiency, Corrected for both Re2 and Size 

~76- 13009 
76ge3009
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TABLE 2-2 

PUMP PERFORMANCE PARAMETERS, 
SHROUDED-IMPELLER, THREE-DIMENSIONAL BLADES 

N, rpm 23,300 11,600 7766 

N 1359 679 453 
$ 

0.53 0.59 0.60 

U2, fps 79.4 75.5 74.6 

D2. in. 0.78 1.49 2.20 

Re2 1.64 x 106 2.99 x 106 4.36 x 106 

lo 0.893 0.806 0.716 

1-1o 0.107 0.194 0.284 

I 0.128 0.219 0.309 

0.872 0.781 0.691 

I/T? 0.753 0.885 0.939 

0.656 0.691 0.649 

SHP 1 0.192 0.182 0.194 

S 9600 9600 9600 

NPSH, ft 7.69 3.02 1.77 

NPSP, psi 4.45 1.75 1.02 
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TABLE 2-3 

PUMP PERFORMANCE PARAMETERS 

SHROUDED-IMPELLER, TWO-DIMENSIONAL BLADES 

N, rpm 23,300 11,600 7766 

N 1359 679 453 

s 

$ 0.53 0.59 0.60 

U2 , fps 79.4 75.5 74.6 

D2. in. 0.78 1.49 2.20 

Re2 1.64 x 106 2.99 x 106 4.36 x 106 

To 0.822 0.721 0.594 

1-lo 0.178 0.279 0.406 

I-Tx 0.213 0.315 0.441 

Te 0.787 0.685 0.559 

T/T 0.753 0.885 0.939 

1] 0.592 0.606 0.525 

SHP1 0.213 0.208 0.240 

S 8000 8000 8000 

NPSH, ft 9.65 3.85 2.25 

NPSP, psi 5.58 2.22 1.31 

-76-13009 
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TABLE 2-4
 

PUMP PERFORLANCE PARAMETERS
 
UNSHROUDED-IMPELLER, TWO-DIMENSIONAL BLADES 

N, rpm 23300 11,600 7766 

N 1359 679 453 

0.48 0.54 0.55 

U2 , fps 83.8 79.0 78.1 

D2, in. 0.82 1.57 2.30 

Re2 1.81 x 106 3.32 x 106 4.76 x 106 

lo 0.742 .0.641 0.514 

1-lb 0.258 0.359 0.486 

1-l " 0.306 0.401 0.523 

1 0.694 0.599 0.477 

0.760 0.890 0.955 

0,527 0.533 0.456 

SHP I 0.239 0.236 0.276 

S 8000 8000 8000 

NPSH, ft 9.65. 3.85 2.25 

.NPSP Psi 5.58 2.22 1.31 
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2.5.2 Pump Bearing System
 

The bearing system for the pump rotating group was considered to
 
be the most critical item for achieving the desired capability of ex­
tended life at high reliability. Because of previous experience with
 
dimensional changes of non-metallic bearings, caused by immersion in the
 
working fluid, itwas judged that the bearing materials must be essen­
tially metallic or ceramic, with at most a thin non-metallic coating
 
for boundary lubrication during starts and stops. Rolling element bear­
ings were ruled out as having too high a power loss when operated,fully
 
immersed. It was considered that pressurizing of the bearing with work­
ing fluid from the pump discharge would be desirable to help insure a
 
fluid film during all operating conditions other than starts and stops.
 
Pressurized bearings of straight journal configuration were considered as
 
shown in SK 65619, Sheet 2. These were considered in both the hydro­
static and non-hydrostatic configurations. A final choice was made of the
 
pressurized, hydrostatic, double conical bearing, shown schematically in
 
SK 65619, Sheet I, and in Figure 2-6. *The hydrostatic, double conical
 
bearing was shown in the literature to provide stable operation in the
 
selected configuration. Inaddition, it has both a radial and axial
 
load carrying ability. Fluid to pressurize the bearing was taken from
 
the impeller cavity at a radius approximately equal to the impeller outer
 

radius, fed to hydrostatic pockets in the female cone and returned to the
 
impeller cavity at a smaller radius. Both the female cone and male cone
 
were to be made of metals, se-lected for compatible expansion coefficients,
 
and a thin teflon coating was to be applied to the female cone to provide
 
boundary lubrication during starts and stops. It was this configuration
 
which later was successfully demonstrated in a modified ATM pump, 580745,
 
and a prototype pump, 581280.
 

2.6 Magnet-ic Coupling-Design
 

The magnetic coupling-drive, which eliminates the requirement for a
 
dynamic shaft seal,.is-shown schematically Jin<SK 65619, Sheet I. A con­
tinuous- ring permanent magnet, having numerous radial poles, is mounted
 
on the motor drive shaft, and is termed the drive magnet. A simi-lar con­
tinuous ring permanent magnet with radial poles is mounted on the pump
 
shaft, and is termed the driven magnet. In the annular space between the
 
two magnets a thin walled, metallic fluid barrier is used to retain the
 
fluid in the pump cavity. The coupling is a no-slip design and is sized
 
to provide a break-away torque in excess of the motor pull-out torque, thus
 
precluding the loss of drive torque during any mode of pump operation.
 
Platinum cobalt alloy was selected for the permanent magnets, and stain­
less steel was used for the thin walled fluid barrier. This basic design
 
approach has been used successfully in a variety of space vehicle coolant
 
pumps.
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2.7 Other Items of Detail Design
 

2.7.1 	 Materials
 

Materials selected as suitable for the space system coolant pump
 
application were: 

Pump housing - 6061 T6 aluminum alloy, anodized 

Impeller - 303 S CRES 

Bearing cone. - Inconel 706, Inconel 718; chrome plated 

Pump shaft - 17-4 PH CRES; cone chrome plated 

Bearing housing - Inconel 706, Inconel 718 

Magnets - Platinum cobalt alloy 

Fluid barrier - Inconel 718 

Motor housing - 6061 T6 aluminum alloy, anodized 

Motor shaft - 1.7-4 PH 

Electrical rotor - 17-4 PH CRES, OFHC Copper, Electrical 
steel AISI-MI9C-4 

Electrical stator - Electrical steel AISI-MI9C-4, copper wire 
MLT insulation 

Bearing supports - Beryllium copper alloy 172 

Bearings - 440 C CRES 

Bearing grease - Mobil 28 

Static seals - Inconel, teflon coated. 

2.7.2 Static Seals 

Because of the critical importance of not having leaks in coolant
 
systems for space vehicles having long duration missions, the selection
 
of static seals is important. The approach selected was the use of
 
teflon coated metallic o-rings clamped in the axia'l direction between
 
flanges having substantial thickness (rigidity). This approach was
 
used successfully in the ATM pump, 580745, and was used for the internal
 
seals of the prototype pump, 581280. For test convenience only, the
 
inlet and outlet flanges of the prototype pump, 581280, were designed for
 
elastomeric seals. In a flight type design, these joints would use teflon
 
coated metallic o-rings.
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3. ATM PUMP DEMONSTRATOR PROGRAM
 

3.1 Pump Description
 

Figure 1-2 shows the external configuration of the ATM pump,
 
580745, and drawing 580745 shows the external dimensions. Figure 1-3
 
presents an exploded view of the ATM pump showing the basic design
 
arrangement, including the magnetic coupling drive. The ATM pump,
 
used a mixture of water and methanol as the working fluid, and provided a
 
flow of 900 PPH at a pressure rise of 31 PSID. The electrical input
 
power was 3 phase, 12.2/21.2 VAC, 400 Hz, quasi-sine wave, and 125 watts
 
were required per pump. Two pumps were included in a pumping package
 
for redundancy. In service, one pump operated at a time, and reverse
 
flow check valves were provided to prevent reverse flow in the non­
operating pump.
 

The electrical motor was a dry motor, with the electrical rotor
 
carried on grease packed ball bearings. A platinum cobalt magnetic
 
coupling drive was used to eliminate the need for a dynamic shaft seal.
 
The pump was a centrifugal type design with an unshrouded impeller.
 
The pump rotating group was carried in a plain bearing made of Fiberite,
 
which was a glass filled epoxy composite. During initial development,
 
the Fiberite bearings posed a problem because of dimensional changes of
 
the material after long term soak in the water-methanol mixture. Clear­
ances-were finally adjusted to provide reliable operation for the speci­
fied mission duration, but itwas considered that this was an item-which
 
would require improvement for longer duration missions. Further details
 
regarding the ATM pump development may be found inAiResearch Report
 
No.. 71-7254, Final Report, Methanol-Water Pump Package for ATM,
 
P/N 580745, NASA Contract NAS8-30143, 10 June 1971.
 

3.2 Pump Design Modification
 

An ini:tial task in the program was to establish a pump bearing concept
 
which did not involve the use of materials subject to dimensional change
 
in the-working fluid, and to verify feasibility by test. For this purpose,
 
an ATM pump, 580745, was modified to include a pressurized, double conical
 
bearing. This bearing configuration used the double cone configuration
 
to carry axial thrust loads applied from either direction, and to carry
 
radial loads appl'ied at either end of the pump impeller shaft. A schematic
 
cross-section of the bearing is shown in Figure 2-6. Each conical bearing
 
included four hydrostatic pads in the cone surface, ,and these were pressure
 
fed with workihg fluid from a pressure tap located at the periphery of the
 
impeller housing. Fluid pressure at this point was somewhat less than
 
pump discharge pressure because the pressure tap was upstream of the pump
 
conical diffuser, and some of the pump pressure rise is obtained by recovery
 
in the diffuser. Pump working fluid which passed through the conical
 
bearings was vented back to a low pressure area of the impeller housing by
 
means of transfer ports. The male and female bearing cones were made of
 
Inconel 706. The male cones were chrome plated to achieve a high surface
 
hardness and the female cones were teflon coated to provide boundary
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lubrication during starts and stops. Appendix B presents a first
 
order design analysis for this bearing.
 

Figure 3-1 shows an exploded view of the double conical bearing
 
for the pump rotating group. Figure 3-2 shows the assembled pump rotating
 
group. Figure 3-3 shows the assembled pump cartridge including the double
 
conical bearings, and Figure 3-4 shows how the pump cartridge fits into
 
the overall- pump assembly.
 

The weight of the modified ATM pump, 580745, was 11.0 pounds.
 

3.3 Test Program
 

3.3.1 Initial Shakedown Tests
 

Initial tests were performed with water as the working fluid for
 
test convenience. The first tests were static bench.tests designed to
 
make a first order determination of the bearing optimum assembly clear­
ance and pressurant flow. Axial clearances from 0.0005 inches total to
 
0.0020 inches total, and bearing pressure differentials from 40 psid down
 
to 5 psid were investigated
 

Based upon analysis and upon the bench test results, an axial clear­
ance of 0.0017 inches total was selected and runs performed with the com­
plete pump. Figure 3-5 shows a photograph of the water test loop and
 
related instrumentation. Initial runs were performed with the bearing
 
pressurized by an external source. Later tests were performed with the
 
pressurant obtained from a tap at the pump discharge, i.e., the system was
 
self-pressurizing. Pressure differential across the bearings was con­
trolled by an adjustable valve. A series of careful tests and disassembly
 
inspections showed that the bearing pressurant flow could be reduced to
 
2 percent of the pump through flow, with acceptable bearing performance.
 
Approximately lOhours run time and 30 starts were accumulated with no
 
visible discrepancies on the bearing surfaces. While operation was satis­
factory, itwas desi.red to increase the bearing compensation, and th'is was
 
done by installing restrictor orifices in the pressurant feed lines to
 
the individual hydrostatic pockets. At the conclusion of the water tests,
 
check-out runs were made satisfactorily, using Freon 21 as the working
 
fluid. Figure-3-6 shows a photograph of the Freon 21 test loop and related
 
instrumentation.
 

3.3.2 Calibration Test
 

In the initial shakedown tests, satisfactory pump operation was
 
established using Freon 21 as the working fluid. A pump calibration
 
was then performed, and the results of the calibration are shown plotted
 
in Figure 3-7. This -isthe performance which was achieved from an ATM
 
pump, 580745, modified to include double conical bearings for the pump
 
rotating group, and operated with Freon 21 as the working fluid.
 

3.3.3 Endurance Test
 

After calibration, the pump was put on long term endurance test, to
 
determine whether the performance and operation of the pump bearing would
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Figure 3-1. Exploded View of Double Conical Bearing for Pump 
Rotating Group of Modified ATh Pump, 580745.
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Figure 3-2. Assembled Pump Rotating Group
 
for Modifled ATh Pump, 580745
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forFigure 5-3. Assembled Pump Cartridge 
Modified ATM Pumps 580745. 
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Figure 3-4. 	 Exploded View of Modified ATM
 

Pump, 580745, Including Pump
 

Cartridge with Double Conical
 
Bearing.
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Figure 3-5. 	Showing Water Test Loop,
 
and Related Instrumentation.
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Figure 3-6. 	Showing Freon 21 Test Loop,
 
and Related Instrumentation.
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change significantly with time. This was essentially an unattended test,
 
with pump hydrodynamic and electrical parameters logged once a day, until
 
the termination of the program. A total endurance time of 12,304 hours
 
and over 160 starts and stops were accumulated during this running, with
 
no significant change in observed operating parameters, except for bearing flow.
 

3.3.4 Post Endurance Calibration Test
 

After termination of the endurance running, a post endurance cali­
bration test was performed, and results of the calibration are shown
 
plotted in Figure 3-8. Comparison of Figure 5-8 with Figure 3-7 shows
 
very little change in pump performance as a result of the endurance test.
 

3.5.5 Disassembly Inspection
 

After the post-endurance calibration test, the pump was disassembled
 
for inspection, and in general the findings were considered good.
 

Figure 3-9 shows the front of the impeller and Figure 3-19 shows
 
the rear of the impeller after the endurance test, with no significant
 
rub marks.
 

Figure 3-1I shows the impeller end bearing cone. This has several
 
circumferential contact marks, which were believed to occur during the
 
starts and stops when pressurant flow is not available. The marks did
 
not appear to affect the bearing operation. A profilometer measurement
 
showed the finish to be RMS 14, compared to the initial value of RMS 8.
 

Figure 3-12 shows the magnet end bearing cone, and this also had
 
some circumferential contact marks. A profilometer measurement showed
 
the finish to be RMS 20, compared to the initial value of RMS 8.
 

Figure 3-13 shows the impeller and female bearing cone. Some
 
circumferential contact marks are evident, and this is primarily a wear­
ing away of the teflon coating. A profilometer measurement showed the
 
finish to be an average of RMS 20, except for the grooves, and this com­
pared to the initial RMS 8.
 

Figure 3-14 shows the magnet and female bearing cone. Some circum­
ferential contact marks are evident, and this is primarily a wearing away
 
of the teflon coating. A profilometer measurement showed the finish to
 
be an average of RMS 20, except for the grooves, and this compared tp the
 
initial RMS 8.
 

Figure 3-15 shows the motor bearings after the endurance test. The
 
bearings were inexcellent condition as described by the bearing dis­
assembly inspection report shown in Figure 3-16. The bearings showed very
 
little change after 12,304 hours, and it is estimated that the bearings
 
could operate another 10,000 hours or more, judging by the excellent
 
condition of the grease.
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Figure 3-9. 

~77689-9 

Front View of Impeller from 
Modified ATM Pump, 580745, 
after 12,304 Endurance Hours. 
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Figure 3-10. 	 Rear View of impeller From 
modified ATh Pump, 580745, 
After 12,304 Endurance Hours. 
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Figure 5-Il. 	 Impeller End Bearing Cane
 

From Modified ATM Pump, 580745,
 
After 12,304 Endurance Hours.
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Figure 3-12. 	Magnet End Bearing Cone
 

From Modified ATh Pump, 580745,
 

After 12,304 Endurance Hours.
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Figure 3-13. 	 Impeller End Female Bearing Cone
 
From Modified ATh Pump, 580145,
After 12,304 Endurance Hours. 
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Figure 3-14. Magnet End Female Bearing Cone 
From Modified ATh Pump, 580745, 
After 12,304 Endurance Hours. 
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Figure 3-15. Motor Bearings, 580629-1, After
 
12,304 Hours of Operation in
 
Modified ATM Pump, 580745.
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Figure 3-16. 	 Results of Inspection of Bearings from Modified
 

ATM Pump, 580745, after 12,304 Hours of Operation.
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4. PROTOTYPE PUMP DEMONSTRATOR PROGRAM
 

4.f Pump Description
 

Figure 4-I shows the external configuration of the prototype
 
pump, 581280, and drawing 581280 shows the external dimensions.
 
Drawing SK 65924 shows the pump and motor assembly and the basic
 
design arrangement which is approximately the same as that of the modi­
fied ATM pump, 580745. It should be noted that the prototype pump,
 
581280, was a single pump and not a dual pump package as the ATM pump,
 
580745.
 

Figure 4-2 presents an exploded view of the prototype pump, showing
 
the major sub-assemblies.
 

The pump operated with Freon 21 working fluid and had a flow of
 
2200 PPH at a pressure rise of 55 psid. The electrical input power
 
was 3 phase, 115/200 VAC, 400 Hz, sine wave, and 300 watts were re­
quired at the design point.
 

Figure 4-3 shows a cross-sectional drawing of the prototype
 
pump. The electrical motor was a dry motor, with the electrical rotor
 
carried on grease packed ball bearings. A coolant passage was provided
 
in the motor stator housing to facilitate cooling of the motor. This
 
proved to be unnecessary at the ambient conditions used in the test
 
program, but would be desirable for certain type applications. A plati­
num cobalt magnetic coupling drive was used to eliminate the need for a
 
dynamic shaft seal. The pump was a centrifugal type design with an
 
unshrouded impeller. The pump rotating group was carried on pressurized
 
double conical bearings which could carry axial thrust loads applied
 
from either direction, and radial loads applied at either end of the
 
pump impeller-shaft. Each conical bearing included four hydrostatic
 
pads in the cone surface, and these were pressure fed with working fluid
 
from a pressure tap located at the periphery of the impeller housing.
 
Fluid pressure at this point was somewhat less than pump discharge
 
pressure because the pressure tap was upstream of the pump conical diffuser,
 
and some of the pump pressure rise was obtained by recovery in the diffuser.
 
Pump working fluid which passed through the conical bearings was vented
 
back to a low pressure area of the impeller housing by means of transfer
 
ports. The male and female bearing cones were made of Inconel 706. The
 
male cones were chrome plated to achieve a high surface hardness and
 
the female cones were teflon coated to provide boundary lubrication dur­
ing starts and stops.
 

Figure 4-4 shows the hydrodynamic design configuration of the pro­
totype pump.
 

Figure 4-5 shows the calculated performance of the motor for the
 
prototype pump. The prototype pump motor preliminary thermal analysis
 
is presented In Appendix A.
 

The weight of the prototype pump, 581280, was 6.9 pounds. It
 
was estimated that a flight weight version: would weigh 4.8 pounds.
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Figure 4-1. Prototype Pump, 581280 
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Figure 4-2. Exploded View of Prototype Pump, 581280, 
Showing Major Sub-Assemblies. 
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Figure 4-3. Cross Sectional Drawing of Prototype Pump, 581280 
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Figure 4-5. Calculated Performance of Motor for 
Prototype Pump, 581280.
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4.2 Test Program
 

4.2.1 Initial Shakedown Tests
 

During the initial tests considerable effort was expended to
 
verify the magnetic strength of the inner and outer magnets in the mag­
netic drive coupling. Eventually a new magnetizing fixture had to be
 
fabricated to obtain the proper magnetic field strength, and this pro­
vided satisfactory results.
 

The conical.bearing system was assembled with 0.0017 inches total
 
axial clearance, and pump operation was initially verified using water
 
as the working fluid. Following initial runs with water, the pump was
 
satisfactorily checked out using Freon 21 as the working fluid. During
 
these tests it was determined that the special cooling,of the motor
 
stator would not be required, and the coolant passagts were blocked off
 
for further work. Also, at this time a speed pick-up was added to the
 
motor shaft. Figure 4-6 shows the prototype pump, 581280, in the Freon 21
 
test loop.
 

4.2.2 Calibtation Tests
 

A component calibration test was performed 6n the motor of the proto­
type pump, 581280, and the test results are shown in Figure 4-7. A cali­
bration of the complete,pump was then performed, and the results of the
 
calibration are shown plotted in Figure 4-8. The resulting hydrodynamic
 
performance was somewhat less than the design target, but was considered
 
acceptable for the,bearing development program. The performance can
 
readily be improved for any subsequent requirements, if desired.
 

4.2.3 Endurance Test
 

After calibration, the pump was placed on long term endurance test,
 
to determine whether the performance and operat'ion of the pump, bearings
 
would change significantly with time. As with the modified ATM pump,
 
580745, this was essentially an unattended test with pump hydrodynamic
 
and electrical parameters logged once a day until termination of the
 
program. A total endurance time of 10,382 hours and over 130 starts
 
and stops Were accumulated during this running, with no significant change
 
in observed operating parameters, except for bearing flow.
 

4.2.4 Post-Endurance Calibration Test
 

After termination of the endurance running, a post endurance-cal-i­
bration test was performed, and results of the calibration are shown
 
plotted in Figure 4-9. Comparison of Figure 4-9 with Figure 4-8 shows,
 
very- little-change in pump performance as a result-of the endurance test.
 

4.2.5 Disassembly Inspection
 

After the post-endurance test, the pump was disassembled for inspec­
tion, with findings as outlined below.
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Figure 4-10. Front View of Impeller From
 
Prototype Pump, 581280,
 
After 10,382 Endurance Hours
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Figure 4-10 shows the front of the impeller and Figure 4-11 shows
 
the rear of the impeller after the endurance test. Some light rub
 
marks are shown on the edges of the impeller vanes, and these were
 
probably associated with the rather close face clearances used. A more
 
significant finding is the evidence of some rubbing at the impeller
 
vane tips, probably due to vane deflection, and indicating that the
 
impeller vane thickness should be increased slightly in future efforts.
 

Figure 4-12 shows the impeller end bearing cone. This shows
 
some rather heavy circumferenti'al contact marks. It is believed that
 
these occurred during starts and stops, when the pressurant flow was
 
low. A profilometer measurement showed the finish to be RMS 45, com­
pared to the initial value of RMS 8.
 

Figure 4-13 shows the impeller end bearing cone. This also has
 
some rather heavy circumferential contact marks, believed to be associated
 
with the starts and stops. A profilometer measurement showed the finish
 
to be RMS 24, compared to the initial value of RMS 8.
 

Figure 4-14 shows the impeller end female bearing cone. Some cir­
cumferential contact marks are evident, and this was primarily a wear­
,ing away of the teflon coating. A profilometer measurement showed the
 
finish to be an average of RMS 20 on the,average, except for the several
 
grooves, and this compared to an initial value of RMS 8.
 

Figure 4-15 shows the magnet end female bearing cone. Some circum­
ferential contact marks are evident, and this is primarily a wearing away
 
of the teflon coating. A profilometer measurement showed the finish to
 
be an averageof RMS 20 except for the several grooves, and this compared
 
to the ini'tial RMS 8.
 

Figure-4-16 shows the motor bearings after test. The grease shield
 
of the bearing in the right of the photograph shows a deposit of varnish
 
from the electrical stator winding. This resulted from a Freon 21 leak
 
into the motor cavity caused by a leak in the gasket used to block off
 
the motor coolant passages for test purposes. The bearings were in excel­
lent condition as described by the bearing disassembly inspection report
 
shown in Figure 4-17. The bearings showed very little change after 10,382
 
hours, and it is estimated that the bearings could operate another 10,000
 
hours or more, judging by the excellent condition of the grease.
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Figure 4-12. Impeller End Bearing Cone
 
From Prototype Pump, 581280,
 
After 10,382 Endurance Hours. 
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Figure 4-13. Magnet End Bearing Cone
 
From Prototype Pump, 581280, 
After 10,382 Endurance Hours.
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Figure 4-14. 	 Impeller End Female Bearing Cone 
From Prototype Pump, 581280s 
After 10,382 Endurance Hours.
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Figure 4-15. Magnet End Female Bearing Cone 7691
 
From Prototype Pump, 581280,
 
After 10,382 Endurance Hours.
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XI 

Figure 4-16. Motor Bearings, 580629-1, After 
10,582 Hours of Operation In
 
Prototype Pump, 581280.
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Figure 4-17. 	 Results of Inspection of Bearings from Prototype
 

Pump, SK 65924, after 10,382 Hours of Operation
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5. DISCUSSION OF RESULTS
 

The hydrodynamic analysis performed in the design concepts study
 
showed that a significant improvement in hydrodynamic efficiency, in­
creasing from 0.53 to 0.69, can be achieved by using a shrouded impeller
 
with 3 dimensional blades, although the manufacturing complexity and
 
cost would be greater. In addition, it is probable that further improve­
ments in efficiency can be achieved by operating at a somewhat higher
 
specific speed and rotational speed. Since this would result in a signi­
ficant reduction in impeller size, much tighter control of geometric
 
tolerances would-be required to avoid the usual significant scale effi­
ciency penalties associated with such a reduction in size. While these
 
potential improvements in efficiency would result in increased manufactur­
ing cost, they may be warranted for power limited space vehicle missions.
 

In the investigation, it was assumed that pump inlet pressure could
 
be provided as required by the vehicle system and, accordingly, particular
 
attention was not paid to suction performance design. For systems having
 
a constraint on pump inlet pressure, some improvement in pump suction
 
performance can be obtained by the addition of an inducer to the pump impeller
 
and/or jet pumping the inlet from pump discharge. This latter has a power
 
penalty associated with it.
 

Regarding changes in pump head or flow to fit particular applications,
 
within reasonable limits these can be obtained by tailoring the pump geom­
etry to the new requirements.
 

The all metal pressurized, double conical bearing was shown to be
 
feasible for long life coolant pumps, and a decided advantage for use
 
with fluids having a tendency to swell or otherwise dimensionally distort
 
non-metallic materials. Some improvement in bearing materials and coat­
ings to aid operation during the boundary lubrication condition which
 
occurs during stops and starts is desirable. In addition, some further
 
investigation of bearing geometry appears warranted.
 

The basic design arrangement of dry motor, grease packed ball bear­
ings, magnetic coupling, and centrifugal pump was shown to be a sound
 
design arrangement for the space vehicle coolant pump application.
 

The impeller vanes of the prototype pump, 581280, appeared to be
 
deflecting to an undesirable degree during operation, and a slight increase
 
in blade thickness isdesired if the impeller is unshrouded.
 

The grease packed bearings in the motors were shown to be capable of
 
operating 2 to 3 times as long as they were operated during the endurance
 
tests, i.e., capable of 20,000 to 30,000 hours.
 

Based upon the results of the tear down inspection, itwas estimated
 
that either pump, as built, could have operated satisfactorily for at
 
least a two year duration, i.e., 17,520 hours. With some design improve­
ments, they should be capable of longer operation.
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6. CONCLUSIONS
 

Conclusions made at the end of the program were:
 

0 The all' metal pressurized double conical bearing was shown to
 
be feasible for long life coolant pumps, and a decided advan­
tage for use with fluids having a tendency to swell or other­
wise dimensionally distort non-metallic materials.
 

* Some improvement in pump hydrodynamic efficiency is achiev­
able with configurations having greater manufacturing complexity.
 
Such configurations may be warranted for power limited space
 
applications.
 

* The magnetic coupling approach continues to demonstrate its
 
viability as a means of eliminating shaft dynamic seals, of
 
isolating the motor.elements from fluids which may be active
 
solvents such as Freon 21, and of minimizing rotating element
 
fluid viscous losses, compared to "canned" motor approaches.
 

* Grease packed bearings for the motor electrical rotor, with a
 
properly designed installation, show very little change after
 
i2,000 hours operation.
 

o Based upon an overall, assessment of the results of the program,
 
it is concluded' that reliable coolant pumps can be designed for
 
three year space missions (26,280 operating hours) with a high
 
confidence level.,
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7. RECOMMENDATIONS
 

Based upon the results of the investigation and upon the current state
 
of several other significant technological developments, the following ac­
tions are recommended:
 

7.1. Flight Version of Prototype Pump
 

Prepare a flight weight design of the prototype pump, fabricate,
 
and test in the significant areas-which were not covered in the program to
 
date. These additional test areas include vibration and acceleration tests,
 
plus any other significant tests required for a particular intended appli­
cation. Such a program, representing a modest amount of additional effort,
 
would provide a coolant pump design of demonstrated life capability, suit­
able for long duration space missions.
 

7.2 Continued Advanced Technology Program
 

Several recently developed advanced design concepts have the potential
 
for significantly reducing typical space vehicle coolant pump size, weight,
 
and electrical input power, while retaining a long life capability. Such
 
improvements naturally would have a significant impact on the design of
 
space vehicle coolant systems. Accordingly, it is recommended that these
 
concepts be evaluated and demonstrated in a "next generation" prototype
 
design pump, to establish and verify their range of applicability. These
 
recommendations, include:
 

Investigate the use of a-brushless DC.motor of advanced design,
 
possibly operating at a higher rotational speed than that repre­
sentative of current coolant pump design practice. This recommen­
dation is based upon recent advances in brushless DC motor tech­
nology and in solid state electronics, which have produced highly
 
efficient motor systems having excel-lent reliability.
 

The brushless DC motor would be a permanent magnet type, having
 
a basic motor efficiency of 0.91 compared to the 0.65 obtainable
 
with a 3 phase AC motor in the size range typical for space
 
system coolant pumps.
 

The efficiency of the front end electronics for the brushless DC
 
motor is approximately 0.82, which is equivalent to the efficiency
 
of the DC to AC inverter required for AC motors operating on the,
 
typical space vehicle DC power system. The resulting efficiency
 
product of the electronics plus motor is then 0.75 for the brush­
less DC system, and 0.53 for the 3 phase AC system. This repre­
sents a 42% improvement in the efficiency of the motor and electron­
ics; obtained by using the btushless DC motor.
 

The brushless DC motor can operate at a preferred rotational speed
 
determined by the pump hydrodynamics, and is not constrained to
 
certain particular speeds determined by the number of motor poles
 
and the electrikal input frequency, as is the AC induction motor.
 
In some cases this can be a distinct advantage if the hydrodynamic
 
requirements place the pump optimum specific speed (best efficiency
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design) and desired rotational speed at a speed not readily
 
achieved by the AC induction motor operating at the available
 
frequency. Also, it should be noted that the motor weight and
 
size are approximately inversely proportional to rotational speed,
 
presenting the potential for significant reductions in size and
 
weight, if it should prove feasible to operate at higher design
 
rotational speeds.
 

In addition, the speed of the brushless DC motor can be varied
 
easily by changing voltage level. This offers the potential for
 
modulating system cooling as required, by varying pump speed, while
 
saving electrical power during those periods when maximum cooling
 
flow is not desired.
 

Another advantage is that the brushless DC motor does not have a
 
significant amount of heat generated in the rbtor, as AC motors
 
have. This greatly simplifies the problem of keeping the motor
 
bearings cool, which is one of the first requirements for long
 
life of the motor grease packed bearings.
 

" Investigate designing the pump hydrodynamics for a somewhat higher
 
specific speed. A specific speed of approximately 1500 is recom­
mended, and this shows a hgher theoretical efficiency. However,
 
it results in a smaller diameter, higher speed, impeller and the
 
'!normal" estimate of the reduction in efficiency due to the size
 
scale effect predicts that the higher efficiency will not be
 
achieved with normal manufacturing techniques. The use of improved
 
manufacturing techniques and much closer control of the geometric
 
tolerances of the pump hydrodynamic elements offers the potential
 
of significantly reducing the magnitude of the size scale effect,
 
permitting the actual achievement of a higher efficiency coolant
 
pump of smaller size. The higher manufacturing cost of such a
 
pump may be warranted by power limited space vehicle applications.
 

* Investigate the use of an advanced samarium cobalt alloy for the
 
magnetic coupling, instead of platinum cobalt. The samarium cobalt
 
alloy has a magnetic strength maximum energy product (BH ) of
 
23 X 106 Gauss-Oersteds, compared to 9.5 X 106 Gauss-Oermsds for
 
the platinum cobalt alloy. This permits reducing the size parameter
 
(D2L) of the magnet system in direct proportion to the increase in
 
energy product, i.e., a reduction of 59%. Such a reduction in
 
magnet dimensions significantly reduces the viscous loss associated
 
with the pump magnet rotating in the working fluid, and it is expec­
ted that a worthwhile increase in pump overall efficiency can be
 
achieved.
 

The samarium cobalt alloy is more active chemically than the
 
platinum cobalt, so a protective coating or plating will be
 
required. A cost advantage is the fact that the samarium cobalt
 
alloy is less expensive than the platinum cobalt by a factor of
 
15, and this can result in a very significant reduction in pump
 
cost.
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* Investigate further design improvements to the pressurized

bearing used for the pump rotating group. In particular,
 
the pressurized journal bearing and flat configuration thrust
 
bearing should be evaluated in comparison with the double
 
conical configuration, since it may significantly reduce pump
 
break-away torque, thus improving the starting operational
 
margin. In addition, it has the potential for reducing the
 
sensitivity of pump bearing operation to pump bearing system

axial clearance, and it would simplify manufacture.
 

Properly worked out and integrated into a pump design, these
 
advanced design concepts offer the potential for achieving a superior

"next generation" coolant pump for long duration space missions.
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APPENDIX A
 

MOTOR THERMAL ANALYSIS METHOD
 

PROTOTYPE PUMP, 581280
 

A detailed thermal analysis has been performed on the pump-wotor assembly.
 
The temperature distribution was calculated using the thermal analyzer program
 
(H0298). The internal heat generation due to windage friction in the motor and
 
the journal bearing vas calculated by the program. The ball bearing heat gen­
erition was calc 1ated using the bearing heat generation program. The elec­
trical losses (I R) as a function of conductor temperature (or resistance) was
 
considered in the motor analysis.
 

The conditions used In the analysis are summarized below.
 

* Motor input = 310 watts at 111500 rpm rated load 

o Pump flow = 3.8 gpm Freon2l 

o Coolant flow to motor = 0.076 9pm (P4 pump flaw)
 

n Flow to journal bearing = 0.076 g'pm (2, purmp flow)
 

s Fl temperature = 12O°F 

It was assumed that no radiation and convection heat exchange from the,
 
assembly to the surroundings. The geometry of the heat exchanger around the
 
motor housing is calculated based on the preliminary pressure drop requirement
 
(20 psi) and 2% (0.076 gpm) of coolant flow. The required heat exchanger Is a
 
16-turn double lead spiral (approx. 2.1 In.on) groove with 0.07 in. wide and
 
0.06 in. deep. The Inlet and outlet of the heat exchanger can be located at
 
the pump end of the motor with the double lead spiral groove.
 

The temperatures and heat generation at the critical locations of the
 
assembly are summarized inTable I. Figures I and 2 present the thermal nodal
 
network &4 the pump-motor used in the analysis. A complete all nodal tempera­
tures ire Included inTable 2.
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TABLE I 

NASA )4SFC PUMP-MOTOR ASSEMBLy TEMPERATURE SU1MARY 

* Total pump flow =3.8 gpm Freon-21 

o Coolant flow to motor = 0.076 gpm (2% pump flow) 

* Fluid tenmerature = 1200F 

o AP through heat exchanger = 20 psi 

* Motor input = 310 watts at I1,500 rpm rated load 

Heat Temperatures
 
Node Generation,
 
No. watts OF Oc
Locations 


Motor 

Stator end turns 1,2 28.0 198 92
 

Stator stack winding 3 22.8 184 85
 

Stator tooth 4 2.2 155 68
 

Stator back Iron 5 2.6 145 63
 

Rotor bar 8 8.0 197 92
 

Rotor .end rings -6,7 3.0 198 93
 

Rotor tooth -9 0.2 197 92
 

Rotor Iron 10 0.4 197 92
 

Left bearing 50 2.4 147 64
 

Right bearing 51 2.4 150 66
 

Air gap 56 0.1 384 85
 

Heat exchanger 22-24 0 136 58
 

Exit fluid 85 0 135 57
 

Pump 

Pump blades it 0 120 49
 

Journal bearing 30 0 127 53
 

Fluid gap 74 124 51
 

Fluid gap 76 4.7 123 50
 

Fluid gap 77 125 52
 

Magnet 48 0 141 60
 

Magnet 49 0 125 52
 

Shield 39 0 125 52
 

Total losses = 76.8 watts 
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Figure I; NASA-HSFC Puiv-Motor Assembly (Numbers
 
designate nodal element locations for
 
thermal analysis) Approx. full size.
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Figure 2. 	NASA MSFC Pump Motor Assembly (Numbers designate
 
fluid stream elements for thermal analysis)
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.ORIGINAIJ PAGEt IS 

OF POOR QUALME 

rUL!D CApACITY RATE ELEMENTS
 
rtIEA'I f 70 INLET TEHP.C 120.00 ..
No.a NODE No.= 


SECTION NODE NO. TOUT F FLOW RHOF HrAT t". 
1 71 120.08 50.0000 81.5370 ,000000 
2 72 120.50 25.0000 81,5146 ,000000 

FLUID CAPACITY RATE ELFHENTS
 
INLET TEHPe 120408
STrEAf No.: 2 NOE NO,: 71 

RHOF HEAT TN.
SECTION NODE NO. TOUT r- FLOW 

1 73 120,13 ?5,0000 81,5313 .000000 

2 74 124,02 25,0000 61.3560 1,793628 

-- FLID CAPACITY RATE ELEPENTS
 
75 INLET TENP= 122.26
SI PFA N 0. 3 NODE NO,= 


SECTION NODE NO. TOUT r FLOW RHO? HEAT IN. 

1 76 1?3.41 	 50.0000 81.2881 1.,60906
 
50.0000 81.1850 1.d/6133 ­2 77 124,57 


3 78 124.68 50,0000 81i1.81 " 000000
 

FLUID CAPACITY RATE ELEMENTS
 
SVLAH NO.= 4 NOOF NO.3 70 INLET IEHP.z 12000
 

SECTION NODE NO, TOUT F - F014 RHOF HEAT ii, 

I RO 131.'9 50,0000 1.01111 .000-00 
[ 134.26 50.0000 80.3125 .0000002 


82 134.01 50.0000 O00.359 *0:)Ooo0
3 
4 83 135.02 50.0000 60.2015 -" .000o0 
5 '84 135.03 50.0000" 80.1919 e00000 
6 85 13577 .5G.0000 G.01578 ... 030000 
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APPENDIX B
 

METHOD OF.BEARING ANALYSIS
 

The following shows the method of analysis used in sizing
 
the pump bearings. The example is for the modified ATM pump,
 
580745.
 

A summary of the analysis follows:
 

Pump Normal Operating Conditions Assumed:
 

A. 	Working fluid - 80% methanol - 20% water (by weight)
 

B. 	Pump inlet pressure 11-15 psig
 

C. 	Pump pressure rise - 31 psid
 

D. 	Pump flow rate - 900 Imb/hr
 

E. 	Pump outlet temp - 50OF
 

F. 	 Pump rotor speed - lO00 rev/min 

G. Estimated pump axial thrust - 2.5 lbf (towards inlet)
 

Bearing Design Approach
 

A. 	The bearing geometry was estimated using extreme low flow rate 
portions of NASA TN D-6371 otpimum friction design curves. No 

attempt was made to iterate to a fully optimum minimum friction 

design.
 

B. -Assumptions
 

1. Design thrust - 5 lbf
 

2. 	Bearing fluid temperature - (50F) 

3. 	Running film height - .0005 in. (min)
 

*4, Bearing dimensions 
8= 450 

hp 	.045 _____ 

R4 .3S4 
v-i R3=.244 

___ 20 76-13009 

I 

Ref. NASA 'N D-6371 Rj= .145 	 7613 0 
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Definition of Terms
 

F Thrust load, LBf 

fR Fraction of aera between R2 and R3 occupied by 
pdcket, P I 

hL Fluid film clearance at lands, in. 

hp Fluid film clearance at pocket, in. 

Mf Friction torque, in-lbf 

N Rotor speed, rpm 

P - Power loss, watts 

p Fluid supply pressure in pocket, psi 

Q Bearing flow rate, in3/sec or LBm/hr 

R1 Inner land, inner radius, in. 

R2 Inner land, outer radius, In. 

R3 Outer land, inner radius, in. 

R4 Outer land, outer radius, in. 

X2 R2/Ri" 

X3 R3/R 

X4 R4/Rj 

Fluid dynamic viscosity, LBm/sec-in or LBf sec/in
2 

p Fluid density) LBm/in 
3 

0 Cone half angle, deg. 
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Calculations
 

1. Required pocket fluid pressure
 

2F
 
2 = Tn(R4 + 	 R,32 - -p. 1(j2) 

Where - F 5 LBf
 

R, = 0.145 in.
 

R2 = 0.210 in.
 

R3 = 0.244 	in. 
= 
R4 0.334 	in.
 

Resulting 	in
 

p = 30 psi 

2. Resulting nass flow rate (loaded bearing)
 

611~ sn R2 + R(4 (2) 

In- I 

Where 	 hL = 0.0005 in.
 

p = 30 psi
 

6 = 45 deg,
 

p, = 2.1 xlO- 7  LB f-sec/in 2
 

R, = 0.145 in. 
=
R2 0.210 	in.
 
=R3 0.244 in.
 

R4 = 0.334 in.
 

Resulting 	in
 

= 4.33 Ibm/hr
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3. Resulting friction torque (loaded bearing)
 

.75
 

Where = 2.1 X 10- 7 LBf - sec/in 2 

4or 0.81 X 10- LBm/in-sec
 

, f = 1.15 X 103 RAD/Sec 

R, = 0.145 in. 

hL = 0.0005 in. 

6 = 45 deg 

= 
X4 0,334/0. 145 

X3 = 0.244/0.145 
=
X2 0.210/0.145
 

- 2
p = 3.1 X 10 LBm/in 3 

hp = 0.045 in. 

fR = 1.0 

Resulting in
 

-
Mf = 1.14 X 10 in-LBf 

4. Resulting power loss (loaded bearing)
 

MX N 

P = 63024 X 746 (4) 

Where Mf= 1.14 X 102 in-LBf 

N = 11,000 rpm 

Resulting in 

P = 1.485 watts 

As a result of the calculation shown in paragraph (1), a layout of the
 
conical bearing fitted into an ATH pump has been completed as shown in
 
Figure 1.
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