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Summary

A theoretical method is presented for predicting the lateral-

directional stability derivatives of wing-body combinations with or

without the blowing jet effect. The fuselage effect is accounted

for by the axial distribution of G.N. Ward's vortex multiplets.

Comparison of the predicted results with experiment and other

theoretical methods shows good agreement for configurations without

the blowing jet. More applicable experimental data with blowing

jets are needed to establish the accuracy of the theory.



1. List of Symbols

AR aspect ratio

b span

c chord length

C_. induced drag coefficient

CL lift coefficient

C^ rolling moment coefficient

Cjn pitching moment coefficient about y-axis

CN sectional normal force coefficient

CN total normal force coefficient

Cn yawing moment coefficient

Cp pressure coefficient

ct tip chord

Cf thrust coefficient

Cy side force coefficient

, per radian

CnQ = _±i=£ , per radian

*

~ , per radian

t,tip tip suction coefficient



fn strength of fuselage flow singularities of n th

Fourier mode

G(x) tip suction singularity parameter

I fuselage length

M Mach number, or number of integration stations

N number of integration points

n number of Fourier modes of induced velocities matched

to satisfy the fuselage boundary condition (excluding

the zero-order mode) .

Np number of fuselage control or integration stations.

the induced normal velocity of the n^1 Fourier mode at

the fuselage control station i due to a unit strength of

flow singularity at the integration station k.

the induced normal velocity at the control point I due to

a unit strength of the horseshoe vortex density at k.

p roll rate, rad./sec.

r radial coordinate, or yaw rate in rad./sec.

R(x) fuselage radius

st tip suction per unit length

Sy reference wing area

the induced tangential velocity of the n^1 Fourier mode
^ at the control point 4. due to a unit strength of flow

singularity at the integration station k.

u,v,w nondimensional induced velocity components in the x, y

and z directions, respectively.

V velocity



W wing section width

x,y,z rectangular coordinate system with positive x-axis

pointing downstream, positive y-axis pointing to the

right and positive z-axis pointing upward

Xp the fuselage station behind which the potential flow

ceases to exist and is taken to be 0.378 + 0.527Xfc/£ from nose,

x'p the fuselage station at which the rate of change of the

fuselage cross-section area first reaches its maximum

negative value.

zc(x) cajnber coordinate

a angle of attack in degrees

8

6 sideslip angle, radian

Y vortex density

A taper ratio

A sweep angle

T dihedral angle

F(x,y) accumulated circulation

X -/A cose*

<J> nondimensional velocity potential

f density

Q angle between camber line and chord, including flap

angle, if any.



Subscripts

a antisymmetric

c chordwise

f fuselage

ff fuselage control stations being influenced by fuselage

flow singularities

fj fuselage control stations being influenced by jet

vortices

fw fuselage control stations being influenced by wing

vortices

£ leading edge

j jet flow

jj jet flow perturbation due to jet vortices

JJ jet control points being influenced by jet vortices

JW jet control points being influenced by wing vortices

Jf jet control points being influenced by fuselage flow

singularities.

oj external flow perturbation due to jet vortices

r radial direction in the cylindrical coordinate system

s spanwise, or symmetric

t trailing edge, or tail

w wing

T circulation

9 circumferential direction in the cylindrical coordinate

system

oo freestream



2. Introduction

It has been shown that upper-surface-blowing (USB) swept-wing

configurations have unsatisfactory Dutch roll characteristics with-

out stability augmentation (Ref.l). In an effort to evaluate the

jet-interaction effects on the lateral-directional stability derivatives,

and hence the lateral-directional dynamic characteristics, the present

investigation was initiated.

It is well known that some lateral-directional stability derivatives,

in particular the dihedral effect (Cĵ g), depend significantly on the

wing-body interaction (Ref. 2, Chapter 4). In addition, the fuselage

will contribute to the derivatives Cyg, Cng, Cyr, and Cnr. Therefore,

the computer program developed earlier without the fuselage effect

(Ref. 3) must be revised.

The existing methods for representing the fuselage effect are

based on either the image method (See Ref. 4), or the surface singularity

distribution (Refs. 4,5,6). The former method is applicable only to

long cylindrical bodies with constant radius. On the other hand, the

latter method can deal with bodies of arbitrary shape. However, the

computer time and the memory requirement would be greatly increased. In

order to keep the computer memory requirement to a minimum and yet have

the capability of dealing with arbitrary bod/ies of revolution, a method

based on the axial distribution of flow singularities will be developed

in Section 3.1. The fuselage effect on the wing-jet interaction will

be formulated in Section 3.2. Many ideas used in computing the lateral-

directional stability derivatives in subsonic flow have been discussed



in the NACA and NASA literature, mostly based on the lifting-line

theory. Some of these ideas will be reformulated for the use in the

present lifting-surface theory (Ref. 7) in Section 3.3.

3. Theoretical Formulation

The basic assumption in the formulation is that the linear,

potential, subsonic flow theory is applicable. The quasi-vortex-

lattice method of Reference 7 is used to formulate the wing and jet

boundary conditions (Refs. 8 and 9).

3.1 Fuselage effect without jet interaction

It is assumed that the fuselage is a body of revolution with

arbitrary radius distribution. It is not restricted to a slender body.

The fuselage camber is not accounted for in the present program, although

this restriction can be easily removed.

To represent the fuselage effect, the axial distribution of G.N.

Ward's vortex multiplets (Ref. 10) will be used. According to Reference

10, the velocity potential due to the axial distribution of vortex

multiplets with strength "fj,(̂) is given by

(1)
where cos n 8 is to be used for the symmetrical cases and sin n 8

for the antisymmetrical cases, such as in computing the lateral-

directional. stability derivatives. The coordinate system for Eq. (1)

is indicated in Figure 1. Note that if n=o in Eq. (1), the resulting



V sina sin9

sina cos6

V sina
oo

Figure 1. Fuselage Cylindrical Coordinate System

velocity potential is for the familiar line source distribution. Before

Eq. (1) is differentiated to obtain the velocity components, it is

advantageous to integrate the integral by parts to obtain

where

pr

J_
y»

(3)

The boundary conditions in symmetrical flow can be written as

follows:

On the wing surface:

— smo(



On the fuselage surface : (see Ref. 11, Chapter 9)

= cos* • - sno( c«s0 (5)
-> r »•

Note that both <f>w and <J>£ in Eqs. (4) and (5) are nondimensionalized
,̂b

with respect to Vw. In Eq. (5), -If is needed. It is obtained from** r
Eq. (2) by differentiation to give

Eq. (6) can be simplified as follows. By the following transformation,

(7)

the integral becomes

*,..

where

" (9)

T̂  P *% C.

* "

(11)



and the integral was reduced to a finite sum through the midpoint

trapezoidal rule.fn(xft) in Eq. (6) can be expressed in terms of

f; (£) as follows.

(13)

It follows that Eq. (6) becomes

The fuselage surface boundary condition, Eq. (5), will be

satisfied at Np control stations specified in a similar way as in

selecting the wing control points (Ref.7):

'• ̂ =~7T »'C=I'"*'NF (15)

Note that ,. *T is expressed in a Fourier cosine series. The wing

induced normal velocity, -J*. t will also be Fourier-analyzed. Let
v Y

C^-P£ 1 ke a n̂ trix with elements being the induced normal velocity

of the nfch- Fourier mode at control station c due to a unit f'nk-

Similar definition can also be applied to the matrix CA/r../] due to

10



the wing effect. The detailed expressions are described in Appendix

tbA. After Eq. (14) and the Fourier-analyzed —Ik are substituted into

the fuselage boundary condition Eq. (5), and equating each Fourier

mode, the following system of equations can be obtained:

etc.
In the above equations, all equations have been multiplied, through

by Rnft , where R(x) is the fuselage radius. This is numerically

expedient in view of the fact that̂ /̂̂ r , which appears in CA/iT'j »

contains rn+l in the denominator. Gn in the above equations comes

from the first term in Eq. (14), and is defined as

Note that in each of the equations (16)-(18), there are Np equations

i
because of Np control stations, but involving (Np+ 1) unknowns, -j^

with k=l, ..., Np and fn(xf£) . However, fn(x£^) can be obtained

directly by evaluating Eqs. (16)-(18) at x=X£Jl, i.e., the fuselage

nose. The results can be shown to be (see Appendix B)

(20)

(21)

11



(22)

where
(23)

Note that in applications, it is not necessary to compute g^ because

if 7? 4̂ -1 =0 » it: implies 4̂ -(Xre) is finite so that g is nonzero.
"• *?Hx.XH " « X ^ "

" > ' JftHowever, •£ {•Xj\-o whatever g( is. On the other hand, if K-^p-C*.^) is

finite, this implies 4 -̂Cx. "\-* "" if. R(*«) = o, and hence g. - 0. Eq.
• r- - r^ - * • • ' • _ • '<\JC • ̂54* '" • ' '"" -- " • " • T ' 'r r- .- .- r - _ »

(16) can be solved independently of other equations.

The wing surface boundary condition, Eq. (4), can be written in
'-. - : • • • • , ..:.•'.:-:.' 3-;. - •/:., - -. • . • ': . ' '- . - : . . - • - - •

terms of. the influence coefficient matrices,
.--...) v, . «.!.. u A .* .' .' . L C- ~ „ fjv;; j. .'. • .'£..•-., . -. , - „. >MU j j

1, etc.

as follows:
ij •" ; _i':vv£ ;

'
(24)

/"""' ' >

where Hv is the contribution of 'Ji(,
x$«) and i?s, ̂et.ail expression can be

found in Appendix A. Eqs. (17), (18), and (24) can be written in the

format of an augmented matrix for solution. Assuming n=2, it follows

that

L

aVJ
*;> =
c(Sym)

(25)

12



Note that in Eq. (25), G, contains /w through Eqs. (19) and (21).

That particular term should be combined with the appropriate term

on the left hand side before the solution is attempted. In all

configurations tested so far, the contribution of Gj to the final

solution of iv has been found to be relatively small.

For the antisyrametrical case due to sideslipping, steady

rolling and steady yawing, the boundary condition can be formulated

in a similar manner. Consider the wing boundary conditioti first.

Referring to Fig. (2), the induced normal velocity, which must be

produced to cancel the upwash due to dihedral in a sideslip, is

given by

liz^-fsinp (26)

where it is assumed that the wing boundary condition is to be

satisfied on the mean surface only and T, the dihedral angle, is

small enough so that the normal unit vector to the wing surface is

essentially in the z-direction. In steady yawing, the sidewash

produced on the wing surface would vary

gV sinF
-BV_sin9

x
Figure 2 Normal Velocity Components on Wing-Body Surface due
to Lateral-Directional modes of motion

13



from location to location and is given by r:t as shown in Fig.2.

Therefore, it can be considered as in a "variable sideslip" situation

with the following boundary condition to be satisfied:

(27)

Similarly, the upwash on the right wing in a positive steady roll is

given by py. Hence, the wing boundary condition is

—*$---(&% <28>V(0 *" V* °

On the fuselage surface, the sideslip boundary condition is given

by (see Fig. 2)

(29)

<30)

Similarly, in steady yawing, the expression would be

On the other hand, in steady rolling, no normal velocity will be

generated by p-motion. Hence,

=0 <31>

In the case of antisymmetrical flow, the cos n 6 in Eq. (14) is to be

replaced by sin n 6 and the wing-induced velocity on the fuselage

surface will be developed in a Fourier sine series. The augmented

matrix in this case can be written as, again for n=2,

">- .

Co3 (32)

where the corresponding Gn for this case are all assumed zero for

simplicity. For B~ -derivatives, both p and r are assumed zero in

14



Eq. (32) and J3" is set to 5°. For p- or r- derivatives, either -£2.

L a^*
or — — • is set to 1 and other flow parameters are set to zero.

3.2 Fuselage effect with Jet Interaction

In the wing-jet interaction theory described in Refs. 8 and

12, the solution is obtained by solving the jet-off case first and

then the additional effect due to jet interaction. The same concept

applies here. The jet-off case has been described in Section 3.1.

The jet effect of the symmetrical case is obtained by solving the

following system of equations (Ref. 12) for n=2 :

Pressure continuity on jet surface

>'u3«] i f.- j = \ '' 3)

Flow tangency on jet surface

Flow tangency on wing surface

3if;i+E<j{f;\ = i-n,\ <35>
Flow tangency on fuselage-first Fourier mode matching

(36)

Flow tangency on fuselage-second Fourier mode matching

(37>

The velocity potential <J> in Eqs. (33) and (34) is for the wing-body

combinations without the jet effect. D^ in Eq. (33) and P^ in Eq.(34)

are the contribution from fi(xf$,) and the detail expressions can be found

15



in Appendix A.

In antisymmetrical case, Eq. (33) remains unchanged in form,

except that all influence coefficient matrices must account for anti

symmetry and 4> is interpreted as the antisymmetrical velocity

potential for the wing-body combination without the jet effect.

Furthermore, the right hand side of Eqs. (35) and (36) will be re-

placed by zero and that of Eq. (34) by the following expression:

RHS of Eq. (34) for antisymmetrical case = -$ -/5

where 6j is defined in Fig. 3 and the effect of Mach number non-

uniformity has been neglected. _gy COs6
^ 00 J

py-
pysinQ

9.
J

/ ^ \ \
Jet V } Jet

Figure 3 Jet Surface Boundary Condition in Lateral
Mode of Motion

3.3 Forces and Moments

3.3.1 Symmetrical aerodynamic characteristics

Once the vortex density distribution on the wing is obtained, the

wing aerodynamic characteristics can be calculated by integration. The

procedure has been reported earlier (Ref. 8) and therefore, will not be

repeated here. The only difference is that the computed vortex density

is referred to V^ here, instead of V^ cos a in Ref. 8-

The pressure distribution on a body of revolution may be computed

16



by the following formula (Ref. 11).

09)
where u, v, and w are nondimensional perturbed velocity components

referred to the freestream velocity. In the fuselage cylindrical

coordinate system,

\C+ V/" (40)

where, referring to Fig. 1,
i

^ ̂  T (41)
(42)

with the first term coming from the combined effect of the fuselage

and the wing. The last relation in Eq. (42) was obtained from the

boundary condition, Eq. (5). Therefore, Eq. (39) can be written as

= i - c i-noN- C "s« Ts-y+'C-ĵ ? - «m-( .in eF
The velocity component u due to the fuselage itself is formulated in

Appendix C. Once the pressure distribution Cp(f) is obtained, the

fuselage sectional normal force coefficient referring to the radius

can be calculated by integration along the circumference (see Fig. 4)

--*¥e ?
cw-% (44)

One alternative in making the approximate integration in Eq. (44) is

to divide (O,TT) into two arcs and integrate the results seperately:

Eq. (45) is useful if the wing is at any arbitrary location on the

fuselage. The wing-fuselage junction will be the dividing point.

-Cp(f)(rd9>

C ,,,. (rd6)cos6
P(f)

C ,-. (rde)sine
P(f )

Figure 4 Decomposition of Pressure Force on the Fuselage
17



With the sectional normal force coefficient calculated, the total

normal force coefficient is given by

* (A6)

where xp is the fuselage station behind which the potential flow does

not exist, and is related to the fuselage station x'p at which the

rate of change of the fuselage cross-section area first reaches its

maximum negative value (Ref. 13, also List of Symbols). To integrate

Eq. (46) numerically, it is first transformed to an angular integration:

(47)

rc_,™< .T (48)

With (xf£-Xft)rcNxf> (sin<J>)/2 expressed in Fourier cosine series, Eq.

(48) can be exactly integrated. This is developed in detail in Appendix

C. Similarly, the moment coefficient can be obtained from

w o

The relation between x and the fuselage geometry has been discussed in

Ref. 13 and an empirical formula has been given. The same method is

used in the U. S. Air Force Datcom. It should be noted that Eqs. (48)

and (49) do not include the second order effect in the angle of attack,

or any vortex lift effect.

As shown in Ref. 11, the first harmonics in the last term of Eq.

(43) will not contribute to the lift. Since the higher harmonics in

_T_ should be small in magnitude, they are ignored in computing the

lift and moment in the present computer program.

18



3.3.2 Lateral-Directional Stability Derivatives

The theoretical prediction of lateral-directional stability

derivatives has been discussed previously by Queijo (Ref . 14) with

Weissinger's lifting-line formulation. More recently, Hancock and

Garner have discussed in detail the mathematical theory and applications

for computing the second-order forces and moments with the lifting-

surface theory of the kernel function type (Ref. 15). The vortex-lattice

method (Refs. 5,16, 17) and the pressure panel method (Ref. 6) can also

be used for this purpose. In the present method, the quasi-vortex-

lattice method (QVLM) of Ref. 7 will be used to predict the edge forces.

It is assumed that the spanwise vortex density /y has been predicted

in accordance with the QVLM.

(a) Streamwise vortex density distribution /x

The basis of the present method is the calculation of the

Streamwise vortex density (jfx) distribution on the wing. According

to the conservation of vorticity,

~* - (50)
By integration,

(51)

(52)

If Eq. (50) is regarded as a first order differential equation for

/x> then the second term on the right hand side of Eq. (51) is the

19



initial condition obtained from the fact that at the leading edge,

the vorticity vector should be parallel to the leading edge. Let

•jv*-,*;** (53)

It follows that

^ ' (54)

The problem of determining /x consists of two steps: Firstly, using

the predicted /y-values at the vortex locations, calculate P(x,y)

values at the same locations. Secondly, differentiate F(x,y) numerically

to find / . It should be remembered that /y-values are defined at only

a finite number of locations in the chordwise direction. To use these

finite number of values in the integral Eq. (53), it is best to develop

/y sin 6 in a cosine Fourier series, where 8 is the angular coordinate

in the chordwise coordinate transformation used in the QVLM:

*-*,+ ^(,-cose) (55)

Let

V • Q n • — - - (56)
=• t<4 sm 6=^0

The Fourier coefficients can be computed as

= 77 si-fee^ (57)
^» \

(58)

(59)

20



Using Eqs. (55) and (56), Eq. (53) becomes

(60)

Eq. (60) has been found to converge very well with respect to N, the

number of yv-values defined in the chordwise direction.

With discrete values of r(x̂ ,yjc) defined over the planform,

theoretically it is possible to pass an interpolation surface through

these "points", with (x̂ jŷ .F̂ ) defining a point in the three-dimensional

space. At each point, a tangent plane to the interpolation surface

exists. This tangent plane can be constructed if the slopes in two

directions (to be specified) at a point are known. These two directions

can be conveniently chosen to be x- and y'-axes (see Fig. 5), where

*• y

Figure 5 Coordinate Transformation

the y'-axis is along the straight line on which the predicted Yy-values

are situated. It follows that

(61a)

(61b)

X = X'cosA + H'sinA (62a)

(62b)

= X Cos/\ -

= x sin A + $ cos A

ccsA-f *'sin A

=-x'sinA-|- S'

21



where A is the sweep angle of the y'-axis. Therefore,

•&F "»P "3x' ~*r Û' . "»F 'ar
= - + * = ' sm A * + wsA <63>

Substituting — — , from Eq. (64) into Eq. (63) results in
" ?C

»$' (65)

Since JU- = -yv(
x>y)» —-or Yv can be obtained through Eq. (65) ift>% j '"•H *

2LL can be computed. In the present method, ̂—•, has been obtained by a
**3"' '
trigonometric interpolation formula developed in Appendix D.

(b) Tip Suction

The tip suction can be predicted by using the trigonometric

interpolation formula for ̂ -, developed above. The tip suction per

unit length of the tip chord is given by (Ref. 18)

(66)

where G(x) is the singularity parameter of F(y) at the tip and is

related to F(y) by

(67)

The detail of computing G(x) by using the trigonometric interpolation

formula developed in Appendix D is formulated in Appendix E.

(c) R -derivatives

The distribution of lifting pressure coefficients can be written

in terms of the wing upper surface perturbed velocity as (Ref. 19)

(68)

22



where x' is measured along the freestream in sideslip (see Fig. 5).

For small sideslip angle g, Eq. (68) can be written as, by using Eqs.

(62) with A replaced by 6,

The change in the lifting pressure in sideslip results from the wing-

body interaction with or without dihedral (see the boundary conditions

(26) and (29)) in sideslip and the term -BYX in Eq. (69), where YX is

from the symmetrical loading. The second term can also be explained

by Kutta-Joukowski theorem in that the sideslipping velocity will

interact with the streamwise vortices (yx) to produce the positive

lifting pressure on the right wing in positive lift. On the left wing,

the lifting pressure is negative, thus creating a rolling moment. Hence,

the rolling moment coefficient due to sideslip ("dihedral effect") can be

calculated as

where y is regarded positive if as a vector it is printing downstream,
X

•̂ Yy/̂ p is due to the wing-body interaction with or without dihedral and

~Q the camber angle (including flaps) for proper force resolution.

To compute the wing contribution to Cyg and Cng, the change in the

wing edge forces with the sideslip must be found. For a wing with di-

hedral, or a wing-body combination with or without dihedral, an anti-

symmetrical pressure loading will be induced. This will change the

wing edge force.s. The sectional leading-edge thrust coefficient in

combined symmetrical and antisymmetrical loadings can be written as

23



(Ref. 7):

>
where C_ is the leading-edge singularity parameter in the symmetrical

&

loading and the subscript "a" denotes the antisymmetrical case. It

follows that

(72,

where the subscript 6 denotes differentiation with respect to 'the

sideslip angle. Ca can be computed in exactly the same way as in computing

Cs- With AcXo obtained ,ACyg is given by

^ j j (73)

The total contribtuion to Cyg and Cng can be computed by integration

In addition, the incremental pressure loading due to sideslip will produce

antisymmetrical change in the tip suction. According to Eq. (66), the

tip suction can be written as

where the plus sign is for the right wing; the subscript s denotes the

symmetrical loading and a for the antisymmetrical loading. It follows

that

-̂o»»,S.(±̂ ) (74)

~i(S
where —^ can be obtained in the same manner as Gg . Therefore, the

wing side force due to sideslip will be contributed from the following

sources :

(1) Contribution from the change in the leading-edge suction

(75,

This is'shown in Fig. 6(a)

24



(2) Contribution from the incremental pressure force

This is illustrated in Fig. 6(b), where it shows that

with the lifting pressure acting normal to the planform,

there will be a component of the pressure force contributing

to the negative side force.

(3) Contribution from the induced drag (page 14-3, Ref. 20)

The induced drag is assumed to act in the direction of

the freestream with sideslip. This is illustrated in Fig.

6(c). Hence, if Cj^ is the induced drag due to the symmetrical

loading, then

= - CV( ft

- - CV, (76)

Of course, the viscous drag will also contribute to Cyg. But

this is neglected here.

(4) Contribution from the Tip Suction

This is given by Eq. (74)

Ac

Incremental
Pressure Force
In Sideslip

(b)

Figure 6 Wing Contribution to Side Force
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Similarly, the wing contribution to the yawing moment due to sideslip

results from the following sources:

(1) Contribution from the change in the leading-edge suction.

This can be seen from Fig. 6(a). By taking moment of the

forces Acxo and Acyg about the z-axis, ACng can be obtained.

(2) Contribution from the incremental pressure force

The incremental lifting pressure force, being assumed to

act normal to the camber surface, will be resolved in a direction

parallel to the chord plane. After multiplying by the moment

arm y and integrating, the contribution to Cng can be obtained.

In addition, the side force due to the dihedral shown in

Fig. 6(b) will also contribute to CRg.

(3) Contribution from the tip suction given by Eq. (74)

The fuselage contribution to the side force and yawing moment can be

calculated in the same manner as in computing Cjj(f) and Cm/f\ due to

fuselage. In the present case, the sectional side force coefficient is

given by (see Fig. 4).

[ C .
CyCf)-~~Jo hf) r49 S'"e (77)

Therefore, Cy(f) and Cn(f) are computed as

*v

I ~. >• t _.

(78)

*** (?9)

Since the fuselage surface pressure C_/f> is computed at 8=5°, the results

26



of Eqs. (78) and (79) will be divided by 3 to obtain the fuselage

contribution to Cyg and Cng.

(d) p-derivatives

The roll damping derivative Cĵ p is computed by integrating

the antisymmetrical pressure force induced by the roll rate multiplied by

the spanwise moment arm, assuming that 1f>̂ > / iV^^ \ . The pressure force

distribution is antisymmetrical, because with the positive roll rate, the

right wing will see incremental upwash, while the left wing will be subject

to incremental downwash. This can also be seen from the boundary condition

Eq. (28), where y is positive for the right wing and negative for the

left wing.

The side force and yawing moment due to roll rate, Cyp and Cnn,

respectively, are assumed to be due to the pressure distribution on the

wing surface only. In other words, the fuselage contribution is ignored.

Of course, the wing-body interaction has been included. The contribution

to Cyp and Cnp results from the following sources:

(1) Contribution from the change in the leading-edge suction

The incremental sectional leading-edge thrust coefficient

is given by Eq. (72) with appropriate changes:

7r ; - (̂-sCai,
(80)

where Acxp and C are the derivatives with respect to (

Again, 4Cy*is obtained from

^Cy{> = Ĉxj, -KnAj (81)

With A cxp and ACyp known, their contribution to Cvp and Cnp can be

obtained by following the same procedure described previously for
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Cyg and Cng.

(2) Contribution from the tip suction

The idea expressed in Eq. (74) is still applicable

for this case.

(3) Contribution from the incremental pressure distribution

This contribution is non-zero if the dihedral angle is

not zero (to both C and C ) and if the camber is

present (to Cnp). The concept described in relation to Cyg

and Cng is still applicable,

(e) r-derivatives

The incremental pressure distribution due to yaw rate consists

of three components.

(1) Due to yawing, a backwash ry is produced (see Fig. 2). This

will interact with the symmetrical yy
 to reduce the lifting pressure

on the right wing:

V, '\
(2) The sidewash rx will interact with the symmetrical YX to

produce the following ACpr:

= --i*-/ (83)

(3) Wing-body interaction with or without dihedral. See the

boundary conditions (27) and (30).

With the incremental antisymmetrical pressure distribution obtained, the

wing rolling moment due to yawing can be computed immediately.

The calculation of Cyr and Cnr follows the same procedure of
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computing Cyg and Cng by recognizing the fact that a wing in yawing

will produce the "variable sideslip" effect, because the sidewash

varies on the wing and the fuselage.

4. Numerical Results and Discussions

4 . 1 Fuselage alone

In computing the fuselage surface pressure, Eq. (43) is used

with the following modification. Since the theory is a linear one,

near the nose the pressure would be unrealistic. This can be seen from
In

the second term in Eq. (43), where -r — could be infinitely large near
** X

the nose. Therefore, this term is modified to be

Replaced by ( „,« + u)

This modification is similar to the Riegels factor used in the airfoil

theory (Ref. 21). Figs 7-9 show the camparison of the pressure distribution.

Except very near the nose, the present method appears to be reasonable

in predicting the pressure distribution as compared with the experiment

(Ref. 22). It should be noted that without the modification indicated

in Eq. (84), the pressure within about 10% of the nose would be more

negative than that presented in the figures.

4.2 Wing or Wing-body characteristics without jet interaction

It is well-known that the fuselage interaction will increase the

loading on the wing. Fig. 10 shows the comparison of the predicted

incremental loading with experimental results given in Reference 23.

The present results were computed by including up to second-order

Fourier modes in satisfying the fuselage boundary condition (i.e.,

n=2 in Eq. 6). The agreement is good except near the wing-body juncture.
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Before comparing the prediction of lateral-directional stability

derivatives, it is necessary to make certain that the tip suction

prediction is accurate, as the Cv - and Cn - derivatives depend on it.

For this purpose, a cropped delta wing of aspect ratio 1.333 and taper

ratio 0.5 is chosen. The present method is formulated in Appendix E.

The present results are compared with Reference 18 in Table 1. It is

seen that the agreement is good and the present method yields reasonably

stable value with respect to the vortex arrangement.

With the accuracy of the tip suction prediction established, it is

now possible to compare some of the predicted lateral-directional stability

Table 1. Comparison of Predicted Tip Suction Coefficient for

a cropped Delta Wing of AR = 1.333 and A =0.5.

a=l radian

Nc x Ns Lamar Present
1.400

5 x 20 1.361

7 x 20 1.377

9 x 20 1.387

5 x 12 1.364

7 x 12 1.384

9 x 12 1.395

derivatives. In Table 2, the p-derivatives for three wings are presented.

The present results are seen to agree quite well with Garner's (Ref. 15).

In Table 3, the predicted derivatives, Cg_T and Cj^g, are compared with

Queijo's method. Again, the agreement is reasonably good.

Finally, the results for a swept wing-body combination of Ref. 25

are presented in Fig. 11. x^which is related to xp in Eq. (46), is
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taken to be 1. It is seen that C^g is well predicted, except at

higher angles of attack. On the other hand, for Cng, only the trend,

not the absolute level, of the high-

Table 2. Comparison of Predicted p-Derivatives with Garner's

Calculation (Ref. 15). Based on Body Axes.

Wing Garner Present

^£p CHP/CL Cyp/a C£pCyp/a cnp/CL

Rectangular, 1.374 -0.3360 -0.168
AR=4,M»=0

Rectangular, 1.945 -0.3794 -0.140
AR=4,Moo=0.866

Tapered-Swept,

AR=2,A£=60° 2.733 -0.1854 -0.365
Moo=0.7806

1.391 -0.3367 -0.171

1.963 -0.3802 -0.145

2.6027 -0.1848 -0.336

Table 3. Comparison of Predicted Derivatives with Queijo's

method. Based on Body Axes.

Derivatives Queij o
Ref. 14 Ref. 24
0.4

-0.47

Present

0.384

-0.485

wing configuration is predicted. For the low-wing configuration, the

predicted results at low angles of attack are more negative than the

experimental values. The Cyg derivative, not shown, follow the same

trend of C g. In other words, for the high wing configuration, the

trend of Cyg is well predicted, but the predicted level is only about

half of the experimental values. The discrepancy is most likely due to

the effect of nonlinear lift and moment on the fuselage as discussed in

Reference 13. The difference in Cyg and Cng for high and low wing
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configurations may have resulted from the wake displacement and de-

formation. However, this can not be proved in the present investigation.

4.3 Effect of Jet Interaction

The experimental results on the lateral-directional stability

derivatives with jet effect are scarce. When available, they are mostly

for the complete configuration (Refs. 26, 27). In Ref. 26, some results

with T-tail off are presented. However, the fuselage has its after body

upswept. To compare with this set of data, it is assumed in the present

theory that the fuselage is a body of revolution, with elliptical fore-

body, cylindrical section within the wing root chord and parabolic after

body. The maximum diameter is obtained by measurement of the graph, as

the dimension of the fuselage is not given. From the model static test,

the thrust efficiency can be determined to be 87%, and the jet deflection

angle to be 44° at 6f=60°. to predict CL with the jet off as closely

to the experimental values as possible at low angles of attack, the

actual flap angle used in the program was assumed to be the same as the

jet deflection angle, i.e., 44°. The predicted CL is obtained by adding

the computed incremental CL due to jet effects to the experimental jet-

off values. The results for the lift curves are shown in Fig. 12. It

is seen that the lift is slightly overpredicted at Ĉ =3.6 and under-

predicted at Cf=1.8 for the assumed configuration. The sideslip

derivatives for the same configuration are presented in Fig. 13. The

main difficulty in predicting Cyg and Cng in the present case is that

because of the upsweep of the fuselage after body, the flow separation

would occur earlier than the case with a body of revolution. In the

present computation, xl/£ is taken to be 0.8. The agreement is seen

not as good as that shown on Fig. 11, in particular, for the dihedral
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effect. The exact reason for the disagreement is not known. From the

theoretical point of view, C^o for this high-wing configuration can be

positive only if the symmetrical lift is negative. However, some ex-

perimental values are positive. In addition, the experimental results

with the jet on are not consistent in that at a=0°, with the power

reduced, the value of C^Q does not come closer to the jet-off values.

It seems that some nonlinear viscous effect may have been present under

the high lift conditions. The theory has a tendency to overpredict

C^g at high lift, as can be seen from Fig. 11. It should be noted that

the direct power effect due to the momentum transfer at the engine

inlets on Cyg and Cnfi is not included in the figure. When it is included,

both Cyg and CnR will be more negative. However, the uncertain contribution

from the nacelles and fuselage will make this refinement unnecessary.

As indicated in Ref. 1, the swept wing configurations with the USB

jet have unsatisfactory Dutch roll characteristics. Therefore, it is of

interest to see how the leading-edge sweep will affect the lateral-

directional stability derivatives. For this purpose, the unswept high-

wing configuration of Ref. 26 is again used, with the leading-edge sweep

angle increased to 30° without changing the aspect ratio. The results are

plotted against the circulation lift coefficient in Figs. 14-16. Only

those derivatives which show significant changes are presented. A general

observation of the results is that although the circulation lift coefficient

is greatly increased with the jet on, those lift-dependent derivatives are

not proportionally changed for this configuration. It is seen that the

swept wing configuration has better directional stability (more positive

Cng) with or without the jet on than the unswept one, and has large
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dihedral effect. The sweep largely increases Gyp, mainly because of

the contribution from the leading-edge suction. Cnp is more negative

at a given Cu1. From Fig. 16,. it is seen that the leading-edge sweep

provides better yaw damping (more negative Cnr), and has large C£r.

Large positve C£,r is detrimental to the spiral mode, but more negative

Cnr is favorable. From the above results, it is seen that the

unsatisfactory Dutch roll mode of the swept wing configuration is

caused by the large dihedral effect without power. :With the power on,

the dihedral effect is further increased and makes the situation worse.

5. Concluding Remarks.

A jet interaction theory for calculating the lateral-directional

stability derivatives for wing-body combinations has been developed.

The fuselage effect is represented by the axial distribution of G.N.

Ward's vortex multiplets. The predicted results show good agreement

with experiment, and other available theoretical methods for configurations

without the jet effect. Because of lack of data for comparison, the

accuracy of the theory with the blowing jet effect cannot be established.

Further comparison with available data in the future would be needed if

the refinement of the theory is to be made.
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Appendix A

Influence Coefficient Matrices for Wing-Body-Jet Interaction

(1.) Effect of Fuselage on Wing

Consider a wing position on the fuselage as shown in Fig.

A.I. At any point on the wing, the upwash induced by the fuselage

can be shown to be

- u> si»e <A-1>•W =s cos

Wing

Figure A.I Induced Velocity on Wing due to Fuselage

Using the formulation with G.N. Ward's vortex multiplets, Vris

given by Eq. (14)

where £.= Xt+~- XT.O > and cosn0 is to be used for symmetrical cases

and si»-n0 for antisymmetric al cases. To find U , Eq.(2) is differentiated
6

with respect to © .

I -*4» i t

CA.3)

48



In the above equations, Fw and -~are defined as follows:

<A.5>

Substituting Eqs. (A. 2) and (A. 3) into Eq. (A.I), the upwash

expression due to each Fourier component can be obtained. For

example, in the case of symmetrical loading, the upwash due to

Fourier component n is

(A.6)

where it is understood that "̂̂ W) = "^ ̂ x*r ̂e+) ' etc'

The influence coefficient matrix £ ̂ v̂ l *s t̂ 1611 defined as

(A.7)
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The term ^j appearing in Eq. (24) is given by the remaining terms

in Eq. (A.6) with ttssl :

- 7 cas h®* ") r ">P
1 ,;„„] [£

(A. 8)

(2.) Effect of Fuselage on Jet

Figure A. 2 Induced Velocity on Jet due to Fuselage

Referring to Fig. A. 2 where -n is the unit outward normal vector to

the jet surface, it can be seen that

r i a j cose' t
The velocity vector induced by the presence of the fuselage can be

expressed in terms of VJ. and \k as

V rcos6 - UB si* 9) (A.10)
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It follows that the normal velocity component induced on the jet is

given by

cos

With Eqs.. (A. 2) and (A. 3) substituted into Eq. (A. 11), the influence

coefficient matrix £*/3r lean be obtained:

s»
55rUni.ee' *VP Sm*

The term P, in Eq. (34) is given by

+ ) _ coo^*/ «*»n8!£

f \ sift *» Si

, $i*ifî /'-n«in>»fl!.

:-J^-la«f- m•l̂ ••̂ •̂ •v I ^

.

(A-")

To find the u- influence coefficient matrix £ ̂  J, Eq. (2) is

differentiated with X to give

i Tr •*— ii.*. **** vi-t L ~***-*tt) ~ ' '""̂  x*J J r
(A. 14)

51



where

-„

It follows that the influence coefficient matrix

(A. 15)

(A.16)

is given by

and ">( in Eq. (33) is

(A.18)

(2.) Effect of Wing-Jet on Fuselage

The general expression for the induced velocity at any point

due to the wing-jet vortices has been given before (Ref. 8). Consider

a unit horseshoe vortex "-£" on the wing or the jet surface. At a.

fixed number of points to be specified on the fuselage circumference,

both the upwash v and the sidewash V will be computed. The normal

velocity at a given point at station i will be given by (see Fig. A.3)

=• Wcos8 (A.19)

Jet

Wing

Station t

Figure A.3 Induced Velocity on Fuselage due to Wing-Jet Vortices
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Let 1^, be developed in a cosine or sine Fourier series without the

zero order term, depending on whether it is a symmetrical or anti-

symmetrical case:

V;= Z_ <M (A.20)
VI— I I * *i *- s\t\ t\o

Then, the Fourier coefficients will be given by

2. f C tosnga*=7j:) vn)
" o ( Si^ne

To illustrate the numerical integration, consider the integral

2. r̂ "

The interval (O,Tr) will be divided into two parts: (O,6() and

(8,,7r) (see Fig. A. 3). Hence,

2. T f8' r.3

(A.22)

where the integrals have been reduced to finite sums through the

midpoint trapezoidal rule and

' > ^ ~ ^ " " ' f 4 i (A.23)

(A.24)
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The angular positions indicated by fiL and 0. are the locations at

which the induced velocities are to be computed. With a,, obtained,

the influence coefficient matrices [Wcĵ J and £̂ 3̂ are then given

by

,=«„ (A.25)

(3.) Effect on Fuselage due to Fuselage

The influence coefficient matrix £Vr$ 1 can ^e obtained from

Eq. (A. 2) as follows:

(A.26)

where f^. — ••£(- •% > the fuselage radius at *C» .
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Appendix B

Derivation of "fx(?tj) i*1 tne Formulation for the Fuselage Effect

(1.) The Expression for -fa(x»).

The zero-order Fourier component of the boundary condition

Eq. (5) can be written as

(B.I)

From Eq. (6), it is obtained that

-I r— <

lx (B'2)

where the equation has been multiplied through with r=R<$- Now,

Eq. (B.2) will be evaluated at ac = A,. According to Eq. (6) for the

expression — Sj. , the following limiting values can be derived, assum-

ing R(̂ >=o »

v -1,. ' (B.3)

/
* •==- = * (B.4)

"fe

(B.5)
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It follows that

\- '

Therefore,

(B.6)

(B.7)

The first-order Fourier component of Eq. (5) is

(B.8)

Again, Eq. (6) gives

To find fC.») , Eq. (B.9) will be differentiated once with X before

the limiting values as AT— »• *-. are evaluated. Hence,

£t£3ah
y/x J

Nr-*Rtx)
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where ̂Y-4̂ - is assumed small compared with ( ac- Xr+ ) as x

l+f,-l 0 _

(B.ll)

Similar to Eq. (B.10), it can be shown that

It follows that

(B.13)

By inspection, it can be determined that with jet on, Eq. (B.13) will

be modified to be

'•***&

(B.14)
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due to the additional flow singularities Y. and j£- because of jet

interaction.

Similar procedure can also be followed to derive the expressions

for •?v»C*W)» * 5- 2- • However, the algebra will be more complicated.

On the other hand, by observing Eq. (B.13)̂ t can be determined that

"£,( ̂ j ) , r\ 5 Z > would depend on the higher Fourier components of

the wing or jet induced velocities at the pointed nose. Clearly,

these higher Fourier components are zero. Hence,

Eq. (B.15) can be easily shown by the slender body theory.

It should be noted that -fnCXjj) will affect mainly the pressure

distribution near the nose of the fuselage. Because its effect is

small on the over-all characteristics, it will be assumed zero in

the prediction of lateral-directional stability derivatives.
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Appendix C

Calculation of Fuselage Aerodynamic Characteristics

(1.) Calculation of the u-perturbed velocity on the fuselage surface

due to the vortex multiplets.

As will be shown later in this Appendix, the sectional normal

force coefficient C is to be computed at the integration stations
P|

(i.e., at the stations where -f(Rvalues have been computed).

Therefore, d«, and u are also to be computed at the same stations.

î.
For better accuracy, It5*—*- will be computed as follows,

^K

Differentiating Eq. (2) for the fuselage velocity potential with

X , it is obtained that

"*&
""

***
(C.I)

The integral will be integrated in the following way. Consider T>=0.

Then
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It follows that

(C.4)

Note that x is the location where «JSis to be computed and in the

present case coincides with

Similarly, for different n , it can be shown that

(C.5)

where

•**

cc.7)
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(2.) Fuselage normal force and moment coefficients

Once the pressure distribution on the fuselage surface is

computed, it can be integrated to give the sectional normal

force coefficient Cj/̂  • Integrating CN along the fuselage

axis will produce the total normal force coefficient. Accord-

ing to Eq. (48), it is given by

5
*
«-vet) "-r^r (c.9)

Let

£• ww

be developed in a cosine Fourier series:

where , . A^ (C.12)

Once the Fourier coefficients are obtained, direct integration

of the series will give M,\ :

.
r | J a 'f>

Similarly, the moment coefficient can be obtained as
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Appendix D

A Trigonometric Interpolation Formula for the Calculation of

Streamwise Vortex Density

As shown in Eq. (65), the streamwise vortex density ix can

"bPbe computed if —•—•, is known on the wing surface, where *i' is
3

the inclined distance as shown in Fig. D.I. Assume that

Figure D.I Geometry Definition

the P -values defined in the section of width W are to be used

for interpolation to find "̂ r, • The following two transformations

will be used:

(D.I)

(D.2)

Eq. (D.I) transforms the interval {J — O"^ > "r) into ̂~(°f̂ )
 and

(D.2) transforms the inclined intervalJfss(^ v̂')i
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Since it is well known that f* possesses square-root singularities

at both tips, it is numerically more accurate to develop p sin (^ ,

instead of P itself, into a cosine Fourier series.

Let

3(e)-r*M> (D'3)
and

M

«, + £• «

where the Fourier coefficients are given by

(T)l '

5)

(D>6)

where the conventional, not midpoint, trapezoidal rule has been

used because the P -values are computed at the locations which

are not appropriate for the midpoint rule. 8* is defined as

*« - -TT (D'7>
If Eqs. (D.5) and (D.6) are substituted into Eq. (D.4), it is

obtained that

M M-l
ao +-grZl H \ t**3 & eosje

^ H "ft- 1 ^ ^ (D.8)

.

Differentiation of Q with respect to $ gives

2
a --•M

64



Eq. (D.9) is to be evaluated at 6^ , where

Bi = ~-

Using known trigonometric relations, Eq. (D.9) becomes

- -- M 3. 21 » *mte- fi
3=1 3

= Mfclf V- -^ +
a ^ sî (̂ i±§i)

-COS0.

Similarly, it can be shown that

. . _z: i sm 9»

(D.ll)

However, it is known that (Ref. 21)

,£1 .
2- 3
3=1

Hence ,

M

^ iW*~ *
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M

) -.

If k=i, Eq. (D.13) will be revised to be

M

3=1 * "* a

_ ^ _M_

Therefore, Eq. (D.ll) becomes

o" L *«"•• '
Tft". ~" A* t«.(~

'*
where the prime on the summation sign implies that the term with

•ff̂ ti is to be omitted.

Differentiating Eq. (D.3) with '̂ gives

^? = ̂ + '

Solving for -̂ Lj , it is obtained that
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^-r-^

» * S ii _i_ - -XffidK
Sm4»il «*»* WVm^ i. sin ^

Eqs. (D.17) and (D.19) represent the desired formula for computing 2JL
-

It should be noted that 9 and «J can be obtained by interpolation.

67



Appendix E

Calculation of Tip Suction

According to Eq. (66) , the tip suction per unit length of the

tip chord is given by

(E.I)

where g(x) is related to the circulation through the following

relation (Ref. 18)

(,.2,
Near the right tip, Eq. (E.2) implies that

Eq. (D.19) shows that

But at the tip,

- III 2*- 2L
(E.5)

because — ^-TL vanishes at the tip. Hence, the objective is

to find the limiting value of the following equation:

41
u_^h v • f •* w »v»mu -5- »wq» J (E.6)
4-r— 3. i

where W => W'w»Ahas been used. Differentiating Eq. (E.3) with

respect to 'k gives

V? ff-7)
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It follows that

(E-8)

(E"9)
where sin «f»=/ZẐ T(see Eq. (D.I)). Furthermore, Eq. (D.17)

gives

2- a

<E-10)
where the second term on the right hand side of Eq. (D.17) has

been combined into the first term because t will not be equal to

-£ in the present case. Note that at the tip i=M and 9, = ^

(see Eq. (D.10)). In addition,

*~*T

where Eq. (E.ll) is obtained by multiplying Eq. (D.2) by cos A

The last term in Eq. (E.10) has the following limiting value as

^ 2. i~ -

» U

(E'13)
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where the third step was obtained by applying L'Hopital's rule.

Eq. (E.10) now becomes

j« - , M-l t- i

(E.14)

Substituting Eqs. (E.8), (E.9) and (E.14) into Eq. (E.6) gives

<5 o M-l ,_
•fc pc 5in^ l̂i

(E.15)

From Eq. (E.15), S(x) can be determined.

The local tip suction coefficient is defined as

* V. = |
(E.16)

The total tip suction force is found from

^=^X^x«,t

^ si* a
* ^ CE.17)

It follows that the tip suction coefficient is

Eq. (E.18) can be used to estimate the side edge contribution to

the vortex lift as shown in Hef . 18.
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