
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



^y
d' Z

G_

L
Z

O
LL

4
F

5 ptr
DEPARTMENT OF MECHANICAL E":vINEERING AND MECHANICS
SCHOOL OF ENGINE=.RIN G
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA

V

i

U

UJ
CIO
LJ

W

Z

EXPERIMENT AND ANALYSIS ON THE FLOW PROCESS

DYNAMICS OF THE NASA-LANGLEY EIGHT-FOOT

TRANSONIC PRESSURE TUNNEL

(NASA - Ch -1`;4866)	 EXPERIMENT AirL ANALYSIS CN

:HE FLOW FhCCESS DYNAMICS CF 111E
NASA-IANGLEY LIGHT FOCT TRANSCNIC PRESSURE
TUNNEL Semiannual Prcyress Report, 1 May
1976 - 28 Fet. (Cld Dcminion Univ. Research G3/02 42120

7	 ^J
SEP19"

C

r- USA $ti	 ! n	 `>
AM

Ping Tcheng	 P(IZU^S^'?

Semiannual Progress Report

Prepared for the
Vational Aeronautics and Space Administration
.angley Research Center
i-ampton, Virginia

Z
Q
Z

0
Q
QJ
0

N77-.3U085

Mac LAS

Under
NASA Grant NSG 1079
May 1, 1976 - February 28, 1977
John S. Tripp, Technical !Monitor
Instrument Research Division

Auvist 1977

.o



f

Under
NASA Grant NSG 1079
May 1, 1976 - February 28, 1977
John S. Tripp, Technical Monitor
Instrument Research Division

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS
SCHOOL OF ENGINEERING
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA

EXPERIMENT AND ANALYSIS ON THE FLOW PROCESS

DYNAMICS OF THE NASA-LANGLEY EIGHT-FOOT

TRANSONIC PRESSURE TUNNEL

By

Ping Tcheng

Semiannual Progress Report

Prepared for vhe
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia

^d Submitted by the
W.- 	 Old Dominion University Research Foundation
jW //1'I fp^ Norfolk, Virginia 23508

August 1977

V

u^
r



DEPARTMENT OF MECHANICAL ENG?NEERING AND MECHANICS
SCHOOL OF ENGINEERING
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA

EXPERIMENT AND ANALYSIS ON THE FLOW PROCESS

DYNAMICS OF THE NASA-LANGLEY EIGHT-FOOT

TRANSONIC PRESSURE TUNNEL

By

Ping Tcheng

Semiannual Pro gress Report

Prepared for she
National Aeronautics and Space Admi.listration

Langley Research Center

Hampton, Virginia

Under
NASA Grant NSG 1079
May 1, 1976 - February 28, 1977
John S. Tripp, Technical Monitor
Instrument Research Division

1	 _^,bmitte by the
Old Dominion University Research Foundation
Norfolk, Virginia	 23508

august 1977

. ,



t	
__,,.	 ..	 n. r sap , i.ypa^

r
4

EXPERIMENT AND ANALYSIS ON THE FLOW PROCESS DYNAMICS OF THE
i

NASA-LANGLEY EIGHT-FOOT TRANSONIC PRESSURE TUNNEL

By

Ping Tchengl

INTRODUCTION

t This report describes a dynamic response test performed at the NASA-

Langley eight-foot transonic pressure tunnel. The objective of the test

is to obtain the dynamics )f the flow process of this wind tunnel at

transonic conditions. It is contemplated that the test results will

provide not only a better understanding of the transient behavior of the

flow process but also a means for substantiating the mathematical model-

ling effort currently being developed for the National Transonic Facility.

Included in this report are descriptions of the test conditions, instru-

mentation, presentation of raw data, analysis of data, and finally,

based on experimental evidences, an attempt to construct an input-output

relationship of the flow process from the viewpoints of control

engineering.

TEST DESCRIPTION

The dynamic response of the flow was measured as disturbances were intro-.

duced into the flow. Disturbance in the form of drag-force change was initiated

in the test section as an input signal to perturbate the equilibrium of the

flow process around the wind tunnel circuit. Measurements were made on the

source of disturbance in the test section and on the response or perturbations

generated by the disturbance at various locations around the wind tunnel

circuit. Pertinent information on the test is listed below.

Associate Professor, Department of Mechanical Engineering and Mechanics,
Old Dominion University, Norfolk, Virginia 23503.
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The wind tunnel condition was set with the following envelope:

Mach number - .4, .6, .8, 0.95, 1.05, 1.2

Total pressure - one atmosphere

Fan power - constant

Temperature - stagnation station (big end) controlled at 49° C 0120°F)

Test Models

Two models were used for providing disturbances in the test section:

1. Flap model - 40 in. 2 wedge, sting mounted*

2. Aero model - airplane, floor mounted

Test Inputs

Two types of inputs or sources of disturbances were generated:

_	 1. Static input Cstep input)

a. Flap model - stepwise opening or closing

b. Aero model - stepwise changing of angle of attack

2. Dynamic input Cperiodic input at 0.1 Hz)**

a. Flap model - periodical opening or closing

b. Aero model - periodical changing of angle of attack

* Different sizes of flaps were fabricated but not tested.

** These periodical signals are square waves. Signals with frequencies
higher than 0.1 Hz were applied unsuccessfully due to the power limi-
tation of the driving mechanism.
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Instrumentation {

A large number of measurements on the pressures, temperatures, power;

etc. at different sites of the wind tunnel circuit were made using various

kinds of instruments and transducers. 	 Shown in figure 1 is an instrumen-

tation schematic indicating the types and locations (referenced by three- a
digit station numbers) of measurements made. 	 Figure 2 shows a detailed

instrumentation schematic in the test section for the flap model test.

Two precision manometers, one for monitoring the stagnation pressure at

station 100 and the other for the static pressure in the plenum or station I
Y

300 were also used. 	 The manometers, their tubings and several pressure s

transducers are sketched in figure 3. 	 The manometer outputs along with all

the temperature measurements were recorded in digital forms on the SEL

system.	 The sampling periods on the SEL are one second for static input

tests and two seconds for dynamic input tests. 	 All other measurements

were recorded in analog forms on two 13-channel FM tape recorders.	 FM

tapes were played back and recorded on a multichannel oscillograph after

the test for analysis. 	 As for the sources of disturbances, the drag

force exerted on the wedge was measured by a single-component balance,

and the angle of attack was measured by a potentiometer. 	 These two

signals were recorded on the SEL system and on the FD1 tape recorder,

GENERAL REMARKS ON THE TEST RESULTS

It is now appropriate to make several remarks on the results of the

test since they are relevant to the data presentation and system analysis

to be discussed in later parts of this report. Remarks on the quality of

the test results as related to the test models, test inputs and instrumen-

tation will be first made separately and then followed by a summarized

statement.

Test Models

1. Flap model - smooth signals obtained

2. Aero model - scattered signals obtained and considered useless

for analysis

4	
3
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1. Static input - excellent step function generated

2. Dynamic input - excellent square wave function generated at

0.1 Hz only

Instrumentation

1. Drag force - excellent balance output recorded

2. Temperatures - temperature variation less than ±2° F, variations

within error band of the thermocouples used,

variations considered insignificant and useless

3. Fan Power - AC motor current excellently recorded, no variation

detected

4. Total pressures (FM) - good quality signals from strain gage

pressure transducers, hardcopy records from

oscillograph of 10 percent accuracy

5. Static Pressures (FM) - Very small variations of static pressures

recorded, only qualitative but not quanti-

tative information obtained*

6. Total pressure (SEL) - accurate total pressure at station 100

(big end) recorded from manometer

7. Static pressure (SEL) - accurate static pressure at station 300

(plenum) recorder from manometer

Thus, it can be seen just a small portion of the test results is avail-

able and useful for data reduction purposes. For this reason, only data

obtained from the flap model test will be presented. The system analysis

will include two parts: a qualitative analysis from the FM records and a

limited quantitative one from the SEL data.

* Atmospheric pressure was inadvertently used as the reference for static
pressure measurements. Even though the full scale values of transducers
were selected correctl y , variations in static pressures (AC variations)
were found to be not more than 8 percent of the nominal static pressures
(DC references).

4



5

D	 ^.

DATA PRESENTATION

Data of 20 static tests and 7 dynamic tests using the flap model with

nominal Mach number settings ranging from 0.80 to 1.20 are presented in

this section. Since it is impractical and unnecessary to include the

entire amount of data collected in this report, results of test run no. 19

are selected for illustrated presentation. Run 19.31, a typical static

test which illustrates the transient response characteristics of the flow

process is presented first and followed by the dynamic test of run 19.35.

A brief description and characterization of the results are included.

Run 19.31 (Static test)

The nominal mach number setting was 1.05. The actual Mach number prior

to the test run was found at 1.053 with the flap closed. The flap was

suddenly opened at the start of the run. The run lasted about 40 seconds

until a new equilibrium condition in the wind tunnel circuit was reached.

The final mach number was .980.

SEL data recorded at the start (state 1) and the end ( state 2) of this

run provided the following information:

Drag force: D1 = 259 lbf

D2 = 455 lbf

AD =- D 2 - D 1 = 196 lbf

Total pressure: Pt, = 14.72 psi

Pte = 14.55 psi

AP 

Static pressure: Psi

P52

AP 

Pte - Pti = - . 17 psi

7.30 psi

7.87 psi

P 52 - Psi	 .57 psi



e

C

Mach number*: M1 = 1.053

M2 = .980

AM M2 - M 1 = .073

r

The following qualitative observation is made from the SEL data: As

more load is introduced into the test section, which is evidenced by an

increment in drag force (OD > 0), the mach number is decreased (AM < 0), the

static pressure is increased CAP  > 0) and the total pressure is decreased

CAP < 0). The opposing changes of the two pressures, that is, when one is
increased then the other is decreased and vice versa, have been observed in

all other runs. Percentage changes of these two pressures as well as their

relative contribution to the Mach number change will be discussed in System

Analysis.

Test results of run 19.31 are presented from figures 4 through 13:

Drag force .-Figure 4 shows the step increase of the drag force exerted

on the flap as it is opened from the closed position. Both FM and SEL

recordings are shown. The FM trace signal resembles very much a step input

The SEL signal, on the other hand, clearly indicates a finite rise time

which is believed to be caused by the filter used on the SEL system.

101T .-Figure 5 shows the transient response of the total pressure

measured by transduced 101T located at the big end. The SEL recording of the

total pressure measured by the manometer is also included for comparison.

This first-order response with a time constant on the order of 8 seconds is

observed. It is noticed that the SEL system is capable of reproducing the

slow varying total pressure change in this case. Transport lag or dead

time Td between'this response and the drag force trace shown in figure 4

is not recognizable. The existence of the transport lag, however, plays

an important role in the analysis of the dynamic test results. Based on this

reasoning and for the simple fact that all distributed parameter processes,

such as the wind tunnel flow process on hand, do possess finite transport lag,

it is concluded that a small Td of one second or less might exist between

the big end and the test section of the wind tunnel.

2015 .-Figure 6 shows the static pressure change in the test section

measured by a wall-mounted transducer (201S) located 6.5 inches upstream

The Mach number cwtiputation was based on pressures listed above.
6



of the flap. Though the signal level is rather small, a sharp step change or

sudden increase in static pressure is clearly observed as soon as the flap

is opened. Contrary to the two signals mentioned above, this signal does not

have a counterpart measured on the SEL system. The manometer and SEL system

w:'..11 not be able to reproduce this fast changing pressure in any case.

201T .-Figure 7 shows the total pressure change in the test section

measured by transducer 201T. The trace shown here resembles that of figure

5 (IO1T) with the exception that the former should have a smaller transport

lag since 201T is located closer to the flap.

701T .-This transducer is located two corners downstream from the test

section. Figure 8 shows the total pressure change measured at that corner.

Other than the trace being a bit noisy caused by the turbulance generated

by the fan located just upstream of station 700, it again resembles the

one shown in figure S.

401T, 801T, 901T .-Total pressures measured at the other corners of the

wind tunnel circuit by these transducers are not shown since they all resemble 	
s

the total pressure measured by 101T.	 'ra

7015.-Transducer 7015 which is located adaja.cent to 701T measures the 	 M

static pressure at station 700. The trace from it is shown in figure 9.	 "-{

The trace from this figure is almost identical to the one shown in figure ,f

8 (701T) if the noise contained in the latter is removed. In other words,

the total pressure is equal to the static pressure at all times due to low 	
s

flow velocity at station 700.

4015, 8015, 9015.-The remarks made on the response from 7015 with

respect to the response from its counterpart 701T also apply to these static

pressure measurements as compared to their respective counterparts. Responses

from these transducers are not presented.

3015, 3025 .-These two transducers measure the static pressure in the

plenum at two different sites. Measurements made by transducer 3025 is

shown in figure 10. It is suggested that first-order type response illustrated

is resulted from the dynamics of filling the plenum through the slotted

openings between the plenum and the test section as the pressure of the

latter is suddenly increased. The time constant calculated is approximately

four seconds, which is smaller than the magnitude demonstrated in the total

s	
7
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pressures measured around the wind tunnel circuit. This figure also includes

the SEL recording from an ideal manometer which has its p.^obe located in the

plenum. The FM and SEL recordings do not seem to resemble each other. The
j
!'.	 slow SEL recording is believed due to the dynamics of the manometer. Since

{

	

	 the plenum and test section have identical static pressures under steady-

state or equilibrium conditions, the SEL recording can be used as an accurate

s
measure of the steady-state static pressure in the test section. Similiar

response from 301S was observed and therefore not presented.

H0 .-This transducer measures the same total pressure fed to the ideal

manometer located in the control room (see figure 3). The recording from

HO and the one from IO1T are found identical. Since the two transducers

are separated by more than 200 feet of metal tubing, it is noticed that

tubing dynamics is negligible in this case. Measurements made by HO are not

presented here.

PTCO .-Similiar to the function of transducer HO, PTCO measures the

plenum static pressure approximately 100 feet downstream from the plenum.

No essential difference is found between responses of PTCO and 301S. This

implies that tubing dynamics can be ignored, too. Records from PTCO are

not presented.

203S, 2043 .-These two transducers measure the static pressures in the

test section upstream from the flap (see figure 2). Measurements made are

shown in figures 11 and 12. The step change in static pressure observed

by 2015 near the flap has been disintegrated into a waveform resembling

that of 101T.

202S .-This wall-mounted static pressure transducer is located behind

the flap (see figure 2). The static pressure recorded is shown in figure

13. The transient behavior is very different from the other test section

measurements. It shows a sharp drop in static pressure initially, holds

it for 10 seconds, and thee: slowly increases as a first-order system response

to a final value greater than the initial static pressure.

Run 19.35 (Dynamic test)

This is the follow-up test of the static run 19.31. The nominal Mach

number was set at 1.05 prior to the run with the flap in the closed position.
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The flap was then alternately opened and closed at five-second intervals.

Thus, the drag force input to the wind tunnel circuit is a square wave lath

a frequency of 0.1 Hz (0.6283 rad/sec).
C

SEL data of the drag force D, total pressure P t , static pressure P s and x

the computed Mach number M were analyzed using the "Fast Fourier Transform"

(FFT) algorithm.	 Thirty consecutive samples of steady-state data recorded

-	 at two-second intervals were selected to minimize leakage.	 The transform ,'

contains the spectrum with a fundamental frequency at 1/60 Hz (0.1047 rad/sec)

and higher harmonics at multiples of the fundamental frequency.	 The frequency tai

of interest, 0.1 Hz (0.6283 rad/sec), is the sixth harmonic in the spectrum.

The following results were obtained from the FFT computations:

6D = 353.8 + 129.8 cos (.6283t - 58.54°),	 lbf

Apt = 2106.3 + 2.802 cos (.6283t - 169.76 0 ), ps£g

= 37.4 + 2.802 cos	 (.62831 - 169.76 0 ), psfa

APs = 1099.7 + 4.505 cos (.62831 + 48.34°), psfg

= 1044 + 4.505 cos (.6283t + 48.34°), psfa

AM = 1.0101 +	 .0043 cos	 (.6283t - 140.78°)

The following FM recordings of run 19.35 are presented:

Drag force .-Figure 14 shows the 0.1 Hz square wave response from the

balance.	 The record length is approximately 140 seconds.

101T .-Figure 15 shows the total pressure r sponse measured by transducer

101T.	 It is observed that a steady-state sawtooth waveform was developed

I`	 approximately 40 seconds after the oscillation was introduced. 	 This amount

of time required to fully develop the steady-state response is consistent

with the time constant found from the static test. 	 It should also be empha-

sized that the steady-state response is not sinusoidal but rather saw-toothed.

As in the case of static run 19.31, all total pressure measurements, such as

those of 201T, 701T, etc., resemble the total pressure measured by IO1T very

closely.

201S .-Figure 16 illustrates the static pressure response measured by

transducer 201S.	 The square wave observed indicates the instanteous nature

of static pressure change in the test section.
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203, 204S.-Figures 17 and 18 include the responses from tranducers

203S and 2045, respectivOy. These measurements indicate the disappearance

of the square wave pressure change near the source of disturbance as meas-

urements are made further away from it in the test section. From records of

2035, it appears that an initial transient period is required before the

steady-state waveform can be developed.

2025.-The response from transducer 202S located downstream from the

source of disturbance is shown in figure 19. It illustrates that not only

an initial transient period is required to fully develop the steady-state

response but also that the steady-state square wave is out of phase with

the square wave input shown in figure 14. :he latter can be attributed to

the initial transient behavior indicated in figure 13.

3015, 3025.-Pressure changes in the plenum measured by transducers 301S

and 302S are shown in figure 20. The signals are small and intelligible

enough to be analyzed.

This concludes the data presentation of a typical test run no. 19. With

the exception of minor variations quantitatively, data obtained from other

runs do not providr. any additional information on the dynamics of the flow

process. However, since the control of test section Mach number is of prime

interest and the Mach number is determined by the total pressure and static

pressure measured respectively by transducers 101T and 2015, records from

these two transducers for all runs are summarized in figures 21 and 22.

Time constants calculated from responses of 101T as well as from the SEL

data measured by the ideal manometer are listed in table 1. The time constant

of the total pressure ranges from 3.7 to 9.2 seconds. As for the static

pressure change in the test section, figure 21 clearly illustrates that these

changes are almost instantaneous at subsonic speed and are completed within

three seconds at M = 1.20. Furthermore, it should be mentioned that SEL

data recorded at the beginning and the end of all runs are not presented

here but will be presented in the next section along with the system analysis.

10



Table 1. Process time constants at the big
end of the wind tunnel.

Test
Run

Nominal
Mach No.

Average Time Constant, sec

SEL (#44) FM (101T) Eqs.	 (11)	 to	 (13)

19 1.05 7.7 9.2 13.5

20 1.20 3.7 5.2 3.5

21 0.95 7.1 6.7 4.5

22 0.80 5.3 5.5 I	 4.6

SYSTEM ANALYSIS

Based on the experimental data collected, an attempt is made in this

section to perform a system analysis on the cause and effect r elationship

of the flow process from the viewpoint of control engineering. The analysis

is by no means a complete one as it is limited by the amount of quantitative

information available. Steady-state SEL data will be processed first to

establish gain constants, and together with the response speeds of pressure

changes found in the previous section, a dynamic relationship between Mac:.

number change and drag force change in the test section will next be

constructed. Finally, a dynamic model will be constructed between the

static pressure in the test section and the total pressure at the big end

of the wind tunnel by analyzing the oscillating data.

Establishment of Linear Relationship Between the Mach

Number and Pressures

The test section Mach number is computed from the following equation:

/p 2/7
	 Cl)

M = 5 Cpp	 - 1
\ sl

where

5
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M = test section Mach number

pt = test section total pressure, psf

p
s

= test section static pressure, psf

--ter

i

Equation (1) is derived quasi-statically and is applicable to equili-

brium states of the wind tunnel flow. Assuming that the tunnel is initially

in equilibrium state one, a second equilibrium state will eventually be

reached after a stepped disturbance is initiated i8 the test section. The

computed Mach number change between the two equilibrium states could be

obtained from equation (2):

	

5 ptl/psl 2/7 [Apt Aps	 (2)

OM =	 ---
c	 7"11	 pt1	 psl

where

Ap t - pt 2 - pt1= 
total pressure change, psf

Ap s - ps 2 - 
p
s1 
= static pressure change, psf

Equation (2) is the linear approximation of equation (1) and is valid

for small changes of pressure only. The validity of equation (2) is

established by a co;r,parison in table of the Macl: number changes computed

from equation (1) with those computed from equation (2). Small variations

between these two changes are seen. Note that steady-state SEL data of pt

and p  are used for the calculation. In other words, for one ambient

pressure (latm) and elevated temperature (120°F) flap-model test, a linear

relationship between Mach number change and pressure changes exist for

Mach number change up to ±.070. The block diagram in figure 23 illustrates

this cause-effect relationship. It is noted that the gains used in the

three blocks of Figure 23 are different for different equilibrium conditions

of the wind tunnel.

7
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Relative Contributions of the Two Pressure

Changes on the Mach Number Change

The two terms inside the brackets of equation (2) are percentage changes

of total and static pressures. Experimental results of these two percentage

changes are listed in table 3. The last column shows the ratio of percentage

change of static pressure over the percentage change of stagnation pressure.

The average ratio found is -6.4. I£ a new variable a, defined as the ratio

of these two percentage changes, is introduced, then equation (2) can be

3
rewritten as:

27	 (3)

	

S P / P	 AP
stl	 s

/

l	
rr _ 1AM- -	 7M1	 P	 \1	 a

sl

where

(PS 1) / \pP 1/ - \pP ̂ Pt/

The negative sign of a indicates that the two pressure changes are

opposite in directions; i.e., when one increases the other decreases and

vice versa. The magnitude of A shows that the •test section Mach number

change is dominated by the test chamber static pressure change. Therefore,

equation (3) can be approximated as

AM

2 7	
(S)

e - S ptl/psl /	
APs

7M1	 (pSI)

Test Section Mach Number Response Speed

Equation (S) indicates that the test section Mach number change depends

primarily on the change of static pressure. Since the latter possesses almost

instantaneous response speed, fast response for Mach number can be expected.

However, since the approximation given by equation (S) is valid only

14
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for ' i k 1 or 86 percent of the total Mach number change, it implies that

once the test section is disturbed, the test section Mach number will be

changed almost instantaneously to within 86 percent of its total change. The

final 14 percent change of test section Mach number then will be dictated by

the large time constant (6 to 8 seconds) of the total pressure change opt as

given by equation (2) or (3). The dynamic relationship between the drag force

change AD in the test section and the resulting Mach change OM can be

described by the block diagram shown in figure 24.

It should be noted that gain K in the first block of figure 23 has the

units of psf/lbf and assumes different values for different equilibrium condi-

tions of the test section. Experimental values of K were found at .0168,

.0313, .0617, and 0.143 for nominal Mach numbers of .80, .95, 1.05, and 1.20,

respectively.

Dynamic Model of the Flow Process

The dynamic relationship between the pressures in the test section and

in the big end has been constructed as

Apt 
(as)	 Kr	 (6)

Ap s (As) - 1 + rs

where K' is the gain and T is the time constant. This first-order

transfer function was actually used in calculating the time constants of

the flow process which are tabulated in table 1.

For the oscillation tests, Ap s is a square wave input (see fig. 16)

which can be expressed as

dps = u(t) - u(t - a) + u(t - 2a) - u(t - 3a) . . .	 (7)

where u(t) is the unit step function, u(t-a) is the delayed unit step

function and the delay a is one half of the period of the input square

wave.
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The solution of equation (6) for this square wave input is

opt a V ( l - e-t/T  u (t ) - 
Kt(1 - e-(t-a)

/T^ u(t - 2a)	
(8)

-(t-2a)/t\	 -t/T

	

K' 1-e	 u(t-3a) +K' a, e
s

where a, is t(le initial value of Apt.

Figure 25 illustrates the wave form of the total pressure as calculated

from equation (S) with a = 5 sec. It matches closely the response of

transducer 101T shownl in figure 15 where it is shown that an initial transient

period is required before the sawtooth steady-state response is fully

40-Veloped. The sawtooth steady-state response can be shown as

AP 	 =K' 1-	
e-t/T 

j
t ss	 l + e-a T

during the half period when the step is applied (i.e., when the flap is

opened)

and

e-(t-a)/T

Aptss - 
K 1 + e-a/T

during the next half period when the step is removed (i.e., when the flap

is closed).

The maximum and minimum total pressure at steady-state then can be

calculated from equations (9) and (10) respectively as

ap t max = 1 K f
 aT <K'

	

+e 	 (11)

Apt min =	 K'a/T > 0	 (12)
1 + e

i
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^13
The peak-to-peak steady-state total pressure becomes 	 - `1

i
Apt max - apt min = K' tanh (a/2T) < K' 	 (13)

It should be pointed out that equation (11) indicated that the maximum

total pressure at steady-state is less than K', which would be one steady-

state response if the input were a single-step function. The response of 	 I `F

total pressure for a single-step static input is also shown in figure 25.

Based on equations (11), (12), and (13) and using responses from trans-

ducer 101, process time constant T was computed. The results are included

in table 1. It is noticed that quantitative agreements are not very good

between the values computed by this approach and those computed directly.

CONCLUDING REMARKS AND RECOMMENDATIONS

This report includes the presentation and analysis of data obtained

during a series of tests at the NASA-Langley eight-foot transient pressure

tunnel. The tests were only partially successful due to the over-sized pressure

transducers selected. The incorrect selection of pressure transducers was

caused by the unexpected small pressure variations when the tunnel was pertur-

,, bated by the flap motion. Consequently, only a limited amount of data are

intelligible and could be used for analysis. However, several significant

findings were observed and are summarized in the following:

1. Transport lag - insignificant as compared to the time constant of the

flow process even if it exists;

2. Test section static pressure - rapidly changing even though the total

pressure in the test section is slowly varying;

3. Total pressure - slowly varying first-order type response with time

constants varying between 4 to 9 seconds; total pressure changes at various

sites approximately identical;

4. Ap s/Apt >> 1 - there exists a fixed ratio between the changes of the

static and total pressures in the test section;

5. Mach number - the test section Mach number change is dominated by the

static pressure change in the test section; the test section Mach number

change is a linear function of the static and total pressure changes in the

test section.
is
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The following requirements on instrumentation were also observed based

on experimental evidence:

1. Together with equation (2) and data in tables 2 and 3, it is possible

to calculate the two pressure changes for small Mach number variations. Table

4 lists these pressure changes for Mach number changes ^f .002 at different

operating conditions. This implies that the total pressure measurement device

:oust be sensitive to the fraction of one ps£ in order to control the test

section Mach number with an accuracy of .002.

2. If the test section Mach number is the desirable Mach number to be

controlled, then either the probe of the pressure measuring device should be

located inside the test section or some prediction technique should be

applied to the pressure measurements made outside the test section. As

indicated in figure 10, the SEL system and the ideal manometer with its probe

located in the plenum are not capable of following the rapid static pressure

change in the test section. It is fairly safe to assume that this is due

to the combination of the dynamics of the plenum filling or emptying process

and the dynamics of the manometer.

In summary, it can be said the test did provide a certain amount of

useful information about the flow process of the wind tunnel which has not

been reported before. It is also believed that better instrumentation in a

future test of this kind will provide more quantitative as well as qualitative

data for substantiating the modeling effort of NTF.
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Table 4. Pressure variations for Mach number variations of .002.

Nominal
Mach Number

p s , static pressure pt , stagnation pressure

IAPsl

"ps x 100%

lAptl "PtPtl
x 1000

psl

M = .80 2.37 .17 .60 .028

M = .95 2.30 .19 .67 .032

M = 1.05 2.21 .20 .66 .031

M = 1.20 2.01 .23 .71 .034
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