POTENTIALLY IMPROVED GLASSES FROM SPACE ENVIRONMENT

by

Ronald Nichols
Ceramics and Coating Branch
Materials and Processes Laboratory

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
Utilization of the space environment for processing glasses may prove to be advantageous based on the absence of gravity driven convection, lack of sedimentation, and the benefits of containerless processing. Ground-based studies have been conducted where the potential of processing glasses has been evaluated for laser window, optical, lasing, and magneto-optical glasses. Present flight opportunities allow further investigation of these materials.

- AVOIDANCE OF SEDIMENTATION AND DEFORMATION
- ABSENCE OF GRAVITY DRIVEN CONVECTION
- CONTAINERLESS MELTING

Figure 1. Advantages of processing glasses in low gravity environment.

- LASER SYSTEMS
- FIBER OPTICS
- OPTICAL GLASSES
- ELECTRONIC COMPONENTS
- LASER FUSION TARGETS

Figure 2. Potentially improved products.

- IMMISCIBILITY
- NUCLEATION AND CRYSTALLIZATION
- ULTRA HIGH PURITY
- FINING
- GLASS SEALING

Figure 3. Phenomena to be explored.

- APPLICATION – HIGH POWER LASER FOR NUCLEAR FUSION REACTORS
- ADVANTAGE – INCREASE ACTIVE ELEMENTS WHILE AVOIDING DEVITRIFICATION
- GROUND BASED STUDIES – NUCLEATION AND CRYSTALLIZATION MECHANISMS OF Nd-DOPED GLASSES

Figure 4. Space processing of laser glasses.
- APPLICATION — LASER WINDOWS AND IR FIBER OPTICS
- ADVANTAGE — ULTRA PURITY TO REDUCE ABSORPTION
- GROUND BASED STUDIES — OPTIMIZE TECHNIQUES TO IMPROVE TRANSMISSION PROPERTIES OF Ge$_{28}$ Sb$_{12}$ Se$_{60}$ GLASS

Figure 5. Space processing of chalcogenide glasses.

Figure 6. Transmission properties of chalcogenide glass.

- APPLICATION — MULTIELEMENT LENSES
- ADVANTAGE — EXTEND GLASS FORMATION REGION OF METAL OXIDES
- GROUND BASED STUDIES — AIR SUSPENSION CONTAINERLESS MELTING

Figure 7. Space processing of unique optical glasses.
Figure 8. Optical properties of metal oxides.

Figure 9. Laser melting device.
Figure 10. Glass boules produced by laser melting.

- APPLICATION – MAGNETO OPTICAL DEVICES
- ADVANTAGE – FORMATION OF GLASS-CERAMICS WITH HIGH CONTENT OF ACTIVE ELEMENTS
- GROUND BASED STUDIES – DETERMINE OPTIMUM MELTING CONDITIONS FOR OUTER SPACE

Figure 11. Space processing of glass-ceramics – overview.

- MATERIAL – IRON BORATE TRANSPARENT FERROMAGNETIC
- FARADAY ROTATION PROPERTIES
- REASONS FOR SPACE PROCESSING
 - GLASS WITH 17% Fe₂O₃ CANNOT BE PREPARED ON EARTH
 - ELIMINATION OF PHASE SEPARATION AND HETEROGENEOUS NUCLEATION
 - VALUE OF CONVERTING TO GLASS-CERAMIC

Figure 12. Space processing of glass-ceramics – objectives.
Figure 13. Glass processing summary.

- UNIQUE ENVIRONMENT OF SPACE
- COST EFFECTIVE PRODUCTS
- BEHAVIOR OF GLASSES IN LOW-\(g\) ENVIRONMENT