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1.0 INTRODUCTION AND SUMMARY OF RESULTS

Classical analyses of random rough surface scattering [1l] are capable
of providing precise quantitative predictions for two distinctly different
types of surfaces; the gently undulating surface having large surface height
excursions, and the surface characterized by small height and slope excur-
sions.” For the former case, the solution assumes the validity of the physi-
cal optics approximation for the current induced on the surface by the inci~
dent electromagnetic fieldg; it, therefore, comprises a high frequency solu-
tion to the scattering problem. In the case of the latter surface, a
boundary perturbation technique is employed and the resulting solution rep-
resents a low frequency limiting form. That is, the height of the surface
perturbations must be small relative to the electromagnetic wavelength. The
physical optics approach can be applied to surfaces having small height ex-
cursions, however, such an application does not yileld thé proper bolariza—
tion dependence.

For surfaces characterized by many scales® of roughness, the so-called
cqmposite surface scattering theory [2,3,4] has been developed as a means
for predicting ﬁhe behavior of the electromagnetic fields scattered by the
surface. 1In this approach, the scattering in the near-specular di;ection is
dominated by the physical optics solution, whereas the large angle of inci-

'dence perturbation contribution is modified due to local tilting of the
mean flat surface by the large scale surface components. The total aver-

age scattered power is the incoherent sum of the physical optics and the’

#The terminology large scale and small scale refers, approximately, to the
height of the surface excursions. The large scale helghts arg measured rel-
ative to the mean flat surface. The small scale heights are measured yela-
tive to the large scale surface (see Figure 1). A more precise deofin{tii
in terms of the surface height spectrum will be given in section 2,\%



tilted perturbation solutions with restrictions (in observation space) on
the regions of validity of the sum. More recently, an alternate attack on
the problem of scattering by a surface with many scales of roughness has been
proposed [5]; however, the basic approach employed in the analysis has
been seriously questioned [6]. Although the composite model of scattering
by surfaces possessing many scales of roughness is very satisfying for small
and large angles of incidence, i.e. where either the physical optiecs or the
perturbation solutions are dominant, 1t would seem that additional analyti-
cal effort is required for the transition region between the two solutions.

The original intent of this investigation was to find a solution to the
composite surface scattering problem which provided for a continuocus tran-
sition between the near speéular physical optics and wide angle tilted plane
Bragg solutioné. As will be shown, the results obtained herein not only de-
scribe the transition, but, to the accuracy of (1) thé firsﬁ order pertur-
bation theory, (2) large electromagnetic wavenumber, and (3) the dinclusion
of only physical opties or small scale diffraction*, are essentially exact.
Unlike the conventional composite surface scattering theory, the present
approach is based on analytical techniques rather than physical considera-
tions; the physical considerations are introduced gﬁ;gg the £inal result is
obtained in order to verify known limiting behavior.

The analysis employs a perturbation technique developed by Burrows [7,
8,9] which, because of its simplicity, is the key to the entire solution.
The zeroth order solution is taken to be the physical optics scattering re-

sult while the first order perturbation term uses the physical optics result

*Surface fedtures such as edges and cusps are not amenable to analysis by
Tivset ordey perturbation theory and are not considered here.
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as the unperturbed solution. In order to use this particular approach, the
surface height spectrum must be split into two contiguous regions; the large
scale surface height (Cg) represented by the low frequency region is assum-
ed to be sufficiently smooth so as to form the unperturbed surface. This
unperturbed surface is amenable to a physieal optics approach for determin-
ing the scattered fields. The small scale surface height (QS) represented

by the high frequeﬁcy part of the spectrum is assumed suffilciently small

so that a first order perturbation of the physical optics solution is an
adequate descripcion of its scattering properties. Since the analysis also
requires that ;2 and Cs be independent, the surface is assumed to be jointly
Gaussian. The use of spectral dichotomy introduces a dependence in the solu-
tion upon the wavenumber where the spectral splitting occurs (kd). This
wavenumber cannot he completely specilfled, but it can be bounded from one
side by the small height requirement on Cs, i.e. 4k§ E§.<< 1, where ko is

the electromagnetic wavenumber and ;i is the mean square height of the smaill
scale structure. However, physical conslderations are introduced to show
that k

d
will depend upon the surfdace height spectrum.

can, in fact, be rather tightly specified. The specification of kd

In order not to overly obscure the basic approach, the analysis is re-
stricted to the case of backscattering from a perfectly conducting surface;
the extension to bistatic scattering from a dielectric interface follows es—
sentially the same procedures. The evaluation of the first order perturba-
tion meéan square power, including shadowing, is greatly facilitated by iden-
tities developed by Stogryn {10] and Sancer [15]. Using Fourier transform
techniques, the first order perturbation scatteriné fox’4k§.£§ > 1 is-
shown to comprise two terms. The first involves a convolution in the wave-

number domain of the surface height spectrum, a polarization'dependent



function, a shadowing function, and a Gaussian function whose width is de-—
termined by the large scale mean square slopes. The second term is identi-
cal to the first except that the convolutioﬁ integration is over a finite
domain which, in turn, is determined by the wavenumber k,. The sum of these

d

* result provide for a continuous

two terms along with the geometrical optics
description of the scattering. Under the assumption of small large scale

mean square slopes, the result is essentially identical to the conventional
composite surface result except in the transition region between the geomet-
rical optics and first order perturbation terms. “"hen the large scale slopes
are not small, the two resultsAare not in obvious agreement; however, a nu~
merical comparison would be required to determine the degree of error in the
conventional result.

For an isotropic height spectrum and small large scale slopes, the re-
sult reduces to a particularly simple form. A numerical example is present-
ed wherein the behavior of the solution is studied as a function of the wave- .
number kd' Based on the criteria that k.d be as small as possible (to dnsure
that the large scale surface 1s sufficiently smooth) and that 4k§ Ez.<< 1,
the results of this example indicate that kd should be chosen according to
4k§.;§ % 0.1l. Using this criterion and R0==2 cm, Ad was computed to be 2w cm,

That is, the geometrical obtics solution is assumed to be accurate for all

surface features having wavelengths greater than 310 while the first order per-

turbation term is assumed to be valid for all features having wavelengths

less than BAO. To the acéuracy of the basic scattering mechanism assump-
tion, i.e. geometrical optics or small scale diffraction, this computed value

of A appears to be reasonable.

*Since it was necessary to assume that 4k C >> 1, the physical optics scat-
tering is equivalent to the geometrical optics limit.




In addition to the continuous transition property of this result, it
also exhibits two other important features. As the electromagnetic wave-
length, Ao, increases then so must Ad. Consequently, the large scale mean
square slopes will decrease and the geometrical optics result will increase
at normal incldence and decay more rapidly with angle of incidence. Hence,
there will be a frequency dependence in the geometrical optics result which
is not predicted by conventional Kirchhoff analysis but has been experimen-
tally observed in radar studies of the moon [11]. The use of a truncated
spectrum in. calculating the (geometrical optics) effective mean square slopes
was orilginally proposed by Hagfors [12]; such an approach has now been veri-
fied and explained. It will also be shown that the first order perturbation
result gives rise to depolafization which is dependent on the large scale
slope; when the large scale slope is small, the depolarization is essential-
ly zero, however, when these slopes are large the depolarization may not be
negligible especially near grazing incidence. TFurther calculations are re-

quired to adequately assess the degree of depolarization.

2.0 SURFACE DESCRIPTION
The scattering surface is taken to be perfectly conducting and infinite
in extent along the x and y coordinate axes (see Flgure 1). The height of the

surface z =[7(x,y) is measured with respect to the z=0 plane which is chosen

suchi that the average height of the rough surface is zero, i.e. Z(x,y) = 0.

The random surface height g(x,y) is assumed to comprise a superposition of a

éufficiently large number of zero mean, independent "component'" heights so
that r(x,y) and all of its derivatives are Gaussian [13]. Tn addition,; the

surface is assumed to be free of edges or cusps since such features are not

adequately accounted for by the theory to be presented [7]. The spectrum of

g e s .- S e e e L L G e T e g



Figure 1.

Composite surface 7 as a superposition of large (7,) and
small scale (7 ) undulations.

s
to the mean surface.
(large scale) surface.

The z=0 plane corresponds
The surface SO is the unperturbed



the surface height undulations is given by s(kx’ky) where kx and ky are wave-
numbers along the x and y-directions, respectively. Since Z(x,y) is a linear
sum of statistically independent "component" heights, the sum may be rearrang-

ed into the following form:

g(x,y) = g, (x,¥) + L_{x,y) - (1)

where Cg and ;s are also independent, zero mean, Gaussian processes. The

' ’
spectrum for f,(x,y) is S(kx,ky) for {[k_| f_kd)ﬂ(]kyl <k;), vhile the spec-
trum for g (x,y) is 8(k,,k ) for (li | > k) U(|ky| >k,). The choice of the
wavemumber kd is such that the following two requirements are satisfied for

the large and small scale surfaces, respectively;

—_—

a1, @)
—— 3; . [
2 .2 8 A -1
Qko E':S << 1l 3 -g;:— . |CSK| <1 3 _Y ICSY| < L (3)

where ko is the wavenumber of the electromagnetic field incident upon the
rough surface. In addition_to (2), 1t ig implicitly assumed that for the
large‘scale surface, i.e., Cz(x,y),.the radius ﬁf curvature is everywhere
large relative to the glectromagngtic wavelength lo = 2n/ko. Since Cl(x,y)
and Cs(x,y) are independent, the surface height spectrum may be expressed as

follows:
S(kx,ky) = Sl(kx’ky) + Ss(kx,ky) (4)
where

Sk ) = Sk k) (gl 2k) O (k] <kyp) (5)

R LSRN LI . N e T



s (k) = SC,k) (i | > 1) U (e[ >k (6)

Equations (1) and (4) along with the fact that cz and CS are zero mesn Gaus-
sian are crucial to the development to follow. If L(x,y) is non-Gaussian, it
is not clear that the densities of CE and CS and theilr derivatiyis can be
uniquely defined [14]. More importantly, however, is the fact that spectral
dichotomy as given by (4) may be invalid. That is, if Z(x,y) is non—Gaussian
then either it is not a linear superposition of the "component' surface
heights or there is not a sufficient number of statistically independent
"component” heights, and either of these conditions would invalidate (4)}. The
analysis'presented here rerquires Gaussian statistics. When the large scale
slopes are small, the Gaussian assumptivn can be removed provided spectral
dichotomy is still applicable; however, the analysis would necessarily have
to be modified. For the case of the ocean surface, nonlinearities are a major
source of concern and their effects are required to be small for this analysis
to hold.

The purpose of the above discussion is to set the stage for the applica-
tion of Burrows' perturbation technique to the computation of the fields scat-
tered by the random surface. For kd sufficiently small relativé to ko {the
elect;omagnetic wavenumber), the grtificial surface z =_C£(x,y) will be gen-~
tly undulating and will, therefore, be amenable to a physical optics analysis
for the-scattered fielde. Assuming that (3) can also be satisfied, the small
scale surface height Cs(x,y) can be treared as a slight disturbance of QL(x,y),
and the first order perturbation of the physical optics fields can be computed
using Burrows' most recent formulation [9]. The technique of perturbing the
physical optics solution to account for small amplitude surface distortions

has previously been applied to deterministic scaitering by a large sphere, and
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excellent agreement with numerical solutions were obtained [7]. It can also
be shown that for a slightly perturbed planar surface, Burrows' theory re-
sults in the classical Rice solution with a‘considerable reduction in mathe-
matical manipulations. In essence, Burrows has provided the formalism
required to solve the composite surface gcattering problem to the accuracy of
first ordex perturbation theory; this paper presents the details necessary to

go from formalism to results.

3.0 APPLICATION OF BURROWS' PERTURBATION THEORY

Burrows has shown that for a perfectly conducting scatterer, the first
order perturbation scattered field, éEl, is given by the following expression
[(3) of 9]: |

+1-+' = 3 A|+ A.+' g = < .'+'
SE" =] Jmo!;f(eon Ein Ei+uonXHi ani>C3dSo (7)

where the unprimed fields are incident fields evaluated at the unperturbed
surface So’ and the primed fields are incident fields evaluated at So due to
an electric current element ?' at a distance r from the surface. The unper-
turbed surface S0 is assumed to be sufficiently smooth for the application of
the physical optics assumption. Also, fi is the ocutward directed normal to the
unperturbed surface, wo is the radian frequency of the Incident field, and eo,
K, are constitutive par&meters of free space surrounding the scattering sur-
face. The prime and unprime mnotation refer to different coordinate systems;
a convenient shorthand notation for bistatie scattering and principal or cross
polarization sampling. For the purposes of this paper, it is more convenient

to replace }' by an equivalent plane wave [7]; then, using



1/2
= Eo ~ >
Hi =| — k_><Ei
K, i 3
and letting the primed and unprimed coordinates be identical, i.e., backscat-

tering, (7) simplifies to the following form;

§EE! = =2 exp(- jkor)f [2@E)@E) + (ﬁ-ﬁi)z('ﬁi-'ﬁi)] L, ds, (8)
The primes in (8) now imply a possibly different polarization than the un-—
primed fields. The quantity Eé is the reference amplitude and polarization
of the (primed) field. For the principally polarized component of Sﬁl,
E?E'==E2, while for the cross polarized component of Sﬁl, %*E}==0. The
unprimed fields have the same reference amplitude as the primed fieids,
i.e., Eo' n (8), ﬁi specifies the propagaticon direction of the incident
fields.

The orientation of the plane of incidence (and scattering) relative to
the surface referenced coordinate system is shown in Figure 2. The incident
wave vector is at an angle § with respect to the z-axis, and its direction
relative to the x—axls is specified by the angle $. TFor the present, the
orlentation of the x and y—-axis is arbitrary, however, it.will be £ixed by

subsequent considerations. The wave vector 1s given by

'fEi = ko@i = ko(—- sin Ocos R ~sinBsin¢§ - cos B 2) (9

while a pesition vector from the origin to any point on S0 1s given as

=x% +y§% + 5,2 (1)

a
The unit normal to the unperturbed surface S0 is

10



Figure 2. Orientation of the plame of incidence (and scattering)
relative to the surface referenced coordinate system.
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The prime and unprime incident electric fields at the surface S0 may be ex-
pressed in the following manner: —Ei=E0 exp (- j_l-zif?:-o)ép and
§i=Eo exp( —jrﬁi'-;o)ﬁp, , where p and p' denote the pelarization of the re-

spective fields. For horizontal polarization,

€h=-—sin¢§:+cos¢§ (12)

while for vertical polarization

’év=—c058cos¢ﬁ-cosesindaﬁ}-i-sine'z‘ . (13)

Thus, for an incident field of polarization p, the backscattered first order

perturbation field with polarization p' is given by the following;

2
sl = 20 e (o gic o) [ [2@-e)@ee ) + @k H2E -2 )]
rp’ r o P p' i PP
~1/2
« exp(-17k; 7)) z;s(1+;22x+t;fy) dx dy (14)

With the following substitution;

Fa iy AN ~ o~ 2 ~ ”~
2(n-ep) (n'eR,) + (n'ki) (ep-e.p,)

Lot (Bax, By = \/ — (15)
].' + E.Q.x + cﬂ.}f'
equation (14) reduces to
2 :
E k .
1 _ oo s S
GEPP' = Tor exp (- j kor)ffrppv (;R,x’ C‘w)_r-.'xp (-3 Zk‘i ro) gs dxdy _ (16)
12
" rrm .,l.»._k..,..,_ -.g: S ',, s : _.I_ l [7 g -




The zeroth order or physical optics field is given by [12]

sE° . = EQEEEPK’--'-@_ (-35k 1) - 42k, +T ) dxd (17)
PP'_ jZTTI:cosB il Or exp (- J iro x4y

where

The backscatteved electric field with polarization.p'for an incident field
with pelarization p is, therefore,

' 0 1
E , = 6E", + 6E . 8
rp' pp' 8 pp’ (18)

The accuraéy of (18) is dependent upon the accuracy of the first order per-
turbation and, if (16) and (17) are used, the smcothness of the uwnperturbed
surface So' From a more fundamental point of view, the accuracy is deter-
mined by the basic assumptlion of two scattering mechanisms, i.e. physical op-
tics and small feature diffraction. Since edge diffraction need not be con-
sidered because the composite surface has been specified as free of edges, the
two-scattering-mechanism formulation should be adequate.

The backscattering cross section per unlt area is given by

2
lim 1im 2 e ]|
o 4rr _ !
00 1 (8,9) = m® A § 7 £E- BT
PP 111 E |

where the over-bar denotes an ensemble average. Since CS is a zero mean

process, the cross products in (19) are zero and

0 2 _
1Epp,|2 = IGEPP.I2 + |6E;;.|_ - (20)

13



and because CS and cl are independent processes,

o

o
o A 2 _ o
o‘pp,(e,cb) = 2ko Gpp' sec” B R(ﬂ,d))ff exp(-j koxAx j koy by )

—_—0

2 2.2
. exp{- 4k° cos © ;2 [l - pg(Ax,Ay):]} dAx dAy

4

4k

= ol (e, 752, 1>
+ ﬂ!f<rpp'(c£xl,‘:£yl) pp’ Ci‘.xz’cﬂ,y2> exp[jB cﬂ.l ?;2.2 >

ill
7 .
* T, P (Ax,Ay)exp(~] k_Ax-j koyt'-\y) dix dAy (21)

The new functions in (21) are defined as follows; R(8,$) is the shadowing
function for the large scale surface [15], pg(Ax,Ay) is the normalized auto-
correlation function for the large scale surface excursions, kox==—2kosin6cos¢,
kby==-2kbsiqesin¢, B==2k°c059, and pB(Ax,Ay) is the normalized autocorrelation
function for the small scale structure. Multiplication of the physical optics
term by R{(6,9) is juétified by Sancer's [15] and Barrick's [16] analyses. That
is, Sancer showed that the effect of shadowing on the sldpe density scattering
result was equivalent to a multiplication by the funcﬁion.R(8,¢); Barrick had
previously demonstrated that the slope density and physical optics results
were equivalent for ékgcoszﬁ EE->> 1, i.e. the geopetrical opties limit. Thus,
the first term in (21) is strictly only valid in the geometrical optics limit
and this restriction will be satisfied later in the analysis.

The integration in (21) is restricted to the projection of the illumina?
ted areas of So onto the x-y plane [f]. Thus, the second term in (21) may be

rewritten in the following form;

14
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[+ I o)
4
4k
a [8) )

o536y, -5, )] D & pylixin

-

exp(- J ko Be=1k Ay)dhx dAy 22)

where I(x,y) is one if the point (x,y) on S0 is {1luminated and zero 1f it is
in shadow and the contributions fromthe shadow boundaries have been neglected.

. *
The £ t1 £ i 1 ltod T d th
e function op' 8 merely equa Pp,(tle,cgyl pp'(tﬂxz’cly ) an e

2
notation [cb;,(6,¢i]l implies the contribution of the first order perturbation
to Uﬁ;,(e,¢). Equation (22)42? the two dimensional Fourier transform of the
pfoduct of the <+*> term and Ci pB(Ax,Ay). Hence, (22) is equal to the two
dimensional convolution of the transforms. The transform of Ei pS(Ax,Ay)

15 just the spectrum S(kx’ky) for (lkx|3>kd)L)(]ky|=>kd). The transform of a
function having the same form as <*> was first derived by Stogryn [10] under
the assumption of no shadowing. Sancer [15] subsequently included shadowing,
i.e. the I funétions, and showed that, in the limit of kd*”, Stogryn's earli-
er result should be multiplied by the shadowing function R(0,¢). In particu-

lar, it is easily shown, using Stogryn's shadow corrected result, that

15
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1 .
‘ﬁ‘!j<1(xl’yln(x2‘y2)fpp'(cﬂ‘xl’cﬂ'xg’cg'yl’cw2)exp jB(CR.l_CE,Z):I>

- Lt

k k k

k
. - - - - ~ oX 0xX oy oy

o o
.o expd= 30 Mxti Ay) - 4 cos?8 12 [1-p, (bx,Ay)] ) dixdd
2n P79 %ox oy’ o % Py L%, By Y.
-0 —C (23)

For no shadowing, i.e. R(9,4) =1, Stogryn demonstrated that (23) is valid

2
2
However, in ovder to properly include the shadowing fumction, it will be nec-

provided eitherx 4k§ cos.2 ] >> 1 or the large scale slopes are smalls

essary to be more restrictive. That is, (23) is strictly only true in the
geometrical optics limit for only then is shadowing properly accounted for by
the multiplicative factor R{6,¢$). Hence, for all further analysis it wili be
necessary to require that 4k§ cos.20 ;E >» 1, 1In addition, it is convenient

at this point to fix the orientation of the x and y coordinate axes by requir-
ing that _C;:y=0. Such a choice simplifies the details of the develop-

ment to follow and also implies that the surface height spectrum has fold-
over or mirror symmetry about both the k.x= 0 and ky =0 axes. Another con-
sequence of this choice is that the direction of incidence, i.e. the angle ¢,

is now gpecified relative to the surface height spectrum.

The shadowing function for a anisotropic Gaussian surface was shown by

Sancer {15] to have the following form; R(8,9) = (1+Co)-l where

*The validity of (23) when the large scale slopes are small has recently
been experimentally verified using backscattering measurements acquired by the
Skylab radar altimeter [17]. '

16
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211 ctn © ctn O

2c = —|1,U | tan 0 exp |:— - }— erfc [——J (24)
o= (31) 2| 2lyy

and

2 W) 2
Uy =Ty, cos” ¢ - Ly sin’ g (25)
All terms in (23) involving 1]): appear as |1p:|tan2 8 which can be rewritten

as follows;

2 2 2
Lo. k Coy Kk o
2|y |an’ g = —E0X 4 AT o (26)
Zkocos B Zkocos 3]

where, for clarity, the definitions of kox and koy are repeated below

k = - 2k sinBecosd
ox o

(27)

k = - 2k a8inf sind
oy o

Using (26) and (24), the appropriate expression for R(kox’koy) is given below

K K . « 2 K 2 J1/2
R( ox oy )= 1 2{2;2( 0xX +c2 ( oy )}
2k0 cos @ , 2k° COS 6‘ 2/ ix 2k° cos Ly Zko cos B
Cexp| -1
L ) (e
Cﬂ.x 2k cos 6) C,Q,y 2k cose =
-1
3 |3/2
- % erfe -il—'- 2'1 . 5 + 1 (28)
cz ( kox + C_Z kox )
ix 2k cos B Ly 2k0 cos 0/ ~

It should be noted, in (28), that there is no explicit restriction on the
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angle of incidence to the range of 0°<B8<90°. However, such a restriction
is implied because € > 90° would imply illumination of the surface from helow
the z =0 plane, Therefore, for -2k »k >2k and -2k >k > 2k , the
o Tox 0 o oy ]
shadowing function in (28) is identically zero.
Thus, in order to completely specify the transform of the <*> term in

(22), it only remains to determine the transform of

exp {—Mci c0526 ci [l-pE(Ax,Ay)]} .

2

Since 41(2 Qi cos” 8 >> 1, the large scale normalized autocorrelation function

can be effectively approximated by a two term power series, i.e.

o bty = 1 - L[c2 (an? + s @] (29)
, o :
Thus
(=] -] .
1 _ 2 2. 7 _
pT ff exp {-j(koxj_\x +koyAy) - 4k0 cos B gg [1 —pz(Ax,Ay)_-]} dAx dAy
— =00
. _m-l/2 |
2 2
T P 30
C0oSs .
0 8ko cos O C,Qx 81:;0 cos B C,Q,y

where the specular term at normal incidence (which is dmplicit in the left
hand side of (30)) has been ignored since 4k§ Ci >> 1 (gee [10]). Combining

(30), (28), and (24) the Fourler transform of the <*> term in (22) is as fol-

Jows:

18
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® @ (7 —2')—1/2

1 Sox G ke k
o <e>exp (-jk_Ox - jk_Ay)dAxddy = 2—-%— * R Y
~ = y 4k” cos™ B 2ko cosB , 2kocos |

-0

K K - K K2 ]
.12 (___:&_e __L§> - ——1 (31)
2kocos i 2kocos 8k cos“8 ¥ 2 Bk c0528 C—f
o} Lx o Ly

for 4k(2) cosZB i;i >> 1. Using (31) and the fact that the transform of

2
gs ps(Ax,Ay) is S(kx’ky) for (]kxl >kd)u(|ky| >k.d), the convolutional equi-

valent of (22) is

k sec 8 ox x koy_ky )
'(9’¢)] — 5 1/2 f S(k ok )R 2k cost , 2kocosﬁ
l}lx ny
, [kok ok <k - (k. )* (k_~k)>
. T ox X oy Y)xp ox X - oy ¥ dk_dk
2k cosf , 2k cosh 2 2.9 2 2. -7 *
o Skocos 8 ng 8k0cos 8 cly
k'o sec 8 ( kOx'-k'x koYukY !
- [—"2' T_‘I 1/2 f s(kx’ky) R ZkOCCEB_ s 2k _cosf
mE,. L
x "R k. =
Y kd ch
C 2 ‘ 2
.7 2 ko:i: kx koy y) exp (kox kx) _ (kov—kv) dk dk
pp' \ 2k _cos® , 2k cosB 9 2 "o 2 3 Xy
o 8k _cos 8, 8k _cosb T,
(32)
The first term in (21) was evaluated in (30), i.e.
6 p18ee B R(6, cb 2 2
[ . (8, ¢):| — 73 exp| - cos ¢, sin$1,..% (33)
2 CZ 2 2 '2 r
gﬂ.x Ly o C‘R.x Ly
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Since
021 (0,4) = [crp"p,(e,(p)] - [op;,(e,q;)]l (34)

the backscattering cross section per unit area is completely specified by the
sum of (32) and (33). The derivation leading to (34) required only one as-
sumption or condition, namely, éki cosze_c-i— >> 1, In the subsequent parts

of this paper, interpretations of (34) will be presented which show that this
condition can be violated when the slopes of the large scale surface structure
are small. This fact confirms Stogryn's original observations even when shad-

owing 1s included.

4.0 COMPARISON WITH CONVENTIONAL COMPOSITE SURFACE THEORY

Equations (34), (33) and (32) represent the general expressions for the
scattering from a Gaussian, perfectly conducting surface characterized by an
anlsotropic spectrum and possessing many scales of roughness. The accuracy of
the result is dependent upon the large scale structure having large height ex-
cursions and small curvature, while the small scale structure must be chafact—
erized by small height and slopes. |

The geometrical optics term given by (33) dominates the scattering near
normal incidence. Except for the case when the large scale slopes are very
large, the shadowing function has little effect on the result. The only_im—-
portant difference between (33) and previous results [15] is that (33) 1s de-
termined by the iarge scale slope only; that i1s, the slope of tﬁe spectrum
in the wavenumber range (]kxl <ky) ﬁ(lkyl ikd). The wavenumber k, is deter-
mined by the condition (on.the small scale structure) that 4kigz-<< 1;

thus, as ko changes, so also must kd change in order to satisfy ékgci << 1,

However, as kd varies, C;; and C£§ will also change. The net effect
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of this process is to introduce a frequency dependence in (33) through the
use of a truncated spectrum in computing the large scale slopes. The con. ..%
of a truncated or f£iltered spectrum was filrst hypothesized by Hagfors {12] 4n
an attempt to explain lumar scattering data and the observed fregusncy depen-
dence of near normal incidence scattering. More recently, Tyler [18] has at-
tempted to definitize Hagfors filter theory by basing the spectral truncation
wavenumber on a criterion related to the radius of curvature of the large
scale surface. Both of these approaches base the point of spectral trumcation
upon a characteristic of the larpe scale structure, whereas, it should be
based upon the small scale structure, i.e., 4k§ ;2 << 1, The inadequacies

in these earlier works probébly stem from a failure to consider both types of
approprilate scattering mechanisms, i.e. geometrical optics and small scale
diffraction, and their proper combination.

In theory, the conventional composite surface scattering theory postu-
1atgs a truncéted spectrum for computing the large scale cha;acteristics; how=-
ever, little attention has been glven to the fact that, as shown above, this
will introduce a frequency dependence in the near normal incidence scattering.
As 15 obvious from the above, the degree of frequency dependence is determined
by ko and the behavior of the spectrum in the small sgale regime, Contrary to
Hagfors original hypothesis, the wavenumber kd does not depend upon the angle
of incidence. Many of these points will be more clegrly illustrated in the
section of this paper dealing with a numerical example.

The perturbation term, given by (32), represents the effect of the small
scale surface structure upon the scattering process. The convoelutional form
of (32) also clearly shows the primary impact of the large scale surface
structure upon the small scale diffraction. That is, rather than depending

upon a single Bragg wavenumber, (kbx’kby)’ as in the case of no large scale
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structure, (32) predicts that the scattering will result from a neighborhood

of the Bragg wavenumber. The extent of this neighborhood is directly propor-

tional to the mean square slopes of the large scale surface structure. The

finite range integration in (32) insures that no Bragg scattering will result

from spectral wavenumbers less than kd. Since there is no small scale struc—

ture for k< kd by definition, the finite range Integration must be incliuded.
When 8k§c0326 E;i and Bkicosze Cgi afe small, the exponential

factor in {32) is very peaked and it is dominant in the inteprand. In this

case, the integrals may be evaluated asymptotically using a form of Laplace's

method [19] with the following result;

0 gl <y (ke f 2k

o, 0,9 = -
[ PP ]1 . , | (35)
8k, S(kox,koy)R(O,O)I‘Pp, (0,0 (]kox| >kd)u(|k°y| >ky)

Since R(0,0) = 1, and

0 p=h, p'f=v or p=v, p'=h
I‘pzp' (030) = 0054 8 . P =h: P‘ =h . (36)
2
(1 +5in°9) p=v, p'=v

= . * . a .
and S(kox’kby) (ﬂ/Z)W(kbx,koy) ,.where W-is the spectral notation originally

employed by Rice, (35) can be written as follows;

(o (el k) N (g, | <k

[oo, <a,-¢>]l S G

) |
| 4T Topr (0,000 ke ) (e ] >k Uk | > k)

*This results from the choice of symmetrical two dimensional Fourier trans-
forms, in 1/(2m), for relating s(kx,ky) and 72 p(Ax,Ay).
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2
In the absence of large scale structure, il.e., c£+o, the entire surface com-

prises small scale heilght excursions and kd may be set to zero; thus,

1im [ SRYCH qa)] !mk 1"P 1(0,0) W(-2k_sinBcos¢, -2k sinBsing) (38)

r;i-*o

with no restriction on the range of the argument of W. Equation (38) is the
classical Rice solution for the backscattering from a slightly perturbed
planar surface. This result demonstrates that in the absence of large scale
surface height structure, (32) correctly predicts the scattering behavior.
One further point of interest is the fact that the geometrical optics term in
this limit contributes only a specular term at normal incidence, i.e.

1im [op‘;,.(e,q:)]o = m8, 1 §(sin 8 cos ¢) § (s1a 8 sin ¢) (39)

—

o

where the term exp(—h_ki cz)does not appear because it is essentially unity,

272 _ 2072 T 2ZY,
i.e. Ako (o l;ko(l;g + z;s)« 1.
Under the following transformation of variables;

k -k k -k
3 = o 0X E = o
X 2k0 cos @ v 2k0 cos @ ’

equation (32) assumes the form
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Wb

3 ko
[Uppn(e,d)):ll = . 1/2 ffo@ko cos B Ex+ ko 2k cos B § +k'y

17[?;2

o0

m

E
2
PREE E )T (-8, - Ey) ew | - 2 _lz_ P 98y
Lo gy

b b

- 73 f f S(Zk cosBE -i-k 2k cos 8§ +koy)

~5
[cﬂx Z;R,y] Y

2 2
£
cr(-F - 2 g - - .
R(- £, ~E )T (-5, -E,) ex = | ae (40)
zcﬂ.x Zcﬂ.y
where
a = - 1r"d_km{: n o= 1""ci—kcnc
x 2k cosl _ x 2k cosb
o o
- k. ~k k,~k
a = d oy b = d o)
¥ 2ko cos © v 2ko cos B

It should be noted thit for elther |kox| >kd or ‘koyl >k., the second term in

d’
(40) goes to zerc very near grazing incidence because either Ex= N or EY=0
is not contained in (ax,bx) or (ay,by). Equation (40) is now in a form suit-

able for comparison with the tiltel plane Bragg formula which results from the

conventional composite surface scattering theory. When the slopes of the

—r—

large scale siructure are large, i.e., 'Egzx and ‘g;’y >» 1, it is not possible to
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demonstrate a direct analytical comparison. However, when the slopes are

small, 1t can be shown that the tilted plane Bragg scatter result is as fol-

lows, see [20];

4 o

2k
o° (8, 1) & ——————— f g2 W(Zko cos B tan +'2ko §in®, Zk_cos@ tan 6)
J22 72 4%

Sax Coy

2 2 :
cexp|-E Y _ 5819 | 4(tany)d (tan6) (41)
2 2
zgﬁ,x 2?;2,}'

where ¢ has Seen set equal to m, Y and § are tilt angles in and perpendicular
to the plane of incidence, and the aungle of incidence is restricted to greater
than or equal to 30°. 1In obtaining (41), the small angle assumptions have

been made, i.e. sin) = tany , sin 8 = tan§. The g2 coefficients depend upon

the polarization of the incident field. For horizontal polarization,

2

2 2
g% = (cos 6~-5in 8 teay)? [1. y—gan O e ‘5] | (42)
cos” Ogin” 8 =in” 0 _
while for vertical polarization,
2 2 2. 2.7%
g” = [1 + (sin O+ cosB tan)” + ctn” O tan G] (43)

and g2 =0 for cross pdlarizai:ion. With the correspondence gx*?*tanw and

E ++tan$, and setting k =2k sin® and k__ =0 in (40), there is a great

y ox o - oy

deal of similarity between (40) and (41). One point of obvious disagreement
is that (41) 1s defined as zero for 0 %30° while (40) has no such restriction.

In the limit of zero large scale slope, (40) is zero for 2ko sin_8<kd because
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the two integrations in (40) cancel each other. Thus, whereas (41) is rather
arbitrarily limited to 0 2 30°, the result in (40) has no angle limitatiom.
Further éomparisons of (40) and (41) could be accomplished for other situa-
tions, how.ever, such an effort is pointless since (41) 1s clearly an approxi-
mation to (40).

When the large scale slopes are not small, the integrations in (40) must
be accomplished numerically. In this case, the varilation of R and I‘pzp. about
the point Ex=0, Ey=0 are very important to the result. It is, therefore,
possible that the cross polarized scattering may not be completely negligible

especlally near grazing incidence. For example, with ¢ =T

482 E2 052 0 + 8E2E_ sin b cos O + 4 E2 sin? @
12 (-g, ~g)= X 1 .
hv X, Yy 1 + gz + Ez
Xy
and
. . 1/2
_ 1 2 .2 Z .2 . 1 1
R(-E, - &) _[2%; Ex 25y EY] exp |- 54
2/ 2 g2, Cz 62
' Cﬂ,x ’x Ly 7y
. _ ~1/2 -
1 2 .2 2 .2
-3 erfc[{zgzx Ex + ?.cgy Ey ]"’ 1 s

the scattering will be directly dependent upon the large scale slopes. - Thus, -
the first order perturbation solution gives rise to a depolarized component

which is dependent upon the large scale slopes.

5.0 NUMERICAL EXAMPLE
Although the results obtained in section 3 present a formal solution to

the problem of composite surface scattering, the question__of how to choose_ kd
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reguires further study. Since there is very little theoretical foundation for

choosing k., other than Aki ;2 << 1, this aspect of the problem is best dealt

d
with LUy considering a specific example. To simplify matters somevhat, the

surface heig_ht spectrum is taken to be Isotropie; that is, 'S(kx’ky) depends

only on the distance between any two points in the kxky plane. For such a

spectrum, ;ﬁ?x = C,Q,zy = C,Q,zt/ 2 where ngt is the total mean square slope of the
_— - —

C.Q.x

restricted to the case of szt small. This condition permits the following

large scale structure, i.e. ?;ozt = + szy. The analysis will be further

approximation in (32), see the Appendix for a justification of this step;

kox--kx kc:nymky
R 2ko cos§ , Zko cos B = R(0,0) = 1

k_ -k k -k
1‘2 oX X oy ¥\, I,Z (0,0)
pp’ 2k cos b , 2k0 cos @ pp' "’

Converting from cartesian wavenumber space (kx,ky) to cylindrical co-~
ordinates (k,a) where kx=kcosc: and ky=k sino , and substituting in (32) and

{33) yields

s, seé46 R tan2 8

Ot (820) = P exp [ - 2

2 2

Sae St

2 2 b
4k gec” 6 .
+—2——12,00,0) | sGI ksin@

2 k 2e 2.
Cot L# 008 O Loy

2. T
(k—ZkO sin.e) ) K sin 6

* exp | - kdk N YA

2 2 7 2.7
41:0 cos 8 Cor ko cos” B ;R,t
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where the og-integration has been accomplished. The function Io(-) is the
Yessel function of the second kind. It should be noted that the integrations
in (32) exclude a rectangular area in the kxky—plane while the integral in
(44) excludes a circular area. The difference can be avoided by redefining
kd in terms of the radial wavenumber coordinate and expressing the transform
relation between ;§ pr(Ak) and 5(k) as a Hankel transform. As in the case of

(32), there is no restriction on 8 for either term in (44) other than 8<w/2.

For the surface height spectrum, the following specific form was select-

ed;
4
Bk
— k<k
4 el
(k2 + Kz) ¢ ,
S(k) = (45)
0 k > kc

Equation (45) represents a polynomial approximation to the so-called Pierson-
Moskowitz spectrum for the steady state response of the ocean surface to a
surface wind of speed V. The constant k is given by (335.2 Va)“l/z, for k in
(ch{Land Vin m/sec; thisparticular_mixture of units is convenient for micro-
wave scattering problems. The constant B was taken to be 0.0046.‘ It should
be emphasiZed that (45) was selected for example purposes and because expres-
sions for the autocorrelation fumction exist [217. No inference in regard to
the characteristics of ocean backscattering is intended or implied since (45)
is-probably an overly simplistic description of the true surface. The spec—
trum of the large.scale structure of the surface is eQual to (45) for kfika
while the small scale undulations are represented by (45) for kd<1cskﬁ' Since

the wind épeed dependent parameter Kk is small for V 22 m/sec, the mean square

heigﬁt of the small scale surface perturbations is given by
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2 811 1
% © "2'["2’ - —2] (46)
k k
d c

The constant B is defined as Aki Ci = B << 1, fThus, using (46), the following

relation for k, is determined:;

d
) 2B &
Ky ==y (47)
B>+ 2Bk
c o]

Equation (47), therefore, defines kd in terms of the electromagnetic wave-
number, ko, the spectral constant, B, the spectral cutoff wavenumber, kc, and
the smallness parameter B. It can also be shown that the total large scale

mean square slope has the form

2 2
- ‘ kS +K
7 B|_ 11 d
Cﬂrt.“ 2 [ ﬁ,n( K2 ) _ (48)

Unless otherwise stated, all. subsequent results were accomplished with the
arbitrary choice of kc==12 (cm)_l, and kb==3.1416 (ch-l ‘(h0==2 cm).

Thus, using (48) and (47), the cross section i1s entireély dependent upon
the parameter f which, in turﬁ, detérmines the size of the small scale mean
square height.EE . If § is chosen to be 0.1, the resulting value of kd (from
(47)) 4is 0.95 (cm)ﬂl. Hence, for 211 surface features having a wavelength
greater than or equal to 6.6 cm, the geometrical optics part of (44) is as-
sumed to be an adequate description of the scgtteripg process. Conversely, all
surface features having a_wavelength less than 6.6 cm are aséumed to be
responsible for the smali scale diffraction described by the secoﬁa term in

(44). A typical result for V=4.3 m/eec is shown in Figure 3 for horizontal

polarization and in Figure 4 for vertical polarlzation. The solid curve in
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both figures is the sum of the two terms iIn (44) while the dashed curves show
the individual contribution of each term. Of particular note in both figures

is the fact that for 6 £10°, the perturbation result, [Upop’(8’¢):l , levels
1

out to a nonzero value. Thus, the small scale surface heilght perturbations
do indeed contribute to the value of ¢° at 6 =0°, although the contribution
is more than 15 dB down from the geometrilcal optics result for this example.

The more important question to be addressed is how small should B be

made. From (46), as Ci decreases then kd mist necessarily increase until, in

2
the limit of Cs = 0, kd

tics solution is required to properly account for the scattering from smaller

= kc' However, as kd increases, the geometrical op-

and smaller scale features in addition to the large scale_features. Further-
more, these smaller scale features will have smaller radii of curvature.
Thus, Increasing kd is equivalent to requiring the geometrical optics solu-
tion_tq account for small scale diffraction, which it obviously cannot. The
problem is further compounded by the fact that the geometrical optics result
forms the unperturbed solution for the first order perturbation. Thus, a
small error in the geometrical optics f£ield may well be greatly magnified in
the perturbation field. This discussion clearly demonstrates the merit of
choosing B as large as possible. On the other hand, B must be less than one
in order to satisfy the basic criterion for the suitability of the perturba-
tion technique, i.e. 4k§ E§.<< 1.

Figure 5 1llustrates how o°(8) varies with B and, equivalently, k, for
vertical polarization; a similar variation is obtained for horizontal polari-
zation since the two results only differ by the multiplier F;;.(0,0). As B
decreases from 0.1 (}\d=6.6 cm) to 0.0L (ld==2.l4 cm), there is a relatively

minor decrease in UJ;(O). More importantly, however, is the appearance of a
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dip in the vicinity of 8 =25°. This dip results from the fact that the geo-
metrical optics term in (44) is essentially negligible in the neighborhood of
8 =25° (even though the large scale slope increases as kd increases) while the
perturbation term in (44) has decreased. As noted in the previous paragraph,
this is an error compounding effect, i.e. a small error in the zeroth order
solution translates into a large error in the first order perturbation solu-
tion. .The decrease in the perturbation term in the viecinity of 8=25° i3 due
to the fact that the Bragg wavenumber 2kb sin 25° is not within the range of
the integration in (44). Fﬁr B=0.01, kd==2.93 (cm)-l and Zkbsin(25°) =2.65
(t':m)“l for ko==2 em, thus, the Bragg wavenumber for this angle of incidence is
actually a part of the large scale spectrum. For the case of B=0.5, i.e.
4k§ Z‘Z=0.5, kd=0-426(cm)_1 and }\d =14.75 cm wﬁich 1s more than seven times
as large as the electromagnetic wavelength. In this case, the dip in the vi-
cinity of 25° is almost nonexistent; however, there is a significant increase
in_dd;(e}]l at 9=0 as shown in Figure 6. Thus, if the small scale height
eriterion is violated, the perturbation solution willl become comparable to or
exceed the geometrical optics term near the specular direction and this can-
not be the case. In other words, the perturbation term in (44) is in error,
near the specular direction, as should be expected. It is interesting to
‘note that choosing B8=0.5 produces roughly the exact opposite change in mag-
nitude of ¢°(0) as choosing £ =0.026 produces in 0°(25°), and that B=0.5 and
.B==0.026 correspond approximately to a five fold increase and decrease, Te-
spectively, in B relative to B=0.1. For other values of electromagnetic
wavelength or wind speed V, the same effecis are observed but the specific

numbers will change.

It would appear, from these numerical results, that a proper choice of
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k.d should be based on the criterion 4k§ Ez-z 0.1. For the spectrum studied
heré, the corresponding value for ld was about three times the electromagne-—
tic wavelength and this does not appear as an unreasonable dividing line be-
tween physiéal or geometrical optics and small scale diffraction effects.

Any atﬁempt to draw a more positive conclusion about the choice of Ad would
have to address the basic question of the dividing line between the two types
of scattering mechanisms. That 1s to say, the results in this paper are based
upon the assumption that the scattering is either physical optics {or geomet-
rical optics for kb larpge enough) or small scale diffraction. Given this as-
gumption, the criterion 4k§ Ci = 0.1 seems reasonable. If one desires to

refine this criterion, it will probably be necessary to go to the integral

equation et rhe current induced on the surface and attempt to solve it with

a minimum of approximation. Such an approach, whether it be analytical or

numerical, does not seem to be practical at this time.

6.0 CONCLUSIONS

Scattering from a perfectly conducting, Gaussian distributed, random sur-
féce has been analyzed using a recently developed pertﬁrbation theory. In
order to apply this techniqué, the surface height spectrum was split into two
pafts.in the wavenﬁmber domain. The so-called large scale part comprises the
long wavelength portion of the spectrum (k{ikd) and i; is assumed that the
physical optics approximation adequately describes the scattering from these
height excursions. The small scale spectrum (k:>kd) reéresemts the small
wavelength portion of the totai height spectrum.and the scattering from these
small perturbations is described to a first order by a_perturbation 6f the

large scale physical optics solution. The point of spectral dichotomy must
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satisfy the relation 4k§ Ei << 1, where Ci is the mean square height of the
small scale structure.

A derivation of the expression for the scattering cross sec%ig?, Gﬁb,(6,¢),
is presented for both anisotropic and isotropic surfaces for Aki gi »>> 1. To
the accuracy of first order perturbation theory, the derivation is exact. The
results are based on the evaluation of some complicated ensemble averages and
spatial dintegrations appearing in previous publications. Shadowing of the
large scale surface is included in the analysis. A direct compariscn with the
conventional composite surface scattering result when the large scale slopes
are small, shows essentially identical agreement except in one regard - the
result obtained here provides for a continuous transition from geometrical
optles scattering to Bragg scattering rather than a plecewlse continuous solu-
tion, i.e. the sum of two angle limited solutions. The result obtained here
also indicates, directly in the spectral domain, the convolutional broadening
of the Pragg line scattering by the presence of the large scale structure.

When the large scale slopes are large, it is not possible to accomplish a
direct amalytical comparison between the conventional composite surface model
and the results obtained here. However, such a comparison would only serve to
check the conventional model since the present results are necessarily more
accurate. For large slopes, it is shown that depolarization is possible but
the results are directly dependent upon the slopes.

Numerical results are presented for a polynomial type surfzce height spec~
trum whicih is similar to the wind driven ocean spectrum. These results indi-
cate a smooth transition between the geometrical optics and Bragg scattering
regimes which previously have been obtained in an ad hoe fashion. Furthermore,

thegse results show that the small scale structure does contribute a small
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amount to the backscattering at normal incidence. For the spectral model

chosen, the calculations and the physics of the problem both tend to indicate

d
terion 4k§ ?;i = 0.1. For ko=3.l4 (cm)_l, kd=0.95 (cm)"l and ld=6.6 cm which

that the spectral division point k, should be selected according to the cri-
is more than three times the electromagnetic wavelength. The value of A 4 also

appears, physically, to be a reasonable dividing point between geometrical op-

tics scattering and small scale diffraction.
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APPENDIX

The purpose of this Appendix is to justify the approximation that for

small Z;Qi and ngy s

2 2 [+2] [=2]
_ ko gsec 8 2 .
[0 (e,q»)-_]l T R (0,0 T2, 0,0) 50k, k )
, _ 2 2 -4
2 2
- (k_ -k ) (k_ =k ) ‘l
. exp oX X . _ SA AR A die, dk
' 2 2 2 2 2 2
8ko cos” 6 C,Q,x Sko cos @ E;R,y J
s 5 kg Ky
ko sec” 0 9
2 2
“|:C9..x CR.y _kd -kd
- (kox—kx)z (k7K )2
. exp e y ¥ dic_dk (A1)
8k’ cos? 8 ¢, 8k> cos’ 8 g2 7
o ix o Ly
Under the following substitution;
k k
= —_ n. = —
Ny 2k0 cos B y Zko cos 8

each of the terms in (32) are of the form
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4ki kox kox )
__~1l/2 ff S(Zko cos B Ny o 2k, cos o ny) R (Zko cosB ~ Mx s 2kocos 8- ny

T2 2
“[Cﬂ,x ;L}J

- ok 2 ok 27
ox oy
2 kox ko (21(0 cosf nx) (Zkoco s0 ny)
I}:p'(Zkﬂcose Ty, 2k cos8 _ny) exp — - -3 dnxdny
zcﬂx zcﬂy
L (A2)

When ;g{ and ;g are small, the Gausslan factor in (A2) 1s dominant and the
integrals may be effectively truncated to a % 4-sigma excursion about the
peak in the Gaussian. That is, the limits in (A2) are essentially as given
below;

k = k. [=

(s34 - 2 ¢ ¢ ___ OX 2
Zk_ cos 0 B =M= 2k_cos® MRV
(A3)
k- — k -
) AN Y $n $= 44 fr2
Zko cos @ Ly y Zko cos B Ly
2

For this set of limits, RI‘pP, will vary from

R(4 \/ngx ’ 4\[@12)1";.(4\};& , mf;,fy ) (a4)

to

/_2 - /—2' 2 | f_z _ l‘z”
R( 4 ch , 4 C.Q.y )I‘PP,(4 ‘:Lx , 4 ;R,y ) (AS5)
as nx and ny vary over the range of integratlion. However, since the large
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scale alopes are small, (A4) and (A5) do not appreciably depart from
R(0,0)I‘ .(0.0), and this product can be removed from inside the integrals

as in (Al). The spectrum function, on the other hand, varies from

,T ,_2'
S(kqx - Bko cos O Box , koy - 8k° cos 6 ;R.y ) |

to

-- [z . [
s(kox + 8k° cos § ;zx , koy + Bko cos O ;Ey ) .

Since ko is large, this variation may be significant, especially near 8 =0.
Thus, the spectrum function cannot, in general, be removed from under the

" integral in (A2). However, for 8 sufficiently near to m/2 or grazing inci-
dence, the spectrum can be removed since it will not significantly vary over
- the ranges of ihte’gta'tidn.' |

" The above ‘argument demonstrates that for small lafge scale slopes, the
contr:l.bution to (Al) comes fr:om a finite range of surface wavenumbera for ©
' near zero. Conversely, the contribution comes from a s:l.ngle wavenumber, i.e. '

(kox'koy)’ for O near 1!'/2 or grazing mcidence..
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