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1.0 INTRODUCTION

Active microwave remote sensing of the ocean surface is rapidly moving

out of the realm of research and into a nearly operational status. However,

this movement does not necessarily mean that all the problems associated with

interpreting microwave sensor data have been resolved. By the same token, it

is becoming increasingly obvious that neither electromagnetic nor oceanograph-

ic researchers, workiug,in isolated environments, can separately solve the

significant problems. However, with a joint effort, it is felt that signifi-

cant strides can be made in this area. For example, the electromagnetic re-

searcher needs to know, from the oceanographer, which scattering model assump-

tions are not valid for the ocean surface while, conversely, the oceanographer

must know what measurements are necessary to validate the electromagnetic

scattering theory.

The purpose of this investigation was to review the current state of of

fairs in the area of microwave scattering theory as applied to the ocean sur-

face and to point out those problems requiring further investigation. In

particular, the areas addressed were basic rough surface electromagnetic scat-

tering theory, sensor-specific scattering theory, and requirements for support-

ing oceanographic research. The remainder of this section comprises a summary

of results and a list of recommendations for additional research. These re-

commendations are based upon apparent shortcomings in the present state of

microwave remote sensing as identified in this study,

1.1 Summary of Results

Existing theories for microwave backscatter from the ocean surface are

reviewed from the point of view of their fundamental assumptions about the

surface. A new multiple scale surface scattering theory is developed which

l	 ^.	 I	 f	 0,f



overcomes some of the limitations of the conventional composite surface

theory.* The implications of this theory are discussed and its limitations

are presented. Existing surface measurements are inadequate for validating

this scattering theory.

Three specific microwave remote sensors are studied from the standpoint

of deficiencies in our understanding of their data outputs. For radar altim-

etry, sea state bias and the response of the radar to swell dominated condi-

tions appear to warrant further theoretical and experimental research. Under-

standing wide angle scatterometry data requires further oceanographic re-

search into the behavior of the high frequency waveheight spectrum. Recent

scatterometey measurements are shown to be at variance with existing inter-

pretations of some oceanographic data and theory as to the nature of the cap-

illary range of the spectrum. Finally, the brief study of synthetic aperture

radars indicates the need for a complete reevaluation of the scattering models

which are presently used to interpret the data. A short discussion of the de-

ficiencies in the existing models is presented.

1.2 Recommendations For Future Studies

The following list encompasses those areas which were identified during

this study as requiring additional investigation.

1. The new composite surface scattering theory developed during this
g

study should be extended to dielectric surfaces and numerical computations

should be carried out to determine the degree of depolarization to be ex-

pected for Very rough surfaces.

l

* This material is documented in a separate report [1] for the jointly Gaus-
sian surface: bkWlts for the more general surface are summarized here.
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2. Measurements of the joint slope probability density function should

be made for the large scale surface. This also implies that techniques will

have to be developed for filtering the slope data to remove the effects of

the small scale structure. It is also desirable to know how the large scale

slopes and the small scale heights are correlated.

3. In order to better understand microwave scattering theory and meas-

urements, it is absolutely essential that experimental and/or theoretical

descriptions of the behavior of the high frequency height spectrum be ob-

tained. This is crucial to the qualification of the scatterometer as a valid

wind vector sensor.

4. Additional theoretical microwave scattering research is necessary 	 k

before a complete understanding of synthetic aperture radar data is possible.
i

5. GE05-3 waveform data under high sea state conditions should be care-

fully examined to determine possible sea state bias effects. An extension of

Seltzer's analysis [20] to non-Gaussian surface statistics should be made to

assess their altitude bias potential. Supporting oceanographic measurements

on the joint height and slope density function would be most beneficial.

6. GEOS-3 data for swell dominated surface conditions should be examin-

ed and compared to theoretical models for the purpose of determining the ef-

fect upon automated waveform processing models.

Quite obviously, some of these areas are multi-year efforts, however they

are considered essential to furthering our understanding of the scattering of

microwave energy by the sea surface. In addition, it is essential that the

efforts of radar and oceanographic specialists be very well coordinated. It

must be remembered that there is probably a certain degree of hesitancy on the

part of the user community to accepting radar-derived oceanographic informa-

tion. This is probably due to the fact that the basic radar data requires

3
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interpretation by extremely skilled specialists; a situation which is signifi-

cantly different from that of visible or infrared photography. Furthermore,

microwave remote sensing has the potential of providing, on a synoptic scale,

much more information on the state of the ocean's surface than was ever be-

fore possible. However, one of the points which came up repeatedly during

this initial study was the fact that qualification of microwave sensor data

requires a much more extensive knowledge of the surface; thus the need for a

closely coupled joint effort.

2.0	 REVIEW OF THE SURFACE ASSUMPTIONS IN SCATTERING THEORY

The interpretation of microwave scattering measurements nearly always

involves some model for how the scattering object alters the incident electro-
a

magnetic field.	 This model, whether it be empirical or analytical, must be

based upon the physics of the scattering process. 	 In the case of an analyti-

cal model, certain assumptions are usually made in order to simplify the math-

ematical details, and these assumptions involve some relative characteristic

of the scattering object. 	 This approach has great merit for it not only re-

sults in mathematically compact answers but also provides a solution which
i

more complicated models must equal under the same surface assumptions.	 Even

for empirical models, which are based upon a finite number of prior observa-
i

tions, there is usually some known limiting form.	 Thus, solutions which are

strictly only valid for certain configurations of the scatterer are essen-

tial to understandinb 'lie more general problem.

The conventional model for scattering from rough surfaces at microwave

frequencies has evolved from the combination of two surface restricted 'solu-

tions.	 These two solutions will be examined for the purpose of determining

4
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their limitations and how they might be extended to more general surfaces.

This same type of examination will also be applied to the scattering model

developed during this investigation [1]. In addition to pointing out the

limitations of existing scattering models, this study will Also show what

specific surface characteristics need be measured in order to verify the ade-

quacy of the models.

The present trend in the analysis of electromagnetic scattering problems

is toward the use of numerical techniques and large computers to solve the

basic integral equation for the current induced on the scattering object.

While this approach has significant merit when applied to deterministic scat-

tering problems, it is not particularly attractive for random scattering

problems. That is, because of the number of computer runs that would be re-

quired to generate a meaningful result, the approach is necessarily limited

relative to random scattering problems. Even given the time, money, and com-

puter necessary to accomplish such a task, extreme care must be exercised in

translating the details of the basic problem to the simulation. For these

reasons, the search for analytical solutions is not only justified but essen-

tial.

This report is not intended as a comprehensive review of all the theo-

retical and experimental work in the field of rough surface scattering. For

such material, the reader is referred to the excellent report by Barrick and

Peake [2].

2.1 Boundary Perturbation Approach

Perhaps the most successful of all analytical techniques applied to

rough surface scattering problems is perturbation theory. Rice [3] first

applied this technique to the problem of scattering of electromagnetic waves

t	 5
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by a slightly rough dielectric surface and Peake [5] developed Rice's results	
7^

into expressions for the scattering cross section of the surface. Bass and

Bocharov [4] applied essentially the same technique to scattering by a slight-

ly rough perfectly conducting surface. Valenzuela [6] has obtained expres-

sions for the second order perturbation fields which give rise to depolariza-

tion. The basic approach entails expanding both the random surface height

and the scattered fields in an eigenfunction series with both the height and

the fields having the same eigenfunctions. Satisfaction of the boundary con-

ditions by the total fields at the surface along with the divergence equation

on each side of the interface result in a set of self consistent equations.

These equations can then be solved to an nth order in the height (^
s ) and

slopes (^	 ), which are assumed to be small, to yield the nth
sx, sy	 order per--

turbation result. Peake and Bass and Bocharov confined their analyses to the

first order perturbation result while Rice and Valenzuela found the second

order perturbation fields.

Rice's original approach involves a great deal of algebra and this is

common in the classical application of perturbation theory to boundary value

problems [7]. This particular drawback has been eliminated by Burrows [8]

who recently developed extremely simplified expressions for the perturbation

fields based upon an earlier work by Mitzner [9]. Mitzner has also pointed

out the very important fact that perturbation theory may yield an asymptotic

approximation to the true field rather than a convergent series representa-

tion. This particular point has a significant impact upon the importance of

perturbation fields of order higher than one and will be discussed later in

this section.

Perturbation theory is successful because the perturbation fields satisfy

6
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not only Maxwell ' s equations but also the boundary conditions. The primary

conditions imposed upon the surface in addition to stationarity and homoge-

neity are as follows;

ICa(x,Y) I << X 
	

(1)

and

kx(x,Y) I << 1 ,	 ky(x,Y) I << 1	 (2)

In (1),
s 

(x,y) is the height of the perturbed surface relative to the mean

or unperturbed surface and /.o is the electromagnetic wavelength. For this

case, the mean surface is taken to be the z =0 plane and ^ a (x,y) is measured

along the z-axis. 
^sx 

and ^sy are the slopes of the surface in the x and

y-directions. Another condition on the perturbed surface is that it contains

no edges for this would imply a singularity in the local fields [9], and

perturbation techniques are not applicable to singular fields. Some authors

[3,6] make the unnecessary assumption that the surface is Gaussian distrib-

uted* That is, if the height of the surface is expressed as a Fourier series,

i.e.

m

^s (x,Y) _	 P(m, n)exp[Ja(mx +ny)] ,	 (3)

m=-m n=-°°

the coefficients P(m,n) are assumed to be independent, zero mean, Gaussian

random variables. This assumption is unnecessary for, as Barrick and Peaks

[2] have pointed out, as the periodicity of the surface (I= 2'R/a) becomes

e

*For the first order perturbation fields, the assumption is unnecessary. For
the second order fields, the Gaussian assumption does, indeed, allow some
simplification in the mathematical detail of the problem.

h
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infinite, the P's become uncorrelated and this condition is sufficient to

complete the analysis. Therefore, for the first order perturbation results,

it is not necessary for the surface to be Gaussian distributed. This point

becomes particularly obvious if Burrows' [8] method of analysis is used.

In order to generate a depolarized component in the scattered field,

Valenzula [ 6] demonstrated that it was necessary to go to the second order

perturbation field (using the Rice approach). However, his numerical results

indicated that near grazing incidence the depolarized component was stronger

than the horizontally polarized component, and this result did not appear

to be in agreement with measurements. This fact along with Mitzner's

speculation that perturbation theory may yield an asymptotic result, tend to

make one slightly suspicious of the use of second order perturbation fields

to generate the depolarized component. That is, if the higher order pertur-

bation fields are truly an asymptotic representation for the scattered field,

then this fact may be expressed as follows;

iW	 ,
T

E	 81E
s

	

	 (4)

i=o

i
where the symbol -denotes the asymptotic nature of the series. In (4), E s	a;

i
is the scattered field and d E, i =0,1,..., is the i th order perturbation,

field. When the perturbation parameter is sufficiently small, the magnitude 	 3

3
of the terms of (4) start by decreasing successively to a minimum and then

subsequently increase. For this reason, only the first few terms may be 	 y

numerically meaningful. For the case of hh polarization near grazing inci

deuce, according to Valenzuela's computations, 
160 E1

 and I d^'EI are smaller`

than 16 2 E1 and this may be a result of the asymptotic nature of the solution.'

8
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That is, the series should actually be truncated at the d l E term. Concep-

tually, it is relatively easy to check for divergence of the series in (4);

one merely computes the next higher order perturbation I s3 EI and compares it

to 
I62 

EI	 if Ida EI is comparable or greater than IS2
f El, then the series is

asymptotic and terms beyond 
Idl E  should be ignored. Another possibility is

that (4) is nonuniformly convergent. That is to say, all terms in (4) may

converge near normal incidence, but near grazing incidence only the first two

terms are correct, i.e., the successive terms diverge. This particular point

should be investigated more thoroughly in order to determine the basic nature

of the perturbation solution and the true meaning of the second order per-

turl,ation fields. At this time, it is not clear that the second order per-

turbation fields correctly describe the depolarized field.

The effects of wave-wave interaction, dissipation, and air-sea inter-

action will cause the probability density function of ^s to depart from the

Gaussian form predicted by free wave theory [10,11]. Longuet-Higgins [10]

has also demonstrated that these nonlinear effects are even more significant

in their impact upon the densities of the slopes of the surface. Although

the perturbation approach to rough surface scattering does not require a spe-

cific density function for ^s l the results are dependent upon the waveheight

spectrum. When the surface wind has only been blowing for a short time or

the fetch is small relative to the decorrelation length of ^ s , the surface

height will no longer be a stationary or homogeneous stochastic process [12].

While this fact does not alter the basic perturbation theory result, it does

mean that the "spectrum" will exhibit both temporal and spatial variation.

More precisely, strong surface nonlinearities will give rise to a surface

height autocorrelation function which depends on bath where and when the

9
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measurement is made. The impact of this fact will be discussed in section 3.

In view of (1), perturbation analysis gives rise to a low frequency soiu-

tion for rough surface scattering. That is, for (1) to be satisfied for

.large wind speeds or surface heights, X  
must necessarily be large, i.e., low

frequency. Thus, except for near calm surface conditions, (1) cannot be truly

satisfied for the microwave frequencies, say, above 1 GHz.

2.2 Physical Optics Scattering

Whereas perturbation theory results in a low frequency scattering solu-

tion, the so-called physical optics approach yields a .solution which is exact

in the zero wavelength limit, i.e., a o -}0, and approximate for X  
>0. In

other words, the physical optics technique is an asymptotic approach which

only approximately accounts for the true diffraction nature of the problem.

The basic assumption in the physical optics technique is that at every

point on the surface the radius of curvature is so large that the surface

may be considered to be locally planar. If, in addition, it is assumed that

there is no multiple scattering, then the field at any point on the surface

is determined entirely by the incident field at the point. If a point on the	 ?
3

surface is shadowed by another part of the surface, the field at the point in

question is assumed to be identically zero. Thus, knowing the fields on the 	 ?
3

surface, one can construct equivalent currents and the far-zone scattered

°s
field is the Fourier transform of these currents. Because of the difficulty

involved in determining the illuminated part of the surface, shadowing is ap-

proximated in a pure ray optics manner. In the ray or geometrical optics

limit, it can be shown [13] that the effect of shadowing is equivalent to mul-

tiplying the no-shadowing result b a so-called shadowing function which de
s

pends upon the slope statistics of the surface and the angle of incidence.

10
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Thus, the only difference between the physical optics approximation and a

pure geometrical optics analysis is that for physical optics the currents are

Fourier transformed to find the far-zone fields while the geometrical optics

field is determined by the laws of-reflection at the surface.

In terms of essential surface assumptions, the Above discussion may be

summarized as follows; the radius of curvature at -every point on the surface

must be much larger than the wavelength, i.e.

P >> ao .	 (5)

to avoid multiple scattering the slopes must be everywhere small, i.e.

kx I < 1	 kyI < 1	 (6)

and in order to not deviate too much from the basic geometrical optics char-

acter of the solution (a o -+0) the projected rms surface height should be

large relative to the wavelength, i.e.

1	
`£

C

1

k 2 
cos 6 >>ko 	.	 (7)	 k

where 6 is the angle of incidence relative to the normal to the mean flat

S
surface. If conditions (5) - (7) are satisfied, the physical optics approxi-

mation for the scattered fields will be valid. A particular instance where

this point was demonstrated using terrain scattering data is given in [14].:

It should be noted that both the perturbation and physical optics ap-

proaches require that the surface slopes be everywhere small. For the physical

*For the perturbation approach, Cs is used to represent the random height of
the surface, while ^k is used in the physical optics case. The 'subscripts
are intended to serve as reminders, and they are also convenient for the dis-
cussion of the composite surface.

11
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optics approach, this stipulation justified ignoring multiple scattering ef-

fects. For the first order perturbation fields, this condition appears to

have the same effect; that is, multiple scattering is not included in the

first order perturbation solution. This statement isjustified by Valenzuela's

demonstration [5] that the second order perturbation fields give rise to

depolarization and they are also of the same form as deterministic multiple

scattering solutions. The reason for raising this point is that in the past

some researchers have ignored (7) and applied the physical optics approach to

a surface with small height perturbations. For a perfectly conducting sur-

face, the resulting field is identical to the first order perturbation field

obtained using the technique of section 2.1 for horizontal polarization. For

vertical polarization and backscattering, the physical optics result and the

first order perturbation solution only agree near normal incidence. The

reason for disagreement between the two solutions for vertical polarization

is not due to multiple scattering for, as shown above, neither result includes

i multiple scattering. The source of disagreement is more fundamental. The

physical optics approximation is based upon geometrical optics which is a

scalar solution to the scattering problem. Thus, although the physical optics

approach appears to retain the vector character of the problem, it really does

not properly account for the vector nature of the diffraction problem. The

physical optics solution contains the correct asymptotic dependence of the

fields on the wavelength, but it does not show the true vector character of

the scattered fields for all angles of incidence. This is exactly why there

is an angle of incidence dependence in (7). The fact that the physical op-

tics approach, when properly applied, results in no more information than the

basic geometrical optics solution has been previously pointed out-by Sarrick

x,

t

R
k

s
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[151. Because of this equivalence, the terms physical optics and geometri-

cal optics will be used interchangeably throughout the remainder of this re-

port.

Barrick [151, in a significant contribution to the theory of rough sur-

face scattering, has demonstrated that for physical optics scattering a° is

determined by either the joint probability density function for the surface

slopes or the Fourier transform of the joint probability density function of

the surface height, i.e., the characteristic function of the joint height

density. This result is important because it provides a unifying link be-

tween many earlier, and apparently diverse, analytical approaches. From a

remote sensing viewpoint the result is even more important because it pro-

vides a direct connection between a° and a directly measurable quantity, the

joint slope density function. Furthermore, the result is not restricted to

any specific form for the surface height probability density function nor is

the basic result altered by surface nonlinearities.

i

2.3 Composite Surface Scattering

For microwave frequencies, it might seem that scattering from the ocean

surface could be analyzed using the physical optics approach since the rms

height of the waves are usually large. Unfortunately this is not the case.

A wind driven sea comprises many scale of roughness. Although the character-

istic of the surface generally satisfy conditions (6) and (7), it is not al-

ways possible to satisfy (5). That is, the small ripple-like waves may well

exhibit a small radius of curvature relative to the electromagnetic wavelength.

Thus, it is not possible to describe the total scattering process entirely by

either the physical optics approach or the perturbation technique separately.

However, based upon the simple observation that the small amplitude and

= j

13



wavelength waves appeared to "ride" on top of the large- amplitude and wave-

length waves, a physical argument was presented [16] to combine the two ap-

proaches. In the resulting model, when applied to backscattering, the physi-

cal optics approach was assumed to be valid near normal incidence with only

the large scale wave structure contributing to the joint slope density func-

tion. For an angle of incidence greater than roughly 30°, the scattering was

considered to be due to "patches" of small scale waves tilted by the larger

scale waves. This model for microwave scattering by the sea surface has come

to be known as the composite surface scattering model primarily because of the

incoherent addition of the large scale dependent physical optics result with

the tilted plane Bragg scattering solution.

During this study, a more rigorous analytical approach to the problem

of composite surface scattering was developed [1] forjointly Gaussian sur-

faces. The resulting solution was an improvement over the more heuristic com-

posite surface scattering model. The analysis was restricted to jointly Gaus-

sian surfaces because only then could the surface height be split into statis-

tically independent large and small scale components. An unfortunate aspect

of the jointly Gaussian assumption is that it tends to confuse ones physical

insight into the true mechanisms behind the scattering. Furthermore, while

the Gaussian height assumption is probably not too unreasonable, the slopes

may exhibit a more significant departure from the assumed Gaussian shape for

wind driven seas. Of course, such departures would also indicate nonlineari-

ties in the wave generation process and, quite possibly, wave-wave interac-

tion. This, in turn, would probably invalidate the assumption of statistical-

ly independent small and large scale height structure. If, for the present,

this possibility is ignored, the Gaussian restriction can be relaxed and

14
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results of [1] can be generalized. In particular, using the approach $ivcn

in [1] and the results in [13], it can be shown that the backscattering cross

section per unit area, for an incident field with p-polarization and a scat-

tered field with p`-polarization, is given by the following for a perfectly

conducting surface;

	

a ° 	 Tr6 , sec

	

4 6 pt (2kkcosB	 2kkcosB )P lk (ki'I2kkcos6	 2kkcos8 /

	

pp	 pp	 \ 0	 0	 0	 0

	

k +k	 -k +k	 2	 k +k	 -k +k
2 2	 x ox	 y oy	 x ox	 y oy

+ 2kosec B	 J Irpp,t 2k0cos9 , 2kocos6) pR 2k0
cos9 , 2kocosB)

. 
F	

k -kx+kox. Ay + koy) S (k ,k )dk dk
	1R (^i 2k0

cos6 , 2kocose	 x y x y

k k

	

k +k	 -k +k	 2	 k +k	 -k +k
_	 x ox	 y oy	 x ox	 y oy1

	

I rpp'( 2k cos	 2k cos ) I pt ( 2k cos , 2k cos /
0	 0	 0	 0

-kd -kd

19,

 A cosO , 2ko os6) S(k
x,ky)dkxdky	 (S)

where 6 is the angle of incidence relative to the normal to the mean surface

and 0 is the angle relative to the surface oriented x-axis. The unit vector

k  specifies the direction of propagation of the incident field and it is given

by (see Figure 1)

ki = - sin 6 cos ^ x = sin 6 sin ^ y - cos 9 i

i
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Figure 1. Coordinate system and surface geometry for
the condition of hackscattering.

16

4

xaa.HicJVr+Bi (gYw^MYiWn	 51M^M^?4111.



The quantity p j (C tx' ^ Zy ) is the joint slope probability density function for

the large scale surface, P
it (ki1Cix 

, r ay ) is the probability that a point on

the large scale surface having slopes 
CR,x 

and 
^kY 

will be illuminated by an

incident ray having a direction k i , and S(kX,k
Y ) 

is the surface height spec-

trum. The factor rpp ,(C ZX2 C ky ) depends Ripon the incident and scattered field

polarizations and the slopes of the large scale surface [1]. Also, the quan-

tities 
6 p 

„ kox , and koy are defined as follows;

1	 p = pr

dpp,
0	 p # p,

and

kox = -2ko sin6 cosh

(9)

ko y - -2k
0
sin6 sink

and an exp(jwt) time convention is used. The wavenumber k  represents the

dividing point between the large scale structure, (1kx I <k d )  n (lky I <k d ),

and the small scale structure, (1 kX I >kd ) U (jky I >kd ). As shown in [1], for

a Phillips-type spectrum, the criterion for determining kd is 4k 2 Cs Z 0.1.

The first term on the right hand side of (8) represents the near normal

incidence dominant geometrical optics scattering while the second term is due

to the (large scale modified) small scale scatter contribution. The form of

(8) suggests that near normal incidence measurements could be used to infer

the behavior of the joint slope density function and P it ( • ) together. This

measured variation for 6 ^ 20° could then be substituted in the second term

to determine the spectral behavior using wide angle scattering data (6 ?40°).

A more detailed discussion of the ramifications of (8) are presented in [1].
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It should be noted that in the derivation of (8) it was assumed that (1)
s

and (2) were satisfied for the small scale structure while (5) through (7)

were satisfied for the large scale structure. More important, however, is

the fact that the two random heights ^ and ; 2 were assumed to be statistical-

ly independent. As can be shown, the derivation leading to (8) actually re-

quires that the small scale height and the large scale slopes be independent

processes. One way of modifying (8) to account for the fact that Cs and ^kx

and ^Zy may not be independent is to replace S(kx'kY) by the "conditional"

height spectrum S(kx, ky) where

//	 -k +k	 -k +k l
S(kx,ky) = S{kx,ky I Ckx	 2kocosB sky	 2ko 8/	 (10)

That is, since the only contribution to (8) comes from that part of kxky-space

corresponding to the small scale structure, the spectrum in (8) is the small

scale height spectrum when the large scale slopes are as shown in (10), i.e.
x'

_ -k +k	 -k +kx ox	 Y cy

^kx	 2k0cos0	 sky	 2k0cos8	 (11)

More formally, S(kx,ky) is defined as the Fourier transform of the autocorre-

i
lation function R(Ax,Ay) where

s

W fm

R(Ax,AY) =

fC

s (xl >YI)^s (x2 , y2)

	

1	 2

a -kx+kox	 -kY+k2Y

• £ss C sl
 ,

s	 2k2kocos0	 sky 2kocos0) d^,sid^s2

r	 1 2	 '

(12)

}	
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In (12), f^ 
s2 

is the joint probability density function of the small scale
sl 

heightsand	 conditioned on the fact that the large scale slopes are
sl	 s2	 _

given by (11). Replacing S(kx k y ) in (8) by S(kx,ky) is a formal means of ac-

counting for the possibility that the small scale heights and the large scale

slopes may not be independent. Assuming that the large scale slopes are rea-

sonably symmetric in the upwind -downwind directions *, any asymmetries in a°

for large angles of incidence (8 z30') would imply a preference by the small

scale waves for certain large scale slopes. This, in turn, might permit the

determination of the direction of the wind speed. Caution should be exercis-

ed, however, in attempting to extrapolate wave tank measurements to open

ocean conditions for this type of problem due to the difficulty in generat-

ing and sustaining large scale waves in wave tanks. For example, the theory

presented here argues that the scattering mechanism is basically Bragg reso-

nance whereas Schooley [17] obtained an upwind-downwind dependence from wave-

tank measurements which he attributed to tilted-facet scattering. It is not

clear how Schooley's results can be compared to the present theory since his

tank was only 70 cm long and this certainly limited the degree of large scale

structure present in his experiment.

3.0 THE IMPACT OF SURFACE CONDITIONS ON SPECIFIC SENSORS

The previous section has reviewed the basic surface assumptions which

are inherent in existing theories for the backscattering cross section per

unit scattering area, Q°. However, not all active microwave sensors rely on

a measurement of 00 to infer surface characteristics. For example, of the

three active sensors presently being constructed for use on SEASAT, only the
)s

*This assumption can be checked by examining the upwind -downwind dependence
in the near normal incidence scattering data.
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scatterometer relies on a measurement of Q° to infer specific surface condi-

tions; the radar altimeter and the synthetic aperture radar use different

•	 characteristics of the backscattered signal to derive their surface measure-

ments. While it is certainly restrictive to consider only the above three 	 3
i

instruments, these are probably the most highly developed and most nearly
x

operational systems. Thus, it is essential that the effects of varying sur-

face conditions on the sensing capabilities of these instruments be fully

understood.

3.1 Radar Altimeter

The conventional short pulse, pulsewidth limited radar altimeter accom-

plished two measurements which are of primary concern in oceanographic remote

sensing. The first comprises a time delay measurement which, when coupled

with accurate orbit information, can be translated into a measurement of the

geoid height. The second entails measuring the shape of the average return

waveform which, in turn, can be related to the rms height of the random waves

on the surface. The two measurements are coupled in a sense due to the track-

ing loop in the altimeter; that is, changes in the shape of the average re-

turn are also reflected in the basic altitude measurement.

3.1.1 Sea State Bias

When the illuminated area on the surface comprises many surface height

decorrelation intervals, the effect of the random height of the waves is
3

equivalent to a convolutional smearing of the radar's point target response

[18]. That is, the effective point target response of the system is broadened

by the convolution of it and the probability density of the surface height.

For automated data processing purposes, it is also convenient to assume that

s;
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the surface height is Gaussian. Then, simplified algorithms can be designer'

to process waveform data for rms surface height and estimates of the effect ...

the surface heights on the tracking loop can be made. The sensitivity of the

altimeter's tracking loop to changes in the distribution of the sea surface

heights is called sea state bias. That is, changes In the distribution of the

sea surface height result in a change in the shape of the average return wave-

form which, in turn, causes the tracking loop to deviate from its nominal

tracking point on the average return. For relatively long pulse systems such

as Skylab or GEOS-3, sea state bias only becomes significant under extremely

high seas. However, for the SEASAT altimeter where the precision of the alti-

tude data is supposed to be near 10 cm, sea state bias is not negligible and

the altitude data should be corrected for this effect.

The basic sea state bias effect encompasses two problems. The first and

most obvious is that the surface height density function is not always Gaus-

sian [10]. The second but more fundamental problem is that the height density

"seen" by the radar is not necessarily the same density as would be recorded

by an in situ device such as a wavepole [19]. Quite obviously, the latter

problem must be resolved before the former is even applicable. This latter

problem has been discussed by a number of researchers, , [19], [11], [20].

Miller and Rayne [19] examined data acquired by a one nanosecond (pulse

length) radar operating from the Chesapeake Light Tower [21] and concluded

that the radar observed height density was a weighted replica of the true sur-

face height density. The weighting arises as a result of a height dependence

in the surface scattering cross section per unit area or a°. However, it is
	 ]

;r
not at all obvious that the tower experiment is representative of satellite 	 a; u

,u

altimetry. For example, the mean height from the radar to the surface was

just under 22 meters while the spot size diameter was about one meter. This

J	 .
^.	 r	 !	 r	 __	 1



spot size certainly does not contain many surface height decorrelation inter-

valsl In addition, LeVine [22] has recently demonstrated that, for small

separation distances between the radar and the surface, it is possible to have

focusing by small concave facets on the surface. Since these concave facets

would most likely be concentrated near the troughs of the waves, this would

result in a stronger return from the troughs than the crests. It should be

noted that this eras exactly the type of behavior observed in the data from

the tower experiment. In summary, the tower data is probably more applicable

to a wave profiling radar rather than a height-averaging radar such as em-

ployed in satellite altimetry.

Seltzer [20] has recently pointed out the fact that when the radar range

resolution is less than the standard deviation of the surface heights the

scattering cross section per unit area should be replaced by the scattering,

cross section per unit volume. The scattering cross section per unit volume

is just the product of the volume density of specular points and the height

conditioned mean scattering cross section per unit specular point. Seltzer

has shown that for a Gaussian surface, the probability of finding a specular

point at a heigb.t z above the mean surface is not Gaussian. However, this is

not necessarily the final answer because one must also know how the average

absolute value of the principal radii of curvature varies with z, since this

determines the scattering cross section per unit specular point. In a con-

versation with Dr. r. S. Walsh of NASA/WFC, Dr. Seltzer has indicated that

when this dependence is included, the difference between the scattering cross

section per unit volume and the more conventional product of a° and the proba-

bility density of the height is much less significant for the Gaussian sur-

face. It would be most desirable to extend Seltzer's analysis to non-Gaussian

zs_ 22



surfaces such as might be encountered under extremely wind driven conditions.

This would provide some estimate of the degree of sea state bias resulting

from surface nonlinearities:

3.1.2	 Swell Dominated Conditions

A final problem which deserves consideration is the response of a radar	 '+to

altimeter to swell dominant surface conditions. 	 Under situations where the

wind driven sea height is greater than or at least equal to the swell height,	 *,

it is normally assumed that the rms surface height measured by the altimeter 	 '.

is just the root sum square of the wind driven and swell heights. 	 The justi-

fication for this step is based upon the assumption that the two processes

are statistically independent.	 Although wave-wave interaction could certainly

weaken the validity of this assumption, the procedure appears to work reason-

' ably well 	 in practice.	 However, when the swell is much more dominant than	
i

f the wind driven sea, the situation is not quite so clear. 	 For example, if
E

there was absolutely no surface wind blowing, the spectral characteristics of

` the swell would depend upon where and when the swell was created. 	 As the

swell propagates away from its driving force, it will become a very unidirec-

tional narrow band process centered about a very low frequency [23] with its

amplitude decreasing and its period increasing with propagation distance.

Thus, eventually, the surface appears to be a monochromatic sinusoid and the

use of random scattering theory is, at best, questionable.
ii

For the more realistic case of both swell and wind driven height compo-

nents, the analytical approach should be dictated by the bandwidth of the

swell.	 That is, if the swell is sufficiently narrowband, the mean surface

e

*This statement must be tempered by the fact that the ground truth source for
comparison, generally, is NOAA hindcast data and its accuracy is unknown.'
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should be taken to be sinusoidal rather than planar as in section 2. In this

case, the wind driven components can be treated as a random modulation of the

sinusoidal mean surface. The same approach given in [1] can be used to com-

pute v°, however, tho mean surface will be sinusoidal due to the narrowband

swell. A procedure for estimating the effect of a sinusoidal mean surface

upon the average return waveform is given in [24]. This particular analysis

was developed to determine the effect of siuusoidal geoia undulations upon the

average return waveform, however, it applies equally well to non random swell.

Unfortunately, the calculations in [24] did cover undulation wavelengths of

less than 1 km.

It should be noted that there are two motivating reasons for trying to

better understand the sea state bias and swell response problems. The primary

reason, of course, is to obtain quantitative estimates of the effects of these

situations on altimeter data. " second, but no less important, reason is to

determine the impact of these surface conditions upon automated data process-

ing algorithms for altimeter data. Of particular importance are algorithms

which are incorporated into the altimeter design to reduce telemetry data rates,

i.e. such as maximum likelihood processors for waveheight estimation.

3.2 Scatterometers

c	 The scatterometer basically provides measurements of 	 as a func-

tion of the angle of incidence, 0, and the direction of incidence, 	 For

B ?20°, recent aircraft measurements [25,26] have shown that Q° is a reason-

ably sensitive function of surface wind speed. Furthermore, for 0 constant

r
these same measurements indicate a 2 to 4 dB difference between upwind/down-

r

	

	 wind and crosswind values of e°. Thus, the scatterometer has the potential

of providing estimates of the surface wind vector.

is
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For 20° < B < 90° and microwave frequencies, the mechanism responsible

for the scattering is the large scale modified Bragg resonance between the
t

electromagnetic field and the capillary surface components, see section 2.3.

S

Unfortunately, not many in situ measurements itt the capillary range of the
t

surface height spectrum have been reported. 	 This, of course, is due to the y

fact that such measurements are extremely difficult to obtain. 	 Recently, a
i

a
];

x

system has been reported [27] which may be capable of providing spectral data
x

on the behavior of capillary waves at least in the frequency domain. 	 However,

difficulties were experienced in attempting to obtain the equivalent spectral
i•

information in the wavenumber domain.

The scatterometer measurements reported in [26] imply some rather inter-

esting points about the behavior of capillary waves under wind driven condi-

tions.	 The	 fact that a°(9), for 6 > 20°, increases with wind speed seems to

i	 indicate that the capillary region of the spectrum is not insensitive to wind
c

speed as has been previously hypothesized [12].	 In-Situ measurements present- 3

ed in [27] also show a similar increase in spectral amplitude in the apprnxi-
s

mate* capillary range and, as previously noted, these are wave. tank measure-

ments.	 Also, the variation of a° with azimuth angle ^ indicates that the cap-

`	 illary waves are not omnidirectional in their directional dependence. 	 Accord-

ing to (S), a directional dependence in a° for e > 20° could result from
6

3

either a directionality in the capillary region of the spectrum or a differ-

ence between the upwind/downwind and cross wind large scale slopes. 	 However,

for 6 S 20° the measurements given in [26] do not show any asymmetry in a° d

*The spectral measurements reported in [27] are given in the frequency domain
a

so, without a well-defined dispersion relation, it is somewhat difficult to
pin down the capillary range exactly. 	 However, the wind sensitivity is pres-
ent up tc	 he frequency limit of the measurements, i.e. - 20 Hz.

25
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with the angle ¢. Using (8), this would imply that the large scale principal

slope components are nearly equal. Hence it must be the capillary waves which

are spreading in a directional manner. This point is also at variance with

previous notions about capillary wave behavior [28]. Finally, Wu [29] has

recently reexamined Cox and Munk's classic mean square slope data in an at-

tempt to estimate the spectral constant and the so-called cutoff wavenumber,

i.e., the wavenumber at which the waveheight spectrum starts to decay much more

rapidly than k 4 . For a wind speed of less than about 7 m/sec, Wu found that

Cox and Munk's data implied a cutoff wavenumber of about 2.5 (cm) -l . This re-

sult is definitely not supported by the a° measurements reported in [26]. For

an angle of incidence of 30°, the Bragg wavenumber for the AAFE [26] system is

2.79 (cm) -1 and this is greater than the cutoff wavenumber proposed by Wu.

Thus, a'(B) should decay very rapidly with 8 beyond 30 0 if the Rnp.rtrum were

truly cutoff as proposed by Wu; however, the a° measurements did not indicate

any rapid decay for wind speeds of 3 and 6.5 m/sec. In fact, the AAFE mea-

surements imply that the cutoff wavenumber would have to be greater than 4.3

1
(cm) since a° data were acquired out to 50°. Thus, the measurements report-

ed in [26] do not support the concept of spectral cutoff below k = 4.3 (cm)-i
i

which, incidently, is greater than the neutrally stable wavenumber. This re-

sult may also be a clue to the behavior of capillary waves which has previous-

ly eluded measurement.

The present plans for the SEASAT scatterometer a° data entail using am-

pirical relations between wind speed and a° to convert the basic data into

estimates of surface wind speed. The empirical relationships are based on

the aircraft derived measurements reported in [26]. While such a data inter-
3

pretation procedure may be acceptable for an experimental program where the

sensor measurements are to be compared with ground truth data, it is not clear

that such a system would be acceptable from an operational standpoint. It



therefore appears that there is a very definite need for further oceanographic

resesrch into the behavior of the capillary portion of the waveheight spec-

trum. In addition, it would seem that another point of importance is the ex-

trapolation of wave tank measurements to open ocean conditions. Hopefully,

the SEASAT program will provide sufficient high quality ground truth data to

better understand some of the problems associated with properly interpreting

scatterometer data.

As previously noted, the high frequency portion of the waveheight spec-

trum is very difficult to measure using in-situ mechanical devices. Wright

and his co-workers at the Naval Research Laboratory have made great strides

in this area [33-39]. Ironically enough, these measurements have been accom-

plished using radar techniques [35]. The key to their success has been the

use of a very controlled situation in which the assumptions of the scatter-

ing theory are known to be valid. Their basic approach comprises the use of

a doppler radar system with precisely controlled illumination of the surface.

For such a system, the observed doppler shift in the backscattered signal is

equal to the frequency of the water wave, and the output of the radar is pro-

portional to the waveheight spectral density evaluated at the Bragg resonance

wavenumbers, i.e.

w

s.

T(kx = 2k0sin9, ky = O,w)

where T and S(kx,ky) are related by [12]

W

S(kx ,ky) 	 f T(kx ,ky ,w)dw	 (13)

One of the most significant measurements accomplished with this system related

e
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3.3 Synthetic Aperture Radar

Synthetic aperture radar sensors have recently received a great deal of

attention because they appear to have the potential to provide very wide cov-

erage and near photographic-like, high resolution images of the ocean surface

[30]. Their image-like data product seems to be particularly appealing to

earth scientists who are used to dealing with visible and infrared images of

the earth` s surface. There is no basic argument with the fact that synthetic

aperture radar (SAR) has a high resolution, wide swath coverage capability.

i	 However, the fundamental question with this type system when operated over

the ocean is what exactly is it imaging? Quite apart from the fact that the

SAR system responds to backscattering while most optical photographs repre-

sent bistatic scattering, the more basic question has to do with what exactly

the SAR is responding to on the surface.
k

A recent paper by Elachi and Brown [31] provides an excellent review of

some of the analytical models that have been proposed as means for answering

the above question. Two of these models are based upon incoherent scatter-

ing theory, while another two are based upon the effect of the surface motion

on the coherent signature of the surface. Quite frankly, it is difficult to
i

understand how incoherent scattering models apply to a coherent system like

F'

28

to wave straining [37] or the preference of capillary waves for a particular

slope of the large scale wave structure. These are the type measurements

which are required to explain upwind/downwind dependent scattering [26]. Also,

these data are essential to validating such theories as indicated by equation

(8) in which one needs to know the relationship between the small scale

heights and the large scale slopes. One can only hope that a system such as

this will eventually be used on towers or ships for open ocean measurements.
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;t the SAR,	 That is, for typical resolutions of 10 to 30 m and coherent inte-

gration times of from 0.4 to 1 sec., it is doubtful that the scattering from

a given resolution cell or pixel can be considered to be random. 	 For moder-

ate to high sea states, the resolution cell would certainly not comprise many

L surface height decorrelation intervals, nor would a one second observation

time encompass many temporal decorrelation intervals. 	 Thus, at the very best,

the measured backscattered power from a single resolution element would com-

prise only a few statistically independent samples. 	 Hence, the given mea-

surement would have a very high variance and it would be difficult to relate

it to CO , which is proportional to the mean value of the return power. 	 Quite

possibly this Is why some of the images reported in [31] show a "wave" pat-

tern regardless of the look angle of the radar relative to the direction of

travel of the large scale surface waves.	 That is, the imaged "wave" pattern

is may be nothing more than statistical "noise" in the process due to under
z

sampling the return power from a given resolution cell. 	 It is worth noting

that this is not the case with an optical photograph because the bandwidth of j

the illumination and reeceiver are so wide as to comprise many independent

samples of a given resolution cell [32].	 For the SAR system, this situation I
1

could be improved by either using a larger transmitted signal bandwidth or

frequency hopping; however, these options may be limited by signal-to-noise

and system complexity considerations. -

The SAR performance also suffers from the motion of the surface; how-'

ever, this effect is reasonably well understood [31] and thus it becomes a

basic system limitation. 	 The problem of image interpretation is much more

fundamental and requires a greater in-depth theoretical electromagnetic scat- ,

tering examination than it apparently has received to date. Given the degree
'.d
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of correlation between the aircraft based SAR images and ground truth data

reported in [311, it will be most fortuitous if the SEASAT SAR system makes a

significant contribution to the field of microwave remote sensing.
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