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ABSTRACT
 

This document is primarily concerned with the performance of
 

the 1.6 GHz airborne scatterometer system which is used as one
 

of several Johnson Space Center (JSC) microwave remote sensors
 

to detect moisture content of soil. The system is analyzed
 

with respect to its antenna pattern and coupling, the signal
 

flow in the receiver data channels, and the errors in the signal
 

outputs. The operational principle and the sensitivity of the
 

system, as well as data handling are also described. No dis­

cussion is made about the interaction of the transmitted radio
 

frequency (RF) waves with the terrain surface. The dielectric
 

property of the terrain surface, as far as the scatterometer is
 

concerned, is contained in the assumed forms of the functional
 

dependence of the backscattering coefficient a on the incident
 

angle 0.
 

The finite cross-polarized gains of all four 1.6 GHz scatterometer
 

antennae are found to have profound influence on the cross-polarized
 

backscattered signal returns. If these signals are not analyzed
 

properly, large errors could result in the estimate of the cross­

.
polarized ao It is also found necessary to make corrections to
 

the variations of the aircraft parameters during data reduction
 

in order to minimize the error in the a0 estimate. Finally, a
 

few recommendations are made to improve the overall performance
 

of the scatterometer system.
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1. INTRODUCTION
 

Three scatterometer systems at the frequencies of 0.4, 1.6, and
 

13.3 GHz have recently been installed on a NASA aircraft as
 

additional microwave sensors for the Joint Soil Moisture Experi­

ment (JSME, ref. 1). These scatterometers at aircraft altitudes
 

transmit RF waves downward and measure the power of the waves
 

backscattered from a terrain. The ultimate results from the
 

operation are expressed in terms of the backscattering coefficient
 

co as a function of the incident angle 0 of the RF waves. Since
 

a0 (0) at a given frequency depends only on the surface properties
 

of the terrain such as soil moisture content, surface roughness,
 

vegetal cover, and soil type, these surface properties can be
 

estimated (remotely sensed) by studying the magnitudes and varia­

tions of ao with 0.
 

The scatterometer remote sensing of the soil moisture content has
 

been performed almost exclusively on the ground surface by a
 

truck-mounted system in the past years (ref. 2 and references
 

therein). At satellite altitudes a short scatterometer experi­

ment on the detection of the ground soil moisture content was
 

performed in one of the Skylab missions (ref. 3). The results
 

were encouraging, but not as convincing as those from the
 

measurements of the truck-mounted system. The JSME airborne
 

scatterometers were implemented to serve as a stepping stone from
 

a ground-based system to a satellite platform. In addition to
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being the remote sensing tools themselves, these scatterometers
 

can also provide references and calibrations of the RF wave
 

backscattering for the active microwave remote sensors at satel­

lite altitudes.
 

The 13.3 GHz scatterometer system has been studied rather exten­

sively in the past (refs. 4, 5, and 6). The most recent study
 

on the system based on the new laboratory measurements of the
 

system parameters was reported by Rosenkranz (ref. 7). However,
 

a detail analysis has not been performed on either the 0.4 or
 

the 1.6 GHz system. Reports on these two lower frequency systems
 

were limited to those by the vendors and a general system des­

cription by Reid (ref. 8). It is strongly felt that at least a
 

new, adequate analysis on these two systems is required in order
 

to be able to assess their performances and limitations, especially
 

after some replacements of components were made over the past
 

years. Therefore, it is the objective of this document to provide
 

an up-to-date analysis of the 1.6 GHz scatterometer system based
 

on the most recent measurements of the system parameters. A
 

similar system analysis on the 0.4 GHz scatterometer is being
 

performed and will be reported in another document.
 

This document is organized into six sections. The system charac­

teristics, the antenna and the system functional descriptions,
 

the procedures of data handling, and the expected receiver signal
 

level at aircraft altitudes are discussed in Section 2. The
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scatterometer system analysis is given in Section 3. In this
 

section, the data processing equations to estimate a0 are
 

presented and a typical backscattered signal is traced through
 

-the receiver channels. Some coefficients appearing in the data
 

processing equations are identified with the newly measured
 

systems parameters in the process. The antenna pattern data are
 

studied for the effects of side lobe and cross-polarization
 

levels in Section 4. Section 5 gives the numerical results.
 

These include the estimates of 0 and the estimates on the effects
 

of antenna side lobe and cross-polarization levels. Finally, the
 

major conclusions of the report and a few suggestions on the
 

future endeavor are contained in Section 6.
 

Four appendices are included at the end of the document to provide 

a detail list of the results from the laboratory measurements on 

the 1.6 GHz scatterometer system parameters, the mathematical 

models on the mixers and the PIN diode modulators, and a listing 

of the computer program for the estimation of a 0 
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2. SYSTEM DESCRIPTIONS
 

2.1 SYSTEM SPECIFICATIONS
 

The NASA/JSC 1.6 GHz airborne scatterometer is a continuous-wave
 

Doppler radar system (refs. 8, 9 and 10), designed to measure the
 

backscattering coefficient ao as a function of the angle of inci­

dence 0 for various types of the earth'.s terrain. The scatter­

ometer antenna pattern is fan-shaped {hich covers the e range,
 

along the aircraft flight path, of approximately ±50 to ±600
 

from the vertical. The scatterometer receives the backscattered
 

signal at all angles of incidence simultaneously. As a result
 

of the aircraft's forward motion, different Doppler frequency
 

shifts are introduced in the return signals from different 0.
 

The power of the return signal from a ground resolution cell
 

associated with a given e is finally retrieved by bandpass fil­

tering at the corresponding Doppler frequency during data pro­

cessing.
 

The overall system specifications and capabilities are given in
 

Table 2-1. As indicated in the table, there are three functional
 

modes of the scatterometer operation. In the first two modes of
 

operation, the RF waves are transmitted with a single fixed
 

polarization (either the horizontal polarization for Mode 1 or
 

the vertical polarization for Mode 2) and the backscattered waves
 

are received with both like and cross-polarizations. In the
 

third mode of operation (Time-Share Mode), the transmission of
 

the RF waves is automatically alternated between horizontal and
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TABLE 2-1
 

THE 1.6 GHz SCATTEROMETER SYSTEM CHARACTERISTICS
 

TERMS
 

Type of System 


Transmit Frequency 


Transmitter Power Output 


Number of Antennae 


Antenna Gain (two-way) 


Antenna Beamwidth (two-way) 


Antenna Along-Track Coverage 


Transmitter/Receiver Isolation 


Isolation Between Antennae 


Antenna VSWR (Max.) 


One-Way Side Lobe Level 


Position of Peak Antenna Gain 


MaximumSkew Angle 

(Antenna pattern)
 

Polarization 


Functional Modes 


Dynamic Range of 


Receiver Sensitivity 


Receiver Noise Figure 


Signal to Noise Ratio 

(1500 ft. altitude)
 

CW Doppler
 

1.6 GHz ± 10 MHz 

1.0 Watt
 

Four, two transmit and two receive
 

-22 dB
 

~i00
 

-1200 fan beam
 

-60 dB
 

25 dB minimum
 

1.5:1
 

-20 dB below main beam
 

-±50o (angles of incidence)
 

~±0.50
 

HH, HV, VV, VH
 

1) H transmit
 
V and H receive
 

2) V transmit
 
V and H receive
 

3) Time Share, alterfiating between
 
1) and 2)
 

-65 dB
 

-150 dBm/10 Hz
 

-20 dB
 

> 10 dB
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vertical polarizations at a rate of 0.5 Hz. Only the first
 

two modes of operation were applied in the Joint Soil Moisture
 

Experiment (JSME). Between these two modes of operation, the
 

Mode 1 turned out to be the most reliable one. The Mode 2
 

operation sometimes could give erroneous results possibly due
 

to the imperfection in the original system design.
 

In the next few subsections, the antenna arrays, the operational
 

principle, and the receiver sensitivity are further elaborated.
 

The tape recording system as well as the data handling technique
 

are also briefly described.
 

2.2 THE ANTENNAE
 

There are a total of four antennae in the 1.6 GHz scatterometer,
 

two of them associated with the transmitter and the other two
 

with the receiver. Each antenna consists of six dipoles in an
 

array. The dipole orientations of the two transmitting antenna
 

arrays are orthogonal to each other so that either the vertically
 

or the horizontally polarized, fan-shaped beam can be generated.
 

The two receiving antenna arrays are also oriented in the same
 

way that both vertically and horizontally polarized RF signals
 

can be collected. The nominal one-way, cross-track beamwith is
 

about 10 to 12 degrees as measured from each of the four antenna
 

radiation patterns.
 

The along-track antenna beam coverage is normally from -600 in
 

the aft to +600 in the fore directions. However, as shown in
 

Figure 2-1, the antennae were mounted under the tail of the NASA
 

C130 aircraft. The sloping aircraft body would certainly change
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Figure 2-1.- Side view of C-130 showing coordinates for the 1.6 GHz scatterometer.,
 



the antenna radiation patterns in the fore direction. Therefore,
 

only the backscattered signals in the aft direction (0 to -60
 

degrees) can be reduced with the antenna pattern data discussed
 

in Section 4, which were measured without a mockup to simulate
 

the aircraft frame. The signals recorded in the fore direction
 

may be rendered useful if the antenna gain measurements were
 

made with a mockup simulating the aircraft frame.
 

Throughout this report the incident angle 6 is always measured
 

from the nadir. The plus and minus signs in C indicate the fore
 

and aft directions, respectively. Therefore, 8 = -500 implies
 

no more than the incident angle of 500 in the aft direction.
 

2.3 PRINCIPLE OF OPERATION
 

The operational principle of the 1.6 GHz scatterometer had pre­

viously been described in several reports (reference 8, 9 and 10).
 

For the sake of signal analysis in the later sections and the
 

completeness of this document, it will be briefly described
 

again in this subsection. Figure 2-2 shows the block diagram of
 

the scatterometer system. It is essentially the same as Figure
 

3-1 in the report of Reid (ref. 8).
 

The scatterometer transmits RF power at 1.6 GHz continuously
 

through either the horizontally or the vertically polarized antenna.
 

For each polarization state of transmission, the backscattered
 

signals are-collected by both the horizontally and the vertically
 

polarized receive antennae. Consequently, four distinct back­

scattered signals are in order:
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1. 	Horizontally polarized return when transmitting a horizon­

tally polarized wave (HH),
 

2. 	Vertically polarized return when transmitting a horizontally
 

polarized wave (HV),
 

3. 	Vertically polarized return when transmitting a vertically
 

polarized wave (VV),
 

4. 	Horizontally polarized return when transmitting a vertically
 

polarized wave (VH).
 

Unless otherwise specified, the description in the remaining
 

part of this subsection refers to the horizontal receiver data
 

channels. The operational principle for the vertical receiver
 

data channels is essentially the same.
 

The 	backscattered signals are received at all angles of incidence
 

(fore and aft) simultaneously. The bandpass filter, which is
 

incorporated in each of the two receiver antenna assemblies to
 

reduce RF interference, attenuates the received signal by a small
 

amount 0.5 dB in the frequency rangd of interest. After the
 

filter and the isolator, the signal is split into two components
 

by a hybrid coupler. One component passes through a mixer where
 

it is mixed with a transmitter sample. The resultant output from
 

this mixing is a zero IF frecuency spectrum data which is ampli­

fied by a series of audioamplifiers and then recorded on a tape
 

recorder. The other component at the output of the hybrid coupler
 

is shifted in phase by 900 and passes through another mixer where
 

again it is mixed with a transmitter sample. In addition, a
 

calibrate signal at 1.9 KHz from a pin diode modulator is also
 

fed into the mixer. The resultant composite signal is translated
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to audio frequency by the mixer, amplified by the audioamplifiers,
 

and finally recorded by the same recorder. The signals from the
 

two data channels are recorded with the same head on the adjacent
 

channels of the magnetic tape to minimize the timing inaccuracy
 

and skew effect. In either one of the two data channels, the
 

fore and aft signals are folded in the mixer. As a result, the
 

output signals from the two data channels are in phase quadrature
 

with each other. During data reduction, these phase quadrature
 

data are digitized and Fast Fourier transformed. Then the sum­

mation and difference of the transformed signal spectra from the
 

two data channels are taken to recover the fore and aft Doppler
 

signals.
 

The proper order of the linear and cross-polarization states of
 

the backscattered signals at the receiver output in relation to
 

the polarization of the transmitted waves are maintained by two
 

linear/cross-polarization switches. The polarization switches
 

are linked to a main control switch which determines the vertical
 

or horizontal mode of transmitting RF waves. The main control
 

switch is also linked to the 2.1 KHz code switch and the 1.9
 

KHz calibrate switch. The signal level of the coding oscillator
 

at 2.1 KHz for a given data channel indicates the linear/cross­

polarization states of the backscattered signal with respect to
 

the transmitted RF waves. The power level of the calibrate
 

signal depends on the state of the polarization. For example,
 

in the JSME mission 347 carried out on October 13, 1976, the
 

calibration constant (the K value) for the HH polarization was
 

set at 116 dB, while that for the HV polarization at -131 dB.
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To aid in the association of the backscattered signal at a
 

given time to a ground location, a Zeiss camera system was
 

installed in the aircraft to take the IR pictures of the ter­

rain at approximately 4 sec intervals. The time of the data
 

and picture taking enters in both the tape recording system
 

and the picture frames. By comparing the times recorded in
 

both the magnetic tape and the IR pictures, the backscattered
 

signal at a given Doppler frequency (or incident angle) can
 

be identified with a ground location, subject to a reasonable
 

uncertainty.
 

2.4 THE TAPE RECORDING SYSTEM
 

The output of the scatterometer is recorded by a Mincom Series
 

110 Recorder/Reproducer System, Wideband Group I. The system
 

is a solid state, compact, portable unit which has a bi-directional
 

tape transport and directly interchangeable signal electronics
 

plug-in modules for FM recording. It records data on a 1-inch
 

magnetic tape with 14 data channels and with a carrier modu­

lating frequency of 108 KHz. It has a bandwidth coverage from
 

DC to 20 KHz. The signal to noise ratio is -40 dB and the speed
 

of the data recording is 30 inches per second. The specification
 

of the system is given in Table 2-2.
 

The input level of the tape recorder is set at 1 volt RMS nominal,
 

but is adjustable to produce full scale modulation between 0.5
 

and 10 volts peak to peak. The output level is 1 volt RMS nom­

inal into a 50-ohm load. It is also adjustable from 0 to 1.5
 

volts RMS. The input impedance is 10,000 ohms nominal shunted by
 

330 picofarads maximum unbalanced to ground.
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TABLE 2-2. SPECIFICATIONS OF THE TAPE RECORDER/REPRODUCER
 

SYSTEM USED FOR JSME (WIDEBAND GROUP I)
 

Magnetic Tape Size 


Tape Speed 


Tape Speed Accuracy 


Time Base Error 


Start and Stop Timei 


% Flutter (Maximum 


Cumulative) at 30 ips 


Center Carrier Frequency 


Frequency Response 


Signal to Noise Ratio 


Input Level 


Output Level 


Input Impedance 


Output Impedance 


Ambient Temperature Range 


Thermal Drift 


DC Linearity 


Total Harmonic Distortion 


Humidity 


1" in width and 14" in diameter, con­

taining 9,200' of tape
 

30 ips (inches per second)
 

0.03 ips
 

0.6 sec at 50 KHz reference frequency
 

5 sec.
 

0.30 peak to peak at flutter bandwidth
 

of 0.2 to 5 KHz
 

108 KHZ
 

DC to 20 KHz
 

40 dB (RMS/RMS)
 

1 volt RMS nominal. Adjustable for input
 

levels between .5 & 10 volts peak-to-peak
 

1 volt RMS into a 50 ohm load. Adjustable
 

from 0 to 1.5 volts RMS
 

10,000 ohms nominal shunted by 330 pf
 

maximun unbalanced to ground
 

50 ohms maximum, unbalanced to ground
 

00 to 500C at sea level
 

After 15 min. warmup, less than ±0.1%/C0
 

in full scale output voltage change, over
 

a temperature range of 00to 500 C
 

Within ±0.5% of peak-to-peak deviation
 

from the best zero based straight line
 

< 1% at 1 KHz
 

Up to 95% relative humidity without con­

densation
 
2-10
 



The tape recorder is shared by three airborne scatterometers
 

at the frequencies of 0.4 GHz, 1.6 GHz, and 13.3 GHz. The
 

assignments of the channel number for various data outputs of
 

the scatterometers are shown in Figure 2-3. The 1.6 GHz scatter­

ometer outputs are recorded on four adjacent data channels (1,
 

3,5 and 7) of the sane head.
 

The time of data taking is recorded through IRIG Standard Time
 

Code and Aircraft Data Acquisition System (ADAS) in channels 9
 

and 2, respectively. In addition to the time information,
 

ADAS also acquires the aircraft parameters such as altitude,
 

speed, and roll, pitch and drift angles.
 

The time and aircraft parameters provided by ADAS are recorded
 

sequentially in PCM format and frequency modulated at 225 KHz.
 

All of this information is derived during data reduction and,
 

one way or another, is used in the data processing for the
 

derivation of a0.
 

2.5 RECEIVER SENSITIVITY
 

One way to estimate the sensitivity of the scatterometer system
 

is by examining the signal to noise ratio at the receiver output.
 

The signal at the receiver output can be evaluated by using the
 

data processing equation described in section 4 and the measured
 

system loss factor. For the convenience of a numerical estimate,
 

Eq. (3-3) is repeated and simplified here:
 

Pr = 
Pt 1 2 

(47) 3 

GtG0 Gr 

R4 
-

Ptx2CtaCr 

(41T)3R2 
A Pt 

(2-1) 
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Figure 2-3.- Channel assignment of signal outputs for three scatterometers.
 



where a bar over a given symbol indicates the average value of
 

that parameter over a ground resolution cell A. Besides Pt.
 

all of the parameters on the right side of the above equation
 

are lumped together and represented as a propagation constant
 

C. The numerical values of these parameters were evaluated and
 

entered in Table 2-3 for the estimate of the receiver output
 

signal level. The aircraft altitudes and speed were assumed to
 

be -457m and 77 m/sec, respectively. The incident angle was
 

taken to be 600 where low signal return was expected. The along­

track ground cell length used in the area calculation was -50m
 

which, at 600 incident angle and 77 m/sec aircraft speed, cor­

responded to a bandwidth of -8 Hz. The cross-track beamwidth
 

as obtained from Figure 4-6 was -16.60. The antenna feed line
 

losses listed in the table were the measured values for the
 

case of HH polarization (Appendix A). The ao value at 600
 

incident angle was derived from Figure 3-6; the smooth water
 

value was used for low signal return. All of the remaining para­

meters appeared in Eq. (2-1) are self-explanatory.
 

The sum (in dB) of the radiated power and the propagation
 

constant gives the received power at the antenna terminal.
 

After taking into account the loss due to the receive antenna
 

feed line, the receiver signal output is -117.9 dBm. The ampli­

fication factor and the rolloff function were not entered in
 

this calculation because both of them applied to the signal and
 

noise equally and cancelled out when signal to noise ratio was
 

taken.
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TABLE 2-3. THE 1.6 GHz SCATTEROMETER SIGNAL TO NOISE RATIO
 

PARAMETERS POWER LEVEL
 

Output of the Transmitter + 30 dBm
 

Transmit Antenna Feed Line Loss - .05 dB
 

RADIATED POWER + 29.5 dBm
 

X2 
 (Wavelength 0. 1875 m) - 14.6 dB 

GtGr (Gain at 0 = 600) + 24.6 dB 

a ° (at 0 = 600) - 30.0 dB 

(1/4r)6 - 33.0 dB 

(1/R)4 (Range) - 119.3 dB 

A (Area Element) + 26.8 dB 

PROPAGATION CONSTANT C - 145.5 dB 

RECEIVED POWER AT ANTENNA TERMINAL - 116.0 dBm 

RECEIVE ANTENNA FEED LINE LOSS - 1.9 dB 

RECEIVER SIGNAL OUTPUT - 117.9 dBm
 

kT - 174.0 dBm
 

BANDWIDTH CORRESPONDING TO RESOLUTION
 
CELL A + 9.2 dB 

RECEIVER NOISE FIGURE 20.0 dB 

RECEIVER NOISE POWER - 144.8 dBm 

SIGNAL TO NOISE RATIO + 26.9 dB 
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For the calculation of the receiver noise level, the ambient
 

temperature was assumed to be -290 0K. The Boltsman's constant
 

2
k is 1.38 x 10- 3 joule/OK. The noise figure of 20 dB was ob­

tained from the report by Ryan Aeronautical Company (ref. 10).
 

Summing all of these factors, the receiver noise output over
 

the 8 Hz bandwidth is estimated to be -144.8 dBm, which results
 

in a signal to noise ratio of -27 dB.
 

For operation over land or for small angle of incidence, the
 

signal to noise ratio is expected to improve. For example,
 

GO over land could be -3 dB (see Figure 3-5.) instead of -30 dB
 

for water. The signal to noise ratio in that case would be -55
 

dB rather than -27 dB. However, the signal to noise ratio of
 

the tape recorder system described in the previous subsection is
 

-40 dB, which represents the best value attainable with the 1.6
 

GHz scatterometer and data recording system.
 

2.6 THE SCATTEROMETER DATA HANDLING
 

A fair amount of data handling is required before the processed
 

scatterometer data can be delivered to the principal investigators
 

for studies and interpretations. Figure 2-4 gives a flow chart
 

of the scatterometer data handling. The analog tape, which con­

tains the data for all three scatterometer systems (at frequencies
 

of 0.4 GHz, 1.6 GHz, and 13.3 GHz) from a given mission, is dup­

licated at Ground Data System Division (GDSD). The aircraft
 

parameters such as roll, drift, pitch, altitude, and speed are
 

also extracted and prepared in a tabular form at GDSD. The copies
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Figure 2-4.- Scatterometer data handling flow chart.
 



of the analog tape and the tables of aircraft parameters are
 

delivered to the Engineering Systems Division (ESD) and the
 

Data Distribution Center (DDC), respectively for a quick-look
 

processing and for distribution. The results from the quick­

look analog processing are examined for data quality of the
 

mission at the SF5 branch of the Earth Observations Division
 

(EOD/SF5).
 

In addition to the recording of the scatterometer data and the
 

aircraft parameters, the flight logs and the Zeiss IR film are
 

also generated in the mission. The flight logs contain infor­

mation on the occurrence of events for the entire mission, while
 

the IR film shows the ground scene of all the aircraft flight
 

lines of interest. The IR film is processed and copies made at
 

the JSC Photo Laboratory, and the flight logs are duplicated
 

at ESD. Copies of both the IR film and the flight logs are de­

livered to DDC for further distribution. ESD also receives a
 

copy of the IR film to aid in the quick-look data processing.
 

Generally, a system calibration is performed on the scatter­

ometers in ESD before a major mission takes place. The calibrate
 

constants are needed in both quick-look and final data processingd
 

at ESD and Texas A&M University (TAMU), respectively. TAMU
 

receives a copy each of the analog tape, the aircraft parameters,
 

the flight logs, and the calibrate constants to do the data pro­

cessing with a digital method. The final outputs from the TAMU
 

processor are plots and/or listings of the time history of the
 

backscattering coefficient 0o. These outputs are distributed to
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the principal investigators at NASA/GSFC, University of Kansas,
 

and the University of Arkansas for further studies. EOD/SF5
 

also receives a copy for bookkeeping and evaluation purposes.
 

Finally, the ground truth data collection is performed jointly
 

by all the parties involved in the JSME mission. The collected
 

data are processed and organized at the University of Kansas.
 

The final ground truth data outputs are tabulated and distri­

buted to all the principal investigators.involved and to EOD/
 

SF5 at JSC.
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3. SYSTEM ANALYSIS
 

3.1 DATA PROCESSING EQUATIONS
 

The power Pr reflected from a target and collected by a receiv­

ing antenna can be expressed in terms of the radar parameters 

as (ref. li): 

Pt Gt Gr a X (3-1)
 

r (47T)d R4
 

where
 

Pt = power transmitted by the radar in watts
 

Gt = gain of the transmitting antenna in the
 
directiop of the target
 

Gr = gain of the receiving antenna in the
 
direction of the target
 

a = radar cross-section of the target
 

A = radar wavelength
 

R = distance between the radar and the target
 

For remote sensing of a surface terrain by an airborne radar sys­

tem such as the NASA 1.6 GHz scatterometer, it is more appropriate
 

to use the backscattering coefficient a (differential cross­

° 
section per unit area) rather than a. o and a are related through
 

the differential area element dA by
 

° 
do = o dA (3-2) 

In terms of this definition Eq. (3-1) becomes 

= t dA (3-3)

IA (47) ' R 
A
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The main objective of the scatterometer is to measure Pr from a
 

given terrain and over a wide range of incident angle 0. Then
 

a as a function of 0 can be derived and the properties of the
 

terrain studied.
 

The power Pr (0) observed at a given central Doppler frequency
 

fD(O) and within a bandwidth Afa (0) is uniquely related to a
 

ground cell A, as shown in Figure 3-1, through the relation
 

2V 

f (0) = - sin 0 (3-4) 

and
 

Afd(0) 2V cosGA6 (3-5)
 

where X is the wavelength of the transmitted RF waves and V is the
 

speed of the aircraft. The two isodopplers indicated in Figure
 

3-1 are defined by the two Doppler frequencies at fd + Afd and 

fd - Afd" For numerical computations described in section 5, the 

ground cell A(6) is further divided into N elements and Eq. (3-3) 

can be rewritten as
 

N 

2Pt Z Gtl(0) Gri() i0 (0) 

Pr (0) (47r) i = 1 R1 (0) 
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The power density Wr () is simply
 

pr () ptX2 N Gti( 0 ) Gri(G) ai0(6)
rr8 - t G AAi (3-7) 

Afd( ) Afd(N) (47 i R () 

Several parameters have been omitted in the above discussion. They
 

should be considered before the final receiver output is obtained
 

and interpreted. First, the attenuation of the RF power due to
 

the two-way path of propagation is not included. The magnitude
 

of this attenuation, in absence of heavy precipitation, depends
 

on the amounts of oxygen and water vapor along the propagation
 

path. Assuming that the aircraft is cruising at an altitude of
 

40,000 feet, the total two-way power attenuation at 600 incident
 

angle is found to be only - 0.14 dB at 1.6 GHz (ref. 12). For
 

most of the mission carried out by the C130 aircraft so far, the
 

cruising altitude was 1,500 feet. Therefore, the loss due to
 

atmospheric attenuation can be completely neglected. Secondly,
 

Equations (1), (3), and (6) apply to each of the four polarization
 

combinations described in section 2. Thus, Pr' Pt' Gr' and Gt can
 

be in either horizontal or vertical polarization state. Depending
 

on the polarization state of Pr (or Gr) and Pt (or Gt), four
 

different backscattering coefficients can be derived from the
 

operation of the scatterometer, namely, aHH, a0VV a°VH , and
 

O0H. The subscripts to indicate the polarization state of Pr'
 

Pt, Gr, Gt' and u0 are not explicitly written out in the expression
 

above. Thirdly, Pr as given in Eq. (3-6) is the power of the back­

scattered signal at the receiver input. As the signal passes
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through the receiver data channels, it experiences losses as
 

well as gains due to the presence of many subsystems. These
 

factors will have to be taken into account in order to correctly
 

interpret the observed data.
 

To derive the backscattering coefficient ao as a function of inci­

dent angle 8 from Eq. (3-7) requires an iteration process. First,
 

° 
a functional dependenceof cs on e has to be assumed. Then the
 

power density Wr(Q) of the backscattered signal is calculated from
 

Eq. (3-7) for a series of e and AG. The calculated Wr(e) is com­

pared with the power spectrum derived from observations. If the
 

power spectra from computation and from observation do not match
 

well over the incident angles of interest, another form of G0(e)
 

is assumed and the procedure repeated. The final functional depen­

dence of co on e is ascertained when best match between the com­

putational and the observational power spectra is obtained.
 

A simple, direct, and most used approach of determining a as a
 

function of 0 is to first associate a ground resolution cell
 

A(8) with a single average value of ao(0), as shown in Figure
 

3-2, and then express ax0 (0) in terms of all measurable parameters.
 

From this figure,
 

dI = hA4 

PA (3-8)
and 
 d2 - cos 

(

hRA4Ae
 

A(6) =d d2 = cos 0
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Figure 3-2.-Geometry of a scatterometer ground resolution cell.
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Substituting the expression for AG in Eq. (3-5) into Eq. (3-8),
 

the area of the ground cell becomes
 

A(e) - hRXAAfd (3-9) 
2V COS 2G 

and the backscattered power from this area is
 

Pt Gt() Gr (8) a0 (8) X9 
A4Afd (3-10)
 
(41T) 3 
 2VhR
 

Expressed in terms of a (0), Eq. (3-10) becomes
 

(4O)3 2VhRW () 

Ce (G) 1__ (3-11)=Gr(_) _ 

where the aircraft altitude h R cos 0 and Eq. (3-7) was used. 

Both approaches for the determination of a versus 6 relationship
 

are attempted in section 5 where the numerical calculation is
 

performed. A comparison is made on the results from both approaches.
 

The backscattered signal in the receiver data channels is further
 

analyzed and the backscattering coefficient a0 are discussed in
 

the following subsections. The antenna gain pattern, side lobe
 

level and coupling effect are discussed in detail in section 4.
 

3.2 RECEIVER SIGNAL ANALYSIS
 

To develop a comprehensive mathematical model for the signal
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response of the scatterometer system requires a complete know­

ledge on the characteristics of each of the many subsystems
 

shown in the block diagram of Figure 2-3. These characteristics
 

include the gains, bandwidths, and noise figures of all ampli­

fiers, the gains and bandwidths of all filters, to name just a
 

few. To make new measurements on all of these parameters may
 

be costly and time consuming, while to develop a mathematical
 

model based on old values of these parameters may not be approp­

riate, especially when some of the components were replaced over
 

the past years. Consequently, a different approach is attempted
 

here to derive a practical transfer function of the whole system,
 

with the aid of some new measurements on a few key system para­

meters.
 

The approach follows closely with those attempted for the 13.3
 

GHz airborne scatterometer system by Krishen et al., (ref. 4)
 

and by Bradley (ref 5). The backscattered signal is followed
 

through all major subsystems. The final outputs from the
 

receivers contain factors such as the gains of the amplifiers,
 

the coefficients of the PIN diode modulators, and the gains of
 

mixers and filters, which are combined and identified with the
 

key system parameters recently measured in the laboratory (see
 

Appendix A). Without loss of generality, only the horizontally­

transmit and horizontally-receive mode of operation is described
 

in the following paragraphs. Other modes of operation can be
 

described in the same way.
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Assuming that the continuous wave at frequency w0 at the hori­

zontal transmitter port is represented by
 

Vt = V0cosuot (3-12)
 

The voltage at the input of the horizontal receiver is
 

Vr = Cf cos [(Wo+ wd)t + xf] + Ca cos I(Wo- Wd)t + Xa] (3-13) 

where
 
Cf = amplitude of the received signal in fore
 

direction, in volts
 

C = amplitude of the received signal in aft
 
a direction, in volts
 

Wd = the Doppler shift corresponding to fore and
 
aft beam at a particular angle of incidence,
 
in radians/sec
 

xf = the phase shift introduced by the path length
 
and the rough surface in the fore beam, in
 
radians
 

xa = the phase shift introduced by the path length
 
and the rough surface in the aft beam, in
 
radians
 

The direct leakage of the signal from transmitter to receiver at
 

frequency w0 is not included in Eq. (3-13) for reason given in
 

section 4.
 

The hybrid coupler in the receiver channel divides the input
 

signal equally into two parts, one without phase shift and the
 

other with a 900 phase shift. The output signals from the
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hybrid coupler can be written as
 

+'lc - [-. cos d)t + + o - Xaf ((w, Xf) Ca Cos Ld)t + 
(3-14a) 

V2C = [-Cf sin((wo + md)t + xf) - Ca sin ((o - wd)t + xa ) 

(3-14b)
 

where V and V2c are the output signal voltages for the channel
 

(channel 1) without phase shift and the channel (channel 2) with
 

900 phase shift, respectively. kI and k2 take care of the loss
 

in the isolator and-the possible unbalance in the signal power
 

division of the hybrid coupler. There exists an asymmetry between
 

channels 1 and 2 as shown in Figure 3-3. In channel 1, the back­

scattered signal from the hybrid output is directly mixed with
 

the transmitter sample signal in a mixer. In channel 2, however,
 

the transmitter sample signal is coupled to and modulated by a
 

1.9 KHz calibrate signal through a PIN diode modulator. The com­

bined signal from the PIN diode modulator output is coupled with
 

the backscattered signal and the resultant signal is mixed with
 

the transmitter sample in the channel 2 mixer. The voltage of
 

the transmitter sample signal is
 

Vs = pV0 cos W0t (3-15)
 

and the transfer characteristic of the PIN diode modulator can
 

be written as (see Appendix B):
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Ib = (l+Ycos ct) (3-16)
 

Here p gives 'he magnitude of the amplitude attenuation in the
 

transmitter signal. wc is the angulan frequency of the calibrate
 

signal. a and ay (y<<<l) are the amplitudes of the DC and AC
 

bias currents, respectively.
 

After the mixers, the output signal voltages from both channels
 

are (see Appendix C):
 

V1 k15lplV0 Cfcos(Wdt + xf) + Cacos(Wdt - xa ) (3-17a) 

2m k 2 6 2 P2 Vo -Cfsin(dt + xf) + Casin(dt -x ) 

+ YaP2Vo coS0 t] (3-17b)
c
k2 


where 81 and 2 take care of the conversion losses of the mixers
 

in channels 1 and 2, respectively. The signal voltages as ex­

pressed in Equations (3-17a) and (3-17b) are amplified by the
 

series of audio-amplifiers in their respective receiver channels.
 

They also suffer attenuation through the presence of the switches
 

and filters. If the total gains after the 20-dB step amplifiers
 

are G, and G2 , respectively, the variable gain amplifiers are
 

adjusted such that
 

3-12
 



G = 1=1 2k2 P2VoG 2G2 v (3-18)
 

where Glv and G2v are the gains of the variable gain amplifiers
 

in channel 1 and 2, respectively. The signal voltages at the
 

variable gain amplifier output are
 

Vv G cfcos(wdt + xf) + CaCOS(Udt - x a )  (3-19a) 

V-v = [-Cfsin(dt + xf) + Casin(wdt - xa) + Ycp 2 Vo cost 
2 (3-19b)
 

The signals as expressed by Equations (3-19a) and (3-19b) are
 

recorded by a tape recorder on two adjacent tracks of the same
 

head. If additional gain unbalance is introduced by the tape
 

recorder, it can be adjusted again in the data reduction. Since
 

only the relative power levels of the backscattered and the cali­

brate signals are used in the calculations of the backscattering
 

coefficients, the gain adjustment does not affect the final results.
 

The fore and aft Doppler signals are separated in the process of
 

data reduction. The recorded data are first digitized by an
 

analog-to-digital converter. The Fast Fourier Transform (FFT)
 

is then applied to the digitized data to convert the signals
 

from the time domain to the frequency domain. The frequency
 

spectra of the signals given by Equations (3-19a) and (3-19b)
 

after the application of the FFT are:
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d)
Vl = G [Cf{6(f - f6 ) Cos Xf - j6 (f - sin xf} + Caf{ (f - fd ) 

Cos Xa + j6 (f - fd) sin Xal] (3-20a) 

V2 = G [-C{(f -fd ) sn xf + j(f -fd ) Cos xf} + Ca{-(f - fd ) 

2 V osin x a + j'f - fd) Cos x a } + YP 6(f - f c) 1 (3-20b) 

k2
 

where j = f - and 6 (f - fd is the Dirac delta function. 

In the above expressions, the double-sided spectra (with both posi­

tive and negative frequencies) after the FFT are converted to the
 

single-sided spectra by the application of the power scaling factor
 

of 2 (ref. 13). The signal voltage densities, Ef and Ear (in volts
 

per Hz) at Doppler frequency fd in the fore and aft direction are
 

obtained by forming the following expressions.
 

f= Cf G = 1 [{Re(Vl) - Im(V2 )1
2 + fRe(V 2 ) + Im(Vl)2 (3-21a) 

Ea = Ca G = V [{Re(V 1 ) + Im(V2 )1 2 + (R3 (V2 ) - Im(Vl)}2] (3-21b)
 

The calibrate signal Ec (in volts per Hz) is given by
 

E = Gy p2Vo (3-22)
 
k 2 2 
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From Equations (3-21b) and (3-22), the received power density
 

(in watts per Hz) is
 

\2Ca (E 
W (f a- _ t-4Vo (3-23)
- ra 2 2 (E 

Since the transmit power Pt is proportional to V0 Eq. (3-23) can
 

be rewritten as
 

AYa32 2 /Ea) P = P t a 
Wta(fd) = A2- (E) 2 Pt = \P( / (3-24) 

where K is a measurable quantity in the laboratory, as discussed in
 

subsection 3.4.
 

3.3 THE ROLLOFF FUNCTION
 
From Eq. (3-3), it is seen that the power level Pr of the backscattered
 

°
 signal depends on the backscattering coefficient a , the distance R
 

from the scatterometer to the surface area of interest, and the gains
 

of the transmit and receive antennae, a0 is generally observed to
 

decrease with the angle of incidence e over either land or water.
 

And R = h/cosO, h being the aircraft altitude, increases with 0.
 

° 
Since Pr is proportional to a and inversely proportional to the
 

fourth power of R, Pr is expected to decrease rapidly with 0. This
 

dependence of Pr on 0 has an important bearing on the design and
 

performance of the 1.6 GHz scatterometer system. For example, the
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signal to noise ratio of the Minicom 110 Tape Recorder System
 

described in subsection 2.5 is limited to a maximum of 40 dB.
 

If Pr at 6 = 50 is 40 dB or more higher than that at e = 600,
 

then the signal power level would be either saturated at 6 = 50
 

or buried in the noise at 6 = 60 duripg data recording. Although 

the antenna array could be designed in such a way that the antenna 

gains would offset some of the strong dependence of Pr on 6 , the 

approach does not provide enough flexibility for the observations 

on waters or lands with varying degrees of surface roughness and
 

dielectric property. For the 1.6 GHz scatterometer, the variations
 

of the two-way antenna gains over the incident angles of interest,
 

i.e., from 6 = 00 to e = 600 , are not more than - 6-7 dB, as dis­

cussed in section 4.
 

To reduce the power level of the signal return at small 6 before
 

being recorded by the tape recorder, two rolloff filters were in­

stalled in each of four receiver data channels. One of the filters
 

was used for observations over lands and the other over waters.
 

Either one of the two filters is made operational by a control
 

switch. The responses of these filters as a function of frequency
 

for all four receiver channels were measured in the laboratory at
 

Building 15 of JSC and given in Table A-2 of Appendix A. The
 

frequencies at which the filter responses were measured can be
 

converted to the angles of incidence through Doppler relation of
 

Eq. (3-4) for a given aircraft speed. It is clear from the table
 

that, for a given frequency and switch position, the responses
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of the rolloff filters for all four receiver channels are quite
 

similar, the differences being not more than 0.5 dB. For
 

simplicity in later numerical calculations, the average rolloff
 

responses of all four receiver data channels for both land and
 

water filters were derived and plotted in Figure 3-4. Over the
 

frequency range of 35 to 1800 Hz, the attenuation of the receiver
 

output signal varies from - 5.6 dB to - 0.3 dB for land rolloff
 

filters, while that for the water rolloff filters from - 29 dB to
 

- 0 dB.
 

As an example in the application of the rolloff functions Z (O)
 

and Z%(8) given in Figure 3-4, observe that the values of a0 over
 

calm water as obtained from Figure 3-5 in subsection 3.5 are - 2
 

5° 
dB and - -30 dB for 8 = and e = 600, respectively. Assuming 

that the aircraft is cruising with a speed of - 75 m/sec and at 

an altitude of - 480 m, the Doppler frequencies are 70 Hz and 

693 Hz, and the distances are - 482 m and - 960 m for e = 50 and 

8 = 600 , respectively. The corresponding attenuations at these 

two frequencies are found from Figure 3-4 to be 29 dB and 1.5 dB. 

If area A = 1 m2 ' Pt = 1 watt, and neglecting the signal losses and
 

amplifications in the scatterometer system , the receiver output
 

powers at 0 = 50 and 0 = 600 were calculated from Eq. (3-3) and
 

given in Table 3-1. It is clear that the difference in powers
 

at these two frequencies is only - 11.5 dB which certainly does
 

not present a serious problem in data recording. If the rolloff
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TABLE 3-1. - A NUMERICAL EXAMPLE OF THE BACKSCATTERED
 

SIGNAL LEVELS AT THE RECEIVER OUTPUT - HH POLARIZATION
 

0 = 600
= 


= 


Parameters .0 5 


From Eq. (3-13) fd = 70 Hz fd 693 Hz
 

Pt 1 Watt, 30 dBM 1 Watt, 30 dBM
 

GtGr 19.6 dB 24.6 dB
 

a0 dB -30 dB
~~0

X2 0.035m 2 , -14.6 dB 0.035m 2 , -14.6 dB
 

(47r)' 33 dB 33 dB
 

4 4 4
R 5.35 x 10 1 0m , 107.3 dB 8.46 x 101 1m , 119.3 dB
 

A lm 2 , 0 dB lm2 , 0 dB
 

ZW(O) 29 dB 1.5 dB
 

Pr() -132.3 dBM -143.8 dBM
 



filter is not in the system, then the difference in powers would
 

be - 39 dB which is undesirably close to the tape recorder dynamic 

range of - 40 dB. 

It was found out from many observations over lands that the use
 

of water rolloff filters generally yielded better results for the
 

1.6 GHz scatterometer. Therefore, it is reasonable to assume that
 

the water rolloff filters will be most frequently used in the
 

future missions either over land or over water. Only the water
 

rolloff function Z (0) will be used in the numerical calculations
 

in section 5.
 

3.4 THE MEASURED SYSTEM PARAMETERS
 

From the results of discussions in the previous three subsections,
 

it is now possible to put all the parameters together and derive
 

the final forms of the data processing equations. Note that both
 

the backscattered and the calibrate signals, Ea and Ec in Equations
 

(3-21B) and (3-22), pass through the water rolloff filters in the
 

receiver data channels and, therefore, subject to the attenuations
 

of the filters amounting to Z,(f) (or Z0 (0)). Ec occurs at the
 

frequency of 1.9 KHz so that the value of Z is - 0 dB. Consequently,
 

only the Z (f) for Ea needs to be taken into account and Eq. (3-24)
 

should be rewritten as
 

2 

Wr(fd) = PtZ (fd) E 1 (3-25) 
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Combining Equations (3-6), (3-7), and (3-25), the expression for
 

the first form of the data processing equations becomes
 

2 G (6.)Gr(6.) oE ( i )Z ( d) =W 1 R4 r 0 1 AA. (3-26)K (C) - (41) 3 (i) i 

Similarly, the second form of the data processing equations is
 

obtained by combining Equations (3-11) and (3-25). The result is
 

a (4r)3 2VhRZW (a) (Eaj (3-27) 
KGt (0)Gr (O)X3 A \Eel 

Note that, in Eq. (3-26), Ea2 Afd is the relative receiver output 

power in the Doppler frequency band Afd corresponding to the signal 

return from the ground cell defined by two isodopplers, fd + Afd 

and fd - Afd-

Three key system parameters were measured in Building 15 of JSC,
 

namely, K, Z (6) and the cable loss L. The results of the recent
 

measurements of these parameters were given in Appendix A. The
 

rolloff filters were permanently installed in the scatterometer
 

system. Consequently, the values of Z (6), which were presented
 

in the previous section, are not expected to change much from
 

measurements at different times unless the filters were replaced.
 

The values of K and L, on the other hand, could change for differ­

ent missions. The parameter K controls the power level of the
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calibrate signal which _s-asdsubject-to the limitation-of the
 

tape recorder dynamic range. For a given surface of backscatter­

ing and aircraft altitude, K could be adjusted for an appropriate
 

calibrate signal level to bring about the best signal to noise
 

ratio for the data. The value of L depends on the length of the
 

cables between the R/T unit and the antennae, which could be
 

changed from mission to mission. The values of X and L measured
 

for Mission 347 functional check flight as presented in Appendix
 

A will be used for the numerical calculations in section 5.
 

Incorporating the cable loss into Equations (3-26) and (3-27),
 

the final forms of the data processing equations become
 

z W(f) N Gt(0 i ) Gr(e i ) aJO(8i ) 

L{) A - 3 4 (e AA. (3-28)LK (Ec, (47r) R. (i)
 
i= 11
 

and
 

3 (Ea)2
 a0(0) =(3:-29) 2VhRZ,(8)00 (4 r)

LKGt(8)Gr()X 3A Ec 

3.5 THE FUNCTIONAL DEPENDENCE OF L-BAND ao ON e 

It was pointed out previously that the ordinary approach of deriv­

0
ing the backscattering coefficient a , by means of a Doppler radar
 

such as the 1.6 GHz scatterometer, is to use the second form of
 

the data processing equation given by Eq. (3-29). The ao derived
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from this approach contains two sources of error, both resulting
 

from the approximation of a rectangular area (Figure 3-2) for an 

actual doppler cell defined by two isodopplers (Figure 3-1). 

The first source of error comes from the assignment of a single 

value of a for a given rectangular ground cell. Actually, a0 

was observed to vary with incident angle e, and the contribution 

to the observed signal return within a given bandwidth tfd is 

the sum of the backscattered signals from all the small area 

elements with different 8i's in the doppler cell. 

The second source of error is due to the crudeness of the area
 

approximation itself. Both of the error sources depend on the
 

scatterometer antenna beamwidth. For the 13.3 GHz scatterometer
 

system, the antenna beamwidth is only - 30 and the error in the
 

° 
derivation of o by Eq. (3-24) is not expected to be large. For 

the 1.6 GHz scatterometer, however, the antenna beamwidth varies 

from - 80 to - 160 over the range of 0 from 0 to -60O (see 

Figure 4-6). In this case, it is desirable to explore the amount 

of error introduced in the ao derivation by using the second form 

of data processing equation. The a0 derived from the first form 

of data processing equation given by Eq. (3-28) provide an adequate 

standard for comparison. 

The derivation of a, by Eq. (3-28) requires an assumed functional
 

° 
dependence of o on 6 to begin with, as pointed out previously.
 

To see how the shape of co versus 6 curve affects the error in the
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° 
a estimation by Eq. (3-29), the measured values of 0o from
 

both smooth and rough surfaces of backscattering are considered.
 

For the smooth surface, the measurements by Guinard (ref. 14)
 

at the frequency of 1.4 GHz and for VV polarization over calm
 

sea are adopted. For the rough surface, the measurements of
 

Batlivala and Ulaby (ref. 15), over land with 4.1 cm RMS height
 

and 0.4 g/cm3 soil moisture content in top 1-cm layer, at the
 

frequency of 1.1 GHz and for HH polarization are used. The
 

results from both of these measurements are shown in Figure 3-5.
 

The measurement of co over the calm sea at e = 860 is not included
 

in the figure because of its low value (- - 44 dB). Both of the
 

measurements over land and over water were not made at the frequ­

ency of the 1.6 GHz scatterometer. However, this difference in
 

frequencies is not important in the present case where the primary
 

interest is to have the functional forms of a dependence on 6
 

for the numerical calculations of Eq. (3-28).
 

A quadratic regression was performed on the data from the measure­

ments over the calm sea. The result is given by
 

a0 = 7.24 x 10-3e2 - 1.030 + 6.94 (3-30) 

The data from the measurements over land (ref. 15) covered the
 

range of e from 00 to 300 only. A simple straight line was drawn
 

through these data points and extended to 0 = 800. This simple­

minded approach again is not crucial in the present context for
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the same reason given in the last sentence of the previous para­

°
graph. The linear dependence of o on e over land is expresed by
 

°
0 = -0.105 + 2.10 (3-31) 

In both of the above equations, the unit of ao is in dB and that
 

of e in degree. Both of these expressions are used in the numeri­

cal calculations in subsection 5.2, where the two forms of the
 

data processing equations are compared.
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4. THE ANTENNA PATTERNS
 

4.1 THE MAIN LOBE GAIN
 

The antenna gain patterns for all four antennAe were measured by
 

the Physical Sciences Laboratory of the New Mexico State University
 

for every 20 interval in both along-track and cross-track directions.
 

The measurements were made with a set of four identical antennae
 

without mockup to'simulate the actual antenna set mounted on the
 

C130 aircraft. Consequently, the antenna patterns used in the
 

present analysis might deviate from the real ones. The effect
 

resulted from this deviation on the measurements of the backscattering
 

coefficient a0 is not known. Calibration of the airborne system
 

against the ground based system may be necessary in order to deter­

mine the seriousness of this effect.
 

To see the spatial variations of the antenna patterns, the contour 

maps of the one-way gain are displayed in Figures 4.1, 4.2, 4.3, 

and 4.4, respectively, for the horizontal transmitter, horizontal 

receiver, vertical transmitter, and vertical receiver. Each of the 

four maps covers the angular ranges of p from -400 to +400 and of 

6 from -600 to +600. The direction of nadir is located at B = 0 and
 

* = 0. From these figures it is clear that the RF powers of 

transmission and reception are mostly limited in the regions of * 
from -200 to +200, although the side lobe level of the vertical 

receiver antenna appears rather high in the aft direction at * 
0
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Figure 4-4.-The one-way gain contour of the vertical receive antenna.
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The patterns for both horizontal transmitter and receiver antennae
 

shown in Figures 4.1 and 4.2 display an increase in gain with
 

° 
 = -500
incident angle e and peaked around 0 = 500 - 60 and e 

- -60° . On the other hand, the patterns for both vertical trans­

mitter and receiver antennae are quite different from those for 

their horizontal counterparts. The vertical transmitter antenna 

gain contour shown in Figure 4.3 clearly indicates the main lobe 

gain maxima at 0 = -400 and 0 = 150. The vertical receiver antenna 

gain contour displayedin Figure 4.4 shows the main lobe gain 

maxima at 0 = -150 and 0 = 450. The occurance of maximum gains 

at incident angles of - ±150 might effectively reduce the signal 

to noise ratio at large incident angles of - ±50 - ±600, as dis­

cussed in the following paragraphs. 

The variations of the along-track two-way gains with the angles
 

of incidence 0 in the aft direction for all four combinations of
 

polarization states are shown in Figure 4.5. It is clear from
 

the figure that the maxima of the two-way gains for HH (horizontal
 

transmit and horizontal receive) and VH (vertical transmit and
 

horizontal receive) combinations appear at 0 = -55° and 0 = -450,
 

respectively. On the other hand, the gain maxima for both HV
 

(horizontal transmit and vertical receive) and VV (vertical trans­

mit and vertical receive) combinations are found to be at 0 

-400. This occurance of gain maxima at an incident angle of 

- -400 is due to the gain pattern of the vertical receive antenna 

shown in Figure 4.4. From Eq. (3-3) of the previous section, it
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is observed that the backscattered ppwer Pr is proportional to 

0 -4 o - 4-
GtGr , a0 and R- . Since both a and R generally decrease
 

with increasing ]0! (absolute value), Pr would be small at large
 

1e1. For both HV and VV polarization combinations, the decrease
 

in two-way antenna gain GtGr for 1l1 > 400 further depresses
 

the level of Pr" Thus, for those two combinations, the signal
 

to noise ratio is expected to decrease with increasing 101 for
 

.
101 > 400
 

The beamwidth variations of the two-way main lobe antenna gains
 

were also examined here. There were many ways to define the
 

antenna beamwidth, some of them were discussed by Krishen et al.
 

(ref. 4). In the following discussion, two methods of defining
 

the antenna beamwidth were adopted. The first one is to take
 

the maximum value of the two-way gain Go2 F(O) at an incidence
 

angle e. A 3-dB value was subtracted from Go2 F(O) (in dB).
 

Two values of the cross-track angle *l and 2, measured from
 

the location of Go2F(O), were determined where the antenna gain
 

equaled Go2F() - 3 dB. The 3-dB beamwidth is the sum of l and
 

2" The results from this method are shown in Figure 4.6 for 

all four combinations of polarizations. Two features are immedi­

ately clear from this figure. First, the beamwidth variations 

with 0 are similar for all four combinations. For a given 0, 

the difference in beamwidth for Any two combinations is in the 

order of 10 - 20 or less. Secondly, for small incident angles, 

i.e., 101 < 300, the 3-dB beamwidth is - 80 ± 10 and remains 
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Figure 4-6.- The variations of the 3-dB beam width with angle of incidence.
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relatively constant with 0. For 1o1 > 300, the beamwidth increases
 

with incident angle rapidly. The value of the beamwidth varies
 

from - 9 0 at 0 - -300 to ~ 160 at E - -60O.
 

The second method of defining a beamwidth is given by
 

2G0 2 F(C) f(G,') dp (4-1)
Go02 F (0) 

where ¢1 and 02 are the cross-track angles where the null points
 

of the main lobe antenna gain occur. The function f(0,0) defines
 

the cross-track gain variation and Go2 F(e), which is expressed
 

in numerical value and not in dB, has the same meaning as before.
 

The results of the calculations based on Eq. (4-1) are tabulated
 

in Table 4.1 for incident angles ranging from 00 to -600 at every
 

20 interval. The corresponding 3-dB beamnwidths derived in the 

previous paragraph are also included in the table for comparison. 

It is clear from the table that, for all angles of incidence and 

all polarization combinations, the values of the beamwidth as 

derived from Eq. (4-1) are larger than the corresponding ones 

obtained from the 3-dB method. On the average, the difference in 

the beamwidth calculated by the two methods is - 1. 

The antenna beamwidth as defined by Eq. (4-1) will be used in the
 

numerical calculations discussed in Section 5.
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TABLE 4-1. - COMPUTED TWO-WAY ANTENNA BEAMWIDTH IN DEGREE
 

Inciene Method 1 Method 2 
Angle 0 
(Degree) HH HV VI VV HH HV VI vv 

0 7.7 6.9 8.0 8.0 8.6 9.8 8.8 9.1 
-2 7.6 7.1 8.1 7.9 8.5 9.4 8.8 9.1 

-4 7.9 7.0 8.5 7.7 8.7 9.3 9.1 9.0 

-6 7.9 7.2 8.3 7.6 8.3 8.5 8.5 8.7 

-8 8.1 7.2 8.7 7.8 9.1 9.1 9.3 8.9 

-10 8.0 7.6 8.7 7.8 8.6 8.8 9.1 8.5 

-12 8.5 8.0 8.8 8.0 9.0 9.3 9.3 8.9 

-14 8.1 8.1 8.8 8.1 8.7 9.1 9.2 8.7 

-16 8.3 7.8 8.9 7.8 8.9 8.9 9.9 8.7 

-18 8.3 7.9 9.1 8.0 8.9 8.8 9.4 8.8 
-20 8.3 7.6 9.3 8.1 9.1 8.6 10.0 9.0 

-22 8.4 8.0 8.9 8.0 9.0 9.0 9.4 8.7 

-24 8.4 8.1 9.1 8.0 9.2 9.3 9.6 8.7 

-26 9.2 8.2 9.2 8.2 9.6 9.4 9.9 8.8 

-28 9.1 8.9 9.2 8.8 9.9 10.1 10.0 9.5 

-30 8.8 8.6 9.5 8.7 9.5 9.8 10.3 9.5 

-32 9.6 9.1 9.5 9.0 10.2 10.1 10.3 9.6 

-34 10.1 9.2 9.6 8.9 10.1 9.9 10.5 9.6 

-36 10.4 9.6 9.4 9.0 11.0 10.5 10.2 9.6 
-38 10.5 9.5 10.1 9.5 11.1 10.8 10.9 10.0 

-40 10.5 9.5 10.2 9.6 11.1 10.4 11.0 10.1 

-42 11.0 9.5 11.2 10.1 11.7 10.8 11.8 10.8 

-44 10.7 10.0 11.1 10.4 11.6 11.1 11.9 11.0 
-46 11.5 10.4 11.0 10.9 12.6 11.7 12.8 11.5 
-48 11.6 10.7 12.1 11.1 12.9 11.9 13.1 11.7 

-50 12.6 11.1 13.0 11.2 13.4 12.2 13.7 11.7 
-52 13.7 11.9 13.2 12.1 13.8 13.3 13.9 12.9 

-54 13.7 12.6 14.4 13.2 14.4 13.6 15.3 13.9 

-56 14.4 13.0 14.8 13.3 15.4 14.4 15.8 14.1 

-58 14.8 14.1 15.9 15.0 15.7 15.2 17.4 16.1 

-60 16.6 15.0 16.1 15.1 17.6 16.3 17.6 16.0 
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4.2 THE SIDE LOBES
 

From Figures 4-1, 4-2, 4-3, and 4-4 presented in the subsection
 

above, it appears that the contribution of the power return from
 

the side lobes is not significant compared to that from the main
 

lobe. To examine the relative levels of the main and side lobes
 

an incident angle of - 200
 
more carefully, the two-way gains at 

are plotted as a function of the cross-track angle * in Figures 

4-7 and 4-8 for all four combinations of antenna polarizations. 

For the HH and HV combinations shown in Figure 4-7, the first side 

lobe gains are, respectively, - 30 dB and - 25 dB lower compared 

to the main lobe gain. In Figure 4-8, the same comparison indi­

cated the differences of - 20 dB and - 25 dB between the main and 

the first side lobe gains for the VV and VH combinations, respec­

tively. The gain of each of the remaining side lobes is comparable 

to that of the first side lobe in each of the four combinations. In 

general, the side lobe gains become progressively smaller as M 

increases. Although the contribution to the power return from 

each individual side lobe is small, it is desirable to obtain 

an estimate on the total contribution from all of the side lobes. 

The derivation of the backscattering coefficient a normally takes
 

into account the ground cell associated only with the main lobe
 

antenna pattern. The power return at the scatterometer receiver,
 

however, includes contributions from other areas where the side
 

lobe gains are finite and from the antenna coupling effect dis­

cussed in the next subsection. At a given Doppler frequency band
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associated with along-track incident angle e and angular width
 

A8, the side lobe contribution to the power return is
 

Pt x2 f GtGra° 
PS(0) =- V dA (4-2) 

)(47)JA Gs 

where the integration is carried out over the area defined by the
 

Doppler frequency band and all side lobes. To make a rough but
 

reasonable numerical estimate of Ps (0), the area element of
 

integration is to be approximated by the one shown in Figure 4-9.
 

The two isodopplers determine the total ground area which back­

scatters the RF power in the corresponding Doppler frequency band.
 

Curves L1 and L2 represent the surface loci of the 3-dB points
 

of a given side lobe. Point Ci is the intersection between the
 

isodoppler corresponding to the central Doppler frequency and
 

the curve tracing the two-way gain maxima of the side lobe. The
 

area element from this side lobe is approximately given by
 

AAi = Axi Ay. (4-3)
 

and Eq. (4-2) can be written as
 

N 
Ps () E GIo dx. Ay. (4-4) 

Ri4 1 14
(41) 3 i=l 


where Gi2 is the side lobe maximum two-way gain at point Ci for
 

the area element AAi . The values of ai and Ri all refer to
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the point C.. The summation is over all the side lobe area
 

elements within the two isodopplers.
 

The estimated values for Ps (0) are presented in Section 5 where
 

results from all numerical calculations are summarized and dis­

cussed.
 

4.3 THE ANTENNA COUPLING
 

Since the isolation among the two transmit and the two receive
 

antennae is not perfect, undesired signals are generated due to the
 

antenna coupling which appear in the receiver data channels as
 

portions of the backscattered signals. The relative contribution
 

of the undesired signals to the total signal power level has im­

portant bearing in the data analysis and the interpretation of the
 

backscattering process-of the RF waves. Thus, it is necessary to
 

estimate the relative signal contribution due to the effect of the
 

antenna coupling in order to correctly interpret the observational
 

results.
 

There are two distinct sources of these undesired signals in the
 

1.6 GHz scatterometer. The first source comes form the direct power
 

leakage into the receiver data channels due to the coupling between
 

the transmit and receive antennae. The level of this leakage sig­

nals is - 65 dBbelow the transmitter power and does not introduce 

much error in the value of Pt in the data processing equation.
 

Furthermore, the signals from this source are not Doppler-frequency
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shifted and would appear as power return in the nadir direction.
 

The signals at zero Doppler frequency shift are generally not
 

used in the derivation of the backscattering coefficient a0 from
 

this scatterometer. Therefore, this source of undesired signals
 

will not be discussed in detail here.
 

The second source of the undesired signals results from the
 

cross polarization effects of each of the two transmit antennae
 

as well as of each of the two receive antennae. The signals
 

from this source are Doppler frequency shifted and are entangled
 

with the genuine backscattered signals of interest. To see how this
 

source of undesired signals are generated, a specific example is
 

described below. Note that the expression for PrVH(®), the power
 

level of the signal return at an incident angle e in the vertical­

transmit and horizontal-receive data channel, including the
 

antenna coupling effect, can be written as
 

p e 2 AAPt r 
PrVH(e) = GtVM ()GrHM(e) ao VH(E) + 

(4n) 3R4(6) L0GtV C ( ) r HM ( 6) 0 HH(e) 
 + 

GtVM (O) Gr Hc(G) OVV(6) + GtVc ()G r HC ()G°( (]
 

where GtVM = vertically-polarized transmit antenna gain when the 

vertical transmit antenna is on. 

GtVC cross-polarized vertical transmit antenna gain when 

the vertical transmit antenna is on. 
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GrHM = horizontally-polarized receive antenna gain when the 

horizontal receive antenna is on. 

GrHC = cross-polarized horizontal receive antenna gain when 

the horizontal receive antenna is on. 

The first term inside the bracket in Eq. (4-5) is the dominant term
 

which represents the backscattered signals of interest. The
 

three remaining terms are contributions of the undesired signals
 

due to antenna coupling. These three terms, in sequential order,
 

represent:
 

" 	The return signal in the horizontally-polarized receiver
 
due to the signal transmitted by the cross-polarized
 
component of vertical transmit antenna and backscattered
 
in the horizontal polarization.
 

* 	The return signal in the cross-polarized horizontal
 
receiver due to the signal transmitted by the vertically­
polarized transmit antenna and backscattered in the
 
vertical polarization.
 

" 	The return signal in cross-polarized horizontal receiver
 
due to the signal transmitted by cross-polarized component
 
of vertical transmit antenna and backscattered in the
 
vertical polarization.
 

Expressions similar to Eq. (4-5) were derived for the other three
 

power returns of different polarization states, namely PrHH'
 

PrHV' and PrVV" The results were summarized in Table 4-2,
 

including the one for PrVH discussed above. For each of the four
 

power returns in the table, the first term always gives the
 

dominant term of interest from which the associated backscattering
 

coefficient a is derived. The other three terms representing
 

the undesired signal returns would have to be estimated and
 

their relative contributions to the total power level assessed in
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TABLE 4-2. - THE COMPONENTS OF THE BACKSCATTERED
 

SIGNAL IN RECEIVER DATA CHANNELS 

Components of
 
Power Return Backscattered Signal
 

1. 

2. 
rHH 3. 

4. 

1. 

2. 
rHV 

3. 

4. 

1. 

2. 
PrVH0 3. 

4. 

1. 

2. 
P rV3. 

4. 

4-20 

GtHH OHH GrHM
 

GtHC a0VH GrHM
 

GtHM a0 HV GrHC
 

GtHC ar0VV GrHC
 

GtHM co HV GrVM 

GtHC a°VV GrVM 

GtHM 0HH GrVC
 

GtHC a 0VH GrVC
 

GtVM ay°VH GrHM
 

GtVC a0 HH GrHM 

GtVM c VV GrHC 

GtVC a0 HV GrHC
 

GtVM cVV GrVM 

GtVC a°HV GrVM 
GtVM a°VH GrVC 

GtVC 0 HH GrVC 



the derivation of a0. In Eq. (4-5) as well as all the calculations
 

in the following, the four backscattered signals are assumed to
 

be incoherent.
 

To show the level of antenna coupling, the one-way gains of
 

both prime and cross (coupling) polarizations at 4 = 00 for all
 

four antennae were plotted as a function of e in the aft di­

rection in Figures 4-10 and 4-11. For the horizontal transmit
 

and receive antenna gains shown in Figure 4-10, the cross polari­

zation level is generally about 20 dB or more below that of the
 

prime polarization for all e. The same assessment can be made
 

for the gains of the vertical transmit and receive antennae
 

shown in Figure 4-11. The average antenna coupling effect is
 

generally stronger at locations where 3400. This is illustrated
 

in Figures 4-12 and 4-13 where the one-way gains of both prime
 

and cross polarizations were plotted as a function of 4 at 0 
= 

-100 in the aft direction for all four antennae. Although the
 

cross-polarization gains are observed to vary with 4, the average
 

gain values over 4 in the range from -200 to +20o are not very
 

different from that at 4 = 00. The gains for the prime polar­

ization, on the other hand, decrease steadily on both sides of
 

4 = 00.
 

Based on Figures 4-12 and 4-13 and Table 4-2, the relative contri­

butions due to antenna coupling could be estimated, at some
 

selected locations, for each of the four power returns, PrHH,
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PrVV, PrVH' PrHV- The results are summarized in Table 4-3 for 

o = -10 and for two 4 values of 00 And 40 (-3 -dB point). All 

of the relative power returns and a0 's in the table are ex­

pressed in dB. The components of the backscattered signals 

are listed in the same sequence as those in Table 4-2. Since 

0
the values of a0HH and a are generally observed to be about
 

10-15 dB greater than those for a°VH or a HV (ref. 20), it is
 

immediately clear from the table that, for PrHH and PrW, the
 

contributions from the undesired signals are -30 dB or more
 

below that from the signal of interest. For the remaining two
 

power returns PrHV and PrVa, the undesired signal contributions
 

may be appreciable. For example, at 4 = 00 and 4 = -100, the 

power level of the third undesired signalcomponent could be 

only -4-9 dB below that of the signal of interest in PrHV. 

These results suggest that, depending upon locations,, the con­

tributions of the undesired signal could be as high as 40% of 

the total power return for either PrHV Or PrVH-


The power.at a given Doppler frequency band as observed by the
 

1.6 GHz scatterometer represents the total backscattered signal
 

from the entire ground cell corresponding to that frequency band.
 

Therefore, the comparisons made in Table 4-3 at certain selected
 

locations are clearly not sufficient to give a valuable assess­

ment of the antenna coupling effect. A reasonable approach
 

to make an estimate of the effect is to integrate the power of
 

each of the backscattered signal components, desired and unde­

sired, over the entire ground cell and compare the results.
 

This is done by numerical integration described in Section 5.
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TABLE 4-3. - THE RELATIVE CONTRIBUTIONS TO THE
 

TOTAL BACKSCATTERED SIGNAL
 

COMPONENTS OF BACKSCATTERED SIGNAL
 

POWER RETURN 

APr...PHH 

1. 

2. 
3. 

aoHH + 18.9 dB 

a 0 H - 6.9 dB 
aOHV - 13.1 dB 

1. 

2. 
3. 

aoHH + 14.7 dB 

y0 VH - 13.6 dB 
a°HV ­ 12.3 dB 

4. aoVV ­ 38.9 dB 4. °VV - 39.6 dB 

AP'rHV 

1. 

2. 
3. 

a0HV + 19.7 dB 

o 0W - 6.1 dB 
0°HH - 4.3 dB 

1. 

2. 

3. 

a0HV + 12.4 dB 

a°VV ­ 14.9 dB 

a°HH ­ 6.5 dB 

4. a'VH - 30.1 dB 4. a°VH - 33.8 dB 

AP 

1. 

2. 
3. 

aoVH + 19.9 dB 

OHH ­ 1.4 dB 
a°VV - 12.1 dB 

1. 

2. 
3. 

aoVH + 17.7 dB 

aoHH ­ 3.6 dB 
aoVV ­ 9.3 dB 

4. a0HV ­ 33.4 dB 4. aoHV - 30.6 dB 

APr 

1. 

2. 
3. 

a VV + 20.7 dB 

c°0HV ­ 0.6 dB 
a0VH - 3.3 dB 

1. 

2. 
3. 

aVV + 15.4 dB 

o°HV - 5.9 dB 
o°VH - 3.5 dB 

4. aoHH - 24.6 dB 4. 0°fH - 24.8 dB 
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It is noted from Figure 4-11 that the measurements of the antenna 

gains are limited to the levels above - -25 dB. This suggests 

that the actual cross-polarized gain levels could be lower than
 

the measured values in some regions. However, the estimate on
 

the total undesired signal contribution is heavily weighted towards
 

the components having the higher power returns associated with­

higher antenna cross-polarized levels. Consequently, the satura­

tion in the cross-polarized gain measurements does not introduce
 

significant errors in the numerical estimates of the antenna
 

coupling effect performed in Section 5.
 

The coupling in the side lobes also makes undesired contributions
 

to the total signal power return. However, the contribution to
 

the total signal due to the prime side lobe gains is shown to be
 

small in Sections 4.2 and 5.3. The undesired signal level due
 

to the antenna coupling in the side lobes is expected to be even
 

smaller and will, therefore, not be explored.
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5. NUMERICAL RESULTS AND DISCUSSION
 

5.1 THE COMPUTER PROGRAM
 

The numerical calculations of the receiver signal outputs for
 

various polarization states were performed according to Eq. (3-28).
 

The area elements used in the numerical integration covered 20
 

in 4. The center of the area elements lie on the isodoppler 

corresponding to the along-track incident angle e0. The area 

element A i is given by 

AA i = Ax i Ay i (5-1)
 

where Ayi for off-track (4 3 0)AA i is related to Ayo(4 = 0) along 

the y-axis by 

Ayi = AyO (1 + tan2 ci) (5-2) 

AyO is taken to be 50 m in the computation. The width Ax. is
 

defined to be the distance subtended by 20 of the cross-track
 

angular increment and can be written as
 

Axi = h tan ( i + 1) - tan (i - (5-3) 

Here h is the aircraft altitude and is taken to be 460 m (1510
 

feet). The antenna gains Gt(Oi) and Gr(0i) , the backscattering
 

0
coefficient a°( i) and the distance R( i) inside the summation
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sign of Eq. (3-28) were all evaluated at the centers of AAi's.
 

When these centers did not fall on the positions where the
 

actual measurements of Gt(®i) and Gr(Gi) were made, linearly
 

interpolated values from the immediate neighbors were used. The
 

summation was carried out to the null points on both sides of
 

the main beam.
 

It was pointed out in Section 4 that, because of antenna coupling,,
 

there were undesirable contributions to the backscattered signal
 

return. The null points on both sides of the main beams for the
 

undesirable'signal returns might not coincide with those for the
 

signai return of interest. For example, from Table 4-2, the
 

main beam for the HH polarizations signal return of interest,
 

PrH' was defined by the sum of the prime polarization antenna
 

gains, GtHM and GrHM . The main beams of the three undesirable
 

signal returns (items 2, 3, and 4), on the other hand, were
 

defined by a combination of prime and cross-polarization or by
 

both cross-polarization antenna gains. By the observation of
 

Figures 4-12 and 4-13, it became clear that the null points of
 

the main beams of the signal return of interest and the undesirable
 

signal contributions did not occur at the same cross-track angles.
 

To make the estimate of the antenna coupling effect simple and
 

reasonable, a single main beam boundary was applied to the cal­

culations of all four components of desired and undesired signal
 

returns. This boundary was defined by the null points of the
 

main beam derived from the sum of GtHM and GrHM . The main beam
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boundaries for the other three signil returns of different polari­

zations, PrHV' PrVH' and P (see Talle 4-2), were defined in
 

the same way.
 

The computer program was designed and implemented in accordance
 

with Eq. (3-28). It evaluated the power outputs in terms of the
 

square of the backscattered to calibrate signal voltage ratio,
 
Ea2 o o o o 0 
 0 
E(f)2. Eight angles of incidence at 5 , 10 , 15 , 20 , 30 , 40 

c 
500, and 600 were chosen for the computations. Since the along­

track cell length is a fixed value of 50m, the bandwidth Afd
 

changes with angle of incidence, decreasing from 88 Hz at e = 50
 

to 11 Hz at 0 = 600. Eight values of-rolloff functions Zw(fd)
 

corresponding to the eight incident angles are entered in the
 

program as a table. The values of the antenna feed line loss
 

L and the calibrate constant K were given in Appendix A and were
 

treated as constants in the program.
 

The program was coded in FORTRAN. It consisted of the main pro­

gram and two subroutines. The first subroutine was used to obtain
 

the values of the two-way antenna gain for the calculation of
 

signal return, given the incident angle eo and cross-track angle
 

i" The second subroutine was used to evaluate the backscattering
 

coefficient aO , given the incident angle 0i at area element AAi .
 

The functional dependence of a VV and a HH on 0i is given in
 

Eqs. (3-30) and (3-31) for water and land, respectively. The
 

values of a VH and a°HV were assumed to be 15 dB lower than a HH
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or a0 at all angles of incidence. The program listing, flow
 

chart, and the definition of variables are given in Appendix-D.
 

The program was run on the UNIVAC 1110 computer at JSC.
 

The two-way antennagains for each of 16 combinations in Table
 

4-2, were previously saved on a magnetic tape, one file for each
 

combination. Only the gain values within the main beam boundary
 

corresponding to each of the four polarization groups were saved.
 

For a a vs. e curve, all the signal outputs corresponding to
 

16 components listed in.Table 4-2 can be obtained with a single
 

computer run.
 

0
5.2 THE a DEVIATION
 

As pointed out in Section 3, it is necessary to assume a functional
 
o 0
 

dependence of a on the incident angle G in the first method of U
 

derivation. 	This assumption was made according to Eqs. (3-30) and
 

(3-31) for the backscattering from water and land, respectively.

Za2 

The receiver signal outputs in terms of a) from the computer runs
 
c 

are shown in Figures 5-1 and 5-2, respectively for the backscatter­

ing from water and land. These signal outputs could be compared with
 

those actually obtained from observations to determine the validity
 

of the assumed ao dependence on 0. The procedure is straightforward
 

and will not be performed here. Instead, a comparison will be made
 

between the first (as represented by Eq. (3-28)) and second (as
 

represented by Eq. (3-29)) methods of a derivation.
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Figure 5-I.- The computed backscattered signals over water for all
 
four polarization combinations.
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Figure 5-2.--The computed backscattered signals over land for all
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To do such a comparison, the data displayed in Figures 5-1 and
 

5-2 were taken to be the receiver output signals for both
 

methods. Then the a0 dependence on 0 as derived from the first
 

method will be given by Eq. (3-30) for water and Eq. (3-31) for
 

land. The numerical values from these equations at the incident
 

angles of -5, -10, -15, -20, -30, -40, -50, and -60 degrees were
 

listed under the columns in Tables 5-1 and 5-2. The O's
to,, 


for both linear and cross polarizations over water were given in
 

Table 5-1 while those over land in Table 5-2. Note that, as des­

cribed in Subsection 5.1, no distinction is made between a HH
 

and a° and between aoV and a in this first method of a0
 VV W HV
 

derivation.
 

The corresponding values of the ae°'s derived from the second method 

of Eq. (3-29) were given in the same two tables under the columns 

of 0 HH 'a ' HV", and "a '. The same numerical values 

for the parameters such as altitudes, aircraft speed, cell length,
 

antenna feed line loss and calibrate constant K were used in Eqs.
 

(3-28) and (3-29). It is clear from Table 5-1 that, fot each of
 

the four polarizations, the a derived from both methods are com­

parable for large 0 > 14001. For small 0 < 120°I, however, some
 

differences are observed. At 0 = -50, for example, the 0 values
 

derived from the second method could be - 0.8 - 0.9 dB smaller 

than those derived from the first method. The differences become 

smaller as the functional dependence of a on 0 become less strong. 

This effect is clearly observed in Table 5-2 where the slope of 
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TABLE 5-1. - A COMPARISON OF a0 VALUES (dB) DERIVED FROM
 

Incident 

Angle E 

(Degree) 


5 


-10 
U'I 
co -15 


-20 


-30 


-40 


--50 


--60 


TWO DIFFERENT APPROACHES - OVER WATER
 

Linear Polarization Cross Polarization
 
.......
 

ao0 0 0 0oaaHH a V°t'V a VH 

+1.97 +1.17 +1.09 -13.03 -13.82 -13.80 

-2.64 -3.06 -3.01 -17.64 -18.49 -18.09 

-6.88 -7.08 -7.12 -21.88 -22.22 -22.22
 

-10.76 -10.92 -11.03 -25.76 -25.94 -26.10
 

-17.44 -17.32 -17.60 -32.44 -32.57 -32.63
 

-22.68 -22.68 -22.77 -37.68 -37.68 -38.21
 

-26.46 -26.43 -26.46 -41.46 -41.54 -41.56
 

-28.80 -28.83 -28.88 -43.80 -43.81 -43.89
 



TABLE 5-2. 	- A COMPARISON OF a0 VALUES (dB) DERIVED FROM
 

TWO DIFFERENT APPROACHES - OVER LAND
 

Cross Polarization
Linear Polarization
Incident 	 ----
Angle : 

Anl0 	 0 0 0 0 0 

(Degree) 0 a°HH 	 C° aVVO0HV a°VH 

- 5 +1.58 +1.41 +1.36 -13.42 -13.52 -13.54
 

-10 +1.05 +0.99 +1.04 -13.95 -14.42 -14.02
 

'-15 0.53 +0.57 +0.52 -14.47 -14.56 -14.55
 

--20 0 +0.02 -0i0 -1-5.00 -1,5.01 -15.14
 

--30 -1.05 -0.82 -1.12 -16.05 -16.08 -16.13
 

-40 -2.10 -2.04 -2.14 -17.10 -17.05 -17.57
 

-50 -3.15 -3.09 -3.12 -18.15 -18.19 -18.21
 

-60 -4.20 -4.22 -4.27 -19.20 -19.20 -19.28
 



C0 vs 0 curve for land is much flatter than that for water. From
f .
 

this table, it is seen that, for any one of the four polarizations,
 

0.2 dB while the a0
the difference at 0 = -50 is only - 0.1 ­

values from the two methods for 0 > 14001 remain comparable.
 

From these comparisons, it can be concluded that, when the slope
 

of C° vs 0 curve is steep, the sedond method of a0 derivation
 

0 Although the beamwidth
tends to underestimate the u values. 

A used in the second method was defined in terms of Eq. (4-1), 

it could be shown that the use of 3-dB beamwidth would not alter 

this conclusion. For example, it was pointed out in Section 4 

that A derived from 3-dB method is - 10 smaller than that 

derived from Eq. (4-1). If A4 from Eq. (4-1) gives 8.50 at 

0 = -50 and 170 at e = -600, then the corresponding values from 

3-dB approach would be - 7.50 and 160, respectively., Those 3-dB 

At's raise the a value by - 0.54 dB at 0 = -50 and - 0.26 dB 

at 0 = -600. Thus, using the 3-dB beamwidth in Eq. (3-29) 

improves ar0 estimate at 0 12001, but overestimates the uo value 

by a few tenths of 1 dB at S > 14001. 

5.3 THE EFFECT OF ANTENNA SIDE LOBES
 

The side-lobe contribution to the total power return can be esti­

mated according to Eq. (4-4). To make a comparison of the power
 

levels between the main-beam and the side-lobe signal returns,
 

however, it is more convenient to write Eq. (4-4) in a form
 

similar to Eq. (3-28). This is readily done and the final expres­

sion for the side-lobe signal return is:
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2
Z (E' 2 ~ o 
-- 'd Af = X. GiYEa1 Axi Ayi (5-1)L K Ec d (470)3 "= 4i 

Here N is the number of the side-lobe area elements contributing
 

to the power return at the Doppler frequency fd and bandwidth
 

Afd. ZW(fd), L, and K have the same meaning and values as in
 

Eq. (3-28). Gi2 , i°, Axi, and Ayi were defined in Subsection
 

4.2. The variation of a0 with incident angle e were again deter­

mined by Eqs. (3-30) and (3-31) for the backscattering from water
 

and land, respectively. From Eq. (5-1), the side-lobe power level
 
E 2 

can be estimated in terms of ( and compared directly with 
c 

main-beam power return shown in Figures 5-1 and 5-2.
 

The contributions of power return from the first side lobes on
 

both sides of the main beams were computed and plotted in Figures
 

5-3 and 5-4 for water and land, respectively. The computations
 

were made for all four polarizations. Clearly, the total side­

lobe contributions are greater than those shown on the plots,
 

because there are more than one side lobe on either side of the
 

main beam for each of four polarizations. For instance, Figures
 

4-7 and 4-8 showed that there were about four or five side lobes
 

on either side of any of four main beams. As a result, the
 

side-lobe power contributions could be - 4 times (or - 6 dB)
 

higher than those-indicated in Figures 5-3 and 5-4 at 0 = -20° .
 

51
 

5-11
 



-40
 

+ + 
+ 

-50 0
 
0 +
 

0 + 
0 0 0 0 

=-5 000 
-60 --

Ux 

~0 

~X
ox 

-70
 

X x 

x 

-80­

0 HH POLARIZATION
 
0 HV POLARIZATION
 

-+'VVPOLARIZATION
 

X VH POLARIZATION
 

-9o0
,I1
 
0 -10 -20 -30 -40 -50 -60 -70
 

ANGLE OF INCIDENCE, DEGREE
 

Figure 5-3.- Estimated first side-lobe signal return from water
 
corresponding to the indicated main-beam incident angle.
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Even if the side-lobe power levels shown in Figures 5-3 and 5-4 

are raised by - 6 dB, their contribution to the total power is 
0
 

not significant enough to affect the a estimation. For example, 

with a 6-dB addition, the side lobe power level for VV polariza­

tion at G = -200 shown in Figure 5-3 would be - -40 dB. When 

compared with the corresponding backscattered power shown in 

Figure 5-1, the side-lobe power is found to be - 20 dB lower. 

This same effect is observed for the'other three polarizations 

and for backscatterings from land (i.e., comparing Figures 5-2 

and 5-4). Thus, it can be concluded that the side-lobe contri­

butions to the backscattered signal powers are insignificant. 

5.4 EFFECT DUE TO ANTENNA COUPLING 

The computer outputs of the backscattered signals are displayed 

in sequential order in Tables 5-3, 5-4, 5-5, and 5-6 for HH, HV, 

VH, and VV polarizations. The computed signal outputs were 

derived for backscattering from both water and land and for inci­

dent angles at -5° , -10, -15° , -20° , -30° , -40 ° , -50, and -60. 

The assignment of the backscattered signal components under 

columns "l", "2", "3", and "4" was the same as that given in Table 

4-2. Consequently, the values under columns "1" were the back­

scattered powers of interest, while those under the other three 

columns were the backscattered powers due to antenna coupling. 

The values in the column "Total" gave the sums of those in the 

four columns. The values for a°V and a VH were taken to be 15 

° 
dB less than those for o and 0VV in the computations.
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TABLE 5-3. - NUMERICAL VALUES OF THE BACKSCATTERED SIGNALSE 2 

(IN TERMS OF t2) - HORIZONTAL TRANSMIT AND HORIZONTAL RECEIVE 
C 

Incident 
Angle 0 
(Degree) 1 2 

HH (Water)
1.. 

3 4 TOTAL 1 2 

HH (Land) 

3 
. 
4 TOTAL 

- 5 -21.71 -59.86 -64.45 -70.68 -21.71 -21.47 -59.24 -63.61 -69.20 -21.47 

-10 -20.69 -60.34 -62.98 -71.62 -20.69 -16.64 -56.17 -58.56 -66.92 -16.64 

U1 
-15 

-20 

-21.99 

-23.40 

-61.83 

-60.89 

-64.93 

-67.05 

-73.99 

-72.86 

-21.99 

-23.40 

-14.34 

-12.46 

-54.12 

-49.89 

-56.92 

-55.82 

-65.70 

-61.16 

-14.34 

-12.46 

-30 

-40 

-24.56 

-26.49 

-60.63 
/ 

-61.75 

-67.46 

-68.23 

-71.19 

-73.96 

-24.56 

-26.49 

- 8.06 

- 5.85 

-44.07 

-41.07 

-50.81 

-47.51 

-54.01 

-53.14 

- 8.06 

- 5.85 

-50 -28.28 -62.77 -69.40 -73.37 -28.28 - 4.94 -39.40 -46.01 -49.92 - 4.94 

-60 -30.39 -62.88 -70.31 -70.28 -30.38 - 5.78 -38.26 -45.68 -45.64 - 5.78 



TABLE 5-4. - NUMERICAL VALUES OF THE BACKSCATTERED SIGNALS 
E 

Z 

(IN TERMS OF E,) - HORIZONTAL TRANSMIT AND VERTICAL RECEIVE 
c 

Incident
nglee 

HV1 (Water) HV (Land) 

(Degree) 1 2 3 4 TOTAL 1 2 3 4 TOTAL 

- 5 -20.35 -27.90 -26.85 -66.54 -18.89 -20.05 -27.12 -26.72 -66.22 -18.55 

-0 -18.97 -28.13 -28.50 -68.86 -18.06 -14.90 -23.89 -24.43 -64.25 -13.97 

-15 -20.45 -30.39 -32.25 -70.44 -19.78 -12.79 -22.69 -24.50 -61.67 -12.11 

-20 -22.57 -30.31 -35.95 -71.02 -21.73 -11.64 -19.34 -24.90 -59.11 -10.79 

-30 -25.58 -32.32 -41.03 -74.18 -24.64 - 9.09 -15.76 -24.37 -57.05 - 8.14 

-40 -29.17 -35.37 -40.34 -71.78 -27.98 - 8.54 -14.71 -19.58 -50.97 - 7.33 

-50 -32.40 -37.97 -37.26 -67.48 -30.35 - 9.05 -14.60 -13.87 -44.05 - 6.99 

-60 -36.10 -39.74 -35.85 -63.60 -32.13 -11.49 -15.12 -11.23 -38.96 - 7.52 



TABLE 5-5. - NUMERICAL VALUES OF THE BACKSCATTERED SIGNALS 
E 

2 

(IN TERMS OF E2) - VERTICAL TRANSMIT AND HORIZONTAL RECEIVE 
c 

Incident 
Angle 0 
(Degree) 1 2 

VH (Water) 

3 4 TOTAL 1 

_ 

2 

VH (Land) 

3 4 TOTAL 

- 5 -32.38 -40.40 -45.43 -83.63 -31.56 -32.12 -39.99 -44.58 -82.11 -31.26 

f. -10 

-15 

-31.57 

-32.72 

-38.33 

-39.63 

-43.91 

-45.44 

-80.71 

-81.48 

-30.53 

-31.73 

-27.50 

-25.05 

-34.27 

-31.92 

-39.47 

-37.42 

-75.97 

-73.25 

-26.45 

-24.03 

-20 -33.93 -41.65 -47.16 -82.94 -33.08 -22.97 -30.62 -35.91 -71.47 -22.10 

-30 -34.52 -43.55 -47.51 -84.23 -33.82 -18.02 -26.99 -30.84 -67.15 -17.30 

-40 -36.06 -45.22 -48.40 -86.29 -35.34 -15.42 -24.52 -27.67 -65.39 -14.69 

-50 -38.81 -45.38 -50.34 -85.03 -37.70 -15.46 -21.99 -26.94 -61.57 -14.34 

-60 -42.75 -45.17 -52.78 -81.72 -40.52 -18.14 -20.54 -28.16 -57.08 -15.90 



TABLE 5-6. - NUMERICAL VALUES OF THE BACKSCATTERED SIGNALS 
E 

2 

(IN TERMS OF t2) - VERTICAL TRANSMIT AND VERTICAL RECEIVE 
c 

Incident VV (Water) VV (Land) 
Angle 0 
(Degree) 1 2 3 4 TOTAL 1 2 3 4 TOTAL 

- 5 -16.71 -55.13 -52.54 -59.91 -16.71 -16.44 -54.67 -52.30 -59.51 -16.44 

-10 -15.69 -52.72 -54.31 -60.53 -15.69 -11.64 -48.68 -50.12 -56.15 -11.64 

-15 -16.93 -54.18 -57.96 -64.02 -16.93 - 9.29 -46.51 -50.08 -55.76 - 9.29 

-20 -18.76 -57.20 -61.44 -67.39 -18.76 - 7.83 -46.21 -50.25 -55.74 - 7.83 

-30 -21.24 -61.08 -66.39 -73.22 -21.24 - 4.76 -44.55 -49.71 -56.25 - 4.76 

-40 -24.39 -64.58 -64.75 -69.70 -24.39 - 3.76 -43.89 -44.00 -48.85 - 3.76 

-50 -28.60 -66.30 -62.53 -65.32 -28.60 - 5.26 -42.91 -39.14 -41.88 - 5.26 

-60 -34.05 -67.19 -62.99 -61.42 -34.03 - 9.44 -42.56 -38.37 -36.78 - 9.42 



It is clear from Tables 5-3 and 5-6 that, by comparing columns
 

"l" and "Total", the contribution to the backscattered signal
 

due to antenna coupling is totally negligible in these cases.
 

Therefore, it is not necessary to take the effect of antenna
 

coupling into account when deriving a0 HH or a° w . The results 

shown in Tables 5-4 and 5-5, on the other hand, indicate an 

appreciable contribution to the total power. While there were 

non-negligible contributions at all eight incident angles under 
°
 =investigation, the most severe ones appeared to be at 0 -50
 

and 0 = -600. For example, the values of the backscattered sig­

nals from water in Table 5-4 showed that the power contribution
 

due to antenna coupling was - 0.8 - 1.5 dB and - 2-4 dB for 

6< 14001 and for 0 > 15001, respectively. This same remark 

could be made from the results of the backscattering from land
 

in the same table. The values given in Table 5-5 showed the
 

same pattern of variation with 0, although the effect was less
 

severe.
 

The effect of the antenna coupling on the backscattered signal
 

power level is expected to depend strongly on the relative values
 

of a°HV and a°VH with respect to a HH and a0VV" To make a rough
 

estimate of this dependence, a similar computation was performed
 

with a°HH and a0 again given by Eqs. (3-30) and (3-31) for back­

scattering from water and land, respectively. But the values of
 

a°HV and aoVH were assumed to be 10 dB less than those of a0°HH
 

and a° w . The results of this computation are shown in Tables
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'5-7 and 5-8 respectively for HV and VH polarizations. For both 

water and land backscatterings the results in Table 5-7 indi­

cated a - 1.7 dB contribution due to antenna coupling at 

0 = -600. From 0 = -5° to 6 = -150, the contribution decreased 

from 0.5 dB to 0.2 dB. The values in Table 5-8 showed that the 

power contribution from antenna coupling was - 0.8 dB at 

6 = -600 and fluctuated between 0.2 and 0.4 dB for other O's. The 

same computation was also made for HH and VV polarizations, and 

the results showed negligible contribution from antenna coupling, 

as to be expected from the observations of Tables 5-3 and 5.6. 

It can be shown that even if the values'of aoHV and °VH are com­

parable to those of 0°HH and o the effect of antenna coupling
 

remains negligible in a0HH and a estimations.
 

From the above discussion, the following concluding remarks can
 

be made. First, the derivation of o°HH and o°VV from data remotely
 

acquired by the 1.6 GHz airborne scatterometer are free of antenna
 

coupling effect. Secondly, if a0HV and 0VH are less than a°HH
 

and a0VV by more than - 10 dB, the contribution of antenna
 

coupling to the total backscattered powers in both HV and VH
 

polarizations becomes appreciable. As a result of this undesirable
 

contribution, a°HV and 0VH would be overestimated. Finally, the
 

amount of the a0v and a VH overestimates depends on the relative
 

values of a0HV and a0VH with respect to a01HH and a The results
 

presented in Tables 5-4, ,5-5, 5-7, and 5-8 indicate the highest
 

overestimate to occur at incident angles ranging from -50o0 to -60
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TABLE 5-7. - NUMERICAL VALUES OF THE BACKSCATTERED SIGNALS 
E 

Z 

(IN TERMS OF E2) - HORIZONTAL TRANSMIT AND VERTICAL RECEIVE 
c 

incident 
Angle 0 
(Degree) 1 2 

HV (water) 

3 4 TOTAL 1 2 

HV (Land) 

3 4 TOTAL 

- 5 -15.35 -27.90 -26.85 -61.54 -14.83 -15.05 -27.12 -26.72 -61.22 -14.52 

H 

-10 

-15 

-13.97 

-15.45 

-28.13 

-30.39 

-28.50 

-32.25 

-63.86 

-65.44 

-13.66 

-15.23 

- 9.90 

- 7.79 

-23.89 

-22.69 

-24.43 

-24.50 

-59.25 

-56.67 

- 9.59 

- 7.56 

-20 

-30 

-40 

-17.57 

-20.58 

-24.17 

-30.31 

-32.32 

-35.37 

-35.95 

-41.03 

-40.34 

-66.02 

-69.18 

-66.78 

-17.29 

-20.26 

-23.76 

- 6.64 

- 4.09 

- 3.54 

-19.34 

-15.76 

-14.71 

-24.90 

-24.37 

-19.58 

-54.11 

-52.05 

-45.97 

- 6.35 

- 3.77 

- 3.12 

-50 -27.40 -37.97 -37.26 -62.48 -26.64 - 4.05 -14.60 -13.87 -39.05 - 3.28 

-60 -31.10 -39.74 -35.85 -58.60 -29.42 - 6.49 -15.12 -11.23 -33.96 - 4.80 



TABLE 5-8. - NUMERICAL VALUES OF THE BACKSCATTERED SIGNALSE 2 

(IN TERMS OF 02) - VERTICAL TRANSMIT AND HORIZONTAL RECEIVE 
C 

Incident 
Angle 0 
(Degree) 1 2 

VH (Water) 

3 4 TOTAL 1 
...-. 

2 

VH (Land) 

3 4 TOTA 

L1 

- 5 

-10 

- 15 

-20 

-30 

-40 

- 50 

- 60 

-27.38 

-26.57 

-27.72 

-28.93 

-29.52 

-31.06 

-33.81 

-37.75 

-40.40 

-38.33 

-39.63 

-41.65 

-43.55 

-45.22 

-45.38 

-45.17 

-45.43 

-43.91 

-45.44 

-47.16 

-47.51 

-48.40 

-50.34 

-52.78 

-78.63 

-75.71 

-76.48 

-77.94 

-79.23 

-81.29 

-80.03 

-76.72 

-27.10 

-26.22 

-27.38 

-28.64 

-29.29 

-30.82 

-33.43 

-36.91 

-27.12 

-22.50 

-20.05 

-17.97 

-13.02 

-10.42 

-10.46 

-13.14 

-39.99 

-34.27 

-31.92 

-30.62 

-26.99 

-24.52 

-21.99 

-20.54 

-44.58 

-39.47 

-37.42 

-35.91 

-30.84 

-27.67 

-26.94 

-28.16 

-77.11 

-70.97 

-68.25 

-66.47 

-62.15 

-60.39 

-56.57 

-52.08 

-26.83 

-22.14 

-19.70 

-17.67 

-12.78 

-10.18 

-10.07 

-12.30 



5.5 PRECISION IN THE OUTPUT SIGNAL
 

The discussion in this section is limited to those factors
 

directly relat(d to the 1.6 GHz scatterometer system only. The
 

backscattered signal statistics which were discussed in great
 

length elsewhere (ref. 11) will not be repeated here. The
 

following gives a brief description for each of these factors
 

considered to affect' th performance of the scatterometer system.
 

5.5.1 ANTENNA PATTERN MEASUREMENTS
 

The uncertainty in the antenna pattern measurements was not
 

recorded and supplied together with the gain values. M. Drexler
 

(personal communication), of the New Mexico State University, 

placed this measurement uncertainty at - ± 0.5 to ± 1 dB. An 

uncertainty of - ± 0.5 to ± 1 dB in one-way gain results in the 

uncertainty of - ± 0.7 to ± 1.3 dB for the two-way gain used in 

° 
the a estimates. Another source of uncertainty comes from the
 

fact that the gain measurements were made without a mockup to
 

simulate the effect of the C130 aircraft. It is expected that,
 

after the antennae were installed in the aircraft, the gain
 

pattern would differ from that measured in the laboratory. The
 

magnitude of this antenna pattern change cannot be estimated.
 

5.5.2 MEASUREMENTS OF CALIBRATE CONSTANT AND ROLLOFF FUNCTION
 

An uncertainty also exists in the measurements of the calibrate
 

constant K and rolloff function Z (fd). A reasonable estimate
 

placed this uncertainty to be no more than ± 0.5 dB for each
 

of these measurements (S. C. Reid, personal communication).
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5.5.3 AIRCRAFT PARAMETERS
 

Factors associated with aircraft motion such as roll, pitch,
 

drift, vertical velocity, speed, and altitude changes could
 

introduce errors in the received signals. The effects of roll,
 

pitch, and vertical velocity are to alter the incident angle 0
 

and were studied by Krishen et al. (ref. 4) with respect to the
 

13.3 GHz scatterometer system. Following the same approach, the
 

errors introduced by these factors in the ao estimates are pre­

sented in Tables 5-9, 5-10, and 5-11 for all four polarizations.
 

In making these error calculations, the aircraft speed is assumed
 

to be 77 m/sec, the vertical velocity to be 4 m/sec, and both
 

roll and pitch angles to be 50. Clearly, the change in 0 due to
 

pitch and vertical speed could be either plus or minus. Tables
 

5-10 and 5-11 show the case of larger modified incident angles
 

only.
 

The changes of both aircraft speed and drift would introduce 

changes in the Doppler frequency associated with a given 0. For 

example, at 6 = -300, a change of speed from 77 m/sec to 70 m/sec 

would give a corresponding change in Doppler frequency from 411 

Hz to 373 Hz. Similarly, a drift of - 100 would shift the Doppler 

frequency from 411 Hz to 405 Hz. These changes in Doppler fre­

quency, if not corrected for in data processing, could result in
 

°
 erroneous a0 estimates.
 

The variation in aircraft altitude would also introduce error in
 

° 
the a estimate. From Eq. (3-3), a is observed to be proportional
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TABLE 5-9. - ERRORS INTRODUCED IN THE ao ESTIMATE
 

DUE TO AN AIRCRAFT ROLL OF 50
 

Modified
Angle of Angle of
 
incidence Incidence
 
(Degree) (Degree) 


5 - 7.07 


-10 -11.17 


-15 -15.79 


-20 -20.59 


-30 -30.38 


-40 -40.26 


-50 -50.18 


-60 -60.13 


HH 


0.35 


0.30 

- 0.10 

0.09 


-0.04 


0.35 


0.13 


0 


Error in 


HV 


-0.05 


0.35 


-0.05 


-0.25 


-0.25 


-0.24 


-0.12 


-0.15 


o0 (dB) 

VH W 

0.45 -0.02 

0.17 -0.12 

-0.03 -0.25 

-0.31 -0.20 

-0.05 -0.20 

0.09 -0.11 

0.20 -0.09 

0.12 -0.19 



TABLE 5-10. - ERRORS INTRODUCED IN THE a ESTIMATE
 
°
 

DUE TO AN AIRCRAFT PITCH OF 5
 

Modified 	 Error in a0 (dB)
Angle of 	 Angle of _____ ____ ____ 

Ingil enIncidence
(Degree) IncidencE HH 	 Hv
 
(Degree) H 	 VH W
 

- 5 -10 0.70 0.20 0.85 0.83
 

-10 -15 0.40 0.55 0.14 0.25

uI
I 

-15 -20 -0.65 0.20 -0.85 -0.30
 

-20 -25 -1.44 -0.84 -1.60 -0.83
 

-30 -35 -1.53 -0.67 -1.32 -0.89
 

-40 -45 -1.18 -0.50 -0.51 0.23
 

-50 -55 -0.46 0.14 0.75 1.17
 

-60 -65 -0.48 0.16 0.39 0.95
 



TABLE 5-11. - ERRORS INTRODUCED IN THE ao ESTIMATE
 

DUE TO AN AIRCRAFT VERTICAL SPEED OF 4 M/SEC
 

Angle of Modified 

Incidence Angle of
 
(Degree) 


- 5 


-10 


-15 


-20 


-30 


-40 


-50 


-60 


Incidence
 
(Degree) 


- 7.97 


-12.97 


-17.97 


-22.97 


-32.97 


-42.97 


-52.97 


-62.97 


Error in ao (dB) 

HEH V VH VV 

0.55 0 0.66 0.23 

0.47 0.35 0.38 0.10 

-0.15 0.20 -0.38 -0.30 

-0.50 0.53 -0.74 -0.55 

-0.68 -0.50 -0.64 -0.56 

-0.76 -0.42 -0.33 -0.08 

-0.28 0.07 0.48 0.60 

0.05 -0.23 0.40 0.25 



to R4 and inversely proportional to the area A of the ground
 

cell. Since R is proportional to altitude h and A to h
2, C0
 

varies with h2 . Thus, if h changes from 460 m to 440 m, the
 

° 
error in the a estimate would be - 0.39 dB.
 

5.5.4 ADDITIONAL ERROR SOURCES
 

Several additional error sources should also be considered. The
 

first one is due to the antenna coupling discussed in Subsection
 

5.4. Care must be taken to eliminate or minimize this error
 

source in estimating a0 HV and a0VH from data remotely acquired
 

by the 1.6 GHz airborne scatterometer system. The second source
 

.of errorcomes from the improper phase shift. This error source 

was discussed by Krishen et al. (ref. 4) in great detail. The 

results of their analysis were also applicable to the 1.6 GHz 

scatterometer system. The third source of error had its origin 

in the electronics assembly and was discussed in detail by 

Zuefeldt (ref. 9). This error source is rather small, however. 

Finally, if a0 vs. e curve is steep, error could be present in 

a0 estimate at small incident angle, as pointed out in Subsection 

5.1.
 

5.5.5 A BRIEF COMMENT
 

The uncertainty introduced in the antenna pattern measurements
 

and by the presence of the aircraft body is difficult to correct.
 

But this uncertainty can be treated as a bias and should not
 

affect the repeatability of the data take from one mission to
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*another. The calibrate signal level could be adjusted to accomo­

date a particular mission. For each adjustment a new calibrate
 

constant K would have to be measured and the measurement, there­

fore, should be made as precise as possible. The changes in
 

aircraft parameters could introduce large error in a0 estimation.
 

This type of error could be minimized by making corrections to
 

the aircraft parameters during data processing. The error sources
 

from improper phase shift, antenna coupling and steepness of a
 

vs. 0 curve could be reduced to a minimum by proper data reduction
 

and manipulation. However, if the data quality is such that the
 

ratio of the fore to aft signal powers is large or small compared
 

to 1, a few degrees in phase shift error could result in large
 

error in a estimate. The data should be used with reservation
 

in this case.
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6. CONCLUSIONS AND RECOMMENDATIONS
 

A system analysis was performed for the JSC 1.6 GHz airborne scat­

terometer. The principle of the scatterometer operation, calibra­

tion procedures, and data handling were described in some detail.
 

The antenna gain patterns were studied in great length and the
 

effects of the antenna cross polarization analyzed. Several
 

error sources in the estimation of a0 were briefly discussed. In
 

the course of the entire analysis, only the immediate power input
 

to and the power output from the scatterometer system were dealt
 

with. The interacting process of the RF waves with terrain sur­

face was completely omitted. The terrain surface characteristics
 

were reflected through the assumed functional forms of the back­

scattering coefficient 0(0).
 

The major conclusions that resulted from this study are listed
 

in the following:
 

1. 	when a0 decreases rapidly with incident angle 0, which occurs
 

in the backscattering from a quiet water surface, the normal
 

° 
approach of estimating a appears to give a low value at a 

small incident angle. If o vs 6 curve over water is given 

by Figure 3-5, then the amount of the underestimate is 

- 0.8 dB at 0 = 50. 

2. 	The gain patterns for the four antennae are quite different
 

from one another. Most of the gain maxima occur at S = ± 50° .
 

One of the two gain maxima for the vertical transmit antenna
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occurs at 0 = 150 and the same for the vertical receive antenna 

at 0 =-15 The beamwidth variations with 6 of all four 

antennae follow closely with one another. 

3. 	The cross-polarization effects measured for the four antennae
 

are found to have important bearing on the receiver signal
 

outputs of both HV and VH polarizations. If a°HV and a VH
 

are less than aOHH and a VV by - 10 dB, the power contributions
 

due to antenna cross-polarization effects were found to raise
 

the total power outputs at 0 = 600 by - 1.7 dB and - 0.8 dB 

for HV and VH receivers, respectively. The contributions 

become progressively larger as a° and a0V become smallerHV V
 

compared to a HH and a° .
 

4. 	The side-lobe contributions to the receiver signal outputs
 

are negligible. For all cases examined, the backscattered
 

power levels from the side lobes are Z715 dB or more below
 

that from the main beam.
 

5. 	The variations of the aircraft parameters are found to affect 

the estimation of ao For example, a pitch of 5o could result 

in a - 1.5 dB error in some cases. 

There are four recommendations that are considered to be important
 

in the improvements of the system performance and the quality of
 

the final results. They are listed below:
 

1. 	The second functional mode of operation (i.e., V transmit
 

and H and V receive), which would give estimates of o and
 
0 
SVH' was seldom used in the past. The data outputs from a
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few 	past missions indicated system instability in this mode
 

of operation. If information provided by a°VH and a VV are
 

indispensible in the aircraft remote sensing of soil moisture,
 

this problem will have to be fixed as soon as possible.
 

2. 	As indicated in the previous section, the effect of the air­

craft body on the antenna pattern cannot be estimated.
 

To 	improve the accuracy of a0 measurements, it is desirable
 

to 	calibrate the aircraft scatterometer with a well cali­

brated ground system on a homogeneous terrain surface.,
 

3. 	Data acquired from the 1.6 GHz scatterometer system should
 

be checked with respect to the phase shift error. Corrections
 

to the variations of the aircraft parameters should be made
 

in the data processing.
 

4. 	The antenna cross-polarization effects should be taken into
 

account in the estimations of a0HV and a°V.
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APPENDIX A
 

THE CALIBRATION DATA
 

The laboratory calibration procedure for the 1.6 GHz scatter­

ometer is almost the same as the 13.3 GHz scatterometer
 

described by Reid (ref. 16). Therefore, only a simple de­

scription will be given wherever necessary. The calibrate
 

data presented in the following were obtained during August
 

of 1976 and were used in all the calculations in this document.
 

Updating of these calibrate data are necessary for each JSME
 

mission.
 

A.l THE CALIBRATE CONSTANTS 

As discussed in Section 3, the constant K which relates the
 

transmit and receive signal levels to those actually recorded
 

at the receiver output has to be predetermined in the labora­

tory. Figure A-i shows a sketch of the setup for the measure­

ment of this constant. The output power of the transmitter
 

signal at 1.6 GHz was first measured by a power meter through
 

a coupler. The signal was then attenuated by about 90 dB
 

before entering a single side-band modulator. The frequency
 

of the test signal to the receiver input became 1.6 GHz plus
 

fa, fa being the frequency set by the audio-oscillator. fa
 

was chosen to be 5 KHz in the present case, where the land
 

and sea filters had neglibible effect of signal attenuation.
 

The power level of this test signal was measured by a spectrum
 

analyzer.
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Figure A-1.--A sketch of the laboratory system calibration setup.
 



The routing of the calibrate signal at 1.9 KHz and the trans­

mitter sample signal was not explicitly shown in Figure A-i,
 

but was clearly displayed in Figure 3-3. The test signal at
 

5KHz and the calibrate signal at 1.9 KHz were separately
 

measured by a wave analyzer at one of the four receiver out­

put channels (J4, J5, J6 and J7). The calibrate signal was
 

adjusted so that its output power level matched that of the
 

test signal. Under this condition, the power difference be­

tween the transmit signal and the transmit sample signal and
 

the amount of attenuation yielded the value for K. The cali­

brate signal level should not be changed until the next cali­

bration measurement. There were four measured values for K
 

depending on the polarizations of the transmit and receive
 

RF waves. These were:
 

116.3 dB for horizontal transmit and horizontal receive
 

131.3 dB for horizontal transmit and vertical receive
 

118.8 dB for vertical transmit and vertical receive
 

119.3 dB for vertical transmit and horizontal receive.
 

A.2 VARIABLE GAIN RESPONSE TEST
 

The reason for this test was to verify that the changes in the
 

output signal correspond to the changes in the variable gain
 

amplifier settings. The setup and the procedure of this test
 

were almost the same as those described in the subsection A.l
 

above. It was not necessary, however, that the receiver output
 

signals at 1.0 KHz should be at the same level. The results of
 

a typical test are summarized in Table A-I. The variable gain
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TABLE A-I 	The receiver output responses to the variable
 

gain amplifier settings. All numbers are
 

expressed in dB.
 

, sariable
Gain
 

tting 
 10 	 15 20

Receiver (dB)
 

Output Port
 

CAL -19.7 -14.8 - 9.8 - 4.8 +0.2 

J4 

TEST -20.8 -16.0 -11.0 - 6.0 -1.0 

CODE -20.8 -16.0 -11.0 - 6.0 -1.0 

J5 

TEST -20.8 -16.0 -11.0 - 6.0 -1.0 

CAL 	 -34.0 -29.0 -24.0 -19.0 -14.0
 

J6 

TEST -20.8 -15.8 -10.8 - 5.8 -0.8 

CAL -33.3 -28.5 -23.5 -18.5 -13.5 

J7 

TEST -20.8 -15.8 -10.8 - 5.8 -0.8 



amplifier setting was successively changed from 0 to 20 dB in
 

5-dB steps. The signals at all four receiver output ports
 

J4, J5, J6 and J7 were observed to respond in a 5-dB increment
 

as expected. The terms CAL, TEST, and CODE refer to the cali­

brate, test, and coding (at 2.1 KHz) signals respectively.
 

A.3 THE ROLLOFF FUNCTION
 

The measurements of the sea and land filter responses as a
 

function of audio-frequency (rolloff functions) were again
 

similar to the procedure described in Subsection A.I. After
 

the values of K were determined, for example, the audio-frequency
 

of the test signal could be reduced and the output test signal
 

power level measured in reference to the calibrate signal power
 

level. The results of these measurements are summarized in
 

Table A-2 for both land and sea filters. It is clear from this
 

table that, for either land or sea filter, the frequency re­

sponses of all four receiver output channels are very similar.
 

This indicates a good gain balance among all four receiver
 

channels. The average frequency responses of all four receiver
 

channels for both land and sea filters were plotted in Figure
 

3-4 and used in the calculations of the receiver output signal
 

levels.
 

A.4 ANTENNA CABLE LOSSES
 

The measured K values did not include the signal attenuation
 

losses due to the co-axial cables from the R/T unit to the an­

tennae and back to the R/T unit. These losses were measured
 

independently for each of the four combinations of polarizations.
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TABLE A-2 

THE MEASURED RESPONSES (ROLLOFF FUNCTIONS) IN dB FOR THE
 

1.6 GHZ SCATTEROMETER RECEIVER OUTPUTS
 

TEST LAND FILTER ON SEA FILTER ON 
FREQ. 
(Hz) J-4 J-5 J-6 J-7 J-4 J-5 J-6 J-7 

1800 +0.5 +0.25 +0.25 +0.25 0 0 0 0 

1600 +0.25 +0.25 +0.25 +0.25 0 0 0 0 

1400 +0.3 +0.1 +0.2 +0.2 0 +0.2 -0.1 -0.1 

1200 +0.3 +0.1 +0.2 +0.2 -0.2 -0.25 -0.2 -0.2 

1000 +0.4 +0.1 +0.2 +0.2 -0.6 -0.8 -0.7 -0.7 

800 +0.5 +0.1 +0.3 +0.2 -1.0 -1.3 -1.1 -1.1 

700 +0.5 +0.1 +0.2 +0.2 -1.5 -1.8 -1.6 -1.6 

600 +0.5 +0.1 +0.3 +0.2 -2.0 -2.2 -2.1 -2.1 

500 +0.5 +0.1 +0.3 +0.2 -3.0 -3.4 -3.1 -3.1 

400 +0.3 +0.1 +0.2 +0.2 -4.0 -4.2 -4.0 -4.0 

300 +0.4 +0.1 +0.2 +0.2 -5.7 -6.0 -5.7 -5.8 

200 +0.1 0 0 0 -9.0 -9.0 -9.0 -9.0 

100 -0.5 -0.9 -0.5 -0.7 -15.0 -15.5 -15.0 -15.0 

85 -1.0 -1.0 -1.0 -1.0 -17.0 -17.0 -17.0 -17.0 

70 -1.5 -1.8 -1.5 -1.5 -19.0 -19.0 -19.0 -19.0 

60 -2.0 -2.5 -2.5 -2.0 -20.0 -20.0 -20.5 -21.0 

50 -3.0 -3.0 -3.0 -3.5 -23.5 -23.5 -23.0 -23.5 

40 -4.5 -4.5 -4.0 -4.5 -27.0 -26.5 -26.0 -27.0 

35 -5.5 -5.5 -5.5 -6.0 -29.0 -29.0 -28.5 -28.5 

A-6
 



The results were:
 

1.9 dB for horizontal transmit and horizontal receive,
 

1.8 dB for horizontal transmit and vertical receive,
 

1.9 dB for vertical transmit and vertical receive,
 

2.0 dB for vertical transmit and horizontal receive.
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APPENDIX B
 

THE PIN DIODE MODULATOR
 

To derive the absolute value of the backscattering coefficient
 

aO as a function of incident angle 0 from the backscattered
 

Doppler signal return, it is necessary to maintain a reference
 

calibrate signal, proportional to the transmitted power, in
 

the receiver output. The 1.6 GHz scatterometer system utilizes
 

the Hewlett Packard 5082-3040 PIN diode modulators to provide
 

the reference signal required in the data reduction. The me­

thod is to amplitude modulate a sample of the transmit power
 

by a calibrate signal of 1.9 KHz and pass the sidebands of
 

the modulation through the receiver network along with the
 

hackscattered signal. As shown in Figure 2-2, two PIN diode
 

modulators, one for the horizontal receiver (associated with
 

H antenna) and the other for the vertical receiver (associated
 

with V antenna), are used in the system. Only the two data
 

channels which are 900 phase-shifted contain the calibrate sig­

nals.
 

A PIN diode is a silicon semiconductor consisting of a layer
 

of high resistivity intrinsic material (I) sandwiched between
 

a p-type layer on one side and a n-type layer on the other. At 

low frequencies <7, where T is the charge recombination lite­

time in the I layer, it behaves as a normal rectifier. At fre­

quencies >>I, it appears as a linear resistance, whose value 

depends mainly on the conductivity and the geometry of the I 
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layer (refs. 17, 18 and 19). Approximately, the diode resis­

tance at these high frequencies is proportional to the square 

of the I layer thickness and inversely proportional to the 

product of the bias current Ib and T . As the diode is shunt 

connected across the RF signal path and forward biased, it 

acts as an attenuator with attenuation in the circuit given 

by (ref. 19) 

aa = 20 log (1+ 2Zu-.) (B-1) 

where Zo is the load resistance and R, is the diode RF resis­

tance at a specified bias current. Since RI is inversely pro­

portional to Ib approximately, ca increases with Ib . A typical
 

attenuation of a HP 5082-3040 PIN diode at RF frequency of
 

-8 GHz is shown in Figure B-I as a function of Ib (ref. 20). 

For this type of PIN diodes, T is typically - 200 nsec. At the 

frequency of 1.6 GHz >> 1 , the same general dependence of 

on la is expected. It is clear from this curve that the direct
 

maximum attenuation of RF power obtainable from a single PIN
 

diode of this kind is -25-30 dB.
 

If a small-amplitude AC current is added to the direct DC bias
 

current, then it is possible'to obtain a calibrate signal at
 

about the same power level to the backscattered signal. In
 

this case, the bias current can be written as
 

Ib c(l'+ y cos ict) (B-2) 

Here wc = 2nfc with fc = 1.9 KHz and 0<y<<l. y can be adjusted 

so that best sensitivity of the scatterometer system is obtained 
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Figure B-1.- A typical attenuation above zero bias insertion loss versus 
bias current for a 5082 - 3040 PIN diode (ref. 20).' 



without signal saturation. When the transmit sample signal
 

is modulated by the signal source expressed in Eq. (B-2), the
 

resultant output is:
 

P V 0 cos Wca 0t(l + y cos Wo t) (B-3) 

where P2V. cos ait represents the-transmit sample signal volt­

age. The first term in Eq. (B-3) is filtered out after the
 

mixer and the subsequent amplifier stages. The second term
 

provides the desired calibrate signal in the data reduction.
 

The characteristics of the calibrate signal modulators for the
 

1.6 GHz scatterometer is given in Table B-1, while that for
 

the HP 5082-3040 PIN diode is given in Table B-2.
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TABLE B-I
 

CHARACTERISTICS OF CALIBRATE SIGNAL MODULATORS
 

FOR 1.6 GHz SCATTEROMETER
 

TYPE OF CIRCUIT 


RF carrier 


Modulator waveform 


Waveform synchronization 


Type of modulation 


Modulation depth 


Number required and location 


Level of equivalent 2 IHz Doppler 

signal at aircraft speed of 

-160 knots
 

PIN diode modulator
 

1.6 GHz low level signal
 
from transmitter
 

1.9 ± 0.06 KHz sine wave
 

Free running
 

A-M
 

Adjustable
 

Two total, one for each 900
 
phase shifted channel.
 

--140 dB to -160 dB relative
 
to transmitter power.
 

TABLE B-2
 

PIN DIODE CHARACTERISTICS
 

Type HP 5082 - 3040 

Carrier lifetime -200 nsec 

VSWR at 1.6 GHz -1.1 

Insertion loss at 1.6 GHz -0.2 dB 

Maximum attenuation at 1.6 GHz 30 dB 

Operating temperature range '-65 0C to +1250C 
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APPENDIX C
 

THE MIXER MATHEMATICAL MODEL
 

A mixer is essentially a nonlinear resistive element which com­

bines the input signal with the local oscillator signal (the
 

transmitter sample signal in the present case) and outputs sig­

nals at the frequencies harmonically related to the input and
 

local oscillator frequencies and their mixtures. The characteris­

tics of the nonlinear resistance for a typical mixer is shown in
 

Figure C-I. The transmitter sample signal is given by Eq. (3-15):
 

ST(t) = P2 Vo cos o0 t (C-i)
 

and the combination of the backscattered and the calibrate sig­

nals in channel 2 can be written as:
 

Sc(t) =f2- Cf Sin (W + Ld)-t + 4f - Ca Sin (W0 - Wd)t + a 

+ aP2 Vo cos wot (1 + y cos wot) (C-2) 

The power series representation of the current I2m flowing in
 

the mixer may be expressed in terms of the voltage across the
 

mixer terminals (ref. 21) as:
 

I2m = a ° + a1V + a2V2 + a3V3 + + anVn (C-3) 
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Figure C-I.- Characteristics of a nonlinear resistive element.
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with
 

v(t) = S+ Sc 

The coefficient an generally decreases rapidly with n. Neglect­

ing terms with n > 3, Eq. (A-3) becomes 

I2m a. + aI (ST + Sc) + a2 (ST + Sc)2  (C-4)
 

The signal given by Eq. (C-4) consists of DC terms as well as
 

terms at the frequencies of wd' w0 ' o Wd 2w , o± Wc'
 

2w0 ± td, 2wo ± 2wd, 2 o ± 2wc, and 2wo ± c" For the 1.6 GHz
 

scatterometer system, 1o = 1.6 GHz, Oc 1.9 KHz and wd S 1 KHz 

for aircraft speed of < 200 knots. All except the terms at audio­

frequencies of w d and wc are filtered out in the subsequent ampli­

fier stages. Substituting the expressions for ST and Sc as given
 

by Eqs. (C-1) and (C-2) into Eq. (C-4) and retaining only the
 

terms at the frequencies < wc' the output signal voltage across 

the mixer load register R2 is 

t
V2m = a2 R2 2-Cf a P2 Vo sin (Wd +
 

k2 
+ - Ca a P2 V0 sin ((dt - 0a ) 

2
y a 2 Cos Wct + Cf Ca sin ( wdt + Of - Oa ) 
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Wd ) t + aTCf P2 VO sin (c - ­2 L C 

a Y Ca P2 V°0 
a - sin I(c - wd)t - a (C-5) 

For an altitude of - 457m, an aircraft speed of - 77m/sec, ao 

of - -30 dB, and the two-way antenna gain of - 20 dB, the power 

level of the input signal level at the receiver was estimated 

to be - 116 dBm. a can be adjusted such that k2 A P2 V0 >> Cf, 

Ca . y is adjustable and is generally much less than 1 (see 

Appendix B). Consequently, the last three terms in Eq. (C-5) 

can be neglected compared to the first three terms. Let
 

$2 = a2 R2a, then Eq. (C-5) becomes 

)
V2 - 2 P2 V [-Cf sin (wdt + *f) + Ca sin (trdt - a


-yaP 2 V2 cos Wct (C-6)
 

The signal voltage at the mixer output in channel 1 can be derived
 

by the same procedure. The result is given by:
 

Vm - -81 Pi Vo f cos (wdt + 4 f) + Ca cos (mdt - *a) (0-7)
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APPENDIX D
 

THE COMPUTER PROGRAM FLOW CHART AND LISTING
 

The listing and the flow charts of the computer program used
 

in the numerical calculation are given in this appendix. The
 

flow charts of the main program and two subroutines, BCOFF
 

and GAT, are sequentially displayed in Figures D-1, D-2, and
 

D-3. The listing of the whole program is given in Table D-l.
 

Three subroutines RINIT, RWRITE, and RREAD are used to initialize,
 

to write data into, and to read data out of the high speed drum
 

storage. These subroutines are stored in the local computer
 

programs library and explained in the JSC CAD Procedure Manual,
 

Exec 8 System General User Information.
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ENTER CONSTANT 
PARAMETERS 

AFOR C OMPUTAINO ALL SELECTED INCIDENT NO' B 

PATTRN DATA 

ENTER THE DO LOOP OF SIGNAL 
COMPUTATION AT SELECTED 
INCIDENT ANGLES 

I{ 

I 

ANGLES COMPLETED' 

YES 

OUTPUT RESULTS 

CALCULATE DOPPLER
FREQUENCY ANDBANDWIDTH 

G 

ENTER THE DO LOOP OF COMPUTINGN 
CONTRIBUTION FROM VARIOUS AREA 
ELEMENTS IN THE CROSS-TRACK 
DIRECTION END 

I CALL BCOFF, GAT 

DERIVE VALUE OF a' AND ANTENNA 
GAIN. COMPUTE AREA, DISTANCE, 
AND SIGNAL CONTRIBUTION FROM 
THE AREA 

CONTRIBUTIONS 

ICOMPUTE AND STORE TOTAL OUTPUT SIGNAL FOR AN INCIDENT ANGLE 

Figure D-.- The MAIN program flow chart.
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....LT 

DERIVE a* VALUE FOR AN
I_ __IINCIDENT ANGLE
 

IFiCOSS POLARIZATION
 
SUBTRACT 15 dB
 

Figure D-2.--Subroutine BCOFF flow chart.
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START
 

COMPUTE THE ADDRESS OF
 
ANTENNA GAIN IN THE
 
DISK FROM GIVEN CROSS-

AND ALONG-TRACK ANGLES
 

READ THE ANTENNA GAINS
 
FROM THE DISK
 

BY LINEAR INTRfLATION
 
COMPUTE ANTENNA GAINS
 
CORRESPONDING TO AREA
 
ELEMENTS OF INTEREST
 

G.RETURN 

Figure D-3.- Subroutine GAT flow chart.
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TABLE D-1. - THE COMPUTER PROGRAM LISTING
 

1* DIMENSION THETA(8),POW(8lROFFIB),BUF(92)

2* DIMENSION ALOSS(4),SCAL(4)

3* DATA THETA/5.,1O. 15.20.,30 .40. ,50.,60./

4* DATA ROFF/17.8,11o8.8.6t6.7,4.o27,.8,1.q/
 
5* DATA ALOSS/1.9 1.8,2.0,1.9/

6* DATA SCAL/116.A,131.3,119.3,118.8/

7* COMMON/B/IDADDIX ,IYIXMAX,IYMAX
 
8* C ENTER CONSTANT PARAMETERS.
 
9* PIEZ3.1416
 

10* HAZ460.
 
11* VAz77.
 
12* SLAMDZO.1875 
13* CELENZ5. 
14* PI:PIE/180. 
15* IFIL:1 
16* IXr92 
17 IYZ36 
18* IXMAXZ92 
19* TYMAX:36 
20* CALL RINIT(IDADDNWRDS)
21*Z DO 600 MZ1,4
 

23* IEOFZIFIL 4
 
24* 50 CONTINUE
 
25* NSZNS,1
 
26* C GET DISC AREA
 
27* KCIDADD
 
28* C PUT ANTENNA FOOTPRINT ON DISC
 
29* 100 READ(1,4000,END200)(BUF(NR) ,NRZ1,921

30* C WRITE6,S0DOI (BUF(NR),NRZ1,92)
 
31* CALL RWRITE(K RUFIXNSTAT)

32* 5 IF(NSTAT.EO.1l GO TO 5 
33* KZKIX 
34* GO TO 100
 
35* 200 CONTINUE
 
36* C ENTER MAIN LOOP OF COMPUTATION.
 
37* C ALONG-TRACK COMPUTATION.
 
38* Do 500 I:18

39* THTA:THETA(I)*PI

40* FDOP2..*VA*SIN(THTAI/SLAMO

41* fFz2.*VA*(COS(THTA)**3)*CELEN/HA/SLAMU
 
42* CLAMDzSLAMf**2
 
43* CPIZ 4.*PIF**3
 
44* SUM:O.
 
45* O=TAN(THTA)**2
 
46* C CROSS-TRACK COMPUTATION.
 
47* DO 400 J=1,21

48* PHIZ(J-I)*PI*2.
 
49* PHILZ((J-1I*2.rl.)*PT
 
50* PHIR:((J-1)*2.+I.)*PI

51* P=TAN(PHI)**2.

52* DXzHA*(TAN(PHIR)-TAN(PHIL))

53* DY=CELEN*SORT(I+P)

54* DA=DX*DY
 
55* P:HA*SQRT( I+P)*(I+Q))
 
56* PRrR**4.
 
57* THINC=ACOSI HA/R)

58* THINC:THINC/PI
 
59* CALL BCOFF(THINC SIGMANSM)

60* AIZATAN(TAN(THTAI*SQRT(I+P)}
 
61* AI:AI/PI
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TABLE D-1. - Continued.
 

62* CALL GAT(PGL,PGR,I,J,AI)
 
63* SIG:10.**(SIGMA/10.)
 
64* IF(J.EO.1)PGR=O.
 
65* SUM=SUM+((PGL+PGR)*SIG*DA/RR)
 
66* C WRITE(6,6000)PGL,PGRSIGMASTGDARR,SUM
 
67* 400 CONTINUE
 
68* C CALCULATE POWER OUTPUT FOR AN INCIDENT ANGLE.
 
69* PAC:SUM*CLAMD/CPI/DF
 
70* PAC1O .*ALOG10(PAC)
 
71* POW(I):PAC-ALOSS(M)-ROFF(I)+SCAL(M)
 
72* C WRITE(6,6000)PAC,FDOP,DF,CLAMDCPI,ALOSS(M),SCAL(M)

73* 500 CONTINUE
 
74* WRITE(6,300O)IFIL,NS,M
 
75* WRITE(6,1000)
 
76* WRITE(6,2000)(POW(I),Irl,8)

77* IFILIFIL+I
 
78* IF(IFIL.LT.IEOF)GO TO 50
 
79* 600 CONTINUE
 
80* STOP
 
81* 1000 FORMAT(2H ,'INCIDENT ANGLE AT I3X,15',I1X,'10,IDlX,'15,10X,'L0%,
 
82* C l0X,'3,01DX,'40',10XO50PIOX,'60',/)
 
83* 2000 FORMAT(16X,8012.4)
 
84* 3000 FORHAT(3110)

85e 400 FORMAT(22F6.1)
 
864 5000 FORMAT(ZOF6.1)
 
87* 6000 FORMAT(7012.4)
 
88* CND­

1* SUBROUTINE GAT(GL,GR,I,J.AI)
 
2* COMMON/B/IDADDIXIY,IXMAX,IYMAX

3* DIMENSION BUFJ 92 ,BUF2(92)
 
4* C DETERMINE THE POSITION OF THE ANTENNA FOOTPRINT.
 
5* AI:AI/2.
 
6* 1Ar35-AINTIAI)

7* AAI:35.-AI
 
8* TAPIZIA-1
 
9* TPI:TA*IX+IDADD
 

10* IP2:(IA-1)*IX+IDAO

Ii* C READ ANTENNA RECORDS.
 
12* CALL RREAD(IP1,BUFI,IX,IST)

13* 5 IF(IST.EQ.1)GO TO 5
 
14* IF(IS&T.NE.O)WRITE(6,100O)IA
 
15* CALL RREADIIP2,BUF2,TX,IST)
 
16* 6 TFUIST.EQ.1)GO TO 6
 
17* IF(IST.NE.O)WRITE(6,1000)IAP1
 
18* C PERFORM LINEAR INTERPOLATION.
 
19* IF(J.EO.I)GO TO 7
 
20* PLIzBUFIf47-J)
 
21* PL2:BUF2(47-J)
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TABLE D-1. - Concluded.
 

22* PR1=BUFI(4q+J)
 
23* PR2zBUF2(45 J)
 
24* PL1L:10.**(PLI/10.)
 
25* IF(J.GT.5.AND.PLI.FQ.U.)PLL:n.

26* PL2L:1O.**(PL2/10.)
 
27* IF(J.GT.5.AND.PL2.F0.O.)PL2LO.

28* PRIL:1O.**(PR1/10.)

29* IF(J.GT.5.AND.PR1.EC.O.)RRILrU.
 
30* PR2L:1O.**1PR2/10.)
 
31* IF(J.GT.5.AND.PR2.EQ.O.)PR2LO.
 
32* GLZ(((AAI-IA)/CIAPI-IA))*(PL2L-PLIL))+#PLIL

33* GRZ( (AAI-TA)/(IAP1-IA))*(PR2L-PRIL)-)+PR1L
 
34* GO TO 8
 
35* 7 PIBUFX(46)
 
36* P2rBUF2(46)

37* ll. P/
 

-38* P2:l.**tPZ/1O.)

39* GLz((CAAI-IA)/(IAP1-IA))*(P2-P1))+PI

40* (RZGL
 
41* 8 CONTINUE
 
42* C WRITE(6,4000)P1,P2,PLIPL2,PRI,PR2,GL,GRAA1,IAIAP1

43* PETURN
 
44* 1000 FORMAT(IH 'DISC READ PROBLEM FOR ANGLE',I5)
 
45* 2000 FORMAT(IH ,F6.2,5X,3110)
 
46* 3000 FORMAT(1H .7F12.4)

47* 4000 FOPMAT(1H v9F8.2,2I10)

48* END
 

1* SUBROUTINE BCOFF(ANGL[ SIGMA,NM)

2* SIGMAz2.10-(O.1O5*ANGE])
 
3* TF(M.EQ.2.0R.M.EO.3)GO TO 10
 
4* IF(N.EQ.2.OP.N.EO.3)SIGMAzSIGMA-10.

5* RETURN
 
6* 10 CONTINUE
 
7* IF(N.EQ.I.OR.N.EQ.4)SGMA:SI3MA-10.
 
8* PETURN
 
9* END
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