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ABSTRACT 

LAND USE/LAND COVER MAPPING (1:25,000) OF TAIWAN, PEPUBLIC OF CHINA 

BY AUTOMKTED HJLTISPEC1'RA! ITERPETATIONS OF LANDSAT IMAGERY 

The applicability of digital computer-aided analysis techniques 

of LANDSAT images to identify and classify major land cover types 

of Taiwan was tested with a minimal amount of ground control data 

extracted from black and white airphotos by photointerpretation. A 

limited study area was selected to represent the wide spectrum of 

land covers present in Taiwan. A land use/land cover classification 

scheme was evolved in a step by step fashion for use with airphotos 

and LANDSAT imagery. The single date LANDSAT image taken on 

Nov. 1, 1972 was analyzed using supervised computer image proc­

essing techniques. 

Three methods were tested for collection of the training sets 

needed to establish the "spectral signatures" of the land uses/land 

covers sought due to the difficulties of retrospective collection of 

representative ground control data. Computer preprocessing tech­

niques applied to the digital images to improve the final classification 

results were geometric corrections, spectral band or image ratioing 

and statistical cleaning of the representative training sets. The 

geometric corrections provided a map base at 1:25,000 with position 

errors only slightly more than 50 feet. The statistical cleaning of 
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the representative training sets did not improve the training set accu­

racy. However, a final evaluation of the value of statistical cleaning 

must await a future test of its impact upon map verification accuracy. 

A stepwise discrininant analysis was applied to evaluate the training 

set accuracy for 17 land uses/land covers. Ratios of MSS bands 

contributed little to the final accuracy achieved. MSS band 5 and 7 

achieved an overall training set accuracy of 79% which is comparable 

to that obtained by 10 MSS bands/ratios. 

A ninimal level of statistical verification was made based upon 

the comparisons between the airphoto estimates and the classification 

results. The verifications provided a further support to the selection 

of MASS band 5 and 7. It also indicated that the maximum likelihood 

ratioing technique can achieve more agreeable classification results 

with the airphoto estimates than the stepwise discriminant analysis. 

Subsequently, final land use/land cover classification maps 

were produced at a scale of 1:25,000 with the cost of N. T $0. 16/ 

hectare (U.S. $0. 004/hectare) for computer time only. A further 

verification of the classification maps needs to be done in the field. 

An application of land use/land cover mapping over the entire island is 

strongly recommended by the author. However, the validity of signa­

ture extension over the entire island should be further investigated. 
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I. INTRODUCTION
 

1.1 Background 

It becomes increasingly important to manage Taiwan's natural 

resources more efficiently as pressure upon them increases due to a 

growing population with expectations of ever rising standards of 

living. The task requires that accurate inventories of the spatial 

distribution of natural resources be periodically completed in a 

timely fashion. Until as recently as a generation ago such inven­

tories were made almost entirely on the ground for Taiwan. Geolo­

gists traveled widely in exploring for minerals; foresters and agron­

omists examined trees and crops at close hand in order to assess 

their condition; surveyors walked the countryside in the course of 

preparing the necessary large scale topographic maps. The advent 

of the collection of aerial photography in Taiwan represented a big 

step forward. However, the airphotos have not gained wide use for 

natural resource management as they are sensitive material and are 

classified. 

Remote sensing methodology, of which the use of aerial photog­

raphy is a subset, uses images collected singlely or simultaneously 

in spectral ranges distributed over the electromagnetic spec­

trum. The technique employs images taken throughout the spectrum 
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from the very short wavelengths at which gamma rays are emitted 

to the comparatively long wavelengths at which RADAR operates. 

These images can potentially secure far more information about the 

nature and condition of an area's resources than can be obtained with 

conventional aerial photography which is restricted approximately to 

the sensitivity range of human vision and little beyond into the photo 

infrared. Remote sensing images are obtained from aircraft or 

spacecraft, including unmanned satellites. This technique employs 

both cameras and a large number of other more recent sensing de­

vices. Remote sensing techniques are currently being extended so 

that the image obtained by the sensing devices can be processed and 

interpreted automatically and a large volume of information dealt with 

in a rapid and timely fashion. 

NASA launched ERTS-1 (renamed LANDSAT-l) into a near­

polar orbit on 23 July 1972 to remotely sense the surface of the earth 

with a multispectral scanner and a set of three return beam vidicons. 

Multispectral imagery obtained from this spacecraft, with its capac­

ity for repetitive coverage and synoptic view, has provided a better 

tool to monitor the dynamic nature of the earth's natural resources. 

This characteristic is particularly important to the dynamic proc­

esses of agricultural and forest management and land use planning. 

Often, for example, a land use map has been out of date when it was 

first published. The use of LANflSAT type images can complement the 
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map revision procedures, providing a capability to monitor trends 

in land utilization on a nearly real-time basis (Place, 1973). 

Recently, Taiwan has investigated the potential use of the 

larger scope of remote sensing data collection for natural resource 

inventories (Chang, 1974; Miller, 1974; Pan, 1974; and Wang, 1974). 

Four excellent LANDSAT' images of Taiwan were taken on November 1, 

1972 with over 90% cloud free conditions. Ninety percent of the land 

area of the island was covered by the center two images of the four. 

The direct visual interpretation of LANDSAT imagery of Taiwan was 

first applied to regional geologic studies (Wang, 1976). Density 

slicing and image enhancement techniques were also tested to help 

delineate special features. However, the inadequate scale of the 

photographic format of the LANDSAT images and its attendant limita­

tions on the spatial resolution discouraged Taiwan resource managers. 

The question often brought out was, "does LANDSAT imagery have 

sufficient spatial resolution for resource management in Taiwan? " 

Taiwan is a mountainous island and heavily vegetated with sub ­

tropical forests. The land use patterns are small and complicated. 

Thus, Taiwan requires detailed spatial information in a larger scale 

for resource management purposes. LANDSAT imagery in the photo­

graphic form does not currently meet these requirements. Recently 

special processing and photographic display has been prepared and 

the test portions of LANDSAT images of selected small sites in the 
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United States comparable to high altitude airphotos. These promising re­

sults are far superior to the standard LANDSAT products comercially 

available for Taiwan. The digital form of the LANDSAT images contains 

considerably more spatial information than is contained in the more 

commonly available IANDSAT photographic form, since some of the original 

image's resolution is lost in the photographic reproduction processes 

being currently applied. The digital form of these images also lend 

themselves to cowputer-aided methods of interpretation. Tie resulting 

map product can be made through computer processing techniques at 

a proper scale for the resource management. Moreover, the com­

puter multispectral analysis approach significantly improves the 

amount and accuracies of the interpretation relative to direct visual 

interpretations of the LANDSAT photographs. 

Computer processing of remote sensing imagery (automated 

image processing) has been widely tested by many disciplines for 

such applications as urban planning, crop and forestry inventory, 

water resource management, geologic mapping, etc. This previous 

work established the value of computer processing of LANDSAT 

images for resource inventories, however, most of this work was 

restricted to areas of minimal topographic relief. Larger variations 

in topographic slope and aspect may significantly affect the accuracy 

of the analysis of LANDSAT data collected over mountainous terrain 

(Hoffer, 1974). The ground resolution for LANDSAT imagery is 
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about 60 by 80 meters. Each resolution cell represents an averaging 

of the spectral return from this nominal 60 by 80 meter ground cell. 

The land use pattern of Taiwan is small scale and heterogenous and 

considerably more complicated than the United States where agri­

cultural practices employ large homogenous fields. Thus, the reli­

ability of the identification of the varieties of Taiwan land use and 

land cover by computer analysis of LANDSAT imagery must be spe­

cifically tested. 

A remote sensing program in Taiwan was initiated on several 

fronts in the early 1970s (Miller, Chang and Wang, 1974). Although 

the advantages and disadvantages of satellite imagery were well 

recognized by these programs, the potential use of the digital 

LANDSAT imagery could not be demonstrated. Recently a more de­

tailed and more expensive approach to crop and forest inventory 

of Taiwan was initiated using infrared aerial photographs of the 

coastal plains. The study described here investigated the possibility 

of applying computer image analysis techniques to the available 

LANDSAT images of Taiwan. The specific purpose was to extract 

land cover maps for use in land use planning and thus to provide an 

additional stepping stone to promote the use of remote sensing in 

Taiwan. 
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1. 2 Study Objectives
 

This study was designed to test the applicability of digital
 

computer-aided analysis techniques of LANDSAT multispectral 

scanner images to identify and classify major land cover types of 

Taiwan with a minimal amount of ground control data. The specific 

objectives of this study were: 

1. to develop a land use/land cover hierarchical classification 

system for use with remote sensing data, 

2. to design a practical method to collect the ground control 

data needed to establish the training sets used in the computer classi­

fication processes, 

3. to select the optimal combination of image spectral bands 

and ratios for use in LANDSAT mapping of Taiwan land cover types 

evaluated in terms of the accuracy and economies of the process, 

4. to produce land cover maps by computer classification of 

LANDSAT imagery at a scale of 1:25,000, and 

5. to design a reasonable scheme for the verification of the 

accuracy of these results using limited ground control information. 

The general objective of this study was to demonstrate by 

example the nature and capability of automated image processing of 

remote sensing imagery collected from aircraft and satellite. 

It is hoped that by reviewing the results of this research
 

that these new remote sensing techniques can be more fully
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appreciated and the approach more widely employed in Taiwan in the 

near future. 

1.3 Study Outline 

This study was carried out at Colorado State University for the 

past year using the computer software system entitled the LANDSAT 

Mapping System (LMS) operating on a Control Data Computer 

(CDC 6400) (Appendix A). A limited study area was selected to rep­

resent the wide spectrum of land cover present in Taiwan. A land 

use/land cover classification scheme was evolved in a step by step 

fashion for use with airphotos and LANDSAT imagery. The only 

available, good quality, single date LANDSAT multispectral image 

taken on November 1, 1972 was analyzed using supervised computer 

image processing techniques. Three methods were tested for the 

collection of the training sets needed to establish the "spectral signa­

tures" of the land uses sought due to the difficulties of retrospective 

collection of representative ground control data. Computer pre­

processing techniques were applied to the digital images to improve 

the final classification results. The impacts of the application of 

these techniques on the test accuracies achieved were investigated in 

detail. The techniques applied included geometric corrections, 

spectral band or image ratioing and statistical cleaning of the repre­

sentative training sets. The investigation led to the optimal selec­

tion of spectral bands or images and their ratios. Subsequently, final 
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land cover classification maps were produced at a scale of 1:25,000 

using the favorable techniques and imagery. A computer cost evalu­

ation of these processes was completed relative to the time and dollar 

costs of using the Colorado State University CDC 6400 computer. The 

statistical verification of the accuracy of the classification map re­

sults was hard to complete within the United States due to the paucity 

of ground control data. However, a minimal level of statistical veri­

fication was possible to substantiate the quality of the maps produced. 



II. DEVELOPMENT OF A HIERARCHICAL LAND USE/LAND
 

COVER CLASSIFICATION SCHEME FOR TAIWAN
 

2.1 Description of Study Area 

2. 1.1 Introduction 

Taiwan island is 394 kilometers long and 144 kilometers 

broad at the widest point. It lies between 21 045' and 25 38 north 

latitude and 1190181 and 12207 east longitude with an area of 

35,961 square kilometers (Fig. 2. 1). The very dominant topograph­

ic feature of Taiwan is the central range of high mountains running 

from the northeast corner to the southern tip of the island. This 

backbone of the island contains 62 peaks with elevations above 3000 

meters and which rise abruptly from the sea along the eastern 

Pacific coast. The western half of the island facing the China main­

land and shallower Taiwan Strait is a terraced succession of uplands 

and coastal plains and basins. Approximately one-third of the total 

land area of 35,961 square kilometers is arable and occurs on the 

gentler western slopes. The mountain areas are forested or heav­

ily revegetated where the forests have been removed. 
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Fig. 2.1. GEOGRAPHIC POSITION OF TAIWAN AND THE AREA 
SELECTED FOR LAND USE/LAND COVER MAPPING. 
The three squares constitute the general study area and 
indicate the three of 1/50, 000 topographic maps to be 
mapped at a scale of 1/25,000. Scale %,1/2,500,000. 



2. 	1.2 Physiography 

The study site is located in the western side of central Taiwan 

and represents 2, 100 square kilometers which is about 6% of the total 

land area. It constitutes the area of three 1:50,000 topographic 

maps, namely the Lu-Kang, Taichung and Kuo-Hsing maps respec­

tively from west to east (Fig. 2. 1). Beginning at the west coast of 

the island at the Taiwan Strait, the area selected extends eastward 

through the coastal plains, terrace tablelands and Taichung basin to 

the foothills of the central range (Fig. 2. 2). The area was selected 

to contain a complete sampling of the types of land uses practiced in 

Taiwan. Variations in land use do occur in a north-south sense over 

Taiwan but are considerably less than those differences induced by 

the topographical extremes represented in the site selected. The 

elevation of the site increases eastward from sea level to 2307 meters 

which is the highest peak in the general area. The Wu river domni­

nates the drainage and winds its ways across the site to the Taichung 

basin cutting through the tableland to reach the sea at the upper left 

corner of the area. The average elevation of the tableland is about 

200 meters above sea level. 

The climate of central Taiwan is subtropical. The mean 

monthly temperature in winter is above 150 C except for the mountain 

region. This is favorable for the cultivation of rice and other crops, 

including sugar cane, pineapples and bananas. The mean annual 
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Fig. 2.2. THE DRAINAGE PATTERN AND MAJOR LAND USES OF THE STUDY AREA. Pre­
pared by photointerpretation from 9" X 9" color print of LANDSAT-1 imagery of 
November 1, 1972. Transferred to the map base by the aid of a Zoom Transfer Scope. 
Scale %, 1/300,000.
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precipitation of the area is around 1.7 meters. The wet season, 

from May to September, contributes almost 80% of the annual pre­

cipitation. Typhoons and thundershowers are the major types of 

rainfall. The winter monsoon prevails from October to March with 

mean maximum wind velocity as high as 17 m/sec. The monsoon 

can cause heavy damage to field crops on the coastal plains. A 

typhoon or thundershower may cause a flood and very severe erosion 

and redeposition due to the precipitous terrain and the short steep 

river courses. 

2. 1.3 Agriculture 

The study site contains the central portion of the Taichung 

basin and was selected to be representative of Taiwan in physio­

graphy and agriculture. The site contains a sample of the coastal 

plains, terrace tablelands, and basin and foothills where most of the 

major economic activities of the island occur. Taichung basin is 

where the provincial government of Taiwan is located and contains 

some of the most productive agricultural lands. Taichung is the 

third largest city in Taiwan and is the cultural, economic, industrial, 

and recreational center of central Taiwan. Taichung Harbor has 

recently been built to the north of the Wu River mouth. The study 

area contains these features and thus is an area which will play an 

increasingly important role in the future economic development of 

the Republic of China. 
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The important agricultural products of the basin area are 

rice, sugar cane and sweet potatoes and the miscellaneous crops 

include corn, sorghum, peanuts, etc. Bananas and grapes are the 

common fruits planted in the coastal low lands, while oranges and 

other fruits are cultivated in the foothills. However, most upland 

and lowland orchards are small areas scattered throughout the rice 

paddies or among other natural tree growth. Deciduous trees are 

the major forest type in the basin area. Acacia is the dominant type, 

especially on the terrace tablelands. Conifers dominate the moun­

tain slopes with elevations above 1000 meters. 

Tidal flats extend a few kilometers into the sea during low tide 

and 820 hectares of reclaimed land have been developed in this area. 

Fish ponds and rice paddies are the main type of land uses in and 

adjacent to these tidal flats. 

2. 	2 LANDSAT Multispectral Scanner Imagery of Taiwan 
Available for Analysis 

2. Z. 1 Introduction to the LANDSAT System 

NASA launched the Earth Resources Technology Satellite-I 

(subsequently renamed LANDSAT-l) into a near-polar, sun­

synchronous, circular orbit on July 23, 1972. It achieved a success­

ful orbit of about 920 kilometers (570 miles) above the surface of the 

earth circling the globe every 103 minutes or 14 times a day 

(LANDSAT Users Handbook, 1976). LANDSAT-1 is able to view the 
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same spot anywhere on the surface of the earth at the same local day 

time every 18 days. Subsequently LANDSAT-2 was launched into a 

similar orbit so that imagery became available alternately with a 9 

day interval. About February 1, 1977 the orbit of LANDSAT-1 was 

readjusted so that the intervals between the imaging paths of the two 

satellites is now 6 days and 12 days. These satellites both carry a 

television camera system (Return Beam Vidicon or RBV) and a 

radiometric scanner (Multispectral Scanner or MSS) which together 

obtain imagery in seven different optical spectral ranges of visible 

and photoinfrared energy reflected from the earth's surface. Four 

spectral ranges are covered by the Multispectral Scanner (NSS) 

imagery (Table 2.1). 

Table 2. 1. 	 LANDSAT MULTISPECTRAL SCANNER SPECTRAL 
RANGES OR BANDS. 

Wavelength Interval 
MSS Band "Color" Range (in micrometers) (in Angstroms) 

4 Green 0.5 to 0.6 pm 5000 to 
0

6000 A 

0 
5 Red 0.6 to 0.7 pm 6000 to 7000 A 

6 Photoinfrared 0.7 to 0.8 pm 7000 to 
0 

8000 A 

0 
7 Photoinfrared 0. 8 to 1. 1 Pm 8000 to 11000 A 
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2. Z.2 Introduction to the Multispectral Scanner System 

Incident solar electromagnetic energy reflected from the sur­

face of the earth to the satellite is focused by an oscillating scan 

mirror onto a set of 24 sensors or detectors in the MSS (Multispec­

tral Scanner) device. These sensors form an array which one may 

picture schematically as a set of four columns, of six sensors each, 

with one column for each MSS spectral band (Fig. 2. 3). 

The instantaneous view which each sensor has of the ground is 

a square of approximately 79 m by 79 m (259 ft by Z59 ft). The six 

sensors in a given band view collinear and contiguous resolution 

elements. Thus the set of six sensors in a given column instantane­

ously sweeps out or views a strip approximately 474 m by 79 m 

(1554 ft by 259 ft) (LANDSAT Users Handbook, 1976). 

The region on the ground viewed by the sensors in a given 

spectral band in one sweep of the mirror from west to east is called 

a swath (Fig. 2. 3). It is 474 m wide and sweeps out a length of about 

185 km (1554 ft by 115 mi). That region within a swath which is 

viewed by a single sensor, or a set of the four different sensors in 

a multispectral sense, is called a scan line of the resulting image. 

The lines and swaths do not lie perpendicular to the ground 

orbit track of the satellite because, while the mirror is scanning, 

the satellite is moving and the earth is rotating. The velocity of the 

mirror and satellite relative to the earth is such that when the mirror 
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Fig. 2.3. 	 SCHEMATIC DIAGRAM OF LANDSAT'S MULTISPECTRAL 
SCANNER CONCEPT. Six scan lines constituting a swath 
are swept out as shown for each mirror scan. The angle 
of the scan lines is caused by the relative motion between 
the satellite and the earth's surface. The length of each 
scan line is - 185 kr while its width is 79 m. 

has returned to its starting point and is ready to begin its next con­

tiguous swath the satellite has moved forward relative to the earth's 

surface such that there is no gap or overlap between swaths. The 

imagery obtained in this fashion is continuous as the satellite con­

tinues around the earth. Analog magnetic tape of these images is 

recorded at a ground tracking station whenever the satellite is within 

range. The image may be temporarily stored on board the space­

craft for subsequent retransmission when it is in the range of a 
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ground station. Subsequently, these tapes of the continuous image 

are replayed and displayed as discrete images of 390 swaths of 2340 

lines yielding 125 lines/cm on a 9+ inch by 91 inch film format. 

Between the display of each discrete image the tapes are rewound 

approximately 10%o to create a corresponding duplication or overlap 

on each successive image in a N-S sense. Each successive day the 

satellite moves about 165 km relative to the ground in an E-W sense 

creating a side lap of about 10% as the total scan line length is approx­

imately 185 km. After 18 days of this sideskipping the given satellite 

closely repeats the same ground path over Taiwan. 

2.2. 	3 Introduction to the Digital or Discrete Nature 
of the LANDSAT Images 

The signal recorded at the ground station is in analog form 

and when played back as outlined above provides the basis to produce 

the commonly available black and white or color photographs of the 

LANDSAT images. Each of the 24 MSS sensors measures the inten­

sity of the reflected solar energy it receives in its respective wave­

length interval or spectral band and produces a separate output of 

the continuously varying or analog signal. Thus individual black and 

white photographs of each of the four spectral bands or color combi­

nations can be produced on the ground. The analog recording of 

these signals also provides the source for the digital or discrete 

picture element format of the LANDSAT imagery which is compatible 
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with digital computer analysis. This process digitally or numerically 

samples the analog recorded, continuously variable, electronic signal 

from each sensor. This sampling occurs on the average of 3, 216 

times on one satellite scan line of 185 km and the string of numbers 

obtained is recorded on a second magnetic tape in a digital format 

which is compatible with standard digital tape of the electronic com­

puter. This is called the Computer Compatible Tape (CCT) form of 

the LANDSAT image. 

The region on the ground for which the reflected solar energy 

intensity is measured and numerically recorded is called a pixel 

which is short for picture element. A computation of 3, 216 times 

the 79 m ground resolution noted earlier yields a line length greater 

than 185 km as the pixels overlap about 29% along the scan lines. 

This yields an effective ground resolution of 79 m (N-S) by 57 m 

(E-W) for each pixel. Each pixel is represented by a discrete num­

ber for each spectral band on the CCT. These values range from 0 

to 63 in MSSband7 and from0 to 127 in MSSband4, 5 and 6 with 0 

the lowest energy level and 63 or 127 the highest. Each and every 

MSS pixel is represented on the CCT by a set of four numbers for the 

instantaneous reflected solar energy values measured in each of the 

four MSS bands. 
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2. 2.4 LANDSAT Imagery of Taiwan 

Four contiguous LANDSAT-1 MSS images of Taiwan were ob­

tained shortly after launch on November 1, 197Z (Fig. 2.4). One of 

these was selected for analysis. Computer compatible tapes (CCT's) 

were purchased from the EROS (Earth Resources Observation 

System) Data Center of the U.S. G.S. located at Sioux Falls, South 

Dakota (Table 2.2). One 185 km by 185 km image consists of four 

CCT' s, each representing all of the four MSS values for each pixel 

for an 46 km wide strip of the image. 

Table 2.2. SPECIFICATIONS OF THE LANDSAT-l IMAGE ANALYZED.
 

Date image taken November 1, 197Z 

Scene ID No. 1101-01550 

Sun angle 
430 

Sun azimuth 1440 

Cloud cover 10% 

Quality assessment good 

MSS Bands used 4, 5, 6, 7 (all) 

Center coordinates of frame N 24024 E 121005 , 

Type of product available 20" X 20" B/W prints of Bands 5 & 7 
CCT's - 7 track 800 BPI Seq. #I, 

2 and 3 of 4 
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19 tNOVEBER , 2 NASA LADATI# hwno 

e 	 o2n 

Fig. 4. 	 c.FOUR LANDSAT- FRAMES COVERING TAWAN ON
NOVEMBER 1, 1972. NASA LANDSAT ID# shown on 
upper left corner of the images. The location of three 
of the 1/50,000 topographic maps to be mapped at a 
scale of l/ 25, 000 and identified in Fig. 2. 1 is indi ­
cated within image #2. 



22
 

2. 	3 Sampling the Land Use and Developing a 
Ground Control Data Base 

2. 3. 	 1 Basic Considerations of the Classification Scheme 

Land use refers to "man's activities on land which are directly 

related to the land" (Clawson and Stewart, 1965). Land cover, on the 

other hand, describes "the vegetational imd artificial coverings of 

the land surface" (Burley, 1961). Some land use activities of man 

can be directly related to the type of land cover. For instance, 

using imagery on which rice can be interpreted as the land cover, it 

may 	subsequently be inferred that farming is the present land use 

activity although not actually visible as such. Other activities, espe­

cially recreational activities, can only be related with difficulty to 

land cover by use of remote-sensing techniques. However, use of 

supplemental information from other sources permits a more func­

tional approach to the classification of land use (Anderson, Hardy, and
 

Roach, 1971 and 1976). Variation in land cover is therefore the basis
 

for any land use classification system employing remote sensing imagery.
 

The title of "land use mapping" is often applied to remote sensing image 

classification activities as a whole which tends, as in this study, to
 

anlgamate the distinct concepts of mapping land use and land cover.
 

The ground resolution of the LANDSAT image has been shown 

to be nominally 57 m by 79 m or 0.45 hectare. At orbital altitudes 

the single 0.45 hectare pixel recorded for each of the four MSS bands 
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may represent the integration of a variety of spectral responses for 

the land covers it contains. Thus an individual pixel may represent 

a gross generalization (or aggregation) of the 0.45 hectare area it is 

measuring (Anderson, 1971). An area of 0.45 hectare in Taiwan 

may consist of several different specific types of land use/land cover. 

Therefore, the relationship between the reliability of LANDSAT 

images for land use identification and its dependence on distinct 

spectral returns for the various land covers must be tested for the 

Taiwan case. 

2. 3.2 Testing the Scheme on Low Altitude Airphotos 

The aforementioned considerations led to the adoption of a 

land use/land cover hierarchical scheme for initial testing with the 

interpretation of low altitude airphotos (Table Z. 3). This scheme 

was subsequently revised by use and provides a logical basis for the 

collection of the ground control (ground truth) data to be used as 

training and verification data in the automated image processing 

procedures employed. Subsequently this same airphoto classification 

scheme provided the basis for the abridged classification scheme 

applied to the LANDSAT imagery. 

2.3. 2. 1 Assembling Grid Sampled Ground Control Data 

A grid sampling method tied to the LANDSAT image grid was 

devised to test this airphoto classification system, collect specific 

point type ground control data and estimate the relative amounts of 



TABLE 2.3. LAND USE CLASSIFICATION SYSTEM CIECIKED FOR USE WITH LOW ALTITULE BLACK AND WHITE AIR-
PHOTOGPHS. Revised from the Anderson system (Anderson, Hardy, and Roach, 1971). 
This system intercatbnes land use and land cover. Upon actual application Level III 
was deleted as it could not be reliably applied to low altitude black and white air­
photos. 

Code Level I 

100 Urban and built-up lands 

200 Agricultural lands 

300 Forested lands 

400 Barren lands 

500 Water surfaces 

600 Range lands 

Code 

110 
120 
130 
140 
150 
160 
170 

210 
220 

230 

310 

320 
330 


410 
420 

510 
520 
530 
540 

610 
620 

Level fi 

Commercial and service 
Residential and new community 
Industrial 
Transportation and irrigation 
Institutional 
Strip and clustered settlement 
Mixed 

Grains 
Crops 

Orchards 

Hardwoods 

Conifers 
Bamboo
 

Gravels
 
Tidal flat
 

Water ways
 
Ponds and reservoirs
 
Estuaries
 
Sediment-laden water
 

Grassland
 
Scattered grass
 

Code Level II1 

221 Sugar cane 
222 Vegetable 
223 Sweet potato 
224 Peanut 
225 Others 
231 Grapes 
232 Banana
 
233 Oranges
 
234 Others
 

311 Acacia
 
312 Mixed
 
321 China firs
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land uses in the study area for final map accuracy verification. 

Symbolic images were prepared from the LANDSAT CCTs using a 

computer line printer. This was accomplished by assigning an 

alphabetic symbol to a range of the values stored on the digital com­

puter tapes for the various pixels. These symbols for a particular 

one of the four MSS band values are then printed by a computer line 

printer in their proper spatial or geographic position. For example, 

the intensity of the reflected radiation recorded on the CCT for a 

given pixel and specific one of the four LSS bands takes on values 0 

to 63, thus we might print the letter 

M = 	 "M" overprinted with "I" for the 0-10 range of reflected 
energy,
 

U 	 for the 21-30 range, 

+ for the 31-40 range,
 

- for the 41-50 range,
 

8 	 = "0" overprinted with "-"I for the 50-60 range, and leave 

blank for the range over 60. 

This yields a symbolic image clearly representing each pixel on the 

ground area imaged by the satellite (Fig. 2.5). This graymap, as it 

will be called hereafter, provides a large scale, photographic-like 

rendition of the reflected radiation reaching the satellite in one of 

the four MSS bands. It differs from a conventional black and white 

photograph in that each of the pixels or ground resolution cells is a 

discrete symbol. Also, a panchromatic airphoto records all the 
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Fig. 2.5. 	 A SMAL. PORTION OF THE LANISAT YSS BAND 7 LINE PRINTER GRAYMP 
OF THE TAICEUNG mAP. 1:25,000 scale in true geometry. Line 
number and column number are designated to identify the rela­
tive location of each pixel. 
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reflected solar energy from about 0.4 to 0.7 gun while the above 

techniques produces four graymaps each representing a narrower 

spectral interval or band, e. g. MSS band 5 yields a graymap of the 

0.4 to 0.5 prm reflected energy. 

The study area is exactly coincident with three of the Taiwan 

basic series of 1:50, 000 topographic maps (Fig. 2. 1). Each of these 

maps was photographically enlarged exactly two times to provide a 

transparent map at a scale of precisely 1:25,000 and approximately 

1 by 1 meter (40" by 40"). During the preparation of the LANDSAT 

image each pixel is resampled from the CCT in such a fashion that 

the resulting graymaps represent 1:25,000 scale line printer symbol 

maps upon which the transparent topographic map may be overlaid. 

The geometric rectification procedure employed in this operation will 

be discussed in more detail in the next chapter. Original picture 

elements or pixels have been resampled or reformed in this process 

and will now be referred to as discrete ground cells or simply "cells." 

Suffice to say at this point that the large, transparent 1:25,000 top­

ographic map could be registered upon the LANDSAT graymaps for 

each of the four of MSS bands to an accuracy of + 0.5 cell or alpha­

betic symbol (Fig. 2.6). 

A sampling grid was laid out upon each combination of top­

ographic map and graymap so as to mark out every 30th column and 

every 30th line of graymap symbols (Fig. 2.6). This provided the 
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Fig. 2.6. 	 EXANFLE OF THE REGISTRATION OF A SMALL PORION OF THE TMI-
CHUNG TOPOGRAPHIC MAP UPON THE-l LANCSAT MSS BAND 7 GRAYMAP. 
1:25,000 scale in the true geometry. Line number and column 
nuber which are designated by the arrxws and bars locate 
the 30 by 30 sample grid and 3 by 3 array, respectively. 
The interior rectangles further emphasize the 3 by 3 arrays 
selected for airphoto interpretation. 
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regular sampling grid whose actual land use/land cover was esti­

mated by airphoto interpretation. This sampling grid, while regular 

in spacing, provides a random sample of the land uses/land covers 

which occur in the area to be mapped. The two maps could be mis­

registered by as much as + 0. 5 line printer symbol thus a group of 

3 by 3 symbols were identified for photointerpretation with the 30 by 

30 sample cell as the center of the 3 by 3 array (Fig. 2.6). The top­

ographic map was annotated so as to show the ground location of each 

of the 3 by 3 symbol arrays which represent - 17 10 m by - Z370 m 

on the ground. Aerial photographs of Taiwan are treated as sensi­

tive material. Thus a blue print 1:25,000 copy of each of the anno­

tated topographic maps together with a prelininary classification 

scheme (Table 2.3) was returned to Taiwan for photointerpretation. 

Several hundred low altitude, black and white airphotos with scale of 

1:16,700 were used as the basis for interpreting the land uses/land 

covers within the sampled 3 by 3 rectangular arrays of cells. Most 

of the airphotos used were taken during November and December, 

1973 or about one year after the available LANDSAT image. A small 

portion of the airphotos were taken in the spring, 1974. A Zoom 

Transfer Scope was used to change scale and superimpose a local 

area of the 1:25, 000 topographic map upon the corresponding air­

photos. Localized terrain and cultural features were used to match 

the group of 3 by 3 cells annotated on the map to their proper position 
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upon the airphotos. This rectangular group of nine cells was then 

annotated upon the airphotos. Three hundred twenty three arrays of 

nine cells each were annotated in this fashion upon their respective 

sets of photographs. These photographs were next interpreted for 

the land use/land cover which occurred in each of the arrays of nine 

cells using the preliminary classification system (Table 2. 3). The 

interpretation was completed by a professional staff member of the 

Mining Research and Service Organization of Taiwan and checked by 

the Taiwan Forest Bureau. A data form containing a sketch of the 

3 by 3 cells was completed for each sample array by the interpreter 

(Fig. 2.7). Upon it was sketched the land use/land cover of the 

array identified by the respective codes. Additional ancillary data 

was also noted on the form such as the date, quality, etc. of the air­

photos used together with any comments. 

The land use/land cover of each of the topographic maps was 

sunwrized by tabulating its occurence in numbers of individual cells 

(Table 2.4). The majority of the cells were interpreted as having 

a single dominant land use/land cover. However, quite a number of 

cells were identified as containing two different land uses and these 

were counted as 0.5 cell to each of the two categories. The third 

order of detail (Level III) land uses were not tabulated and were 

dropped from the preliminary classification scheme at this point as 
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their photointerpretation proved unreliable from the low altitude 

black and white airphotos. 

220 120 120 

210 120 120 

210 
210 120
 

220 

Fig. 2.7. 	 SKETCH OF THE MAP PORTION OF THE DATA FORM 
COMPLETED BY AIRPHOTO INTERPRETATION. The 
center cell occurs every 30 by 30 cells on the 1:25,000 
graymaps. A 3 by 3 array of cells is interpreted to 
minimize the impact of misregistration between the trans­
parent topographic map overlay and grayrnap. Each 
rectangular cell is - 0.45 hectare (,-1.1 acre) on the 
ground. Land uses/land covers are identified in each 
cell by three digit code numbers (Table 2. 3). 

The assemblage of this data provides a distributed type of 

training set for later input to the LANDSAT image classification pro­

cedure. At this point it provides an accurate review of the land use 

of 2760 sampled points distributed over the study site and three 

maps (Table 2.4). Since the sample points used were assembled 



TABLE 2.4. INVENTORY OF THE LARGE SAMPLE OF GROUND CONTROL CELLS INTERPRETED FROM BLACK AND 
WHITE AIRPHOTOS. Based on 3 topographic maps of 1/50,000. Land areas only were sampled for 3 by 3 array of 
cells yielding 2370 m x 1710 m (on the ground). A cell covers 0.45 hectare. 

Land Use Class Lu-Kang Map Taichung Map Kuo-HsingMap 3 Maps Combined 

Code Leell Code Level H I 11 I H1 1 11 1 H1 

100 Urban lands 38 cells 185 cells 27 cells 250 cells 
110 Commercial 0 cells 15 cells 0 cells 15 cells 
120 Residential 1 58 0 59 
130 Industrial 0 24 0 24 
140 Transportation 10 15 0 25 
150 Institutional 0 10 9 19 
160 Clustered 20 63 18 101 
170 Mixed 7 0 0 7 

200 Agricultural lands 300 681 247 1228 
210 Grains 46 265 25 336 
220 Crops 248 334 87 669 
230 Orchards 6 82 135 223 N 

300 Forested lands 3 233 777 1013 
310 Hardwoods 3 191 618 812 
320 Mixed woods 0 12 117 129 
330 Conifers 0 29 38 67 
340 Bamboo 0 1 4 5 

400 Barren lands 4i 26 31 98 
410 Gravels 10 26 31 67 
420 Tidal flat 31 0 0 31 

500 Water surfaces 
510 Water ways 

40 
10 

13 
1O 

3 
3 

56 
23 

520 Ponds and reservoirs 27 3 0 30 
530 Estuaries 3 0 0 3 
540 Sediment-laden water - - -

600 Range land 3 33 79 115 
610 Grassland 3 to 7 20 
620 Scattered grass 0 23 72 95 

Total 425 cells 1171 cells 1164 cells 2760 cells 

B* 
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from a regular grid, the relative populations of each land use can 

now be computed to provide a basis for the subsequent verification 

of the maps produced by computer interpretation of the LANDSAT 

image (Table 2. 5). 

2. 3. 2.2 Assembling Areal Ground Control Data 

Areal ground control data was collected by the same procedure. 

Twenty-five rectangular or square sample areas were selected from 

the LANDSAT graymap/topographic map combinations. These areas 

were distributed over the land area of the three topographic maps so 

as to provide a reasonable sample of the variety of land uses which 

occurred in the study area. These small map areas ranged from 30 

by 30 cells on the graymap (2370 m by 1710 m) to 100 by 100 cells 

(7900 m by 5700 m). The map areas were transferred to, and anno­

tated upon, the same airphotos employed in the previous sample data 

collection using the Zoom Transfer Scope for scale change and local 

topographic fit. The land use inside the sample areas noted on the 

photos was interpreted and sketched on the maps by the same photo­

interpreter noted earlier. Nominally 1:16,700 sketch maps were 

prepared of each sample site map (Fig. 2.8). Some residual air­

photo distortions remain in these maps as they were not retrans­

ferred back to the 1:25, 000 graymap/topographic map composite. 

However, their rigorous geometric relationship to the LANDSAT 

imagery is not critical. 



TABLE 2.5. 	 ESTIMATION OF THE RELATIVE AMOUNTS OF LAND USE OF THE AREA TO BE MAPPED. Based on the 
photointerpretation of the 2760 ground cells provided in Table 2.4 for the area of the 3 of 1/50,000 topographic maps. 
Values shown are the percentage of the total land area projected from the sample data to be of the given land use type. 

Land Use Class 	 Lu.Kang Map Taichung Mop Kuo.Hsing Map 3Maps Combined 

Code Level I Code Level I I fI I i I If 1 f 

100 Urban lands 9% 16% 2% 9% 
110 Commercial 0% 1% 0% 0.9% 
120 Residential 0 5 0 2 
130 Industrial 0 2 0 1 
140 Transportation 2 1 0 1 
150 Institutional 	 0 1 0.5 1 
160 Clustered 5 6 1.5 3 
170 Mixed 2 0 0 0.3 

200 Agricultural lands 71 58 21 45 
210 Grains 11 23 2 13 Wa 
220 Crops 58 29 7 24 

230 Orchards 2 6 12 8 
300 Forested lands 	 1 20 67 37
 

310 Hardwoods 1 16 53 29 
320 Mixed woods 0 1 10 5 
330 Conifers 0 3 3 3 
340 Bamboo 0 0 1 0 

400 Barren lands 9 2 3 3 
410 Gravels 2 2 3 2 
420 Tidal flat 7 0 0 1 

500 Water surfaces 9 1 0 2 
510 Water ways 2 1 0 1 
520 Ponds and reservoirs 6 0 0 1 
530 Estuaries 1 0 0 0 
540 Sediment-laden water 	 - ­ -

600 Range land 1 3 7 4 
610 Grassland I 1 1 
620 Scattered grass 0 2 6 3 
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Fig. 2.8. 	 LAND USE SKEITC MAP ORIGINALLY PREPARED AT 1:16,700 ON 
BLACK AND WHITE AIRPHOTOS. Representative of 25 such 
square or rectangular sample land use maps distributed 
over the study area. Snall town in lower left corner 
noted as land use 160 is Chung-Liao-Li. Three digit code 
numbers designate current land use/land cover (Table 2.3). 
This area is a slightly enlarged portion of the IANSAT 
graymap shown on Figs. 2.5 and 2.6 from lines 159 to 188 
and columns 48 to 78. 

510 
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The sketch maps do not show the originally proposed third or­

der of detail of land use (Table 2.3). As was noted earlier, extrac­

tion of this level of detail proved unreliable from the low altitude 

black and white photographs. It was concluded that color photographs 

of the same scale would provide reliable interpretation at this level 

of detail but they were not available for dates approximating those of 

the available LANDSAT images. These 25 sample maps do not pro­

vide any information relative to the estimation of the amounts of each 

land use in the total study area such as was extracted from the sam­

pled data (Table 2.5). The maps do provide detailed spatial or areal 

information for the 25 locations and can be used for subsequent 

training set development for the LANDSAT image processing activity 

and for direct visual checking of the resulting classification maps. 

2.3. 3 Initial Land Use Classification System for 
Testing with LANDSAT Imagery 

Spatial resolution has a direct impact on the modification of the 

preliminary classification scheme for use with automated computer 

processing of LANDSAT imagery (Table 2. 3). This usually results 

in the inability of the computer to specify the exact function of man's 

activity on the land surface as noted earlier. This means that the 

LANDSAT approach will more readily yield land cover information 

and do poorly on identifying the function which the land cover may 

represent. For example, a photointerpreter can distinguish between 

a grass strip denoting a power transmission line or a grass strip 
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along a railway. He uses the increased resolution available to him 

as well as shape information. He may see the poles of the power line 

or the rails and ties and thereby designate the specific function of the 

wider grass strip. The coarser 0.45 hectare LANDSAT resolution 

precludes this level of detail in the computer analysis of land use 

unless ancillary, i.e. non-image, data is employed in the classifi­

cation scheme. Image processing schemes for use with LANDSAT 

imagery are currently being developed which overlay other ancillary 

information such as power line maps and road maps, etc. (Tom and 

Miller, 1976). This enables the computer to use known information 

on the distribution of known functions to further identify the activity 

which might be conducted in a 0.45 hectare cell. 

The advanced image processing schemes using ancillary map 

data were available in the computer programs used in this study but 

were not tested here. Thus, further modification of the original 

land use/land cover hierarchical scheme was necessary (Table 2. 3). 

Urban classes such as industrial (130), institutional (150) and trans­

portation and irrigation (140) refer specifically to land function and 

were removed. The urban type of strip and cluster settlement (160) 

in Taiwan is usually sparsely distributed among agricultural lands. 

The integration of the reflected solar energy in the 0.45 hectare 

resolution cell does not usually resolve such narrow, sparse urban 

land functions. Waterways (510) and ponds and reservoirs (520) 
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refer to spatial as well as functional information available to airphoto 

interpreters and are not distinguished by LANDSAT. The difference 

between clear water and sediment-laden water or clear water of 

varying depths is very distinct and categorization of water areas 

was rebased upon these characteristics. Rangelands (grasslands) 

are usually small and sparse in Taiwan (Table 2.5) and are confused 

with agricultural lands and were omitted. Land use categories were 

retained or added wherever they corresponded with a specific land 

cover type such as commercial (110). 

These considerations in light of the known capabilities of 

LANDSAT imagery yielded a revised classification scheme for a 

combination of land use and land cover (Table 2.6). This test 

scheme contained five gross categories at the first level of detail 

namely urban, agricultural, forested, barren lands and water sur­

faces. It is subdivided into 14 more detailed second level classes. 

Subsequent testing of this land use/land cover classification scheme 

on LANDSAT imagery will result in a further modification such as 

subdivision of selected second level land cover classes into third 

level land cover classes where it was clear that LANDSAT imagery 

would support such a refinement. 
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TABLE 2.6. 	 THE PROPOSED LAND USE CLASSIFICATION SYSTEM 
FOR TESTING ON LANDSAT IMAGERY. Modified from 
the low altitude airphoto scheme (Table 2.3). This scheme 
actually denotes land cover. Water classes may denote water 
depth or sediment concentration and may be interpreted as 
either. 

Code Level I 	 Code Level II 

100 Urban lands 	 110 Commercial
 
120 Mixed
 

200 Agricultural lands 	 210 Grains 
220 Crops

230 Orchards 

300 Forested lands 	 310 Hard woods
 
320 Conifers
 
330 Mixed
 

400 Barren lands 	 410 Gravels
 
420 Tidal flat
 

500 Water surfaces 	 510 Shallow seawater 
520 Medium seawater 
530 Deep seawater 
540 Fresh water 



III. 	 DEVELOPMENT OF LANDSAT TRAINING SETS TO REPRE-

SENT THE LAND USE/LAND COVER OF TAIWAN 

3. 1 Methodology Used to Improve the LANDSAT Imagery 

3. 1. 1 	 Introduction 

Fourteen times a day each of the two U.S. National Aeronautics 

and Space Administration' s (NASA) LANDSAT satellites orbits the 

earth collecting resources information from the surface. A brief 

introduction to the Multispectral Scanner (MSS) imaging system on 

each satellite was presented earlier (Section 2.2) and is reviewed 

and supplemented here. These MSS systems aboard the spacecraft 

convert the hue (i. e. four bands) and intensity of the reflected sun­

light from earth below into an analog signal representing a series of 

images. These signals are stored on on-board tape recorders for 

subsequent retransmission when the satellite is within range of a 

U. S. tracking station or they are transmitted directly. Additional 

tracking and recording stations are in construction or operation in 

S. America, Africa, Australia, Japan, etc. Taiwan is within direct 

readout range of the Japanese recording station under construction 

although the images used in this study were recorded and retrans­

mitted to a U.S. station. 
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The four overlapping, simultaneous MSS images received at the 

ground station as analog signals are recorded and processed and 

made available to potential users in a photographic form. These 

space photos each cover an area of nominally 185 km by 185 km and 

are available as black and white or color composite photographs 

ranging from scales of 1:250,000 to 1:3,369,000. This multiple date 

coverage of most of the world land area may be purchased from the 

U.S. Department of Interior, EROS Data Center, Sioux Falls, South 

Dakota which acts as the agent of public distribution of these images for 

the U. S. Government. 

The analog signals representing each MSS four band image may 

also be digitized as described earlier to provide numeric values for 

discrete pixels or ground resolution cells. The resulting computer 

compatible tapes (CCTs) may thus be obtained from the EROS Data 

Center for any imagery which has been recorded (Appendix B). How­

ever, before this digital imagery can be used it must be corrected or 

preprocessed to remove as many of the systematic errors as possible 

such as those geometric errors caused by the rotation of the earth 

and motion of the satellite. There are also several kinds of non­

systematic errors or noise involved in the images which may at first 

appear to discourage their quantitative analysis. The effects of 

spatially varying clouds, haze and other atmospheric constituents on 

the propagation of the electromagnetic energy from sun to ground and 
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ground to the satellite produce non-systematic noise within the 

individual LANDSAT image. The variations in signal caused by the 

surface features sought such as topography, soil types, vegetation 

changes, etc. , also provide a spatially varying component in each of 

the four different MSS bands constituting one LANDSAT scene. The 

MSS sensing system also adds additional systematic and non­

systematic noise to the data; for instance, the six-line problem 

caused by the imbalance in the calibration of the six sensors used in 

a swath for a given band. 

The task presented by this imagery is thus much like that in 

cryptography- -to break the code and extract the desired information 

from the available signal. Surprisingly, although many competing 

factors affect the recorded image on the CCT, it is still possible by 

appropriate simplification and calibration to extract very quantitative 

information about surface features. 

The tests completed and discussed in detail in the balance of 

this section review the methods used for removal of several of the 

systematic errors and for minimizing the impact of undesirable noise. 

These include geometric rectification of the images and ratioing 

between various two combinations of the four of MSS bands. Training 

sets or sample data were developed to statistically represent each of 

the desired Taiwan land uses and land covers. Three different pro­

cedures for assembling this training data were tested. These sets of 
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training data were statistically cleaned to remove noise, i. e. , other 

surface material types, which might have been inadvertently included 

when selecting representative sanles. Finally, the image processing 

algoritbms were tested on the three different sets of training data. 

These tests determined which combination of training data and algorithm 

would produce the most suitable land use/land cover maps. 

3. 1.2 Geometric Correction Applied 

The systematic geometric corrections such as scaling and skew 

that could be predicted reasonably well were performed without direct 

use of ground geometric control points. More advanced LANDSAT 

geometric rectification procedures necessitate supplying a collection 

of known ground positions which must be located to + I cell in the un­

corrected image graymaps. This approach may work well in coun­

tries with extensively developed large scale road and other trans ­

portation nets with very rectangular agricultural cropping patterns to 

supply geometric control points which can readily be located in the 

unrectified graymaps. Obtaining such a collection of geometric 

ground control points is not nearly so reliable in the many countries 

dominated by smaller scale, irregularly laid out agricultural and 

transportation systems. The system employed here worked very 

well on a map by map basis without the direct incorporation of any 

geometric ground control points into the rectification process. The 



44
 

correction consists of applying five linear transformations which act 

on the entire image without direct reference to ground control. 

The LANDSAT image consists of discrete samples of reflected 

solar energy over a two-dimensional image space. The image can be 

thought of as a three-dimensional array P(i, j, k) where i are the 

rows or lines of image cells, j are the columns of image cells across 

the scene and k are the four MSS spectral bands. The data values 

for each pixel are non-negative integers having values between 0 and 

127. The four MSS bands are assumed to be in perfect registration 

so that the problem can be studied as a two-dimensional, single band 

image problem. Linear transformation of elements of the original 

unrectified two-dimensional image space into another more geomet­

rically correct two-dimensional space is accomplished by the simul­

taneous application of the following matrices as linear transformations. 

Y =AX 

Data values range from 0 to 127 in MSS band 4, 5 and 6, while 
they range from 0 to 63 in MSS band 7 because of the differences in 
dynamic ranges of the sensors. 
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The application of these linear transformations can be depicted 

(Fig. 3. 1). The nodes of the X grid represents original LANDSAT 

numeric samples of pixels of reflected energy from discrete resolu­

tion cells on the earth. The desired geometrically rectified sample 

cells are represented by the Y grid. The new samples are oriented 

in a rescaled, rotated, and deskewed coordinate system. The 

geometric correction process assigns reflected energy values to 

nodes (or cells) in the new Y grid using the pixel values available 

from the original LANDSAT data on the X grid. The linear trans ­

formations A denote matrices representing the systematic adjust­

ments for 1. scale change, 2. rotation, 3. skew due to the earth 

rotation, and 4. output scale factor. Correction for the non-linear, 

sinusoidal variation in the oscillation rate of the scan mirror are also 

applied. 

Application of the total geometric transformation to an input 

image requires new samples on the new Y grid between existing 

samples on the input X grid where there is no sample value. Thus, 

some interpolation scheme is required to resarnple points if an 

uniform completely filled output grid is desired. The resampling 

technique used was the nearest-neighbor assignment, in which the 

value of the closest input sample on the X grid is assigned to the 

sample point on the output Y grid. The average position error intro­

duced by this geometric transformation of LANDSAT data using the 
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0 Original LANDSAT Data X Grid 

/s New, Transformed Y Grid 

Fig. 3.1. 	 RELATIONSHIP OF ORIGINAL AND TRANSFORMED 
LANDSAT IMAGE CELLS. The new or output grid 
represents a clockwise rotation and rescaling of the 
original input grid. eT is the total Euclidian Error 
Distance introduced by the resampling technique 
(after P. E. Anuta, 1973). 

nearest-neighbor assignment is about 20 meters or 66 feet (Anuta, 

1973). This error is only slightly more than the 50 feet tolerance 

for 1:24,000 scale topographic maps generated by the U.S. Geologi­

cal Survey. The tolerance of this 1:24,000 map is presumed similar 

to or better than that of the 1:50,000 scale topographic maps of 

Taiwan. 

The geometric correction procedure outlined above was applied 

to the available LANDSAT imagery of the study area. The actual 
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computer program applied to compute the transformation was part of 

Colorado State University package of computer programs entitled the 

LANDSAT Mapping System or LMS for short (Appendix A). The 

computer line printer provided the most economic display device for 

reproducing and checking the geometrically corrected four band 

underlay of the three 1:25,000 enlarged, transparent topographic 

maps. Thus the line printer was used to output symbolic graymaps 

of each image band as described earlier and the land use/land cover 

classification maps to be subsequently produced. This line printer 

produces 8 lines per inch and 10 symbols per inch along the line. 

Thus the output grid from geometric adjustment must be rectangular 

in the ratio of 8 to 10 and scaled so that the line printer grayrrap is 

printed at 1:25, 000. The interaction of the output grid (Y grid) of 

these dimensions with the input grid (X grid) of the LANDSAT pixels 

is quite good. The output sample cell size to be displayed on the line 

printer by one 	symbol at 1:25,000 scale represents nominally 79 m 

N-S and 64 m 	 E-W. The original LANDSAT pixel has already been 

rectangle of nominally 79 m by 57 m inclined about 120shown to be a 

to the east of north by the inclination of the orbit. The application of 

the nearest-neighbor resampling to original inclined LANDSAT grid 

by the N-S and E-W output grid is quite satisfactory due to the 

similar size and shape of input and output cells. Should a more 

varied transformation be undertaken, e. g. to match some other map 
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scale or to a square cell grid, a more significant mismatch would 

occur resulting in significant oversampling or undersampling. The 

simple nearest-neighbor resampling for 8 by 10 line printer display 

of 1:24, 000 to 1:25,000 scale is about optimal when using this pro­

cedure to rectify LANDSAT imagery (Fig. 3.2). At the 1:25,000 

scale 87.8% of the original LANDSAT cells are sampled once, 1.4% 

are sampled more than once, and 10. 8% are not sampled (Miller, 

1975). 

1:20000 1:40000 1:60000
 

* - Input Samples 
Used More 

0 toThan I Time Input Somples Not Used CL 
E 

iF 5 0  

oM 
-5 

0 	 .9­0	 CL 

L 	 Input Samples Used I Time 

0 I I 1 100 
1:20000 1:40000 1:60000 

Map Scale 

Fig. 3. 2. 	 RESAMPLING EFFICIENCIES OF THE GEOMETRIC 
ADJUSTMENT. Application of the nearest-neighbor 
approach in the resampling at various map scales 
transfers percentages of the samples shown from the 
input grid (X grid) to output grid (Y grid). The curves. 
apply to maps resainpled in the ratio 8 N-S to 10 E-W 
for display at the scales shown on the 8 line/inch 
printer (Miller, 1975). 
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Four new revised LANDSAT images are produced upon com­

pletion of this operation from the four original MSS LANDSAT bands. 

Each new set of four resampled images is deliberately prepared for 

an area slightly greater than each of the three respective 1:25, 000 

topographic maps. A graymap at the scale of 1:25,000 is printed on 

the line printer for one of the resulting new four band image files as 

they will now be called. The respective topographic map in the form 

of a 1:25, 000 transparency is overlaid upon this line printer map and 

translated N-S and E-W until an accurate match is obtained between 

the topographic map and the graymap features related to the topog­

raphy. This introduces geometric ground control which does not 

require the identification of specific control points on the grayrnap. 

It is a regional overall fitting of the two maps of the same scale and 

geometry. Once the best fit has been selected the excess or boundary 

cells in the graymap are trimmed off by the computer so that the 

resulting image file exactly matches the map area on the respective 

topographic map (Appendix A). One four band image file is produced 

in this fashion to match each of the three topographic maps (Fig. 2. 1). 

These three small image files contain all the image cells dealt with 

in the balance of this study and are much smaller than the original 

185 km by 185 km total image (Fig. 2.4). 
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3.1. 3 Ratioing MSS Bands 

Ratioing has been proposed by a number of experimenters as a 

means of reducing non-systematic errors within a multispectral 

image. Ratioing is simply dividing the reflected solar energy or 

radiance recorded in one MSS band by that of another on a cell by 

cell basis. Similar surface cover materials may have been recorded 

at different radiance values in a given spectral band because they 

occur on varying topography (i.e. differing solar lighting conditions), 

in areas of spatially varying atmospheric effects and so on. Should 

these perturbing effects be multiplicative in the same amount for the 

two spectral bands, the ratio of the two spectral bands will cancel the 

effect as it multiplies both numerator and denominator. 

A ratio of the near infrared and chlorophyll absorption bands is 

well correlated with the amount of functioning green biomass on the 

ground surface in grassland areas (Pearson, Tucker and Miller, 

1976). The ratio of MSS bands 7/5 might be an important variable 

for surface biomass classification as MSS band 5 (0.6 to 0.7 micro­

meters) contains the region of highest chlorophyll absorption and 

MSS band 7 (0.8 to 1. 1 micrometers) is a spectral band characterized 

by high levels of reflectance for green vegetation (Maxwell, 1974). 

Also, since MSS band 4 (0.5 to 0.6 micrometers) does not contain the 

center of either of the two chlorophyll absorption bands, the ratio 5/4 

might also be an important derived image. An advantage which 
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adjacent ratios should give for vegetation classification is an im­

proved signal to noise ratio (Maxwell, 1976). 

MSS ratios have been shown to be effective for quantitative 

mapping of suspended solids in water of up to at least 900 ppm. Typi­

cal mid-continent values for variables such as sun angle and wind 

speed do not significantly affect MSS ratios for this application 

(Yarger and McCauley, 1975). 

Each of the three topographic map oriented image files created 

earlier contain the four MSS bands in the form of four radiance values 

for each cell. These four bands are designated 4, 5, 6 and 7. Twelve 

ratios can be computed for the four bands taken two at a time. One 

half or six of these ratios will be the inverse of the remaining six. 

The spatial variation in the ratio of two spectral bands is just the 

same as in the ratio of the inverse of the two bands except in an in­

verse sense. Thus, no unique differences are available in the in­

verse ratios and they were omitted. Six ratios between the four 

original MSS bands were thus computed and interspliced back into the 

four band image file using the LMS programs (Appendix A). Each cell in 

this 10 band/ratio image file is represented by 10 values, one for ?SS 

bands 4, 5, 6, and 7 and ratios 5/4, 6/4, 7/4, 6/5, 7/5, and 7/6. 
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3. 2 Selection and Evaluation of Training Sets 

3. 2. 1 Introduction to Computer Image Classification 

A land use/land cover map is prepared by computer classifica­

tion using a process which recognizes groups of image cells or 

classes whose members have selected multispectral characteristics 

in common. This is a statistical process which may be implemented 

on a digital or analog computer. Ideally, these classes or groups of 

cells should be mutually exclusive and exhaustive. This states in a 

statistical sense that there should be one and only one class to which 

a cell belongs and can be assigned and all cells in the domain of 

interest may be so assigned to one of the classes based on its multi­

spectral characteristics. These rigorous requirements are difficult 

to fulfill and often are not totally achieved in practice. The land use/ 

land cover classes or groups of cells sought in this application are 

based on the 10 band/ratio multispectral properties possessed by 

the cells in the image files. A class is formed by grouping together 

a small, representative number of those cells in the image files that 

are alike and represent a known, selected land use or land cover. 

Likeness of the cells assembled together to represent one class is 

specified by statistical similarity in the radiance values recorded for 

those cells for one or more of the MASS bands/ratios. Optimum 

classification will group image cells together into classes which are 

separated from one another in one or more MSS bands/ratios by 



53
 

discontinuities in the ranges of their observed radiances (Siegal, 

1976). 

There are two basically different, general approaches to classi­

fication mapping with LANDSAT images. The classification can be 

"unsupervised" in which the boundaries between land cover types are 

objectively determined from a computer algorithm to delineate natural 

clusters in a spectral sense. The "supervised" approach, on the 

other hand, uses training areas of sample cells selected to represent 

each class by the human analyst. Supervised classification requires 

each training area or group of image cells to be representative of a 

specific land cover of interest based upon "a priori" knowledge re­

ferred to as ground control or "ground truth" data. "A priori" 

ground control or "ground truth" information may be collected on the 

ground, with airphotos or, more logically, a combination of both. 

Statistics such as mean and variance are computed for all selected 

cells for each class and spectral band. These statistical representa­

tions of each land use/land cover are used "to train" various auto­

mated techniques to identify all other unknown cells within the 

LANDSAT image file which have statistically similar multispectral 

characteristics. The supervised approach is the only approach 

tested in this study. However, the unsupervised approach is very 

useful and should not be overlooked, especially when dealing with 

areas where ground control data is non-existent or difficult to obtain. 
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The supervised classification scheme requires that at least 

one training set or group of image cells be selected to define each 

land use/land cover class or theme. These training sets should 

be representative of each of the land use/land cover classes to be 

investigated. They in turn constitute a small subset of the original 

image file in n-dimensional rnultispectral space, where n = 10 and 

each dimension is a spectral band or a ratio of bands. The classifi­

cation scheme tested here is discriminant analysis which uses the 

selected training sets to define "volumes" in this n space. Each of the 

remaining cells in the image file which are not part of the training 

sets may subsequently be checked to see which of these n-dimensional 

volumes it best fits in a statistical sense thus defining its unknown 

land cover. A more technical, mathematical expression of this 

approach has been included (Appendix B). 

3.2.2 Factors Affecting Selection 

The previous discussion shows that the selection of the training 

sets to represent each land use/land cover class is the most impor­

tant part of this computer analysis of LANDSAT imagery. These 

training sets must be a collection of sample cells which is repre­

sentative of the total population of the land use/land cover class in 

the related image files. The quality of the final classification map 

for each land use/land cover class depends to a large part on how 

well the training set represents it. 
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The population of a well defined land use/land cover class 

should approximate a multivariate, normal distribution. A random 

sampling method might be employed to get an unbiased training set 

which is representative of each specific class. This sampling pro­

cedure will be tested here although it incorporates difficulties in 

economy and timeliness. 

The size of training set representing each land use/land cover 

class is also a critical point, It may appear that the bigger the 

sample the more representative and better the training set will be. 

The subsequent development of the statistical representation of a 

land use/land cover class is usually an iterative procedure and if 

sample size is big the cost is consequently high. Also, the larger 

the sample the greater the risk of including cells which are not re­

lated to the land cover sought. However, the minimum number of 

sample cells should be at least greater than the number of spectral 

bands and ratios should it be necessary to invert the covariance 

matrices to obtain the discriminant functions. Finally, it would not 

be surprising if several times that minimum number of samples was 

needed to smooth out statistical fluctuations and obtain a really good 

estimate of the population (Duda and Hart, 1973). As a rule of 

thumb, 30 times the number of spectral bands/ratios is a reasonable 

lower limit on the size of training set for a given class (Smith, 1976). 
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Three major problems were encountered in this study during 

the selection of the training sets. They were (1) temporal incon­

sistency between the date of the collection of the LANDSAT image 

and ground control data, (2) misregistration of the ground control 

data, and (3) lack of rapid, direct communication between this 

study and those responsible for collecting the ground control data. 

(1) Temporal inconsistency between the images and ground 

truth was inevitable in this application and many others. The only 

available LANDSAT imagery was taken on November 1, 1972. The 

ground control information available for this study included three 

1:50,000 topographic maps published in 1970 and a collection of 

1:16,700 B & W airphotos taken on various dates one or two years 

after the LANDSAT image. 

(2) Misregistration between the ground control cells and 

image cells was particularly critical in the test of the grid cell 

sampling method. Specific geometric control points were not avail­

able for the geometric corrections applied. The average position 

error which resulted was + 1 or 2 cells. Misregistration thus 

occurs while transferring the ground control cells from graymap to 

airphoto for identification. The error in its final location could 

LANDSAT geometric rectification programs are currently 
available using ground control points which achieve accuracies of 
RMS = + 0. 5 cells for the entire LANDSAT image. 
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easily be on the average of one cell. This one cell displacement 

problem may not be so serious in areas of large scale homogeneous 

land uses. But, it may markedly effect the representative nature of 

training sets collected for "noisy" or small scale land use patterns 

as in Taiwan. 

(3) Lack of rapid, direct communications between the collector 

of the ground control and those performing the image analysis in the 

U. S. was caused mainly by the large distance between the two coun­

tries. It takes at least two weeks to have a two-way exchange by air 

mail. Better communications between these two functions would yield 

better training sets. 

3.2. 3 Statistical Cleaning Applied 

A training set is usually obtained by selecting one or more 

rectangular or irregular bounded groups of cells within a larger 

region previously identified on the ground or with airphotos as repre­

senting the desired land cover class. A training set can also be 

assembled from a sampled group of discrete cells which have been 

previously identified as representing the desired class. The first or 

area method overlooks the possibility that some of the individual cells 

within the specified training sets may not be of the desired class or 

may be excessively noisy. The second or point method is very sensi­

tive to miss-selected points due to the misregistration of the point 

ground control data on the grayrnaps. Statistical cleaning of training 
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sets has been proposed as a method to reduce the noise incorporated 

into the training sets by these and other related errors (Maxwell, 

1976). However, one might argue that the class heterogeneousness 

is really not noise but an integral part of the land use/land cover 

class. Thus, if a considerable percentage of the cells representing 

a class were removed from its training sets, the remaining cells 

might be too specific to represent the real, diverse nature of that 

land use/land cover class. The procedure tested and described be­

low uses as a rule-of-thumb that no more than 20% of the cells 

representing a class will be removed in a given iteration. 

The statistical cleaning was accomplished iteratively by com­

puting the mean vector and covariance matrix, the spectral signa­

tures, for each class based on the original, unaltered training sets. 

Then the "posteriori" probabilities were computed for the possibility 

that each cell in each training set belonged to each land use/land 

cover class. Cells were deleted from a given training set if they had 

a low probability of belonging to the class which they were originally 

selected to represent and/or a high probability of belonging to one of 

the other classes. Proceeding iteratively, a new mean and covari­

ance matrix was computed for the cells which remained to represent 

each class > 80%) and additional cells deleted by the same criterion. 

Usually two or three iterations were enough to provide adequate 

cleaning whichwas indicated by high "posteriori" probabilities for 
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the remaining cells (Maxwell, 1976). Placing a limit on removing 

no more than 20% of the cells in a training set for any given iteration 

"points" the training set toward the numerically dominant land use/ 

land cover in the set. 

The impact of statistical cleaning on the classification results 

for three methods of selecting training sets was carefully investi­

gated. The discriminant functions were computed from and applied 

back to the cells of the training sets as an indication of their accuracy 

to discriminate or map the unknown cells. Deleting those cells with 

low probability of belonging to the training set representing the class 

was tested to determine if the remaining cells yielded a "better" 

training set. A new discriminant analysis and cleaning activity is 

iteratively performed with the remaining points as noted above. A 

measure of the ability of the modified training sets to represent dis­

crete, mappable land use/land cover types can be obtained after each 

cleaning iteration. Apparent training set accuracy provides a 

measure of the total number of the cells in a given class(es) which are 

actually assigned to the correct class(es) by the discriminant function 

at that iteration or cleaning level. The cells which are correctly 

assigned to the proper class(es) are divided by the number of cells 

input to that step representing the class(es) and multiplied by 100 to 

yield this measure of accuracy in percent. Thus at any level of 

cleaning the 
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Correctly Classified Cells
Apparent Training Set Accuracy = 100 X Cells Input to Form the 

Discriminant Function 

The numerator of this fraction can be expected to hold reasonably 

well while the denominator decreases as the number of cells repre­

senting a class(es) decreases with successive cleanings. Thus, the 

apparent training set accuracy increases as cells are cleaned or 

removed from the original training sets. 

Actual training set accuracy is computed by dividing the cells 

which are correctly assigned to a class(es) at any level of cleaning by 

the original number of cells selected to represent that class before 

any statistical cleaning is applied. The fraction obtained is multi­

plied by 100 to convert it to percent as 

Correctly Classified Cells
Actual Training Set Accuracy -- 100 X Original Cells Selected to 

Represent the Class(es) 

The denominator of this fraction is fixed at the original number of 

cells for each successive cleaning of a class(es) while the numerator 

fluctuates to indicate the actual impact of the cleaning procedures on 

the classification natricies. Statistical cleaning is designed to re­

move those cells erroneously included in the group of cells selected 

to represent a class. The revised classification matricies computed 

after each cleaning are applied to all the cells originally selected to 

represent the class. The revised matricies have been improved by 

the cleaning process if some of the members of the original group of 
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cells which were incorrectly classified are now "pulled back" or 

correctly classified. 

Further understanding of these two measures of evaluating 

statistical cleaning may be achieved by example. A specific agri­

cultural field is selected as a training set to represent a given agri­

cultural crop cover class. The field contains areas of good homo­

geneous crop canopy and small areas of trees and areas of the crop 

mixed with weeds. Statistical cleaning may remove the cells repre­

senting trees as they have low probability of being the crop and high 

probability of belonging to another class representing trees. A por­

tion of the cells representing the weed/crop mix would have been 

incorrectly classified before cleaning. Statistical cleaning is applied 

to improve the classification matricies for the crop by removing the 

tree cells and the value of this is measured by what happens to the 

weed/crop mixed cells. Pulling them back into the crop class may 

provide the best and appropriate map of the distribution of this crop 

type. This may be evaluated by examining the actual training set 

accuracy at each successive level of cleaning where the numerator 

should increase as error or tree cells are removed from the training 

set for the given class. 

Apparent and actual training set accuracy is computed and 

examined for each of the three approaches used to compose the 

training sets. At the outset it should be clearly understood that if the 
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training sets are roughly picked by an inexperienced user a meaning­

ful increase in actual training set accuracy might accompany the 

statistical cleaning. Training sets which are carefully selected to 

represent each desired class may show little improvement with 

successive cleaning. 

The final determination of the impact of this statistical cleaning 

must be made by consideration of what it does to improve the accuracy 

of the final, total classification map. Examination of the training set 

accuracies computed in this effort only hint at the impact of the pro­

cedure on the actual map production. 

3.2.4 Non-Supervised Method 

The initial training set selection was cotnpleted without benefit 

of airphoto or other direct ground control information. The only 

information available was the 1:25,000 graymaps of MSS band 5 and 7, 

the 1:25,000 topographic overlay, and the knowledge of the test area 

possessed by four Taiwan resource specialists present in the U.S. 

The supervised method of collecting training sets has come to imply 

that specific ground control information was used as a basis for 

training set selection. Unsupervised image classification is a quite 

different analysis procedure employed when no ground control data is 

known and no training sets are to be employed. The procedure evalu­

ated here used the supervised approach without benefit of ground 
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control and is termed "non-supervised" to avoid confusion with either 

of these two accepted procedures. 

The graymaps of MSS band 5 and 7 were carefully examined. 

Homogeneous areas in gray tones were visually selected by examining 

both grayrnaps simultaneously. Eighteen potentially separable, 

homogeneous land use/land cover classes were selected and their 

estimated land use/land cover or water type class assigned based 

upon the 1:25,000 topographic map overlay and the judgment of the 

panel of four Taiwan resource specialists. This procedure may be 

graphically represented as a plot in two dimensions with each axis 

showing the magnitude of the radiance values recorded for each cell 

in MSS band 5 and 7. This plot is referred to as two dimensional 

spectral space and can be used to visually estimate the separability 

of each potential land use/land cover class. The cell values in 

area A range from 35 to 45 in Band 5 and from 73 to 255 in Band 7 

(Fig. 3.3). The cell values in area B range from 43 to 255 in Band 5 

and from 59 to 75 in Band 7 (Fig. 3. 3). Cell values in area C range 

from0 to 36 in Band 5 and from0 to 75 in Band 7. MSSband4is 

reasonably similar to Band 5 and 6 is similar to 7 thus these three 

ground areas represent three different surface materials which may 

The cell values were multiplied by 2 for MSS band 4, 5 and 6, 
by 4 for band 7 in order to increase the data range to an uniform 0 to 
255 for use in the LMS software package. 
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Fig. 3.3. 	 SIMPLE SEPARATION OF CLASSES A, B AND C IN TWO 
DIMENSIONAL SPECTRAL SPACE. This simple defini­
tion is often referred to level slicing. 

be mapped reasonably well in the larger four spectral space repre­

sented by all four MSS bands. Training sets were thus selected to 

represent 18 land use/land cover classes using only the hierarchical 

classification scheme (Table 2. 5), grayrnaps, topographic informa­

tion, and available knowledge of the area. 

The procedure yielded five classes of grains representing 

distinctly different fields of rice probably in different stages of 
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growth. Since no ground control was collected at the time of the 

LANDSAT imaging, it was not possible to place specific names on 

these and other individual agricultural classes. At this point they may 

only be identified as distinct, mappable classes. Offshore water 

classes were designated by selecting training set rectangles in the 

honogeneous areas of progressively deeper water identified on the 

topographic map. Less than 10 meters was designated shallo seawater, 

10 to 20 meters as medium and more than 20 meters as deep. Consid­

erable confusion between water depth and sediment load were thus 

possible and cannot be resolved without more known information on 

actual suspended sediment and turbidity distribution at the time of 

imaging. Confusion was encountered between the urban land use classes 

and grain classes as rice is grown in and about the urban portions of 

the test area. Specific training sets for urban classes are thus diffi­

cult to identify and several proposed urban categories were omitted. 

The training sets selected in this fashion consisted of several 

rectangular groups of cells totaling 50 to 250 cells and representative 

of each of the 18 land cover/water type classes sought. These col­

lections of cells were used to compute a discriininant function which 

was then tested back upon the same cells to provide an evaluation of 

how well it can separate or map the cells from which it was prepared. 

The resultant assignment of all the known training set cells into the 

18 classes provides a training set accuracy matrix which indicates 
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how well the mapping function will perform (Table 3. 1). This 

matrix shows how each of the original training set cells in each class 

(horizontal dimension of matrix) were assigned to each class by the 

discriminant function (vertical dinension). The cells which were 

correctly assigned occur on the diagonal--i.e. they were selected to 

represent rice and are subsequently classified as rice. Those cells 

which were incorrectly identified or miss-classified occur off the 

diagonal. The number of cells on the diagonal for each class divided 

by the number of cells representing that class is a figure of merit 

called training set accuracy and is multiplied by 100 to obtain a per­

centage. All the cells on the diagonal divided by all the cells in all 

the training sets provide an overall figures -of-merit or training set 

accuracy for the mapping or discriminant function being tested. The 

overall training set accuracy for this initial test of the non-supervised 

training sets using all 10 MSS bands/ratios was 68.6% and varies 

widely within the 18 classes (Table 3. 1). 

Discriminant analysis can be made to proceed in a stepwise 

fashion so that each of the successive 10 MSS bands/ratios are added 

in their optimal order. This approach does not alter the final accu­

racy achieved using all 10 MSS bands/ratios but the approach deter­

mines if some lesser combination of bands and ratios will achieve an 

acceptable portion of this final 10 band/ ratio accuracy. The greater 

the number of bands and ratios selected for the final discriminant 
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TABLE 3.1, 	 TRAINING SET CLASSIFICATION ACCURACY USING THE "NON-SUPERVISED" TRAINING SETS. 18 classes 
showing training set accuracy in percent using 10 channels (4 LANDSAT MSS bands and their 6 ratios). 

Land Use Class No. of Agricultural Forested Bamen Water 
Points Ur. 

Code Levell Code LevelsilandIII inT.S. ban 211 212 213 214 215 221 222 223 23) 311 312 410 420 510 520 530 540 550 

100 	 Urban lands 


211 GrainA 63 59 0 0 5 19 0 0 0 17 0 0 0 0 0 0 0 0 0 

212 GrainB 54 0 t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

213 GrainC 49 0 0 76 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 

214 Grain D 63 10 0 0 71 3 0 11 0 0 0 0 5 0 0 0 0 0 0 
200 Agricultural 215 Grain E 233 17 0 0 4 54 119 0 2 4 0 0 0 0 0 0 0 0 0 

lands54 1 0 2 4 0 0 0 0 0 0 0 0 0 
221 Upland crop 147 3 0 0 0 25 59 0 6 6 0 0 0 0 0 0 0 0 0 

222 Sugarcane 187 7 0 0 9 0 0 73 0 7 0 0 3 0 0 0 0 0 0 

223Otrus 228 1 0 0 0 0 7 0 $5 17 19 0 0 0 0 0 0 0 0 

231 Pears 224 11 0 0 2 1 4 4 5 64 10 0 0 0 0 0 0 0 0 

300 	 Forested 311 Deciduouslow 168 2 0 0 0 1 1 0 9 9 79 0 0 0 0 0 0 0 0 
lands 3t2 Deiduoushigh 130 5 0 0 0 0 0 0 0 0 0 95, 0 0 0 0 0 0 0 

400 	 Barren 1410 Gravels 256 0 2 0 21 0 7 0 0 0 0 0 69 1 0 0 0 0 0
 
lands 420 Tidal flat 175 0 0 30 0 0 0 0 0 0 0 0 0 36 33 0 0 0 1
 

7 0 Shallow seawater 90 0 0 3 0 0 0 0 0 0 0 0 0 24 N 2 0 0 0 

520 Medium seawater 147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 3 0 0 
500 Water 530 Deep seawater 226 0 0 0 0j 

(510 
sufcs 540 	 Clear water 60 0 0 3 0 00 00 0 0 0 0 0 0 0 0 30 69 1 00 0 0 	 0 0 0 0 0 0 2 N 93 2 

550 	 River 70 1 0 7 0 1 0 0 0 0 0 0 0 1 0 0 0 9 s0
 

Overall accuracy = 68.6% obtained by 1762 correct identifications (diagonal) divided by 2570 total samples in all training sets. 
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function the greater the cost of its application to the total image file. 

Once the order of the addition of the bands/ratios has been deter­

mined a new training set accuracy matrix (Table 3. 1) can be com­

puted after the addition of each band or ratio in the prescribed order. 

Overall and individual class training set accuracy can thus be deter­

mined and plotted for each band or ratio added in the stepwise fashion 

(Fig. 3.4). This graphically portrays the accuracy achieved at the 

addition of each intermediate band or ratio relative to that achieved 

by the last or 10th band/ratio. An easy selection may thus be made 

as to the number and combination of bands/ratios needed to achieve 

an acceptable and economic combination. 

Statistical cleaning was evaluated for use with these training 

sets. This necessitates that the two computations of training set 

accuracy described earlier be performed. It is thus possible to plot 

apparent training set accuracy for band/ratio added as well as actual 

training set accuracy (Figs. 3.4 and 3.5). A separate curve for each 

type of accuracy is achieved for each cleaning operation applied. 

Three successive iterations of cleaning were performed yielding four 

training set accuracy curves of each type where the 0 level of cleaning 

represents the initial case where no cells have been removed (Fig. 

3.4). The initial or 1st cleaning imposed on these training sets pro­

vides a marked increase in apparent training set accuracy at all 

bands/ratios added and smaller increases occur for each successive 
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2nd and 3rd iteration (Fig. 3.4). At the addition of the 10th band 

after three levels of cleaning an apparent overall training set accu­

racy of approximately 95% is achieved. Examination of the same 

graphical portrayal of actual training set accuracy shows no increase 

due to this statistical cleaning procedure (Fig. 3.5). The cleaning 

procedure has successively removed cells from the training sets 

which do not appear to belong to the respective classes based upon 

their "posteriori" probabilities. This appears to have little effect in 

"bringing back" or correctly classifying that portion of the cells which 

were not deleted by the statistical cleaning criteria but had not been 

correctly classified (Fig. 3. 5). 

Examination of the curves of actual training set accuracy 

clearly shows that most of the accuracy was achieved by the addition 

of the 4th or 5th band or ratio (Fig. 3. 5). This indicates that a 

selection of four or five MSS bands and ratios would suffice without 

cleaning and produce a final classification map of 18 classes with an 

accuracy based upon a training set accuracy of 68%. 

3.2.5 Supervised Method 

The collection of specific ground control data on a grid for an 

array of 3 by 3 cells at 30 by 30 cell spacing has been described 

(Section 2.3.2.1). The land use/land cover identity of each of the 

sample cells was obtained by airphoto interpretation. Those indi­

vidual cells interpreted as containing two land use or land cover 
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types were assigned to that one of the two classes which dominated 

the remainder of the cells in its 3 by 3 array. No sample cells were 

interpreted for the offshore area of tidal flats and areas of seawater. 

Thus, the same rectangular training sets were used here for these 

water type classes as were selected for the non-supervised approach. 

The 2760 grid sampled cells were reassembled into groups of cells 

representing each of 14 land use/land cover classes. The number of 

cells to represent each class is directly proportional to the relative 

amount of that class in the study area and well represents the natural 

variability within each class, for example, only 15 cells represent 

commerical land use while 824 represent the hardwood land cover. 

Test classification proceeded exactly as outlined for the non­

supervised approach. The overall and individual class accuracy can 

be interpreted from the 10 band/ratio training set accuracy matrix 

(Table 3.2). An overall accuracy of only 4Z. 3% is achieved ranging 

from a low of 14% for conifers to a high of 96% for medium seawater. 

Three iterations of statistical cleaning were applied to these 

training sets in a stepwise fashion yielding apparent increases in 

accuracy at each level (Fig. 3.6). Examination of these four curves 

of actual training set accuracy implies that no real effect has been 

achieved (Fig. 3.7). A reasonable approximation of the accuracy 

achieved by the 10 bands/ratios occurred at the end of only two steps 

representing the addition of only ratio 6/4 and band 5. 



TABLE 3.2. 	 TRAINING SET CLASSIFICATION ACCURACY USING THE "SUPERVISED" TRAINING SETS. 14 classes 
showing training set accuracy in percentusing 10 channels (4 LANDSAT MSS bands and their 6 ratios). 

Land Use Class NO. of Urba Agricultua forested Barren Water 
Nlints 

Code Leell Code Levelff inT.. 110 120 210 220 230 310 320 330 410 420 510 520 530 540 

100 Urt n 110 Commercial 	 5 l73-,,27 0 0 0 0 0 0 0 0 0 0 0 0 
n lands 120 Mixed 	 59 |7 37, 19 5 0 0 0 17 0 0 0 0 0 

210 Grains 	 345 3 14 53sQ4 13 0 1 0 2 0 0 0 0 0 
4200 Agricultural lands 220 Crops 699 7 15 38 17..1 1 3 2 3 0 0 0 0 0 

230 Orchards 219 1 5 14 7 30- 17 18 6 1 0 0 0 0 0 
(310lardwoods 824 0 1 6 3 15 39112 12 2 0 0 0 0 1 

300 Forestedlands 320 Mixedwoods 130 0 2 9 4 22 19 35. 8 0 0 0 0 0 0 
{ 330 Conifers 	 64 3 5 16 3 11l 28 13 14- 8 0 0 0 0 0 

400Brenlands410 Gravels 	 68 19 13 1 6 7 7 10 I 34. 0 0 0 0 0 
420lTidalnt 	 125 5 0 0 0 0 0 0 0 0 64, 31 0 0 0{ 510 Shallow seawater 90 0 0 0 0 0 0 0 0 0 62 0 0 

0 0 0 	 0 0 0 0. 1 96_ 3 0500 Water surfaces 520 Medium seawater 147 0 0 0 
530 Deep seawater 226 0 0 0 0 0 0 0 0 0 0 0 31 69 0 
$40 Fresh water 60 0 0 0 0 0 0 0 0 0 0 0 0 5 95 

Overall accuracy 	 = 42.3% obtained by 1321 correct identifications (diagonal) divided by 3121 total samples in all training sets. 



74 

100 

Overall 14 	 Land Uses 

(Supervised Training Sets) 

80 

N 
, 60 	 ­

t I/ 	 , - ­

so/ 

C ,o / 
30-

CL 04 0 / < 41 	 ' 

5et0 4 - -/ 6- /4 Y ­

4nd0 / it / 	 s Y 

0 -r 

1sf 0 *e 4 5 5/ 6 % T 14 7 

2nd 0 It 4 5 V4 6 $A / Ts Y4 71.1-..L... .-. L.J.L.-..J.4 	 .J J.J 

3rd 0 6 4 64 5 V4 /s % Vs 3' 7 

LANOSAT MSS Band or Ratio Added 

Fig. 3.6. 	 APPARENT INCREASE IN TRAINING SET ACCURACY 
ACHIEVED AT EACH LEVEL OF STATISTICAL 
CLEANING. Fourteen classes are represented based 
on classification by the 10 MSS bands/ratios. 



75
 

100 

90 

s0 Overall 14 Land Uses 

(Supervised Training Sets) 

~70­

460­

50­

0 

0-
Cln
 

to­

0~~~ ~~~ 06 	 /, 1/E tsm' 

Can 

0 0 GA 5 6 4 Vs 4A ft 3t V4 7 

I1 0 It 4 5 $ 6 Vi Vs ?A 7 

2nd 0 "t 4 5 Ut 6 As V5 NV 7 

3rd 0 6 4 $ A % Vs 1 Vs 4 7 

LANDSAT MSS Bond or Ratio Added 

Fig. 3.7. 	 ACTUAL INCREASE IN TRAINING SET ACCURACY 
ACHIEVED AT EACH LEVEL OF STATISTICAL 
CLEANING. Fourteen classes are represented based 
on classification by the 10 MSS bands/ratios. 
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The low accuracy achieved from this approach is due to two 

reasons. (1) The location of the ground control data on the graymaps 

may be unsatisfactory. A one cell misregistration of the ground con­

trol relative to the LANDSAT cells may well represent a different 

material. Taiwan is a country of small scale, intensive, hetero­

geneous agricultural and other land uses. Thus, a near miss may be 

as serious as a gross misregistration. (2) The method used here 

well represents the natural variability in each land cover class. 

Multimodal distributions may result for the radiance values in a 

specific band/ratio. The reduction of the number of categories used from 

17 to 14 further increases the multimodal nature of the classes. Here 

the number of agricultural classes was reduced to three from nine in 

the non-supervised approach to match the ability of the airphoto 

interpreters relative to the available black and white photos. Thus, 

the radiance distribution for the cells in a given class may not follow 

the assumption of Gaussian distribution made in selecting the dis­

criminant analysis technique. 

3.2.6 Pseudo-Supervised Method 

Pseudo-supervised, that is, "like"-supervised training data 

was developed using a combination of the available ground control 

information and careful examination of "mappable" classes by inspec­

tion of the natural variation and homogeneousness in MSS band 5 and 

7 graymaps. First, the proposed classification scheme (Table 2.3) 
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was examined with reference to the grayrnaps to determine if it 

should be slightly adjusted to represent the number and type of land 

use/land cover classes which appear mappable. Next, one or more 

irregular areas were located on the graymaps which were thought to 

represent these mappable classes and which corresponds to an area 

covered by one of the 25 ground control maps described earlier 

(Section 2. 3.2.2). Finally, a rectangular or irregular training set 

selection identified from the ground control map is fit into the homo­

geneous area on the grayrnaps (Fig. 3.8). This process was re­

peated to provide at least three examples of each class containing a 

total of about 100 cells except for hardwoods type B which contain 

246 cells. This procedure overcomes the registration problems of 

the grid cells approach as the final location of the training set is 

determined from the graymap while the identity of the class is taken 

wherever possible from the airphoto interpretations. Actual specific 

identity was not possible for the agricultural classes due to the mis­

match in the dates of the LANDSAT and airphoto images. A small 

number of the classes could not be represented by reasonably sized 

rectangular training sets, e. g. the classes which represent highly 

linear or point distributed land use or land cover. These classes 

were represented by a larger number of carefully selected irregular 

shapes and collections of discrete points (e.g. urban land covers). 

No ground control maps were available for offshore areas of tidal 
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Fig. 3.8. 	 AN EXAMPLE OF THE SELECTION OF TRAINING SETS 
BY THE "PSEUDO-SUPERVISED" APPROACH. Two 
rectangles are assigned to the classes of grains and 
gravels respectively. 

flats and areas of seawater. The training sets used here were 

assembled 	from a long, narrow strip of cells following a depth con­

tour on the 	topographic map. 
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The pseudo-supervised training data assembled performed well 

as it represented an accumulation of knowledge and experience gained 

from the two earlier approaches. Test classification and evaluation 

proceeded as outlined in detail for the non-supervised approach. The 

overall and individual class accuracies were interpreted from the 10 

band/ratio training set accuracy matrix (Table 3.3; Appendices C and D). 

An overall 20 class accuracy of 77.6%was achieved ranging from 45% for 

one class of grain to 99% for both medium and deep seawaters. 

Lower accuracies were achieved for several of the agricultural 

classes and for the urban residential classes prompting re-examina­

tion of the miss-classification between these classes and their re­

vision to eliminate it. This iterative approach to the selection of the 

classes was quite in agreement with the type of training set selection 

approach employed here. The agricultural classes were revised 

down from 7 to 5 more mappable types and the urban class was com­

bined into the mixed urban class with which it was confused. This 

reduction of the 20 initial classes to 17 improved the overall training 

set accuracy to 85% with a low of 71% for one of the crop classes 

(Table 3.4). 

Two iterations of statistical cleaning were applied to the train­

ing sets in a stepwise fashion yielding apparent increases in accuracy 

at each level (Fig. 3.9). Examination of the three curves for actual 

training set accuracy implies that no real effect has been achieved 



TABLE 3.3. TRAINING SET CLASSIFICATION ACCURACY USING THE "PSEUDO-SUPERVISED" TRAINING 
showing training set accuracy in percent using 10 channels (4 LANDSAT MSS bands and their 6 ratios). 

SETS. 20 classes 

Code 

Land Use Class 

Leel! Code Levels landill 

No. of 
Points 
inT.$. 110 

Urban 

120 130 211 212 

Agricultural 

213 214 221 222 223 

Forested 

311 312 320 

Barren 

410 420 430 510 

Water 

520 530 540 

lands 
110 
120 

l130 

211 
212 

Commercial 
Residential 
Mixed 

GrainA 
Grain B 

100 
85 
72 

82 
96 

90-.. 3 6 
15 51,,,,24 
0 31 65. 

0 2 6 
0 0 0 

0 0 
1 0 
3 0 

66... 0 
0 100." 

0 
0 
0 

22 
0 

0 
0 
0 

1 
0 

0 
0 
0 

0 
0 

0 
0 
0 

2 
0 

0 
0 
0 

0 
0 

0 
0 
0 

0 
0 

0 
0 
0 

0 
0 

0 
0 
0 
0 
0 

0 
6 
1 
0 
0 

1 
4 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 

200 Agri-
cultural 
lands 

213 GrainC 
214 Grain D 
221 CropA 

91 
101 
104 

0 
1 
0 

0 
2 
0 

0 
2 
0 

23 
8 
0 

3 
23 
0 

45" ,.0 
1 58.,

12 18 

19 
4 

50 

9 
0 

.,20 

0 
0 
0 

0 
0 
0 

1 
1 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

300lanFrested 

400lBarren 

222 CropB 
223 CropC 
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to 

75 
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93 
95 
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96 

0 
0 

0 
0 
0 
0 
1 

6 

0 
0 

0 
0 
0 
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0 

0 
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0 
0 
0 
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0 

0 
0 
0 
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3 

4 
4 
3 

0 
0 
0 

77.. 0 0 4 
0 61,, 0 0 

1 0 1-80-,1 4 

0 0 13 79-. 
1 0 4 10 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 

5 

0 
O 

82 

0 
0 
0| 

0 
0 
0 
0 

_ 0 

72 
0 
0 

0 
0 
0 
0 
0 

1 
91 

0 

0 
0 
0 
0 
0 

0 
0 

94 

0 
0 
0 
0 
0 

0 
0 
0 

0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 

0 
0 
1 
0 
0 

0 
0 
0 

510 Shallow seawater 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 96 0 0 0 
500 Water 

surfaces 
520 Medium seawater 
530 Deep seawater 

90 
90 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

99 _1 0 
0 99 

1 
1 

S40 Fresh water 84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 1 94 

Overall average = 77.6% obtained by 1565 correct identifications (diagonal) divided by 2016 total samples in all training sets. 



TABLE 3.4. 	 TRAINING SET CLASSIFICATION ACCURACY USING THE "PSEUDO-SUPERVISED" TRAINING SETS. 
1 7 classes showing training set accuracy Inpercent using 10 channels (4 LANDSAT MSS bands and their 6 ratios). 

Land Use Class 	 No. of Urban Agricultural Forested sarren Water 
Points 

Code Levell Code Levelsllandlll inT.S. 110 120 211 212 221 222 223 311 312 320 410 420 430 510 520 530 540 

100 	 Urban f ilOCommercial tOO 91, 8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
lands 120 Mixed 157 13 73, 3 0 0 0 0 0 0 0 t0 3 0 0 0 0 0 

211 GrainA 82 0 2 87-, 0 2 4 0 0 0 0 3 0 0 0 0 0 0 40 

212 Grain B 96 0 0 0 I0 0 0 0 0 0 0 0 0 0 0 0 0 0
{

200 	 lricultural 221 CropA 104 0 0 1 3 15.,20 0 0 1 0 0 0 0 0 0 0 0 
222 CropB 100 0 0 2 0 19 75 .. 0 0 4 0 0 0 0 0 0 0 0 
223 CropC 75 0 0 0 7 16 0 71- 0 7 0 0 0 0 0 0 0 0 
311 HardwoodsA 156 0 0 0 0 3 I 0 1l 13 0 0 0 0 0 0 0 1 

300 dForested312 Hardwoods8 246 0 0 0 2 4 0 0 14 79 0 a1 0 0 0 0 0 0 
lands 320 Conifers 93 0 0 0 1 3 2 0 4 8 83, 0 0 0 0 0 0 0 

410 Gravels 95 0 19 I 0 0 0 0 0 0 079 1 0 0 0 0 0
 
400 Barren 420 Reclaimed land. 70 4 4 0 0 0 0 0 0 0 0 0 91 0 0 0 0 0
 

lands 430 Tidal flat 96 5 
 0 0 0 0 0 0 0 0 
 0 0 0 95. 0 0 0 0 
- SlShallow seawater 90 0 0 0 0 0 0 0 0 0 0 0 0 3 97 0 0 0 

500 	 Water 520 Medium seawater 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 90 1 
surfaces 	 530 Deep seawater 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 0 I
 

540 Fresh water 84 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 95
 

Overall accuracy = 85% obtained by 1551 correct identifications (diagonal) divided by 1824 total samples in all training sets. 
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(Fig. 3. 10). Approximately 82% actual training set accuracy was 

achieved with an optimal combination of four bands/ratios versus 

the 85% achieved with all 10 bands/ratios. 

3.2.7 Conclusion and Selection 

Statistical cleaning was tested as a method of improving the 

representation of a class by the cells remaining in the training sets 

after cleaning. Those cells with low probability of belonging to the 

class and/or high probability of belonging to another class were 

deleted. A measure of the effectiveness of the new discrininant 

function computed after cleaning is the fate of those cells originally 

selected as part of the training set but which were neither correctly 

classified nor sufficiently different to be deleted. Cells not classi­

fied but not yet deleted were not drawn back into the correct class 

yielding higher actual training set accuracy with successive cleaning 

iterations (Fig. 3. 11). Apparent training set accuracy will increase 

in all cases in direct linear proportion-to the cells deleted (Fig. 3. 11). 

Just the opposite occurred with two of three training set selection 

approaches representing a slight decrease in actual training set accu­

racy with each cleaning. There is a direct linear relation between 

the number of points deleted from the training sets and the apparent 

increases in accuracy. Training sets which are noisy may well be 

improved by statistical cleaning but the best way to improve low 
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training set 	accuracy is to reselect better or more representative 

training sets. 

70
 
--------- - Actual Increase
 

Apparent Increase 

E450 

I 
* 6. 

8 1 Pseudo- Supervised 
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fa 	 I0- (2,570Pts) 
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Fig. 3. 11. 	 COMPARISON OF THE ACTUAL VERSUS THE APPAR-
ENT TRAINING SET ACCURACY RESULTING FROM 
STATISTICAL CLEANING. All 10 bands/ratios were 
used. Note that the apparent increase in accuracy is 
directly proportional to the number of points deleted for 
each of the three approaches. 



A final evaluation of the value of statistical cleaning must await 

a future test of its impact upon map verification accuracy. This re­

quires that after each cleaning iteration the residual points in the 

training set be used to compute a discrininant function. These new 

discrinilnant functions foreach level of cleaning could be used to com­

pute a series of land use/land cover classification maps. These test 

maps can be compared with ground control information not known or 

used in selecting the training sets. The resulting verification accu­

racy for each successive map prepared at each cleaning iteration 

would provide a more definitive assessment of the value of statistical 

cleaning. 

Final selection of the pseudo-supervised training sets without 

statistical cleaning was obvious when the results of the three ap­

proaches were compared at all levels of classification (Table 3.5). 

Some differences exist in the types of land cover classes selected for 

each of these tests and one to one comparisons were not possible in 

all 2nd and 3rd levels. The final choice was made based upon com­

parison of the first order accuracy which was quite high for the 

approach selected. First order class accuracy is computed as 100 

times those cells classified into the correct 2nd and 3rd order sub­

classes of that first order divided by the total of the original number 

of cells representing those subclasses. The training set accuracies 

achieved represent how well the training sets would work in preparing 



TABLE 3.5. 	 COMPARATIVE TRAINING SET ACCURACY OF THREE APPROACHES TO COMPUTING TAIWAN LAND USE 
FROM LANDSAT IMAGERY. The percentages indicate the number of training set points placed in the correct class or 
combination of classes relative to the total number of points originally selected to represent the class(s). NC indicates 
"not classified." Brackets indicate that there is not a I to I correspondence in the number of subdivisions attempted in the 
specific approach. 

Land Use Class 
"Non.Supervised" 

TrainingSets 
"Supervised. 
TrainingSets 

"Pseudo-Supervsed" 
TrainingSets 

Code Level) Code LevellI Code Levelill I III I If III I if III 

100 Urban lands NC 55% 91% 
110 Commercial NC 73% 91% 
120 
130 

Residential 
Mixed 

NC 
NC 

}37 ).73 

200 Agricultural lands 93% 69 96 
210 Grains 80% 53 94 

211 RiceA 59% NC 
212 Rice B 100 NC 87% 
213 Rice C 76 NC 
214 RiceD 71 NC 100 
215 RiceE 54 NC 

220 Crops 67 17 92 
221 CropA 5 NC 75 
222 Crop B NC 75 
223 Crop C 73 NC 71 

230 Orchards 71 30 NC 
231 Citrus 55 NC NC 
232 Pears 64 NC NC 

300 Forested lands 86 69 94 
310 Hardwoods 58 94 

320 Conifers 

311 TypeA
312 TypeB 
3 

79 
95 

14 

39% 
35 

83 
81 
79 

400 Barren lands 410 Gravels 56 6939 56 89 79 

420 Reclaimed land 36 91 
430 Tidal flat 3 6 95 

500 Water surfaces 
510 Shallow seawater 

94 
70 

94 
62 

98 

97 
S20 Medium seawater 97 96 99 
530 Deep seawater 69 69 99 
540 Fresh water 93 95 95 
550 Clear water 80 
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a first order or generalized land use/land cover map with five 

classes. The pseudo-supervised approach provides the highest 

training set accuracy for all first order classes ranging from 89% 

for barren lands to 98% for water surfaces. The overall first order 

or five class training set accuracy for the pseudo-supervised ap­

proach is 94% while it is 79% and 72% for the non-supervised and 

supervised approaches respectively. 

3.3 Selection of Optimal MSS Bands/Ratios 

It is not economical to employ all available MSS bands and 

ratios to classify the complete maps. It is also not necessary as the 

training set accuracy approaches an upper limit after three or four 

bands have been added for agricultural and urban land use/land cover 

classification in terms of overall actual training set accuracy (Fig. 

3.12) or first order accuracy (Table 3.6). This conclusion is sup­

ported by other experiments employing a similar test procedure in 

connection with aircraft imagery presenting 12 spectral bands ranging 

from 0.4 pm to 12. 5 pm covering the wider range from the visible 

spectral region through the thermal infrared (Thompson et al., 1974). 

No ratios were tested but three of the four aircraft bands selected 

either overlapped or included the four MSS bands. The study of the 

aircraft imagery also clearly illustrated the risk of extending these 

conclusions to all types of classification mapping as 8 of the 12 



89 

I0¢ 

90
 

so-

Overall 17 
 Land Uses 

80
 

20
 

0 6/4 6 

0 

5/4 4 V5 N /

5 


/ 7
7 ?/45 
 4 
 6
 
LANDSAT 
 MSS Band or Ratio AddedFig. 3. 12. SELECTION 

supervised" 
OF THE MIN'IMUM NUMBERBANDS/ RATIOS FOR PREPARATION OF MSSLAND USELANDtraining 

sets. 
OF THE TAIWANCOVER M4APS. SeventeenNo cleaning classes. 

Based on actual training set accuracy using the "pseudo­has been applied. 



TABLE 3.6. 	 TRAINING SET CLASSIFICATION ACCURACY FOR THE 1st ORDER LAND USE CLASSIFICATION OF 
TAIWAN. Based on the "Pseudo-Supervised" training sets (Table 3.4). No cleaning has been applied. 

Land Use Class Maximum Achievable Optimal 4-Bond *Accuracy Gain (+j Orginal 4MSS *Accuney Gain (+) to 
lO-Band/RatioAccuracy Ratio A curacy or Loss (-) Band Accuracy or Loss (0 0 

100 Urban lands 91% 91% 0% 90% -1% 

200 Agricultural lands 96 94 -2 89 -7 

300 Forested lands 94 91 -3 91 -3 

400 Barren lands 89 92 +3 90 +1 

500 Water surfaces 98 98 0 98 0 

*Comparison with achievable 10-band accuracy. 
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spectral bands were required to achieve an optimal accuracy for 

classifying surficial geology classes. 

Four MSS bands/ratios provide the basis for a reasonable 17 

class land use/land cover map of Taiwan (Table 3.7). A further 

test remains as to the actual contribution of the six ratios of MSS 

bands relative to the use of only the four ASS bands. Ratios of MSS 

bands as a whole correlated well with one or both of their own numer­

ator or denominator bands (Table 3.8) and thus may contribute little 

to the classification process selected. A stepwise discriminant 

analysis of the actual training set accuracy for the 17 classes and 

using only the four lMSS band clearly shows that employing ratios will 

contribute little to the final accuracy achieved (Fig. 3. 12). The four 

MSS bands alone yield an overall training set accuracy of 79% while 

the first four MSS bands/ratios provided 81%. 

Savings can thus be achieved by omitting the step used to pre­

pare the ASS ratios for related land cover mapping. Also, substan­

tial additional savings can be achieved by noting that bands 5 and 7 of 

the four MASS bands provide the same overall training accuracy (79%) 

(Fig. 3. 12). Thus, two of the four MSS bands employed with the 17 

class pseudo-supervised training sets provide adequate overall accu­

racy and first order accuracies of better than 90%. 

It may appear at this point that a substantial amount of the pro­

cedures tested have contributed little to the final processes employed. 



TABLE 3,7, FINAL TRAINING 
"Pseudo-Supervised" 

SET ACCURACY FOR THE LAND USE CLASSIFICATION 
training sets (Table 3.5). No cleaning has been applied. 

MAPS OF TAIWAN. Based on the 

Code Level) 

Land Use Class 

Code Level !! Code Levelll 

Maximum Achievable 
1 0-Band/Ratio 

Accuracy 
I 

Optimal 4-Band 
Ratio Accuracy 
I it H1 11 

*Accuracy Loss 
(- or Gain (+) 

Original 4 MSS 
BandAccuracy
T 

'Accuracy Loss 
{-) or Gain (+)

T. I 

100 Urban lands 
110 
120 

Commercial 
Mixed 

91% 
91% 
73 

91% 
89% 
69 

0% 
-2% 
-4 

90% 
92% 
67 

-1% 
+1% 
-6 

200 Agricultural lands 
210 Grains 

220 Crops 

211 Rice A 
212 RiceB 

221 Crop A 
222 Crop B 
223 CropC 

96 
94 

9L 

87% 
100 

75 
75 
71 

94 
90 

87 

78% 
100 

65 
78 
61 

-2 
-4 

-5 

-9% 
0 

-10 
+3 

-10 

89 
93 

80 

85% 
98 

56 
72 
60 

-7 
-1 

-12 

-2% 
-2 

-19 
-3 
-11 

VD 
N 

300 Forested lands 
310 

320 

Hardwoods 

Conifers 

311 Type A 
312 Type B 

94 
94 

83 

81 
79 

91 
91 

75 

67 
71 

-3 
-3 

-8 

-14 
-8 

91 
86 

80 

67 
68 

-3 
-8 

-3 

-14 
-11 

400 Barren Lands 
410 
420 
430 

Gravels 
Reclaimed land 
Tidal flat 

89 
79 
91 
95 

92 
83 
94 
93 

+3 
+4 
+3 
-2 

90 
84 
89 
96 

+1 
+5 
-2 
+1 

500 Water surfaces 98 98 0 98 0 
510 
520 

Shallow seawater 
Medium seawater 

97 
99 

94 
100 

-3 
+1 

97 
93 

0 
-6 

530 Deep seawater 
540 Fresh water 

99 
95 

99 
98 

0 
+3 

87 
91 

-12 
-4 

Overall accuracy 85% 81% -4% 79% -6% 

*Comparison with achievable 10-band accuracy. 
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TABLE 3.8. 	 CORRELATION MATRICES WITHIN CLASSES (POOLED) FOR THE 
THREE TYPES OF TRAINING SETS. No cleaning has been applied. 

(1) Non-Supervised Training Sets 

Bands/RatiosBands/ 
Ratios 4 5 6 7 514 6/4 7/4 6/5 7/5 716 

4 1.00 
5 0.72 1.00 
6 0.34 0.41 1.00 
7 0.16 0.20 0.81 1.00
 

5/4 0.20 0.80 0.31 0.18 1.00
 
6/4 -0.14 0.01 0.84 0.75 0.16 1.00
 
7/4 -0.20 -0.12 0.62 0.89 0.04 0.81 1.00 
6/5 -0.22 -0.40 0.58 0.56 -0.39 0.80 0.70 1.00 
7/5 -0.24 -0.40 0.42 0.70 -0.36 0.65 0.87 0.84 1.00 
7/6 -0.12 -0.08 -0.10 0.36 0.01 -0.03 0.43 -0.02 0.44 1.00 

(2) Supervised Training Sets 

Bands/RatiosBands/ 
Ratios 4 5 6 7 5/4 6/4 7/4 6/5 7/5 716 

4 1.00 
5 0.88 1.00 
6 0.43 0.39 1.00 
7 0.19 0.15 0.91 1.00 

5/4 0.55 0.86 0.32 0.15 1.00 
6/4 -0.19 -0.18 0.78 0.85 -0.04 1.00 
7/4 -0.26 -0.26 0.67 0.87 -0.13 0.94 1.00 
6/5 -0.43 -0.57 0.47 0.61 -0.53 0.85 0.84 1.00 
7/5 -0.43 -0.54 0.45 0.68 -0.48 0.83 0.91 0.95 1.00 
7/6 -0.22 -0.22 0.14 0.45 -0.12 0.31 0.54 0.31 0.53 1.00 

(3) Pseudo-Supervised Training Sets 

Bands/RatiosBands/ 
Ratios 4 5 6 7 5/4 6/4 7/4 6/5 7/5 7/6 

4 1.00 
5 0.93 1.00 
6 0.72 0.72 1.00 
7 0.49 0.49 0.87 1.00 

5/4 0.34 0.64 0.41 0.29 1.00 
6/4 -0.18 -0.12 0.53 0.64 0.10 1.00 
7/4 -0.23 -0.19 0.39 0.71 0.01 0.88 1.00 
6/5 -0.28 -0.37 0.29 0.44 -0.41 0.83 0.78 1.00 
7/5 -0.28 -0.35 0.26 0.55 -0.35 0.76 0.90 0.9! 1.00 
7/6 -0,14 -0.14 -0.03 0.36 -0.03 0.15 0.50 0.15 0.48 1.00 
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Hindsight does not substitute for foresight. The impact of these 

logical test procedures on the Taiwan land use/land cover mapping 

was unknown at the outset. These subsequent tests provided a logi­

cal, scientific basis for the optimal selection of the specific training 

sets and MSS bands actually used to prepare the final land use/land 

cover classification maps. 



IV. 	 PRODUCTION AND VERIFICATION OF LAND USE/
 

LAND COVER MAPS OF TAIWAN
 

4. 1 Predictive Accuracy of Training Sets 

4. 	1. 1 Additional Consideration of the Classification Algorithm 

Two classification algorithms were available for the production 

of the final maps. These were the maximum likelihood ratio tech­

nique (Appendix E) and stepwise discriminant analysis which was dis­

cussed in detail earlier (Appendix B). They are basically the same general 

approach except that stepwise discriminant analysis proceeds in a 

step by step (band by band) fashion and uses a single, common co­

variance matrix for all classes. The maximum likelihood technique 

processes only the designated bands and uses a different, individual 

covariance matrix for each individual class sought. 

The stepwise approach has already proved valuable for exam­

ining the various types of training data and the contribution of each 

spectral band/ratio and establishing that the ratios of spectral bands 

add little or 	nothing to the map classification undertaken here 

(Fig. 3.12). Further, stepwise discriminant analysis established 

that when it was restricted to select from only the four basic MSS 

bands it achieved an equally good training set accuracy with only two 
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basic MSS bands versus a free selection from all 10 MSS bands/ 

ratios. It now remains to select from one of the two classification 

techniques and use either the discriminant analysis approach with a 

single covariance matrix or the maximum likelihood approach with 

its suite of covariance matrices. Unfortunately, the available likeli­

hood technique cannot currently handle the six ratios of bands and 

must be restricted to the four basic MSS bands. Ratios of MASS 

bands contain considerably less variability than the four basic MSS 

bands and the covariance for some of these band ratios is very small. 

The available maximum likelihood computer programs cannot, as 

required, invert these matrices. 

At this point it was necessary to devise a method to choose 

one of these two approaches: discriminant analysis using the optimal 

subset of 10 bands/ratios determined in stepwise fashion or likeli­

hood ratioing using an optimal combination of the four basic MSS 

bands. Also, it was important to check how well the earlier inter­

pretations of training set accuracies extended to the actual classifi­

cation of the maps. These tests were accomplished by preparing a 

1/25 sample map of the study area and classifying it with both tech­

niques and the classification matrices computed from the pseudo­

supervised training sets. The results for each classification of the 

sample map were compared to the land use/land cover results ob­

tained from the extensive grid sampled ground control data 
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procedures outlined earlier. This grid sampled ground control was 

not employed in forming the pseudo-supervised training sets due 

principally to its sensitivity to exact registration. However, it does 

provide a very good measure of the amounts of each land use present 

on each map for these tests. A verification procedure has thus been 

designed around this known photointerpretation result to provide a 

final selection of the technique and the bands to be employed and to 

predict in advance the general accuracy of the final products. 

4.1. 2 Sample Map Classification 

Cost prohibited classifying each entire map image file with 

each available technique and combination of bands/ratios as was done 

with the training data. The pseudo-supervised training sets provide 

a basis for computing a sample classification map by each technique 

to obtain a predictive measure of the expected accuracy. A system­

atic 1/25 sample was extracted for these tests using cells at every 

fifth line and every fifth column from Taichung and Kuo-Hsing map 

image files. The Lu-Kang map image file was not sampled as two­

thirds of it was water areas whose classification could not be veri­

fied by the available airphoto ground control data. These miniature, 

sampled map image files each contain 5,600 cells which were classi­

fied for comparison by both the discriminant analysis and maximum 

likelihood approaches. Using the results of the prior chapter as a 

guideline (Fig. 3.12) mdmm likelihood was erployed on all four SS 
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bands and on bands 5 and 7 while discriminant analysis was employed in 

a stepwise fashion on all 10 MSS bands and ratios. The results of 

these 12 map classifications are tabulated in terms of the percent of 

the area of each map which is classified into each land use/land 

cover by each technique (Tables 4.1 and 4. Z). 

4. 1. 3 Verification of Sample Maps 

Qualitative and quantitative verification techniques were ap­

plied to examine the sample map classification results. The qualita­

tive approach was based upon an examination of the overall appear­

ance of the sample classification maps and tables. The spatial 

distribution of the three classes of seawater was a good indicator of 

the general predictive accuracy. The Taichung and Kuo-I-Ising 

classification maps cover only land areas or fresh water, thus the 

seawater (sediment/depth) classes should not appear on either map. 

A small area of the class of tidal flats does occur in the upper left 

corner of the Taichung map but is not confused with shallow (or 

highest sediment) seawater (Table 4. 1). Essentially no sample cells 

are assigned to the seawater classes on the Taichung map by any of 

the 12 classifications tested. Proportionally more agricultural 

lands than forested lands are identified on the Taichung map of the 

lower coastal plains. Deep (or clearer) seawater is mapped at 3.6% 

on the higher elevation Kuo-Hsing map by the stepwise discriminant 

approach by the addition of the fifth band/ratio (6/4, 5/4, 6, 4, and 5) 



TABLE 4.1. 	 CLASSIFICATION RESULTS FOR THE TAICHUNG MAP BASED ON 5600 SAMPLED CELLS. 17 classes showing 
the relative amounts of land uses in percentusing "pseudo-supervised training data." Sampled points represent every 5th 
line and column. Stepwise discriminant analysis used for the 10 channels (4 LANDSAT MSS bands and their 6 ratios). 
Maximum likelihood ratioing technique used for MSS bands 4, 5, 6, 7 and 5, 7. 

Land Use Class MSS Bandsand Ratios Added MSS MS 
Airphoto Bands Bands 

Code Level) Code Levels!landl Estimates 6/4 514 6 4 5 6/5 7/6 7/5 7 7/4 4,5,6.7 5,7 

1.2% 1.1%
100 Urban lands 110 Commercial 6.0% 1.3% 2.1% 1.8% 1.6% 1.5% 1.5% 14% 1.4% 1.5% 1.5% 

120 Mixed 	 2.4 2.6 3.0 3.1 3.2 3.1 3.3 3.3 3.3 3.3 4.1 3.9 

211 Grain A11.8 	 9.0 15.2 15.1 15.7 1S.8 15.5 15.1 15.3 15.4 17.2 15.5 
212 Grain B 16.2 14.9 16.1 16,2 16,7 16.5 16.6 16.8 16.2 16.2 618 7.3 

200 Agricultural 221 Crop A 71.0 12.2 19.2 25.7lands 29.5 33.5 34.3 34.6 35.6 35.4 35.5 35.6 37.5 
222 Crop B 0.1 5.9 5.6 6.1 6.1 5.4 5.5 5.6 5.3 5.1 6.2 9.3 
223 Crop C 15.8 11.5 01 0.1 0.2 0.2 0.2 0.2 0.2 0.2 3.8 1.4 

311 Hardwoods A 4.9 7.7 4.0 4.2 1.8 1.7 1.8 2.2 2.4 2.3 1.3 2.0 
300 Forested 312 HardwoodsfB 20.0 28.6 20.9 23.0 20.2 17.4 17.5 17.3 16.9 16.5 16.6 19.6 16.6 

320 Conifers 0.4 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.6 1.8 

Gravels 4.6 4.2 2.7 2.6 2.8 2.8 2.8 2.9 2.9 2.3 2.4 
400 Barren 420 Reclaimed lands 2.0 0.6 0.5 0.s 0.5 0.5 0.5 0.4 0.4 0.5 0.5 0.3 0.4 

430 Tidal flat 	 0.4 0.5, 0.5 0.6 0.6 0.6 0.5 0.4 0.4 0.4 0.4 0.4 

I4101f5.3 

9510 Shallow seawater 9'0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
500 Water 520 Medium seawater 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

surfaces 530 Deep seawater 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1540 Fresh1water j 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 



TABLE 4.2. 	 CLASSIFICATION RESULTS FOR THE KUO-HSING MAP BASED ON 5600 SAMPLED CELLS. 17 classes showing 
the relative amounts of land uses in percent using "pseudo-supervised training data." Sampled points represent every 5th 
line and column. Stepwise discriminant analysis used for the 10 channels (4 LANDSAT MSS bands and their 6 ratios). 
Maximum likelihood ratioing technique used for MSS bands 4, 5, 6, 7 and 5, 7, 

Land Use Class MSS Bands and Ratios Added MSS MSS 
Airphoto Bands Bands 

Code Level l Code Levels i and III Estimates 6/4 5/4 6 4 5 615 7/6 7/5 7 7/4 4,5,6, 7 5,7 

10ralns 	 10 Commercial 0.0 j 3% 0.6% 0.6% 0.5% 0.3% 0.3% 0.5% 0.5% 0.4% 0.4% 0.3% 0.4% 
120 Mixed 2.7 0.8 1.0 0.9 0.9 0.9 0.9 0.9 0.8 0,8 1.2 1.1 F-C)


211 GrainA 	 7.5 2.4 3.7 4.7 4.2 3.7 32 3.4 3.5 3.6 3.4 5.1I212 	
0 

Grain 1 21.4 16.4 4.9 3.5 3.0 2.9 3.0 3.0 3.3 3.3 1.0 3.2 
200 Agricultural 221 Crop A 30.0 10.5 17.3 200 18.5 18.9 20.5 21.2 21.0 20.8 19.8 13.0 17.4 

lands 222 Crop B 0.6 4,0 5.0 5.6 5.9 4.8 4.6 4.7 4.6 5.5 9.0 3.5 

223 	 CropC 10.4 4.7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.2 1.8 

311 HardwoodsA j 4.6 18.2 24.2 25.7 22.9 24.2 25.4 27.6 28.0 28.1 24.4 22.1 
300 Forested 312 llardwoodsli 67.0 26.3 22.1 22.4 21.4 23.3 23.1 22.7 22.4 22.0 21.9 20.6 23.3

lands 320 Conifers 	 8.9 9.3 14.2 14.9 15.5 15.3 15.5 14,9 14.8 15.0 24.1 20.6 

0.4 0.3 	 0.4 0.4 0.4 0.5 0.4 0.3 0.31(3.840arn 	 410 Gravels 1.0 0.8400 	 Barren 420 Reclaimed lands 3.0 1.2 0.2 0.1 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.2 0.3lands II
 
430 Tidal flat 0.6 0.3 0.3 0.1 0.2 0.2 0.1 0,1 0.1 0.1 0.1 0.1
 

5 shallow seawat0e 	 0.0o0 0.0 0 0 00 00 000 0 0 0.0 0.0 0.0 
500 	 Water 520 Medium seawaterJ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

surfaces 530 Deep seawater 0.0 0.0 0.8 0.8 1.4 3.6 2.4 14 0.5 0.5 0.4 0.0 0.1 

540 Fresh water 	 0.1 1.8 1.9 1.9 0.5 0.9 0.6 0.2 0,2 0.1 0.0 0.1 
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(Table 4. Z). Kuo-Hsing represents an area of considerable top­

ographic relief and yields areas of shadow which are confused with 

the deep seawater class by the discriminant analysis approach. 

There is no corresponding confusion in the Kuo-Hsing classification 

maps prepared from the two or four MSS bands by the maximum 

likelihood approach. The overall total amounts of each land use/ 

land cover mapped by either approach are approximately the same. 

The quantitative test of these results statistically compares 

the airphoto estimates of the amount of each first order land use/ 

land cover to the corresponding amounts computed for each of the 12 

classification maps. It was not possible to make this comparison 

at a second or third order of land use/land cover due to the slight 

differences at these levels between the hierarchical classification 

schemes used on the grid sampled airphotos and the pseudo­

supervised training data. The amount of the map occupied by a 

given first order land use/land cover is computed for each sample 

classification map in percent (Tables 4. 1 and 4. 2). It has also been 

estimated by the grid sample airphoto interpretations (Table 2. 5). 

The LANDSAT image was obtained on November 1, 1972, while the 

airphotos were obtained in 1973 and 1974 and thus, on the average, 

there is about a one year separation between these data. A plot can 

be prepared for each of the 12 sample image classifications com­

paring the computed amount in percent of each first order land 
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use/land cover against the airphoto estimates also in percent. Since 

there are five first order classes mapped for both the Kuo-Hsing and 

Taichung maps each plot contains 10 points (Fig. 4. I). An exact 

match between the computed and estimated amounts of land use/land 

cover would place all 10 points on a 450 line representing a 1 to 1 

comparison. A test of how well these points fit the expected line 

occurs below. A second graph can be prepared which shows the 

variation in difference between the computed and estimated amounts 

of each first order land use/land cover for each of the 12 classifica­

tions attempted (Fig. 4.2). This graph clearly indicates that MASS 

bands S and 7 with the maximn likelihood approach provide the 

most accurate rendition of the amounts of each of the major land use/ 

land cover present on both maps. The difference between the com­

puted and estimated results also decreases rapidly for the first four 

steps and then remains relatively constant. The fact that this 

measure of comparison does not continue to decrease below a fixed 

and relatively constant level implies that there is an inherent differ­

ence between the computed and estimated results which cannot be 

further improved by the addition of more spectral bands/ratios. 

This may represent the amount of real change in land use/land cover 

between the 1972 LANDSAT and 1973/74 airphoto dates or a system­

atic difference or "error" in the two different approaches used to 

obtain the computed and estimated amounts of land use/land cover. 
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Fig. 4.1. 	 COMPARISON OF THE ESTIMATED TO COMPUTED 
FIRST ORDER LAND USE/ LAND COVER. Maximum 
likelihood analysis was applied to the four MSS bands. 
Seventeen second level classes were aggregated into 
five first level classes for comparison. Airphoto esti­
mates based on Z760 sample cells (Table 2. 5). Classi­
fication results based on 5600 sample cells (Tables 4. 1 
and 4.2). 
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Fig. 4.2. 	 DEVIATION OF FIRST ORDER LAND USE/LAND COVER 
MAP CLASSIFICATION RESULTS FROM AIRPHOTO 
ESTIMATES. A negative difference represents an air­
photo estimate greater than the classification results. 
Isolated points for Z and 4 band cases were computed by 
maximum likelihood technique. Remaining values con­
nected by lines computed by stepwise discriminant analysis. 
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4.1.4 Selection of the Final Procedures 

Just as with the training set tests the combination of original 

MSS bands 5 and 7 provide the most economical and accurate results 

with the available classification algorithm (Fig. 4.2). One additional com­

parison gives further weight to this conclusion. The comparison of 

the computed and estimated amounts of first order land use/land 

cover provide five points to approximate a 45 line, or 10 points if 

both maps are taken together (Fig. 4. 1). These test points do not 

exactly fit the expected line and the standard error of the estimate 

provides a means of computing a measure of their misfit as a group. 

This standard error can be computed and plotted for each of the 12 

sample classifications as a function of MSS band or ratio added as 

was done earlier to examine the training set accuracies (Fig. 4. 3). 

The standard error for MSS bands 5 and 7 processed by the maxi­

mum likelihood approach is less than that for all four MSS bands. 

Further, eight bands/ratios must be used in the stepwise fashion to 

achieve the same results as with four MSS bands (Fig. 4.3). 

The verification procedures employed here are not foolproof 

but were selected to compensate for differences which evolved into 

the two hierarchical land use/land cover classification schemes. 

Certainly a one to one (cell by cell) comparison of the computed and 

known land use/land cover of a sample of map cells would be more 

rigorous. It is possible that the overall amounts of the first order 
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Fig. 4.3. 	 SELECTION OF OPTIMAL LANDSAT BANDS AND 
RATIOS FOR THE TAIWAN LAND USE/LAND COVER 
CLASSIFICATION. Standard error of estimate is based 
upon the difference between airphoto estimates and 

classification results for the five aggregated first level 

classes. 
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land use/land cover can match as has been shown while their spatial distri­

bution does not similarly correspond. The techniques used here do provide 

a good indication of the optimal bands and technique to be applied for the 

final map production. The similarity of these results to those obtained 

earlier by examination of training set accuracy provide additional con­

fidence in these conclusions. 

4. 2 Map Production 

4.2.1 Input 

The final land use/land cover classification maps were prepared from 

1tS bands 5 and 7 by the maxim likelihood approach. Microfilm greaymaps 

of these two bands assign black to the image cells with very low spectral 

returns and white to those with very high spectral returns (Figs. 4.4 and 

4.5). These individual graymaps of MSS bands 5 and 7 clearly show some 

of the land uses/land covers in detail. The gaymap of MSS band 5 for 

the Taichung map (Fig. 4.Ub) displays the drainage pattern and urban lands 

in white and forests and river channel in black. The rest of land use/ 

land cover types are shown in different intermediate levels of gray. The 

graymap of MSS band 7 for this same map (Fig. 4.5b) displays the drainage 

pattern and urban lands in black and most of the agricultural lands in 

white or light grey. The rough terrain on the eastern side of the Taichung 

rap is exphasized with rougher topography appearing as shaded relief. A 
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Order land use within that first order category (Figs. 4.8, 4.9, 4.10, 4.11, 

and 4.12). Areas of the theme displays belonging to any of the four re­

maining first order classes are displayed in white. Since no first order 

category is subdivided into more than five second order classes these theme 

maps present a reasonable picture of the distribution of each land use/land 

cover at the second order. Five graylevels or less were used in the first 

order map and theme maps and can be distinguished by the observer when the 

land use/land cover is distributed in uniform patches. Highly variable 

spatial intermixes of cells of various land use are still difficult to dis­

tinguish and may only be properly displayed in differing colors, if at all. 

4.2.2.1 Verification 

Close examination of the theme maps provides a qualitative measure 

of the accuracy of these final classification naps and the general sources 

of remaining error. Urban lands were classified along the rivers and 

coastal lines and appear as "error" in the classification maps (Fig. 4.8). 

Dry sands occur along the river or coastal embankments and possess very 

similar spectral characteristics in the two-dimensional spectral space 

to the concrete roofs of the buildings which dominate the camercial cate­

gory of urban land use. The addition of spectral bands from LAND6AT images 

taken on some other date or the overlay of ancillary data, such as the 

distance from the center of the city to each cell processed, should decrease 
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this kind of classification error. Generally the distribution of forest
 

types is correlated with the aspect of the terrain. Overlays of slope and
 

aspect data onto the multispectral data should be incorporated into future
 

analysis schemes to inprove the accuracy of the categorization of forest
 

types. Overlays of water surfaces of the various categories are distri­

buted parallel to the coastal line but they seem to be more closely related
 

to the suspended sediment content than to the water depth. Adequate ground 

control information can resolve this question and provide a basis for a 

separation of these two general water categories. Bad scan lines and the 

six-line problem due to the imbalance in the calibration of the six sensors 

in the multispectral scanner were not removed or eliminated in this study. 

The obvious error in the classification of portions of whole scan lines 

and banding occurring in water surfaces was caused by these problems. More 

advanced preprocessing and calibration techniques already demonstrated by 

others can be employed to reduce the impact of these problems and improve 

the classification results. 

4.2.2.2 Tabulation of Land Use/Land Cover
 

The area of each of the 17 land uses/land covers in three maps was
 

computed by the maximum likelihood ratioing technique using NSS bands 5
 

and 7 (Table 4.3). One hundred forty thousand image cells of 0.45 hectares
 

are contained in each of three maps, representing 63,000 hectares per map.
 



TABLE 4.3. 	 AREA OF EACH LAND USE IN HECTARES AS CLASSIFIED FROM LANDSAT IMAGERY FOR EACH 1; 25,000
 
MAP OF 63,000 HECTARES. 17 classes mapped using "pseudo-supervised" training data and
 
the maximum likelihood ratioing technique applied to 1MS bands 5 and 7.
 

Land Use Class 	 Lu-Kang Map Taichung Map Kao.HsingMap 

Code Level I Code Level II Code LevellfI I II IIl I II III I II I 

109 Urban lands 2,230 3,138 939 
110 Commercial 1,033 706 145 
120 Mixed 1,197 2,432 794 

200 Agricultual lands 	 14,660 43,842 17,394 
210 Grains 6,936 15,051 3,011 

211 Rice A 6,596 10,792 2,363 

212 RicaB 340 4,259 649 

220 Crops 7,724 28,791 14,383 

221 Crop A 6,105 22,504 7,925 cD 
222 Crop B 340 3,975 5,752 
223 Crop C 1,279 2,312 706 

300 Forested lands 	 800 13,678 44,100 

310 Hardwoods 794 13,243 28,470 

311 Type A 0 794 15,397 

312 TypeB 794 12,449 13,073 

320 Conifers 	 6 435 15,630
 

400 Barren lands 4,473 2,098 434 
410 Gravels 44 1,556 277 
420 Reclaimed land 258 246 132 

430 Tidal flat 4,171 296 25 

500 Water surfaces 40,383 50 6 

510 Shallow seawater 11,246 0 0 
520 Medium seawater 12,033 0 0 
530 Deep seawater 16,437 0 0 

540 Fresh water 667 50 6 

Unclassified (thresholded out) 	 454 194 127 
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Maximum likelihood ratioing may assign any of the 420,000 cells to an ad­

ditional 18th class when their probability of belonging to any of the 17
 

classes specified by training sets is lower than a selected threshold
 

value. Thus, the relationship between classification accuracies and thresh­

old values should be further investigated and additional land uses/land
 

covers will be needed to categorize those unclassified cells.
 

4.2.3 Costs
 

Cost is one of the major considerations in a land use/land cover 

mapping project. The cost for each of 1:25,000 land use/land cover classifi­

cation maps (about I x 1 meter in dimension) was estimated based on the 

Colorado State University charge system for time on the CDC 6400 computer 

(Table 4.4). Neither the cost of development and testing of procedures 

applied to training sets and verification nor the cost of labor was included 

in this estimate. The cost for computer time only is about U.S. $265 (N.T. 

$10,070) per map,or N.T. $0.16 per hectare, using two spectral bands and 

the maximum likelihood ratioing approach. It costs about twice as much 

to use four spectral bands. Thus, the land use/land cover mapping can be 

done much less expensively by this approach than by the conventional methods. 
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TABLE 4.4. COST ESTIMATES FOR EACH 1:25,000 LAND USE/LAND COVER 
CLASSIFICATION MAP. Does not include cost of development and 
testing procedures applied to training sets or verification. Based only on 
Colorado State University charge system of $290 per hour of CDC 6400 
time and does not include labor. Based on 17 classes and 140,000 cells 
of approximately 0.45 hectare. Based on 1 U.S. $ = 38 N.T. $. 

4-Band Case 

Time in Seconds Cost 

OperationsPerformed CentralProcessor Input/Output U.S. $ N.T. $ 

Format conversion 
Geometric correction 1,300 1,300 $255 $ 9,690 
Graymapping I 

Map classification 
Display J 2,400 400 320 12,160 

Totals 3,700 1,700 $575 $21,850 

or N.T.$ = 0.35/hectare 

2-Band Case 
Time in Seconds Cost 

OperationsPerformed CentralProcessor Input/Output U.S. $ AT. $ 

Format conversion 1 
Geometric correction 650 650 $125 $ 4,750 
Graymapping 

Map classification 1,000 400 140 5,320 
Display I 

Totals 1,650 1,050 $265 $10,070 

or N.T. $ = 0.1 6/hectare 



V. CONCLUSIONS 

The results of this study were based upon single date LAIIDSAT 

imagery and the availability of limited ground control. The land use/ 

land cover classification scheme could be revised if better ground 

control data became available and the accuracy of the classification 

maps correspondingly improved.. The testing completed to date has 

provided a logical, scientific basis for the land use/land cover 

classification mapping of Taiwan using the LANDSAT MSS imagery. 

It has covered the complete spectrum of land covers/water types 

occurring in the study site. The study site was selected as repre­

sentative of the complete spectrum of land covers and water types of 

Taiwan and the results should be applicable to the entire island. 

Additional subdivision of some second level classes, such as the 

agricultural lands and forested lands, must be investigated in more 

detail to achieve even more meaningful subcategories of these classes. 

Offshore seawater classes were found to be more closely related to 

suspended- sediment content than actual water depth but could not be 

calibrated due to the total lack of ground control. A further investi­

gatian should be undertaken of the study of coastal processes by 

LANDSAT remote sensing. 
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Three approaches for selection of training sets were tested. The 

non-supervised method was employed without reference to specific ground 

control data and classifies the first level classes with a 79% training
 

set accuracy. Ground control data from black and white airphotos ex­

tracted by point photointerpretation provided a second method for estab­

lishing the training sets. A relatively low training set classification 

accuracy was obtained when using this sampled data in a supervised 

approach due to the misregistration of the ground control data and the 

heterogeneous nature of the training sets selected. Better registration 

and reliable ground control data at third level classes should improve 

the accuracy of this approach. The pseudo-supervised approach provided 

the 	best training sets and the most accurate training set classification
 

results of 89% for first level classes. However, this approach requires 

prior information about the natural grouping of land cover types in order 

to obtain-reasonable subdivisions of the second level classes. Based 

upon these results the best composite approach appears to be: 

1. 	 Use unsupervised or cluster analysis to identify and display 

the natural land cover classes which can be separated in a 

multispectral sense. 

2. 	 Use airphotos to identify the unknown land covers. 
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3. Select specific training sets to represent these desired 

land covers and apply the supervised approach to prepare
 

the final classification map. 

Statistical cleaning was proposed to increase the training set 

accuracy. The tests completed in this study have shown that statis ­

tical cleaning does not significantly improve the actual training set 

accuracy. The best way to improve this accuracy was to reselect 

improved or more representative training sets in an iterative or 

learning procedure. However, a final evaluation of the value of 

statistical cleaning remains to be tested by determining its impact 

upon final map verification accuracy. 

Costs and accuracy are the two major considerations in a land 

use/land cover mapping project. Effort must be made to achieve the 

highest accuracy at the lowest expense. The quality of training sets 

selected will directly affect-the accuracies of the classification map 

when a supervised approach is used. Once the training sets have been 

selected the classification accuracy may be improved by adding 

spectral bands/ratios. Adding these additional variables corre­

spondingly increases the cost of computing The classification map. The 

tests made on three different training sets established that four selected 

MSS bands/ratios provided a comparable accuracy with that obtained 

by all 10 MSS bands/ratios. The ratios of the MSS bands were shown 

to contribute little additional accuracy to the training set classifications 
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performed by stepwise discriminant analysis. Moreover, MSS bands 

5 and 7 provide the same overall training set accuracy as the four 

MSS bands/ratios identified by the stepwise tests. The preliminary 

verification of the final classification map provided further support 

for the selection of MSS bands 5 and 7. Thus, substantial savings 

were achieved by selecting two specific, sensitive spectral bands 

without any significant loss of final classification accuracy. 

The training sets established by the pseudo-supervised approach 

could be applied to the entire country. The "signature" extension 

from the northern image, where the training sites occur, to the 

southern image appears feasible as they were collected only a few 

minutes apart and are adjacent on the same LANDSAT orbit. How­

ever, this supposition should be verified. The land area of Taiwan is 

equivalent to approximately 60 of the 1:25,000 maps analyzed here. 

Preparing similar classifications for these 60 maps for the 17 land 

use/land cover classes using only MSS bands 5 and 7 would cost about 

$15,000 U.S. ($570,000 N.T.) in computer time (Table 4.4). This 

mapping approach could be economically completed for the whole 

island in a short period, yielding timely, up-to-date land use/land 

cover maps and area statistics. 

The final classification map in this study achieved over 89% 

training set accuracy at the first level of land use/land cover using a 

single date LANDSAT image. Significant increase in this classifica­

tion accuracy could be achieved by analyzing LANDSAT imagery 
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taken on different dates during a given growing season and overlaid to 

provide a basis for the simultaneous, multispectral, multidate processing 

already tested by others. Confusions in classes, such as urban lands and 

crops, can be further reduced by increasing the dimensions of spectral 

space by the addition of new spectral bands as is planned by NASA for 

future LANDSAT-type satellites and the thematic mapper satellites. Addi­

tional improvements can also be achieved by the input of overlays of 

cellularized maps, e.g., topography and other ancillary data, into 

the classification procedure. 

Proper display of the final classification map is equally as 

important as the final map accuracy. A better display of the resulting 

classification map can encourage wider usage of the approach and 

product. Computer line printer displays provide a cheap product 

which is compatible with topographic maps and can portray all the 

detailed cell-by-cell distribution of each land use/land cover at 

1:25, 000. Microfilm display of specific theme maps provides a 

better overview of the spatial distribution of particular land use/land 

cover classes. Unfortunately, black and white microfilm or line 

printer displays have insufficient gray levels to effectively visually 

display more than three to five discrete classes. Display of the final 

multiclass maps in color on a computer color film generator can over­

come many of the display handicaps encountered in this study. 
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Additional field verification of the three computed classification 

maps will be undertaken in the near future to obtain map verification 

accuracy in a more absolute sense. It will also provide rhore detailed 

information for further training set selections and the development of 

an improved land use/land cover hierarchy. The correlation between 

multispectral clustering and actual occurrence of land use/land cover 

will also be more accurately established. 



REFERENCES CITED
 

Anderson, J. R. 1971. Land-use Classification Schemes, Photo­
grammetric Engineering, 37(4):379-388. 

Anderson, J. R., E. E. Hardy, and J. T. Roach. 1971. A Land­
use Classification System for Use with Remote Sensor Data, 
U.S. Geological Survey Circular 671, U.S. Geological Survey, 
Washington, D.C., 16 p. 

Anderson, X. R., E. E. Hardy, J. T. Roach, and R. E. Witmer. 
1976. A Land Use and Land Cover Classification System for 
Use with Remote Sensor Data, U.S. Geological Survey Pro­
fessional Paper 964, U.S. Geological Survey, Washington, 
D.C., Z8 p. 

Anuta, P. E. 1973. Geometric Correction of EITS-I Digital 
Multispectral Scanner Data, LARS Information Note 103073, 
Lab. for Appl. of Remote Sensing, W. Lafayette, Ind., Z3 p. 

Burley, T. M. 1961. Land-use or Land Utilization? Prof. Geog­
rapher, 13(6):18-Z0. 

Chang, T. P. 1974. Application of Remote Sensing to Agriculture 
and Forestry, Application of Remote Sensing, MRSO Report, 
No. 140, Mineral Resources and Service Organization, Taipei, 
Rep. of China, pp. 58-65. 

Clawson, Marion, Charles L. Stewart. 1965. Land Use Information. 
A critical survey of U.S. statistics including possibilities for 
greater uniformity, The John Hopkins Press for Resources for 
the Future Inc., Baltimore, Md., 40Z p. 

Duda, R. 0., P. E. Hart. 1973. Pattern Classification and Scene 
Analysis, John Wiley and Sons, New York, 482 p. 

Ells, 	T. D., L. D. Miller, and J. A. Smith. 1972a. User's Manual for 
RECOG (pattern RECOGnition programs). Sci. Series No. 3B, Dept. 
of Watershed Set., Colo. State Univ., Ft. Collins, Colo., 85 p. 

1972b. Progrmer's Manual for RECOG (pattern RECOGnition pro­
grams). Sci. Series No. 3C, Dept. of Watershed Soi., Colo. State 
Univ., Ft. Collins, Colo., 216 p. 



130
 

Hoffer, R. M., et al. 1974. Natural Resource Mapping in Mountainous
 
TerrTin b7yComputer Analysis of ERTS-l Satellite Data. LARS 
Information Note 061575, Lab. for Appl. of Remote Sensing,- W. 
Lafayette, Ind., 124 p. 

LANDSAT Data Users Handbook. 1976. Document No. 765D54258, NASA,
 
Goddard Space Flight Center, Greenbelt, MD., 110 p.
 

Maxwell, E. L. 1974. A Remote Rangeland Analysis System. Report No. 
1885-F, sponsored by U.S.G.S., Contract No. 14-08-0001-13561, 
Dept.-of Earth Resources, Colo. State Univ., Ft. Collins, Colo., 
110 p. 

1976. Multivariate System Analysis of Multispectral Imagery.
 
Photogannetric Engineering and Remote Sensing, 42(9):1173-1186. 

Miller, L. D. 1974. Lee D. Miller presented a two month short course
 
in Taipei on the subject of remote sensing of natural resources
 
for 32 multidisciplined Taiwan resource managers for various 
government agencies under sponsorship of the Joint Conmission on 
Rural Reconstruction and other agencies. 

Miller, L. D., T. P. Chang, and S. Wang. 1974. A series of presenta­
tions on remote sensing were presented in several government 
agencies by Miller, Chang, and Wang shortly after the completion 
of the two month short course in Taipei.-

Miller, L. D. 1975. Internal research project memorandum by Dr. Lee 
D. Miller, Dept. of Civil Engineering, Colo. State Univ., Ft. 
Collins, Colo., l0 p. 

Miller, L. D., E. L. Maxwell, and R. Riggs. 1977. The LMS software 
package was a joint effort of those individuals noted. Final 
documentation will be issued shortly as a detailed technical 
report and user's guide. 

No Author. 1973. BMD Manual. Univ. of California, Los Angeles, 773 p. 

.Pan,K. L. 1974. Application of IR Scanning in Taiwan, Application of 
Remote Sensing. MRSO Report No. 140, Mineral Resources and Service 
Organization, Taipei, Taiwan, Rep. of China, pp. 50-55. 

Pearson, R. L., C. J. Tucker, and-L. D. Miller. 1976. Spectral Mapping
of Shortgrass Prairie Biomass. Photogremetric Engineering and 
Remote Sensing, 42(3):317-323. 

Place, J. L. 1973. Change in Land Use in the Phoenix (1:250,000) Quad­
rangle, Arizona between 1970 and 1972: Successful Use of a Pro­
posed Land Use Classification System. Symposium on Significant 
Results Obtained from the ERTS-1, NASA, Goddard Space Flight Center, 
Greenbelt, MD., Vol. I: Technical Presentation Section B, pp. 899­
906.
 



131
 

Siegal, B. S. and M. J. Abrams. 1976. Geologic Mapping Using LANDSAT 
Data. Photogrammetric Engineering and Remote Sensing, 42(3): 
325-337.
 

Smith, J. A., L. D. Miller, and T. Ells. 1972. Pattern Recognition 
Routines for Graduate Training in the Automatic Analysis of Re­
mote Sensing Imagery-RECOG. Sci. Series No. 3A, Dept. of Water­
shed Sci., Colo. State Univ., Ft. Collins , Colo., 86 p. 

Smith, J. A. 1976. Class notes of Remote Sensing System offered by 
Dr. James A. Smith, spring semester, 1976, at Colo. State Univ. 

Thomson, F. J., J. D. Erickson, R. F. Nalepka, J. D. Weber, and 
J. G. Braithwaite. 1974. Multispectral Scanner Data Applica­
tions Evaluation, NASA JSC-09241, ERIM 102800-41-X, En­
vironmental Research Institute of Michigan, Ann Arbor, 
Michigan, 357 p.
 

Tom, C., L. D. Miller. 1976. Spatial Land-Use Inventory­
Modeling/Denver Metropolitan Area, unsponsored research 
presented at Regional Workshop for Remote Sensing and 
Photogramretry, Colo. State Univ., Ft. Collins, Colo., Sec­
tion Two, March 18, 1976, 10 p. 

Wang, S. 1974. Structural Trend Revealed by ERTS-I Imagery in 
Southern Taiwan. Applications of Remote Sensing, MRSO 
Report, No. 140, Mineral Resrouces and Service Organization, 
Taipei, Rep. of China, pp. 56-57. 

Wang, S. 1976. ERTS-l Satellite Imagery and Its Application in 
Regional Geologic Study of Southwestern Taiwan, Petroleum 
Geology of Taiwan, Chinese Petrol. Co., Taiwan, Rep. of 
China, No. 13, pp. 37-57. 

Yarger, H. L., J. R. McCauley. 1974. Quantitative Water Quality 
with LANDSAT and SKYLAB, 3rd ERTS-I Symposium, Vol. 1, 
Section B, NASA, Goddard Space Flight Center, Greenbelt, Md., 
pp. 1637-1651. 



APPENDIX A 

LANDSAT MAPPING SYSTEM (LMS) 

The LANDSAT Mapping System or LTS is a total rewriting of the RECOG 

or RECOGnition Mapping System (Smith, Miller and Ells, 1972; Ells, Miller 

and Smith, 1972a and 1972b). RECOG was designed principally for training 

purposes and this new LMS system is compatible with it. However, the new 

- design is for specific use with LANDSAT imagery for map and coposite map­

ping system (CMS) overlay, low cost, ease in understanding, flexibility, 

export to other user computers, and high volume production (Miller, Max­

well, and Riggs, 1977).
 

This system consists of four major steps. The first step is to pre­

pare map overlays in a desired scale by inputting LANDSAT CCs. The 

second step is to interleave images from various dates. Multiple ancillary 

or map data planes can also be overlaid on the image cells in this step. 

The third step is to compute and optimize the statistical representation 

of the materials to be mapped. The final step is then to map the distri­

bution of each material sought and display the classification maps as line 

printer and microfilm rectified and scaled maps. 

The computer cost was estimated for one 1:24,000 quadrangle map 

using a CDC 6400 computer and the charge system of Colorado State Univer­

sity. 
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STEP 1, IMAGE PREPARATION/M4P OVERLAY, 

Z\ UP TO 4 TAPES, REPRESENTING n,25 MILE
 

L4 L4 L4 
L4 

1 
E-W SEGMENTS OF A GIVEN LANDSAT IMAGE, 
MAY BE 	INPUT SIMULTANEOUSLY.
 

"CI{VERTS" THE LANDSAT FORMAT TAPE(S) INTO THE 
INTERNAL, SINGLE RECOG TAPE. ONLY THE PORTION

CONERT OF THE IMAGE NEEDED TO OVERLAYTHE SELECTED
 
I MAP IS CONVERTED AND POOLED TOGETHER.
 

--- F-"ROTATE"RESAMPLES THE ORIGINAL IMAGE CELLS TO 
ROTATE 	 REPRESENT ANY SIZE RECTANGULAR OR SQUARE CELL
 

" T 	 AS SELECTED BY THE USER. ADJUSTS FOR ORIGINAL 
IMAGE DISTORTIONS. SCALES IMAGE TO MAP SCALEIo 	 (E.G., 1:24,000).

RnII 
G "FILTERS" THE IMAGE. 

FILTEI 

Rn 

Ld 
"DISPLAYS" 1, 2, 3 ...OR ALL OF THE INDIVIDUAL 

DISPLAY 	 SPECTRAL BANDS INTHE ORIGINAL OR MAP OVERLAY
 
FORMAT. DISPLAY OPTIONS INCLUDE LINEPRINTER
 

I AND MICROFILM GRAYMAPS.
 

"LNSAT" COMPUTER COMPATIBLE TAPE (CCT) AS SUPPLIED BY EROS 
DATA CENTER. 

"RECOG" FORMATTED TAPE (OR DISK) FILE - AS STANDARD FORMAT TAPE 
USED THROUGHOUT THE IMAGE PROCESSING ACTIVITY. (n = 1 to 4)
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STEP 2. INTREAVES IMACS FU VARIOUS DATES, 

I N \ UP TO 	10 RECOG FORMATTED TAPES
Ri I R 	 I OF A VARYING NUMBER OF SPECTRAL 
\ BANDS ARE INPUT. 

r 	 - -

I-----------.. I I EACH RECOG FORMATTED TAPE 
TRIMRIM (OR FILE) TO A SELECTED NUMBER
I T I OF LINES AND COLUMNS DESIGNATED 

J I BY THE USER, USUALLY THOSE 
7NEEDED TO COVER MAP SELECTED. 
/-- LINES AND COLUMNS ARE RENUM­

/ . BERED, BEGINNING ATI1,1. 

I "OfBINES" RECOG FORMATTED DATA FROM THE 1 
TO 10 SEPARATE INPUT TAPES (FILES) INTO
1 COMPOSITE RECOG TAPE (FILE) REPRESENT-
ING A MULTIDATE, MULTISPECTRAL IMAGE. 

I "DISPLAYS" 1, 2, 3 	... OR ALL OF THE INDI-
VIDUAL SPECTRAL BANDS IN COMBINED IMAGE.
 
DISPLAY OPTIONS INCLUDE LINEPRINTER AND
 
MICROFILM GRAYMAPS. 

(i~j are any 
integers)
 

CElULARI mi 
STEP 2. AUXILIARY PROGRAMS. MAPS 	 i 

\k 
"AICILLAf" CREATES RECOG FORMATTED DATA 

FROM CELLULARIZED MAP DATA PLANES IN- iA m 
PUT IN CARD OR MAGNETIC TAPE FORMAT. A CLL-Y' 
MAP CELLS MUST BE THE SAME SIZE OR 
SOME INTEGER MULTIPLE OF THE CELLS ON 
THE RECOG FORMATTED DATA WITH WHICH
 
THE ANCILLARY DATA WILL BE COMBINED. 
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STEP 3. COPtE STATISTICAL "SI94MRES" CF MATERIALS TO BE MAPPED,
 

rzr---- "iDCTS"
THE TRAINING FIELD DATA IDENTI-

FIED BY THE USER (RECTANGLES, IRREGULAR
 
AREAS, AND POINTS) FROM THE RECOG IMAGE


EMACTFORMAT. 

i'1EFO. " THE TRAINING FIELD DATA. 
FORMS RATIOS OF SPECIFIED SPECTRAL BANDS, 
USES ELEVATION OVERLAYS TO ADJUST SPEC-
TRAL BANDS FOR TERRAIN SHADOWING, ETC.~"CONS 	 " OUT TRAINING FIELD DATA POINTS WITH
 

LOW PROBABILITY OF BEING THE SELECTED
 

MATERIAL OR HIGH PROBABILITY OF BEING
 
SOME OTHER MATERIAL, ETC.
 

"GROUPS" TRAINING SETS TOGETHER WHICH WERE
 
p 	 ORIGINALLY SELECTED IN EXTRACT TO RE-


PRESENT SEPARATE MATERIALS BUT ARE NOW
 
GDETERMINED TO BE STATISTICALLY SIMILAR.
 

"CLASSIFIES" THE TRAINING FIELDS USING
 
MAXIMUM-LIKELIHOOD APPROACH (STEPWISE
 

P- DISCRIMINANT ANALYSIS). OTHER DECISION
 
RULES CAN BE SUBSTITUTED HERE.
 

C "OVF YS" ANY VARIABLE
 
OR RESULT IN POINT FILE
 
INTO A RECOG FORMAT FOR
 
DISPLAY AND MAP OVER­

"SIGIAThRES" COMPUTES
 
STATISTICAL REPRESENTA-

TION OF EACH MATERIAL
 
SPECIFIED BY THE USER
R. 	 FOR USE IN MAPPING THESE
 
MATERIALS ON ANY DATA 
TAKEN FROM THE SAME
 

DISPLAY /CELL ORIGINAL IMAGE.
 
VAIAES 
 "PRIT" OR "PtNIES" OUT 

ANY VARIABLE(S) IN THE
 
(i is any 	 POINT FILE FOR FURTHER
 
integer) ANALYSIS INADDITIONAL
 

SIGNATURE PROGRAMS WRITTEN BY THE
 
USER.
TRICES
|! I 


"I i"BY POINT TAPE (OR DISK) FILE. - AN INTERNAL TAPE, DISK, AND/OR
CARD FILE FORMAT WHICH CONTAINS ONLY THE EXTRACTED TRAINING FIELD DATA
 
AND DOES NOT MAINTAIN ITS CORRECT-hiP OVERLAY POSITION.
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STEP 4. MAPS DISTRIBUTION OF EACH MATERIAL, 

"TWISFOM" DATA FOR EACH IMAGE CELL AS 
TpIV} R TESTED AND SELECTED IN STEP 3.
 

R 
i"MQPS" OUT THE DISTRIBUTION OF EACH SURFACE 

MATERIAL SPECIFIED BY THE USER. mp 

"TISPLAYS" THE SELECTED IDENTIFICATION OF
 
EACH IMAGE CELL AND/OR PROBABILITY THAT 
IT IS THE MATERIAL DESIGNATED. DISPLAYI OPTIONS INCLUDE LINEPRINTER AND MICROFILM 
GRAYMAPS AND LINEPRINTER COLOR SYMBOL MAPS. 

(i and k are any integers)
 

STEP 4. AUXILIARY PROGRAM.
 

"ZOOS" OR ENLARGES THE RECOG FOR-
MATTED TAPE (OR FILE) BY ECHOING
 
EACH IMAGE CELL "N"TIMES ON A Z0O
 
LINE AND REPEATING EACH LINE "M" 
TIMES.
 

Rk 
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LANDSAT MAPPING SYSTEM (LMS)
 

ITEM DEVELOPMENT STATUS COST ESTIMATE*
 

CONVERT 100% $5/date
 
ROTATE 100% $7/date
 
FILTER 100% $6/date
 
DISPLAY 100% $1/band/date x 2 bands = $2/date
 

STEP 1 100% $20/date
 

Assuming 3 dates involved gives $20/date x 3 = $60
 

TRIM 100% $3/date
 
COMBINE 100% 3 dates combined = $1
 
DISPLAY 100% $1/band/date x 1 band = $1
 

'ANCILLARY 100% 
 optional
 

STEP 2 '100% 

Assuming 3 dates gives $3/date x 3 dates + $1 + $1 = $11 

EXTRACT 100% $10 (approx.) 
TRANSFORM 100% $5 (approx.) 
CLEAN 100% $2/iteration x 3 iterations : $6 (approx.) 
CLASSIFY 100% $8/iteration x 3 iterations = $24 (approx.) 
SIGNATURES 100% $2 (approx.) 
OVERLAY 90% optional
 
GROUP 90% optional
 
PRINT/PUNCH 95% optional
 

STEP 3 98% 

Based on 2,000 points = $50 (approx.) 

TRANSFORM 0% $5 (approx.)
 
MAP l0O%** based on mapping 30
 

material types $73 (approx.)
 
DISPLAY 100%** black-and-white lineprinter
 

symbol map $1 (approx.)
 
ZOOM 0% optional
 

STEP 4 75% 

Based on 30 classes mapped = $79 (approx.) 

STEP TOTAL* $200 (approx.)
 

* Estimated computer costs for 1 of 1:24,000 quad map with: 

l acre cells
 
3 dates (12 spectral bands)
 
2,000 cells defining training fields
 
30 material types
 
black-and-white lineprinter display.
 

** Extensive modification needed to improve efficiency,
 



APPENDIX B 

ST-EPWISE- DISCRIMINANT ANALYSIS-

Discriminant analysis consists of finding a transform which 

minimizes the ratio of the difference between class multivariate 

means to the class multivariate variances. The algorithm used here 

and entitled CLASSIFY (Appendix A) computes a classification func­

tion for each of the classes by choosing and inputting the independent 

variables, the 10 MSS band/ratio values, in a stepwise manner. The 

variable or band/ratio entered at each step is selected on the basis of 

its F statistics. As each MSS band/ratio is added a classification 

function is computed for each land use/land cover class. The eqna­

class for the ithtion of.the classification function Dki for the k t h 

variable or band/ratio is given by 

r 
Dki = ko + I eki Elkii=l 

thwhere Cko is a constant term for the k class, r is the number of 

input variables (the 10 spectral band and ratios), eki is the 

CLASSIFY is a modified version of BMD07M which is part of 
the UCLA biomedical statistical package available on most major 
computers (BMD Manual, 1973). It has not been modified in statis ­
tical approach but in input, output, and internal control to enable it 
to handle much larger data bases in ways not envisioned by the 
original authors. 
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discriminant coefficient for the kt h group and the i t h band/ratio, and 

Zlki is the measured spectral radiance of the 1th cell of the k t h class 

.th 
for the i variable (10 bands/ratios). 

r 
The coefficient eki is computed from (n-g) M Xkj a..i and 

r _ 

the constant term C is computed from -1 .S; ek Xki where is
ko J=1 ki ki' 

the mean of band/ratio i for class k, and n, numbei of cells in class 

k, and g the total number of land use/land cover classes sought in the 

analyses.
 

The within and total cross-product matricies are expressed as 

below: 

g nk 
W ={wij} ; wi= (Xiknl - Xi1k) (Xjk n - X jk) 

k=l n=l j 

9 nk
 
T = {t j}; tij Z Z (X -i)(Xjk n -x)
k=l n=l j 

where nk is the number of cells in class k. 

i = I2 2, 3. .... p variables (10 spectral band/ratio radiances) 

j = I2 2, 3, ..... p variables (10 spectral band/ratio radiances) 

At each step of the procedure the variables (radiances or ratios) 

are divided into two disjoint sets; those included in the discriminant 

functions and those not included. Assume for simplicity that the first 

r variables are included. The within-group matrix of cross products 
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of deviations (W) and the matrix of cross products of deviations for 

the total samples (T) are partitioned into 

W= 1 W:2] 	 T T
 

where W 1l and T are r by r. 

The elements a.. are derived from matrix A, and the elements 

b.. from matrix B: 

- -l 

Wil Wl W1 

11 12 
A = W21 -Ill Wzz -21 -Ill W1z =W {aijI 

- 1 

B 1 1- {bij 

The optimum input variables (spectral bands/ratios) are chosen 

.
 
on the basis of the largest F-statistic, where, for the entry of the j 

variable. 

a .- b.. n - r -g+ 
F. 	 - ~_____ 

j b.. g -I 

when n is the total number of cells and g is the number of classes. 

The degrees of freedom are g - I and n - r - g + 1. An iterative 

stepwise technique is used to determine the best linear combination 

of spectral bands/ratios (Siegel, 1976). 
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Posterior probability of cell n in group k is computed in step­

wise discriminant analysis by the equation shown below (BMD Manual, 

1973): 

ezp( Dk)
 

-.g
 
1; exp (D
 
k=l
 



APPENDIX C 

TRAINING SET CLASSIFICATION ACCURACY USING THE 

"PSEUDO-SUPERVISED" TRAINING DATA 

Two iterations of statistical cleaning were applied to the 

"pseudo-supervised" training sets. The overall and individual class 

accuracies were interpreted from the 10 band/ratio training set 

accuracy matrix. 85% overall'training set accuracy was achieved 

before any statistical cleaning was applied. The overall apparent 

training set accuracy was increased to 99. 1% after two iterations of' 

statistical cleaning were applied, while the overall actual training 

set accuracy was decreased to 83%. The training set accuracy for 

17 individual classes is shown on the diagonal of the matrix. 



TABLE C-1. 	 A COMPARISON OF THE OPTIMAL FOUR CHANNELS SELECTED FOR THREE SETS OF TRAINING DATA 
IN ALL LEVELS OF CLEANING AND THEIR RESPECTIVE F VALUES TO ENTER. 

Before Cleaning 1st Cleanig 	 2nd Cleaning 3rd Cleaning 
SamplingMethod Optimal4 F to enter Optmal 4 F to enter Optimal4 F to enter Optimal 4 F to enter 

r7 2862.86 7 3541.67 7/4 3762.05 7/4 3680.59 
(5 946.54 4 1422.41 4 1552.12 4 1586.72 ;r 

(1) 	 Unsupervised 316.85 5 468.98 5 512.41 5 507.57 

/4 382.94 5/4 531.06 5/4 469.79 5/4 464.33 

6/4 938.25 7/6 1154.84 7/6 1025.73 6 1039.85 

4 629.70 4 782.61(2) Supervised 	 5 215.75 4 485.98 
6 145.34 5 131.91 5 154.66 6/4 392.92 

1. 4 160.58 5/4 124.18 5/4 175.98 5 197.61 

6/4 1457.20 7/4 1890.42 7/4 2127.08 - ­
5/4 687.32 5/4 940.88 5/4 1044.60 - ­

(3) 	 Pseudo-supervised6 221.10 7 405.37 7 494.32 - ­

4 455.94 4 466.57 4 484.66 - ­



TABLE C-2. 	 TRAINING SET CLASSIFICATION ACCURACY USING THE "PSEUDO-SUPERVISED" TRAINING DATA. 
17 classes showing the apparent increase in training set accuracy in percent using 10 channels (4 LANDSAT MSS 
bands and their 6 ratios). Only the residual training data was classified after the 1st level of statistical cleaning 
had been applied. 

Land Use Class 	 No. of Urban Agricultural Forested Barren Water 
Points 

Code LevelI Code LevelsilandlIl inT.S. 110 120 211 212 221 222 223 311 312 320 410 420 430 510 320 530 540
 

100 Urbantands 110 Commercial 90 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
120 Mixed 126 103 90. 1 0 0 0 0 0 0 0 6 1 0 0 0 0 0 

(211 GramnA 71 0 1 97- 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
200 Agricultural 212 GranB 96 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

lands 221 Crop A 82 0 0 1 0 94 5 0 0 0 0 0 0 0 0 0 0 0 

222 Crop B 	 82 0 0 0 0 6 90 0 0 0 0 0 0 0 0 0 0 0 
223 Crop C 	 59 0 0 0 19 0 80...._ 0 0 0 0 0 0 02 0 0 0 

3311 HardwoodsA 131 0 0 0 0 0 0 0 90 10 0 0 0 0 0 0 0 0 
ands 312 HardwoodsB 211 0 0 0 0 3 0 0 2 95 0 0 6 0 0 0 0 0 

320 Conifers 78 0 0 0 0 0 0 0 4 6 90, 0 0 0 0 0 0 0 
( 410 Gravels 76 0 14 0 0 0 0 0 0 0 0 86: 0 0 0 0 0 0400larren 420 Reclaimed 64 2 0 0 0 0 0 0 0 0 0 0 98 ,0 0 6 0 0 

ld 430 Tidal flat 91 1 0 0 a 0 0 0 0 0 0 0 0 99, 0 0 0 0 

'0 0 0 	 0 100 0 0 0C 10 Shalow seawater 86 0 0 0 0 0 0 0 0 0 
500 Water 520 Medmi seawater 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10O 0 0 

surfaces 530 Deep seawater 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 100 0 
540 Freshwater 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 

Overall accuracy = 94.6% obtained by 1514 correct identifications (diagonal) divided by 1600 residual samples inall training sets. 



TABLE C-3. 	 TRAINING SET CLASSIFICATION ACCURACY USING THE "PSEUDO-SUPERVISED" TRAINING DATA. 
17 classes showing the actual increase in training set accuracy in percent using 10 channels (4 LANDSAT MSS bands 
and their 6 ratios). All the original training data was classified with matrices obtained from the training data which 
remained after the 1st level of statistical cleaning. 

Land Use Class 	 No,of Urban Agricultural Forested Barren Water 
Points 

Code Levell 	 Code LevelsllandlIII in T.S. 110 120 211 212 221 222 223 311 312 320 410 420 430 510 520 530 540 

0 0 0 0 0 0 0 1 0 0 0 0 0 
120 Mixed 157 13 72. 1 0 0 0 0 0 0 0 12 3 0 0 0 0 0 
211 GrainA 82 0 6 86.. 0 1 5 0 0 0 0 2 0 0 0 0 0 0 

0 0 0 0 0 0 0 

100 Urbanlands 	1100 Commercial 100 9 8 0 0 

96 0 0 0 100-. 0 0 0 0 0 020 lanauads 	 212GrainBCrop A 104 0 2 2 75 0 0 1 0 0 0 0 0 0200 Agricultural 	 221 0 20 0 0 

222 CropB 100 0 0 2 0 20 74 0 0 0 4 0 0 0 0 0 0 0 
223  Crop C 75 0 0 0 5 25 0 63 0 7 0 0 0 0 0 0 0 0 47 

SF311 HardwoodA 156 0 0 0 0 4 0 0 76 20 0 0 0 0 0 0 0 0 
lands 312 HardwoodfB 246 0 0 0 2 5 0 0 12 81 . 0 0 0 0 0 0 0 0
 

320 Conifers 93 0 0 0 1 3 1 0 8 12 75 0 0 0 0 0 0 0
 
(410 Gravels 95 0 30 1 0 0 0 0 0 0 0 69 0 0 0 0 0 0
 

400 Barren .	 420 Reclaimed 70 4 4 0 0 0 0 0 0 0 0 1 90 0 0 0 0 0 
430 Tidal flat 96 6 0 0 0 0 0 0 0 0 0 0 0 94, 0 0 0 0 

- 510 Shallow seawater 90 0 0 0 0 0 0 0 0 0 0 0 0 3 97, 0 0 0 
500 Water 20 Medim seawatex 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 0 1 

surfaces 	 S30 Deep seawater 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 .1
 

540 Fresh water 84 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 95
 

Overall accuracy = 83.3% obtained by 1519 correct identifications (diagonal) divided by 1824 total samples in all training sets. 



TABLE C-4. TRAINING SET CLASSIFICATION ACCURACY USING THE "PSEUDO-SUPERVISED" TRAINING DATA. 
17 classes showing the apparent increase in training set accuracy in percent using 10 channels (4 LANDSAT MSS bands 
and their 6 ratios). Only the residual training data was classified after the 2nd level of statistical cleaning had been 
applied. 

Land Use Class No. of Urban Agricultural Forested Barren Water 
Points 

Code Levell Code Levels II andillI in T.S. 110 120 211 212 221 222 223 311 312 320 410 420 430 510 520 530 540 

0 	 0 0 0 0 0 0 0 0 0{110100 	 Urbanlands Commercial 86 100 0 0 0 0 0 0 
120 Mixed 	 115 0 99, 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

211 GrainA 	 69 0 0 100. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

200 	 Agricultural 2 Grain B 96 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 
lands l 221 Crop A 76 0 0 3 0 97 0 	 0 0 0 0 0 0 0 0 0 0 0Z22 	 CropB 74 0 	 0 0 0 3 97 0 0 0 0 0 0 0 0 0 " 0 0 H 

223 Crop C 48 0 0 2 0 '4 0 94 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 00 	 0 0 0 0 M0 1 0 0 0
300 Forested r 311 HardwoodsA 118 0 0 

l312 HardwoodsA 170 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 
a 320 Conifers 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

400 	 Barren r 410 Gravels 67 0 4 0 0 0 0 0 0 0 .0 -96 . 0 0 0 0 0 0 
lands 420 Reclaimed 59 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 

430 Tidal flat 84 0 0 0 0 0 0 0 0 0 0 0 0100 0 0 0 0 

(510 Shallow seawater 84 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 

500 ater 520 Medium seawater 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 
surfaces 530 Deep seawater 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 

540 Fresh water 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0100 

Overall accuracy = 99.1% obtained by 1479 correct identifications (diagonal) divided by 1492 total samples in all training sets. 



TABLE C-5. TRAINING SET CLASSIFICATION ACCURACY USING THE "PSEUDO-SUPERVISED" TRAINING DATA. 
17 classes showing the actual increase in training set accuracy in percent using 10 channels (4 LANDSAT MSS bands 
and their 6 ratios). All the original training, data was classified with matrices obtained from the training data which 
remained after the 2nd level of statistical cleaning. 

Land Use Class No. of Urban Agncultural Forested Barren Water 
Points 

Code Level! Code LevelsIIand lI in T.& 110 120 211 212 221 222 223 311 312 320 410 420 430 510 520 530 540 

SlO Commercial 100 r91 8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0100 urban lands 
120 Mixed 157 73 1 0 0 0 0 0 0 0 13 1 0 0 0 0 012 
211 GrainA 82 0 7 87 0 1 4 0 0 0 0 1 0 0 0 0 0 0 
212 Grain B 96 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 

200Agrieulturai 221 CropA 104 0 0 4 1 74 20 0 0 1 0 0 0 0 0 0 0 0lands i222 Crop B 100 0 0 3 0 21 72 0 0 4 0 0 0 0 0 0 0 0 
223 Crop C 75 0 0 1 5 27 0 60 0 7 0 0 0 0 0 0 0 0 

(311 HardwoodsA 156 0 0 0 0 3 0 0 75 21 0 0 0 0 0 0 0 1 
300lForested 312 HardwoodsfB 246 0 0 0 2 5 0 0 11 82 _ 0 0 0 0 0 0 0la td ..320 Conifers 93 0 0 0 3 *2 0 0 8 12 75, 0 0 0 0 0 0 0 

(410 Gravels 95 0 31 1 0 0 0 0 0 0 0 68 0 0 0 0 0 0 
400 Barren 420 Reclaimed 70 4 4 0 0 0 0 0 0 0 0 0 92 0 0 0 0 0 

ladsTidaltlat 96 6 0 0 0 0 0 0 0 0 0 0 0 94 0 0 0 0 

510 	 Shallow seawater 90 0 0 0 0 0 0 0 0 0 0 0 0 4 96_ 0 0 0 

500 	 Water 520 Medium seawater 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 0 1 
surfaces 530 Deep seawater 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96 4 

Ov540 Fresha water= 84 0 0 0 0 0 0 0 0 5 0 0 0 9 

Overall accuracy = 83.0% obtained by 1514 correct identifications (diagonal) divided by 1824 total samples in all training sets. 
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APPENDIX D 

ACTUAL INCREASE IN TRAINING SET ACCURACY ACHIEVED 

AT EACH LEVEL OF STATISTICAL CLEANING 

Two iterations of statistical cleaning were applied to the 

"pseudo-supervised" training sets. Seventeen classes are repre­

sented based on classification by the 10 MSS bands/ratios. The 

training set accuracy was increased as each band/ratio added. The 

accuracy approaches a limit after three or four bands in urban, 

agricultural and forested lands. However, barren lands and water 

classes, such as gravels and medium seawater, fluctuate widely as 

the first four bands added, then remain stable through 10 bands. 

Statistical cleaning contributes little to the actual training set accu­

racy of most classes except mixed urban. 



149
 

IC 

90­

80­

70­8C 

5.' 

-

0' 

" 
2 

50 

40 

/Commercial 

(Pseudo-Supervised 

Lands 

Training Sets) 

20-

Clean 

0 0 

Ist 0 

2nd 0 

6/4 

7/4 

74 

II I 

!V4 6 

5/4 7 

;4 7 

LANDSAT 

I 

4 

4 

4 

MSS 

5 

5 

5 

Band 

fIII 

6/s 7/r 7/5 

7/5 V6 /s 

V5 7/ 6/5 

or Ratio Added 

7 

6/4 

6/4 

74 

6 

6 



150
 

I00 

90 

70 

aI- 60 -/ 

40- Mixed Urban Lands 

30/ (Pseudo-Supervised Training Sets) 

Clean 
I I 1 

0 0 4 5/4 6 4 5 6/5 7/6 7/5 7 7/4 

Ist 0 / s/4 7 4 5 7/5 7/6 EsYS 4 6 

2nd 0 7/ 4 5€ 7 4 5 7/5 y6 ,/5 6/4 6 

LANDSAT MSS Band' or Ratio Added 



IO51 

100­

90 

so7 

04C 

50) 

Rice A 

.E 0 (Pseudo- Supervised Training Sets) 

75 

o 0 

1st 0 

2ndO0 

6/4 

*7/4 

7/4 

W/4 

5/4 

!V4 

6 

7 

7 

4 

4 

4 

5 

5 

5 

W/5 

VS 

75 

76 

7/G 

's 

V5 

6/S 

6/5 

7 

6/4 

6/4 

7/4 

6 

LANDSAT MSS Band or Ratio Added 



152
 

100
 

so­

80
 

o 60
 
< Rice B
 

5(Pseudo-Supervised Training Sets)
50
 

- 40 

Clean 
fI II f!I 1I 

0 0 6/4 5/4 6 4 5 /5 7/6 /s 7 7/4
 

Ist 0 7/4 /4 7 4 5 7/ 7/ s 4 6
 

2nd 0 7/4 5/4 7 4 5 Vs Vs W 6/4 6
 

LANDSAT MSS Band or Ratio Added
 



153
 

100 

90 

80 

jD 70 / -- *1 

S'50­

30 

2O 

4C Crop 

(Pseudo -Supervised 

A 

Training Sets) 

10-

Clean 

0 0 

Ist 0 

2nid 0 

6/4 

V/4 

7/4 

51,4 6 

5/4 7 

5/4 7 

LANDSAT 

4 

4 

4 

MSS 

5 

5 

5 

BAnd 

EV5 Tt Y/5 

0s 76 e/ 

" VSi/6/5l 

or Ratio Added 

7 

/ 

6/4 

4 

6 

6 



154
 

100­

70­80 

7C­

"-- 70 

w so 
-.- -

o 50 ' 

,.]/ 

Crop 

( Pseudo-Supervised 

B 

Training --Sets)} 

20 ! 

40 4 

Clean 

0 0 

Ist 0 

2nd 0 

V4 

i/4 

3/4 

5/4 

Y/4 

tY4 

LANDSAT 

6 4 

7 4 

7 4 

MSS 

5 

5 

5 

Bond 

6/5 /6 z/5 

7/5 7A6 6/5 

-V5 7/6 VS 

or Ratio Added 

7 

6/4 

IY4 

V/4 

6 

6' 



155
 

I00 

90 

80 

so 
70­

2 0 - -- - -­

- 50' 

.E 40 

(Pseudo-

Crop 

Supervised 

C 

Training Sets) 

Clean 

0 0 

1st 0 

2nd 0 

I 

6/4 

34 

7/4 

/4 

5/ 

!/4 

6 

7 

7 

I 

4 

4 

4 

5 

5 

5 

6/s 

/s 

"V5 

7/6 

78 

7/s 

7/5 

6/5 

6/ 

7 

6/4 

6/4 

7/4 

6 

6 

LANDSAT MSS Band or Ratio Added 



156
 

100­

90 

80
 

&- 70 

U/ 
AI-Hardwoods 


10 Pseudo- Supervised Training Sets)
 
0 

20O
 

Clan
 

0 0 6l,4 5/4 6 4 5 6/5 7/6 7/5 7 7/4 

Isf 0 7/4 5/4 7 4 5 VS 7/6 6/5 6/4 6 

2nid 0 7/4 5/4 7' 4 5 715 7/6 f/5 6/4 

LANDSAT MSS Bnd or Rtio Added 



157 

100 

90 

80 

70-

O 60 

50 

.S Hardwoods B 
40 (Pseudo-Supervised Training Sets) 

C 
-06 

20­

10 

Ctean I I 

0 0L 
6/4

__L J_ s4. tJ .. 6_ ._ 4_ 5_ _ _ 5J - "Vs 7/5L _ 7 .JJ 7/4 

Ist 0 7/4 5/4 7 4 5 Vs 's /s 4 6 

2nd 0 7/4 S/4 7 4 5 7/5 lIA s/s 6/4 6 

LANDSAT MSS Bond or Ratio Added 



158 

IOO 

90 

go 

80­

a- 70­

= 
0 

60 

Q 

" 
I­

50 

40 (Pseudo-

Conifers 

Supervised Training Sets) 

o 30 

20 

Clean 

0 0 

Ist 0 

2nd 0 

6/4 

7/4 

7/4 

5/4 6 

!V4 7 

5/4 7 

LANDSAT 

4 

4 

4 

MSS 

5 

5 

5 

Band 

6/5 7/6 7/S 

Z/5 7/6 g/s 

/s 7/6 6/5 

or Ratio Added 

7 

6/4 

6/4 

7/4 

6 

6 



159 

(00 

90­

80/ 

U) 
C 

,o, 

3 
50 

50 

Gravels 

o 

2C 

0 

Clean 

0 0 

Ist 0 

2nd 0 

I 

6/4 

74 

7/4 

I IT 

5/4 6 4 5 

V/4 7 4 5 

5/4 7 4 5 

LANDSAT MSS Band or 

6s 

V5 

7/5 

Ratio 

V/S 7/5 

T/s 6/5 

76 s/s 

Added 

I 

7 

6/4 

6/4 

,I 

7/4 

6 

6 



160
 

I00,
 

70O 

0 80 

50 

.S 

C 

10-

Reclaimed Lands 

20-

Clean 

0 0 

Ist 0 

2nd 0 

6/4 

7/4 

7/4 

5/4 6 4 

5/4 7 4 

5/4 7 4 

LANDSAT MSS 

5 

5 

5 

Bond or 

6/5 7/6 7/5 

7/5 /r 4/5 

7/5 -6 6/5 

Ratio Added 

7 

r14 

6/4 

7/4 

6 

6 



161 

too­

9,, 

80 

C 
70 

a 

o 60 

50 Tidal Flat 

att 
40­

20 

10 

C lean 
I I I I1 

0 0 6/4 5/4 6 4 5 /s 7 7/5 7 7/4 

Ist 0 V4 5/4 7 4 5 7/5 7/6 6/5 6/4 6 

2nd 0 7/4 5/4 7 4 5 i/s 7/6 6/ 6/4 6 

LANDSAT MSS Band or Ratio Added 



162
 

500
 

}'°/
 

'Nt 
50' Shallow Seawater 

, 3
S(Pseudo- Supervised Training Sets) 

10
 

Clean
 

0 0 6/4 5/4 6 4 5 6/5 7/6 V5s 7 /4
 
t -- I-------I---I.__l-1- _ 1 __.____is( 5/4Pud/4 4 7/S 6
7 upervise5 


2nd 0 7/4 W4 7 4 5 1/ 7/s ys r14 6
 

LANDSAT MS.S Bond or Ratio Added 



163 

I00 --­

90
 

80 

CC 

70 

C 
0cm0 

40 / Medium Seawater 

(Pseudo- Supervised Training Sets) 

Mlan 

o 0 6/4 !V4 6 4 5 6/5 7/1 V/5 7 7/4 

IstO0 7/4 V/4 7 4 5 7/5 Zt V5s 6A 6 

2nd 0 7/4 5/4 7 4 5 7/5 7/G 4Vs 6/4 6 

LANDSAT MSS Band or Ratio Added 



164
 

I00­

90 

so 

I 

80I 

>.70­

a ¢ / 

U3 

0 40 
C/ 

o 

Deep 

(Pseudo-Supervised 

Seawater 

Training Sets) 

Clean 

0 0 

Ist 0 

2nd 0 

,I 

6/4 

7/4 

7/4 

5/4 6 

L/4 7 

5/4 7 

LANDSAT 

I 

4 

4 

4 

MSS 

I 

5 

5 

5 

Band or 

! 

6s 7/6 T/5 

7/s 7/l /s 

7/5 7/9 6/s 

Ratio Added 

I 

7 

64 

4 

7/4 

6 

6 



O­

so-5 

90 

< 6 

cD 

ci 50-

Fresh 

40-(Pseudo-Supervised 

Water 

Training Sets) 

30 

20-

Clean 

0 0 

1st 0 

2nd 0 

6/4 

7/4 

7/4 

5/4 6 

5/4 7 

5/4 7 

LAWDSAT 

4 

4 

4 

MSS 

5 

5 

5 

Band 

6s5 7/6 

7/5 7/G 

7/5 7/40 

or Ratio 

7/5 

6/5 

/5 

Added 

7 

/4 

6/4 

7/4 

6 

6 



APPENDIX E 

MAXIMUM LIKELIHOOD CLASSIFIER 

The maximum likelihood ratioing technique (GLIKE in 0SU' s 

RECOG) allows a different covariance matrix for each class. We 

assume our groups are multivariate normally distributed populations 

represented by data samples. Each population may be described 

mathematically by its mean vector, IL, and its covariance matrix, Z 

(Suppose we only have three variates, the populations can be shown 

pictorially in Fig. E -1). The hyper-ellipsoid (i class, defined by 

Li and Zi) which each data sample belongs to, is best defined by the 

Gaussian probability density function, expressed in matrix form as 

P(X C~h1/2 1 (X j.LT -1 
p~x C( ) (X. -u-i

I ( 2	 r)NI II 1/ [exp - _i - ( 

where 	 X is the observation vector, 

N is the vector dimension size, 

H. is the mean vector for class i, and 

Z. is the covariance matrix for class i. 
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Defining:
 

d(X2C.) = InP(XLCi)
 

:-N/Z In2-r - 1/2 I~ 1/2( )
T - (X__i) 

then the decision function is: 

if d(X IA) > d(X I B) for allA # B 

X is identified as belonging to class A. 

In GLIKE, we also can set a minimum acceptance threshold for 

computed P(X ICi) values (Smith, Miller and Ells, 1972). 

However, the maximum likelihood ratio approach cannot per­

form if the covariance matrices are singular because the probability 

of a data point belonging to a class cannot be computed if E is not 

existed. 
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z 

-	 -Mean Vector for 

Fig. E-1. 	 ILLUSTRATING DATA GROUPS IN THREE DIMENSIONAL 
SPACE. Ellipsoids represent the covariance boundaries 
(from Maxwell, 1974). 

The decision to classify a sample point x. as class A rather 
3 

than class B is made according to the equation 

P(x. IA)
 
if I > I for A j B. Decide A.


P(xj [B) -

For simplicity, we can use an exponent test obtained by taking 

the natural logarithm. 


