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ABSTRACT
 

This repoxt contains information -prepared 'by The MITRE .Corporarion 
,under.JetPropulsion Laboratory subcontract. Its content is not 
necessarily -endorsed by the Jet Propulsion ,aboratory, Calilornia 
Institute of 'Technology, or the National Aeronaltics and Space 
Adifrnistration.
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EXECUTIVE SUMMARY
 

In 1974, The MITRE Corporation purchased a one-kilowatt photo­

voltaic array consisting of twenty 50-watt panels. During and after
 

the first year of exposure to the environment, a variety of changes
 

were noticed in many of the panels. MITRE, funded by the Jet Pro­

pulsion Laboratory, undertook to investigate these apparently degraded
 

panels during the first quarter of 1976. A data acquisition system was
 

designed and fabricated to make in-situ performance measurements of
 

the panels and their constituent modules.
 

Current-voltage (I-V) curves measured in this program show that
 

most of the panels now have lower power output and lower fill factors
 

than their original ratings. Visual observations show significant
 

deterioration of the packaging materials.
 

The Data Acquisition System
 

A system was designed and installed at MITRE to make in situ
 

analog recordings of current and voltage measurements of the individual
 

solar panels. It was felt that this approach would provide insight
 

into the problem of making performance measurements in larger scale
 

ERDA pilot and demonstration systems to be built in the future.
 

Table S-I lists the data items measured for each of the 170
 

modules and panels in the array. Figure S-i shows a functional block
 

diagram of the system as configured. Figure S-2 shows a plot of
 

available test time throughout the year. A minimum "window" of 1.5
 

hours exists if a minimum insolation level of 85 mW/cm
2 (200mW/cm2
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TABLE S-1
 
DATAITEMS
 

1. I-V Characteristic Curve
 

2. Solar Panel/Module Short Circuit Current
 

3. Solar Panel/Module Open Circuit Voltage
 

4. Panel Temperature
 

5. Standard Solar Cell Plot
 

6. Standard Solar Cell Short Circuit Currents (3)
 

7. Standard Solar Cell Temperature
 

8. Diffuse Illumination Value
 

9. Time of Day
 

ES-2
 



HARD WIRED
 
THIS END 	 3 CABLES
 
(WEATHER SEAL) 	 CONNECTOR CBLE s

SOLAR JUNCTIONSOLARPANEL 54 CONDUCTOR ii6j62(y=/ conductors) 
PANEL(S) BOX(ES) 71T 

CABETE TER MXX 	& JUNCTION
 
PER PANEL SEAL CABINETj 


TEMPERATURE 

POWER SUPPLY 	 LOGLIE
LONG LINESAPPROX. 250'
INT FROM 	 STANDARD TO BASEMENT 

ROOFTOP 	 EXISTING EQUIPMENT SOLAR CELL
 
CABINETS 
 INPUTS
 

BASEMENT X-Y" _- - -" 
LABORATORY RECORDER " RECORDER 

A CONTROL 

X-Y E: 
UNIT 

DATA SWITCHING 

RECORDER UNIT 

B PANEL SELECT & 
SWEEP CONTROL N-

UNIT 

ANCILLARY POWER SUPPLY 
INSTRUMENTATION UNIT 
DVM'S ETC. 

L DATA ACQUISITION CONTROL PANEL 

DVM CONTROL UNIT 

FIGURE S-1 
FUNCTIONAL BLOCK DIAGRAM 

SOLAR PANEL DATA ACQUISITION SYSTEM 



4,.0 

So­
so 

IN .75 

3.2 .80 

to 

z 2 . 4 

. 

0.00 

0 .0 1 1 1 1 1 1 1 1 1, . I I I I 
0. 40% 80. 120. 160. 200. 240. 28K. 320. 360. 400. 

MARCH 21 
DAYS FROM VERNAL EQUINOX 

FiGURE'S-2 
MITRE SOLAR PANEL TEST Wl NDOWVS. TIME. OF YEAR, 



taken as the maximum at solar noon) is required for accurate measurements.
 

For the analog recording method chosen, five clear days were required
 

to perform all the planned measurements.
 

An error analysis was made for the system and showed a maximum
 

error range of +3.5 to -4.7 percent for absolute determination of the
 

maximum power value of a solar panel or module.
 

Test Plan 

A module or panel to be measured was selected in the laboratory 

and the resulting signals sent to the Multiplexor (MUIX) on the roof.
 

The MUX switched to the appropriate panel and transmitted the neces­

sary signals to the laboratory for recording. Illumination was
 

measured by pyranometer and standard solar cells in an assembly
 

mounted on the roof in proximity to the array. This assembly was
 

installed on the morning of the test day and removed when the test window
 

elapsed.
 

The condition of most of the MITRE solar panels at the outset of
 

the program was such that the usual techniques for I-V curve manipulation
 

were not applicable. Deterioration of the panels led to very poor
 

fill factors such that the measured I-V curves were far below normal.
 

As a result, a qualitative approach to data analysis was adopted.
 

The parameter of interest was the curve shape in the vicinity of the
 

maximum power (Pmax) point of the I-V characteristic. By overlaying
 

I-V curves taken from the same panel at different times, a qualitative
 

understanding of changes is obtained.
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Test Results
 

Table S-2 presents a comparison of original panel ratings and
 

corrected data measured to date in this program. Because of the poor
 

curve shape, accurate corrections cannot be made. However, the values
 

In 	the table were derived based upon only small differences between
 

the standard 100 mW/cm2 and the observed conditions. Temperature
 

corrections at the Pmax point were made on the basis of 0.5 percent
 

per degree C. which should provide a conservative estimate.
 

* 	The power values are lower than those originally specified
 

by the manufacturer, with the amount of change depending
 

upon the specific manufacturer. This appears to represent
 

a systematic difference and could be due to illumination
 

measurement technique; to the temperature measurement
 

technique or to the manufacturers quoting nominal data
 

rather than measured power levels. It could also indicate
 

some change in all panels due to weathering. Only further
 

investigation can establish the nature of the difference.
 

* 	The difference between original specification and results
 

obtained now is much larger for the Solarex panels than
 

for any of the others and is considerably beyond anything
 

that can be accounted for by variations in illumination or
 

temperature effects. One must then conclude that these
 

panels have exhibited substantial electrical performance
 

degradation since their installation.
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TABLE S-2 

SOLAR PANEL POWER VALUES 

Manufacturer's 

Manufacturer 
Rating at 28C, 
100 mW/cm2 

Solarex 50 watts 3/18/74 

Solar Power 52.5 watts 
12/29/75 

Spectrolab 50 watts 
1/25/74 

OCLI 46.2 watts 
1/23/74 

Corrected, 
Measured Value 
28-C, 100 mW/cm2 Endapsulation 

31 watts (average 
of 11 panels) 

Silicone 

38 watts (single 
panel) 

Silicone 

38 watts (single 
panel) 

Lexan/ 
silicone 

45 watts 
panel) 

(single Glass 
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e 	The results on the Solar Power panel are surprising, since
 
this panel had only been installed about two months prior
 

to measurement. The curve shape appears satisfactory, even
 
though the maximum power is reduced. An I-V curve for this
 
panel is shown in Figure S-3. The discontinuities in the
 
curve result from inclusion of bypass diodes within the
 
panel to preclude module voltage reversal during test.
 

a 	In general, the terrestrial cell panels which have been
 
exposed to the weather for about two years show significantly
 
lower fill factors than would be-desirable. The panels
 
with spacecraft-type cells show fill-factors which one
 
would expect normally and are consistent with past measure­
ments. Figure S-4 shows a typical I-V curve exhibiting a
 
fill factor of 0.409.
 

* 	 Sweeping an I-V curve of a full panel containing mismatched 
modules has caused the lower current modules to reverse
 
in voltage. Figure S-5 shows two such curves for a pair
 
of series-connected modules. Series-parallel interconnection
 
of a number of modules would, of course, tend to reduce the
 
voltage reversal problem as would inclusion of bypass diodes.
 
However, the curve shape and short-circuit current variabilities
 
still exist.
 

Conclusions on the Test Methods
 

" 	The analog recording approach taken in this program yielded
 
adequate results for comparative data but not necessarily
 
for absolute data.
 

* 	 At the onset of this program, most of the solar panels in 
the MITRE- array were apparently degraded beyond the point 
where conventional I-V curve shifting techniques are 
applicable. This necessitated a qualitative rather than 
quantitative assessment of performance changes over time. 
As far as can be determined, techniques for I-V curve shift­
ing of poor solar panel characteristics have never been 
developed. Hopefully, the quality levels of products to 
come will eliminate the need for such tools in the future. 

* 	Relative optical/spectral performance of illumination
 
measurement standards was of concern here. Of the standards
 
considered, the broadband, precision pyranometer was con­
cluded to be the best available at this time.
 

* 	Visual inspection may be an effective adjunct to electrical
 
performance measurement of terrestrial solar arrays. Photo­
graphic records offer advantages of comprehensive, permanent
 
records which will not suffer inaccuracy due to inspector
 
fatigue or discomfort.
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Conclusions Concerning the Solar Panels
 

* 	Solar panels of "terrestrial" cell composition have displayed
 
very low-fill factors of the order of 0.5 and less. Earlier
 
measurements indicate that these fill factors have undergone
 
changes over the two-year period of environmental exposure.
 
Panels of "spacecraft type" cells do not appear to have
 
undergone any significant changes in this regard.
 

* 	Extensive packaging deterioration has occurred which may be
 
responsible for the performance changes noted above. This
 
deterioration is evidenced by delamination, entrapped
 
moisture, corrosion of cell contacts, and apparent erosion
 
of potting material surfaces. In addition, glass-epoxy
 
substrates have begun to degrade. The epoxy binder at the
 
surface of the material has been leached away by the weather
 
and glass fibers are unravelling due to constant exposure
 
to wind.
 

* 	Large variability in curve shape and in short circuit currents
 
has been observed among most identically-rated panels made by
 
the same manufacturer, as well as among similarly-rated
 
panels made by different manufacturers. Economics may not
 
permit more careful selection of panels and modules or
 
application of diode bypass techniques for series electrical
 
operation. However, this should be of concern to those
 
who wish to design large arrays in the future.
 

* 	In addition, if such variability exists at the module level,
 
greater variability might exist among cells within modules.
 
This has serious ramifications in reliability considerations
 
and in array economics in that module lifetime may be less
 
than planned due-to accompanying stresses.
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1.0 INTRODUCTION
 

In 1974, the MITRE Corporation purchased, and installed on the
 

roof of its building in McLean, Virginia, as part of an IR&D program,
 

a 1-kilowatt peak photovoltaic array consisting of 20, 50--watt panels.
 

These solar panels represented the state-of-the-art in terrestrial
 

photovoltaics at the time. The primary purpose for establishing
 

the MITRE photovoltaic array was to build a tool with which problems
 

of designing, integrating, and operating photovoltaic power systems
 

for terrestrial applications could be studied.
 

In view of the intended thrust of this program, little attention
 

was paid initially to monitoring the array itself. During and after
 

the first year of exposure to the environment, a variety of changes
 

were noticed. Over four percent of the 136 modules of one type of
 

panel had become open circuited, there were apparent decreases in
 

short circuit currents, and fill factors for some panels and modules
 

had fallen as low as 0.46.
 

In August of 1975, a proposal was made to ERDA through the
 

Jet Propulsion Laboratories (JPL) to make a more thorough investigation
 

of these apparently-degraded panels. MITRE provided a sample of a
 

degraded module to JPL for detailed analysis. Under contract to JPL,
 

MITRE proceeded to fabricate and install a data acquisition system
 

to provide more accurate and consistent measurements of the 170 panels
 

and modules in the array. An additional purpose for this program was
 

to evolve some techniques for in situ measurement of photovoltaic
 

panels of sufficient quality to permit evaluation of electrical
 

performance over extended periods of several years or more.
 

The fill factor is defined as the maximum panel output power divided
 
by theproduct of open circuit voltage and short circuit current from
 
the panel.
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2.0 	 THE DATA ACQUISITION SYSTEM
 

2.1 	Measurement Considerations
 

Because of the large number of measurements to be made and the
 

desire on the part of MITRE to continue operating its Photovoltaic
 

Demonstration System, it was concluded that all performance measurements
 

would be made in situ. This approach would also provide some insight
 

into the problems and technology involved in making iUnsit measurements
 

which we feel is or will be of interest to the ERDA Photovoltaic Program
 

as larger scale demonstration and testing programs get under way in the
 

coming months and years.
 

The MITRE Solar Array consists of 20 panels from four manufacturers.
 

Seventeen panels consist of eight modules of solar cells and one panel
 

from each of three manufacturers has a variety of module structures. For
 

uniformity, it was decided to provide facilities for measurement of eight
 

modules per panel plus measurement of the full panel, although some
 

panels had fewer than eight modules. This, then, resulted in a total
 

of 170 I-V characteristics to be measured three or four times in the
 

course of the year.
 

In order to determine the stability of performance of a photovoltaic
 

array it is necessary to measure the current-voltage (I-V) characteristics
 

of the array at several points over time and to carefully search these
 

data for changes in electrical performance. Typically, solar panel
 

I-V characteristics are measured under conditions of temperature and
 

illumination which are as close to "standard" as possible. The
 

resulting data are manipulated or "corrected" to bring them to standard,
 

and comparisons, are then made on a uniform basis. Data corrections
 

must be as small as possible to minimize error in the results, since
 

changes of no more than two or three percent in these short term data
 

would indicate significant degradation in the solar array, over its
 

lifetime.
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Standard conditions of temperature and illumination for
 

measurement of terrestrial photovoltaic arrays are generally
 

accepted to be 28 C-+ 2°C and 100 mw/cm, respectively. Thesq are
 

most likely the conditions under which solar panel nameplate ratings
 

are obtainable. They were adopted as the standard conditions for
 

this program.
 

Measurements in the terrestrial environment are difficult to
 

make at best due to ever changing weather conditions. Discussions
 

with the Smithsonian Radiation Biology Laboratory, located only
 

a few miles from MITRE, suggest that to get five good, clear days
 

in our area will require a total time of 10 days at a minimum and
 

30-40 days, average. This depends, of course,upon the time of year.
 

In addition, there is no consistency in the Washington, D. C., area
 

from year-to-year. Indeed, five consecutive clear days are very-rate.
 

On those rare clear days, it is desirable to make our I-V
 

measurements as close to solar noon as possible and under conditions
 

where clouds and haze offer minimal interference. An analysis was made
 

to attempt to estimate the amount of testing time available in any
 

single clear day. Neglecting diffuse radiation (which could amount
 

to 20 percent additional illumination based upon measurements
 

to date at MITRE) and considering only the direct solar radiation
 

component, the equivalent, normally incident illumination on the
 

MITRE solar panels was determined geometrically. Figure 1 shows
 

the derivation of the angle between the panel normal and the solar
 

vector. The normalized illumination intensity is given as the
 

ratio of intensity on the panel surface-to the intensity on a
 

surface normally oriented to the solar vector and is equal to
 

the cosine of 6. Assuming the solar vector intensity is 100 mw/cm
2
 

on a "good" day, the correction required in panel illumination is
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SOLAR VECTOR-PANEL ANGLE DETERMINATION
 



1./Cose to bring the measured panel data to standard illumination 

conditions at solar noon. 

At a time of day other than solar noon, an additional correction
 

is required. The Earth's rotation causes the solar panel to rotate at
 

a rate and through an angle identical with the Earth's. Figure 2
 

shows the derivation of illumination intensity variation due to this
 

factor. The illumination intensity at solar noon was stated above as,
 

the cosine of the sun-panel angle at solar noon multiplied by So,
 

the value of the solar vector. Making that substitution yields the
 

expression for illumination intensity at a panel surface on any day
 

at any time about solar noon as
 

S = So Cos [L-F23.5o0Sinl ( n) Gas 00Sn360 t) 

The above expression was evaluated to determine the time-periods
 

about solar noon which would provide illumination intensities normal
 

to the MITRE solar panels in excess of 75, 80, 85, 90 and 95 percent
 

of the value of the solar vector. This period or Test Window is
 

plotted in Figure 3.
 

From Figure 3 it is seen that the test windo- for 90 percent 

illumination drops to zero near day 250 and remains at zero until day 

298 while the 85 percent illumination criterion yields at least an 

hour and a half at any time of year. 

If the Solar Energy Laboratory computer was to be employed to
 

measure solar panel I-V curves, all 170 sets of data could be measured
 

in less than 30 minutes. However, the level of effort required to
 

implement a computerized data acquisition system was found to be in
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excess of both the MITRE Solar Laboratory and the JPL Program
 

budgets at the time.
 

It would be desirable to make all 170 measurements in one
 

test window to avoid variations in illumination, weather, and panel
 

temperatures which might occur over a period of days or weeks.
 

However, this does not seem possible without the computer or a
 

fully automated system. The estimated time for measuring an
 

I-V curve of a solar panel or module using an X-Y recorder is
 

2.5 minutes. This estimate is made assuming only a few seconds
 

for switching instrumentation from panel to -panel 'and for the actual
 

I-V measurement. The bulk of the estimated time will be expended
 

in changing recorder paper, zeroing the recorder pen(s), calibrating
 

scales and measuring and recording data in support of the I-V
 

curve. This corresponds with a total testing time of 7.1 hours
 

for the 170 measurements. 'This, of course, does not include
 

allowances for passing clouds and operator change-over. For a
 

test window of 1.5 hours, a total of five days of clear weather
 

would be required to perform the 170 sets of measurements. Additionally,
 

manual data collection tasks would, of course, lengthen the entire
 

procedure.
 

2.2 Data Types and Measurement Standards
 

Table I lists the data items to be recorded. The primary data
 

item is the solar panel or module I-V characteristic curve. The
 

remainder of the items are required to support analysis of the I-V
 

characteristic.
 



TABLE I 
DATAITEMS
 

1. I-V Characteristic Curve
 

2. Solar Panel/Module Short Circuit Current
 

3. Solar Panel/Module Open Circuit Voltage
 

4. Panel Temperature
 

5. Standard Solar Cell Plot
 

6. Standard Solar Cell Short Circuit Currents (3)
 

7. Standard Solar Cell Temperature
 

8. Diffuse Illumination Value
 

9. Time of Day
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The panel/module short circuit current and open circuit voltage
 

are measured with a digital voltmeter to provide a more accurate and
 

precise determination of these values than can be obtained with the
 

X-Y recorders alone. Although the recorders will provide curve shape
 

information, the DVM readings, together with the I-V plot, will enable
 

more accurate determination of solar panel/module output power at any
 

point on its I-V characteristic.
 

Solar panel temperature is necessary for purposes of
 

shifting the resulting I-V characteristics to standard conditions of
 

temperature and illumination in order to make the desired performance
 

comparisons.
 

Standard solar cell and pyranometer data are commonly taken with
 

I-V characteristics to provide a measure of illumination intensity.
 

This is done here as well using three JPL Balloon Calibrated Standards
 

and an Eppley Precision Pyranometer. We have introduced an additional
 

measurement method. The pyranometer output-is recorded in real time
 

together with the I-V characteristic in order to provide for corrections
 

of the characteristic for variations of illumination intensity which
 

could occur during the I-V sweep. In order to expedite measurement
 

of the large number of I-V characteristics required, it may be necessary
 

to attempt data measurement on partially cloudy or hazy days or on
 

days when high altitude winds and turbulence create rapidly varying
 

illumination or spectral content levels at the solar panel locations.
 

In cases such as this, we have observed on numerous occasions as much
 

as 10-50 percent variation in illumination intensity in just a few
 

seconds, the time required for an I-V sweep. These variations have
 

occurred suddenly after many minutes of stable illumination levels
 

(i.e - we equate stability with less than 0.5 percent of full scale
 

variation in pyranometer output). These changes have been observed
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with a pyranometer and digital voltmeter as well as a chart recorder
 

and appear to be smooth in transition without any jumps or
 

discontinuities in the time scale used.
 

The pyranometer plot is made on the same graph sheet as the
 

I-V characteristic using a two-pen X-Y plotter. In this way, the
 

pyranometer output is plotted directly against panel or module
 

voltage. Panel/module current and pyranometer/illumination intensity
 

data pairs may then be read directly from a single graph for the
 

correction process.
 

Standard cell temperature is measured and recorded with each
 

set of measurements to provide a basis for correcting for standard
 

cell temperature coefficients. This is necessary due to lack at
 

this time of control means for standard cell temperature. Pyranometer
 

temperature is considered to be the same as the standard cell
 

temperature due to their physical proximity.
 

The pyranometer and the standard cells were not permanently
 

installed on the roof in order to protect them (the cells) from
 

adverse weather. They were mounted on the roof in the morning of
 

the test day and removed after the test window had elapsed.
 

Selection of the JPL standard cells for illumination
 

measurements was made primarily because these cells have become
 

well established in the spacecraft industry as accurate, stable
 

standards. A terrestrial standard cell was received from NASA-LERC
 

but due to collimation requirements was not well suited for inclusion
 

as a test standard in the present facility.
 



A point of concern which remains unresolved is the relative
 

optical/spectral performance of the standards and the test panels.
 

This yields some uncertainty as to the effects of shifting atmospheric
 

conditions upon panel and standard cell indications. Although in
 

theory a test could be devised to determine such relative behavior,
 

it does not seem likely that the wide variety of test articles
 

could be adequately matched or otherwise readily characterized.
 

Furthermore, it is not at all certain that a match or characterization
 

could be assumed constant over the environmental extremes to be
 

encountered and for the duration of the test. A possible resolution
 

of the concern about spectral response might be the inclusion of
 

some sort of spectral recording device within the instrumentation
 

complement in the future in order to add this additional dimension
 

to these resulting data. Measurements are-made of total and diffuse
 

components of illumination which may provide at least a qualitative
 

insight into spectral content and its effects. This is done
 

using the Precision Pyranometer and a motor-driven shadow mask.
 

The mask is positioned at the beginning of the test window and is
 

repositioned as necessary throughout the test period.
 

2.3 System Configuration
 

The system configuration devised was one which would bring us
 

as close to a fully automated system as possible without making
 

the substantial initial expenditure of funds required to implement
 

computer control. A functional block diagram is shown in Figure 4-.
 

Several major decisions were made leading to this particular
 

configuration: (1)All panel measurements were 4 terminal measure­

ments with terminals located physically as close to the solar
 

panels as possible. (2) Transducer scale fahtors were as large as
 

practical to minimize the need for amplification and its
 

attendant problems between the transducer and the recorders,. (3). If
 

possible, all measurement operations were performed in the
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sheltered laboratory to avoid the need for deploying laboratory
 

personnel and sensitive recording equipment to the roof in the
 

cold winter weather. (4) The resulting system must be expandable to
 

handle additional solar panels and must be adaptable to computer control.
 

In addition to serving as test articles, the solar panels must
 

also be a part of the MITRE Photovoltaics Demonstration System when
 

not under test. Therefore, test instrumentation which by our own
 

ground rules may not be applied and removed for each test must offer
 

negligible interference with the normal functioning of the panels.
 

Parameters to be measured include panel and module voltages,
 

currents, and temperature. Voltage measurements with a high impedance
 

detector offer no interference with normal functions which is also
 

the case for temperature measurement by thermistor. Current
 

measurements on the other hand could significantly interfere with the
 

panel's normal function due to insertion effects of current measuring
 

apparatus. Initially, magnetic current sensing devices offering no
 

insertion effects for normal panel operation were considered. Based
 

upon comparisons of accuracy, cost and size, these were dropped from
 

consideration in favor of manganin meter shunts. Measurements of
 

panel and module currents using meter shunts and their resulting low
 

signal voltages were made over the 250 cable-feet between the roof and
 

the basement laboratory to determine what,if any,noise problems might
 

exist. DC voltages of one millivolt level were transmitted through
 

the roof-lab cables with no apparent difficulties providing normal
 

shielding precautions were taken.
 

Table II presents a comparison of parameters for these two
 

techniques. The shunt approach will result in an addition of 0.005
 

ohms equivalent series resistance to an eight module panel with the
 

shunts left in the circuit during normal operation. This is
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TABLE 11 
CURRENT SENSOR COMPARISON 

PARANTER MANCANIN METER SHUNT MAGNETIC CURRENT SENSOR 
*I 

1. Accuracy 	 initial accuracy plus
 
temperature effects for
 
range of -200C to +500 C 0.3%
 

2. 	Cost: in the quantity required,
 
150 current measurement
 
points $6-$7 ea. $80.-$90. ea.
 

3. Size: 	 (approx.) 2" x 1 " x 1.7" ea. 2" 2 " x 3" ea. 

4. 	Insertion Resistance:
 
per measurement point 0.01C none
 

5. Power Requirements: 	 None other than 0.5 to 1.4 watts
 
insertion loss. per measurement
 

point.
 

*Calibration requirements over service life 
must also be considered. 



approximately equivalent to less than a 0.005% reduction of voltage 

at the panel maximum power point. This will be substantially smaller 

than the uncertainty in measurement of the maximum power point which 

is expected to be of the order of one-to-two percent. In any event, 

the criticality of absolute measurement of the panel I-V curve is low 
for purposes of assessing panel stability overtime. What is required 

is stability of the insertion effect which will be achieved to a high 

degree with the manganin shunt. 

A single thermistor is specified for measurement of panel 

temperature. It would be more desirable to use several thermistors 

per panel and develop some sort of average reading; however, other 

factors in the system such as existing cable size and cost and avail­

ability of additional data switching circuits preclude this. The 
thermistor is located at a point which will provide a typical 

indication, of temperature. 

The thermistor selected will have a value of 30.00 K ohms at 

250C + 0.20C and a resistance of 10.97 K ohms at 500C + 0.20C. The 

thermistor resistance will be measured using a digital ohmmeter in 

the basement laboratory in series with approximately 500 feet of 22 

gauge copper wire. The wire will have a 200C resistance of approximately
 

8 ohms (15.14 ohms per 1000 ft.) which, at the highest temperature 

anticipated to be measured (500c), corresponds with an error of about 

0.020C, this is only ten percent of the thermistor's inherent 

inaccuracy, at that temperature. About 200 feet of the roof-lab cable 

is located within the building, thereby tending to stabilize the cable 

resistance over the seasonal temperature range, 

Manufacturer's data for the shunts and thermistors are included 

in Appendix I. Figure- 5 shows a schematic diagram of an eight 
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module solar panel as instrumented. Figure 6 shows several photographs
 

of the panel, its associated junction box and the thermistor installation.
 

All solar panels are connected to the Multiplex (MUX) Junction
 

Cabinet through 54 conductor, #22AWG cables. Thirty-eight conductors
 

are used for signals and control with the remainder paralleled for
 

connection to the panel current sweeper. Within the MUX cabinet,
 

wiring from each panel is connected to one position of a stepping
 

switch bank. The bank is composed of four 26 position by twelve level
 

stepping switches which, together constitute a 48 pole, 26 position,
 

remotely activated switch. Five poles are used for switch position
 

control, 37 poles are used for panel data and control and six
 

poles remain as spares.
 

Figure 7 shows a functional diagram of the panel selection
 

circuits. The number of the panel to be-tested is entered into
 

two thumbwheel switches on the Panel Select and Sweep Control Unit.
 

When this is complete and the ADVANCE switch is depressed'(See
 

Figure 8), the panel address in BCD format is transmitted to the
 

selected address decoder and the stepping switch drive circuits in the
 

MUX cabinet on the roof. The drive circuits sense the difference
 

between the panel address delivered from the laboratory and the current
 

stepping switch address and drive the stepping switches until this
 

difference is eliminated for all four switches. When the switch
 

and input addresses agree, a PANEL LOCATED signal is generated
 

which enables transmission of the new switch (panel) address back
 

to the SELECTED PANEL DISPLAY in the laboratory. This address
 

signal is derived independently of the address sent to the roof in
 

order to provide a more reliable indication in the laboratory.
 

Once a panel or module has been selected for test, it remains
 

to manually record respective data items on a data sheet, load and
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calibrate the X-Y recorder and sweep the I-V curve by depressing
 

the sweep button (see Figure 8).
 

The sweeper consists of two assemblies: the ramp generator­

recorder pen control located in the laboratory and the power sweep
 

circuit located on the roof. In operation, the sequence of events is
 

as follows: The recorder is poised at the panel open circuit
 

When the SWEEP switch is depressed,
voltage position with pen raised. 


the pen is dropped and a voltage ramp is started. The ramp is
 

delivered to the roof where it is input to the power sweep circuit
 

which follows the ramp sweeping the total panel from open circuit
 

toward short circuit. Panel/module voltage and a voltage proportional
 

to current from the sensing shunts are returned to the laboratory
 

where they drive the X-Y recorder pen. After the panel has been
 

driven to the vicinity of short circuit, the ramp generator
 

saturates, the recorder pen is lifted and the sweep is concluded.
 

A manual ramp reset to zero is included to permit recording short
 

circuit current at the end of the sweep. An automatic reset may
 

be obtained by throwing a switch located behind the panel. The
 

automatic reset feature is not used during normal data taking
 

operations.
 

2.4 	System Error Analysis
 

This analysis is presented in its entirety in Appendix II.
 

- 4.68
The calculations show a maximum error range of + 3.49 to 


percent in determining the value of maximum power from a solar panel
 

module.
 

This 	error range consists of errors as follows:
 

(a) 	Error in determining a maximum power value from an I-V
 

graph: + 2 percent.
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(b) Error due to temperature measuriment tolerances:
 

± 3.168 percent.
 

(c) Error due to illumination measurement tolerances: 

- 1.637 - 0.596 percent. 

Temperature measurement is responsible for the major source of
 

error. Uncertainty in knowledge of temperature distribution over
 

the panel represents-80 percent of that uncertainty.
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3.0 TEST PLAN
 

A test plan was written to organize the testing procedure
 

and to serve as a guide during the actual measurement operations.
 

Of particular concern in preparing the plan was incorporation
 

of some sort of test to verify that the data acquisition system would
 

faithfully record in the laboratory the parameters of the panel or
 

module being measured. A test was devised whereby two newly calibrated
 

X-Y recorders were employed, one in the laboratory, one on the roof
 

at the panel being measured and an I-V curve was recorded on both
 

recorders simultaneously. The recorder inputs were paralleled using
 

several spare conductors in the roof-laboratory cables and a calibration
 

procedure was performed. The cables were disconnected and the rooftop
 

recorder inputs were connected directly to the module being measured.
 

The I-V curve was then swept from the laboratory as it would be during
 

normal system operation.
 

Detailed procedures were included as part of the plan for the
 

verification test, recorder calibration and normal data measurement
 

operations. The intent here was to provide a starting point from which
 

we could depart in order to achieve a comfortable operational mode.
 

Examination of preliminary I-V data from the solar panels to
 

be measured showed that in the majority of cdses, the data exhibits
 

low fill factors. In fact, the curve shapes show behavior typical
 

of solar cells with high series resistance. Quantitatively, these
 

characteristics fall outside the range of applicability for the well
 

known techniques for I-V curve manipulation. As a result, there
 

See: 	 Harmon and Rasmussen, "Temperature, Illumination Intensity
 
and Degradation Factor Effects on Solar Cell Output
 
Characteristics", IEEE Transactions on Aerospace and Electronic
 
Systems, Vol. AES-2, No. 4, July, 1966.
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exist noknown, acceptable techniques for making quantitative
 

comparisons of I-V data over time unless, through chance, the illumination
 

and temperature conditions of the data to be compared are identical.
 

In addition, a question must be raised with regard to illumination
 

measurement. Although up to five standard solar cells and a precision
 

pyranometer may be employed for illumination measurement, none of these
 

devices necessarily has the same sensitivity to spectral content or
 

to diffuse illumination as the subject solar panels. Optical
 

performance with regard to direct illumination will also differ between
 

the measurement standards and the panels.
 

A qualitative approach will be taken in lieu of a more rigorous,
 

quantitative analysis. The primay prameters of interest are the
 

panel/module maximum power point !maxl and the curve shape in the
 
immediate vicinity of that point. Increasing depression of the current
 

and/or voltage coordinates of the Pmax point (ipmax and vpmax) away
 

from short circuit current and open circuit voltage, respectively,
 

is symptomatic of increasing series resistance and reduction in
 

available output power. Comparison of I-V curves taken from the
 

same panel at different times will be made on a light table by
 

overlaying the curves and seeking the best fit first in-the region
 

of short circuit and then in the region of open circuit voltage.
 

It is necessary that respective graph axis be maintained parallel
 

during this procedure. Graphs to be compared must have been
 

recorded using identical scale calibrations on identical graph sheets.
 

In this manner, changes in the curve shape in the region of Pmax may
 

be readily observed.
 

This procedure will mask changes in short circuit current and in
 

open circuit voltage. However, barring large changes in these
 

parameters, it is expected that major effects, if any, will become
 

evident in P before they appear elsewhere.
 
max
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4.0 	 TEST RESULTS 

4.1 	 Data Acquisition Verification Test 

As indicated in the Test Plan, simultaneous recordings of an 

I-V curve were made through the data acquisition system and at the 

panel location using two X-Y recorders. Figures , 9a and 9b show the 

two I-V curves. These graphs were compared in two ways: first, the 

graph axes were overlaid to determine the difference in current and 

voltage coordinates at the maximum power point assuming identical 

calibration of the two recorders. The curve taken on the roof read 

3.3 milliamperes out of 302 and 83.3 millivolts out of 11.75 volts 

higher than the curve taken in the laboratory. In terms of power, the 

roof curve read 1.8 percent higher at the maximum power point. The 

two curves crossed below the maximum power voltage and there were 

noticeable differences in transient performance between the two 

recorders leading to a larger percentage difference in the immediate 

vicinity of open circuit voltage, the starting point for the I-V sweep.
 

The second comparison was made in the same manner as is to be
 

used to compare solar panel I-V curves measured with the system. The 

two curves were overlaid on a light table and shifted along the current 

and voltage axes maintaining parallelism of respective axes. In this 

manner, the two curves matched exactly except at open circuit voltage 

and within one volt of open circuit. This is the region of most severe 

transient performance requirement for the recorders.
 

4.2 	 Solar Panel Measurements 

The results of the baseline data measurements are presented in 

Appendix III and represent the raw data
 

Table III presents the data for each of the panels as extracted 

from the raw data. Those panels with modules missing are indicated by 
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TABLE [II
 
MEASURED DATA FOR THE SOLAR PANELS
 

PANEL ILLUMINATION TEMPERATURE Voc IsC Pmax 

NUMBER 
2

(rw/cm ) 
a 

( C) (Volts) (Amps) (Watts) 

1 Solarex 101 43 31.39 2.04 29.6 

2 Solarex 101 40 32.06 2.01 32.9 

3 Solarex 97.4 42 32.36 1.95 29.9 

4 Solarex 97.1 43 32.0 1.45 24.3 

5 Solarex 94.6 42 32.23 1.78 26.8 

6 Solarex 93.8 42 30.77 1.54 27.9 

7 Solarex 87.3 42 32.64 1.22 22.1 

8 Solarex 86.0 40 31.77 1.32 20.2 

9 Solarex 95.2 47 31.77 1.32 18.9 

10 Solarex 94.7 39 32.10 1.34 20.7 

11 Solarex 90.9 45 31.59 1.35 23.5 

12 Solarex 89.7 46 31.36 1.69 24.9 

13 Solarex 93.2 59 29.94 1.85 25.8 

14 Solar 
Power 92.0 58 34.84 1.42 31.56 with diodes 

98.0 43 37.3 1.40 35.6 w/o diodes 

15 Solarex 89.5 61 29.54 1.47 24.6 

16 Solarex 89.7 62 29.51 1.68 23.0 
* 

17 Solarex 96.0 28 33.77 1.36 23.3 

18 Solarex 112 35 32.93 2.07 33.9 

19 OCLI 97 30 31.82 1.75 36.8 

20 Spectro­
lab 96.9 31 34.99 1.76 43.1 

Voc = open circuit voltage 

I = short circuit current sc 

P m 
max 

power at the maxintum power point 
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a star, and represents 1/4 of the modules removed, as far as power
 

measurements are concerned. It should be noted that the panels were
 

cleaned on the morning that these data were taken, thereby reducing
 

the effect of accumulated dirt on the results. Because of the poor
 

curve shape, accurate corrections for temperature and illumination can
 

not be made; however, changes in power can be estimated. Because the
 

illumination is close to 100 mw/cm2, corrections to power for
 

illumination should be proportional to the fractional difference, within
 

a few percent.
 

Estimates of power corrections for temperature are more difficult,
 

but it is believed that corrections of the order of 0.4 to 0.5 percent
 

per °C are of the right order of magnitude. In the case of panel 14
 

where data were taken at two different temperatures the correction
 

was .44%/OC. Thus for purposes of estimation, 0.5%/oC seems reasonable-.
 

Using 0.5%/°C, a 300C temperature change results in a 15% power change,
 

whereas a 0.4%/°C correction results in a 12% power change. Thus an
 

error of 20% in the temperature correction factor will only result
 

in a 3% power correction error.
 

Of the 17 Solarex panels, 11 were complete. For these 11 using the
 

estimates for corrections stated above, the average peak power at
 

100 mw/cm 2 and 28 C comes out to be about 31 watts.
 

The Solar Power panel had an uncorrected maximum power of 35.6 watts.
 

Using the above estimate for correction gives a maximum power of 38 watts.
 

The OCLI panel had a maximum power of 36.8 watts. Using the
 

above estimate for correction gives a maximum power of 38 watts.
 

The Spectrolab panel had an uncorrected power of 43.1 watts. Using
 

the estimate for correction gives a maximum power of 45 watts. Table IV
 

gives the performance of the panels as originally specified by the
 

manufacturers. 30
 



TABLE IV
 
PANEL PERFORMANCE AS ORIGINALLY SPECIFIED BY MANUFACTURERS 

SOLAREX 50 watts 	 28°C, 100 mw/ea 2 

3/18/74 -0.4%/OC 	 change of power efficiency in range from
 
0aC to 550C
 

100 mw/cm2
 SOLAR 52.5 watts 280C 


POWER
 
12/29/75
 

SPECTRO- 2 
LAB 

1/25/74 
47 watts 
50 watts 

430C 
280C 

100 mw/cm 
100 mw/cm2 

OCLI 

1/23/74 46.2 watts 280C 100 mw/emi2 
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Several general conclusions can be drawn: 

':) 	 our measurements, tend to give results lower than
 

thtse originally specified by the manufacturers
 

with the difference depending upon the specific
 

manufacturer. This appears to represent a
 

systematic difference and couldbe due to standard
 

use in establishing illumination levels-; in the
 

manner in which temperature was established, or
 

nominal- data employed by the manufacturers. It
 

could also indicate some change in all panels due
 

to weathering. Only further tests can establish
 

the nature of the difference.
 

2) 	 The difference between original specification and 

results obtained now is much larger for the Solatex 

panels than for any of the others and is considerably 

beyond anything that can be accounted for by 

Variations in illumination or temperature effects. 

One must then conclude that these panels have 

exhibited: substantial electrical performaince 

degradation since their initial installation. 

3) The results on the Solar Power panel are surprisifng, 

since this panel had only been installed about 2 

months prior to measurement. The curve shape 

appears satisfactory, even though" the maximum 

power is reduced. An I-V curve for this panel is 

shown fn Figure 10. The discontinuities in the 

curve result from inclusion of bypass diodes 

within the panel to preclude module voltage 

reversal during test. 
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In general, the terrestrial cell panels which have been exposed
 

to the weather for about two years show significantly lower fill factors
 

than would be desirable. The panels with spacecraft type cells show
 

fill factors which one woeld expect normally and are consistent with
 

past measurements. Figure 11 shows a typical I-V curve exhibiting a
 

fill factor of 0.409.
 

We have found that there is a great deal of variability in short
 

circuit currents among similarly rated modules within a panel. To
 

some extent, this is quite understandable since the costs involved
 

in matching as might be done for a spacecraft solar array might well
 

be prohibitive in the commercial-terrestrial application. However, by
 

itself and when coupled with variations in curve shape which we have
 

also observed, this variability could very well lead to significant
 

problems when assembling a large number of these modules into an array
 

and particularly a high voltage array. Operation of mismatched series­

connected modules would yield an output power less than the sum of the
 

two module powers. Sweeping an I-V curve of a full panel containing
 

mismatched panels has caused the lower current modules to reverse in
 

voltage. Figure 12 shows two such curves for a pair of series-connected
 

modules. Series-parallel interconnection of a number of modules would,
 

of course, tend to reduce the voltage reversal problem as would
 

inclusion of bypass diodes. However, the curve shape and short
 

circuit current variabilities still exist thereby reducing aggregate
 

output power.
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We can only speculate at this time as to similar situations at 

the submodule level -- i.e., at the individual solar cell level. It 

seems reasonable to assume that if modules exhibit such variability, 

the individual cells within a module must exhibit at least the same 

degree of variability. If this is the case, then we must raise 

questions as to the operating conditions for individual cells and 

their effect upon the cost effectiveness of not performing a higher 

degree of selection in manufacture and, in fact, upon the useful 

operating lifetime of the modules.
 

4.3 Visual Inspection 

It was decided at the beginning of this program to perform a 

detailed visual inspection of each of the more than 4000 solar cells 

and associated interconnectors in the MITRE-array concurrently with the 

electrical measurements. This would provide a record of the physical 

status of the array which could reveal, with each subsequent inspection, 

any physical deterioration which might be linked to electrical 

performance changes. 

Initially, the inspection was to be performed in the same manner 

as for spacecraft solar arrays; by an inspector with an eye loupe
 

magnifier, a map of the array and a notebook. For spacecraft solar 

panels, inspections are generally made in a controlled environment
 

with some concern for the inspector's physical comfort. The inspection
 

task itself can be somewhat subjective and-physical discoifort could 

manifest itself in a less than perfect result. 

The MITRE solar array is located on a rooftop open to prevailing 

winds and, often, extremes of temperature relative to human comfort. 

The panels are mounted directly to an open steel gridwork which would 

certainly preclude kneeling to view cells at or near the bottom of the 
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panels. Cells near the middle and top of the panels could only be 

viewed in a quasi standing-bending position which would be extremely 

uncomfortable for times longer than a few seconds. 

To eliminate the need for subjectfIng an inspector to this situation, 

we turned to photography. With adequate photographs of each module, 

inspection can take place in relative comfort and a record is obtained 

which is, by far, superior to information subjectively derived and 

written into a notebook. 

A fixture was designed and fabricated to hold a 35mm camera in 

place and which contained two electronic flash units for consistent 

illumination. The fixture is shown in Figure 13. Two sides of the 

fixture were left open to permit sufficient light for focusing. An 

opaque cloth was placed over the fixture during the exposure to 

exclude ambient lighting. The remaining interior surfaces of the 

fixture were painted white to help provide even illumination of the 

subject module. The fixture is lightweight and is used hand-held 

against the panel surface straddling the subject module. Figure 14 

shows a photograph of a module taken with the fixture and Figure 15
 

is a section of-that photograph showing a single cell. 

All modules except the two Solar Power Corporation modules were 

photographed with the fixture. The Solar Power modules are 

approximately two feet square and required a significantly greater 

module-to-camera distance. These modules were photographed, using 

ambient illumination with the camera placed on a tripod. 

In all cases, color slide film was used for the record. The 

resulting slides may be projected to -any size for viewing; up to 
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II 

FIGURE 15
 
SECTION OF MODULE PHOTOGRAPH SHOWING A SINGLE CELL
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the resolution capability of the film being employed. Ektachrome-K
 

film was used primarily because we can perform and control processing
 

in the MITRE darkroom. Other films might be just as suitable or
 

even more so depending upon respective priorities.
 

Several comments are possible after only a cursory visual
 

examination of the panels. For those modules of silicone rubber/glass­

epoxy construction which have been on the roof for about two years,
 

there are in almost every case (136 modules), signs of extensive
 

delamination of the silicone material from the glass epoxy. Figure 16
 

shows a typical case where the lighter, irregularly shaped areas along
 

the edges of the module are areas of delamination. It is not evident
 

from a simple visual inspection that in any case, the delamination
 

has actually exposed the cells. For this particular type of module, it
 

has been claimed that the cells are totally encapsulated in the
 

silicone material. In some cases, it appears that moisture has crept
 

into the space caused by delamination. This is shown in Figure 17.
 

Figure 18 shows moisture entrapment in a different package. Freezing
 

of this moisture could eventually cause cracked cells.
 

Figure 19 shows a photograph of some cells in the same type of
 

module. The dark area in the center of the cell grid structure appears
 

to be corrosion of some sort. The location of the corroded area,
 

isolated from the soldered cell contact leads to several possibilities.
 

The corrosion could stem from some contaminant inadvertently left on
 

the cell during module assembly. It could be due to an unfavorable
 

combination of potting and cell/cell cleaning materials. It could be
 

due to diffusion of contaminants through the silicone potting material.
 

We suspect that it is not due to solder flux contamination since there
 

is isolation between the soldered joints and the corroded area and
 

the cell contacts were apparently not solder treated. In addition,
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FIGURE 18
 

LIQUID ENTRAPMENT IN LEXAN SHEATHED MODULE
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in a significantly large number of cases, the solder joints do not
 

appear to be corroded either at all or in this particular manner.
 

In some cases, gas bubbles were included in the potting material
 

during manufacture. These were noted when the panels were received
 

and have been observed periodically since then. When new, these
 

bubbles were intact and in all probability had little effect upon
 

electrical performance. In the course of two years, many of these
 

bubbles have burst probably due to low temperature exposure and thermal
 

cycling of their relatively thin walls. Figure 20 is a photograph
 

of a larger bubble which has burst exposing the surface of the cell
 

beneath to the atmosphere. Figure 21 is a photograph of a cluster
 

of smaller bubbles. In this case, a good deal of dirt has accumulated
 

in the voids left by the burst bubbles and effectively shadows a
 

portion of the cell beneath. This may reduce the cell output by several
 

percent with the ramification that such a situation could lead to a
 

voltage reversal, an overheated cell and eventually an open circuit-­

particularly in a high voltage string.
 

In some cases, we have noted what appears to be an erosion of
 

the silicone rubber surface. This is manifested in a dulling of the
 

surface of the potting material after thorough washing to remove
 

accumulated grime.
 

The glass-epoxy substrate to which the cells are bonded with silicone
 

rubber is also deteriorating. The epoxy binder at the surface of the
 

material appears to have been leached away by the weather. In some
 

places, glass fibers are unravelling due to constant exposure to the
 

wind as illustrated in Figure 22.
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FIGURE 20
 
LARGE BUBBLE INCLUDED IN ENCAPSULANT
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FIGURE 21
 
BUBBLE CLUSTER INCLUDED IN ENCAPSULANT
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FIGURE 22
 
UNRAVELLING GLASS FIBERS
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4.4 	 Conclusions to Date
 

A data acquisition system was tbilt within the economic constraints
 

established at the outset of this program. It is readily apparent
 

that the type of system built has limitations in terms of absolute
 

measurement accuracy as is evident from the results of the Data
 

Acquisition Verification Test. A digital technique properly applied would
 

yield superior results on an absolute basis.
 

However the method for data comparison which was employed lends
 

itself well to analog recording. Comparison of I-V characteristics
 

visually is much more easily accomplished with continuous trace recordings
 

than with a tabulation of data which might have to be plotted for
 

comparison. In this respect, the verification test results could not have
 

been better.
 

The poor fill factor (apparently high series resistance) of the
 

majority of panels in the MITRE array has precluded application of
 

well known techniques for I-V curve shifting to correct for temperature
 

and illumination differences. Apparently there has never been a
 

need for manipulation of such characteristics with poor fill factor
 

and, hopefully, the quality levels of coming products will eliminate
 

the need for such tools in the future.
 

A number of observations may be made concerning the design of
 

data acquisition systems for in situ measurements of terrestrial
 

photovoltaic arrays:
 

Since 	the primary purpose of the array is to provide
 

electric power, the instrumentation applied for purposes of
 

performance measurement must interfere as little as possible
 

with that purpose. It is desirable to be able to isolate only the
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assemblies to be measured leaving the remainder of the array to
 

function normally-. In a test or demonstration'system this consideration
 

may not be of primary concern as bight also be the case for small,
 

isolated systems. However, given the :case of a large system - perhaps
 

of several kilowatts or larger size - it may be desirable to make
 

electrical performance measurements periodically for maintenance
 

purposes. Projecting ahead it seems appropriate to disturb this type
 

of system -as little as possible for measurements of performance.
 

The baseline data taken in this programweremeasured over
 

a period of approximately two months. In terms of actual measurement
 

time, under two minutes (average) per I-V curve were required once a
 

comfortable operating mode was acquired with three peopie operating
 

the equipment, loading the recorder and writing meter readings on data
 

sheets. The balance of the time was spent in waiting for the test
 

window to open, adjusting equipment, troubleshooting faulty equipment,
 

weekends and evenings, waiting for clouds to pass, correcting human
 

error, and rainy and cloudy days. In the first two weeks of data
 

measurement, there were three "good days" in which some 127 graphs
 

were made. The remaining days were either rainy or cloudy.
 

'Thepoint to be made is that it is certainly technically feasible
 

,to make all necessary measurements of the 170 panels and modules in
 

the MITRE array within one test window and several sets of measurements
 

could be made for .amore sound statistical approach. The only feasible
 

method for accomplishing this we believe is to employ automated
 

techniques; perhaps a computer controlled data acquisition system.
 

The larger the array system, the greater the difficulty to be encountered
 

in maintenance and the greater the need f~r rapid, consistent, and
 

cost effective measurements.
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Visual inspection of solar panels has an important place in the
 

space program and in experimental situations. It may also turn out
 

to be a useful technique for commercial array systems of the future.
 

For in situ inspections particularly of large arrays, it is inconceivable
 

that the classical eye loupe - record book approach will serve the
 

purpose. The photographic approach seems best at this time providing
 

a permanent, easily used record.
 

An additional number of observations may be made regarding the
 

data taken and inspections made to date:
 

Of the solar panels which have been part of the MITRE solar array
 

for approximately two years, those of terrestrial cell composition
 

have displayed very low fill factors of the order of 0.5. Earlier
 

measurements indicate that these fill factors have indeed undergone
 

changes over the two year period. Panels of spacecraft "reject"
 

cells do not appear to have undergone any significant change.
 

Packaging has deteriorated significantly as evidenced by delamination,
 

entrapped moisture, corrosion of cell contacts and apparent erosion
 

of potting material surfaces. To date, six of 136 of these modules
 

have developed open circuits.
 

Short circuit current and curve shape variability has been
 

observed in most cases, old panels and new. Economics of terrestrial
 

solar panel manufacturing may not, at this time, permit either more
 

careful selection of cells and modules intended for series operation
 

or application of diode bypass techniques to preclude damage ­

particularly in high voltage circuits.
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needs exactly. If so, you will enjoy lower cost and faster delivery than 
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happy to develop them for you. Either way, we promise fine craftsmanship 
and a keen personal interest in your complete satisfaction 

EMPRO MANUFACTURING CO., INC. 
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This analysis is directed toward determining the accuracy with
 

which the maximum power value for any solar panel or module may be
 

determined with the data acquisition system. The constituent elements
 

of the system introduce a variety of errors. These elemental errors
 

are determined and are then combined to develop an overall error value
 

for the 	system.
 

There are three types of errors about which we are concerned:
 

Sensing errors or transducer inaccuracies, transmission errors or errors
 

incurred by virtue of having to read system parameters-through 250
 

feet (approximately) of cable and including source and meter impedances
 

and recording/reading error or the inaccuracy of the instruments used to
 

develop numerical data. The latter category includes errors due to
 

calibration inaccuracy and human error in reading and calibrating
 

instruments were applicable. In general, direct reading instruments (i.e.­

digital voltmeters and X-Y recorders) have been calibrated using
 

standards traceable to National Reference Standards maintained by the
 

National Bureau of Standards. In all cases, instruments are within
 

manufacturer's specified catalog tolerances. Calibration certificates
 

for this instrumentation are reproduced at the end of this appendix.
 

(a) 	 Current Sensing
 

In most cases, current is measured with a combination
 

of an accurate meter shunt and a digital voltmeter.
 

Currents are plotted with an X-Y recorder connected
 

to the sensing terminals of the shunts. All measurements
 

are made through the data transmission network consisting
 

of cables, terminal blocks, stepping switches, and
 

rotary switches.
 

Shunt Resistance Tolerance
 

The manufacturer's data for the shunts employed is shown
 

in Appendix I. Shunts are nominally 10 milliohms.
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manufacturing tolerance = + 0.25%
 
* 

temperature tolerance = + 0.05%
 

total worst case + 0.3%
 

Transmission Error
 

The data transmission circuit is shown in Figure II-i
 

for the case where currents are being recorded on
 

the X-Y plotter. For recording of numerical data,
 

digital voltmeters replace the X-Y recorder in the
 

figure.
 

Tablel-I shows the calculation of circuit resistances.
 

Roundtrip Resistance is taken as 10 ohms for purposes
 

of all calculations and is the same for all parameters
 

except as modified by source resistance differences.
 

Transmission error is brought about by attenuation
 

of the signal due to the source, cable, and
 

instrumentation input circuit resistances. Figurel1-2
 

shows a circuit diagram of the attenuating network.
 

Current measurements are made with a Fluke 8800A digital
 

voltmeter set on the 200 mv range in parallel with the
 

Mosely X-Y Recorder model 136A. The voltmeter has an
 

input resistance in this mode of 1000 megohms, minimum,
 

and the recorder has an input resistance of lOOK ohms
 

for a net instrumentation input resistance of 100K ohms.
 

Based upon discussion with manufacturer for the temperature range
 
of -200C to +500C.
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S UNTPANELCURRENT SENSING SHUNT, O.O1S2
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X-Y RECORDER 

TERMINAL BLOCK AT PANEL 

10-30 ft. #22 AWG CABLE 

CONNECTOR 

INTERNAL WIRING, 1-2 FT 1122 AWG
 

STEPPING SWITCH
 

INTERNAL WIRING, 1-2 FT #22 AWG
 

'CONNECTOR
 

ROOF-LAB CABLE, 250 FT. (APPROX) #22 At4G 

TERMINAL BLOCK 

DATA SELECT ROTARY SWITCH, DATA SW, UNIT
 

TERMINAL BLOCK
 

INTER UNIT WIRING, 2-3 FT #20 AWG
 

TERMINAL BLOCK 

RECORDER SELECT ROTARY SWITCH
 

RECORDER CABLE, 8 FT #22 AWG
 

X-Y RECORDER 

FIGURE I1-1
 

SIGNAL FLOW PATH
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TABLE I1-1 
TRANSMISSION CIRCUIT RESISTANCES 

ROUNDTRIP 

ITEM RESISTANCE, OHMS RESISTANCE, OHMS 

Source Resistance 0.01 0.01 

Terminal Blocks, 
switches 

Panel to M1UX 
Cable 

9@ 0.02 = 0.18 

30 ft. AWG 22 
30 x 0.01614/ft = 
0.484 

0.36 

0.968 

Roof-Lab Cable, 250 ft. AWG 22 
250 x 0.01614/ft = 
4.035 8.07 

Recorder Cable 8 ft. AWG 22 
8 x 0.01614/ft -
0.129 0.258 

Misc, cable 7 ft. AWG 22 
7 x 0.01614/ft = 
0.113 0.226 

Total Roundtrip 9.892 Q 
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ROUNDTRIP 
RESISTANCE 

SOURCE 

RESISTANCE 

CABLE 

RESISTANCE
NJ 

SIGNAL 
SOURCE 

MEASURED 
SIGNAL 

INSTRUMENTATION 
INPUT RESISTANCE 

FIGURE 11-2
 
SIGNAL TRANSMISSION ATTENUATION
 

EQUIVALENT CIRCUIT
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The measured signal is, then,
 

Rinput 100K - 0.999 

Rinput + Rroundtrip 100K + 10 

or 99.99 percent of the signal source. This is an
 

error of -0.01 percent due to transmission.
 

Current Reading Error
 

The Fluke 8800A digital voltmeter has a specified
 

tolerance on the 200 my range of
 

+(0.01% of input + 0.005% of range)
 

Current readings are typically at 5 millivolts
 

across the shunt.
 

tolerance ± f{0.001 x 5 + 0.00005 x 200}
 

= + 0.0105 millivolts
 

- + 0.0105 0.0021 or + 0.21 percent 

5 

(b) Voltage Sensing
 

Panel/Module voltages are sensed directly without the aid
 

of transducers or voltage divider networks. Therefore,
 

there is no transducer tolerance as there was for current
 

measurements.
 

Transmission Error
 

Open circuit voltage measurements are made with a Fluke
 

8800A digital voltmeter on the 20-volt scale for modules
 

and-on the 200-volt scale for full panels. Input
 

resistances are:
 

Rin 20 Z 1000 meg 0
 

Rin 200 2 10 megE2
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V is measured without the recorder connected. Therefore,
 
00
 

transmission errors are assumed to be negligible for open
 

circuit voltage measurements.
 

Voltage Reading Error
 

The Fluke 8800A voltmeter has a specified error on 20 and
 

200 volt ranges of
 

+ (0.01% of input + 0.0015% of range)
 
for module measurement, V is typically 16 volts
 

00
 

Error= + [0.0001 x 16. + 0.000015 x 20] 

- + 0.0019 volts 

or + 0.012 percent 

for panel measurement, Voc is typically 32 volts. 

Error + [0.0001 x 32 + 0.000015 x 200] 

+ 0.0062 volts
 

or + 	0.0194 percent.
 

(c) 	 Temperature:
 

Temperature is sensed by a single thermistor located at '
 

a point on the panel surface judged to have a temperature
 

typical of all other locations on that panel. A
 

measurement was made of the average module temperature
 

distribution across a randomly selected panel. An infra­

red sensing device supplied by JPL was employed to make
 

the measurement. A maximum range of 4 C was noted across
 

the panel in still air with insolation varying approximately
 

plus or minus five percent according to pyranometer
 

readings.
 

The thermistor employed is a YSI model 44008 30K at 250C
 

(nominal). (See Resistance table in Appendix I.)
 
1.3% at -20 C
 max. thermistor resistance tolerance: 


(-20Cto + 50C)mfgr.
 
+0.7% 	 (at +500C)
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tolerance in ohms at +500C = +0.007 x 10.97K Q= 76.80
 

-200C = +0.013 x 271.2K 2= 3525.6SQ
 

Thermistor self-heating
 

thermistor resistance measurement is made with a Fluke 8000A
 

digital multimeter with a sensing current of ljia.
 

at.500C, dissipation is
 

(liia) 2 x 10.97KO--0.01 i watts
 

for a dissipation constant of 8mw/oC,
 

self-heating effect is negligible.
 

*At -20°C,
 

(la) 2 x 271.2KQ2_0.27 watts
 

also negligible.
 

Transmission error 

Transmission circuit resistance = i0 

at 500C, thermistor will be 

10.97 x 100
10.9T-10= 99.909%'of meter reading
 

for an error of -0.091%.
 

At -20°C, thermistor will be
 

271.2 x 100 = 99.9963% of meter reading
 
271.2 + .010
 

for an error of -0.0037%
 

Thermistor Resistance Reading Error
 

Fluke 8000A accuracy is + (0.2% of reading + 1 digit)
 
on 200KS2scale and + (0.5% of reading + I digit)
 

on 2000KC2scale which is used at temperatures below 140C.
 

at +50'C,
 

accuracy is + [0.002 s 10.97MS2+ 100S
 

= + 121.90 

ato-200C ± [+0.00 x 271.2K2+ 1000lo 

- + 2356.0 
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Combined Temperature Reading Errors
 

Thermistor Placement: 40C
 

Thermistor Tolerance -200C, 3525.642
 

+50'0, 76.8S2
 

Self-heating negligible
 

Transmission 100
 

Reading -20'C, 2356 1
 

+500C, 121.9n
 

Worst case at -200 C
 

meter reads 271.2KQ+ (3525.6 + 10 + 2356)
 

= 271.2M2+ 5891.,60 

or 271.2KQ+ (-3525.6 + 10 -2356)
 

271.2KR -5871.60
 

Thermistor sensitivity in region of -20°C: 

-210C 286.7KO 

-19°C 256.5KQ 

- 200 30.2KQ 

or slope =-15.lK Q/o ave, 

error in °C is 

+ 5891.62 = -0.39 °C 
-15. IKM/o c 

- 5871.6 2 	 = +0.38 0C.
 
-15. 1K/o C 

with a placement error of 4 0C, the worst
 

case error is
 

+ 4.40C at -200C. 

At +500C,
 

meter reads 	 10.97KQ+ (76.8sl+ 102+ 121.9n) 

= 10.97Kfl+ 208.7Q 
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or 	 10.97KO+ (-76.8Q& i0g- 121.92)
 

= 10.97K2- 188.72
 

thermistor sensitivity in region of +50°C.
 

+ 510C l0.57K
 

+ 49'C 11.39KO
 

+ 2OC -0.82KO
 

slope = -0.41K /oC 

error in 0C is
 
+ 208.70 - 0.509 0c
 
- 0.41KO /oC
 

-,188.72 / + 0.46 C
 
- 0.4l1KO/oc 
 0 

with placement error of 4°C
 

worst case error is
 

+ 4.510C at + 500 C
 

(d) 	 Illumination (Pyranometer) Measurement
 

The pyranometer is employed as the illumination measurement
 

standard for the data acquisition system. No attempt
 

will be made in this analysis or in the context of this
 

program to resolve any disparity in spectral response
 

between the pyranometer and the test articles. We do,
 

however, recognize the disparity and the possibility that
 

additional error may in fact exist as a result.
 

Pyranometer Tolerance
 

Linearity of the pyranometer is stated by the manufacturers
 

to be + 0.5 percent from zero through 1400 watts/meter
2
 

which corresponds with 1.4 times the nominal value of the
 

solar vector at the earth's surface. In the most recent
 

calibration of our pyranometer, it was found that the
 

calibration constant of the device had changed by 0.476 percent
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from the previous value, determined approximately one
 

year earlier. We, will accept the manufacturer's calibration
 

as absolute and allow the entire 0.5 percent to be accounted
 

for as an illumination measurement error. A temperature
 

dependence of + 1.% must be included for a total of + 1.5%.
 

Transmission Error
 

Pyranometer source resistance at 240C is stated by the
 

manufacturer to be 590 ohms. Allowing 10 ohms transmission
 

circuit resistance, the total roundtrip resistance is 600
 

ohms. The pyranometer output is measured with the HP
 

DY-2401B digital voltmeter on the 0.1 volt range.
 

Input resistance for the voltmeter is 100K ohms.
 

600
Transmission Error = 00 = 0.00596lOOK + 600
 

or -0.596 percent
 

Pyranometer Reading Error
 

The DY-2401B digital voltmeter is specified to have the
 

following reading tolerances when used to read the
 

pyranometer output voltage on the 100 mv scale.
 

stability: + 0.06% of full scale
 

linearity: + 0.005% of full scale
 

attenuation: + 0.005% of reading
 

worst case combination of the above yields
 

Error = - (0.065% f.s. + 0.005% of reading) 

for pyranometer measurements on the 100 my scale ­

typical readings are 10 mv. 

Error = + (0.00065 x 100 + 0.00005 x 10)
 

- + (0.065 my + 0.0005 my)
 

A-II.12
 



+ (0.0655 mv)
 

or ±+ .65
0.0655 
x 100 = - 0.655%10
 

(e) 	 X-Y Recorder Error
 

Of primary concern in determining errors due to the X-Y
 

Recorder are errors in determining the maximum power
 

value from the recorded I-V characteristic curves. Of
 

importance here are errors in calibration of the
 

recorder, transmission, recorder linearity and reading
 

from the graph.
 

Recorder Calibration Error
 

Figure I-3 shows a schematic diagram of the calibration
 

circuit. Calibration of voltage and current axes are made
 

using this circuit. A calibration voltage of 15 volts
 

as read on the DY-2401B digital voltmeter is used for
 

the voltage axis. Depending upon the panel or module to
 

be measured, combinations of three and six inch deflections
 

are used to calibrate voltage and current axes for the
 

stated calibration voltages. Assuming the error due to
 

measuring the calibration voltages is independent of
 

recorder deflection, the worst case for transmitting this
 

error to the recorder would occur for the smaller
 

calibration deflections. This situation occurs when
 

calibrating for a full panel I-V curve.
 

This error breaks down into voltage and current axis
 

calibration voltage measurement error and operator error
 

in zeroing and deflecting the pen. Recorder gain control
 

resolution does not seem to have been a significant
 

contributor to this error and will not be considered.
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FIGURE 11-3
 

RECORDER CALIBRATION CIRCUIT DIAGRAM
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Recorder drift has been a problem. However, the
 

operating mode which has evolved includes
 

recalibration no less frequently than every sixteen
 

curves. This seems to have eliminated all drift
 

effects from the primary voltage and current
 

measurement axes. The pyranometer axis (second
 

Y axis) does drift a great deal but does so slowly
 

and certainly not a consequential amount during an
 

I-3 sweep. Since the absolute calibration of this
 

scale is not critical, this factor will not enter
 

into this analysis.
 

Calibration voltages are measured with the DY-2401B
 

digital voltmeter. As for pyranometer reading
 

error, the current axis calibration voltage
 

measurement error is
 

Error = - (0.065% f.s. + 0.005% of reading) 

Calibration voltage for recorder current axis is
 

6.0 millivolts measured on the 100 mv scale.
 

Error = + (0.00065 x 100 + 0.00005 x 6)
 

= + (0.065 + 0.0003) mv - + 0.0653 my 

or
 

+ 0.0653
 

6 x 100 1.09%
 

For the voltage axis, the calibration voltage is
 

15.0 volts measured on the 10 volt range. The
 

DY-2401B is specified to have the following
 

tolerances on the 10 volt range when used at
 

50% overrange.
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Stability: + 0.02% of full scale
 

Linearity: + 0.01% of full scale
 

Attenuator: + 0.005% of reading
 

Worst 	case combination of the above yields
 

Error 	= + (0.03% f.s, + 0.005% of reading)
 

= + (0.0003 x 10.0 + 0.00005 x 15.0) 

= + 0.00375 volts
 

Or
 

+ 	0.00375 x 100 + 0.025%
 
15
 

Operator error in performing calibration occurs
 

in setting the recorder pen at zero and at the
 

deflection point. The graph sheets used are
 

ruled in tenths of inches with accented lines
 

at one inch intervals. The recorder pen trace
 

is approximately one tenth of a small division
 

or 0.01 inch wide (optimistically). Allowing
 

0.01 inch pen placement error at zero and at
 

calibration deflection yields a + 0.02 inch
 

operator error in both current and voltage.
 

For calibration deflections of three inches,
 

this corresponds with
 

0.02 	x + 0.667%
3. i 00 =­3.0
 

Transmission Errors
 

In the vicinity of the maximum power point, voltage
 

transmission error is due to array internal
 

impedance, cable roundtrip resistance (10 ohms)
 

and recorder input resistance. Array impedance
 

is taken as the slope of the I-V curve around the
 

P point. For a randomly selected panel (panel 4),
 

max
 

A-I .16
 



the average slope of the I-V curve in the 

vicinity of Pmax is found to be 21.93 ohms. 

Recorder input resistance is 1 megohm. 

Transmission
 

Error -(21.93 + 10) x 100
 

106 + 21.93 + 10 

- 0.0032% 

Current transmission error is determined by
 

Roundtrip Resistance and recorder input
 

resistance which is lOOK ohms
 

Transmission
 

Error = - X 100 = -0.009999% 
105 + 10 

=-0.01%
 

Recorder Linearity Error
 

Recorder linearity is specified as +0.1
 

percent of full scale. This is assumed to be
 

+0.1 percent in X and Y directions, independently.
 

Graph Reading Error
 

As for calibration, error in reading the I-V
 

graph is assumed to be 0.01 inch. For a
 

typical 6 inch deflection, this corresponds
 

with an error of
 

+ 0.01 X = + +000.1667% for current and voltage.
 
6
 

) 	 Combined Errors in Determining P
 
wax
 

Maximum power is determined by locating the point on the
 

I-V graph which has the highest product of its coordinates.
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Assuming negligible error in detecting this maximum
 

other than graph reading error, the resulting number
 

is subject to error from the following:
 

(1) current sensing and transmission error
 

(2) voltage sensing and transmission error
 

(3) 	 recorder calibration error in current and
 

voltage
 

(4) 	 recorder linearity error in current and
 

voltage
 

An error summary is shown in Table fl-I.
 

The combined error in voltages and currents are
 

taken as the root-sum-squared (RSS) of the -random
 

error factors plus the non-random error factors.
 

Only transmission error is non-random and for
 

current,
 

Error = 3 2 + (1.09)2 (0.667) + (0.1) + (0.167) -0.01
 

= (-1.33 - 0.01) percent
 

= +1.32
 

-1.34 percent
 

for voltage,
 

Error 	= 0.0)2 + (0.025)2 + (0.667)2 + (0.1)2 + (0.167)2 -0.0032 

= (+0.695 - 0.0032) percent 

= +0.692 
0.698 	percent.
 

Power P, is the product of V and I as measured from
 

the graph:
 

P V(U + tolerancev) I (1 + toleranceI)
 

P = VI 	( 1 + tOlv) (l + tolI)
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TABLE I1-11 
ERROR SUMMARY 

zO z 

CURRENT + 0.3 -0- -0.01 + 0.21 

VOLTAGE -0- -0- -.0032 - .0194 

TEMPERATURE 

ILLUMINATION + 1.5 -.596 + .655 

RECORDER 

Calib. voltage + 1.09 
current axis 

Calib. voltage + .025 
voltage axis 
Calib. voltage + 0.667 
operator error 

Linearity, current + 0.1 

Linearity, voltage + 0.1 

Graph reading, + 0.167 
current 

Graph reading, 
voltage + 0.167 
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P = VI (l + tolV + tol I + tolV Toll) 

In most cases where tolerances are small as they are here, the
 

the cross product is negligible and,
 

P VI (1 + tolv + tol1 )
 

The error, then, in the power value read from the graph is
 

Error = tol + tolI 

= + 1.32 + 0.692
 

- 1.34 - 0.698
 

= + 2.012
 
- 2.038 percent
 

There is additional error to be considered in interpreting
 

the power value. Errors in temperature and illumination
 

measurement will cause effective shifts in the I-V curve.
 

Temperature error was determined to be + 4.5 C. For a
 

typical solar panel with 64 series cells, this corresponds
 

with
 

-2.2 mv/ C/cell x 64 series cells/ panel x 4.5°C.
 
+ 

or - 0.6336 volts tolerance at open circuit voltage. 

Assuming the same voltage tolerance at the: maximum 

power voltage, the error in V due to temperature
pmax
 

error is
 
+
 

Error = - AVoc x 100
 
V 
pmax
 

Maximum power voltages have been found to be of the
 

order of 20 volts at elevated panel temperatures and,
 

Error + - 0.6336 x 100 + 
= - 3.168 percent20 


We recognize that this is not strictly correct because of curve shape
 
changes with temperature. However, these changes are expected to be
 
small compared with the open circuit voltage shift.
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Illumination Error was determined to be due to
 

several factors which are combined as errors
 

were in the graph reading analysis, above. From
 

TableIT-II,random type errors are RSS'ed
 

Error = +(1.5)2 + (0.655)2 - 0.596 

= + 1.637 - 0.596 percent
 

Variation in illumination is translated to the I-V
 

curve directly as current changes. The above error
 

,numbers will, therefore, directly reflect error in
 

the current at the P point.
 
max
 

Temperature and illumination based error values
 

must now be combined with P errors from the
 
max
 

graph analysis. Allowing +2% for graph based
 

errors,
 

Error = 	+V ( 2)2 + (1.637)2 + (3.168)2 -0.596 percent 

= + 4.086 - 0.596 percent 

= 	 + 3.49
 
- 4.68 percent
 

for total error in determining maximum power
 

value. 
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For 

Instrument John Fluke Digital Multimeter 

Model No. RRnA* Serial No. 970 

Submitted by: The Mitre Corporation 

McLeanp Virginia 

This instrument has been calibrated in terms of the standards maintained at this 
laboratory, and was found to be within manufacturers catalog specified 
tolerance
 

The following standards were used as references for this calibration. Their calibra­
tion is traceable to the National Reference Standards maintained by the National 
Bureau of Standards. 
Honeywell Thomas ohm mod 1190 s/ M2644 NWS # 211723 
Guildllne Instrument mod 9152T4 s/n 35353 NBS# 212530 
Holt 6A s/n 180 AC Voltage Test No. 201944 

Calibration date:lU2-U1t.5 Calibration Data Enclosed Yes I- No 5 

Temperature: 73 -F. 

Humidity: ML% R.H. B 
By: -' , ' /: 

Approved: " 
Mltrology SQrvmc. ManIg~r 

SprinzFld virg-nja Branch 

Metrofolu Services Group 
Test Instruments Division 

Hone-wi Inc.
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For 

instrument fluke DVH 

Model No. 8000A Serial No. 05526 

Submitted by: Mitre 

McLean, Virginia
 

This instrument has been calibrated interms of the standards maintained at this 
laboratory, and was found to be within manufacturer's catalog specified 
tolerance. 

The following standards were used as references for this calibration. Their calibra­
tion is traceable to the National Reference Standards maintained by the National 
Bureau of Standards. 
Honeywell Thomas ohm mad 1190 3/n M2644 HBS# 211723 
Guildline Instrument mod 9152T4 s/n 35353 HBS# 212530 
Holt 6A s/n 180 AC Voltage Test No. 201944 
Fluke 207-SB s/n 454 Test No. NAA Frequency Emissions 

Calibration date: 1-17-7 Calibration Data Enclosed Yes 5 No 0 

Temperature: 73 'F.
 

Humidity:i___35 % R.H. /. 

By: " . -

Approved: / "/ " / 

Mtioy samice Manaler 

Springfield, Virginia Branch
 

ORIGINAL PAGE IS 
OF POOR QUALITY T.t s,,isiou 

Test lnstlrments D~isiont
A-Hor1eyl Inc.
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For 

Instrument Dymec Digital Voltmeter 

Model No. 240i a Serial No. -444-01627 

Submitted by: Mitre Corporation 

This instrument has been calibrated in terms of the standards maintained at this 
laboratory, and was foundto be within-manufacturers specified catalo9 
tolerance. 

The following standards were used as references for this calibration. Their calibra­
tion is traceable to the National Reference Standards maintained by the National 
Bureau of Standards. 
Guildline Instrument mod 9152T4 s/n 35353 NBS# 212530
 
Holt 6A s/n 180 AC Volta9e Test No. 201944
 
Fluke 207-58 s/n 454 Test No. NAA Frequency Emissions
 

Calibration date: 1-8-76 calibration Data Enclosed Yes N4o0 

Temperature: 73 0 F. 

Humidity: 40 % R.H. 

By: -

Approved: / " 
Metrolo¥y Semice Manager 

Springfield, Virginia Branch 

Metrology Services Group 
Test Instruments bivision

Honeywell Inc. 
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For 

Mosl ey X Y Recorder
Instrument 

Model No. 136 Serial No. 17 

Submitted by: 	 Mitre Corporat on 

McLean, Virginia 

This instrument has been calibrated in.terms of the standards maintained at this 
laboratory, and was found to be within manufacturers catalog specified 
tolerance
 

The following standards were used as references for this calibration. Their calibra­
tion is traceable to the National Reference Standards maintained by the National 
Bureau of Standards. -

Guildline Instrument mod 1952T4 -s/n 35353 NBS # 212530
 
Holt 6A s/n 180 AC Voltage Test No. 201944
 
Fluke 207-5B s/n 454 Test No. NAA Frequency Emissions
 

Calibration date:1-8-76 Calibration Data Enclosed Yes 5 No (,A 

Temperature: 73 OF. 

Humidity: 30 _% R.H. 

By: " -

Approved: t" S" M.na .. 

Sprincfield, Vircinia Branch
 

Metrology Sevices Group
 
Test Instruments Divislon
 

HAnynll Inc.
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For 

Instrument Hewlett-Paclcacd X-Y- Recorder 

136A Serial No. 162Model No. 

MitreSubmitted by: 

McLean, Virginia
 

This instrument has been, calibrated in terms of the standards maintained at, this 
laboratory, and was found to be within manufacturers catalog specified 
tolerance.
 

The following standards were used as references for this calibration. Their calibra. 
tion is traceable to the National Reference Standards maintained by the National 
Bureau of Standards. 
GuildLine Instrument mod 9152T4 s/n 35353 NDS# 212530
 
Holt 6A s/n 180 AC Voltage Test No. 201944
 
Fluke 207-5B s/n 454 Test No. NAA Frequency Emissions
 

Calibration date: 1-19-76 Calibration Data Enclosed Yes C] No 0 

Temperature: 73 OF. 

Humidity: 40 % R.H. 

By: - . . .-" 

Approved: - -t ­
tsttolosy ServiteMnqer 

Springfield, Virginia Branch 

Metrology Se vces Group 
Test Instruments DivisionHoneywell Inc, 
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For 

Instrument Cimron Digital Voltmeter 

Model No. 7200A Serial No. 4143 

Submitted by: Mitre Corporation 

McLean, Virginia
 

This instrument has been calibrated in terms of the standards maintained at this 
laboratory, and was found to be within manufacturers specified 
catalog tolerance. 

The following standards were used as references for this calibration. Their calibra­
tion is traceable to the National Reference Standards maintained by the National 
Bureau of Standards. 

Guildline Instrument mod 9152T4 s/n 35353 NBS# 212530
 

Calibration date: 1-8-76 Calibration Data Enclosed Yes fl No E9
 

Temperature: 73 F,
 

Humidity: 40 6%R.H.
 
By: " / • 

Uetrcicgy Strv'c.Approved: / -. 7" MLtnagsr 

Springfield, Virginia Branch 

Metrolog Servlce Group 
Test Instruments Division 

Honeywell Ic 
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For 

Instrument john Fluke PortAble Calibrator 

Model No. 515A Serial No. 6017 

Submitted by: The Mitre Corporation 

McLean, Virginia
 

This instrument has been calibrated interms of the standards maintained at this 
laboratory, and was found to be within manufacturers catalog specified 
tolerance.
 

The following standards were used as references for this calibration. Their calibra­
tion is traceable to the National Reference Standards maintained by the National 
Bureau of Standards. 
Honeywell Thomas ohm mod 1190 s/n M2644 NBS# 211723
 
Guildline Instrument mod 9152T4 s/n 35353 NES# 212530
 
Holt 6A s/n 180 AC Voltage Test No. 201944
 
Fluke 207-53 s/n 454 Test No. WA Frequency Emissions
 
Fluke A-50 s/ 212 est No. 3087-969
 
Calibration date: J-

2
.-

4 Calibration Data Enclosed Yes fl No 0 

Temperature: 73 'F. 

Humidity: 40 6%R.H. 
By: -,-

/
/ " " . .. 

Approved: 
Matriotxy Ssemr. Manajsr 

Sprinzfield. VixRniia Branch 

Metroo Services Group 
Test Instruments Division

Honeywell Inc 
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THE EPPLEY LABORATORY, INC. 
SCIENTIFIC INSTRUMENTS
 

NEWPORT. R 1.02B40 US A.
 

STANDARDIZATION 

OF
 

EPPLEY PRECISION PYRANOMETER
 

° (horizontal surface recELver-180 twin hemisphere)
 

Model PSP Serial Number 13.33F3 Resistance 590 ohm at 24 0C
 

Temperature Compensation
 

Range -20 to + 40 -C
 

This radiometer has been compared with the Eppley group of reference standards. 
under radiation intensities of, about 700 watts meter-2 (roughly one-half a solar con­
stant), the adopted calibration temperature is 25 -C. 

As a result of a series of comparisons, it has been found to develop an emf of. 

-210.56 	 x10-6 volts/watt meter 

27 ,36 milliolts/cal cm-	 min-1 

The calculation of this constant is based on the fact that the relationship between 
radiation intensity and emf is rectilinear to intensities of 1400 watts . meter-2 . This 
pyranometer is linear to within t 0.5 percent up to this intensity. 

The calibration was made with both hemispheres of Schott WG295 (clear) glass. 
This value should be increased for other Schott hemispheres as follows: GG400 = 0.0 

o. 0G530 = 0.5%. RG610 = 1.5% and RG695 = 20% 

According to present accepted practice. this Eppley Pyranometer has been standard­
ized with reference to the International Pyrheliometric Scale 1956. 

Useful conversion facts- I cal-cm-2 min-1 = 697.3 watts/meterz 
I BTU/ft2 -hr 3.153 watts/meter 2 

Date of Test: Iarch 17, 1976 IN CHARGE OF TEST 

The Eppley Laboratory, Inc. 4. " a 

By:y t tVJ 	 t - a S.0. 33068 

Newport, R. .	 Date March 19, 1976 

Shipped to: Nitre Corporation 
M.icLean, Virginia 

Reinarks: 
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APPENDIX III
 

SOLAR PANEL/MODULE
 

ORIGINAL DATA AND CURVES
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More than 200 Solar Panel and Module I-V curves were recorded
 

in the course of this program. Only one set of curves for a full
 

panel and its eight constituent modules is shown here.
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.SOLAR PANEL/MODULE DATA SHEET
 

Z,/_ ___ __ GRAPH NO. & -DATE 

PANEL NO. -15 

RECORDER ZERO SET: HORZ. E 

MODULE NO. 

VERT. 

/ 

(CHECK -V) 

CALIBRATE SCALE: HORIZ. VERT. (CHECK/) 

PYRANOI4TER READING: ____My. 

VOC: 

PANEL TEMP: 

o/__ 

,-

,'f"2 volts 

K-ohms 

TIME oF DAY: 

ISC: 

PYRANOMETER READTNG: 

t/,'_ 

Z 

?, 

- _/ 

-/ " 

73 

hours 

mv, 

mv. 

SID. 

STP. 

CELL 1 

CELL 2: 

: _ _ _ _ _ 

3r/ 

_ _ _ my. 

my. 

STD. CELL 3: .- mv. 

STD.. CELL 4: mv. 

STD. CELL 5: 

SID. CELL TEI4P: 

DIFFUSE ILLU : 

/ , 3-o 

92 

mv. 

K-ohms 

-mv. 

REMARKS: 

OPERATOR: _ __"
 

OBSERVER: AGENCY:
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HIEW LITT-PACKARD 9270-1006 

- - 2---

•7 -'F
 

. .. . : : 

4 fd I" T-1 -11 

ItjLEE = 

VOLAG (2 6-V /ICH 



SOLAR PANEL/MODULE DATA SHEET 

DATE _-/_ _/_ GRAPH NO. _ 

PANEL NO. - MODULE NO. 2 
RECORDER ZERO SET: HORIZ. fl VERT., (CHECKV) 

CALIBRATE SCALE: HORIZ. VERT. (CHECK V/) 

PYRANOMETER READING: 9. My. 

VOC: /. 9 volts 

PANEL TEMP: ,7,CC K-ohms 

TIME OF DAY: /1. -3 hours 

ISc: m-iv. 

PYRANOMETER READING: 9'. 7 mv. 

STD. CELL 1 : "J P'r"2 mv. 

STD. CELL 2: z-ie- mv. 

STD. CELL 3: £!5 0 mv. 

STD. CELL 4: mv. 

STD. CELL 5: miv. 

STD. CELL TEMP: /9, 9 K-ohms 

DIFFUSE ILLUM: 91 v. 

REMARKS: 

OPERATOR: r 4/ 
OBSERVER: AGENCY: 
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SOLAR PANEL/MODULE DATA SHEET
 

c/- fl_.DATE _ 1/i_ _ GRAPH NO. 

PANEL NO. / MODULE NO. .
 

RECORDER ZERO SET': HORIZ..'= VERT, (CHECKV) 

CALIBRATE SCALE: HORIZ,.' - VERT. - XCHECK'V/) 

PYRANONETER READING: 9. 2 my. 

VOC: _________ volts 
PANEL TEMT: _- S" . K-ohms 

TIME OF DAY: /, ; hours 

ISC: _ _ _ _.My. -_. 

PYRANOMETER READING: 40. mv. 

STD. CELL 1 : my. 

STD. CELL 2-: La r / mv. 

STD. CELL 3: '-3 "- my. 

STD. CELL 4: my. 

STD. CELL 5: my. 

STD. CELL TEMP: / 9. 0 K-ohas 

DIFFUSE ILiUM: - /. 9 my. 

REMARKS:
 

OBSERVER: AGENCY:
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SOLAR PANEL/MODULE DATA SHEET 

DATE "-/ _ _ GRAPH NO. 0/4 / 

PANEL NO. MNODULE NO. / 

RECORDER ZERO SET: HORIZ. fl VERT. (CHECKV) 

CALIBRATE SCALE: RORIZ. r VERT. (CHECK N/) 

PYRANOMETER READING: my. 

VOC: 7y, 9 volts 

PANEL TEMP: - - K-ohms 

TIME OF DAY: 1/,. 4 5 hours 

ISC: _ _ _ _ _ _ __ v 

FYRAOMETER READING: mx. 

STD. CELL 1 : s r- / my. 

STD. CELL 2: .5??, 2 my. 

STD. CELL 3: L,3, ?- mv. 

STD. CELL 4: my. 

STD. CELL 5: mv. 

STD. CELL TEMP: ifS / K-ohms 

DIFFUSE ILLUM: /,99' my. 

REMARKS: 

OPERATOR:_______ 

OBSERVER: AGENCY: 
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SOLAR PANEL/MODULE DATA SHEET 

DATE GRAPH NO. 

PANEL NO. j _ . MODULE NO. S 

RECORDER ZERO SET: HORIZ. j= VERT. (CHECK-V) 

CALIBRATE SCALE: HORIZ. = VERT. (CHECK V) 

PYRANOETER READING: 9( 6 F xv. 

VOC: /_ .. ? volts 

PANEL TEMP: 7" 2i K-ohms 

TIME OF DAY: 1/. CJ, hours 

ISC: s­ my. 
PYRANO1ETER READING: 9, 20 xv. 

STD. CELL 1 2 My5"tiv. 

STD. CELL 2: 1 " 9 xxiv. 

STD. CELL 3: "3 xinv. 

STD. CELL 4: my. 

STD. CELL 5: mv. 

STD. CELL TEMP: /to 2 K-ohms 

DIFFUSE ILIUM: ,mv. 

REMARKS: 

OPERATOR: 

OBSERVER: AGENCY: 

A-III.II
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SOLAR PANEL/MODULE DATA SHEET 

DATE _ _ _ _ _ GRAPH NO. cv /4 3 
PANEL NO. 5 MMODULE NO. 4;: 

RECORDER ZERO SET: HORIZ. VERT. -(CHECK /') 

CALIBRATE SCALE: HORIZ.r----- VERT. E (CHECK'%V) 

PYRANOMETER READING: 9. 6 3 my. 

VOC: / "27- volts 

PANEL TEMP: 2, 2/ K-ohms 

TIME OF DAY: __ _ _ _ _ _ _hours 

ISO: -, S 2 my. 

PYRANOMETER READING: 9 6 my. 

STD. CELL 1 : 63_, P my. 

STD. CELL 2: 6 . 9 myo. 

STD. CELL 3: L A. 0 mv. 

STD. CELL 4: mv. 

STD. CELL 5: • • mv. 

STD. CELL TEMP: _ /f-9 - K-ohms 

DIFFUSE ILLUM: .1.99' mv. 

REMARKS: 

OPERTO: 

-OBSERVER: AGENCY: 
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SOLAR PANEL/MODULE DATA SHEET 

DATE e!_/7_ GRAPH NO. 0/ 9' 

PANEL NO. /c MODULE NO. 

RECORDER ZERO SET: HORTZ. VERT. (CHECK -V)
 

CALIBRATE SCALE: HORIZ.-- VERT. (CHECKV)
 

PYRANOMETER READING: 4t 6mv.
 

VOC: 9'. s7 Z volts
 

PANEL TEMP: 7, 3 2 -ohms
 

TIME OF DAY: i_,__ _ hours
 

ISC: _"2,__ my.
 

PYRANOMETER READING: My.
 

STD. CELL 1 : -3,C mv. 

STD. CELL 2: -27 my. 

STD. CELL 3: 5± 7 nv. 

STD. CELL 4: mv. 

STD. CELL 5: mv. 

STD. CELL TEMP: Y'2 K-ohms 

DIFFUSE ILLUM: /" , mv. 

REMARKS: 

OPERATOR: ___ 

OBSERVER: AGENCY:
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SOLAR PANEL/MODULE DATA SHEET 

DATE A? GRAPH NO. __ __ _ _" 

PANEL NO. MODULE NO. _ 

RECORDER ZERO SET: HORIZ.L VERT. ' (CHECK,/) 

CALIBRATE SCALE: HORIZ. r VERT. (CHECK -V) 

PYRANOMETER READING, 9"S:-/ mv. 

VOC: y , o volts 
PANEL TEMP: 2. 3 9 K-ohms 

TIME OF DAY: / 'C hours 

ISC: _ _ _ 5___ _ mv. 

PYRANOMETER READING: 9, 5& mv. 

STD. CELL 1 : At_. 2 my. 

STD. CELL 2: S . P mv. 

STD. CELL 3: Sr . mv. 

STD. CELL 4: mv. 

STD. CELL 5: mv. 

STD. CELL TEMP: /"_K-ohms 

DIFFUSE ILLUM: 7 C6 my. 

REMARKS: 

OPERATOR: 

OBSERVER; AGENCY: 
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SOLAR PANEL/MODULE DATA SHEET 

DATE z fli GRAPHI NO. O/C p 6 
PANEL NO. zs MODULE NO,. t._ __--/ 

RECORDER ZERO SET: HORIZ. VERT. .(CHECKVN) 

CALIBRATE SCALE: HORIZ.[% VERT. (CHECK V) 

PYRANOMETER READING; / my. 

VoC: 2 'o - volts 

PANEL TENP: 2 3 5 K-ohms 

TIME OF DAY: /2: e3 hours 

ISC: el, I/',S'" "my. 

PYRANOMETER READING: 9- my. 

STD. CELL 1 : 52. 9 mv. 

STD. CELL 2: 5-2,2­ my. 

STD. CELL 3: 2, 2-m. 

STD. CELL 4: my. 

STD. CELL 5: my. 

STD. CELL TEMP: /p a K-ohms 

DIFFUSE ILIUM: /. my -9 

REMARKS: 

OPERATOR: _ 

OBSERVER: AGENCY: 
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