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FAULTING PARAMETERS DERIVED FROM COMPUTER
SIMULATION OF EARTHQUAKES

Steven C. Cohen

ABSTRACT

The interrellationships among the Seismic source param-
eters average displacement, rupture length, and strgin energy
release are investigated by computer simulation using a coupled
massive block model of the sliding along an active fault, Aver-
age displacements and energy release vary considerably with the
degree 6f heterogensity in the friction and elastic parameters
used in the model. With high héterogeneity in either paraﬁleter,
average displace_mentrises more rapidly with rupfure length fof

short ruptures than for longer ones. Strain energy release is

determined primarily by the product of dynamic friction, rupture -

lengtl, and average displacement, The observed interrelation-
ships émoﬁg the faulting parameters. are for the most part, con-
sistént with. theoretical afguments ﬁnd experimental déﬁa; By
contrast the _variation .in .the _freduencj of occurrence of simu-

lation events with strain energy release is somewhat different

from the variation ir the frequency of waturally occurring events -

with seismic energy.
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| FAULTING PARAMETERS DERIVED FROM COMPUTER

SIMULATION OF EARTHQUAKES

INTRODUGTION

Computer simulation is a convenient toul for investigating various hypotheses

concerning earthquake mechanics and for exploring the correlations that exist
among the source parameters, Recently we reported (Cohen, 1976, 1977) how
the pattern of simulation events varies with the distribution of elastic, viscous,
and friction constants in Dieteriéh's (1972) elastic and viscoelastic models. In
this paper we present, for the elastic model, data on the correlations among the
average displécément, rupture length, énd strain energy relea_se. We. also ex-

amine the frequency of occurrence of events with varying strain energy release.

The basic features of the elastic model are shown 1n Figure 1. An active
strike slip fault ié represented by a set of coupled mechanical blocks whiéh are
driven along a friction surface by the coupling to a moving plate. The elastic -
constants and the friction strengths may vary from block to block, As the
driving plate moves to the right, tension accumulates in the drivihg springs
until the frictic}l.l'al strength holding one of the blocks in place is exc..eedéd. The
| block.begins. to slide thereby iﬁcreaéing the stress in the. connecting springs
and possibly stimulating the adjacent blocks intb motionf. Events _of‘,;arying
. magnitude, diSplacement, and rupture length are generated,” The spatial-

temporal pattern of events is strongly affected by the form of the friction and
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elastic constant distributions, The details of the system behavior are discussed

by Dieterich (1972) and Cohen (1976, 1977).

The correlations and stafistical features which we present in this paper are o
derived from three representative simulations which are summarized in I'igure

2, In simulation EL-I; the static friction varies by a factor of 3 in a random

s e

manner with a mean value of 2 x 10%° dynes. Th~ elastic constants are uniform.
By contrast in EL-II there is only a very small heterogeneity in the friction
. parameter, +2,5 percent at most, and again there is homogeneity in the elastic.

constants. In EL-III the friction is uniform but the elastic constants vary by a

© factor of 3. We turn now to an examination of the interrelationships among the,
. - L

%,

simulation source parameters.

Average Displacement Versus Rupture Length

The average displacement, Ax, versus rupture length (number of bldcks,
N, displaced in the event) is plotted for EL~I in Figure 8. Tor N less than

four, the mean average displacement rises with increasing rupfure length. In

I L LT TR E T s T TR e R S g

this region block dispiacement is enhanced by simultaneous motion in the adjacent i
* blocks which reduces the restraining forces due to a compression of the corm'e.ct— |
ing spfin'gs; Tor N greater than three or four, the mean averége diépiacement

'shbw,s little fL11~tllel~ sensifivity to the 1engf:h. of the rupture as the dis_placem..ent'.of |

A blobk .is 01ﬂy .iﬁdirect_ly_aff_ecteé by ﬁbtion in more distaﬁt tlﬁan ne#rest

neighbors. . . . . L - : L



o

s
-

The more homogeneous nature of EL-II manifesisﬁjtselffi;x a reduced sensi-
tivity of'average displacement to rupture length as .shown in Tigure 4. Not only
_is the mean average displacemer_xf Jﬁ'gggénsitive to rupture length, but also the
spread of average displacea‘xi’é';lfé values for a fixed rupture length is greatly re- -
duced over those for EL-I, The standard deviations in the average displace-

ments range from ak~ut 40 cm (N = 7) to over L05cm (N = 1) for BL-I, but are

in the range 4-10 cm for EL-II,

The heterogeneity in the spring constants of EL-III produces less sensitivity
in the mean average displacement versus rupture length than does the hetero-
geneity in the friction parame_ter in EL;I. The results for EL-TII are showﬁ in
TFigure b, and the contrast between the behairior of EL~I and EL-III inight he
attributable to the fapt that both the friction and driving spring directly affect

only one block while the connecting spring directly affects two blocks,

Strain Energy Versus Rupture Length

The strain energy released. in the simulation events are shown as a function
of rupture length in Figures 6 through 8, TFor EL-I the mean average énergy
rises faster than linear with rupture length for small numbers of moving blocks
and sztlpllﬁroaches 1inezii'ity forN >3, Tor EL.-I'I' we find E ~ N throughout L;he range

of observed rupf.ure lengths. ’I‘hese.res.ul_ts_ can be explained by considering the

relationship between strain energy release and dynamic friction, £d displacement,

and rupture length:

-Ga
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E= ) ffﬁlld_x.l_ =3 rfax = N<lax> )
i i
where the sum over the N blocks moving in the event, Therefore to the extent
that <f9Ax> is independent of rupture length, E ~ N. For EL-I this is a fair
approxim.ation for N> 3. For EL-~II the near uniformity in the friction distribu~
tions and the previously shown insensitivity of the average displacement to
rupture length make the assumption a good one. For FL-III £ ig unvarying but

<Ax> does increase witii N, We find for this particular case, E=~ N!2, |

Strain Energy Release Versus Av_eragé Di,Spl_ac_:ement

We show in Figureg 9 and 10 the dependence of the released strain energy
on average displacement for EL-I and EI~III respectively, (Because of the
restricted range of average displac'eme'nts for EL-II, the results for this case

are not shown.) The data suggest
log E=A+Blog<Ax> 3 . (2)

~ where both A and B can depend on the numbér of blocks moving in the event, In

the case of EL-I, for N =1, B =2, and the relationship is exact. For N > 2 the

relationship is approximate and B approaches 1 as N increases. In the case of
EL-II the relationship is also exact and B =1, These results are explained

theoretically in the next section,
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Strain Energy Release Versus Product of Rupture Length and Average

Displacement

Several of the results of the previcus sections can be explained in a con-~
venient manner by considering the variation in strain energy release with the
product of rupture length and .average .d.isplacemeht. The results ére shown 11.1
Figures 11 through 13 which we discuss witﬁ the hellp of arguments.presented
by King aﬁd Knopoff (1968), They show that the strain enérgy rgleased in an
e;vent is related to the ax;erage. of pre- and post-event force on the block, F;,

and the displacement hy -

E= 2 Fax (3)
For EL-I and N =1, a simple calculation shows ¥ = fd~ A x, hence E~ Ax? as
confirmed by the data, In another case we suppose the I‘Ti 's can be removed from

under the summation sign and replaced hy a representative value, then

 B=F),Ax.=FN<Ax> -~  (4a)
i _
or
log E = log F +log N <Ax > o (4b)

" TFor EL-I, N> 3 and for EL-II, éll"N, this approximation is a good one as the

data show. For EL-III the relationship is exact., Comparing Equations (2) and

(4b) we see A =.1'og N+log F, B=1,

; ot iy g st | e mr gy = rpem a2 et | o e g rtcaeme e cin b | i e
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Frequency of Oceurrence Versus Strain Energy Release

A well established relationship for the frequency of occurrence, %, of

seismic events of magnitude less than or equal to M is
log F=a - bM ” (5)

Some deviations from this simple relationship are pronounced for very lafge and
very small events, We wish to discover whether a similar relationship can be
established for the frequency and logarithm of strain energy rele:se in simu-
‘lation events., The data shown in Tigure 14 reveal marked 'd.epart:ure from this
simple behavior, This is in contrast to the resulf.s of King (1975) who uses .a
mechanical model sorﬁewhat similaf tc_) oﬁi- computer simulator. He finds
Equation (5) fits his data reasonably well with M replaced hy the logarithm of
the strain energy released. Although there are some differences between the
mechanical and computer simulator models, we are not sure of the origin of

- these different resulté.

CONCLUSIONS
In this paper we have used computer simulation techniques to study the
correlations among the seismic source parameters, We summarize the central

~ conclusions by model.

EL-I - heterogeneous friction - average displacement initially rises with

rupture length, then becomes insensitive to further inereases for .longer rupture




lengths; significant variations in average displacement and energy released in
different events with same rupture length; strain energy release rises as square
of avei‘age di.splacement foi‘ single block i'uptures and approaches a linéar de.-
pendence on the product of yupture length and average displacement as the

length increases.

EL-II - slight friction heterogenei.ty, ofherwise uniform - average displace-
ment only weakly sens_itive to length with little varia.tion among events with
common rupture lengths; strain energy release increases linearly with rupture
length-average displacement product and hence approximately linearly with

rupture length.

EL-III - heterogeneous elasticity - average displacement increases with
rupture length although rise less raﬁid at small rupture Iengi:hs than for BIL-I,
strain energy release is determined by preduct of dynamie friction, number of

blocks in rupture, and average displacement.

In all three simulations there is considerable deviation from a linear re~
lationship betWeen the llogarithm.of event frequer'l'cy and the logarithm of strain

energy release,

+!
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Figure 1.

Figure 2,

Figure 3,

Tigure 4.

Figure 5.

Figure 6.

Figure 7,

- Figure 8.

Figure 9.
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FIGURE CAPTIONS

' Mechanical block representation of fault

Description of the models used in the comyuter simulations

Average displacement versus rupture length for EL~I, The X's
represent mean values and the bars show the range for one standard

deviation about the mean.

Average displacement versus rupture length for EL-II.  The standard -

deviations are too small ( < 10cm) to show on the figure.
Average displacement versus rupture length for EL-III

Energy versus rupture length for EL-I. The X's represent mean
values of log E and the ba. » show the range for one standard deviation

about the mean.

Energy versus rupture length for EL-II. The standard deviations are

" too small (< 0, 01) to show on the figure. -

Energy versus rupture length for EL-III-

Energy versus average displacement for ZL-I, Each point represents

at least one event,
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Figﬁre 10,
Figure 11,
Figure 12,
Figure 13.

Figure 14,

12

Energy versus average displacement.for EL-III

Energy versus rupture length-average displacement product for EL~I
Fnergy versus ‘rupture length-average displacement product for EL-II-
Energy versus rupture 1ength—average diéplacement product for EL—IiI

Fractional frequency of occurrence of events with energy < E

versus E
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AVERAGE DISFLACEMENT

700 T I !
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Figure 5. Average displacement versus rupture length for EL-III
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Figure 6, Energy versus rupture length for EL-I, The X's

represent mean values of log E and the bars show the range for
one standard deviation about the mean,
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Figure 14, Fractional frequency of occurrence of events with
energy <E versus E
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