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AN IN-FLIGHT SIMULATION OF APPROACH
AND LANDING OF A STOL TRANSPORT

WITH ADVERSE GROUND EFFECT

by

"	 David R. Ellis
Princeton University

SUMMARY

The results of an in-flight simulation program undertaken to study

the problems of landing a representative STOL transport in the presence of

adverse ground effects are presented. Landings from a 6 0 , 70 kt approach

were performed with variations in ground effect magnitude, ground effect

lag, and thrust response. Other variations covered the effects of aug-

mented lift response, SAS-failures, turbulence, segmented approach, and

flare warning. In general, the basic STOL airplane required coordinated

use of both stick and throttle for consistently acceptable landings, and the

presence of adverse ground effects made the task significantly more diffi-

cult.Ground effect lag, and good engine response gave noticeable improve-

ment, as did augmented lift response.

INTRODUCTION

Wind tunnel tests and analysis indicate that powered-lift airplanes

operated at high lift coefficients in close proximity to the ground will ex-

hibit adverse ground effects — lift loss, drag reduction, and nose down

pitching moment. The phenomenon appears to be common to all powered-

lift concepts (References I and 2), and brings into question the ability of

the pilot to perform landing maneuvers with desired consistency and ac-

curacy.
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This report presents the results of an in-flight simulation program

undertaken to study the problems of landing a representative STOL transport

(based on the EBF concept of Reference 3) in the presence of adverse ground

effects.

The program was carried out in two stages, the first involving pre-

paration and calibration of the simulator, and some 70 data landings which

explored basic piloting problems for a three-engine thrust case. The second

was more extensive - 340 data landings - with a broadened scope which con-

centrated effort on normal four engine operation and ground effects typical of

a high wing EBF STOL. This second stage featured refinements in the ground

effect simulation, including definition and cancellation of the basic simulator

ground effect, and increased pitch control power for the cases with longitudinal

SAS -off. {The latter step was taken to remedy a control authority limitation

which in retrospect was felt: to be unjustifiably low, and which heavily in-

fluenced the results. }

The bulk of the data presented are from the second stage of testing;

the following subjects are covered in the results:

-Influence. of ground effect magnitude

.Influence of ground effect lag

-Influence of thrust response lag

• Effects of augmented lift response ( 7. 6 s and Z )a
-Effects of SAS failures

• Influence of turbulence

-Segmented approaches (b o/ 40)

. Usefulness of simple flare warning

Both NASA and Princeton evaluation pilots participated in the program,

with most of the data landings being performed by the contractor.
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DESCRIPTION OF THE EXPERIMENT

In-flight Simulator. The in-flight simulator used is pictured in Fig-

ure 1. Appendix A contains a detaile-d description of its systems and opera-

tional features. For this experiment, it is sufficient to note that it is a "fly

by wire" airplane with stability and control characteristics adjusted to match

those of an EBF STOL transport design in an approach and landing configura-

tion; the adverse ground effects associated with high lift coefficient operation

were simulated by making appropriate changes in lift, drag, and pitching mo-

ment as functions of altitude measured with a radar altimeter.'	 8

Flight Pattern and Procedures. The flight pattern and simulated STOL	 4
p

runway are shown in Figures 2 and'3. The evaluation pilot normally was given

control on the crosswind leg and after.lining up with the runway tracked a glide -

pathpath defined by a precision optical approach aid. Following the flare and touch-

clown, control was assumed by the safety pilot who carried out any configuration

changes called for and flew the airplane into position for the next run.

K

	

	 Most of the testing was done with a 6°.giideslope and an approach speed

of 70 knots, which gave a nominal descent rate of 12.6 ft/ sec. (3. 8 m/ sec).

Some special runs were carried out or.. a two segment approach with upper and

lower slopes of 60 and 4o respectively.
4

The STOL runway markings were based upon the criteria of Reference 4; rr
the resulting location of the touchdown zone with respect to the glideslope was

found to be. satisfactory for landings from the normal 60. approach.

Data Collection. Time histories of control inputs and airplane motion
s

variables were obtained by means of telemetry. The data sample shown as

Figure 4 displays five channels which were of primary interest: altitude and

altitude rate, obtained from the radar altimeter; pilot's stick and throttle in-

puts; and a touchdown indication from an accelerometer mounted on the train

i
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landing gear strut (the spike produced by the landing impact is marked with

a triangle.

The spike in the h and 'h 4e-r^_,s about five seconds before touchdown

was produced by a reflector positioned as shown in Figure 3; if the airplane

is	 on the giideslope at that paint, the altimeter should

indicate 40 ft.

The h trace shown has been smoothed with a filter having a 0.4 sec

time constant, and this must be accounted for in determining touchdown sink

rate.

Additional data were obtained in the form of pilot commentary and

ratings. The familiar Cooper-Harper scale of Reference 5 was used.

a

1
n..-.t.-•-,.	 ^_.^^'^i.^tb.&`^ii_u.eW Y:is`sw.Ad^.ule:.^.:.^yax.t -̂ :v'^..z ^}.^_u .r	 -. .., fir'.
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5.

TEST CONFIGURATIONS

Basic STOL Con£i&uration. The simulation was based upon the exter-

nally-blown flap transport studied in Reference 3 . This was a high-wing,

four -engine, T -tail configuration with the following general features:

Weight	 244, 660 N (55. 000 lb)

Thrust-weight ratio
(4-engines)	 o.6

Wing loading	 3590 N/ rna (75 lb/ £ta )

Span	 22. 2m (73 ft)

For a 70 kt approach condition, the simulated 'longitudinal charac-

teristics were as follows:

	

SAS-Off	 SAS -On

• Pitch Dynamics	 Conventional,	 9, 8 Augmentation,

	

`	 W	 = 1 rad/ sec	 mg = 1.5 rad/ sec
P

	

j	 S SP = 0.8	 ^a = o. 6

W = 0.22	 No phugoid
p

. 001
p

-Pitch Control	 9	 =0.78 rad/seca Attitude Command
i	 max

'i 91 6 s = 1 .6 0 / cm (40 / in.)

	

r	 Attitude Trim

	

? 	 2. 0 1 sec

	

!	 • dy/ du, (0/ kt)	 0. 72 (Backside)	 h- 0 (X Augmentation)
U

i

-Lift Response, Z a  V	 0. 38 ft/ sec.a / rad	 0.38

	

j	 n/ a	 1.4 g/ rad	 1.4
I

i

1k

{	

z

4

1	 3

I

i
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The corresponding lateral directional characteristics were:

• Yaw Control, N6 r6rmax

• Roll Control, L'b 6aa max

-Roll Mode Time Constant,TY	 r
• Dutch Roll Frequency, wd

r	 • Dutch Roll Damping Ratio, ^d

• Spiral Mode

• Dihedral Effect, LA

0.4 rad/ seta

0.5.rad/ secs

0. 5 sec (p Augmentation)

1. 0 rad/ sec

0.40 Augmentation)

Slight Divergence

0.4 rad/ secs / rad

A list of dimensional stability derivatives is given in Appendix B.

The cockpit controls were conventional stick, rudder pedals, and throttles,

with no perceptable nonlinearities or breakout forces. Force gradients and

maximum displacements were:

Deflection	 Gradient

19. 8 crn ( 5. 5 in.) aft	 7. 9 N/ cm (4. 5 lb/ in. )

10.4 cm ( 4. 0 in.) forward

±7.6 cm (f3. 0 in.-)
	

4. 3 N/ cm (Z. 5 lb/ in. )

f5. 1 cm (±Z. 0 in. )
	

43 N/ cm (Z5 lb/ . in. )

00-60°
	

Adjustable Friction

Instruments were arranged in a standard "T" layout.
r
F Ground Effect Variation. Ground effect variations were based upon in-

formation derived from Reference 3, with later revisions suggested by the

sponsor. The basic lift, drag, and pitching moment changes used in the ex-

periment are shown in Figure 5. These are plotted for a particular out-of-

ground-effect lift coefficient, C La = 5, and display a characteristic lift loss

i
Control

Stic k

Pitch

Roll

Pedals

Throttle
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(about 12% at touchdown), drag decrease, and nose down pitching moment as

a function of wing height to wing span ratio, h/ b.

The curves shown as 'solid lines in the figure were approximated for

simulation purposes by straight line segments starting at h/ b = 0. 7; account-

ing for the differing geometries of the transport and the Navion (and consider-

ing the landing gear ground contact points-to be superimposed for the two

machines), this corresponded to a simulator wheel height of 12.2 to (40 ft).

In addition to the variation with altitude shown in Figure 5, the ground

effects changed as a function of lift coefficient, becoming more pronounced as

CL. increased. The variation of lift loss with C L. is shown in the upper part

of Figure 6. in flight, the changes in CL are due to changes in angle of at-

tack, and thrust, and the lower half of Figure 6 displays the combined effects

of ground proximity, thrust variation, and angle of attack change on lift.

Here each quadrilateral represents the conditions at a givzn height, h/ b,

with the small cross in the center denoting the lift for a combination of angle

of attack and thrust which give the nominal test lift coefficient, CL,, = 4. 53

(corresponding to an approach speed VA = 70 kt). The corners of the quadri-
c

laterals represent the lift condition resulting from changing angle of attack

by -L1 0 and thrust lever position by ±13°. The general lowering of the small

figures for successively smaller values of h/ b is the direct effect of altitude;

the apparent skewing, or rotation, represents the secondary decrease in ef-

fectiveness of angle of attack and thrust changes as the airplane approaches

the ground.

In the simulation these ground effects were accounted for by driving

the Navion flap according to

L	 6Z	 62Z	 a
Z StN66

flV = na C(h )S (aah) as ( 66 8 ) 48th
S	 S	 t S
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to produce the same vertical acceleration that the STOL would experience

with corresponding changes in altitude, angle of attack, and thrust lever

position. Similar changes in drag and pitching moment ground effects take

place as a and $ t vary, and were handled in the same manner as lift varia-

tions; appropriate X-accelerations were produced by the simulator power-

' plant and pitching accelerations by the elevator. The procedures used to

estimate the required derivatives and calibrate the system are covered in

Reference 6.

The altitude measurement required for the simulation was done by

means of a radar altimeter (Honeywell Model 7182) which is described in

Reference 7.

The normal ground effects of the Navion airframe were canceled by

use of radar altimeter signals to flap and elevator, the functions of altitude

being determined by a combination of calculation (for lift) and flight measure -.	 ,.
ment (pitching moment). Navion drag variations were not accounted for,

since they appeared to produce no significant speed change during the ab-

breviated STOL flare. An in-flight calibration procedure consisting of
t

steady, shallow approaches to ground contact was used to confirm that the

simulator had essentially no response due to ground proximity. Further

details of this procedure may be found in Reference 8 .
i

Ground Effect La . The STOL ground effect functions discussed

above do not take into account possible-unsteady effects which could delay

the onset of the force and moment changes. The experiments described in

Reference 9 suggest that such effects could exist, although the results are
t

difficult to interpret in a useful quantitative way.
i

Despite the lack of precise knowledge of the phenomenon, it seemucF

desirable to explore the influence of such lags on the landing maneuver, and K

several variations were simulated by passing the .radar altitude signal

through a first-order lag network. The particular cases tried'had first

order time constants, Th , of U, 4.2, and 4.4 sec. 	 1

j

ry'

f
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	 Thrust Response. The data available indicated, that the EBF STOL

would be operating with at least 50% of maximum thrust in the trimmed ap-

proach condition, in which case the engine response characteristics could

be approximated as first-order lags without seriously compromising the

simulation. This was particularly true if the intermediate thrust level ex-

r'
	 ceeded 70%. A response lag of 0.4 sec was selected for the standard, or

baseline, configuration; variations of zero, 0. 25, and 0. 6 sec were avail-

able as alternatives.

Strictly speaking, the stated lag applied not to the STOL engine re-
i'.	 sponse, but to the lift and moment responses to a thrust command. The
f:	 simulated thrust, or X-force, response was further slowed by the natural

lag of the Navion engine, but this is known to be shorter than 0.25 sec, and

was felt not to be a significant factor because the predominant response to

a thrust command in the simulated STOL airplane is a change in lift

(X6t/ Z 6 t = -0. 196 in the approach and landing configuration).

Turbulence Simulation. The influence of atmospheric turbulence was
t-.

studied by introducing filtered noise signals from an on-board tape recorder

to the control surfaces in the manner described in Reference 10. Vertical

gusts and side gusts with an RMS intensity of 1 m/ sec (3 ft/ sec) were simu-

lated; fore-and-aft gust components were not accounted for.

Other Configuration Variables. The program included several other

variations which are covered in appropriate detail in the section on results.

They include

-Flare warning instrumentation

• Segmented glide slope

• SAS -failures

- Lift response augmentation through Z6s or ZC.
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DISCUSSION OF RESULTS

Background. Before considering the results in detail, it is useful to

have in mind the framework and constraints within which the evaluation pilots 	 t

were operating:

-Operations were in day VFR conditions with precision optical ap-

proach guidance, and the pilot rating (or workload evaluation)

sough, was for that situation; comments on the possible influence	 I

of night or IFR operation or other factors were welcomed, but

extrapolation of the rating was discouraged since such conditions 	 s
s_

were not actually simulated.

;
	 • Touchdowns were to be made in the marked 200 ft (60m) zone on

the runway, but at a low sink rate if possible. Touchdown point

precision within the zone was not to be emphasized at the expense

of hard landings. Precise tracking of the 6 0 optical guidance down

to the point of flare initiation was encouraged.

y	 . For purposes of judging adequacy of performance (which the pilot

.	 must do in order to use the rating system), the somewhat arbitrary

concensus was that touchdown sink rates less than 3.5 ft/ sec

(— I m/ sec) were clearly satisfactory, and that 6. 5 ft/ sec (---Z m/ sec)

was marginally acceptable.

• The pilots could not expect conventional transport control techniques

to yield acceptable landings; they were instructed to use any tech-

nique which would give consistent results, and then rate the task in

i^
	 terms of difficulty and workload.

r

	

	 Ground Effect Magnitude. The influence of ground effect magnitude is

presented in Figure 7, where landing performance and pilot rating are shown
a:	

for variations in lift ground effect, with and without longitudinal SAS. The

s
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level of ground effect is noted in terms of 6C L/ CLm for the nominal approac.

condition, CL,. = 4.53; off-nominal values of angle of attack or thrust setting

would vary the lift change as indicated in the precedi.;ig section on configura-

tions. Data shown are for the "baseline" case with ali engines .operating,

normal thrust response (TT = 0.4 sec), no ground effect lag, and no simu-

lated turbulence.

The genert.l trend of piloting performance is for dispersion in both

touchdown'sink rate and touchdown distance to increase as the ground effect

becomes more negative, although almost all of the landings were accom-

plished with less than 5 ft/ sec (1.5 m/ sec) vertical velocity and within the

confines of the 200 ft (60 nn) marked touchdown zone on the runway. For

any one case, some of the dispersion might be attributed to atmospheric

conditions (head or tailwind components of up to 5 kt were allowable during

testing, as long as turbulence and shear were not factors), but the systematic

degradation of pilot rating indicates increasing difficulty with the flare maneu-

ver as the ground effect becomes adverse.

The results and the pilot commentary support the idea that technique

and experience were critical factors in achieving consistently acceptable

landings. The pilots quickly determined that a complete flare from the 6 
approach could not be accomplished with an angle of attack increase alone,

ever. with the positive ground effect airplane, due to the low level of lift re-

sponse (2 / V =` 0. 38); this was aggravated in the SAS-off case by being wella
on the backside of the thrust-required curve. Thus some thrust application

during the flare was required, but both timing and amount were critical be -

cause of the engine response lag and because there was sufficient thrust

available to cause an overflare if the input was too large. The short dura-

tion of the flare maneuver- together with the lag in response tended to make
k'
`	 precise modulation impossible.
f
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The technique of shallowing the descent with a partial power applica-

tion and then holding attitude constant until touchdown was found to be feasible

with positive and zero ground effect cases, although the thrust application was

still somewhat critical. With negative ground effect this procedure al-

most invariably led to a build-up in sink rate and a: shorter, harder touch-.
down than anticipated.

Some of these problems with control application are evident in the

left half of Figure 8, which presents stick and throttle time histories for

three successive landings. The configuration was SAS-off with negative

ground effect. In this particular case only three-engine thrust was avail-

able but this was still sufficient to overflare the airplane if applied early;

the main difference to the pilot was lowered throttle sensiti%,-ity compared

to the four-engine machine. (This case is not covered in Figure 7. )

The use of both stick and throttle is apparent, but the timing of the

thrust application is different for each run. An early power advance -• as

much as 6 seconds prior to touchdown - clearly improves the touchdown

sinl: rate results. A last-moment thrust command and aft stick movement

may be noted, undoubtedly because both the lift loss and nose -down 1-noments

from the ground effect are most strongly apparent just prior to touchdown.

An interesting small detail is the stick reversal at about one'second prior

to touchdown on the third landing (solid line), probably an attempt to counter

the combined effects of maximum..thrust and overrotation.

The right half of Figure 8 illustrates the technique which produced

consistent .results for one pilot-. Here the configuration is SAS-on, although

the same procedure was equally effective SAS -off; ground effect wus nega-

tive, and four-engine thrust was simulated. Stick and thrust lever are both

being used, but the power application is well in advance of touchdown and
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clearly leads any large attitude command. According to this pilot the timing

and magnitude of the power advance were based largely on experience with the

configuration, being early enough to compensate for the slow engine response,

and large enough to provide mc!3t of the lift increase needed in the flare with-

out causing ballooning. Attitude (or angle of attack) was then modulated with
b

the stick during the last stages of the landing to counter the ground effect and

hold the sink rate to an- acceptable value. Each landing was likely to be slightly

different due to being high or low on the approach path, being fast or slow, or

having a headwind or tailwind; however, the pitch response was fast enough to

permit correction for the typical variations seen in the test program.

Although consistently acceptable touchdowns were obtained with this

technique, the pilot rated it 4. 0, commenting that although he felt the available

controls vie .e being. used to best advantage, the task still demanded a good level

of anticipation and coordination. He also pointed out that he was actively using

all of the cues available in the VFR test situation, and that the results might

degrade significantly for night or poor weather operations.

Ground Effect Lag. As noted in the section on configurations, there

was interest in determining how a delay in build-up of the ground effect would

influence the piloting problems in the flare maneuver. This was simulated by

inserting a first--order lag in the output signal of the radar altimeter; 7'h is

the time constant of that lagged signal.

The results of landings with two values of the ground effect lag are

shown in Figure 9, compared with-results for no lag. The basic airplane

was the same in each case, with negative ground effect, SAS -on, and standard

engine response, (7
t 

= 0.4 sec).

Touchdown performance tended to improve somewhat even with the

0.2 sec lag, with a high incidence of landings at less than 3.5 ft/ sec (I m/ sec)

W	 and in the middle of the landing zone.. Further improvement was obtained with
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the 0.4 sec lag, with results similar to those shown in Figure 7 for the positive

ground effect case.

The pilot ratings improved by nearly one unit in going from no lag to a

0.4 sec lag, corresponding to an easing of difficulties with the flare. Even

the small lag -gave a noticeable lessening of the tendency for the airplanes to

"fall out" at the last moment which normally led to increased sink rates and

the need for rapid pitch adjustments. The landing technique with rh = 0.4 sec

could be changed to one of breaking the descent with thrust, followed by a

modest attitude increase which was then held fairly constant to touchdown.

With lag present, the firmer touchdowns were due mainly to mishand-

ling of the thrust addition. Flaring too high and floating long enough for the

ground effect to build up to its full magnitude was not experienced, although

it was Expected to be a problem. The evaluation pilot for this series of tests

was relatively experienced in the basic STOL airplane for all levels of ground

effect, which may have been why this situation dial not occur.

To summarize, on the basis of this limited investigation, even small

delays in the buildup of negative ground effect appear to be noticeable and

help to alleviate the landing problems.

Thrust response Lag. Because a timely thrust, and hence lift, addi-

tion was found to be necessary to flare the STOL airplane from a 60 approach,

the simulated engine response lag was immediately picked out by the pilots as

a factor which influenced the success of the flare maneuver. In particular,

they commented that the basic lag, which was approximated as a first-order

function with a time constant r t = 0.4 sec, was long enough to interfere with

their judgment of how much power to use in the initial stages of the flare, and

to almost completely preclude precise ,thrust modulation in the last two or

three seconids before touchdown. This led to the use of the technique discussed

previously: an early, almost open-loop thrust command, with precise flight
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The results of a series of runs in which the simulated thrust response

was made both smaller and larger than the T t = 0.4 sec value are shown in

Figure 10. The configuration was the basic SAS -on four-engine STOL with

negative ground effect. For purposes of comparison, some runs done during

the same period by the same pilot with the standard 0.4 sec thrust response

are shown on the lower- left plot.

With the response quickened to an equivalent first-order Tt = 0.25 sec,

a definite improvement was noted, both in performance and rating. For the"

first time the pilots felt they had a thrust/ lift control which was fast enough

to allow modulation of sink rate during the flare, and in fact to permit.some

influence over touchdown point within the landing zone. The pilot rating im-

proved from a deficient but acceptable 4. 0 to the marginally-satisfactory

level 3. 5.

The improving trend continued with the thrust response lag entirely

removed. The pilot on this abbreviated series felt that he now had the means

to exercise consistent control over both sink rate and distance, through the

thrust timing was still improtant', and the landing still demanded coordination
s

of a4itude and thrust. (The one firm, slightly short, landing shown was due

to misjudgment in an attempt to land near the beginning of the touchdown zone. )

Making. the thrust response slower than the basic value resulted in some

degradation in rating, as shown in the lower right plot of Figure 10. The pilot

commented that he was entirely committed to the early, near-open-loop thrust

technique with that much lag (T t = 0. b sec), and for the series of runs flown,

the results were certainly -acceptable. However, those particular landings

were done consecutively during the latter part of one test period, and the pilot

had developed a very good feel for the timing and amount of thrust needed; he

doubted that he could perform as well if wind conditions changed, or if he had

not had so much recent practice. On the other hand, he suggested that with

the particular technique used, which did not demand quick thrust modulation,

the thrust lag could possibly be somewhat longer yet without causing much

degradation.

r
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It is useful to note that all levels of thrust response tested were ade-

quate for flying the precision optical approach, at least in smooth air.

Augmented Lift Response. The basic STOL airplane with its low lift

response to angle of attack (Z a / V = . 38) could not be adequately flared from

a 60 approach with elevator alone, and required a relatively difficult coordina-

tion of stick and throttle for consistently acceptable landings. A brief series

of runs was undertaken with augmented lift response to determine what bene-

fits, if any, would result from allowing the pilot to use a more conventional

flare technique.

Two different methods of augmenting the lift response were tried: a

lift command directly from the pilot's stick (Z bs ), and an increased angle of

attack response (Z ce ). The results of a few trials with these systems in op-

eration are shown in Figure 11. The basic configuration was SAS-on, four-

engine thrust with standard 0. 4 sec response, and negative ground effect.

The shaded areas in the figures represent the envelope of results obtained

without lift augmentation.

Although there are too few data points to make firm conclusions, the

trend is toward definite improvement in both performance and pilot rating

with even relatively small levels of augmentation. In the case of the direct

interconnect between stick and lift, the pilot appreciated the almost direct

control over sink .rate., As in the case of improved thrust response, he

could begin to be concerned over which half of the landing zone to use. A 	 {
t

rating change from 3.5 to 2.5 was obtainable (note that a 0.2 sec ground

effect lag was present fcr these runs), for favorable levels of Z6 s : a too-

sensitive control caused a return to the original 3.5 rating.

Similar irriprovement was noted for straight Z augmentation on thea 

basic airplane with no ground effect lag. The pilot felt that with practice he

might be able to dispense entirely with a thrust advance, and have consistently.

satisfactory, touchdowns in mid-zone. Even with a brief exposure, however,

the extra lift response was confidence-inspiring.
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SAS-Failures. Except for the SAS-off data shown in the section on the

influence of ground effect magnitude, the results discussed thus far have been

for the fully augmented STOL. A brief series of special runs, was made to

explore the influence of selective, failures in the SAS system, with the results

shown in Figure 12. Negative ground effect (no lag) and standard four-engine

response are common to all of the points shown. The shaded area is an en-

velope of normal SAS-on landings, with a pilot rating of 4. 0.

As noted on the figure, separate attitude hold and pitch damper failures

caused no significant change in landing performance, but degraded the rating

to 4. 5 in each case. In the case of attitude-hold failure, the pitch damping

was still sufficient to permit manual attitude control; for the damper failure
a

case, the attitude hold still provided basic stabilization and the pilot apps-	 F

rently could cope with the reduced damping.
i

Autothrottle failure was of little consequence, probably because in 	 r

the simulation a strong frontside characteristic was not provided (with auto- 	 i

throttle on, dy/ dV a! 0), and the pilots were already accustomed to control-

ling glide path with thrust and speed with attitude; this was the required

technique with autothrottle off. The abbreviated nature of the flare, along 	 }

with the forward component of thrust accompanying the required throttle

advance apparently prevented the backside characteristic from influencing

the landing itself.

11lfluence of Turbulence. The influence of atmospheric disturbances

was explored with a short series of special nuns using simulated turbulence

in the manner discussed in , the section on experimental procedure. As noted

there, a vertical and side gust field with an RMS velocity Gw = Crv = 3 ft/ sec

(-- 1 m/ sec) was u.sed. The pilot rating results may be summarized as fol-

lows for the baseline STOL machine with negative ground effect (no lag), and

standard four -engine thrust with 7' t = 0.4 sec:

^•• --:t'. .._	 -:,^s i^4Z. ..^.w^^. ,^r€:.;3^	 ^„^.t^'_..va,^,. t:v.:ss.^...^.̂'^ai1s_r	 ,^"	 a.	
r ^. f 	 r	 r	

__	
!^^
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Pilot Rating
Configuration	 In Turb.	 No Turb.

SAS -O n	 5.5-6.5	 4

SAS -Off
	

6.5-7	 4.5

Pitch Damper Failed	 7	 5

Although it was generally possible to maneuver the airplane into the

vicinity of the touchdown zone (a landing data point for the damper -failed case

is shown on Figure 12), the ratings indicate a high degree of apprehension over

the effects of the gusts during the flare. With the normal thrust response lag

and lift response, the pilots felt that they did not have enough control over the

higher frequency heave. excursions to prevent being dropped onto the runway

prematurely, or ballooned upward with subsequent recovery problerris. They

also noted that the overall physical workload was very high, especially with

the pitch damper failed or SAS-off.

These findings should be qualified by noting that the simulation was in-

correct in not diminishing the heave gusts as a function of altitude near the

ground, and in not providing a simulation of the fore-and-aft gust component.

In a way, the two deficiencies tend to compensate for one another close to the

ground, since in actual practice the u-gusts remain to upset the airplane while

the w-gusts diminish in magnitude; however, the disturbance inputs to the air-

plane are not the same for the two gust components, so the effect achieved in

this simulation is not realistic:.

Despite the deficiencies in the simulation, however, the results con-

firm that gust sensitivity is an extremely important consideration for_STOL

landing operations.

Segmented Approaches. A'flare initiated directly from the 6 o approach

impressed some of the pilots as being an unnecessarily abrupt maneuver, and

they indicated Coat they would feel considerably more comfortable with a shal-

lower stabilized final descent. This led to trials with a b
0 / 4° segmented

9	 '	 r
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approach, with separate optical guidance provided for each angle as shown in
Figure 13.

The landing performance results are shown in Figure 14; the airplane

configuration was SAS-on, negative ground effect, with standard four-engine

thrust (7t = 0.4 sec). During some of the landings the 0.?. sec ground effect

lag was present, and these- runs are indicated by solid symbols. Data points

for several glide slope intersection heights are shown, ranging from hi =
,straight 4 0 approach) to a close-in hi = 50 ft (15 m). For the latter case the

distance from the glide slope "corner" to the touchdown zone threshold was

about 750 ft (230m), or a little over six seconds at the nominal 70 kt approach
speed.

The landing performance is seen to be uniformly good, the concentra-

tion toward the end of the zone being .at least partly due to the fact that the

guidance light bars were not moved away from the touchdown zone to compen-

sate for the shallower approach.

The segmented approach itself posed no problems, even for the close-in

intersect cases, but opinion was divided over whether or not the shallow final

segment made the. landing easier. The pilot with the most experience with 60

approaches (more than 200 landings) felt that there was no significant improv -

ment; other pilots with less than six-degree approach experience with this type

of airplane felt more confident of making consistently acceptable landings.

Flare Warning. The necessity for a thrust addition to help flare the

simulated STOL airplane, and the critical timing involved, have been men-

tioned repeatedly. This has led to simulator studies of .flare-.director con-

cepts (Reference 11), and in the case of the present program, to an experi-

ment in providing simple cueing to the pilot in the form of a flare imminence
indicator,

The scheme tried, shown in Figure 15, consisted of a meter on the

glare shield, close to the pilot's line of sight, driven by the radar altimeter
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signal. The meter needle started a downward motion of a selectable altitude h,

and hit the bottom stop at h2 = 40 ft (12 m), the average altitude at which the

pilots tended to initiate a thrust advance for a flare from a b° approach. A

few trials indicated that h, = 80 ft (24 m) gave a suitable time (approximately

3 seconds) and altitude increment for the pilot to be warned of the impending

flare maneaver.

Results with and without the flare warning are shown in Figure lb for

the SAS-on, negative ground effect, four-engine (Tt = 0.4 sec) airplane. No

significant improvement in performance was noted, except possibly for .less

tendency to undershoot, which also could be attributed to more piiirt experi-

ence with the machine at this stage of the program.

Th	 1	 h t'd 4-1-1
	 h	 ie pl ots w o rre e c.evice were not ent used, c aiming that it

was distracting to have to focus their attention inside the cockpit at such a

late stage of the approach, and that given the usual variations in speed and
f

position at the flare initiation point, the information given by the meter was

not very helpful. In particular, they still had no guidance other than their

own judgment as to the amount of thrust advance needed, a factor equal in

importance to the timing of the action.

Although this particular device proved not to be effective, the pilots

stressed the desirability of some sort of flare director instrumentation which

would be usable while looking outside, and which would help with thrust manage -

ment throughout the approach, flare, and touchdown. As flown, the task was

demanding even under calm, daylight conditions, with a pilot practiced and	 !
.	 i

proficient in the airplane;.the possibilities for degradation seemed obvious.	 j

Y
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CONCLUSIONS

This report presents results of an in-flight investigation of piloting;

problems involved in landing a simulated powered-lift STOL transport ex-

hibiting the form of ground effects associated with high-lift coefficient op-

eration. Operations were in daylight, VFR conditions, using precision

optical approach guidance. The majority of the landings were performed

out of a 6 0 , 70 kt approach, with little or no wind or turbulence. Simu-

lated turbulence was introduced on selected runs to determine its influ-

ence. Pilots were instructed to land within a marked touchdown zone,

but at as low a sink rate as possible.

The following conclusions are based upon consideration of both

landing performance measurements and pilot assessments:

The basic STOL configuration required both a thrust advance

and an angle of attack increase to flare to a low sink rate at

touchdown; experience and technique are major factors in ob-

taining consistent, satisfactory results.

The presence of adverse ground effect, particul;7,,rly lift loss,

clearly contributes to piloting difficulties, and accentuates

other airplane deficiencies such as low Za and poor thrust

response,

Even small lags in the onset of lift loss ease the landing task.

-Fast engine response (that is, 7"t < 0.4 sec) is beneficial, re-

sulting in improved touchdown performance and pilot confidence.

• Augmenting the lift response with either Z S or Z  interconnects

is beneficial, allowing more conventional piloting technique and

making the thrust increase in the flare less critical.

F
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• The presence of turbulence - like disturbanc ,_-s caused a marked

increase in workload and erosion of pilot confidence, particularly

with a failed pitch damper.

-No clear advantage could be seen in a small sampling of 6 0 /40

segmented approaches, although some pilots felt more com-

fortable flaring from the shallower final .segment.

Simple flare warning in the form of an altitude cue is of little

help in the landing maneuver; guidance as to the magnitude as

well e.s the timing of the thrust increase is needed.

n
E %:
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APPENDIX A

THE IN -FLIGHT SIMULATOR	 f

GENERAL DESCRIPTION

The In-flight Simulator is based upon a modified North Ar; erican
li Navion airframe; the power plant is a Teledyne-Continental IO-520B-engine

of 212. b kilowatts (285 hp) driving a McCauley constant speed propeller.
f

Gross weight has been increased from the original 12230 to 14010 N(2570 to

3 15 0 lb).

Several significant airframe modifications were made to im-

prove the research capability of the machine:

The flap hinging and actuation were changed to allow up, as well as
fi

down, deflection over a y-30 deg range, resulting in increased lift modula-

tion authority and smaller drag changes compared to the previous 0-40 deg

down-only flap.	 Aerodynamics of the basic airframe and of this flap ar-

rangement. were explored in the full-scale wind tunnel tests reported in

References Al and A2.
c The normal Navion main landing gear struts were replaced with those

from a Camair twin (Navion conversion with nearly 4077 increase in. gross

weight).	 Drop tests were conducted to optimize oleo strut inflation and ori-

fice size, the final results indicatiag that the landing sink rate may be as

hicrh as 3. 8 m/ s (12. 5 ft/ s before permanent set will occur in the amain gear

or attacking structure. 	 The original Navion nose gear strut was retained,

s but adjacent attachment fittings and structure were strengthened.

Other changes included redesign and relocation of the instrument

panel, and incorporation of a single rear seat arrangement in place of tk,,-

former bench seat in order to accommodate electronics and instrumentation

equipment.
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VARIABLE RESPONSE CONTROL SYSTEM

The in-flight simulator utilizes what is now commonly known as a

"fly-by-wire" control system, that is, power-actuated control surfaces

commanded by electrical signals. The signals come from the various cock-

pit controllers and motion sensors, and when appropriately processed and

summed, provide a net signal to each servo -actuator, and, hence, an air-

plane response of a particular character and magnitude. In this case, the

servos are hydraulic, supplied by an engine-driven hydraulic pump deliver-

ing about .03 ms / min at 5 x 10 6 N/ m2 (9 gpm at 725 psi pressure).

Independent control over the three angular and two of the three linear

degrees of freedom is provided for - the missing one being sideways motion.

MOMENT CONTROLS - Control over pitching, rolling, and yawing

are through conventional elevator, aileron, and rudder control surfaces.

The full authority (that is, maximum travel) of each surface is available,

and the maximum deflection rate in each case is about 70 deg/ s. At a

typical low operating speed of 70 knots, the available control powers are,

respectively

Pitch: ±4.4 rad/ s's (from trim)

R oil: ±4. 1 rad/ s2

Yaw: fl. 3 rad/ s2

The presently available inputs to each of these controls are shown in

Table A 1.

NORMAL FORCE CONTROL - Independent control over normal ac-

celer.atio,. is exercised through the Navion flap, modified to deflect up, as

well as down, through a =30 deg mange. The upward motion provides in-

creased lift modulation authority and tends to minimize the problems of

drag and angle of zero lift changes.

.W
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TABLE AI

INPUTS TO MOMENT CONTROLS

Channel	 Input Function Varied

Pitch	 Control column displacement Control sensitivity

.	 Thrust lever Simulated moment due to thrust

Column thumbwheel Simulated .DLC moment

Radar altitude Ground effect moment

Airspeed Speed stability

Angle of attack Static stability

Pitch attitude Attitude hold sensitivity

Pitch rate Pitch damping

Flap angle Trim change from flap

Flap rate Moment from flap rate
(approximate Ma }

Integral of column displacement Rate command gain

Simulated turbulence Turbulence response

Roll	 Wheel displacement Control sensitivity

Sideslip Dihedral effect

Roll rate Roll damping

Yaw rate Roll due to yaw rate

Rudder pedal displacement Roll due to rudder

Simulated turbulence Turbulence response

Yaw	 Rudder pedal displacement Control sensitivity
Sideslip Directional. stability

Yaw rate Yaw damping
Roll rate Yaw due to roll rate
Wheel displacement Yaw due to aileron
Simulated turbulence Turbulence response
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Actuation is hydraulic, with a maximum available surface rate of

110 deg/ s. At 70 knots, the available authority is slightly more than ±0. 5g.

Inputs presently available are shown in Table AZ.

THRUST CONTROL - Thrust/ drag modulation is by direct con-

trol of the engine throttle with an eiectrohydraulic servoactuator. At maxi-

mum continuous power the rate of climb is about 1000 ft/ min (300 rn/ min);

the maximum descent angle with throttle closed and V = 70 kt is y ^' - 90.
Inputs to the thrust/ drag modulation system are shown in Table A3.

INTERCONNECTS - It may be noted in the lists of inputs for the sys-

tem (Tables A 1-A3) that several coupling functions are provided. For some

experiments, it is desirable to remove interacting effects in the basic air-

frame. lift and moment changes from thrust may be eliminated with inter-

connects between the throttle actuator and the flap and elevator; and pitching

moments due to flap angle and flap rate are countered with inputs to the ele-

vator.

Simulated interacting effects are handled by using inputs from the

various cockpit controllers; pitching moments and lift changes due to power

are provided by interconnecting the elevator and the flap with the thrust lever

(M6 , L^r^ T ); and lift and drag changes due to pitch controller displacement

are represented in L6  and D,5 S . Other controllers may be similarly inter-

connected.

A

+	 u

l
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'rTABLE AZ
t

INPUTS TO NORMAL FORCE CONTROL

t

Input Function Varied

Control column displacement Lift due to control (simulates elevator lift,
or direct lift control integratedgr	 with E.
c olumn)

` Thrust ]ever d:,,placement Lift due to thrust, direct lift control inte-
grated with throttle,

Column thumbwheel 5eparate direct lift control

Radar altitude Ground effect lift; wind gradients
L

Airspeed Lift change with speed f,

Angle of attack Lift response to angle of attack

' Simulated turbulence Turbulence response
F

i

i

'	 7

_
TABLE A.3

Y	 4

^. 4

- INPUTS TO THRUST/ DRAG MODULATION SYSTEM

Input Function Varied y

Control column displacement Drag due to control (simulated control sur-
face drag; drag due to direct lift controls
integrated with column)

a
Thrust lever displacement, Thrust command/ thrr,tt.le sensitivity

Column thumbwheel Drag change due to direct lift control
(separate controller)

Radar altitude Ground effect drag change; wind gradients

Airspeed Drag change with speed
n.a

i Angie of attack Drag change with angle of attack

El

5
a

^ 1lF^	 ++^4L rfL._rt	 6 ^
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SAFETY CONSIDERATIONS

By its very nature, landing research involves .repeated exposure to

minimum-speed, low-controllability situations, so special consideration was

given to providing sufficient airframe strength and simulation system relia-

bility to mane the risk of damage from occasional hard touchdowns or control

system failures acceptably low. The matter of strengthened landing gear was

mentioned in an earlier section; the control system aspects will be discussed

here.

SAFETY PILOT FUNCTION - Fundamental to the operation of an in-

£light simulator is the concept that a safety pilot will continually follow the

movements of the basic airplane controls, monitor the systems and the flight

path, and be ready to disengage or override the evaluation pilot in case of a

malfunction or unsafe condition. For disengaging, a disconnect switch on the

control wheel is the primary cutout, with the main electrical and hydraulic

controls providing secondary means of deactivating the system.

Manual override of the hydraulic servoactuators is possible for all

controls except the flap. The force required is set through an adjustable

poppet valve on each servo - 178N (44 lb) being typical.

Warning of system failures is provided by a flashing master warning

light on the upper edge of the instrument panel in front of the safety pilot,

with individl^.al channel disengage warnings slightly lower and to the right.

REDUNDANT CONTROL CHANNELS - The elevator and aileron sys-

tems incorporate redundant control channels. The philosophy here is that

hard-over control inputs resulting from system failures are particularly

dangerous in this low-speed, low-altitude situation, and should be guarded

against if possible. With the redundant channels, any substantial error be-

tween the commanded and actual control position is detected, and a switch-

over to a second servo is made. The evaluation pilot retains control during

t;
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this process, but all inputs to the switched channel, except those from the con-

trol column, are eliminated, thus reducing the possibility that a defective trans -

ducer or signal path is causing the problem. Redundant sensors for the control

input signal are incorporated; the other transducers are not duplicated. The

fact that a chann 1 has switched to the secondary servo is communicated to the

safety pilot by the aforementioned warning lights, and he can then disengage the

system and assume control.

The elevator is clearly critical with regard to failures which result in

sudden. full deflection, with the ailerons only slightly less so. Redundancy was

not incorporated in the rudder or propeller pitch channels, because inadvertent

disengages were felt to be less critical, and, since he follows pedal motions

continuously, the safety pilot can very effectively override large-deflection

failures. The flap channel was not duplicated because most failure modes are

not hazardous - the surface trails aerodynamically at a 10 deg down position,

and upon disengage, its return to this position from up-deflections is rapid.

Down-flap deflections clearlN, pose no safety problem; up-flap hardovers could

be hazardous due to the large lift loss, but this has proved to be a failure mode

E	 so instantly recognizable by the safety pilot that a disengage (with subsequent

down-float of the flap) can be effected with very small altitude loss.

WAVEOFF AUTOMATION - To aid the safety pilot in recovering from

an excessive sink rate situation, an "abort mode" system disengage can be

used. Activated by pressing the disengage thumb switch, the flap travels at

maximum rate to a 20 deg.. down position and power is automatically advanced

to a climb setting; primary control reverts to the safety pilot. Using this sys -

tem, recovery from a 70 kt, 6 deg approach (sink rate of 3. 8 m/ s or 12.5 ft/ s)

with a simulated up -flap failure can be made with less than 3 m (10 ft) altitude

loss.
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COCKPIT AND EVALUATION PILOT CONTROLS

The left seat is occupied by the safety pilot who operates the normal

Navion wheel and rudder and the powerplant controls. Simulation system con-

trols occupy the overhead and lower consoles.

The evaluation pilot is seated on the right and provided with a standard

flight instrument layout and conventional stick, rudder, and throttle controls: 	 i

Linear force gradients with no perceptable nonlinearities are incorporated.

The gradients are ground adjustable by replacing springs. The values shown

in Table A4 are currently being used.

i
TABLE A4

CURRENT VALUES FOR LINEAR FORCE GRADIENTS

Control	 Force Gradient	 Travel

Pitch stick	 7. 9N/ crn (4. 5 lb/ in.)	 10.4 cm forward (4. 0 in. )
19. 8 cm aft (5. 5 in. }

Roll stick	 4. 3N/ cm (2. 5 lb/ in. }	 7. 6 cm (x3. 0 in. }

Pedal	 44N/ cm (25 lb/ in.)	 =5. 1 cm (±2. 0 in. }
Throttle	 Adjustable friction	 600

Note: Three-axis trimming is provided.

Special controls presently installed include the following:

1. Direct Lift: Thumbwheel separate controller; integrated with pitch column;

integrated with throttle. Adjustable moment and drag interconnects are

available.

2. Pitch attitude command proportional to column displacement, with trim-

mable attitude hold.

Attitude hold may also be selected with any of the direct lift systems

engaged.
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Data acquisition is through telemetry, with 43 channels available. Air-

frame motion parameters (linear accelerations, angular rates, attitude, and

heading), control inputs, and performance measures, such as localizer and

glide-slope deviation, are normally recorded. Altitude and altitude rate are

available from the radar altimeter.

Correlation of touchdown time with the other parameters is obtained

through a recording of fore-and-aft acceleration of the main landing gear

strut; wheel spinup loads produce enough strut m:-)tion to mark even very

smooth landings.
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STOL Lateral-Directional Derivatives

L	 0. 25 rad/ seta per rad/ sec
r

L^	 -0. 40 rad/ sec 2 per radian

L	 -1. 9708 rad/ sec s per rad/ sec
p

L.

	

	 .05 rad/ sec  per cm (0. 13 rad/ secs per inch)
a

-0. 7027 rad/ sec2 per rad/ sec
r

N^	 0. 8681 rad/ sec  per radian

N	 --0. 04 rad/ sec 2 per rad/ sec
P

Y^

V	
-0. 135 m/ sec2 /rad per m/ sec (ft/ secs/rad per ft/ sec)
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APPENDIX C

NOTATION

lift coefficient

lift coefficient out of ground effect

touchdown point, ft, m

change of flight path with speed, thrust constant, deg/ k-t

acceleration due to gravity, ft/ sect, m/ secs

altitude, A, m

vertical velocity, ft/ sec. ; -n/ sec

segmented glide slope intersect height, A, m

roll moment of inertia, slug- ft^ kg -m`

pitch moment of inertia, slug-ft kg -m`

yaw mon-lent of inertia, slob-ft`` , leg-mL^

instrument flight rules

rolling moment, ft -lb, N-m

dihedral effect , I^ `vR rad/ sec t per rad
x

roll	 ndam p î derivative	 i	 L
g	 1	 ^p rad/ sec ` per rad/ sec

x

roll due to yaw rate derivative, T oT , rad/ secs per rad/ sec
x

roll control effectiveness, T g b 	 rad/ sec ` / in, , .rad/ sac ` / cm
x	 a

-	 E

z

x

^ _:'ar(	 ,^^. 	 !	 „4 ^>
	

s .. ^ .^a,!„^,^ ^ ..^ ......	 ^.,.i^^a^ ^ey^^..+^;^t;_ , ^,n.^	
s...•x.^...!.rk.:.^ ..... ^-,.	 _ _



7r7

Cz

M pitching moment, ft -lb, N -m.

M8 —IV—II	 Mpitcb -rate damping,	 see
Y

M
1	 ampitch acceleration derivative due to speed, —

'0 UU
y

rad/ sec	 per ft/ sec, rad/ sec' per m/ sec

M
1	 3Mstatic stability derivative,	 rad/ sec2l rad

a Ce

M6
1	 6Mpitch control effectiveness, 	 -I	'ad/ see2 per in. ,

s y	 s
rad/ secs percm

m aircraft mass, slug, kg

n normal acceleration, g

N subscript denoting Navion A

N yawing moment, ft-lb, N-m

N directional stability derivative,	 1	 6N	 rad/ secs / rad
z

N
I	 aN	 2Tyaw rate damping derivative,	 , —I 	 , radl see per rad/ secorr z

N
1	 6 Nyaw due to roll rate derivative, 	 -y—	 rad/ sees per rad/ secT,

p z	
p

N o
I	 b Nyaw control effectiveness, 	 d/ seta/ in. , rad/ secs / crnT	 -ad

r Z.	 a

S subscript denoting STOL airplane

SAS stability augmentation system

U airspeed nerturbation, knots, ft/ see, m/ see
or fore and aft gust velocity component

v	 side gust component, ft/ sec, m/ see



.......... lilt



G3

`l airt.peed, knots, ft/ sec, ml sec

A a	 oach airs eed : ;.1cnoE s` ft/ascpp.	 P.	 r tn/ s.c
j

:'}

VFR„ visual flight rules

w vertical gust component, ft/ sec, mi.sec
-

`	 r	 -

longitudinal force, lb, N.

°XX . longitudinaal, acceleration derivative, 	 , 1/ se:c
m, 3uI . ,

1	 .. ax
X longitudinal acceleration due to angle of 'attack,l a m ocx

ft/,sect J rad, m/ sec.	 rad

Y side force'
'
 lb;. N

E Y . 1	 6 y / 2	 a
rside acceleration d^ e to sideslip, m	 d	 ,. ftl:s.ec '/_rad, .,m	 s:ec / xad_.:

Z. .vertical force, lb, IV

Z vertical accelerajoxi due to speed, —	 , 1/ sec
buU m

Z^ 1	 oZvertical acceleration due to angle of attack,	 ' ft/ sec t rad;m ou
am:/ sec / rad

Zd lift due to control deflection, .f/ sec in. , rrf sec s/ cm

- a angle: of attack, deg, rad

s ide sli 	 an le	 de	 radP	 g	 ^ 	 g'^.

ly , flight; path. angle, d. eg, ;ad

r 61 contz6 deflect^o.n zn`;, 	 cm
a

r rudder pedal d fleciion, in,.:,,cm;

S pitch stick` deflection' in ., czxi



W	 damping ratio and natural frequency of the short period mode
sp sp

W	 damping ratio and natural frequency of the phugoid mode
p p

cop W	 damping ratio and natural frequency of the pitch response

with attitude hold and pitch rate loops closed (attitude

command. SAS)
n

pitch attitude, deg, =ad

. 	 ^a	 2 M gust velocity, ft/ sec, m/ sec • 	 ^
7
h 	

time constant of ground affect lag, sec

7'	 time constant of response to thrust command, sec
t

7	 roll mode time constant, sec
r

frequency, rad/sec

4t'

Az
Z..'


