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1. SUMMARY.



This final report gives the results of a program to develop a



fast high-power thyristor that can-operate in switching circuits at



frequencies of ten to twenty kEz with very lowpower loss. Feasibility



was demonstrated for a thyristor that blocks 1000V forward and reverse,



-conducts 200A, turns on in little more than*2 isec with only 2A of gate



drive, turns off in 3 psec with 2A of gate assist current and has ail



energy dissipation of only 12 mJ per pulse for a 20 psec half sine wave



200A pulse. Data was generated that clearly showed the tradeoffs that



can be made between the turn off time and forward drop. The under­


standing of this tradeoff relationship enabled NASA to select deliverable



thyristors with turn off times up to 7 psec to give improved efficiency



in a series resonant DC to DC inverter application.



The physical understanding of gate assisted turn off was im­


proved and this provided the basis for bringing the usual advantages of



cathode shunting~to gate assisted turn off thyristors.



In order to combine the advantages of gate amplification and



gate-assisted turn off three types of bypass diodes were developed and
 


evaluated. Practical feasibility was demonstrated, late in the program,



for the device to be made with an integrated bypass diode.



A new light weight package was developed.
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2. INTRODUCTION



I 
The objective of this program is to design and develop a fast



high-power thyristor that can operate at frequencies in the range of ten
 


to twenty kilohertz with a very low power loss. Low power loss has



always been important for aerospace applications, and it is becoming



increasingly important for energy conservation in noni'space applications.



Operation at high frequencies is important for aerospace applications



because higher frequency components are smaller in size and lighter in



weight. However, it is important to cons7ide all of the ramifications



of choosing a higher operating frequency because, unfortunately, component



efficiencies tdnd'to be lower as the frequency is increased. The reduced



efficiency in turn-increases the weight required (1) fot the larger



powe eheration equipment to provide the dxti pow4r ad (2-) for the 

vehicl&dolfing system wih i dissipate'the added power. Tierefore,



for any system, there is a frequency that will minimize the total weight.



By,improving the efficiency of any domponent at higher frequencies, the



frequency-wdight trade-off is imptoved towatds higher frequency and/or



lower system weight.



The frequency capability of a thyristor is primarily limited 

by its turn-off time (Tq). The turn-off time is the waiting time required, 


after the thyristor has been commutated out of conduction, before a 


forward voltage can be reapplied without refiring the thyristor. The 


device designe+ has a variety of TWays by thich he can decrease the turn­


off time. Unforiunately, they all inVolve dd6reasing the current gains



of one or both of the transistors that make up the two transistor analog



of the thyristor: Consequently, all the design changes that decrease this



turn-off time, that is that make the turn-off faster, make turn-on and



conauction mor& Zossy. Thus there is an unavdidable tradeoff between the



tdrn-off time and the turn-on and condiuctiofi iossei. At the beginning





of this program there was only one known way to significantly relax the



stringency of this tradeoff. This way consists of applying a reverse



voltage to the gate of the thyristor during the time at which voltage is



to-'e reapplied to the anode. By this means, the current gain of the 

thyristor can be temporarily decreased during the time that the thyristor 

is to be turned off without degrading the gain during the turn-on and 

conduction parts of the cycle. Such a device is known as a gate-assisted 

turn-off thyristor (GATT).



The target specifications of the contract are given in Table I.



The turn-off time specified therein is 3 vsec. This was consistent with



the objectives of two preceeding GATT development contracts, NAS12-2198



and NAS3-14394, which were reported in NASA Reports No. CR-120832 and



No. CR-121161. This 3 psec turn-off time-was based on an initial



objective to operate at frequencies up to 50 kHz. While the capability



to achieve 3 psec turn-off times was demonstrated in all three contracts,



work performed during the period of this third contractprovided -abasis



for changing the emphasis on short turn-off times. This change was based



on a study, by Westinghouse on this contract, of the tradeoff that could



be made between turn-off time and the forward voltage drop. The change



incorporated the results of a study 15y TRW Inc. that showed'that increased 

inverter efficiencies could be attained with GATT's with somewhat longer



turn-off times with lower forward drops; Therefore, the later stages of



this effort were performed with the understanding that the 3 vsec turn-off



time should be relaxed to about 7 microseconds to obtain the best per­


formance from circuit application.



The background that lead to the work on this contract was



-described in NASA Reports No. CR-120832 and No. CR-121161, which are the



Final Reports for the two preceding GATT development contracts. The



device is to be used in a series inverter circuit for the conversion of



dc power from one voltage level to another. Regulation is provided to



maintain the output voltage constant independent of changes in the input
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TABLE I 

Target Specifications 

Smbol* Description- Specifications 

VRRM Minimum reverse blocking voltage. 1000V 

VDRM Minimum forward blocking voltage. 1000V 

Ii(rms) Maximum rms forward current. 200A 

VTM Maximum steady state fortvard voltage drop forconduction of 200A. 2.5V 

V Time required to reach VTM after initiation ofcurrent conduction with a rate of rise of 100A 
per microsecond and application of a gate, 
signal of 2.OA for ten (10) microseconds. 

2 psec 

I RRM* Maximum reverse'leakage-current at 1000V. 10 mA 

Maximum forcuird leakage- curtent%at. 100OV. 10 mA 

Aixltmui gate: current, t&.ft.re a-t, VDM, =' 30V. 200 mA 

V Maximum gate voltage' to fire at VDRM 3DV. 4V 

Ih Minimum holding current. 200 mA 

t 
Cr 

Maximum time after anode current has reached 
zero before anode voltage can be reapplied @ 
the maximum rate of rise of voltage (dV/dt),as 
stipulated below and a maximum gate signal of 
2.0A for, 3 pse. 

3 psec 

d~d/t 

i pulse 

'Maximum rate of rise of anode-voltage . 

Allowed dis'sipatibfn per pulse' (20 psec 
half sine wave with a' 200A' peak);, 

400V/psec 

12 mJ 

dI&t Maximum rate of rise of current concurrent 
with and'after a gate signal of not more than 
3.OA. 

lOA/psec 
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voltage or output loading. The use of natural commutation minimizes the



current and voltage transients thereby increasing the efficiency and



reliability of the circuit; it also minimizes electromagnetic interference



problems.



Other work on GATT devices includes an experimental 600V, 100A,



GATT, with a t of 2 psec made by the Westinghouse Brake and Signal



(type D1171),(0 ) and a 1200V, 400A GATT with a t of 6 isec made by the


q 

Mitsubishi Electric 
Corporation. (2,3) 
 

The 	 scope of the present work included:



1. 	 A broad review of the possibilities by which the



turn-off time and energy loss per pulse might be



decreased.



2. 	 An experimental study of the electrical behavior
 


of fast turn-off thyristors.



3. 	 The development of a better model for gate­


assisted turn-off.
 


4. 	 The design and fabrication of a new family of



GATT devices based on the improvement in under­

standing of thyristor turn-off.



5. 	 The evaluation of devices in this new design.



The 	 information reported herein provides both a theoretical



understanding, and an empirical measure, of the present state-of-the-art
 


of high-voltage, high-current GATT's. This information can be used by



those involved in the design of low-loss, high-power, high frequency



circuits of the type described by Schwarz.( 4) The devices made on this
 


contract are being used in a thyristor power processor for a 30 cm



mercury electric propulsion ion engine as described by Beiss et al.
(5 )
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The work was:done by'investigatorsof the Research,and



Vevelpment fCenter of the Westinghouse Electric Corporation, Pittsburgh,



Pennsylvania, in cooperation with-the Westinghouse Semiconductor Division,



Youngwood, Pennsylvania. Thyristors were fabricated in the production



facilities of the Semiconductor Division using modifications of standard



production processes. Special modifications and all device testing and



behavioral studies were conducted at the Research Laboratories.



The value of'the work done was: significantly. enhanced by direct 

interaction, encouraged by NASA-,, with those,at TRW.whot are involved in 

the development of a crxcuit in which-these thyristors; are to be used. 
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3. DEVICE DESIGN



3.1 Background



The preceding work, performed by Westinghouse Electric



Corporation and supported by NASA, (6,7) can be summarized as follows.



The 	 first GATT development program, from the middle of 1969 to



the middle of 1970, resulted in the demonstration that devices could be



made that blocked 600V, and carried 50A of average anode current with a VT
 


of no more than 2V. They had a turn-off time, tq, of 2 psec tested-with



a gate-assist gate bias of -10V in series with 10 ohms, a1l measured at



100*C. The cathode-emitter was of mesa construction and, therefore, had



widely varying leakage currents between individual emitter fingers. To



produce usable devices with this process, it was necessary to test each



emitter finger individually and to weld a raised contact to each individual



good fimger so that the device could be packaged without contacting the



leaky fingers. This was clearly not a good manufacturable design.



The 	 second GATT development program, from about September 1971



to November 1972, yieldeddevices that blocked 1000V and carried 100A of



average anode current with a VTM of no more than 2V. The turn-off -time



was less than 2 psec, tested-with a gate-assist bias of -20V through a



gate-assist source impedance of no more than 1 ohm. The measurements



were taken at 100'C. This device was planar and manufacturable, but it



had five disadvantages:



1. 	 To achieve the desired turn-on speed, the gate 

turn-on current had to be > 15A. 

2. 	 To achieve the desired turn-off Lime, the gate



assist current had to be > 10A.
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3. If this high level of gate-assist current were



applied before the anode current had been commu­


tated to zero, the thyristor was likely to be



permanently damaged.



4. 	 The energy loss per pulse was quite high, e.g.,­


30 mJ.



A constant gate bias was necessary to prevent
5. 
 

firing of the device by an applied dV/dt.



Without a gate bias, the dV/dt rating was much



lower than the specified 400V/psec.



It was the objective of this contract (GAIT III) to create a



thyristor in which these five disadvantagea are-overcome.



3.2 Design of GATT IlI



3.2.1 Turn-on



3.2.1.1 	 Gate Amplification



In the previous GATT's a gate turn-on drive current



of > 15A was required to achieve fast low-loss turn-on. In GATT III, gate



amplification was incorporated into the device so that it could be fired



well with only 2A of externally applied gate drive current.



3.2.1.2 	 Cathode Edge Length



At the beginning of this contract there was no



definitive information on how the length of the cathode edge (the boundary



between the cathode and the gate) affects the speed and losses of the



turn on. It was not known whether an increase in the length of this



periphery, for a given set of operating conditions, would:



1. 	 Increase the energy loss because the gate drive per unit



length is reduced, thereby causing a slower turn on;
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.2. 	 Decrease the energy loss because the current density and



therefore the forward drop are at a lower level; or



3. 	 Cause no change because the effects of (1) and (2) cancel out.



An extensive amount of effort was expended to answer this



question. First, turn-on voltage and current waveforms were measured



on the circuit shown in Fig. 1-for a large number of variations in device



design and operating conditions. These measurements indicated that the



cathode peripheral length has little influence on the turn on energy



loss.



There was considerable uncertainty about whether this was a



definitive result because:



a. 	 There is always uncertainty in the accuracy of a



small (u 3V) voltage being measured within a few



tenths of a microsecond after a much higher vol­


tage (. 200V) was present on, and saturating,



the amplifier of the oscilloscope.



b. 	 It is difficult to be certain that no emf's are



developed in the voltage probe leads in the vi­


cinity of the line in which a dI/dt of the order



of 108A/sec exists.



c. 	 Other variables such as the shunt patterns and



the spacing between the shunt and the edge of



the cathode were different. Also the diffusion



profiles may have been different.



d. 	 The sample size was small, one device for each



cathode edge length, because of the limited



amount of time for such work..
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To minimize the effects of uncontrolled variables, the fol­


lowing technique was developed by which the effects of varying the cath­


ode edge length were simulated on a single device. To understand this



approach,'consider the following thought experiment. Take two identical



thyristors and compare how one of them would behave while being turned on



in a given circuit with a given set of conditions with how both would



behave, perfectly paralleled, in the same circuit with the same condi­


tions.



The 	 device would see the following differences:



a. 	 In the parallel case, both the gate-drive­


current and the anode-current densities per



unit of cathode edge length would be half



their values in the single-device case.



b. 	 The losses in the parallel case occur over



twice the cathode edge length of that of the



single device case.



Note that, if the loss per unit of edge length were the same in both



cases, the total loss in the second case would be twice that of the first



case. Based on this; one should be able to test a single device under



two 	 proportionate sets-of gate current drive-and circuit-limited-anode



dI/dt to simulate differences in cathode edge length. The losses meas­


ured under the two sets of currents must be scaled in proportion to the



simulated difference in cathode edge length. Turn-on losses were meas­


ured using this technique,and again there appeared to be no significant



effect of the edge length.



There still was the question of whether the voltage waveforms



might be significantly in error and so an apparatus was built in which



the 	 thyristor could be operated indertypical conditions on a heat sink



while the dissipated energy losses were measured with a calorimeter.



Details of this are given in Section 4.3.
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In summary, a strong effort was made in three different ways



to determine how to design the cathode peripheral length and'the results
 


have shown no significant effect of the cathode edge length on the turn­


on losses. Given this result,,the device was designed to have a fairly



long cathode periphery bedause after the initial turn-on transient, it is



known (8,9) that the spreading velocity increases more slowly than linearly



with the cirrent density. Therefore, once the device has turned on at



the emitter edge its-conducting area is larger at any point in time



during the plasma spreading phase if the edge being initially fired is

 (-3
et a-.
longer. A similar conclusion appears to have been found by Shimizu, 
 

3.2.1.3 Diffusion Profile



A third effect on turn-on speed and losses is the



cur-ent gain designed into the axial distribution of the impurity



density and the thickness of the layers in the four layer structure. To



the degree that one can, consistent with the requirements for a fast turn­


off time and for the required blocking voltages, one should design for



a high current gain. This wa& also a difficult area to know -how to design



the device. One cannot know theoretically whether 'the tradeoff between



tutn-on losses, conduction losses, and the turn-off time is improved or



degraded by-a design change that increases the current gain. One knows



that a diffusion layer change that -increasesthe current gain will improve



the turn-on speed and loss but will degrade the turn-off time. One knows



that such a design change would require a somewhat different but unknown



cartier lifetime level for the optimum tradeoff of VT and t . Thus,

TM q 

it was not possible to know at the outset of this program how to design



the thicknesses and impurity profile of the device for an optimum trade­


bff. 

An extensive experiment involving three impurity density



- profiles and stepped lifetime-control provided the means for improving 

this tradeoff, The details of this were published in the paper that



c'nstitutes Appendix A of this report.
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This experiment shows that the effects of a change in the diffusion



profile and base thickness that.increasesthe current gain improves the



tq - VTM tradeoff at the fast turn-off, low lifetime part of the curve



and degrades it at the more conventional higher lifetime end of the.



curve. A possible explanation of this is that in a device with high



lattice-defect-determined lifetime, the turn-off speed is sensitive to



this lifetime, while the conduction losses are mainly dependent on



Auger recombination which is hardly sensitive to the lattice-defect'



determined lifetime. On the other hand, in a device with a low lattice­


defect-determined lifetime, Auger recombination is less significant and



the losses are sensitive to the lattice-defect-determined lifetime.



In this case, the turn-off speed becomes insensitive to lifetime because



it becomes limited by the reverse recovery time.
 


3.2.2 Turn-off



3.2.2.1 Cathode Shunts-


In the early years of GATT development, it was



believed that the effectiveness of gate assist current was due to a



sweep out of excess carriers that decreased the reapplied-forward-voltage­


induced displacement current, An experimental investigation during the



early part of this program yielded the'flinding that this was not the



reason for the effectiveness of gate assist current. Instead, it was



found that the effect of gate assist and its driving voltage is to- prevent



a forward voltage-from being created on the cathode junction. The details



of this have been published in References (10)and (11) which constitute



appendices B and C of this report.



Once it is understood that the effect of the gate assist signal



is to prevent the formation of forward voltage rather than to sweep out charge,



the design of a GATT takes a-different course. First, onecan use cathode
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shunting. Shunts would degrade the sweep -out of excess carriers but



they strengthen the oppositionto forward voltage on the cathode junction.



Thus,one need not give up the valuable and well-recognized advantages



of shunts that are used in nearly all thyristors today. (Even at the



time of the writing of this report, there is no other known.GATT design
 


that has shunts.) First, shunts give the GATT a high dV/dt rating
 


without the need for a continuous negative gate signal to protect the



device against firing by spurious transient voltages. Second, shunts



help to decrease the turn-off time by decreasing the current gains at



the low current levels at which a dV/dt would refire the thyristor.



Third, and perhaps most important, shuits prevent the cathode current



from being pinched in to the middle of the emitter fingers in the manner



similar to second breakdown in which transistors or non-shunt&d



thyristors are very subject to failure. The fact that shunts prevent



durrent pinch failures makes it possible for significantly lower gate



voltages (that is,l-3V instead of 10-20V) to be used to prevent the



devdl6pmett of forward toltage dii the dathode junction.



Th& optimum shedt resistivity for the p-base is dependent on



whether the cathode is shunted. In the case of no shunting, a relatively



low sheet resistivity is necessary to allow the negative gate voltage



t6 '"readh"to the central portion of the cathode junction without



requiting a large voltage (approaching the avalanche voltage) at the



edge of the junctiqn.



On the other hand, if there are cathode shunts, the cathode



cannot be forward biassed in the central region and a negative gate current



through the lateral resistance of the p-base causes IR drops that oppose



for4ard voltages from appearing On the rest of the cathode junction. In



this case, high sheet resistivities in the p-base make the gate assist



cutr&nt more effective for opposing the forward voltage.



One should ask the question here whether an increase in the



shett resistivity produces a greater improvement in the effectiveness of



gate assist current than the degradation that it causes in the non-gate



&§sisted turn off time. This was another important question that could





not be answered theoretically and had to be answered experimentally.



The answer depends on the operating conditions of the device. For



operating conditions in which two amperes of gate assist current were



used, a net gain was achieved by increasing the lateral sheet resistivity



of the p-base. At higher gate-assist currents, the advantage would be



even greater.



3.2.2.2 Lifetime Control



In the early stages of the program several attempts were



made to compare the lifetime killing properties of gold diffusion with



those of electron irradiation to determine which would yield the best



VTM - tq tradeoff. It quickly became apparent that this investigation



would require an effort that was beyond the resources of this program.



It is a very complex area because it is difficult to compare one type



of lifetime control with another unless an extensive effort is made to



optimize both processes. In the final month of this program a published



paper1 2 ) has shown that gold diffusion may have an advantage over



electron irradiation for optimizing the tradeoff between the turn-off



time and turn-on and conduction losses. While there is reason



to hope that such an advantage might be found due to differences in the



level in the energy gap and in the capture cross section, it is still



very difficult to compare the two. It is well known that gold can



exist both interstitially and substitutionally in the silicon lattice



and that the final state is very sensitive to how it was diffused and



annealed. Also,gold is gettered by the phosphorus on the cathode side



and its distribution is therefore non-uniform; this non-uniformity also



depends on the heat treatment. Furthermore, gold cannot be put into



finished fusions in precise steps to optimize and tailor the device.



Finally, when one uses gold instead of electron irradiation there is



a greater probability that compensation of the dopant density will be



significant. Therefore, one must be careful not to confuse an effect



on impurity density with one on lifetime.
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3.2.3 Bypass Diode



The combination,in a single thyristorof gate amplification and



gate-assisted turn-off or gate turn-off (GTO or GCS)' confronts one with a



problem. In order for a low gate current, of say 50 mA, to turn a thy­


ristor on, the resistance in the p-base under the auxiliary cathode must



cause
be at least 0.7V/0.05A = 14P. (The 0.7V is the voltage needed to 
 

the cathode to start emitting.) On the other hand, when a thyristor is



to be turned off with a gate-assist current of 2A, as called for in the



contract, this 2A through 14 ohms of resistance produces an IR drop of



28V. (The need for a much larger gate current at turn off than at turn



on is because only the turn on current can be amplified.) This 28V is



higher than the avalanche voltage of the cathode junction. The high



energy density in this avalanche is enough to melt silicon and degrade



the auxiliary cathode junction. To overcome this problem, it is necessary



to bypass the resistance of the p-base under its auxiliary cathode when



gate-assist current-is drawn. On this contract, this has been achieved



by three different approaches.



3.2.3.1 Diode Mounted in Package



In one approach, which was developed on a separate



Westinghouse program, a small diode is soldered in the package as shown



in Fig. 2. This diode contacts to the main gate and the floating gate



as shown. This diode carries a negligible amount of forward current when



turr-on current is'applied to the main gate. On the other hand, when



gate assist current is drawn from the main gate lead, this current passes



through the forward biased bypass diode and prevents the occurrence of



avalanche-in the auxiliary cathode junction. This approach was demon­


strated on devices similar to those of this contract on a parallel



- Westinghouse program, and later in 35 thyristors that tdere purdhased by 

NASA on Contract No. NAS 3-19097 and finally in the first twenty devices 

that were delivered on this contract. This approach appeared to be 

practical initially but it was found to suffer from a long term reli­

ability problem. The diode contact to the floating gate became erratic 
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and in some cases opened. An investigation revealed that the mound



of solder on the diode, which was necessary to provide a raised area to



contact the floating gate contact, was subject to cold flow and the pressure



of the contact diminished with time until eventually effective contact



was lost. (This is discussed further on page 59.) Another problem with



this approach was that when the supply of diodes that were used in the



beginning was consumed, no supplier of similar rugged diodes could be found.



3.2.3.2 Diode Built into the Thyristor Fusion



Ultimately the best approach will be to build the 

bypass diode into the silicon slice. This structure is - shown in 

Figs. 3 and 4. As shown in Fig. 4 the diffused auxiliary cathode is 

segmented into two parts, Al and'A2. These parts function just like the



standard amplifying gate. Two bypass-diode diffused regions, Bl and B2,
 


are formed at the same time as the diffusion of the main and auxiliary



cathodes.



There are three features to be noted about the construction of



this bypass diode. First, note that the metal overlaps the opposite side



of the diffused region from that of the auxiliary cathodes. This clearly



creates a diode polarity opposite to that of the auxiliary cathode.



Second, there are small etch pits, E, between the segmented circular dif­


fused regions. These etch pits prevent gate current from bypassing the



auxiliary cathode during turn-on. Current that bypasses the auxiliary



cathode is wasted and is not effective for fast, low loss turn on. Third,



there is an additional diffused layer or lip, which helps to prevent the



bypass diode from refiring the device during the gate-assisted turn off.



This is sketched in Fig. 5. The function of this lip fusion is to cause the



injection from the bypass diode to occur in an area in which the npn current



gain is low so that it does not fire the thyristor. To understand the need



for this, consider what would happen if this npn current gain were not low.



In this case, when current is drawn out the main gate, most of this cur­


rent involves electrons being injected into the p-base. Many of these
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electrons reach the forward blocking junction and drift to the n-base.



These electrons are base current to the pnp transistor and partially turn



it on. The impedance of the cathode circuit which is designed to carry



several hundred amperes is lower than that of the gate circuit which was



only designed to carry a few amperes. Therefore, the anode voltage of



several hundred volts drives the current being carried by the pnp
 


transistor mostly through the cathode. This current has the polarity to



forward bias the cathode junction and fire the thyristor.



To prevent the gate-assist current from firing the thyristor in



this manner, a means had to be developed for minimizing the proportion



of gate-assist-current-induced electrons that reach the forward blocking



junction. This was done by building the-bpass diode in the form shown



in Fig. 5. This design forces the injection of electrons from the bypass



diod'e to occur over a larger area and in a region where the p-base width



is wider. Such widening of the p-base decreases the transport factor for



electrons through the p-base and decreases the injection efficiency for



eledttois into the p-base. (13) The increase in the emitter area increases



the amount of recombination that occurs in the space charge region of this



bypass diode emitter-thereby further decreasing the injection efficiency



for electrons. The injection effictency and transport factor are both



further reduced by area-selectively decreasing the lifetime under the ex­


tended bypass diode region by means of a masked electron irradiation.



3.2.3.3 Diode Soldered to the Thyristor



The third approach for making the bypass diode was



to solder the diode to the thyristor fusion. In this case two diodes were



soldered to the floating gate metal and then a silver jumper that had been
 


photolithogfaphically etched out of a 0.15 im thick silver sheet was



soldered to these diodes and to the center or main gate. Photographs of



this construction are shown in Fig. 6. This design became the design of



choice near the end of the program for direct application in a dc-dc inverter



&esign because it combined reliability with the ability to use devices



s-imilar to those made in prdduction.
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Fig. 6 Two views of the bypass diodes and jumper



contact bonded to the thyristor.
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3.2.4 Cathode Shape



Among the design implications of the physical model for turn


off which is described in Appendix B are:



1. 	 Minimize the ratio of gate area to the peripheral length



of the edge of the cathode.



2. 	 Minimize the cathode line width.



3. 	 Make shunts continuous lines with a minimum of corners.



Based on these implications a new mask set was designed. The phosphorus



diffusion mask is shown in Fig. 7. As shown the gate area is made as



small as practical. The cathode lines were only 0.25 mm wide and are



continuous without corners or broken shunts. The shunt widths are 0.25



am on the mask and about 0.20 mm when lateral diffusion is taken into



account. The gate metal lines are 0.30 mm wide.



24





I 

4. TEST CIRCUIT DEVELOPMENT



4.1 Introduction



Most of the test circuits used,in this program were described



with detailed circuir drawingson pages 29-60 of the final report of



Contract.NA53-14394, i.e., NASA report number CR-12116l.



4.2- Turn-on Circuit 

The turn-on circuit is shown in Fig. 1 herein and in more 

detail on pages 42 to 48 of NASA Report CR-12161. It consists of a 

pulse forming network"-taa is charged. and then discharged through 

the thyristor under test. The anode voltage and anode-current wavefotm 

are. observed on an oscklbl-scope - Tir--on.st;dtchhng-,1b'6ss, dan be cal-­

curated&frow, these- wavefbrms;-

Unfortunately, it seems' to he. a univefsaV problem with this 

approach-that-one can never be surethat'the voltage w&veform is accurate 

because of the following: 

1. 	 If the.anode voltage being switched'from-is as high as



the. normal operating voltage;the-preampiifier of- the



oscilloscope must be overriven and saturated so that,



at turn-o,.voltages-of 0-5-volts. can be'tead. This 

saturation of the.preamplifierican produce erroneous 

readings.. Sometimes-this source of' error is minimized 

'by switching,the thyristor on from aliuch,-lower voltage, 

say 30V. In. this case;-wiiTe the'vbolagewav~form may 

'hecorrectly measured,,it may be signfficantly different 

fromthe one that occurs-whenthe.thyristor'is switched 

on from a'higher voltage. 



2. 	 The environment of the device under test includes very



high dl/dt and dV/dt levels. It is very difficult to be



sure that neither capacitive nor inductive coupling has



influenced the voltage waveform that is measured.



To avoid possible errors due to overloading of the preamplifier



a second piece of equipment was built to improve the accuracy of the



voltage measurement during turn-on of the thyristor. This consisted of



a voltage clipping circuit to limit the voltage applied to the oscillo­


scope preamplifier. Figure 8 is a schematic diagram of the clipper



circuit. The quality of the data from this circuit was checked by



determining that the part of the waveform to be measured is independent



of the voltage level at which the waveform is, clipped. The key component



of the clipper circuit is the fast recovery diode.. Several solid state



diodes were examined and rejected as being too slow, and satisfactory



results were finally obtained withsa 6AX4>vacuum tube diode. There



was good agreement between the data from the calorimeter and that from



the turn-on circuit with the clipper.



4.3 Calorimeter Set-Up 

In order to measure the losses more directly a circuit was built



to, be used with a calorimeter. The heart of this equipment is a calorimeter



that measures the heat generated in the thyristor while 'it is being operated



under conditions similar to those of the circuit in which it is to be used.



Figure 9 is a schematic diagram of the circuit that powers the thyristors



for the calorimetric loss measurements. Figures 10 through 12 are photo­


graphs of this equipment which measures the sum of the turn-on and



conduction losses of a half sine wave of 20 wsec pulse width. Reverse



recovery losses are negligible because the reverse voltage on the device



under test is limited to less than a volt. Forward recovery losses are



negligible because the interval between pulses is long. The pulse height



can be selected using three sets of inductors and capacitors that provide



for either 50, 100, or 200 A when the device is switched on from 400 V.
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The gate drive circuit creates a forward gate pulse to



turn the TUT on and at an adjustable time later a reverse



gate current can be applied to the gate. This reverse



current is the gate assist current. The time of initiation



and the-pulse height and width of this reverse gate current



are adjustable.



The recovery times of diodes and/or thyristors in the test



circuit must match the recovery time of the thyristor under



test. If a component in the test circuit has reverse re­


covery too early, that component will interrupt the sweep
 


out of the excess charge from the device under test. On



the other hand, if it takes the component of the test circuit



too long to recover, the test circuit cannot reapply a



forward voltage on the device under test as soon as it is



capable of supporting a reapplied forward voltage. In the



first case, the device under test is not permitted to turn



off as fast as it might if more excess charge were swept



-out. In the second- case, the circuit will not be able to



measure the true turn-off time.



During the course of the program a continual effort was made



to ensure that the turn-off time was being measured as realistically as



practical. This involves the following considerations:



1. 	 The impedance of the gate circuit can influence the actual



gate current during the switching transient period.



2. 	 The limiting resistance in the part of the test circuit that



generates the dVldt ramp can limit the forward recovery



current and thereby influence the measured turn-off time.­


3. 	 Inductance in the leads of an anti-parallel diode can force



a forward current into the thyristor under test during the



turn-off time interval. Such an unwanted forward pulse is



diverted into the device under test when reverse recovery



occurs in the diode that isolates the lower impedance current
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generating circuitry from the high impedance voltage gene­


rating circuitry.



4. 	 The width and shape of the anode current pulse can determine



whether the device is carrying the current uniformly over its



area.



5. 	 The shape of the reverse voltage waveform can influence the



amount of charge that is swept out of the device in the re­


verse recovery phase. The rate of application of this



voltage is believed to. be more important than the ultimate



voltage reached.



4.5 Simulated Application Circuit



In August of 1974, the team at TRW that developed a cireuit 

in which these thyristors were used provided Westinghouse with a bread­

board set-up. This set-up,shown in Fig. 14, permits the thyristors 

to, be dvaluated in a circuit that simulates the ionefgine power supply 

applicatfon. Both tq and'VM ate,measura1.e dn this cfrcuit. 
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5. DEVICE FABRICATION AND TESTING



5.1 Introduction



This part of the report will present the significant approaches



problems, and results of the device fabrication and testing effort.



5.2 	 Study of New Design Features



When the program started in July 1973, there were several areas



in which it was unclear. how the device should be designed. These were



the slice diameter, the cathode edge length, whether the emitter could



suacessfully be shunted to achieve good GATT performance and whether



gate amplification and good GATT performance could be combined in a



device. The first two runs were made with 23 mm diameter slices with an



existing amplifying gate snowflake mask design shown in Fig. 15.. The'



third rim was made with an existing 33 mm diameter snowflake design.



The data taken on these early devices yielded the important



findings that:



1. 	 Thesnowflake design with its shunted cathode can perform



well in the GATT mode.



2. 	 The high resistance in the p-base under the auxiliary cathode



of the gate amplification structure must be bypassed by the



gate assist current to avoid degradation, and perhaps



'failure, of the device.



3. The gate assist pulse must be present during the reapplication



of the forward anode voltage if it to be effective for de­


creasing the turn-off time,. 
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Fig. 15 PHOTOGRAPH OF THE CATHODE DIFFUSION MASK-
SNOWFLAKE DESIGN
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5.3 Improved Understanding of the Effect of Gate Assist Current



Early in the experimental studies of the program it became clear



that the existing understanding of the physics of gate assisted turn-off



was iLn error. In contrast to the then-existing belief that the gate



assist bias sweeps the excess carriers out before anode voltage is



reapplied, our finding was that the fundamental effect of the gate assist



bias is to oppose the development of a forward bias on the cathode. This



forward bias is caused by the dV/dt induced displacement current; and



if unopposed, this bias will cause the cathode to inject a sufficient



The effects
number of electrons into the p-base to refire the device. 
 

of the gate assist current is described in detail in Appendices B and C.



5.4 Switching Loss Measurements



There was an experimental phase early in the program in which



extensive afforts were made to measure the turn-on transient energy losses



per pulse on the circuit shown in Fig. 1. Current and voltage transient



waveforms were photographed agd the product of the anode voltage and cur­


rent was calculated and humerically integrated. These calculated energy



While this was a good
lpsses per pulse were in the range of 2 to 5 mJ. 


acceptable level of loss, there was significant skepticism about whether



the voltage and current waveforms might be in error due to an overloading



of amplifiejys, an influence of a clipper circuit or to capacitive or



inductive effects in the environment of the high dI/dt and dV/dt circuitry.



To measure the energy dissipation in a more straightforward manner with



fewer uncertainties,a calorimeter was set up as described on pages 27 to 33



52 to 55. The results
and loss measurements were taken as described on pages 
 

from the two different approaches were in good agreement.



The behavior of the forward recovery current and its associated,



losses'were studied, and the jesults were published (1 as given in 


Appendix D.
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5.5 	 Determination of t9 - VTM Tradeoff Curve 
g 

Another experimental effort was undertaken to determine a



forward drop, turn-off time trade off curve by stepwise varying the amount



of lifetime reduction by means of high energy electron irradiation.



The advantage of using electrons to control the lifetime permits one to



vary the lifetime in individual devices and thereby to precisely determine



an optimum lifetime level.



In May of 1974, a review meeting was held at NASA Lewis Research



Center with representatives of TRW who were developing an efficient



circuit that could use the GATT thyristors, present. Eight sample



thyristors from a Westinghouse internal program, packaged with the bypass



mounted inside of the package, and with the characteristics given in



Table 2 were loaned to NASA.



At this meetin& the graph of Fig. 16 was shown which illustrates



the VTM- tq tradeoff for a sample of devices from five process runs.



The data in this figure gave NASA and TRW a significantly improved under­


standing of the Westinghouse ability to trade tq for VTM. It became



evident to everyone that, if one were to relax the specification- of a



3 vsec ta, one could very substantially decrease the forward drop, VIM,,



and therefore the conduction losses.



5.6 Devices Made on a Separate Contract



Based on the tq -VTM tradeoff curve, a decision was made for



Westinghouse to make additional devices on a separate contract (NAS3-19097).



They were similar to those represented by Table 2 except that the tq - VTM



tradeoff was shifted to a higher tq and lower VTMby giving them less



electron irradiation. The characteristics of these devices are summarized



in Table 3.
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TABLE 2. CHARACTERISTICS OF THE EIGHT DEVICES LOANED TO NASA IN MAY OF 1974



________tff ___ dVfdl Entergy Unitstof f VTM VDRM VRf IGT VGT IH ILX V/dt Pulse


Uevices



psec 1see lisec V V V mA V mA A V/psec mS 

21-2 5.5 3.0 5.5 2.9 1180 1040 130 1.25 65 0.5 > 500 12



21-19 6.0 3.5 6.0 2.3 1080 940 100 1.10 55 0.4 > 500


21-26 6.5 3.0 6.5 2.1 1100 1080 90 1.10 50 0.4 > 500 11



21-49 6.5 5.0 6.5 2.1 920 920 120 1.10 55 0.5 > 500


21-55 5.5 4.5 5.5 2.2 740 680 100 1.00 55 0.4 > 500



21-4 8.0 4.0 8.0 2.4. 720 
 680 85 1.10 40 0.4 > 500 

21-42 5.0 '5.0 5.0 2.5 890 '840 100 1.10 70 0.8 > 500 


21-30 5.0 4.5 5.0 2.2 830 760 130 0.95 65 0.4 > 500 
Conditions 

00 25 00 
 CC
temp 00 00 6o 00 00 25 25 25 


ITM 200 200 200 200 
 A



-diR/dt 25 25 25 
 A/Psec



dV/dt 400 400 400 V/psec



VRev yes yes yes 
 v



Gate 1 2 2 0 2 
 A



Gate PW 3 
 10 3 usec



IA 0.01 0.01 A 

VA 30 30 30 30 V
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TABLE, 3'



Charhcteristics of. Thyr-istors Delivere4, on.NASA Cpntract No. NAS3-L9097



ToV UTI VDRM VRpM ICTGT CVTIX LX I 

Conditions 

psec psec psec V* V V V mA V mA mA 

Tamp - O 100 100 100 100 100 25-100 25-i00 25 25 25 25 

ITM, A 80 200 200 80 200 

-dlR/dt, A/asec 10 50 25 

dv/dt, V/Psec 50 400 400 

Gate: I, A 2 2 2 

PW, psec 10 10 10" 10 10 10 

Device Nos. 

54 4.2 ,7.9 1.50 1.85 1000 960 120. 1.4 870 168 

55 4.1 8.0 1.98 1.96 1100 1080 150 1.5 1350 200 

56 4.0 9 1.96 2.07 1280 1120 120 1.2 900 150 

57 5.01 8.4 1:75 2.05 1120 1030 300 2.0 1900 190 

63 5.0 9 2.00 1.98 1260 1120 180 1.6 1560 320 

64 4.0 7 1.74 2.01 960 9.60 120 1.2 700 180 

65 4.0 7.2 1.80 1.97 1000 1000 125 1.4 1050 170 

66 4,0 8.4 1.41 1.75 940 930 160 1.5 1200 300 

70. 6.4 11 11 1.86 2.05 990 960 150 1.3 790 260 

71 3M5 5.8 5.0 1.57 1.89 1200 1120 160 1.5 1300 280 

74 4.1 8.2 1.72 2.16 1100 1000 170 1.7 2200. 340 

77 4.0 16 9 1.43 1.77 900 920 120 1.2 300 320 

78 3.8 13 7 1.49 1.90 1200 1000 120 1.2 750 200 

82 < 3.0 5.8 1.79 2.14 1010 1020 200 1.6 1500 320 

S86 4__ 9 ___ 1.40 12._____!0Am2._lzo__ 1..2 ___100___ J D 



TABLE 3 (Continued) 

TOf f VTM VDRM VRRM IGT VGT ILX IH 

Device Nos. 

108 4.i 1.5 1.45 1.84, 900 800 150 1.3 1150 220 

110 4.0 12 1.35 1.63 1080 1090 120 1.2 850 180 

120 4.2 12 8.2 1.43 1.70 1260 1120 130 1.6 1000 170 

124 3.2 8 1.49 1.95 880 890 130 1.2 1150 320 

128 3.2 7.2 . 1.45 1.67 1000 960 160 1.2 1500 230 

132 3.0 7.6 1.69 2.13 1000 1000 160 1.4 1600 280 

135 4.4 9.8 1.70 1.89 1080 1080 150 1.6 1600 250 

137 4.0 6.4 1.45 1.80 1120 920 130 1.4 1300 210 

.138 4.2 10 9 1.43 1.75 1020 1040 120 1.4 1160 210 

139 4.0 7 1.54 1.96 1220 880 160 1.6 1200 210 

140 4.5 7.5 1.52 1.77 980 990 140 1.2 900 200 

141 5.0 8 1.88 2.18 1200 1200 210 1.6 2000 400 

122 12, V. high 1.17 1.47 920 960 100 1.0 380 160 

143 4.2 7.2 1.60 2.11 1160 1080 180 1.6 2200 210 

144 3.6 7.8 1.68 1.96 880 880 140 1.6 1350 250 

145 4.2 10.2 9.8 1.47 1.77 960 960 150 1.7 1250 240 

131 12. 32 19 1.22 1.44 830 840 80 1.0 450 120 

148 4.5 14 8 1.34 1.62 760 720 150 1.2 1200 210 

149 5.0 17 13 1.65 1.89 960 880 150 1.4 1200 230 

152 4.0 6.4 6 1.51 1.86 1120 1080 120 1.3 720 150 

153 4.2 9 1.37 1,69 1020 1020 100 1.2 700 150 

154 7.0 11.2 10.4 1.50 1.79 -L 000 920 120 1. 1180 160 



'5.7 FinelineThyristors and the-:Results Obtained from Them



Thyristors were-fabricated with the mask design shown in Fig. 7.



A photograph of a finished device is shown in Fig. 17. These devices



were found to have very :short turn-on and turn-off times without electron



irradiation. A surprising characteristic of these devices was that they



did not respond well to gate assist current. This unexpected result was



subsequently explained as follows. It is not sufficient to merely pro­


vide gate assist current to counteract the dV/dt induced displacement



current. The gate assist current must create-an IR drop in the p-base



-that substantially counteracts the roughly ,0.7 volts.-in this p-base



that is present when--a dV/dt induced displacement current fires the



thyristor. Thus,if one has chosen to use a gate assist current of



.2 amperes one must have a lateral .baseresistance under the cathode of



roughly ,0.35 ohms. In hindsight, a change in design to ,a long-periphery



-narrow-line cathode must be accompanied by a change in the diffusion



layer design to maintain this -resistance.1f effectiaveness of gate assist



'current .-s,-,to be maintained.. 

;5.8 Change in Directions



At this point in the program it was decided that the effort



.should be focused on the 23 mm diameter snowflake design which was much



closer to meeting the specifications than the new 33 mm diameter design.



An additional reason for choosing this route was that the development



,of a-new package of the type desired by TRW and NASA would be signifi­


cantly less time consuming and less costly for the 23 mm diameter unit.



At the end of 1974, the contract was 'amended to include three



-additional areas ofWork:



1. 	 An experimental study was to be made -of-the effects of the



diffusion-profile on the V - t tradeoff-so that a better
 

TM q



tradeoff could be obtained at low lifetime levels.



46



http:resistance.1f


P ia 

Photograph of a fineline thyristor.
Og. 
 

RM-63840


17 



2. 	 The effect of the cathode peripheral length on the energy



loss per pulse was to be better defined by means of loss



measurements with a calorimeter.



3. 	 Westinghouse was to develov and fabricate an imoroved light­


weight package.



5.9 Effect of Diffusion Profile on tq - VTM Tradeoff Curve 

The 	 study of the effect of the diffusion profile on the tq - VIM 

VTM 	 tradeoff can be improvec by
tradeoff showed clearly that the tq ­


changes in the diffusion profile. Further, it showed that a change that



gives an improvement at high lifetime levels degrades the tradeoff at low



lifetime levels and vice versa. This type of a study was practical be­


cause of the Westinghouse use of electron irradiation to control the lifetime.



It would not have been practical to do this with gold. The details of



this study and a physical explanation for the findings are given in



Appendix A. 

The data in Appendix A were taken without gate assist current, 

Similar data taken with two amperes of gate assist current are given 

in Figs. 18 and 19 . The letters A, B and C designate the same diffusion 

profilesin Figs. 18 and 19 as in Appendix A. All of these data show



that, at low lifetime levels, the tradeoff between tq and VTM is improved



if the diffusion layer profile is changed to yield higher current gains.



The 	 opposite is observed in each case if the lifetime is high.' This



technique permits one to clearly show which combination of lifetime and



diffusion profile to use to achieve a desired combination of tq and VTM



5.10 Devices Delivered in May of 1975



In May of 1975, a group of eight thyristors were delivered to



NASA-Lewis. These devices were packaged in non-magnetic flat packs. A



summary of the data taken on these devices is given in Table 4.
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TABLE 4



SUMMARY OF DATA TAKEN ON DEVICES DELIVERED IN MAY 1975



VTM tq t VRM VRRM IGT VGT IL IH ToNASA 

Temp. 250C 250C 1000C 1000C .1000C 1000C H°6C i C 250C 250C 25 0 C 250C 

ITM 80A 200A 80A 80A 200A 200A 12.5A 12.5A 

dI/dt 10A/Ps 1OA/us 25A/ps ,25A/ps 

dV/dt 5OV/ps 50A/ps 500V/s 400V/as 

VA 50V 50V 50V 

Gate Current 

(turn-off) OA 2A OA 2A 

(turn-on) 0.5A 

Devices 
V V ps Ps Ps ps V V mA V mA mA 

34-17 1.17 1.32 17 10 14 8 1000 1050 75 1.00 340 80 x 
18 1.49 1.64 1000 1000 118 1.00 650 180 X 
19 1.27 1.39 14 9 10 7 1150 1100 108 1.05 480 140 x 
20 1.32 1.42 14 9 11 7.2 1000 1000 110 1.05 380 90 
22 1.32 1.49 11 11 10.5 10.0 1100 800 80 1.05 540 160 
23 1.32 1.42 10 8.5 8 7 1150 1050 108 1.00 440 160 X 
24 1.36 1.47 20 i0 15 8 900 900 70 0.90 310 90 
25 1.27 1.39 13 9 10 7 1050 1050 105 1.10 500 160 X 
26 1.50 1.61 10.5 7.5 10 6.5 1100 1100 140 .1.20 720 240 
27 1.36 1.52 13 7 10 6 900 900 108 1.10 540 160 X 
28 1.31 1.46 14 8 11 6 5 1100 1100 108 1.05 540 160 X 
29 1.40 1.52 11.5 8 8 6 1100 1100 125 1.10 640 200 X 
30 1.51 1.67 8 8 8­ 6 1100 950 110 1.05 665 170 
31 1.64 1.80 15 9 10 6 900 900 90 1.05 380 130 



5.11 Calorimetric Measurements



In June and July of 1975, the calorimeter apparatus described



in Section 4 was used to measure turn-on and conduction losses. The



resulting data are given in Table 5.



The thyristor under test is described by giving the cathode



geometry, the main cathode edge length in cm, the device diameter in umm



and a numerical value that is in linear proportion to the amount of electror



irradiation used to decrease the carrier lifetime. (E.g., snowflake,



23, 23, 4 means the pattern is the snowflake design, which has a main



cathode perimeter of 23 cm, is in a silicon slice 23 mm in diameter and



had 	 four units of irradiation to control the carrier lifetime.) In some
 


cases, the same device type and test conditions are represented by data



from more than one sample. In this case, the energy per pulse value in



Table 4 is followed~by an asterisk and a sample distinguishing number.



The 	 gate energy is fiot completely negligible and in some cases itAs



high aa 0.5 mJ/pulse.



Significant conclusions that can be drawn from these data



include:



1. The desired 12 mJ per pulse is attainable for the donditions


/ 

specified by the contract.



2. The part of the loss that is sensitive to gate drive current



without amplification is nearly negligible when this currefit



is as large as that to be expected with gate amplification.



Thus with gate amplification-the turn-on switching loss is a



small part of the total loss.



3. 	 The cathode edge, length has little noticeable effect"on the



loss as long as.a.threshold gate-drive current has been exceeded..



4. 	 The radiation-level has a-strong influence on the lots (a well



recogpized.fact that deserves to be re-emphasized).
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TABLE 5



Calorimetric Data



Voltage

Switching 
 Peak Energy Per


Device 
 Gate Drive 
 From 
 Current Pulse


Std 627, 1.6, 23, 4 
 lA, ampl. 
 400V 
 200A 19.3 mJ

2A, ampl. 
 400 
 200 19.3


1A, not ampl. 
 400 
 200 19.5

4A, not ampl. 
 400 
 200 19.0


Std 627, 1.6, 23, 0 
 2A, ampl. 
 400 
 zoo 13.0

2A, ampl. 
 200 
 100 4.4

2A, ampl. 
 100 
 50 1.8

2A, ampl. 
 200 
 50 2.6

2A, ampl. 
 400 
 50 4.4


Dual ring, 8.2, 23, 4 
 1A, ampl. 
 400 
 200 13.8*20

2A, ampl. 
 400 
 200 13.0*20

1A, not ampl. 
 400 
 200 17.1*20

4A, not ampl. 
 400 
 200 13.6*20

2A, ampl.-
 200 
 100 4.9*20

1A, ampl. 
 400 
 200 10.8*17

2A, ampl. 
 400 
 200 10.7*17


1A, not ampl. 
 400 
 200 13.1*17

2A, not ampl. 
 400 
 200 12.5*17


4A, not ampl. 
 400 
 200 12.2*17

Snowflake,23, 23, 4 
 1A, ampl. 
 .400 
 200 13.1


2A, ampl. 
 400 
 200 13.0

1A, not ampl. 
 400 
 200 17.7

4A, not ampl. 
 400 
 200 13.6


Snowflake, 23, 23,5.5 
 4A, not ampl. 
 400 
 200 11.6*80

(Like the devices 
 3A, not ampl. 
 400 
 200 16.2*146

delivered on NAS3-
 6A, not ampl. 
 400 
 200 12.3*146

19097) 
 7.8A, not ampl. 
 400 
 200 10.8*146


2A, ampi. 
 400 
 200 9.2*146

2A, ampl. 
 400 
 200 11.3*62

2A, ampl. 
 400 
 50 4.0*80

2A, ampl. 
 200 
 50 3.0*80


Snowflake,23, 23, 3 
 2A, ampl. 
 400 
 200 9.1*22

(Like the devices 
 2A, ampl. 
 400 
 200 9.3*18

delivered on NAS3-
 2A, ampl. 
 200 
 100 3.6*22


16801) 
 2A, ampl. 
 100 
 50 2.1*22

Snowflake,23, 23, 24 
 1A, not ampl. 
 400 
 200 21.3*21

(Devices on Fig. 1 
 2A, not ampl. 
 400 
 200 21.3*21

of Monthly Status 
 4A, not ampl. 
 400 
 200 20.7*21

Report No. 22) 
 6A, not ampl. 
 400 
 200 19.6*21


3A, not ampl. 
 400 
 200 22.2*24

6A, not ampl. 
 400 
 200 19.0*24

2A, ampi. 
 400 
 200 15.2*28

2A, ampl. 
 400 
 200 16.5*9
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Device 
 

(Devices on Fig. 3 of 
Mbftihly Status Report 
Io.. 22) 

Ylieline, 97,j 33, 0 

riifie-ine, 97, 33, 5 
 

TABLE 5 (cont'd)



Calorimetric Data



Voltage 

Switching 
Gate Drive* From 

2A, ampl. 400V 
2A, ampi. 400 

1A, ampl. 400 
4A, ampi. 400 
1A, ampl. 400 
2A, ampl. 400 
2A, ampl. 400 
2A, ampl. 200 
2A, ampl. 400 
2A, ampl. 200 

2A, ampl. 400 
2A, ampl. 200 

Peak Energy Per


Current Pulse



200A 15.3*15


200 11.9*16



200 9.8*A


200 10.3tA


200 9.1*B


200 9.1*B


200 10.4*C


100 4.1*C


50 4.0*C


50 1.9*C


200 16.7


100 7.7
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Calorimeter data were also used to determine that for a 400V,



200A, half sine wave 20 psec wide, changing the flat pack package from



a magnetic to a non-magnetic package decreased the losses from 12.1 to



11.3 mJ/pulse. The sample was like one of those delivered on Contract



No. NAS3 -19097. D. Balenovich and W. Karstaedt of the Westinghouse Semicon­


ductor Division have independently found a similar improvement in studies with



nonmagnetic packages. On this program this improvement is not worth the



added cost that it would require to prepare a nonmagnetic lightweight



package.



5.12 Delivery of Devices in the New Package



During 1975 an improved package was developed as described in



Section 6.



In December of 1975, it was apparent that devices with the



integrated bypass diodes would not be ready at the desired time. In order



to provide NASA with devices that they needed, a decision was made to,



prepare additional devices on a separate contract like those delivered



in May of 1975 but in the new package. The bypass diodes were mounted



in the package as described in Fig. 2.



Table 6 gives a summary of the data taken on these devices.



Figure 20 is a photograph of a packaged device. Three similar devices



were shipped in July of 1976 as summarized in Table 7.
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TABLE r



SUMMARY OF DATA TAKEN ON DEVICES DELIVERED IN JANUARY 1976



VDM VP T Leak 
DM _ TM qRPM ICT VGT IL IH Rate 

Temp, 0C 25-125 25-125 100 . 100 100 100 25 25 25 25 

ITM , A 80 200, 200 200 
VA, V 50 50 50 
-dI/dt, A/ps 25 25 

dV/dt, V/ps' 400 400 

Gate Assist I,A 0 2 
IG, A 0.5 0.5 0.5 

Units V V V V Ps lls mA V mA mA 

34-2 1140 1080 1.15 1.35 11 -8 130 1.1 380 144 <10 -6 

34-3 840 880 1.15 1.35 10 "6 110 1.0 320 140 10- 7 

34-13 820' 880 1.15 1.35 12 8 100 1.0 300 140 <10-6 

34-15 1140 1140 1.45 1.51 11' 7.5 120 1.1 450 160 <10-6 

34-B5 960 880 1.15 1,35 12 6.5 110 1.05 400 140 <10-6 

34-B6 1190 1000 1.3 1.5 13 7 115 1.1 440 172 10-7 

34-B7 1000 980 1.45 1.75 10 5 115 1.2 540 184 10-8 
34-B12 1020 790 1.25 1.55 15 8 110 1.0 510 148 10-7 

34-B13 1200 1190 1.3 1.55 13 7 100 1.0 370 126 10-8 

34-B15 1180 1100 1.2 1.4 15 7.5 125 1.15 410 170 <10-6 



Fig. 20 Photograph of a packaged device
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TABLE 7 

SUMMARY OF DATA TAXU ON DEVICES DELIVERE) IN JULY 1977 

VTM tq VDRX Vpl fM 'GT VGT 1L IN 

Temp. 100*C 1000C 100*C 1000C 100*C 100*C 250C 100*C 25*C 100*C 25*C 259C 25*C 250C 

ITM 80A 200A 80A BOA 200A 200A 12.5A 12.5A 

dI/dt 1OA/±s 1OA/us 25A/ws 25A/us 

dV/dt 50V/ps 50V/s 400V/ps 400V/ps 

VA 50V 50V 50V 

I (On) 

IG (Off) OA 2A OA 2A 0.5A 

Devices 

V V iAs us ps ps V V V V mA V mA mA 

34-1 1.15 1.35 11.0 8.0 14.0 9.0 1240 1150 1200 1150 110 1.1 300 140 

34-9 1.10 1.30 12.0 7.5 13.5 9.0 1100 1100 1050 1050 100 1.0 300 100 

34-BlO 1.25 1.54 9.0 7.5 14.0 8.0 1200 1200 1200 1150 140 1.1 600 180 
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TABLE 8



SUMMARY OF DATA TAKEN ON DEVICES WITH INTEGRATED BYPASS DIODES DELIVERED IN MARCH 1977



VD 
R. 2ps 

80A
10ps 

VTM
2ps 

200A
lls 

t
ql 

t
q2 

t
q3 

t
q4 tq5 

t 
q6 

IT/VaT
GT 

L/I
H 

Units V V V V N V ps Ps ps Ps s psP mA/v mA/mA 

44-24 1150 1200 3.5 2.0 4.2 2.6 14 9 11 7 14 .8.5 4000.6 320k 

45-17 750 1200 2.3 1.5 3.4 2.2 12 8 9 6 12.5 7 1301.8 2902 

48-6 >600 1200 2.9 1.7 4.2 2.3 7.5 18 6 >23 7.5 551.6 1502 

48-9 1150 1300 3.0 1.9 4.2 2.5 21 8 15 5 19 6.5 901.8 2604 

48-11 300 1150 2.2 1.6 3.4 2.2 14 8 10 5 17 5 781.7 3002 

48-13 '150 ru600 2.2 1.5 3.0 1.9 13 9 851.7 2404 

48-16 r400 1240 2.2 1.5 3.2 2.1 14 8.5 11 4 950.6 1902 

53-2 1000 680 3;0 2.0 4.2 2.7 18 6 >23 7 951.6 1802 

57-1 900 900 4.0 1.6 4.2 2.0 14 10 11 9 13.5 11 6602. 5006 

57-3 1000 1090 2.1 1.4 3.3 1.9 15 9 13 7 15 8.5 4602.5 6207 

57-5 1020 1020 2.0 1.4 3.0 2.0 22 7 16 6 22 '7 211.6 4008 

57-6 780 780 1.9 1.3 2.6 1.7 21 7.5 16 6 2902.0 4806 

57-7 1000 950 2.2 1.4 3.6 1.7 14 10 11 8 14 10.5, 7002.6 7606 
57-9 120 750 2.0 1.3 2.8 1.8 148 7 20 6.5 >23 11 1601.8 3306 

57-10 1100 880 1.9 1.3 2.9 1.8 28 6 20 6.5 >23 12 1351.7 3007 

57-11 950 900 1.9 1.3 2.9 1.6 28 7 18 6 >23 7.5 1201.7 2806 

57-12 1000 1000 1.9 1.3 2.6 1.5 38 8 24 7 >23 10 401.1 2706 

57-13 1150 1150 1.9 1.3 2.8 1.6 22 7 18 6 >23 8 1201.7 2805 

57-14 95d 920 2.0 1.3 2.6 1.7 31 8 23 7 >23 13 1701.7 3408 

57-15 860 840 2.1 1.4 3.0 1.8 15 8 12 6.5 15 8 3502.2 5406 

57-16 970 980 2.1 1.4 3.1 1.8 22 12.5 16 10 18 12 1451.2 6004 

57-17 950 950 1.9 1.3 2.9 1.6 23 7.5 17 6 >23 7.5 1201.7 3004 

57-19 980 1000 2.0 1.3 3.1 1.8 21 8 13.5 6.5 20 8.5 
220

1.4 
480
4 



TABLE 8 (Cont'd.,) 

HEASUREMENT .CONDITIONS 

VRRM 1000C 

V 250C TRW circuit, half sine wave, 

S0A peak, ;20 ps wide 

Measured at 2 and at 10 ps 
after gate current reached 2A. 

t ,q 
i000C 200A, 25k/ps, 400V/ps 

no gate assist 

Itq2 1000C 200A, 25A/ps, 400V/ps 
10 2A gate assist 

t0, 1000C 80A, 20 ps half sine 
TRW circuit 
no g?te.assist 

S00C 80A, 20 ishalf sine 

q4 1TRW circuit 

2A gate assist 

t Same as t but with antiparallel diode. 

q6 Same as t4 but with antiparallel diode. 

'V I V 50V  250C 
01 CT 'A 

L 
V 50V 250C I 2A
A 

25?C 
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Fig. 22 Photograph of thyristor fusion with integrated


bypass diode.
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A photograph of one of these fusions is given in Fig. 22. Typical



oscillograms that were taken on these devices are given in Figs. 23-29.



Blocking voltage waveforms, at 100*C, are shown in Fig. 23. Figure 24



shows dynamic forward drop waveforms for an BOA, 20 jis half sine wave of



current. Figure 25 shows dynamic forward drop waveforms for 200A cur­


rent waveforms. Turn off time waveforms, both with an without gate



assist current are given in Figs. 26-28. In Fig. 26, the current waveform



was a 200A, 20 ps half sine wave. In Fig. 27, the current waveform was



an 80A, 20 1s half sine wave. In Fig. 28, the same current waveform was



used as in Fig. 27, with the difference being that in Fig. 28 an anti­


parallel diode was used. Figure 29 shows that the devices can be



operated at a di/dt level of 10OA/ps.



5.16 Discussion of the Measured Performance of these Thyristors



The data in Table 2 show that the target specifications of



Table 1 are feasible (except that no t data was shown because at that
 
on



stage of the program, there was doubt about our ability to make accurate



t measurements).
on



Given the VTM - tq tradeoff curve of Fig.16, devices as



represented by Table 3 were made to have a higher carrier lifetime.



The average VTM at 200A (which in Tables 2 and 3 were measured in the



middle of a 60 Hz half sine wave) was thus decreased by 20%. This de­


creases the conduction losses by 20% and the circuit designer tolerated



the longer t q
q 

Using an improved slice thickness and diffusion schedule design,



devices were made and delivered as represented in Table 4. Without



sacrificing blocking voltage and with even a faster t than that in Table 3,
q


the VTM was again decreased. (2.34 V in Table 1, 1.87V in Table 2 and



1.51V in Table 3). At this stage of thelrogram, we added another test



of t (80A, 1OA/s, 50V/psec) with conditions similar to those of the
q



circuit application.
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Figure 24



Typical Dynamic Forward Drop 
25 0C Half Sine Wave 80A, 20 lis 
1, 20A/div, VA,2Vdiv, I. 2A/div 

time 2 us/liv 
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Figure 25



Typical Dynamic Forward Drop



250C Half Sine Wave 200A, 20 ps


I A I00A/div, VA 2V/div 

time 2 Ps/div 
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57-6 

57-10 

57-11



Figure 26



Typical Turn-Off Time Waveforms (t, t)


100C IA 100A/div, VA 200V/div q2



time 5 ps/div, Gate assist '0and 2A
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Figure 27 

Typical Turn-off Time Waveforms (t , t q 

1000C IA 20A/div, VA 50V/div 

time 5 ps/div Gate Assist 0 and 2A



69



RM-72502





mlmn lmmN


mmmmmmni



57-6



57-10



iim1mm.Mms 

57-11


Figure 28
 


Typical Turn-Off Time Waveforms (tq, t )



10ORC IA 20A/div, VA 50V/div 5 6



time 5 ps/div 'GateAssist .0and 2A
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Figure 29



Demonstration of 10OA/s Capability


25°C I 2A, 10 ps


IA 100A~div, VA 5 V/div



time 1 s/div
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The devides described in Tables 6 and 7, were packaged in



the newly developed package. 'They showed similar characteristics to those 

shown in Table 4.



The data in Table 8, Figures 23-29, and the above described 

calorimetric measurements show that the device can be made with an in­


tegrated bypass diode to perf6rm well with good device-to-device 
unit­


formit'i The difficulties that prevented us from building these devices



earlier in the program were of a nature that had nothing to do vith the



novel features of this device design.
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6. PACKAGE DEVELOPMENT



The package development effort proceeded as follows. Three 

package types were considered, as shown by the drawings in Figs. 30, 31 and 

32. Their characteristics were analyzed by-Westinghouse, NASA and TRW.



The package dimensions are shown in the drawings. The estimated



weight of the flat square base style device, Sketch #A348779, with the 

dimensions shown and the required mounting hardware, including four Be0 

washers is r 459 grams. By selectively thinning the square base and trim­

ming the hardware this weight can be reduced by ,t88 grams to "' 371 grams. 

The weight of the flat hex base style device utilizing a leaf spring and 

single Be0 disc, Sketch #A348780, is estimated at x' 308 grams. The weight 

of the flat pack style device utilizing the "cage type" clamp and single 

Be0 disc, Sketch #A34871, is estimated at 'v 345 grams. 

Calculations for two distinct mounting techniques were made



for device A348779, the "Flat Square-Base Device". For the first technique



it was assumed that a 1.0 inch diameter BeO disc 0.10 inches thick would



be used under the center of the device to conduct the heat from the square



base to the heat sink and provide the electrical isolation. Epoxy heat



transfer compound would be used on both sides of the Be0 disc to assure



that there will be no voids under vacuum environment conditions. For



these conditions the calculated thermal resistance from device junction
 


to heat sink is.% 0.4030 C/Watt.



The second technique utilizes four (4) BeO washers around the



mounting holes to provide the thermal conduction path from the device to



the heat sink and also to provide the electrical isolation. In this



case the washers are 0.75 inches outside diameter by 0.265 inches inside



diameter by 0.10 inches thick. Epoxy heat transfer compound would be
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used on both sides of the BeO washers to assure that there are no voids



in the joints. In this case the calculated thermal impedance, junction



to heat sink, is 'V 0.428'CIWatt.



For calculating the thermal impedance of device A348781, the



flat pack with the "cage-type" clamp assembly, it is assumed that the



joint between the flat pack and the copper bus bar terminal can be made



using a Sn-Pb solder alloy -- thereby eliminating the external "dry"



joint. In this case a BeO disc 0.75 inches in diameter and 0.10 inches



thick would be used to provide electrical isolation and thermal conduction.



Epoxy heat transfer compound would be used on both faces of the BeO disc.



For this case the calculated thermal impedance is - 0.462 0C/Watt. As has



been mentioned previously, this value could be reduced by building a



larger contact into the flat pack housing. Such a modification consitutes



a rather major redesign, however, and would require several months to



accomplish.



For calculating the thermal impedance of device A348780, the



Flat Hex Base design, it is also assumed that the anode terminal would be



attached to the device using a Sn-Pb alloy and a soldering process to



eliminate the external "dry" joints. A BeO disc 1.0 inches in diameter



by 0.10 inches thick would be used to provide electrical isolation and



thermal conduction. Both surfaces of the BeO disc would be coated with



epoxy thermal conductive compound to eliminate voids in thermal path.



In this case, the calculated thermal impedance is 
tv 0.370C/Watt.



The final decision was to use the design A348779. The main



reason for this choice was that this package design would be least



likely to distort the light weight heat sink to which the package must be



mated.



In order to decrease the weight below the value given above,



the cathode lead weight was decreased and an anode bus connector was



not included. The final package weighed 230 gms plus 77 gms for the



mounting washers, bolts, sleeves and nuts or 307 gms total.



Figure 20 showed a photograph of the new package.
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7. CONCLUSIONS



A gate-assisted turn-off thyristor has been developed that is



useful in efficient lightweight circuits such as those used in power



processors for ion engines.



The device blocks 800-I000V forward and,reverse, has a 2.6V



forward drop at 2 ps and 1.6V at 10 ps into a 200A, 20 ps wide half sine



wave.. The turn-off time is 6-7ps at lOO0 Cwith a dV/dt of 400V/Ps,



making 20 kHz operation practical. Fast low loss turn-on was achieved



by adding gate amplification to the GATT. Turn-off time can be lowered



to 3ps or below at the expense of a higher forward drop.



It was found and demonstrated that the effectiveness of gate



assist current is not, as previously thought, due to carrier sweep out
 


but is primarily due to its opposition to the dV/dt induced forward voltage



on the cathode junction. Based on this finding, it was demonstrated that



cathode shunting, which imparts good performance and reliability to nearly



all other types of modern thyristors, can also be used to advantage in



GATT's.



It was found that the resistance in the p-base, under the



cathode, significantly influences the effectiveness of gate assist



current on the turn-off time.



A useful design curve was developed that shows the possible



tradeoffs between tq and VTM. The generation of this type of curve is



possible when electron irradiation is used to kill lifetime because



electron irradiation can be used in stepped increments to decrease the



lifetime of otherwise finished devices. The generation of such a curve



would not be practical if gold were used to kill the lifetime. A



physical understanding of-the nature of this tradeoff curve was developed,



This curve made it possible for the user of the devices to select,
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after the program was well underway, a better point on this tradeoff 

curve for the device to be built to give the most efficient performance 

in the circuit. 

It was found that in order to use gate amplification in a GATT,



one must introduce a diode so that the gate Assist current bypasses the



resistance in the p-base under the auxiliary cathode. Three configurations



of bypass diodes were used in this effort and problems with each were
 


defined.



A new lightweight package was designed and built for the



device because of the significance of weight in NASA's applications.



Overall, the efforts have significantly improved the under­


standing of the behavior of, and provided an improved basis for designing-,



gate assisted turn-off thyristors of a type that can be, and are being,
 


used by NASA in the construction of circuits with improved efficiency



for deep space missions.
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APPENDIX A



A Technique for Optimizing the Design of Power
 


Semiconductor Devices


EARL S. SCHLEGEL, SENIOR MEMBER, IEEE 

Abstract-A technique is described that provides a basis for 
predicting whether any device design phange will improve or de- 
grade the unavoidable trade-off that must be made between the 
conduction lossandtheturn-offspeedoffast-switchinghigh-powet 
thyristor The technique makes use of a previously reported 
method bywhich, for a given design, this trade-off was determined 
for a wide range of carrierlifetimes. Itis sh6wn thatbyextending 
this technique, one can predict how other design-variables affect 
this trade-off. The results show thatfor relatively slow devices the 
design can be changed to decrease the currentgains to improve the 
turn-off time without significantly degrading the losses. On the 
other hand, for devices having fast turn-off times design changes 
can be made to increase the current gain to decrease the losses 
without a proportionate increase in-the turn-off time. Physical 
explanations for these results are proposed. 

I.INTRODUCTION 
 

T HE SIZE, weight, and cost of high-power electronic 
equipment can be reduced if the circuitry can be 

designed to operate at higher frequencies. This is due to 
the smaller size and weight of high-frequency components. 
For this reason, and the desire to use solid-state compo-

Manuscriptreceived October 31,1975; revised February 23,1976.-This 
work was supported in part by NASA-Lewis Center under Contract NAS 
3-16801. 

The author iswith the Research and Development Center, Westing­
house Electric Corporation,Pittsburgh, PA 15235. 

nents in applications requiring higher and higher
frequencies, development efforts are currently being di­

rected toward improving fast-switching semiconductor 
devices. 

The focus of these development-efforts is on improving 
the trade-off between the device dissipated losses and the 
turn-off speed. The importance of this trade-off can be 
briefly described as follows.The turn-off time limits the



duty cycle and frequency capability of a thyristor. Energy 
losses dissipated in the thyristor degrade the efficiency of 
the circuit and increase the operating temperature of the 
thyristor. The increased temperature decreases the power
handling capability of the thyristor and, because it de­
grades the turn-off time [1]-[4], decreases its frequency 
capability. Hence the need to design for the best combi­
nation of losses and turn-off speed. 

Unfortunately, design changes always affect the loss and 
speed in opposite directionsand one is forced to find the 
best compromise. For a number ofreasons, the effect of a 
design change on this compromise is difficult to determine. 
It is fairly simple to predict how a design change will affect 
the losses or the turn-off speedindividually-any change 
that increases the current gains of the transistors in the 
two-transistor analog will decrease the losses and degrade 
the turn-off speed. On the other hand, a prediction of 
-whethera given design change will improve or degrade the 

Copyright @1976 by The Institute of Electrical and Electronics Engineers, Inc. 
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trade-off between these parameters is very difficult This 
difficulty arises from the-following: 

1) The complexities of the three-dimensional, and 
temperature-sensitive, nature of thyristor physics makes 
quantitative calculations-very difficult. There are many 
design variables and their interactions are complex. The 
listofdesign variables includes the shape, size, spacing, and 
pattern of the cathode shunts; the shape, effective line 
width, and perimeter length of the cathode; the width and 
dopant profile both of the p-base and the n-base; the do­
pant diffusion profiles of both the cathode and the anode; 
and the carrier lifetime and its spatial variations. 

2) For any set of device-design and operating-condition 
variables it is difficult to determine the optimum carrier 
lifetime level. 

3) The conditions that influence those current gains 
that determine the conduction losses are different from 
those that determine the turn-off speed. The current gains 
that determine the conduction losses are the result of high 
current densities, of a forward-biased colleator junction, 
and are an average for a large conducting area. On the other 
hand, the current gains that affect the turn-off speed in­
volve much lower current densities, a reverse-biased col­
lector junction and, perhaps, a small local area. 

4) A design change that seemingly affects the current 
gain of only one transistor in the two-transistor analog 
causes changes in the current densities and voltages, and 
therefore in the current gains, ofboth transistors. For these 
reasons it has been impractical to use theoretical-analyses 
for determining the effects of design changes on the 
trade-off between the losses and turn-off speed. 

Experimental studies have also been impeded by a 
number of practical problems. Typically, because a single 
device fills an entire 23 to 50-mm-diameter slice, one is 
limited to a relatively small number of test samples. There 
are many possible sources of sample-to-sample variability. 
The starting slice can have variability in the resistivity, 
lifetime, defect density, surface conditions, and thickness, 
Additional variability can be added at any or all of the 
diffusion steps (often as many as five), the oxidation steps 
(often two), andintermediate lapping or etching steps. A 
systematic empirical study is therefore costly and subject 
to variables in parameters that are difficult to control, 

Thus the ability to study the effects of individual design 
variables in large expensive power thyristors would be 
improved if the sample-to-sample variability, and there­
fore the necessary sample size, could be decreased, 

This paperdescribes a technique by vhich this can be 
accomplished. 

11. APPROACH To THE PROBLEM 
In generalized terms, the above-described difficulties 

can be decreased if a way can be found by which a relatively 
large amount of information can be extracted from rela­
tively small number of samples. Fortunately, a technique 
is already developed and is in use routinely on production 
quantities of high-power semiconductor devices that 
provides this capability [5]. By this technique, high energy 
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Fig. l. Typical trade-off relationship between forward drop andturn-offtime of power thyriators. 

electron irradiationis used in small incremental steps to 
produce, in individual devices, well controlled incremen­
tally stepped changes in carrier lifetime. For example, Chu, 
Bartko, and Felice [5] have measured theforward drop and 
the turn-off time between the irradiation steps and gen­
erated trade-off curves of the type shown in Fig. 1.From 
these curves they have been able to precisely determine the 

- exact amount of irradiation that will yield the best-trade 
off in forward drop and turn-off time for a given applica­
tion. 

The subject of this paper is an extension of the capability 
represented by Fig. 1. Fig. 1 shows only how the carrier 
lifetime affects the trade-off for a given device design. In 
the following it is shown how the many other design vari­
ables affect this trade-off. It is qualitatively well under­
stood how any design variable, say the p-base width or the 
cathode geometry, affects the current gains in the two­
transistor analog. It is also understood that an increase in 
these current gains decreases the losses and increases the 
turn-off time. The difficult problem is to predict whether 
a given design change will improve or degrade the trade-off 
between these parameters. 

The trade-off curve given in Fig. 1shows that -whenthe 
samples are heavily irradiated, the forward drop VTM is 
sensitive and the turn-off time tq is insensitive to the 
carrier lifetime, and that when the samples are only slightly 
irradiated, the opposite is true. One might infer from this 
that other design changes that increase the current gains 
will improve the VTM faster than they degrade the tq in 
heavily irradiated samples and that the converse would 

.occur in lightly irradiated samples. An experiment de­
scribed in the next section shows that this does indeed 
happen. /-o' 
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Fig. 3, Impurity density profiles measured by spreading resist­
ance [6]. 

II. EXPERIMENTAL DETAILS 

To evaluate the validity of the inference made above, thefollowing experiment was performed. The test strutthre 

used was a developmental thyristor that is similar to 
commercially available, high-speed high-power thyristors. 

Fig. 2 is a photograph of the cathode diffusion mask. The 
samples wexe made from a single processing run, in which 
three sublots were created by varying the length of the 
phosphorus diffusion time to produce the measured [6] 
impurity profiles given in Fig. 3. Following the phosphorus

finished without any
diffusion, the three sublots were 

additional difference in the processing. The completed 
thyristors were then tested for t. and VT'M after each of 
five steps in which the carrier lifetime was progressively 
and incrementally decreased by means of high energy ir­
radiation, 

The measured t. and VTM were plotted asgiven in Fig. 
4. To facilitate comparisons, single-line curves were fitted 
to the data and superimposed as given in Fig. 5. Fig. 5 also 
summarizessimilar data for which the VTM was measure 

....£ * , 4,4, t, 

Fig. 4. Measured turn-off time t9 and forward drop VTM. The different 
point styles indicate different irradiation doses. (Conditions: t,, ITM 

=200 A, dildt = -25 Xfps- dv/dt =400 V/us to 400 V, 10000; V,, 
ITM 200 A, 25-C.) 

A 

s A014 0 

IWI 2 4 6 30 1 2 4 6 3 1 
VYMQ2OWA MAPifilcsWOft V25 

Fig?5. Comparisons oft, - VIM curves for the three impurity density
profiles. 

at 80 A. The differences between profiles C and A in Fig.
4 are such that C gives the higher current gain. That is, 

4iaresuch that jvs t higher curre an-rThat isdiffusion profile CC has a narrower n-base, a narrower p­
base, and a lower density of acceptor atoms in the p­
base. 

As predicted, the data in Figs. 4 and 5 show that a 
change that is known to increase the current gains has 
improved the trade-off between VTM and t0 at the low­
carrier-lifetime end of the trade-off curve and degraded 
it at the high-carrier-lifetime end of the curve. 

IV. DISCUSSION 

Physically, this finding can be explained as follows. The 
current gains that determine tq are different from those 
that determine VTM. The current gains are very sensitive 
to current density, which is much higher under the con­
ditions of forward conduction than for turn-off. They are 
also sensitive to the voltage on the central junction, which 
is the collector junction for both transistors il the two 
transistor analog. This junction is forward biased for Vrm 
fd reverse biased for 4• Furthermore, the current gains 
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Pig. 6. Defnition of turn-off time t of a tliyristr. 

that establish the VTM are averaged for the entire device 
area while those that influence the to are determined only 
by the first small area to become regenerative. 

Because of these differences, a change in any design 
parameter can change the VTn--and the t4-determining 
,current gains differently. 

A conducting thyristor with high carrier lifetimes has 
high excess carrier densities [7]-[9] with recombination 
rates that may be dominated by Auger recombination. 
When this same thyristor is in the turn-off mode, the 
carrier densities are much lower and the recombination is 
lattice-defect determined. In this case, a decrease in the 
lifetime due to an electron irradiation has a much larger 
effect on tn than on VTM. 

If the lifetime is progressively decreased, the effect of 
Auger recombination becomes less significant and changes 
in lifetime have an increasing effect on VTM. 

When the lifetimes are decreased to much lower levels, 
the effect of lifetime on tq appears to be decreasing, This 
is probably due to the manner in which tq has been de­
fined. The definition 110] of tq includes, as shown in Fig. 
6, the reverse recovery time. Reverse recovery times are 
much less sensitive than turn-off times to changes in the 

Therefore, when the tq is decreased to the level where 

it approaches the reverse recovery time, it becomes rela­
tively insensitive to the carrier lifetime. These arguments 
explain the shape of the curve in Fig. 1. 

Other device design changes similarly have a greater
effect on one set of current gains than on the other as 

demonstrated in Fig. 5. Thus design changes should be 
made to improve whichever parameter is most sensitive 

to a change in current gain. That is, when tq is high, one 
should decrease the current gain because this decreases the 

tq with little detriment to VTM. On the other hand, when 
VTM is high, the current gain should be increased to de­
crease VIM with little detriment to tq. 

By this technique, adevice designer can, with arelatively
1of

small number of devices, improve and optimise the 
th ehiu roie h en fo"etring whrtrade-off between forward drop and turn-off time. Further, 

the tecnique proides themeans for determngwhere 

the cross-over point between the two extremes is.

V. 	 CONCLUSIoiS 

A technique has been described and demonstrated that 	 

provides a basis for predicting whether a given device de­
sign change will improve or degrade the unavoidable 

trade-off between the conduction loss and the turn-off 
speed of fast-switching high-power thyristors. 

Data are given that show that, at high-carrier-lifetime 
a design change that decreases the current gains in 

the two-transistor analog will improve the .turn-off time 

more significantly than it will increase the conduction loss. 
On the other hand, the data show that, at low-carrier­
lifetime levels, a design change that increases the current 

will improve the losses more significantly than it will 
degrade the turn-off time. Since a device designer knows 

how todesign for a change in the current gains this tech­
nique gives him a basis for designing for a better trade-off 
between VT7M and tq. 

Explanations are given for these results. It is proposed 
that in a device with a high lattice-defect-determined 
lifetime, the turn-off speed is sensitive to this lifetime, 
while the conduction losses are mainly dependent on Auger 
recombination which is hardly sensitive to the lattice­
defect determined lifetime. On the other hand, in a device 
with a low lattice-defect-determin 0 lifetime, Auger re­
combination is less significant and the losses are sensitive 
to the lattice-defect-determined lifetime. In this case, the 
turn-off speed becomes insensitive to lifetime because it 
becomes limited by the reverse recovery time. 
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Gate-Assisted Turnoff Thyristors 
APPENDIX B 

EARL S.SCHLEGEL, SENIOR MEMBER, IEEE 

Abstract-A study of the turnoff physics in gate-assisted turnoff 

thyristers (GATT's) leads to aproposed mechanism involving the 

gate bias acting to prevent a forward voltage from appearing on 

the cathode rather than, as was previously thought, to sweep out 

excess carriers. 
It is shown that cathode shunting can be used in GATT's to vir­

tually eliminate an important failure mode and to decrease the gate 

voltage needed toproduce the desired improvement in turnoff time. 

Implications for designing GATT's are given, one being that a 

change in the lateral resistance of the p-base will have opposite 

effects depending on whether the cathode is shunted or not. 

I. INTRODUCTION 

T HE SIZE, weight, and cost of high-power electronic 

circuitry can be decreased if the circuit can be de­

signed to operate at higher frequencies. This is due to the 

fact that the components of higher frequency circuits are 

smaller in size and lighter in weight- With the increasing 
usage of thyristors in higher frequency power electronic 

circuits, it becomes necessary to determine more clearly 
how the frequency capability of a thyristor is limited and 

to explore possibilities for increasing the high-frequency 

capabilities of thyristors. 
The frequency capability of thyristors is limited by the 

turnoff time of the thyristors. This turnoff time tq is de­
fined [1 as the time, after the anode current of the thy­

ristor has been commutated to zero, that is necessary for 
the excess carrier density distribution to decay to a level 
at which forward voltage can be reapplied without reiring 

the thyristor. Extensive efforts are being made to design 

and build thyristors with short turnoff times. 

The thyristor designer wants both fast turnoff time and 

low losses. He recognizes that this calls for high current 

gains while the device is in its conducting state and for low 

current gains when the device is to be turned off. Since this 

is difficult to achieve by device design alone, efforts [2]-[4] 

have been made to design thyristors that can be operated 

in a manner in which the current gains can be significantly 

changed by the operating conditions of the cohducting and 

the turnoff periods. Thyristors designed to operate in this 

manner have been called gate-assisted turnoff thyristors 

(GATT's) [2]-[4]. 
The objective of the work of this paper is to prpvide a 

physical understanding of gate-assisted turnoff and to 

discuss the implications of this understanding for the de­

sign of thyristors for which gate assist is to be effective. 

DEFINITION OF GATE-ASSISTED TURNOFF 

Gate-assisted turnoff is the name given to the method 

fer turning off a thyristor with the usual commutation of 

Manuscript received October31, 1975; revised February 19, 197&This 
work was supported in part by the Lewis Research Center, NASA, under 
Contrast NAS 3-16801. 

Thb author is with the Westinghouse Research Laboratories, Pitt­
burgh, PA 15235. "3 

100 

Turn-oil 
Time 

IPseci 
10



1 0 
Gatesst Current (A)



Fig. l. Dependence of measured turnoff time on gate-assist current. 
(Conditions: 1000C, 25 A/ps,400 VIPs.) Each curve representsadevice 
having a different carrier lifetime level created by different doses ofhigh-energy electron irradiation. 

the anode current but with the addition of a negative pulse 

applied to the gate during the time when forward anode 

voltage is being reapplied. This negative gate pulse de­

creases the turnoff time; that is, it allows one to reapply the 

forward voltage earlier without refiring the thyristor. 

(GATT's must not be confused with devices usually called 

gate-turnoff thyristors (GTO's) or gate-controlled switches 

(GCS's),that can be turned off with a gate signal without 

commutating the anode current.) 

Fig. 1gives typical data that show how the turnoff time 

is decreased by the negative gate current pulse (gate-assist 

current). The cathode diffusion mask, which is shown in 

Fig. 2, was the same for all of the devices represented in 

Fig. 1. The difference between devices represented in Fig. 

1 was the value of the carrier lifetime. The devices repre­

sented in Fig. 1 have forward and reverse blocking voltages 

of 1000 V, and a device that has a turnoff time of 6 ps with 

2 A of gate-assist current has a VTM of 1.5 V at 200 A. The 

slice diameter is 23 mm. Fig. 2 shows that the cathode de­

sign contains shunts down the middle of the cathode fin­

gers. All previous designs for GATT's have not used 

emitter shunts [21-[4]. As is shown in this paper, shunts 

can be used to advantage both to gain a better under­

standing of and to improve the performance and reliability
of GATT's. 

I 
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Fig. 2. Photograph of the cathode diffusion mask. 
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Fig. 3. T(pical'anode current and voltage'of a thyristor. 

III PHYSICS OF THYRfSTOR TURNOFF 

A. OutlineDescription-of the Mddel 
Fig. 3 shows typical waveforms of the voltage and cur­

rent of a thyristor during one cycle of its operation. The 
turnoff time tq is the minimum time interval between the 
time to-at which the anode current has been commutated 
t6 iero, arid the time t, at which a forward voltage can be 
reapplied to the thyristor without retiring the thyristor. 
In this section, the physics of turning off a thyristor is 
briefly reviewed so as to provide the basis for describing 
the physics of gate-asdisted turnoff. 

The description of the model will be best understood if 
the reader understands how all thyristors involved in 
commutated turnoff go through the following sequential 
steps: 

1) conduction; 
2) current commutation; 
3) current polarity feversal; 

4 reverse recovery;4) reverse recovery; 
5) dV/dt-induced displacement current creation of

forward bias on the cathode junction. 

The thyiistor will fail to turn off if this IR drop causes 
sufficient injection from the cathode to retire the thyristor. 

Two models for the effectiveness of gate-assist current 
will be described: 1) earlier model-carrier sweep out; 2) 
this model-decreased forvard bias on cathode junc­
tion. 

B.Tyristarsin General 

The anode emitter of a thyristor in the conducting state 
injects holes uniformly from its entire area. This creates 
an exc6ss bole density and, because the region is space­
charge neutral, an excess electron density that is fairly 
uniform over the entire area ofthe n-base. At the initiation 
of turnoff, the anode current is commutated and the 
emitters stop injection. Excess charge densities decrease 
in the n-base both because of carrier flow across the 
boundaries of the n-base and because of recombination 
within the n-base. At this time the anode-to-cathode 
voltage has not yet reversed. 

Later, when the excess charge densities have decreased 
to zero at the anode junction, the current-carrying capa­
bility of the anode junction drops abruptlyand the device 
"blocks." The anode-to-cathode voltage is reversed at this 
point and the device becomes capable of supporting a high 
reverse voltage. This is reverse recovery. At-this stage of
turnoff, the anode junction limits the current to a sharply
reduced value. The voltage polarity on this junction pre­

vents electrons from leaving the n-base through the anode 
junction. On the other side of the n-base, at the central 

the dopant density distributions are such that 
this junction emits holes from the p-base in much greater 
number than it emits electrons from-the n-base. Therefore, 

only a-small proportion of the already small anode-junc­
tion-limited current consists-of electrons flowing from the 
nbase to the p-base. Clearly, after reverse recovery, theflow of excess electrons from the n-base is nearly stopped.
at both junctions. An equal number of excess holes are 

present to neutralize the charge of these electrons to 
maintain.space-charge neutrality. At this stage of turnoff, 
even though the anode junction has undergone reverse 
recovery, there is a substantial amount of excess charge 
"blocked" in the n-base of the thyristor.This charge plays 
an important role in determining the turnoff time. Since 
it is blocked from flowing out, the lifetime of these carriers 
in the n-base strongly influences the turnoff time. Assalit 
and Studtman [5] have suggested taking this charge out 
via an electrode attached to the n-base but the use of an 
n-base lead is undesirable because it complicates both the 
manufacturing process and the circuit design. 

When forward anode voltage is reapplied, the anode 
junction again becomes forward biased and electrons can 
flow out the anode junction. As electrons flow out to the 
anode, holes can, because of space-charge neutrality, flow 
out to the p-base and on out through the cathode. This 

current continues until the excess charge at the central 

junction is reduced to zero, and then forward recovery [6] 

occurs at the central junction in a manner very similar to 

that of reverse recovery.~~Theforward-recovery (Vd-nue ipaeet
Thfowr-evry(Vdinuddspamnt

current plays a very important role in the physics of turnoff 
of a thyristor, and a good.understanding of the behavior 

of forward-recovery current is necessary if one is to un­
derstand the behavior of turnoff time. 

A study [6] of forward-recovery current shows that it: 
1) Decreases exponentially with increasing time after 

the anode current reversal, as shown by the superimposed 
,iveforms piven'in*Fig. 4 and the curves in Fig. 5. 
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,; 
 

Fig. 9. Top: anode voltage (200 V/div). Bottom: anode current (2A/div), 
time (1ps/div), temp. 1000C. The effect of the dVIdt on the forward­
recovery current pulse height and pulse sharpness. Each set ofcurves 
was photographed just at the point at which a shorter turnoff time 
interval would retire the thyristor. The time axis was shifted to su­
perimpose the start of the dV/dt ramps to facilitate the comparisons 
of the waveforms The actual turnoff time increased with the increasing
dV/dt. 

IrVA =0, 200 V/div 
/ 
 

0.4Atdik .lrnp' 

A =0I. 2A/div, 2Traces 
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IT= 200A, LI= 5 Alpsec, 100°C T-7­

Fig.10. Photograph of forward-recovery current both with and without 
4 A of gate-assist current. 

-the onset of forward-voltage-induced dispfacement and 
theforward-recovery point (at the recovery current-peak) 
decreases with increasing dV/dt. It is this leading portion 
of the forward-recovery pulse that determines whether the 
device retires, 

Of course, the diffusion layer profiles and the n-base 
width and resistivity, the carrier lifetime, and the junction 
temperature all influence the current gains of the n-p-n 
and the p-n-p transistors -that constitute the thyristor. 
These design variables, therefore, all influence the mag­
nitude of the forward-recovery-current-induced IR drop 
that is necessary to cause a refiring of the device. 

C. 	 Gate Assisted TurnOff 

CarrierSweep Out Model: Previous investigators [2], 
[4] had proposed that the function of gate-assist bias, in 
decreasing the turnoff time, is to sweep out excess carriers 
through the gate so as to decrease the excess carrier density 
more rapidly than by recombination alone. However, there 
is a difficulty with this model in that it does not explain 
why gate-assist current, drawn before the forward voltage 
is reapplied, does not significantly improve the turnoff 
time. That is, the gate-assist current is helpful only if it is 
present during the interval when the forward voltage is 
being reappied. As Fig. 10 shows, the forward-recovery 
current is also insensitive to gate-assist current drawn 
before dV/dt is reapplied. 

D. Cathode-Voltage PreventionModel 
In the preceding model for the turnoff of thyristors, the 

voltage developed on the cathode junction plays a key role 

Cathode Gate -. ,Cathode 

N01 	 N 
I 	 /I



Anode 
/ V



Gate Assist Current Forward Recoery Current 

Fig. 11. Improved model for gate assist. Gate assist is effective because 
it provides an IR drop thatopposes the IR drop generated by the for­
ward-recovery current 

in determining whether the thyristor will turnoff, that is, 

whether it will support reapplied forward voltage or retire. 

In the cathode-voltage prevention model for gate-assisted 
turnoff the effect of gate-assist bias is to prevent the de­
velopment of a forward voltage on the cathode junction. 
In GATT's which have no cathode shunting, the gate-assist 
bias diverts the forward-recovery current from the cathode 
to the gate. Because of this diversion of the current, the 
cathode junction becomes less forward biased and injects 
a lower density of electrons into the p-base. Therefore, the 
thyristor is less likely to refire. In this case, it is desirable 
to have low lateral resistance in the p-base under the 
cathode so that theforward-recovery current can easily be 

conducted to the gate without producing an IR drop that 
would forward bias the central part of the cathode. 

In GATT's with properly designed cathode shunts, the 
gate-assist bias causes current to flow from the cathode
shunts to the gate. This current produces a lateral IR drop 
in the p-base that, along with the centrally located shunt, 
prevents a forward drop from appearing on the cathode 
junction. This is depicted in Fig. 11. In this case, a greater 
counteracting effect for a given gate-assist current level can 
be achieved if the lateral resistance in the p-base is higher. 
Alternatively, for a given gate-assist voltage an increase 
in this lateral resistance will decrease the gate-assist cur­
rent and power. 

Cathode shunts can be used in GATT's to improve both 
the device reliability and performance. 

The nature of gate-assist current is that it is most ef­

fective at the edge of the cathode. In an unshunted cathode 
.itis very possible for the initial refiring to occur in the 
middle of the cathode. Once firing occurs centrally iii an 
unshunted cathode, gate-assist current pinches the con- ­

ducting area and thereby confines the fired area to the 
middle of the cathode causing overheating and oftentimes 
failure-of the device. On the other hand, a central shunt 
forces the initial firing to occur at the cathode edge where 
gate-assist current is more effective, and this eliminates 
the failure mode. 

Shunts can also improve the reliability of GATT's be­
cause they increase the certainty that the auxiliary thy­
ristor will fire before the main thyristor when gate ampli­
fication is used. While a discussion of gate amplification 
is beyond the scope of this paper, it can be used to good
advantage in GATT's. To do this it is necessary to have an 
antiparallel bypass diode across the auxiliary cathode. 
Without this diode, when-gate-assist bias is apnlied, the 
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Fig. 5. The dependence of the forward-recovery current on the time of 
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2) Increases with dV/dt as shown in Fig. 6. 
3) Increases with junction temperature as shown in Figs. 

5 and 7. 
4) Increases with increasing di /dt, the rate of com­

mutation of the anode current. 
5) Increases with increasing carrier lifetime: 
The turnoff time and the dV/dt rating depend on the 

forward-recovery current as follows. The forward-recovery 
current enters the p-base over the entire area of the middle 
junction and flows to, and out through, the cathode. If the 
cathode is unshunted, a forward bias is developed on the 
cathode junction to the degree necessary to carry the for­
ward-recovery current. If it is shunted, the forward-re­
covery current flows to and out the shunts. This current 
creates a voltage drop in the p-base as shown in Fig. 8.This 

'C0.22eV 

1.0 

in eK) × O1 3 
,e 

, Effet of temperature n forward-recovery urrentInj 150 
A, (djn/dt) =-25 A/tps, (dv/dt) = 400 V/s. tq = 8 sS 

Fig. 8. Forward-recovery-current-induced IR drops in p-base. For­
ward-recovery current creates an IR drop in 0-base under the cathodes 

that forward bias the cathode emitters. 

voltage drop depends on: 
1) The magnitude of the forward-recovery current. 
2) The lateral resistance in the p-base to this current 

This depends both on the sheet resistivity of the p-base 
under the cathode and on device geometrical factors that 

determine the current path distribution in the p-base. 
Since the lateral resistance is different for different areas 

of the thyristor structure, it is important that the area 
being examined be that in which the dVIdt is most likely 
to refire the device. For example, if there is an auxiliary 
ahd n utko hthrted/.frstemi
cathode one must know whether the dVldt fires the main 

or the auxiliary cathode first. 
If the IR drop in the p-base due to the forward-recovery 

current is greater than about 0.7 V, it will forward bias the 
cathode emitter and causes injection from the cathode. If 
this cathode injection continues long enough, the injected 
carriers diffuse through the thyristor bases and build up 
a distribution of excess carriers that is sufficient to refire 
th4 thyristor. 

Because the time it takes to build up the carrier distri­
buti6n (about 1 Ps) depends on the injected carrier density, 
the IR drop that is capable of refiring the thyristor depends 
on the duration of the forward-recovery current pulse. This 
forward-recovery current pulsewidth, in turn, depends on 
the dV/dt applied to the anode. This is illustrated in Fig. 
9, which shows how the peak forward-recovery current 
increases with increasing dVidt. The time interval between 
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resistance of the auxiliary cathode degrades the effec­
tiveness of the gate-assist bias on the turnoff time. Fur­
thermore, depending on the gate-assist current drawn 
through this resistance, it can heat up the auxiliary region 
of the thyristor to the point of degradation or failure. ' 

Shunts prevent the forward-recovery current from firing 
the thyristor centrally in the cathode, and therefore the 
gate-assist bias voltage can be lower. Gate voltages of only 
1-3 V were-needed-toproduce the-data of Fig. 1. On the 
other hand, unshunted GATT's require 10-20 V ofgate­
assist bias [21-14]. 

E. Design Guidelines 
Based on this understanding, the following is a set of 

guidelines for designing thyristors for which gate-assist 
current is effective. 

1) 	 Interdigitate the gate and cathode. 
2) Inimizite gate area to minimize forward-recovery 

current from gate areas t 

3) If the cathode is not shunted, design for low lateral 
resistance in the p-base: 

4) Shunts can be used in GATT's to virtually eliminate 
an important failure mode, to decrease the gate:assist 
voltage, and to.insure proper performance ofan amplifying 
gate. 

5) If the cathode is shunted, the lateral resistance of the 
p-base under the cathode must be high enough that the
gate-assist current develops an JR drop greater than 0.7 

EE TRANSACTIONS ON ELECTRON DEVICES, AUGUST 1976 

The results indicate that the effect of gate-assist bias is one 
of preventing forward voltage from appearing on the 
cathode junction rather than-one of sweeping out excess 
carriers. GATT's can be made with cathode shunts to 
virtually eliminate an important failure mode and to de­
crease the gate voltage necessary to significantly decrease 
the turnoff time. 

Design guidelines for improved GATT performance and 
reliability are given. It is shown that varying the lateral 
resistance of the p-base will have opposite effects de­
pending on whether or not the cathode is shunted. 
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ABSTRACT 
 

A IOOOV, 200A gate-assisted turn-off 
 
thyristor (GATT) is described that was developed 
 
for, and is being used in, circuitry for space ap-

plications requiring high efficiency and rell­

ability as well as small size and weight. The 
 
design features include an interdigitated shunted 
 
cathode, a dynamic gate, a means for optimizing the 
 
carrier lifetime level, and a bypass diode. The 
 
bypass diode is necessary to permit the combination 
 
of both dynamic turn-on and gate-assisted turn'off 
 
in the same device. Two versions of this diode are 
 
described, 
 

The device physics of gate-assisted turn-

off will be reviewed. Based on this, improvements 
 
in the design will be described. It is shown that 
 
a prime failure mode can be eliminated and that the 
 
gate-assist signal voltage can be substantially de-

creased by employing a shunted cathode emitter. 
 

The test data show excellent turn-on


characteristics due to the dynamic gate and the 
 
long perimeter of the edge of the main cathode, 
 

Turn-off times as short as 3 jisec are obtained. 
 
The effect of the gate-assist current on the turn-

off time is described. 
 

The combination of controlling the car-

rier lifetime with a precisely controlled and 
 
easily variable irradiation dose of high energy 
 
electrons with gate assist current provides for 
 
simple, precision tailoring of the device charac-

teristics to the intended application. 
 

INTRODUCTION 
 

The weight and efficiency of the electric


propulsion power processing equipment will be very 
 
important for the design of spacecraft being plan­

ned for the exploration of deep space in the 
 
1980's. The size and weight of solid state power 
 
conditioning equipment can be reduced if the oper-

ating frequencies can be increased because smaller 
 
circuit components can be employed. High effi-

ciency, so important in the high-power circuitry in 
 
spacecraft, requires that the switching losses in 
 

This work was supported by the Lewis


Research Center, NASA, under Contract NAS3-16801.



the thyristors be held to a minimum. This paper


describes a thyristor development part of a program


sponsored by NASA Lewis Research Center to develop


a reliable and efficient poy?5 processor for an


electric propulsion engine.



The requirements for both fast switching
 

and low switching losses are difficult to achieve


in a single device. Any change in a device design
 

that increases the current gain decreases the


turn-on switching loss and conduction loss but in­

creases the turn-off time. This unavoidable trade­

off between turn-off speed and device losses can


be relaxed if the device is operated in a manner


in which the current gain is degraded during turn­

off period but not during the rest of the cycle of


operation. This can be done by applying a negative


pulse to the gate during the turn-off time period.
 

Devices designed for good performance in this .


operating mode are called gate-assisted turn-off


thyristors or GATT's.



Gate-assisted turn-ofr 2 tyigors haveduring the
been produced by several groups 
 

last few years. The name is given to the method
 

for turning off a thyristor with the usual com­

mutation of the anode current but with the addition


of a negative pulse applied to the gate during the
 

time when forward anode voltage is being reapplied.


This negative gate pulse decreases the turn-off


time; that is, it allows one to reapply the for­

ward voltage earlier without refiring the thy­

ristor. (GATT's must not be confused with devices


usually called gate-turn-off thyristors (GTO's) or


gate-controlled switches (GCS's), that can be


turned off with a gate signal without commutating


the anode current.)



GATT DEVELOPMENT



The early devices were designed to have


digitated cathode geometries without dynamic gating


or cathode shunting. Shunting was not used because 
it was believed that the effect of the gate-assist


pulse was to sweep out excess carriers and that the


inclusion of cathode shunts would only add para­

sitic gate current. Dynamic gating was not used


because without shunts to direct the current


through well defined resistance paths, dynamic
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gating can pose Aifficult problems both in the de­

sign and mnufacturability of the device. Further-

more, the usual construction of a dynamic gate 
 
interposes a high resistance between the main cath-

ode and the gate so that the effect of negative 
 
pulses on the gate is severely reduced. Further, 
 
the voltage drops developed in this resistance can 
 
avalanche the auxiliary cathode junction and cause 
 
locallized heating and degradation of the device, 
 

Unfortunately, a digitated cathode with-

out gate amplification requires high gate currents 
 
( 20A) 	to turn the device on with low switching 
 
losses. In addition, there are two other impor­

tant weaknesses in GATT's with unshunted cathodes. 
 
First the dV/dt capability is very low unless the 
 
gate assist bias is maintained continually, 
 
Second, if the device conducts anode current and 
 
it fails to turn off while there is gate assist 
 
bias present the high current is crowded to the 
 
middle of the unshunted emitter fingers and the 
 
device can fail in a mode very similar to that of 
 
transistors and gate turn-off thyristors (GTO's). 
 

PHYSICS OF GATE-ASSISTED TURN-OFF 
 

With these problems in mind, an effort 
 
was undertaken to develop a more complete under-

standing of the physics of gate-assisted turn-off, 
The effort-resulted in the finding that the effect 
of the gate-assist bias~is not primarily to sweep 
out excess chargebut to prevent a sufficient for­
ward bias from developing on the cathode junction 
 
to cause injection and a sufficient current gain to 
 
create regenerative thyristor action. The details 
 
of this 	 are given in Reference 6. Summarizing 
 
thb 	 findings on which this understanding is based: 
 

I. 	 Gate-assist bias is only effective if it is 
 
present 	 during the application of reapplied 
 
forward voltage. 
 

2. 	 Gate-assist current that flows before the ap­

plication of reapplied forward voltage has


little effect on either the turn-off time or


the displacement current induced by the re­

applied forward voltage.



3. 	 An increase in the lateral resistance in the


base under the cathode makes a given gate­

assist current more effective for decreasing


the turn-off time.
 


A NEW GATT DESIGN



Based on this new understanding, we de-

veloped 	 a GATT with the following design features: 
 

1. 	 The cathode was digitated. This is necessary 
 
both for good, fast, low loss turn-on and for


effective gate-assisted turn-off behavior.



2. 	 The cathode was shunted. This provides for a



high dV/dt capability whether there is a gate­

assist bias present or not. Further, it ap­

pears to eliminate failure due to current


crowding of the type that causes transistor


and GTO failure. In addition, shunts direct


the current paths in such a manner that the


effect of the gate-assist bias is more reli­

able, and requires a lower drive voltage.


Shunts make the device more tolerant of process


induced nonuniformities and thereby make the


device more manufacturable.



3. 	 A bypass diode was necessary to combine the


advantages of dynamic gating and gate assisted


turn-off. There are several ways of incorpo­

rating bypass diodes. The package can be modi­

fied to contact the floating gate with a diode.


Our most successful way to date was to solder


the diode directly to the floating gate with a


lead connecting the diode cathode to the main


gate. The most reliable way is to build the


diode into the thyristor itself as shown in


Figure 1. In the sectional cut from Cto A the



structure is simply that of the familiar ampli­

fying gate. This structure exists in two op­

posing quadrants of the central region. In the


other two quadrants the structure is as shown


in the section CL to B. When forward bias is 
applied to the gate, it causes current to flow 
through the auxiliary cathode and little cur­
rent flows throigh the high resistance under 
the bypass diode. When a reverse (gate-assist) 
bias is applied to the gate, most of the cur­
rent flows through the bypass diode and little 
through the high resistance under the auxiliaTy 
cathode. To prevent electrons emitted by the 
bypass diode from firing the thyristor, the 
carrier lifetime is decreased in this local 

area by masked electron irradiation. The cath­

ode geometry can also be shaped to decrease the 
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Fig. 1 	 Thyristor structure with an 
integrated bypass diode. 
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emitter efficiency and to widen the p-base

width under the bypass diode so that the cur­

rent through the bypass diode produces few


electrons that reach the central depletion


layer. Etch pits between the ends of the


auxiliary cathodes and the ends of the bypass

diode diffusion regions substantially decrease


the flow of useless current through the glps 

between these n-regions when the device is to 

be turned on. Another version of the inte­
grated bypass diode is described in Reference S. 

4. 	 The effect (7) of the diffusion profiles was


studied to see how the effectiveness of the


gate-assist current is influenced by profile

changes. In this area, itwas found that a


change in the sheet resistivity in the p-base

has opposite effects on the effectiveness of


gate assist current for shunted and unshunted


GATT's. 
 

5. 	 Electron irradiation was used to control the 
 
carrier lifetime. The ability, with electron
 

irradiation, to easily and quickly measure the 
 
same devices with different stepped doses of


irradiation provides a valuable capability for


studying how to optimize the diffusion profiles

and for tailoring a device to a specific appli­

cation.



PERFORMANCE ACHIEVED



GATT's have been constructed with the


geometry shown in Figure 2 and the typical char­

acteristics shown in Table i have been demon­

strated. Measured turn-off times were found to


depend on the magnitude of the gate-assist current 
 
as shown in Figure 3. Here the various curves 
 
represent different levels of carrier lifetime 
 
which were py9 quced by various levels of electron 
irradiation.- Figure 4 shows the trade-off 

between the turn-off time and the forward drop

which was varied by stepping the dose of electron 

irradiation used to control the lifetime.



TABLE 1



Measured Characteristics



Forward Blocking Voltage 1000 V 
 
Reverse Blocking Voltage 1000 V


Gate Trigger Current < 200 mA


Gate Trigger Voltage < 2 V 
Latching Current < 1.0 A 
Holding Current < 200 mA 
dV/dt 
 > 1000 V/ps 
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Fig. 2 Photograph of a gate-assisted

turn-off thyristor having both 
cathode shunts and a dynamic gate 
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Fig. 3 	 Dependence of measured turn-off


time on gate-assist current.
 

(Conditions: 100°C, 25 A/us,


400 V/ps.) Each curve represents


a device having a different car­

rier lifetime level created by


different doses of high-energy
 

electron irradiation.



20.2 



C" W14" 	 ACKNOWLEDGEMENTS 

8 tions 

Turn off time 

The authors are pleased to acknowledge 
the support of the personnel of the Westinghouse 
Semiconductor Division in the device fabrication. 

6 10C, 2SA/ps, 
Forward Drop 

400V/p$ Thanks are due to Dr. L. R. Lowry for his helpful 
discussions and Mr. J. B. Brewster for his assis­

4' C. 20A tance inmaking the electrical measurements. 

IREFERENCES



10 
Go CutWt 

6 
 

4 

2eAs2A 

Current 
 

1 
2 4 6 8 10 

foment Drop Volts) 

Fig. 4 	 Effect of gate-assist current on 
 
the trade-off between turn-off 
 
time and forward drop of a GATT. 
 
The carrier lifetime was varied


along each curve by means of 
 
electron irradiation. 

CONCLUSION 
 

A new design approach has resulted in im-
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into reverse recovery faster there is less time for 
carriers to recombine and therefore more carriers re­
min to contribute to the' forward re6overy and excess 
leakage currents. 

Effect of dV/dt 

Figure 8 shows the effect of dV/dt. An increasing 
dV/dt is shown to increase both the forward recovery 
and the excess leakage currents. The increase in for­
ward recovery current with increasing, dV/dt is prima­
rily due to the fact that a slower rising voltage, 
 
sweeps out more charge before the device becomes capa­
ble of supporting forward voltage. Therefore, forward 
recovery occurs at a lower anode voltage and current 
for a lower dV/dt. 
 

Effect' of Slice Diameter 

Figurts5b and 5c show that for devices having the 
same turn-off time the forward recovery current is 
 
fairly independent of slice diameter.



Effect of Turn-Off Time 
 

Figures 5a and 5b show that the forward recovery 
current is smaller,for a given interval between 

= 0 to the onset of the dV/dt ramp, the lower theI A 
device-limited turn-off time.



Effect of Reapplied Voltage Level 
 

The forward recovery current has ended before the 
 
dV/dt ramp has ended hnd is therefore, independent of 
 
the reapplied forward voltage level. The excess leak­

age current tail shows"no change in slope when the 
 
dV/dt ramp ends and it can be inferred, therefore, 
 
Ehat it is not sensitive to differences in the ie-

akplfed forward voltage level, 
 

Effect of Reverse Voltage



Neither the peak or excess leakage currents were 
found to depend on variations in the reverse voltage


level.' 
 

Effects of Gate Assist Current Variables 
 

The level of gate assist current had little 
effect on the peak or excess leakage currents. The 
 
gate assist pulse affects the forward recovery current 
only when it is present during the dV/dt ramp. A gate


assist current before the dV/dt ramp has no signifi- 
 
cant effect. 
 

Model 

The physical model of a thyristor fi its turn-off 
sequence can b described in simple terms as follows, 

Starting with a simple rectifier, it is well


understood that in its conducting state, the injection


of charge carriers produces an excess charge plasma on


the iow conductivity side of the junction. When a


reverse voltage is applied, the rectifier remains con­

dictive because of this excess mobile charge mntil it


is removed by recombination and/or sweep out. This is


simple reverse recovery.



Turning to a thyristor, the phenomenon described


above occurs at the reverse blocking junction (the


anode junction) when the thyristor is switched from


the forward conducting to the reverse blocking state.



Consider now some differences between a rectifier


and a thyristor. In the rectifier in the reverse



conducting state there are no barriers to the flow of 
excess carriers from the device. On the other hand 
in the thyristor, when the reverse blocking junction 
blocks current, current continuity must be maintained 
and the current through the middle junction must be" 
small. Then, because the, injection efficiency of' this 
middle junction is low for electrons leaving the n-base, 
the excess electrons are blocked in the n-base and can­
not flow out. They must reach their equilibrium densi­
ty mdainly by recombination. To the extent that these 
blocked carriers are excess minority carriers, they 
contribute to an excess leakage current and are the


cause of the tail current when the junction blocks


voltage.



If a forward voltage is applied to the thyristor 
within a few microseconds after reverse recovery has 
occurred, much of this blocked charge must be swept out 
before the forward blocking junction can block. This


produces a forward recovery current quite similar in 
nature to the reverse recovery current.



For thyristors with thin-off times of tens of 
microseconds, this blocked charge mostly recombines in


the base of the thyristor and contributes little to 
the forward recovery current and loss. As the turn-off 
times reach levels below ten microseconds, this current 
and loss become more and more significant. 

The data in Figure 5 show that the effectiveness 
of gate assist current for decreasing the turn-off 
time is not to decrease the forward recovery current 
but-it instead raises the level of forward recovery


current that fires the thyristor.



Just as the carriers are not all swept out by the


reverse recovery current, the presence of the excess


leakage curren after the forward recovery shows that


there are still-blocked excess carriers left in the


n-base after forward recovery.



The effects of variations in device design can be


broadly understood to fall into three categories:



1. The rate of decay of the carriers responsible for


the forward recovery, and its excess leakage current,


is inversely proportional to the carrier lifetime. 

2. The p-base sheet resistivity and the cathode and 
shunt pattern design determine when the dV/dt dis­
placement current will forward bias the cathode. 

3. The design of the impurity density distribution,


layer thicknesses, darrier lifetimes, and emitter


shunting determines the degree ta which the emitter


must be forward biased to fire the thyristor. 
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Fig. 1 
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Fig. 2-Anode currentvoltage and. power demonstrating relative energy 
= =Josses for reverse and 'foiward recovery. I'TM 1-50A, diR -25 Ahpsec, 

100*C, device 21-19 dt 
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Fig. 4-Forward recovery current dependence on time 
of application of reapplied forward voltage. 
ITM = 50A$ R- -25A/psec, VA= 200V/div, 

dt 
IA= 2A/div, time = 2psec/div, temp= 1000C, 
Device 21-7 
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Fig. 5a- 5b- 5c- Forward recovery current dependence 
on time of application of reapplied voltage with and 
without gate assist current. ITM=150A, diR = -25 A/isec 
dv = 400 v/p sec dt 
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Fig. 6- Effect of temperature on forward recovery current 
and its excess leakage current, ITM = 150A, 

dlf dv _ 
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