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THE USE OF PARABOLIC VARIATIONS AND THE DIRECT DETERMINATION	 µ

OF STRESS INTENSITY FACTORS USING THE BIE METHOD

Alexander Mendelson(1)

Summary

Two advances in the numerical techniques of utilizing the BIE method
are presented. The boundary unknowns are represented by parabolas over
each interval which are integrated in closed form. These integrals are
listed for easy use. For proble.ms  involving crack tip singularities,
these singularities are included in the boundary integrals so that the
stress intensity factor becomes just one more unknown in the set of bound-
ary unknowns thus avoiding the uncertainties of plotting and extrapolating
techniques. The method is applied to the problems of  notched beam in
tension and bending, with excellent results.

1. Introduction

Knowledge of the strew., distribution in the neighborhood of a singu-
larity, such as the tip of a crack in a beam loaded in tension or bending,
is of fundamental importance in evaluating the resistance to fracture of
structural materials. Elastic solutions to various geometries have been
obtained by a number of different methods. Among the more effective ones,
are the complex variable method, collocation method, and finite element
method. However, the first two of these methods are not general enough
nor readily adaptable to three-dimensional or elastoplastic problems. 'And
the finite element method requires solutions of large sets of equations
and fails to give sufficiently fine resolution in the vicinity of crack.
tips.

The recently developed boundary integral methods, Mendelson [1],
offer an attractive alternative to other methods of analysis. These
methods have a number of advantages which may be listed as follows:

(1) They obviate the need for conformal mapping.

(2) Mixed boundary value problems are handled with ease.

(3) Stresses and displacements are obtained directly without need for
numerical differentiation.

(4) No special considerations are needed for multiply connected
regions.

(5) The internal stresses and/or displacements are calculated only
where and when needed.
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(6) The extension to three-dimensional problems is direct.

(7) Nodal points are needed only on the boundary instead of through-
out the interior as required by finite element methods.

The last point is probably the most important one. For the finite
element method, the whole region. must be covered by a grid producing a
large number of nodal points and corresponding unknowns. Thus a large
number of simultaneous equations must be solved. For the boundary inte-
gralmethods, nodal points are taken only on the boundary, resulting in a
much smaller number of unknowns. On the other hand, the resulting
matrices are full, whereas in the finite-element methods, for example, the
matrices are usually sparse and can be more or less banded.

The method generally used is to divide the boundary C into a number,
e.g., n, intervals and replace the integrals over C by a sum of n in-
tegrals over the n boundary intervals. The unknowns are assumed con-
stant over each interval. This technique gives good results with rela-
tively few equations to solve for regions with smooth boundaries. Once
we introduce geometric singularities, however, such as cracks or notches,
then a. very large number of intervals are required in the vicinity of the
crack boundary to obtain reasonable accuracy. An improvement can be made
by assuming linear variations of the unknowns along the boundary inter-
vals, Riccardella [2]. However, this still results in a relatively large
number of intervals for reasonable engineering accuracy.

The present paper presents two major advances in the numerical tech-
niques of utilizing the BIE method. Firstly, the boundary unknowns are
represented in terms of parabolas over each interval which are integrated
in closed form. These integrals are listed for easy use. Secondly, for
problems involving crack tip singularities, these singularities are in-
cluded in the boundary integrals so that the stress intensity factor be-
comes just one more unknown in the set of boundary unknowns. when the set
of linear algebraic equations is solved for the boundary unknowns, the
stress intensity factor is obtained at the same time, thus avoiding the
uncertainties of the usual plotting and extrapolating techniques. These
innovations result in greater accuracy than was possible heretofore, using
substantially fewer boundary intervals and consequently less computer
time.

Results are presented for two practical fracture mechanics configu-
rations of the edge-cracked plate in pure bending and in tension, and com-
pared with the standard values quoted in the literature, excellent agree-
ment- being obtained.

2. Analysis

Although boundary integral methods can be formulated in many ways,
for elasticity and elastoplatic problems the most natural formulation is
in terms of the Navier equations of equilibrium. A solution to these
equations can be obtained by making . use of Kelvin's singular solution of
the Navier equations due to a point load and also making use of Betti's
reciprocal theorem, Rizzo [3]. We then arrive at a solution that is known
as Somigliana's identity, namely:
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Xui (p) = ./
C

(Uii 2i - Tijuj )ds,	 i = 1,2	 (1)

where u7• and P are the boundary displacements and boundary loads, re-
spectively, and the usual tensur notation is used. The tensors U ij , Tij,
are given by

U 	 Cl (S ij C2 In r - r>ir>j)

Tij = °r [n (dijC4 + 2r,ir,j) + C, 	 r,
_ r in3)^

	
(2)

with

1	 _
C1 - - 

87TG(1 - µ)'	
C2 - 3 - 4p

(3)

_ _	 1

C3 	 47T(1 - 11)'	 C4 = 1 - 2P

and r is the distance from the fixed point P to the variable point of
integration, s. The above equations are for the case of plane strain.
For plane stress one replaces Poisson's ratio p by p/(1 + u). The co-
efficient a is equal to 1, if P is an interior point and is equal to
1/2, if P = p is a boundary point.

For 1 equal to 1/2 Eqs. (1) become a set of 2 or 3 (plane problem
or 3-D problem) Fredholm equations for the boundary unknowns. These may
be, boundary tractions, displacements or combinations of the two. Thus
the first, second or mixed boundary-value problems of elasticity can be
solved with equal ease. Once the appropriate unknowns are determined on
the boundary, the displacement at any interior point P, can be obtained
from Eqs. (1) with a equal to one. The stresses can be obtained by
appropriate differentiation under the integral sign of the tensors Uij
and Tij . No numerical differentiation is required.

The problem then resolves itself tj the solution of Eqs,. (1). The
method generally used is to divide the boundary C into a number, e.g.,
• intervals and to replace the integral over the boundary C by a sum of
• integrals (for each equation) over the n boundary intervals. The un-
knowns uj and P  being assumed constant over each interval. Improved
results can be obtained by assuming the unknowns to vary linearly over
each interval, Riccardella (2]. In the present investigation it was as-
sumed that the unknowns varied parabolically over each boundary interval.
(see appendix)

When Eqs. (1) are replaced by  sum of integrals over the n
vals and the integrations carried out, a set of 2n equations are
obtained in 2n unknowns which can be written in matrix form as

C	 s1	 [ U]	 [P il;

I

ihter-

(4)
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- where	 a, S, a', 0'	 are	 n x n	 matrices, whose elements are described in
the appendix, u	 and	 v	 are	 n x 1	 matrices of the	 x	 and	 y	 boundary

displacements, respectively, and 	 P l , P2 	are	 n x 1	 matrices determined
from the boundary loads as described in the appendix.

Equation (4) has been written in a form applicable to the first
boundary value problem of elasticity, i.e., the tractions are assumed ft

' known over the complete boundary.	 For the mixed boundary value problem, y
i.e., the displacements are given over part of the boundary, the roles of
those displacements and the corresponding boundary tractions are inter- ?'
changed in Eq.	 (4),	 This merely involves replacing the appropriate col-
umns.'

.	 ti

a

2.2	 Stress Intensity Factor

The usual procedure for determining stress intensity factors for
specimens with cracks is to calculate the stresses just ahead of the crack
tip, or the displacements behind the crack tip, or both, and then make use
of appropriate graphical procedures.	 For reasonable accuracy it is nec-
essary, when using numerical methods, to calculate the stresses at a suf-
ficient number of points lying approximately between 0.01 a and 0.1 a
ahead of the crack tip, where	 a	 is the crack length.	 This will usually
involve a very fine grid or close interval spacing in the crack tip
vicinity.

A method has been developed which avoids both the necessity for a
large number of intervals in the crack tip vicinity as well as the need
for graphical procedures with their inherent inaccuracy. 	 The technique
will be illustrated for the specific problem of an edge-cracked plate
loaded either in tension or bending (or both).

Consider the edge-cracked plate shown in Fig. 1. 	 A distribution of {
end loads producing pure bending is shown, but if desired a tensile load
could be applied instead. 	 If the complete boundary	 CDEFAF'E'D'C	 is
used, we have a first boundary value problem. However, since in this
case the problem is symmetric, half the plate can be used if desired, in-
volving the boundary	 ACDEFA.	 We then have a mixed boundary value prob-
lem, the tractions being unknown on the boundary segment AC.

{
F

Considering the case of the half boundary, we exclude two small in- l
` tervals	 e	 and	 el 	in the vicinity of the crack tip.	 The rest of bound-

ary is divided into intervals with nodal points taken at their centers as
shown.	 Equations (1) and (4). are applied to this boundary with the 	 e
and	 E1	 intervals excluded.	 For the intervals 	 a	 and	 el, use is made
of the known relations defining the mode 1 stress intensity factor, KI,
i.e.,

t
_KI

Py = - ay=-

3
1/2	 0 < r < E	 (5)

u = 2(1 + p)(1 — 2p) (2 )	 KIy,.
rs

- v = 0

(r I 3'
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1/2

v = 4(1 - u2) (2n/
	

KI

0 _< T < EI 	(b)

P = u = 0
y

where Py is the traction on the boundary AC, and r is measured along
the boundary from the crack tip. Substituting into Eqs. (1) and assuming
T_ j and Uij to be constant at their midpoint values over the intervals
El and E, respectively, gives

J/

rE	

11 T12v dr = alTi2KI
0

3 

E
Tilu dr _ a21iIKI	

(7)

0

! E	 1/2

J0	

U12Py dr = - (2n) Ui2KI

where

E 1/2

a  = 3 (1 - u2) (2n) 	 E1
(8)

1/2

a2 = 3 (1 + u) (1 - 
2u) (T50 

E

Tit are evaluated at E/2, and Til , U12 are evaluated at E1/2.

Adding Eqs. (7) to the rest of the integrals in (1) gives the inte-
grals over the complete boundary and also adds one more unknown, namely
KI , to the 2n unknowns appearing in Eq. (4). Since the number of un-
knowns is now one greater than the number of equations, an additional
equation is required. This can be obtained either from the conditions of
continuity of the boundary tractions at r = E, or the continuity of the
crack opening v at r = E l , or both. Using the parabolic assumption
gives the equations

15Py - lopy2	 y3+ 3P + $ KI = 0

1	

3—

(9)
E

-3vn 2 + lovn_I - 15vn + 32(1 - v2) 2n KI = 0

i

j	 It was found that the best results were obtained by either using both 	 r
(	 equations giving a slightly overdetermined system, or by adding the two

equations together to give a single equation.
i

I
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3. Results and Conclusions

Calculations were carried out for the plate shown in Fig. 1 for both
bending and tension. The relative dimensions of the plate were taken as
W = 1, a = 0.5, L = 1.2, with u = 0.33. In all the calculations each of
the segments CD, DE, and EF was divided into seven intervals. The numbers
of intervals along FA and AC (NFA and NAC) were varied to determine the
effect of increasing the number of these intervals.

Some of the results are shown in Figs. 2 to 5. The crack opening
displacements and the normal stresses ahead of the crack are plotted and
compared with results obtained by Gross [4] using boundary collocation.
Excellent agreement is obtained using relatively few nodal points. As a
matter of fact taking NAC = NFA = 10, changes the K I values to 1.76 and
3.46 for the cases of bending and tension, respectively. This is still
sufficiently accurate from an engineering viewpoint and makes use of a
total of 41 boundary intervals resulting in just 83 unknowns (including

KI)•

It can be concluded from the results obtained that the Boundary Inte-
gral Equation method utilizing the techniques described herein can be an
efficient and accurate tool in fracture mechanics analysis.

4. Appendix

4.1 Parabolic Assumption

It is assumed that the unknowns vary parabolically over each boundary
interval. Thus for the jth boundary interval

u.	
Oj	 lj
a +a 

s+a2j s2^ 
(10)

v  = bOj + b ljs + b2js2

where u . and vj are the displacements in the x and y directions,
respectively, and s is measured from the beginning of the interval under
consideration. Similar formulas apply to the boundary tractions.

The coefficients in Eq. (10) are given by

a = 1 (3u	 + 6u - u. )
Oj	 8	 j-1	 j	 ]+1

	

alj	
h 

(uj - u3-1)	 (11)

a 2	 12 
(u 
j-1- 2uj + u

	

2h	 j+1)
J

n

with similar relations for boj , b ij , and b 2j . h is the interval length

which in the above formulas, is assumed to be the same for the jth inter-
val and the adjacent	 -1 and	 + 1 intervals.3	 j	 j	 type formulas

ti

ti



can be obtained if desired for unequal intervals.

If the interval under consideration is an end interval such as, for
example, the first interval of segment AC and the last interval of the
segment CD of Fig. 1, then Eqs. (11) are modified as follows. For a begin-
ning interval such as interval 1,

a0 1 = 1 (15u1 - 10u2 + 3u3)

al 1 = - h (2ul - 3u2 + u3 )	 (12)
I

al 2 = 12 ( ul - 2u2 + u3)
2h

For an end interval such as interval ND

_ _ 1

aO,ND	 8 (
uND-2 - 6uND-1 - 3uND)

a1,ND = 1h (uND _ uND-1 )	 (13)

_ Y
a2 ' ND 2h2 (uND-2 - 2uND-1 + 'ND)

4.2 Matrix Coefficients

The coefficients entering into the matrices of Eq. (4) are obtained
as follows. The boundary is divided into n intervals and Eqs. (1)
replaced by sums of integrals over the boundary intervals. Equations (2)
and (11) through (13) are substituted in and the integrals evaluated in
closed form. Let i designate a. fixed nodal point on the boundary. and j
a boundary interval whose length is As . as shown in Fig. 6, rj, rj+l,
Bj, Bj+l, and D are defined as shown in the figure. Note that
D = r  cos 9j = rj+l cos Bj+l . Using this notation we define a set of E
matrices whose elements of the ith row are given by

+1	 1:	 j+1.	 3+1
El =	 E 	 sin 2.6 (	 E3 = sin 2B

p	 j	 7

3+1	 I j I..-I	 7+1
E5 = in rI	 Eg = tan 8 In r) 	 E9.= tan BI	 (14)

J+l
E10 = 2 tan2B

Also let Rj and m, be the direction cosines of the normal nj to the
sa	

interval, and define

^e
i



S	

'

8

z 	 Rj - mj 	 z2 - 
2kjmj

Then the following matrix coefficients are computed.

Aij	 T11 ds - C3 [( C4 + 1)E1 + z1E2 - z2E3]

As.
J	 4

Bi .
J 

_	 T12 ds = C 3 (C4E5 + z 1 E 3 + z2E2)

es.
J

Aij
fAs,

T21 ds = Bij -2C3C4E5

J

Bij = J	 T22 ds = -A. + 2C3 (C4 + 1)E1

As

Cij

	 4s

Tils ds = C3Di 

l

( C4 + 2m2)E5 + z 1 
E 3 - z2(E1 -E2)

- tan e j [( C4 
+ 1)E1 + z 1 E2 - z2E3]!

1	

JJ1

Eij = /
As.

T12s ds = C3D[z 1(E1-.E2) + z 2 (E3 .- E5 ) -.C4 E1

J

tan 0 i (z 1E3 + z 2E2 )] + C3 C4 [rj+l sin e j+l - rj sin e j (1 + E5)]

Cij = f
As

T21s ds = same as E ij with C4 replaced by -C4

 

r

Eij = J	 T22s ds = C 3Dj(C4 + 222)E5 - z 1E3 + z 2 (El - E2)

J

ej[CC4 + 1)E1 — z 1E2 + z2E3]}

«	 r^	 i

(15)
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Dij	 /	 Tlls2 ds = C3D2 1(C4 + 2m2) (E9 - El) + zl(El - E2) - z2 (2E5 - E3)

As 

- 2 tan 0 j [(C4 + 2m2)E5 + z 1 E 3 - z 2 (El - E2)]

+ tan 2 0 j [( C4 + 2m2)E1 + z 1 (E1 + E2) - z2E3])

Fij

f

6s.T12s2 ds = C 3D2 fz 1(2E5 -

 
111

E3)+ z2 (2El - E 2 - E9 ) - C4E5

]

- 2 

tans^ 

0j [z1 (E1 - E2 ) + z 2 (E3 - E5 )
11

- C 4 E 1 ] + tan 2 Bj (z 1E3 +z2E2))

+ 3C 4[rj-F1sin20j+1 - Lr j rj+l sin 0  sin Bj+i + r 	 sin2 BJ (	 + E5)]

Di. _	 T21s2 ds = obtained from Fib	 by replacing	 C4	 by	 -C4

As

Vj =	
T22s2

f ds = obtained from Di :	 by replacing	 4	 by	 m
]] S

s.
7

and	 m	 by -R

Gij = ` D12s ds = C
1D2 (E9 - E1 - tan 6 1 E5)

°Os.

Gij	 f U22s ds = ClD2
L
z fC2 - 2)E5 + (1 - C2)tan BjEl]

s.]

+ C C ^1 r2
	

sin 2 0. Iln r	 - 11 1 r2 sin20ln r. - 1)1 2 2 ]+1	 ]+l	 j+l 2J	 ] \	 z
s:

+ r sin 0 [r.	 sin 0. '(1 - In r. ) - r sin 8.(1 - In r )]^
j	 j ]+1	 ]+1	 ]+1	 j	 ]	 j JJJ

Hij _ _I U12s2 ds = -C1D3[E5 E
10 + 2 tan 0

i 
(o- El)	 tan2BjE5]

x

L



i i
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Hij	 /	 U22s2 ds = C1D3 
L
3 ( C2 - 3)(E9 - E1) - ( C2 - 2)tan 6

3Ds.
7

+ ( C2 - D tan g BjE + C1 C
2 L3 rj+l sin 30j+1 (ln rj+l 3/

- 3 r^ sin3Bj 
(in r

j - 3 ) - rj sin Bj	 r^
+1 sin2 Bj+1 (ln r

j+1 2)

+ r^ sin 2 Bj rjt1 sin Bj
+1(ln rj+1 - 1) + 3 r^ sin 3

6J

to

Ki =
j Ij

U12 ds = DCIE5

K . _	 U22 ds = DC
1 (C2 - 1)':14	 J

Ds.
J

+ C1C2Lrj+1 sin Bj+l(ln rj+1 - 1) - r  sin 0 i (ln r  - 1)]

Note that for the problems under consideration, the last six integrals in-
volve intervals on side AC for which k = 0 and _m = -1.

The vectors Pl and P2 appearing in Eq. (4) are given by

E

Pl - f U12Py dsD
(16)

E

P2 = f U22P ds

where for the bending case: P
y 

= -2a o0 x = -2x

and for the tensile case: P  = o o 	 1, a  being taken as 1.

Carrying out the integrations gives

For bending:

Y - Y l
Pl = 2C1(YD - Yi)11 + Xi In rE + (YD - Yl)sin-1 rDrE D J

	
(17a)
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P2 = 2Cl i
l
C2xi [(xE - xi) inrE - (xD - xi)In r  - (xE - XD) + (YD - Yi)T)

+1 C rr2 In r - r2 In r + 1 (x - x ) 2 - 1 (x - x )2

	

2 2LE	 E	 D	 D 2 D	 E	 2 E	 i

	

- (YD - Yi) 2 In rE - xi (YD - Yi) T }	 (17b)
D

-1 Yi - YD
where: T = sin

r 
D 
r 
E

For tension:
r

EP1 = (YD - Yi) Cl In r
D	 (18)

P2 = -C1C2 [1 - (xi - xE)In r  + (xi - xD)In r  - (Y D -'Yi) T ) - Cl (YD - Yi) T

The .,.atrices a, a', S, V of Eq. (4) are now assembled from the
matrices A through V using the parabolic coefficients of Eqs. (11) to (13)
As an example, consider the line AC having NC nodal points with interval
length HAC. Then for 3 < j < NC - 3, the central formulas are used and
we write

aij	 8 (Ai>j-1 -3Ai>j+l - 6A
ij ) + HAC (Cij - Ci,j+l)

	

+ 2(H 

1

1	
(Di,7-1 + D1,7+1 _ -Di3).

For the ends we use beginning and end formulas. Thus

	

ail 8 (1SA11
+ 	 3A

l2 )	 HAG (Ci2 + 2C
il) +	

1 2 
(Dil + D12)

2(HAC)

ail = $ (-10Ai1 + 6Ai2 + 3A13 ) + RAC (3C11 + C12 - C13)

+	 1 
2 

(Di3 - 2Dil - 2D12)
r	 2(HAC)

a13	 8 (6A
i3 + 3A11 + 3A.	 A.- Ai2) + HAG

 (C.	 C.
- Cil
	 C. i

5

r

+

	

	 (D ii + D12 + 
D 1 - 2D i3)

2(HAC)2 

At the end of the line we have

r

}



1
r.'

12

ai NC 8 (-Ai,NC-1 + 3Ai NC ) + HAC 
Ci 

NC +	 1 2 (Di NC + Di NC-:)
>	 '	 2 (RAC)

ai,NC-1 8 (-Ai, NC-2 + 6Ai,NC-1 + 
6A

i,NC ) + HC (Ci,NC-1 - Ci,NC)

1

+ 2(H1 2 
(Di,NC-2 - 2Di,NC-1 - 2Di,NC)

a
1,NC-2	 8 (-A., NC-3 - A., NC + 3Ai ,NC-1 + 6Ai,NC-2)

1
+ HAC (Ci,NC-2 - Ci,NC-1)

+	 1 2 (Di NC-3 + Di NC + Di NC-1 - 2Di NC-2)
2 (HAC)

Exactly similar relations hold for a', P, and 0', replacing A, C, and
D by (A', C', D'), (B, E, F) and (B', E', '), respctively.
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Figure 1. - Edge-cracked plate.
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Figure 2. - Crack opening in pure bending. Plane strain.
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Figure 3. - Stress ahead of crack tip in pure bending.
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