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TECHNICAL MEMORANDUM 78128 

SOME BAS l C MATHEMATI CAL METHODS 
OF DIFFUSION THEORY 

I. INTRODUCTION 

The purpose of this report is to provide an introductory treatment of the 
basic mathematical aspects of diffusion theory as  it applies to the atmosphere, 
starting with molecular diffusion and leading up to the statistical methods of 
turbulent diffusion. The scope of the treatment is  evident in t h ~ t  hydrodynamical 
theory, which is  a necessary foundation of diffusion theory when applied to a 
medium as  complex as the atmosphere, has been kept to a minimum. The basic 
concepts and equations of diffusion are  developed on an elementary level, with 
emphasis on the mathematical steps. Many of the derivations given cannot 
easily, if at all, be found in the literature on diffusion. The report is  not meant 
to be definitive in any sense. It i s  hoped that sufficient material has been 
treated to provide a background for further reading to understand today1 s 
specialized papers in the field. 



I I. BASIC  EQUATIONS OF DIFFUSION 

A. Stationary Medium 

Diffusion i s  the process whereby a substance introduced in a localized 
region of some medium (e. g., a fluid) spreads throughout the medium either 
by molecular motion o r  by turbulence. The basic equations of molecular dif- 
fusion a r e  derived first. Turbulent flow will be treated later, If x denotes the 
concentration of a diffusing substance, defined a s  the quantity of substance per  
unit volume, then relative to a set of rectangular axes the vector rate of 
transfer of substance through unit a rea  of a section of medium Is called the 
flux F. In many diffusion problems the assumptim made i s  that i? i s  pro- 
portional to the concentration gradient normal to the section. That is, 

o r  in vector form 

where D = D(x,y, z, t,x) i s  the diffusivity o r  coefficient of diffusion which may, 
in general, be a function of the coordinates, the time, and the concentration. 
The quantity V x is the gradient of the concentration defined by 

- - & 

where i , j , and k a r e  unit vectors along the x, y, and z axes, respectively. 
The negative sign indicate's that the diffusion occurs in the direction of decreasing 
concentration. 



We derive next the equation connecting the time rate of change of the 
concentration with the spatial rate of change of the concentration a t  any given 
point. This i s  accomplished by considering an arbitrary volume of fluid V, 
bounded by the surface S, a s  shown in Figure 1, and applying the principle of 
continuity to the diffusing substance. 

Figure 1. The unit normal and flux vectors a t  a point 
on a surface S bounding the volume V. 

Let M be the total mass of diffusing substance within V. It i s  clear that 
M will be a function of time. From the definition of x i t  follows that 



- 
At every point of the surface S there i s  a flux F making some angle 

with the unit normal a t  the point. The only flux out of the volume V has to 
be along the direction of ?, which i s  just the component of i? parallel to 7, o r  - - 
F . n. Therefore, the total flux leavir~g the volume V is obtained by integration 
wer the surface S. The total flux has units of mass per unit time and, there- 
fore, may be called the current, which i s  denoted by I(t) . Thus 

This surface integral may be converted to a volume integral by use of the 
divergcnce, o r  Gausst, theorem which states that 

b 

and so 

t 

Since I is  a mass current, w e  have 
I 

I which, when combined with equations (2 )  and ( 3 ) ,  results in 



Since the volume is arbitrary, the integrnnd must vanish, yielding 

which is simply the expression for the conservation of diffusing matter, namely 
that the rate of change of the concentration at any poiid must equal the net flux 
at the point. The assumption of conservation is valid provided there is no 
creation or destruction of the diffusing matter. 

In rectangular coordinates, equation (4 )  assumes the form 

Substituting equation (1) into equation (4 )  yields the relation we sought con- 
necting the time rate of change of y. with its spatial rate of change, 

which in rectangular coordinates is 



Equation (6 )  i s  the fundamental equation governing the diffusion process in 
stationary isotropic medla. If D i s  constant, it reduces to 

where v~~ = V . VX i s  the Laplacian of x which, in rectangular coordinates, has 
the form 

When D is constant, the diffusion, a s  expressed by equation (8) ,  is called 
Fickian diffusion. The formulation given here is strictly phenomenological, 
resting on the assumption that the flux i s  proportional to the concentration 
gradient a s  expressed by equation ( 1). 

B. Moving Medium 

In the case of a fluid moving with a laminar flow velocity y, a s  might be 
the case in the atmosphere when there i s  a wind, the flow will contribute to the 
flux by physically transporting the diffusing matter. The additional flux i s  
-., 
ux, and the flux equation (1) becomes 

Substitution of equation (10) into equation ( 4 )  gives 



If is constant, the second term is zero, which implie. incompreaaible flow. 
Taking D to be constant also, we have 

which is  the fundamental equation of diffusion commonly used in the case of a 
fluid w th laminar flow. 

In a situation where D is a function of time only, D = ~ ( t )  , the problem 
can be handled by defining a new time scale T by 

d t =  Ddt . 

Then, by differentiation, 

Similarly, 

U = v D  , U = v  D 
Y Y Z Z 

so that equation (11) bccomcs 



which is a form identical to equation (11) except that D does not enter the 
equation. It should be clear that 7 is the velocity in terms of the new time 
scale 7. For a known and D(t), the value of 7 is given by 

C. Anisotropic Medium 

In all of the equation8 developed thus far, the diffusion coefficient has 
been assumed to be the same in all directions. When thie ie not the case, the 
medium is  eaid to be anisotropic. The equations for the flux as given by equa- 
tion (10) in the general case of a moving medium must now be modified. It is  
convenient at this point to express the flux equations (10) and succeeding equa- 
tions in rectangular coordinates. By a coordinate transformation the equations 
may then be cast in terms of any other system of coordinates. 

The new equations for the flux are 

which can be written concieely in tensor notation as  



with summation implied on the repeated subscript j, and with the understanding 
that F F , F are replaced with F F . F3, respectively, and x, y, z a r e  x' y z 1' 2 
replaced with x , x , x 

1 2 3' 

The quantity D i s  the tensor diffusivity and consists of nine quantities, 
i j 

whlch can be written in the matrix form 

It i s  evident from equation (13) that the diffusion in a particular direction 
depends not only on ax/  ax  but also on ax/ Oy md ax/ a ~ .  

Substituting equation ( 13) into equatio~ ( 4) , 



Assuming u &nd D are constant, equatim ( 15) reduces to 
i iI 

Because of the difficulty in finding solutions of the general equation (15). wz 
shall restrict ourselves to the more useful particular form, equation (16). By 
transformation of coordinates to a new set of rectangular axes, 5 t2, t 
(called principal axes), equation ( 16) can be simplified to 

or, in expanded form, 

Evidently, the transformation has eliminated the cross derivatives and reduced 
the diffusion tensor to a diagonal form: 

The values of the coefficients Dl, D2, D3 (known as principal diffusion coeffi- 
c i~nts)  in general will depend on the former coefficients D,, given in equation 

IJ 

(14) and also on the coordinate transformation coefficients. 



We might note at this point that the equations developed herein are 
linear differential equations if D (or  the D in the case of anisotropic media) 

i j 
are constants or functions only of the coordinates and time. The property of 
linearity is important because it implies the principle of superposition; i. e. , 
if one or more solutions are found the sum of these solutions is also a solution. 
It is not at all evident that the boundary conditions associated with a given 
problem can be satisfied. In some cases a particular solution will be sufficient, 
but generally a sum, usually an infinite sum, of particular solutions will be 
necessary to satisfy boundary conditions. 

In summary, we list here the equations most tractable to solution in a 
practical s ih t ion  together with the conditions under which they are applicable: 

Equation ( 8) : 

I?X = DVZX Isotropic media, constant D 
a t  

Equation (11) : 

a +'; . VX = DvZX Isotropic media, constant D, laminar 
c, A a L flow with constant u 

Equation (17) : 

b + u  X z D  Anisotropic media, constant D 
a t  i ax. i - i' 

1 1 laminar flow with constant u 

In this last equation we have reverted to the standard symbols xi, x2, xs to 
denote the coordinates, with the understanding that these are principal 
coordinates. 



I I I. SOURCE SOLUTIONS 

A. l nstantaneous Sources 

The diffusion equations ( 8), ( 11) , and ( 17) can be solved by the standard 
method of separation of variables or by the Laplace transformation. The litera- 
ture on this is quite extensive [I-31. The purpose here is to consider some 
solutions which are relevant to the atmosphere and which form a guide for the 
statistical theory of turbulent diffusion. The simplest example is the one- 
dimensional problem of a medium at rest (u  = 0) . If the diffusion is along one 
direction only, this implies that the concentration is  uniform in the other two 
directions, mebing that the concentration gradient everywhere along these two 
directions is  zero. 

Denoting the diffusion direction by x, one can easily verify by direct 
substitution that the following expression, which can be derived by use of the 
Laplace transformation, is a solution of equation (8): 

where A i s  an arbitrary constant. If we integrate this from -a to +a, we 
obtain the total amount Q of diffusing substance per unit cross-sectional area 

1 

of a cylinder of infinite length and cross section: 

From this it follows that 



therefore, equation (20) becomes 

This result describes the diffusion of a quantity of substance Q which was 
initially concentrated in the plane x = 0, known a s  an instantaneous plane source. 
The fact that this is an idealized source is evident by observing that x -- = a s  
t -- 0. Nevertheless, this solution, a s  we shall see, forms the basis for obtain- 
ing more realistic solutions. 

Since the solution, equation (21), has the functional form of a Gaussian 
o r  normal curve, we may compute the second moment of X,  defined by the 
integral 

This result characterizes the f'spreadfl of the concentration x about its maximum 
value, which occurs a t  the origin. If we take this result and divide it by the 
total amount of diffusing matter Q, we obtain a quantity a defined by 

The quantity a has the dimensions of a length and defines a kind of root-mean- 
square distance to which the substance has diffused. To make this clear, a 
plot of equation (21) for several values of u2 is shown in Figure 2. It i s  evident 
that the spread increases a s  a increases. This behavior justifies the use of a 
a s  a parameter characterizing the spread of X. In statistical work, u serves 
a s  a convenient scale of the width of thc distribution and is known a s  Wandard 
deviation. l1 Its square is called the variance. Note that a i s  a function of the 





diffusivity and time. In terms of o, equation ( 2 1 )  i s  

As pointed out earlier, the instantaneous plane source i s  an idealized 
construct. A more realistic approach is to  consider a source distributed over 
a finite region of x. 

Such a fonnulation would be 

where 2a is the thickness of the cloud. Uniformity along the y and z axes i s  
again assumed. If we divide the interval - a < x < a into an infinite number of 
infinitesimally thin sheets, each shect can be considered an instantaneous plane 
source a s  defined previously. Then, because the diffusion equation is linear, 
the solution i s  obtained by summing up all the plane-source solutions arising 
from each sheet. 

If XI denotes the coordinate of one of these thin sheets, the distance of 
a point x from the sheet i s  x - x1 , whore dxl is the differential thickness of the 
sheet. Thus, each sheet contributes an amount d~ to the total X. That is, 



Integrating from -a to +a, we obtain the solution 

xo  a -.v2 x =- r e  dxl 

-a 

It is possible to write this integral in terms of the error function if we define a 
new variable by 

and, denoting the new limits on the integral by p and q, 

x + a  x - a  
P = - 9 q=- m m 

we can write 



x, =-  
- 2 (erf p - erf q) 

where erf p and erf q represent the e r ro r  functions of p and q a s  defined by the 
preceding integrals. Tables exist for evaluating the e r r o r  function for a given 
value of its argument. Moreover, the e r r o r  function possesses the following 
properties: 

Figure 3 presents a plot of equation (26) for several values of the parameter 
~ t / a ~ .  At this point it might be well to remember that the time dependence of 
x i s  contained in the quantity u defined by equation (22) .  

The maximum value of x at any given time occurs a t  x = 0, the center of 
the cloud. With x = 0 we have 





therefore, equation (26) yields 

As an example of the use of the foregoing formulas, let the half-thickness 
a of the cloud, the diffueivity D, and the initial concentration xo be given by 

m2 a =  l m  , D=0.66-  
sec 

, xo = 0.60 $ 
m 

and suppose we seek the concentration a t  a distance x = 60 m when t = 1800 sec 
(30 min) . We first  compute a, 

then p and q, 

and finally, with the aid of a table of the e r ro r  function, equation (26) gives 



In addition, one might compute a160 the maximum concentration of the distribu- 
tion for this given time of 1800 sec. From equation (27) this i s  

Note: Any consistent set of units may be used. For example, if 
length i s  measured in meters and time in ueconds, D must be 
in m2/ sec. If length i s  measured in centimeters, then D should 
be in cm2/ sec. Similarly, the concentration may be in kg/m3 
o r  grn/ cm3. A larger unit for the time may be used provided D 
i s  expressed in this larger unit. For example, if D = 0.2 
cm2/ sec, it would convert to D = 0.2 cm2/ sec x 60 sec/min, o r  
D = 12 cm2/min. 

Thus far we have treated the problem of a source extended in a finite 
region in an infinite medium. For this problem, therefore, the solution tends 
to zero a s  x approaches infinity. If, however, the medium i s  not infinite, then 
we must assume the existence of a boundary at some distance x = L. At such 
a boundary, we can have either total reflection o r  total absorption of the dif- 
fusing matter or, more generally, some reflection and some absorption, all 
depending on the nature of the boundary. In the case of the atmosphere, this 
boundary may be the ground, a hillside, a building in the path of the diffusing 
matter, o r  it may even be another layer of thc atmosphere which possesses 
different diffusion characteristics. 

If a t  the boundary we have a prescribed flux, the mathematical statement 
of the flux should be a linear function of X .  If not, a solution can rarely, if 
cvcr, bc found. An example of a linear flux condition is 

where the lcft membcr i s  the dcfinition of flus (n specifics the normal direction 
at the boundary surfacc) . The right side, where II i s  some constant, states that 
the flux is proportional to the difference in concentration between the surface 



and the surrounding medium at constant concentration xo. In  ti;^ case of heat 
flow, this condition i s  an expression of Newton's law of cooling, valid for small 
temperature differences. 

If, howev~r, the f l u  is  totally reflected a t  the boundary surface, we 
have the condition of zero flux: 

A solution with this boundary condition can be easily determined by the 
method of images. For example, we imagine that there i s  a source at x = 2L 
which i s  a mirror  image of the real source, i. e. identical in every respect. 
The two sources diffuse in identical fashion, and midway between a t  x = L a t  
the boundary surface, the flux from one exactly cancels the flux from the other, 
resulting in the prescribed zero flux. The geometry of this is depicted in 
Figure 4. Furthermore, since the diffusion equation is linear, the sum of 
the two solutions will yield the desired solution to our boundary-value problem 
with the impermeable bow.:;ry. 

-a 0 +a L 
SOURCE 

X 

2L-a 2L 2L+a 

IMAGE 

Figure 4. The real source and its image, where x = L is an impermeable 
boundary and all quantities a re  measured relative to a coordinate x 

whose origin is  a t  the center of the source. 



The eolution of the mlrror-image source will be an integral similar to 
equation (24) for the actual source. That integral was obtained by placing the 
origin of the coordinate system a t  the centcr of the source. We do the same 
with the image source except now the new coordinatc is denoted by %. Thus, 
thie solution i s  

The coordinate transformation connecting 2 and the original coordinate x is  

With this relation, the integral can be written relative to the original coordinate. 
The relevant quantities transform as follows: 

N H 

x - xf = (x  - 2L) - (x' - 2 ~ )  

= x - x '  

d ? = d x  , 

and the lower and upper limits bccome 2L - a and 2L + a. Thus, the mirror-  
image solution is  



This integral is identical to equation (24) except for the limlta. Proceeding 
as before, we find 

and the solution is 

X 0 x = ~  {erf p' -crf q') . 

Finally, the complete solution is the sum of this and equation (24) : 

Xo x = 1. (erf p - erf q + erf pr - erf qf) 

or, in explicit form, 

x + a - 2 L  x - a - 2 L  + erf - erf 
4 2  

At the boundary x = L, 



We consider next two- and three-dimensional problems. It can be 
ver~fied that a source solution of the two-dimensional diffusion equation, 

h=, q + a u  
a t  (ax d i d )  

where again we assume the flow velocity to be zero, i s  given by 

where A i s  an arbitrary constant. For the diffusion to be indeed two-dimensional 
everywhere, it must be presumed that there i s  uniformity of concentration in the 
z direction and that the source is  uniformly distributed over the entire z axis. 
Therefore, the constant A can be determined by demanding that the totai amount 
of diffusing matter, Q in a cylinder of finite height concentric with the z axis, 

T' but of infinite radius, must be conserved. This Q i s  given by 
T 



Since z2 - z i  is the height of the cylinder, the quantity on the right i s  the total 
matter per unit length of cylinder which, to be conserved, must equal the initial 
line density Q on the e axis. Thus 

so  that 

Note the dimensions of Q: the amount of matter pcr uuit iength 
of line. 

The solution, equation (30), governs the diffusion of an instantaneous and 
infinitesimally thin source located on the z axis; hence, the name 'line source" 
i s  givcn to it. Converting to the polar coordinate p &fined by 



the solution can be written a s  

which, with the excepiion of the constant Q/2n02 (constant with respect to the 
coordinates, since a i s  still a function of time), has exactly the same form as 
the one-dimensional solution. The role of x i s  now played by p .  Thus, a t  any 
given time the concentration a t  points equidistant from the origin i s  the same; 
i. e., the contours of constant x a r e  circles centered at the origin. Any plane 
parallel to the z axis and through the origin would show a concentration pmfile 
exactly a s  in the one-dimensional case. 

The solution for a long cylindrical source of radius a cannot be obtained 
in terms of elementary functions. We merely quote the result which i s  

where p' represents the radial coordinate of a point in the cylinder (the inte- 
gration variable over the region), p i s  the observation point, and I,, i s  the modified 
Bessel function of the first  kind of zero order. There i s  no way of evaluating 
this integral except nunlerically. An elementary solution, however, exists for 
points on the axis of the cylinder. At such points p = 0 and IO (0) = 1. By 
elementary integration, we obtain 

This simple formula i s  useful in determining thc decay of the concentration on 
the axis, where the concentration i s  always above that of surrounding points. 



In three dimensions the instantaneous point source solution 11: 

In this case the integral over all space must equal the initial source strength, 
which we now denote by xo instead of Q because it has the same dimensions a s  
X. Thus 

therefore, 



where r2 = x2 + y2 + z2 is the radial coordinate. Again we see that the cloud 
grows along any diameter, as in the one-dimensional case. 

The point source solution, equation (34), may be integrated to obtain 
the solution for a uniform spherical source of radius a. In spherical coordinates 
with axes at the center of the sphere, we let r be the radial coordinate to the 
point of observation, r' the coordinate of a volume element of the sphere, and 
R the distance lo the observation point. Because the concentration is spheri- 
cally symmetric, without loss of generality we c i ~ ~ o s e  the observation point on 
the z axis. 

Rcforring to Figure 5, we sce that 

Figure 5. The geometry for the integration of the point source 
solution for a spherical source of radius a. 



Therefore, 

r2+rl 2-2rrl COB 0 
2 n n  a - 

X0 r s l e  2u2 
X = r1 sin 0 drt dO d$ 

(2n02)3'2 b o o 

2rr1 cos 0 r2+rl 
2n n t a 

- - Xo 
[dm J e  

2 -201 2u2 sin 0 I rt e dr ' 
(2n02)3/2 b o o 

We now make a change of variable to u in the first integral and to v in the 
second: 

Writing also 

r + a  r - a  
Q = - 

9 



we have 

These integrands are identical, u and v being variables of integration. We can, 
therefore, interchange the limits on the first integral and then write the sum of 
the two integrals as a single integral, which i s  allowed by the fundamental 
property of deflnite integrals for continuous intervals. Thus 

We now write the first integral as  the difference of two integrals, one from 0 
to p and the other from 0 to q. The second integral is integrated directly by 
elementary means. Thus 



which i s  the solution for a sphere of radius a. 

B. Continuous Sources 

We consider now the three fundamental sources, plane, line, and point, 
when they emit continuously for times t > 0 at the rate of ~ ( t ' )  units per unit 
time. In the time element from t1 to t1 + dtl,  an amount Q(tl ) dtl of material 
is emitted. Moreover, the standard deviation of the distribuflon will depend on 
the time t' in the following way: 

From equation (23) the contribution to x due to an elemental plane 
source Q dtl is 

Integrating this over the time of emission, we have 

- x2 
t 4 ~ ( t - t '  ) 

X = - f Q ( t l )  dtl 
2 6 0  ( t  - t ' ) %  



which is  the general solution if the emission rate Q i s  some general function of 
time. For a constant emission rate, this becomes 

where we put 

Integrating by parts, 

where crfc a is the complementary error function defined by 



= 1 - erf a! 

since the first integral evaluates to unity and the second is the error function, 
by definition. 

Similarly, employing equation (31), the solution for a continuous line 
source is 

2 - 
1 

t 4 ~ ( t - t '  ) 
X = - r ~ ( t ' )  

47rD b t - t' dt' 

which for constant Q is 

where in this case we defined s by 

2 
8 = 

4D(t - t') 



The exponential integral involved in this solution cannot be evaluated in closed 
form. Its series expansion is 

where y = 0 57721 . . . . is Eulert s constant. Thus, 

For large values of t the series term can be neglected, giving the approximate 
form 

Finally, in like fashion, we can write the solution for a continuous point 
source with the aid of equation ( 34) : 

- r2 

1 
t 

e 
4~( t - t '  ) 

X = r ~ ( t '  dt' 
8 (77~)~" b ( t  - t')3/2 



and for constant Q, we have 

We might note for this solution that as  t -- (0 it reduces to Q/ 47rDr which i s  a 
steady state distribution. 

C. Source Solutions in a Moving Medium 

The extension of the source solutions to the case of a moving medium i s  
rather simple. We note that the sohtions obtained in the casc of a stationary 
medium may be considered solutions as  observed from a coordinate system 
moving with the medium. Then, by transforming coordinates to a stationary 
system, the corresponding solutions for a medium in motion relative to the 
system at rest are obtained immediately. 

If u, v, w are  thr:: vector components, assumed constant, of the velocity 
of the medium, and xf , yf , zf are the coordinates of a point as  observed in the 
stationary system, then the coordinates of the point relative to a moving system 
are  given by 



Substitution of these expressions into the equations for instantaneous sources 
for a stationary medlum will yield the solutions for a moving medium. For 
example, the point-e mrce solution, equation ( 34), would take the form 

with similar results for the plane and line sources. One can always choose a 
coordinate system such that one of the axes, e. g. the X axis, is parallel to thc 
velocity. For the point source we would have the simpler result: 

where the prime on x may be dropped with the understanding that it is measured 
from a fixed system. The fact that these expressions satisfy the d!fi'clslon equa- 
tion for a moving medium can be verified by direct substitution. 

In general, if ,y (xt , yt , zt , t) is any instantaneous scurce solution of the 
diffusion equation for a stationary medium 

where the prime on the Laplacian indicates derivatives with respect to the primed 
coordinates, then ,y (x, y, z, t) is a solution of the diffusion equation for a moving 
nwlium 

4 

where x, y, z are given by the relations of equation (41) and V = (u, v, w) . 
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From the solution of equation (42), the expression !or a continuous point 
source in a wind can be determined. This wmid represent roughly a model of a 
chimney plume, because the plume may be considered a s  a continuous ser ies  of 
point source clouds o r  puffs. At time t1 the source erni.,,3 an elemental amount 
Qdt' of matter, while an element of a i r  a t  the point (x, y, z) at time t will have 
been inltially at x - u( t  - tt ), y, z because of the wind. Thus, the concentration 
d i  at (x, y, z) and at time t due to an instantaneous puff of amount Qdt' i s  

- 
Qdt' 

e 
4D( t-t' ) 

dx = 
8 [ r ~ ( t  - t ' ) lY2  

If the emission rate Q is  constant, the total concentration will be 

X-u(t-t' ) ] 2+y2+z2 
4D( t-t' 1 

3/2 
dt' 

( t  - t ') 

For a source maintained indefinitely, which is most important in practice, the 
limits on this integral would be from 0 to a. In this case the integral can be 
evaluated in closed !9m. Thus, 

u - - (r-x) 
= A. 2D 

4 7rDr 



where r2 = x2 + y2 + z2 and 

We might note that equation (43) i s  independent of time, a s  expected for 
a source maintained indefinitely a t  a constant emission rate. 

Furthermore, studies on smoke clouds have shown that the cloud has the 
form of a long, thin plume if the wind velocity is not too low. In this case one 
is usually interested in the concentration values near the axis of the plume, 
where y = z = 0. On the axis itself the above expression takes the very simple 
form 

For points near the axis relatively far  downwind the quantity (y2 + z2)/x2 is 
small. With the aid of the binomial expansion and neglecting powers of this 
quantity higher than the first, 

Putting this into the exponent of equation (43) gives the approximate form 



One can also, in practice, replace the r in the coefficient of the exponential 
factor by x because in most instances r = x for points near the axis. 

Similarly, from the solution of equation (30) we determine the formula 
for a constant continuous line source in a wind: 

- p u (  t-t' ) ] ?cY2 
4 ~ (  t-t' ) 

X i t - t* dt' 
0 

Again, assuming the source is maintained indefinitely and making a change of 
variable to 

1 
9 = 

4D(t-t ' )  ' 

we have 

where & i s  ;he modified Bessel function of the second kind. 

For sufficiently large values of the argument pu/ 2D, we may use the 
asymptotic expansion for KO, I. e., 



s o  that equation (44) becomes approximately 

2D -= 
-Qe e 2D for  x -  -u 

= > > I  . 
2D 

If one i s  interested in the concentration relatively f a r  downwind and near  the x 
axis, which is usually the case, then a further simplification i s  possible. 
Expanding 

the asymptotic solution becomes 

9 e 4Dx for x 
X " J  DirDpu >> 1  and - >> 1 . 

2D Y 

In this expression one may also replace p b y x  without serious e r ror .  

Thus f a r  in treating continuous sources with o r  without wind, we have 
implied an atmospherc? continuous in all dircctions, i. e., one with no boundaries. 
Often, however, the source of the diffusing cloud i s  on o r  near  the Earth's 
surface, where reflection, absorption, o r  deposition of particulate matter  under 
gravity can occur. Although in reality all three effects take place more o r  less, 



in many problems it can be assumed without serious e r r o r  that the surface acts  
a s  an impervious boundary, implying total reflection. Since the nontinuous 
point source in a wind at o r  near the ground i s  of considerable importance, we 
will obtain the solution to this problem in the presenco of an impervious bound- 
ary  ( the ground) . 

The method of images will be employed, a s  was done for the extended 
instantaneous plane source. In obtaining the solution, equation ( 4 3 ) ,  the origin 
of coordinates was placed at the source. For reasons of convenience and 
symmetry we now place the origin on the ground and the source on the Z axis 
a t  a height z = H; therefore, the image source i s  placed at z = -H (Fig, 6). For 
the two sources, the solution i s  still given by equation (43) except now the 
distance to the observation point r from the actual source i s  given by 

GROUND 

X 

(0,0, -H) I MAGE 

Figure 6. The continuous point source in a wind and its image. 



and that of the image source i s  given by 

Taking the sum of the two solutions, we have 

U( r-x) - 
2D + L c  

R 

which is the exact solution. Making the same approximation for points near the 
x axis a s  was done previously, we have 

For a source on the ground, one puts H = 0 in these expressions. Along the 
centerline of the plume, y = z = 0, this equation reduces to 

D. Source Solutions in an Anisotropic Medium 

For a nonisotropic and moving medium, the basic equation i s  equation 
(17). Assuming that the vclocity of the mctlium is parallcl to the X direction, 
the equation in cxpandcd form is 



To obtain solutions of this equation appropriate to an infinite medium such a s  3 

the atmosphere, we first make a change of coordinates defined by f 

Then, by differentiation, the derivatives with respect to x trmsform as  follows: 

and similarly for the derivatives with respect to y and z 



Also, the velocity along the new coordinate i s  found by differentiating x1 with 
respect to time, resulting in 

Thus, the diffusion equation takes the form 

which has the same mathematical structure a s  the equation for  isotropic media 
with an effective diffusivity equal to (Dl&%) 113. Therefore, the appropriate 
solutions can be written by inspection in analogy to the solutions developed for 
isotropic media. 

The procedure is  a s  fo!lows. Treating the instantaneous point source 
first, we see that the solution of equation (47) i s  given by equation (42) : 

where now the standard deviation 01  , by analogy to equation (22). i s  defined 



We can write this in terms of the separate standard deviations for each coor- 
dinate direction, defined by the following quantities 

Eliminating Dl, 4, Q, we find 

Also, eliminating Dl, 4, 4 from X? , yl , Z? , and u1 , we have 

b u d  Y3 

xt = x y z  
X 



( u  u 0 ) %  
ut = x y z  

U 

Finally, substituting equations (51), (SO), and (49) into equation (48), we find 
the instantaneous point source solution for a moving anisotropic medium in terms 
of the original coordinates x, y, and z: 

Relative to an observer moving with the medium, u = 0; therefore, 

Similarly, for the instantaneous line source 

Since these solutions exhibit Gaussian distributions in the flow directions, they 
are basic forms employed in turbulent diffusion, with additional assumptions dn 
CT , a , and o whenever Gaussian dispersion can be assumed. 

x Y z 



Many attempts have been made to solve the diffusion equation with 
variable diffusivitles Dir 4, and DQ. Theee efforts have succeeded only for 
certain special functional forms for these coefficients. Details and references 
to the original investigations can be found in Reference 4. 



Taylor's Theorem 

TURBULENT Dl  FFUSION 

The basic solutions of the diffusion equation developed in the preceding 
sections are generally valid for molecular diffusion, In general, however, 
dispersion of matter can also occur by turbulent motion. For example, the 
dispersion of a pollutant in the atmosphere almost always occurs in a turbulent 
flow field in which molecular diffusion i s  negligible. Unlike molecular motion, 
turbulent flow occurs on a macroscopic scale. Turbulence in the atmosphere 
can arise from thermal and pressure gradients, variations in wind velocity, 
boundary reflections such a s  occur on the ground, and buoyancy forces which 
are  related to vertical temperature variations. The complexity of turbulence 
is well known. Even with some simplifying assumptions, a theory of turbulent 
flow based on dynamical considerations leads to coupled differential equations 
which are virtually intractable to solution. 

Inasmuch as  turbulence plays a primary role in airborne dispersion, it 
can be said flatly that the Ficldan diffusion equations (17) and (11). characterized 
by constant eddy diffusivities, fail completely in the atmosphere. The solutions 
of equation (17). the equation for a moving and anisotropic medium, have been 
employed as a basis to describe, with some success, the diffusion process in 
the real atmosphere. Even then, some modifications and some new assumptions 
are necessary for these solutions to conform adequately to empirical data. As 
we shall see later, a significant method of modification involves assumptions on 
the functional forms of u , a , and a , and on the wind velocity. In summary, 

x Y z 
much of the empirical data can be absorbed in a theory that treats these param- 
eters not as  fixed constants but as  subject to variation in time or  constant over 
limited regions of space. A fair question is  how the solutions obtained from the 
molecular diffusion equation on the assumption of constant diffusivities can be 
carried over to turbulent diffusion in which the diffusivities are  not constant. 
Obviously, if these are point functions of the coordinates, this cannot be done. 
However, if they depend solely on time, then a s  we have seen in Section II, a 
time scale transformation leads to an equation of the same mathematical form 
and, therefore, with the same type of solutions. 



A fairly successful theory of turbulence has been based on stochastic 
theory rather than on dynamical considerations. A statistical technique which 
originated with Taylor and which has found frequent application is based on a 
Lagranglan treatment of the flow field, i. e.,  one in which attention is focused 
on a single particle a s  it  moves about the field. The theory involves the use of 
mean values of quantities characterizing the particle, such a s  its velocity and 
displacement, with fluctuations about the mean which a r e  assumed to be sta- 
tionary, homogeneous, isotropic, and Gaussian. By stationary it  is meant t a t  
statistical properties do not vary with time. For example, a covariance com- 
puted from the data In a particular time interval i s  assumed tc, be the same for 
any other time interval. Homogeneity implies that these properties do not 
depend on the space coordinates; that is, a measurement taken a t  a particular 
pcint in the field will r ,Jssess statistical characteristics identical to those 
taken a t  some neighboring point. Isotropy means that the fluctuations do not 
vary in direction about a fixed point. 

With respect to the atmosphere, homogeneity in the horizontal direction 
is a reasonable assumption in regions under which the topography te  similar 
over a large area. Such cannot be said for the vertical direction. Because of 
the presence of vertical forces of gravity, buoyancy, and the Earth's surface, 
the assumption of vertical homogeneity is unrealistic in most cases. The con- 
cept of isotropy suffers from similar limitations. 

Once a random process is assur.ad, a distribution function has to be 
postulated, It has been determined from empirical data that many atmospheric 
conditions can be represented by a Gaussian distribution, which yields the nor- 
mal probability curve. However, any other distribution may be assumed if it 
offers a better prediction of the variables under certain conditions. 

It i s  not the purpose of this report to give detailed accounts of the sta- 
tistical theories of turbulence. We limit ourselves to an elementary treatment 
of a significant statistical method founded on Taylor1 s theorem and from i t  
derive expressions for a , a , and a . This will be followed by two examples 
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illustrating the use of these expressions in actual diffusion problems, one 
example from Brownian motion and the other from Suttonl s early work. 
this particular aspect of Sutton' s work has been superseded on theoretical 
grounds, it has produced several practical formulas with good predictive power 
under certain conditions. This section i s  concluded with a brief description of 
the Hay-Pasquill method of cloud spread prediction. The purpose here is  to 
provide a background for further reading. 



We imagine an ensemble of particles in random motion and fix our atten- 
tion on a eingle particle. If the particle at time t = 0 i s  a t  the vector position 
e -L r )  

r1 and a t  time t a t  position 7, the displacement r - rl will be a random function 
of time. If we now introduce a probability density function P (7 -'i:l, t )  , 1. e. 
a probability per unit volume, then the probability that the particle i s  in the 
volume element d y  about I;: at  time t i s  

The assumption of homogeneity implies that P i s  solely a function of the dis- 
e - 

placement r - r1 and not of the starting point, o r  release point, 71. That is, 
every elementary region of the ensemble i s  represented by the same probability 
density. Physically, the meaning of P i s  that i t  approximates the fraction of 
particles in a given volume element. The term ttapproximatesfl i s  uasd because 
of the inherent statistical nature of P in particular and of the theory in general. 
If Q denotes the total mass released (which constitutes the ensemble) and x 
some mean concentration, i t  follows that 

If we place the observer in a frame of reference moving with the mean 
velocity of the ensemble, the mean velocity need not be considered. However, 
the mean of the square of the ensemble velocity i s  not necessarily zero, although 
it must be independent of time. Thus, 
and the bar over a quantity denotes ita 

- - 
u(t) = o u2(t) = constant 

if u denotes the x component of velocity 
mean value, then 

We have similar expressions for the y and z components. After a small time 
r,  the velocity will be u(t + 7 ) .  Therefore, thc velocity covariance is, by 
definition, 



Since the procms is  stationary, the covariance is a constant. This implies that 
the starting point t at which u(t) and u(t + T) are computed does not affect the 
mean value of their product. An important result of this is that the covariance 
is an even function of T, meaning that it has the Hame value for T as  for -7. To 
understand this, let us take the starting time t - 0, so that the covariance i s  

Now let us take t = -7, giving 

Because of the assumption of stationarity these must be equal; 

which is clearly even. 

The next step i s  to introduce a velocity correlation function R(T) (sorne- 
times called a Lagrangian correlation coefficient) defined by the ratio of the 
covariance to the mean of the squared velocity: 

which is  also independent oft hecause numerator and demonator are independent 
of t. 

We now compute the mean time rate of change of the square of the dis- 
placement x( t) : 



Since 

hence, the above becomes 

where we used the justifiable process of interchanging the order of integration 
and averaging. Making a change of variable defined by tp = t + 7, we have 

where in this last step we replaced the integration from -t to 0 by 0 to t because, 
as noted previously, the integrand is an even function. Finally, substituting 
from equation ( 55), we obtain 

which upon integration over the interval t results in 



This result is  known a s  Taylort s theorem and i s  of fundamental importance 
in turbulence. It relates the mean squared displacement of a particle in time t 
to its mean scpared eddy velocity and velocity correlation function. 

We now seek a connection between the autocorrelation function R( r) and 
the standard deviations o , o , and o which quantities, a s  we have noted, 
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characterize the spread of the dispersion along the three coordinate directions. 
We recall that in one dimension a was defined by 

X 

Extending this definition to three dimensions, we have 

with similar expressions for u and a '. Substituting from equation (54). we 
Y Z 

get 



but from statistical theory this integral is just the mean o r  expected value of 
x2. Thus 

from Taylort s theorem. This is the relation sought. In general, for all three 
dimensions, we have 

o 2 = 2 u 2  ( t - r )  R ( r )  d r  
Y 0 Y 

where v and w a re  the velocity components in the y and z directions, and R 
Y 

and R are  their respective correlation functions. Thus, in this theory the 
Z 

problem of turbulence is reduced to that of determining the velocity correlation 
function. The difficulty, however, is that there is no satisfactory theory from 
which this function can be predicted. The function can be predicted if it can be 
assumed that the velocity history is a Markov process. A Markov process i s  
one in which the value of a random variable a t  times greater than some t 
depends on the value it  has a t  t but not on any previous value. There a r e  some 
theoretical inconsistencies in the assumption of a Markov process for the 
vclocity fluctuations, however. These will be discussed in a later paragraph. 

Some general properties of R(T) a re  worth noting. We have already 
seen that it i s  independent of t and an even function of r. Also, a t  t = 0, 
R(O) = 1, and a s  r - 0, ~ ( r )  - 0 .  In general it can be shown that for all r, 



B. Example from Brownian Motion 

It i s  an enlightening exercise to apply Taylor's theorem to Brownian 
motion, which is  the agent by which molecular diffusion occurs, and to show that 
it gives the same result for u a s  does the phenomenologically based diffusion 
equation. The exercise i s  expressive of the significance aad power of the sta- 
tistical approach. When small particles of colloidal size suspended in a fluid 
are observed under a microscope, the particles are seen to move about with 
apparently random motion. This motion was observed by the botanist Robert 
Brown in 1826. Not until 1905, when Einstein published his classic paper, was 
the phenomenon completely understood. He showed that the motion i s  the zesult 
of collisions ivith the molecules of the surrounding fluid, which eventualiy leads 
to the dispersal of the particles. 

We apply Newton' s second law of motion to a single particle of mass m 
and velocity u moving in one dimension. The assumed forces acting on the 
particle are  viscous drag and collision forces taken as  a group of random 
impulses, The drag force i s  assumed proportional to the first power of the 
velocity, with K denoting the proportionality constant and f(t) denoting the 
random force component along X. The equation of motion is  

Writing /3 = K/ m, we have 

This first-order, linear differential equation can be integrated with the aid of 

the integration factor e'. Multiplying by this factor and rearranging gives 



so that 

where uo is the initial velocity. Solving for u, 

This result shows that the particleq s velocity depends on the initial velocity and 
on the random acceleration f/m. For times t >> 1/ p, the first term decays to 
zero, making u independent of its initial velwity. It may be stated that after a 
sufficiently long time the particle lVforgets'l its initial velocity and is  thereafter 
l1pushedl1 around by the random forces. Thus, after a long time the process 
becomes a Markov process. It might also be noted that in spite of the presence 

of the decay factor e-' in the second term, this term does not necessarily 
decay, at least at the same rate, a s  the first term because the integral is not 
constant but some Pmction of t. 

If we now take the ensemble average of equation (58) (the average of a 
large number of randomly moving particles), the contribution to u from the 
second term vanishes; therefore, 

Moreover, from the principle of equi-partition of energy founded on the statis- 
tical theory of gases, we have 



where the left side is the mean kinetic energy of the particle, k is the Boltzmann 
constant, and T is the absolute temperature. This simple result shows that - 
u2 i s  independent of time, indicating that Bilownian motion involves a stationary 
process* 

We are now able to determine the velocity correlation function for 
Brownian motion. Because the process i s  stationary, we can take t = 0, Thus, 
with the aid of equation (5 5) ,  we find 

Substituting this correlation function into Taylort s theorem, we have 



To interpret this result and relate i t  to the expression obtained from the phe- 
nomenological theory, we need some insight a s  to the magnitude and significance 
of the quantity P. Its reciprocal has the dimensions of time. It is the time for 
the velocity to decay to l / e  of its initial value, o r  the llrelaxation timef1 of the 
viscous effects. Its magnitude may be computed from Stokes' law: 

where a i s  the radius of the particle and C( is the viscosity of the fluid. For a 
particle of mass m = 10" g in air, p = 1.6 x 10" g-sec-l-cm'i, and a - lo-' 
cm, we have 

P-'* 1.4 X 10" sec 

which i s  much smaller than the time scale of normal diffusion. Thus, for 
t >> l/ p we neglect the second term in equation (60), giving 

Comparing with a = 2Dt, we see that both expressions a r e  in accord in that each 
X 

depends linearly on t. Also, it follows that 

This relation has been repeatedly verified by experiment and is a well established 
result of the theory. 



We have seen that for Brownian motion the velocity correlation function 
has the form of an exponential decay and, therefore, the motion i s  of the Markov 
type. If we assume that eddy motion i s  also of this type, then 

where 0 would be some appropriate time scale for the process. For Brownian 
motion, 0 i s  determined by viscous effects which was found to be 0 = 1/ P. It 
would seem, therefore, that 8 in general i s  doternlined by some characteristic 
length related to the size of an eddy and some characteristic velocity. On this 
basis, 0 would be expected to be proportional to the ratio of the characteristic 
length to the characteristic velocity. All this appears quite reasonable; how- 
ever, an obvious difficulty ar ises from the assumed functional form of R(T) if 
we recall that it should be even. Replacing T with i ts  absolute value in equation 
(61) makes it  an even function; however, i t  has a discontinuity a t  T = 0. Physi- 
cally, this implies an infinite acceleration of the particle (or  eddy) o r  a vanish- 
ing inertia. Thus, the type of function being considered i s  not acceptable on 
theoretical grounds. However, for large values of T the particle i s  no longer 
influenced by its initial velocity; therefore, a Markov process should be an 
acceptable model for such times. In the limit of large T, the dispersion a2 i s  
proportional to the time, which i s  characteristic of molecular diffusion but not 
generally valid in turbulence. The obvious inference i s  that the Markov process 
is applicable only when the turbulent mcdium has reachcd a quiescent state 
dominated by molecular diffusion, a t  which timc the problem may no longer be 
of interest. 

As indicated by Sutton [ 5 ] ,  the difficulty with an exponential decay 
correlation function i s  that i t  implies eddies all having the same size, analogous 
to the molecules of a simple gas, which i s  definitely not in accord with the facts 
of turbulence. The conclusion i s  that this type of function cannot form the basis 
of any general theory. 

Other theories, including thc l'mixing length," have been proposed. In 
these theorics O I ~ U  introduces a characteristic length, akin to the mean free path 
of a molcculc whose magnitude depends on the intensity of turbulence. The idea 
i s  that a randomly moving fluid clcmcnt transfers its momentum to the mean 
flow in a distance of the order of the mixing length. This implies that the ele- 
ments behave independently of the mean motion for brief periods during which 



they transfer their momentum, much like independent, colliding molecules. No 
model of the structure of an eddy is necessary. The velocity fluctuation there- 
fore becomes a function of the mixing length. Unlike the mean free path, the 
mixing length may be a function of position, mean velocity, and other variables. 
In practice, the mixing length is a convenient parameter lacking any solid physi- 
cal foundation. A result of the theory i s  an expression for a virtual c0efficien.t 
of diffusion equal to the product of the mixing length and the square root of the 
mean of the squared velocity fluctuation. The details of the derivation can be 
found on page 72 of Reference 5. 

C. Sutton's Formulas for the  Dispersion 

In Sutton' s analysis, i t  is assumed that the correlation between fluctu- 
ating velocities near a sxr 00th surface depends on the mean eddy energy p z, 
the fluid viscosity p, and the time t. The only dimensionless number that can be 
formed with these quantities is  p/p ';;Z T, which, with v z p/P,  can be written 
v T. The quantity v is the kinematical viscosity. Considering the limiting 
properties of R(T) for small and large T, the simplest function with these prop- 
erties i s  the power law 

where n i s  a positive number. Thus, in nonisotropic diffusion, e. g., diffusion 
near the ground, one can assume 



where u, v, and w a r e  the velocity fluctuation components. Furthermore, 
Sutton suggests that for rough surfaces v in these expressions be replaced by 
the llmacroviscosity, l t  a quantity without precise definition except that it is, 
for  the most part, empirically determined and several orders of magnitude 
greater than V. Its magnitude, from Sutton' s computations, ranges from 0.016 
for ice and mud flats to 560 for thick grass up to 50 cm high. 

From equation (57), we calculate 

- 
Neglecting terms of order v compared to u2 t, we have 

Similarly, we find 



Definlng "generalized diffusion coefficients" C Cy, CZ by x' 

where U is the mean (constant) cloud velocity, one can write 

2 1 2 2-n 
a = - c  (ut)  

Y 2 Y  

2 1 2 2-n 
a = - C  (Ut) . 
2 2 2  

For n = 1, one finds that a2 1s proportional to t, a behavior characteristlc 
of molecular o r  Brownian diffusion. For n = 1/4, 02 i s  proportional to tV4 
which, according to Sutton, gives a reasonably accurate description of diffusion 
in the atmosphere from a few metera to hundreds of kilometers. 

We can arrive at  Sutton' s formula for the instantaneous point source in 
a reference frame moving with the cloud by formally substituting the relatlons 
of equation (62) into equation ( 52) : 



n 

c Z  
\Cxz y C 

2 

- b e  X - Y 
3/ 2(2-n) (63) n3I2c C C (ut) 

X Y Z  

From this basic solution Sutton obtains, by integration, the formula for the 
continuous point source near the ground (the ground reflection is taken into 
account) : 

where x = Ut. Expressions for line sources are also given (see page 288 of 
Reference 5). 

A first criticism of Suttont s development is that the constants C C 
x' y' 

C do uot have fixed dimensiou hut depend on the value of n. Furthermore, the 
z 

correlation function varies as T'", which yields divergent diffusion time scales 
and infinite spectral densitj at zero frequency under Fourier analysis. In spite 
of these theoretical inconsiskncies, Suttont s basic formula, equation (63). is  
found to be identical to that derived by some other theoretical methods, e. g., 
by treating turbulent diffusion as a random walk process. Csanady [6] suggests 
that the theoretical discrepancies may be due to the nonuniformity of the tur- 
bulent field near the ground as  the cloud rises and the eddies grow in size, 
Since the field is no longer stationary, the concept of a velocity correlation 
function is undermined. We might reverse the reasoning as  follows. Starting 
with the presumably correct power law formulas, equation (62). a velocity 
correlation function deduced from tlwm would be invalid. 

For a continuous elevated point source in the presence of a constant mean 
wind along x and total reflection at the ground, Sutton assumes the expression 



where H is  the source height measured from an origin on the ground beneath the 
source. In this formula we have replaced Suttonf s C and C with a and o 

Y Z Y Z 

defined by equation (62). This general form for the concentration allows differ- 
ent assumptions on the values of o and o and has been widely employed by 
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others to predict cloud concentration at ground level from smoke stacks. At 
ground level ( z  = 0) , the formula becomes 

and along the axis of the plume (y - 0),  it becomes 

It is easily seen that the maximum concentration along the plume axis occurs 
at the point downwind where the relation u = ~ / f i  satisfied; the concentration 

z 
there is 



D. Hay-Pasquill Method for Determining the Dispersion 

In deriving Taylor1 s theorem it was explicitly assumed that the velocitlee 
were Lagrangian velocities, i, e., the mean velocity and fluctuating components 
of a particle as  it moves about from one point to another. In contrast to this 
Lagrangian description, the Euler description deals with velocities at a fixed 
point of the fluid. Since in the determination of experimental data on diffusion 
velocities samples are often taken with instruments fixed at a point in the flow, 
it wo-Ad be useful to determine the relationship, if any, between Lagmngian and C 

Euler velocities. The difference is, primarily, that the velocity fluctuations at 
a fixed point occur in a s h o m r  time thafi those of a drifting particle. The Hay- 
Pasquill method is  based on the realizatioll of this time difference. 

In this method one introduces a shortened time interval T, or  simulation 
time, related to t by t = pT, where is some empirically detemined constant. 
With this new time scale and by the same arguments used to derive Taylort s 
theorem, one now obtains 

for the simulated mean-square displacement, where U is the Eulwian velocity 
E 

and R ( 7 )  is the Eulerian velocity correlation function. One thm aesumes that 
E 

the Langrangian velocity fluctuations arc equal to the Eulerian fluctuations - but 
that they occur on a time scale l c y c r  by a factor of p. That is, ? = u*, - E 
where u2 is the corresponding Lagrangran quantity. Employing this equality in 
equation ( 56) and then equating equation ( 56) to the above expression f o r 2 ,  
it follows that 

where the right member is  the Lagrangian correlation function. This result 
implies that the Eulerian and Lagrangian correlation functions have the same 



shape but that the Lagrangian one falls more slowly. Although it, has been 
definitely determined that the two correlation functions do not, in reality, have 
the same shape, the standard deviations obtained by this method give good 
predictions of cloud concentration [4,6] . 



V. NASAIMSFC MULTILAYER DIFFUSION MODEL 

A. Point Source Solutions in a Layer 
with l mpervious Boundaries 

The real atmosphere quite often possesses a stratified structure, pri- 
marily a s  a result of temperature and wind shear. The turbulent mixing of a 
cloud with ambient a i r  (entrainment) tends to decrease the buoyancy and vertical L 

momentum of the cloud. As a result the region in which turbulent mixing i s  
occurring will be bounded by a stable layer which acts a s  a lid, preventing com- 
plete admixture of the a i r  across the boundary. This would be the case when 
buoyancy folces a r e  stabilized by gravity. Given that the ground also acts a s  a 
similar boundary, the task i s  to determine solutions in a vertical layer of 
atmosphere. The simplest diffusion model which accounts for such boundaries 
i s  one which assumes total reflection at the boundaries. The solutions for the 
instantaneous and continuous point sources will now be derive?, followed by a 
summary of the multilayer model developed by the Cramer Company for NASA. 

A layer, by definition,, consists of two distinct boundaries. Mathemati- 
cally, the problem can be treated by the method of images. The flux reflected 
a t  the first  boundary i s  reflected a t  the second boundary which, in turn, i s  
reflected at the first  boundary, etc. The general solution can be constructed by 
assuming multiple images, one for each reflection. Each image upon reflection 
at the opposite boundary creates a second image which, in turn, creates a third, 
etc. The essential steps will be given in the following paragraphs. 

The origin of coordinates i s  placed on the ground, I. = 0, the source a t  
z = H above ground, and the top of the mixing layer at I,  = h, with h > H. Total 
reflection is  assumed at both bour~dnries, the ground and the top of the mixing 
layer. For the instantaneous and continuous point sources we assume the basic 
Gaussian form 



where we let 

for the instantaneous source, and 

for the continuous source. 

Consider first the reflection of the real source at  the boundary z= 0. For 
this reflection an image source is  placed at z = -H. The solution due to this 
image is  

The flux from this image i s  also reflected at  the boundary z = h. Therefore, 
we place a second image at z = 2h + H (at  the same distance from the boundary 
z = h as  the first image). The solution due to this second image is  



The flux from this secondary image is itself reflected at the boundary z = 0; 
therefore, a third image i s  placed at z = - f  2h + 11). giving rise to the solution 

The flux from this tertiary image i s  reflected at z = h; therefore, a fourth image 
is  placed at z = 4h + H, giving the solution 

A fifth image at z = -(4h + H) yields 

Generalizing the results and taking the sum of the solutions, we have the expression 



To this expression we now have to add the sum of the solutions a r i s in~  from 
reflection of the real source with the boundary z = h. In this case we first 
place an image source at z = 2h - H, yielding the solution 

For reflection of this image at z = 0 ,  we place a second image at z = -(2h - H), 
yielding the solution 

For the next two reflections at z = h and z = 0, we have, respectively, 

etc. The sum of these solutions is 



The term i = 0 i s  not included here because it  has been included in the preceding 
partial sum, equation ( 64) . 

Thus, the general solution i s  the sum of the two partial sums, equations 
(64) and (65): 

In the literature on diffusion these sums a r e  written in several equivalent forms. 
The form used by the Cramer Company in its reports [7,8] i s  obtained by 
writing the terms for i = 0 explicitly and combining the two sums into one a s  
follows: 



Except for minor differences, such as the use of the equivalent (2ih + H - z ) ~  
for ( z  - H - 2ih)2, and the use of H for our h, the expression in braces is 

m 
L 

identical to the ltvertical termw of the Cramer group. 

Another equivalent form of equation (66), and the most concise, is 
obtained by replacing the summation range in the second sum by i = -1 to -a 
and accommodating this change by an appropriate sign change in the affected 
terms. One can easily verify the result 

The ground-level concentration along the axis of the plume is of interest. 
With z = 0 and y = 0, we obtain in the case of the continuous source: 

We recall that o characterizes the spread of the concentration in the 
z 

vertical direction and, therefore, increases with time; for example, as t -. 0 0 ,  

a -- a, and x approaches some asymptotic value kdependent of z. Since the 
z 

total amount of diffusing matter must be conserved, the integration of equation 
(68) over all space must equal the total mass released. The integration results 
in the asymptotic form 



Thus, the summation factor in equation (68),  which expresses the vertical 
distribution, approaches the distribution 6 a / h asymptotically. That is, 

z 
the Gaussian distribution eventually bccomes rectangular. 

B. Summary of the NASAIMSFC Model 

The NASA/ MSFC Multilayer Diffusion Model developed by the Cramer 
C 

Company is  employed in the prediction of fuel hazards resulting from NASA 
activities. In particular, this model was designed to permit concentration and 
dosage calculations downwind of toxic clouds from rocket vehicles. The basic 
concepts of this model a re  summarized here in the context of the stated purpose 
of this report. The specific details of the method and associated computer 
program can be found in References 4 and 6. 

The stratification of the atmosphere into regions of significantly different 
meteorological parameters, such a s  wind velocity and temperature, i s  the basis 
for assuming a multilayer model. Each layer i s  assumed homogeneous and the 
boundaries impervious to the turbulent flux. However, the formulation does 
permit taking into account flux of matter across the boundaries due to gravita- 
tional settling and precipitation scavenging. The diffusion process i s  repeated 
from layer to layer, each layer assigned a new set of source and meteorological 
data. 

The model takes into account the loss of matter from the cloud resulting 
from decay processes, precipitation scavenging, and gravitational settling. 
All these effects combine to deplete the matter that forms the cloud. The 
expression for the concentration, therefore, c o ~ s i s t s  of the product of two 
terms: a diffusion term and a depletion term. If a Gaussisn distribution i s  
assumed, the diffusion term is  that dcvelopecl here, equation ( 6 7 ) ,  for the 
instantaneous o r  continuous point source, depending on the fllnction A a s  already 
defined. The standard deviations a , a , and a a r e  now g2neralized entities 

x Y z 
significantly, but not conceptually, different from the relati-~ely simple meaning 
we have attached to thcm. They a re  defined by certain rather awkward semi- 
cmpirical relationships involving quantities that vary during the time required 
for  thc cloud to stabilize with respect to ambient air.  In the main, therefore, 
these quantities a re  functions of onc o r  more of thc following: (1) the standard 
deviations of azimuth and elevation angles of the wind; (2 )  the distances over 
which vertical and crosswind expansion of the cloud occurs; (3) the standard 



deviations of the vertical, crosswind, and alongwind distributions at the time 
of cloud stabilization; (4) vertical and lateral diffusion coefficients; and ( 5) the 
time for the cloud to reach equilibrium with ambient conditions. Much of the 
input data required to calculate these of s must by empirically determined. 

If gravitational settling is neglected, the depletion term consists of the 
-bt 

product of two exponential decay factors of the form e , one for decay processes 
and one for precipitation scavenging, where b is some appropriate constant for 
the particular process. 

If gravitational settling is not neglected, then the sum (but not A) in the 
diffusion term, equation (68), is replaced with the expression 

where V is  the settling velocity. This replacement is  made because the ground 
can no longer be considered a reflecting boundary, reflection now occurring 
only at the upper boundary z = h. Equation (71) is, therefore, really a diffusion 
term. Neglecting for the moment the term Vx/U, equation ( 71) can be written 
as  

which, aside from the factor A, we recognize as the solution for the point source 
with source at z = H and a single reflecting boundary at z = h. 

The inclusion of the term Vx/ U is based on Schmidt* s studies on sedi- 
mentation as  modified by Csanady [6]. In equation (72) the source height H is  
replaced by H - Vx/ U, resulting in equation (71). 
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