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ABSTRACT

The objective of this research is to develop the theory and
associated numerical technique for the iterative design improvement
of the compensation for linear, time-invariant control systems with
multiple inputs and multiple outputs. The multivariable capabili-
ties allow system suboptimization of several control loops with
coupled characteristics. A strict constraint algorithm is used
in obtaining a solution of the specifieé constraints of the control
design. The result of the researcﬁ effort is the Multiple Imput,
Multiple Output Compensator Improvement Program (CIP).

The objective of the Compensator Improvement Program is to
modify in an iterative manner the free parameters of the dynamic
compensation matrix so that the system satisfies frequency domain
specifications. In this exposition, the underlying principles of
the multié;;;;ble CIP algorithm are presented and the practical
utility of the program is illustrated with space vehicle related

examples. Further, the capabilities of and possible extensions to

the algorithm are delineated.
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CHAPTER I
INTRODUCTION AND SURVEY OF PREVIOUS WORK

Introduction

The space age era has challenged the control theorist to
examine the fastest and most efficient means of system design and
énalysis. In this-regard, increasing emphasis has been stressed on
the utilization of digital computers in modern control theory. Much
has been written on employing digital computer control methods for
single input systems, but the complexity of systems may require more
than this simple approach—-that is, for a better contrel the sensing
of many system parameters and inputs as well as their relationships
to one another must determine the control law, The facet of control
theory requires exploiting multiple input, multiple output tech-
niques, Further, the problem of pro&ucing the 'best' compensated
system becomes cone of satisfying physical restrictions of system
parameters as well as digital computer limitatiomns.

Modern trends in engineering systems are toward greater com—
plexity, due mainly to the requirements of complex tasks and the
necessity for accuracy. Sophisticated technology involves systems
that are described adequately only by numercus variables; thus,
these high~order complex systems are responsible for the dichotomy

of the academic and industrial attitudes. The naivete” of low-order

system textbook orientation must be abondoned, and with the essence



of the classical methods espoused, analysis of large-scale systems
made possible with modern methods. The necessity of meeting
increasingly stringent requirements on the performance of control
systems, the increase in system complexity, and the accessibility

of lzrge-scale computers has forced modern theorists to reexamine
the problem of interaction of multiple control inputs. A complex
system may have many inputs and outputs which may be interrelated in
a complicated manner. To analyze such a system, it is essential to
reduce the complexity of the mathematical éxpressions as well as to
resort to computer algorithms for the tedious computations.

Many process control systems have multiple inputs and outputs.
Generally, there is no assurance that changes in one reference input
will affect only one output; thus, the inputs and outputs are not
decoupled but interact with one another. Analysis of such inter-

actions of all inputs with all outputs is .a difficult task, particu-

larly by classical means., It is for this reason that the investi-
gation and development of a computerized algorithm for compensation
of multiple input, multiple output systems with interactions of
parameters are so important.

In conventional control theory, generally only the input, out-
pﬁt, and error signals are of concern; the design and analysis are
developed using transfer functions, together with a variety of
classical technigues such as root locus, Nyquist, Bode, ete, The
appealing characteristic of conventional control theory is that it
is based on the input~output relationships of the system; that is,

the transfer function.



The main disadvantage of conventional theory is that, primarily,
it is applicable only to linear time-~invariant systems having a
single input and output. It is difficult to apply to time -varying
systems, nonlinear systems except the simplest cases, and to multi-
ple input, multiple output systems. Thus classical techniques are
not amenable generally to the design of optimal or adaptive con-—
trollers.

With the advent and abundant utilization of digital computers,
computer—aided control system design has become a popular research
topic. However, most contemporists abandoned the classical tech-
niques and explored the realm of optimal control theo;y delving in
systems described by state variables, i.e., a set of first order
differential equations with design- ocbjectives described in a cost
functional. Although many enlightening methods and results have
been evidenced, the weaknesses are inherent. For example, the
optimal cong;;l law is extremely dependent upon the proposed cost
function and in many cases the correct cost function debatable [l]?
Furthermore, all states are assumed available for feedback. Even
with observer theory to reproduce unmeasured variables, and subse-
quently allow fewer measurements, the coméuter storage require& is
excessive.

Thé current impression, that in order to utilize computer
facilities the control problém must be-imélemgnted;in state variable

form, must be resolved. There is, generally speaking, no substitute

for state wvariable techniques when applied to simple contrel

4

#Numbers in square brackets designate referenced items.



systems, but when solving relatively largé planfs the handling and
storing of state matrices can be unthinkable. Thus if the classical
theory can be extended to include modern concepts, aé well as com—
puter techniques, then possibly a more effective control tool will
evolve. An interesting aspect of this approach is that it clearly
shows the return to prominence of the classical frequency domain

techniques in modern system analysis.

Literature Survey of Previous Work

In the past, several papers have appeared discussing various
approaches to computerized classical design of control systems.
Generally, performance specifications are satisfied by frequency
response and root locus methods using trial~and-error procedures.
According to [2], there dre three digital techniques which appear to
have merit in this regard: Automatic Frequency Domain Synthesis of
Multriloop Control Systems (AUTO), Compensator Improvement Program
(CIP), and Computerized Optimization of Elastic Booster Autopilots
(COEBRA). 1In addition to thege, ﬁeveiépmentS‘by Nail on the Eigen-
value Encouragément Technique:[3], as weil as;M;ﬁcini;s Computer
Aided Control System Design Using Frequency Domain Speciﬁigations
(CALICO) [4] and Vines' Computer Automated Designr;f Systems (CADS)

[5] are also of interest. Each of these algorithms is summarized,

and the disadvantages and limitations are discussed.



Automatic Frequency Domain Synthesis of

Multiloop Control Systems (AUTO)

The algorithm AUTO [6], developed at the Aerospace Cerporation,
was designed to aid in the synthesis of compensation for multi-
loop, time-invariant control systems exemplified %n Figure 1. 1In
this figure, the plant P(s) is assumed to have fixed characteris-
tics, a single control input, and multiple outputs. With the feed-

back path broken at o an open-loop transfer function is defined as:

e(s) = C(8)/R(s) 1.1

assuming R(s) is unity for all frequencies s = jw, then C(jw) is
the open—loép frequency response.

The philosophy of AUTO is to fit the open-loop frequency
response C(jw) to the desired opén—loop response a(jw) by selection
of the parameters of thé compensators, Gl(s), Gz(s), cevs G}d(s) .
The compensators are varied algebraically by making incremental
changes in their parameters. Each compensator is assumed to be a

rational function of the form:

. N .
a O e I b 9 (1.2)

G (s) =
k i i=2

e~

i

where M and N are chosen by the designer and a b, . represent

ki*> "ki

the compensator coefficients. The number of compensators is

dictated by the number of plant outputs.



PLANT .
DYNAMICS MEASURED STATES COMPENSATION

ol
3o Gl(s)
X
| TS
R(s) P(s)
3
X
M - (%és)
@

R{s} IS THE SCALAR INPUT RESPONSE

C(s} IS THE OUTPUT RESPONSE
P(s)} IS THE M x 1 MATRIX TRANSFER

FUNCTION DESCRIBING THE PLANT
x(s) REPRESENTS THE MEASURED STATE
OF THE (J)TH CHANNEL;
J=1,2, ... , M
Gj(s) REPRESENTS THE {(dJ)TH CHANNEL
COMPENSATION; J =1, 2, ...,M

Figure 1. General Configuration for a Single
Control Input System.



The measurement of closeness J between the actual response C(s)
and desired response C(s) ig the mean square difference at a set of

selected frequency points w,, k = 1,2,..., K, that is

k,

3 = |J@* -cHTwIHE - o (1.3)
where the asterisk (*) denotes complex conjugate and

¢ = f8de) €Guw) ... CGu)l . @)

W is a diagonal matrix of the form

W 0 ... 0
'ﬁ' = 0 W “«es 0 (1-5)
i 0 0 W,

that is -used to assign different weights to the errors of different
frequency points. The compensators are designed by varying their
coefficients so that J is minimized by a gradient search method.

The directional vector along which the search is made is the gradient
of J with respect to percentage changes in compensator coefficients;
this type of directional vector is uséd to avoid premature con-
vergence from encountering steep valleys or ridges associated with

the function J.

Compensator Improvement Program (CIP)

2 =

CIP is a computerized design algorithm for aiding in the com—

pensation synthesis for multiloop, time-invariant control systems



of the form of Figure 1. The basis of this algorithm is that with
the feedback loop broken at o, the compegsation design is accom-
plished by satisfying certain frequency response speéifications on
the .open~loop response C(jw)/R{jw) . CIP design specifications
include the capability of obtaining gain margins (GM), phase mar-
gins (PM), stability margins (SM), and attenuation margins (AM).
Both the gain and phase margins have the normal definitfions except
their measurements in CIP are converted to distances from the )

(-1 + jO) point in the GH(jw) plane. The stability and attenuation

margins are defined as follows: [7]

Definition I
For a closed-loop stable system‘whose open-loop fre=-
+ quency response is described by GH(jw)., a stability

‘ margin (Sﬂ) is déefined as a relative minima of the real
function

2
11.0 +.eBGW | .
Definition 2
~ An attenuation margin (AM) of the GH(jw) frequency
response for a band of frequencies such that w; < w <w,

is defined as a relative maxima of the real function,
lea(iw) |?, when w & (w,,0,).

Gain, phase, and stability margins establish desirable amounts
of phase stabilization; whereas, the attenuation margin is used to
insure proper amounts of gain stabilization. CIP was developed with
the objective of improving the frequency response from iteratiom to
iteration. Two possible modes of operation are available: the Sum
Improved Frequency Response (SIFR), and the Total Improved Frequency

Response (TIFR), The user must select one of these modes to control



‘the amount of the incremental changes made in the compensator
parameters in initiating the program.. Generally the SIFR mode
allows coarser changes than the TIFR mode.

CIP employs the mathematical programming tool the Constraint
Improvement Algorithm (CIA). This algorithm possesses the unique
capability of producing a directional change vector for the compen-
sator coefficients that insures the existence of a Total and/or Sum

Improved Frequency Response.

Computerized Optimization of

Elastic Booster Autopilots (COEBRA)

COEBRA design is achieved by solving a sequence of constrained
optimization problems by minimizing a cost function. The cost
function, in terms of frequency response of time domain specifica-
tions, is subject to a set of inequality constraints. The frequency
response specifications include the classical phase and'gain margins;
whereas, the angle of attack is included in the time domain specifi-
cations,

COEBRA employs the linear programming tool, the Simplex
Algorithm, to obtain a solution; whereas, the dgsignfproblem for
which COEBRAtwas develdped is.nonli;eay in nature. However, if the
cost and constraint fuﬁctibn are appr;ximated by a truncated Taylor
series expansion, the probleﬁ becomes a linear one and a solution
is obtained through a parametric programming procedure. . In ob-

taining the truncated Taylor series expansion a finite difference

technique yields the necessary partial derivatives.
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Eigenvalue Encouragement Technique (POF)

POP, a numerical technique for the iterative design of linear,
time-invariant control systems, attempts to design dymamic feedback
compensation by affecting the closed-loop eigenvalues in a desirable
manner. This technique encourages the eigenvalues to migrate either
toward or further into the left half plane, or toward other speci-
fied values. This encouragement process is accomplished by solving
an unconstrained minimization problem with a selected cost function.

The algorithm is based on Danilevskii's method of generating a
characteristic polynomial and the assumption that the compensation is
dynamic feedback. A unique relationship between a determinant and
the partial derivative operation is applied to the system character—
istic |AI - Al; the result is the partial of the closed-loop
eigenvalues with respect to parameters in terms of 2p(ntl) determi-
nants where n is the order of the plant and compensation A matrix,

p the compensator order, and A the eigenvalue. By determinant
manipulations the necessary 2p determinants are evaluated by

Danilevskii's methods yielding results for all the eigenvalues.

Computer Aided Control System Design Using

Frequency Domain Specifications

CALICO, the computer—aided compensator design algorithm by
Mancini, utilizes the constrained optimization method introduced by
M. J. Box. This technique requires the desired open~loop frequency
response be specified for discrete frequency points. The minimi-

zation routine varies the compensator parameters in such a manner



i1

as to minimize a cost functional based on the difference between the
actual and desired frequency response of the compensated system.

With the desired response as input, the author incorporates the
normal frequency domain specifications such as gain and phase marginé
into the overall cost functional eaéh time the algorithm evaluates
the frequency response of the open-loop system, and thus eliminates
the need for specidlized computations to determine margin satis-

faction.
Computer Automated Design of Systems

The automated digital computer technique by Vines, CADS, is a
control system compensator design oriented iﬁ the time domain.‘ In
order to minimize a .specific cost functional and set the free system
parameters, the technique requires as input the desired ocutput
Tesponse and system éescription. The minimization technique BOXPLX
by M. J. Box is employed. To simulate the System-to be optimized,
the author chose commonly used transfer functions which were redu&ed
to first order linear differential equations. The equations ate
programmed so that the tramsfer function blocks can be cascaded by
data card input. Severdl nonlinear transfer blocks are alsc availa-
ble. The program simulates the system with known paramefers and
then allows all free parameters to be fixed by the optimization

routine in achieving the desired respounse.
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A Comparison

Iri summary, each of these algorithms has advantages and
limitations. With the exception of COEBRA and POP, these methods
completely ignore the possibility of multiple inputs and their
interactions with system parameters. Unfortunately, POP and COEBRA
have several theoretical and computational limitations.

For example, POP is a numerical technique that attempts to
minimize a cost function composed of 'soft' constraints. This method
should minimize the cost function, but' in a practical sense, (in
terms of relative.stability, etc.j the final system may not be any
better than the original. Further, the practical limitation of
computer storage and run time may prove the infeasibility of apply-
ing this method to large systems. In fact the run time is approxi-
mately proportional to n? where n is the system order including
compensation, and systems above 40th order require more than 128K
words of core storage on a UNIVAC-1108. Another unfortunate
obsfacle of this technique is the inherent problem of reléting fre-~
quency domain design specifications such as phase and gain margins
to closed-loop pole locations of large systems.

COEBRA minimizes a cost function subject to a setof inequality
constraints; the cost function is used to optimize gain and phase
margins; rise time, percent overshoot, etc., while the constraints
insure that the performance measurements do not degrade from
iteration to iteration. The directional vector is determined so as

to minimize the cost function and not violate the constraints.
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Thus, COEBRA also possesses the property that the final design will
not be worse than the initial. COEBRA employs a method of finite
differenceslto determine partial derivatives. This introduces
numerical inaccuracies that jeopardize the practical utility of this
program, From a user's view, COEBRA is difficult to enable; it
requires a thorough knowledge of the programming techniques for a
user to achieve a useful design. COEBRA also requirgs excessive
computer core storage and run time; on the UNIVAC-1108, 66K words of
storage must be available; whereas, both AUTCO and CIP can be
executed in less than 32K words for systems of egquivalent order [2].
Perhaps it was in this regard that the author found it necessary to
restrict the design to no more than eight bending and/or slosh modes.

AUTO assumes a single control input plant described by fre-
quency response information in the form of complex numbers. Although
AUTO appears easy to use, the judicious selection of weighting con—
stants for every frequency component is a designer's nightmare; in
some instancés, no choice of constants will yield the desired design
specifications. Like POP, AUTO seeks to minimize a cost function
composed of soft constraints by a gradient optimization technique;
the weighted mean square difference between the actual and desired
frequency response indicates the measure of closeness to the desired
resgults.

CADS, as a time domain method, aécepts only first order dif-
ferential equations in describing the compensation. The corﬁputer
time and storage are a function of the system order and the search

area on the upper and lower bounds of the system parameters. The
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routine reqﬁires a good guess on'the original parameéérs in order
to obtain a workable solution. According to Vines, the optimiza-
tion routine BOXPLX may continue to search for'a reduced cost
functional to within some significant digit even though a practical
solution already has been determined.

CALICO, although frequency domain oriented, is similar to CABS
in its applicability to single input-output systems and its use of
the BOXPLX optimization routine. Again the technique is cursed with
an optimization method that becomes more inefficient and time con-
suming as the system parameters increase.

CIP has the limitation of applicability to a single input,
multiple output system. In addition, CIP requires much data in the
form of frequency response information. Unlike the aforementioned
methed, however, CIP is not an optimization technique and does not
attempt to maximize or minimize a cost fumction; rather, CIP searches
for a 'suboptimal' feasible solution by satisfying a set of strict
constraints that measure the performance of a design. The computer
run time is proportional to the  number of frequency points used to
describe the plant. If properly used, CIP results in a final design
that will be better than the initial.

CIP has proven its merit in the seryice,of space vehicle con-
trol according to NASA contract reports [7,8]. If CIP could be
extended to handle designs for plants with multiple inputs and
multiple outputs, it obviously would be superior to any of the

aforementioned methods. Further, the inclusion of a multiple input,



15

multiple output capability would improve greatly the utility of this

technique as a design aid.

The Research Area

The objective of this research is to achieve compensation for
a multiple input, multiple output control system by developing an
algorithm to facilitate fast and practical compensator design with
maximum computer economy whiie minimizing dEsigner effort. The
relative stability method of the Constraint Improvement Algorithm
[7] by McDaniel and Mitchell has been chosen to determine system
performance specifications by frequency domain techniques. The work
presented in this exposition develops the theory and associated
modifications necessary to extend the CIP type algorithm to the
nmultivariable control system, With permission of the author of the
original CIP [7] this program will now be known mnemotechnically
as CIP, since much of the philosophy and many of the techniques of

the original algorithm have been retained and extended.



CHAPTER II1

DESCRIPTION OF THE DESIGN ALGORITHM

An Overview of the Desien Problem

Figure 2 is a schematic representation of a mulfivariable,
linear, time-invariant feedback control system. This multivariable
system may be viewed as n coupled feedback systems—-—-one for each
element of the input vector. The loop transfer functiomn for the
kth system is obtained by opening the feedback path at ak,'and then
determining the response Ck(s)/Rk(s) with all other input R's set to
zZero. .

With this view of the multivariable feedback system, the de-
signer is faced with thé problem of s&nthesizing controllers of n
interacting systems. ~Using classical feedback theory a controller
may be designed so that the open-loop frequency response satisfies
a set of frequency response design objectives, In theory this
approach easily is extended to the multivariable system. However,
in this case simultaneous designs of the controllers must be made so
that the n open—-loop frequency responses satisfy n sets of design
objectives. The simultaneity of the designs is required because of
the implicit functional relationship between the design objectives
of the individual systems; e.g., a controller may affect the open-
loop frequency response of one system in a desirable manner, while

adversely affecting the response of another system.
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Figure 2. A Multivariable Control System. ]
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Using classical frequency response techniques, the design of
a control system to satisfy a few objectives can be accomplished
with manual calculations. However, as the complexity of the system
and the number of design objectives increase the development of the
controller requires the aid of a high-speed digital computer.

In order to use efficiently the digital computer in a design
capacity it is necessary to have a design algdrithm that is amenable
to digital computation; in general, such algorithms are iterative in
nature. The Compensation Improvement Program [7] is an algorithm of
this type that has been developed to facilitate in the design of
controllers for the class of systems of Figure 1. With the loop
broken at o, the algorithm determines the controllers Gj(s), where
j is the controller index (j = 1,2,...,M), so that the open-loop
frequency response, C(s)/R(s), satisfies specified requirements. In
this study a design algorithm is developed to facilitate the design

of controllers for multivariable feedback systems.

The Algorithm Degign Philosophy

In order to accomplish logically the design algorithm the compu-
tational flow diagram of Figure 3 has been developed. The descrip-
tion of the multivariable configuration requires disc;ete frequency
data from each imput to each output; whereas, the initial compen-
sation for each controller imput is described by a matrix of trans-
fer functions. With this information the open-loop frequency
response is obtained for each of the n coupled systems by deter-

mining the associated subsystem response with one loop open at a
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Figure 3. Computational Flow Diagram of the CIP Algorithm.
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time. Likewise, for each subsystem, a set of critical points, that
is; frequencies at which margins of stability or attenuation occur,
is determined. It is possible to demand any number of margin
requirements for gain, phase, stability, and attenuation radii.
Further, these margins can be manipulated so as to make the con-
straints or specifications frequency dependent. An active list of
radii requirements is then prepared to élleviate any margins al-
ready satisfied. From the open-loop frequency response data and the
compensator coefficients, the gradient vectors of the active margins
for each subsystem are calculated. Using these gradient vectors, a
directional vector that can yield improvements in all active margins
is determined, fhe free compensator coefficients are varied then in
accordance with this directional vector. From this design the total
response is checked to determine any margin radii not satisfied, aid
the process continues in an iterative manner until all specifications
are met or user control, such as maximum computer time or iterations,

forces a stop.

Theoretical Concepts Associated with the Alporithm

Calculation of Compensated Open-loop Frequency Response

In order to develop a CIP type algorithm for designing the
controller for the multivariable system, it is necessary to have
equations for calculating the open-loop frequency response for each
subgsystem and equations for calculating the change in each objec-
tive function (performance measurements) with respect to variations

in the free parameters of the compensation., First attention is
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focused on the calculation of open-loop frequency response infor-
mation. From Figure 4 the output frequency response [C(s)] is

obtainable:

I

fc(s)] [6(s) I[P (s) 1 [E(s)] (2.1)

where the error or actuating function [E(s)] yields
[E(s)] = [R(s)] - [H(s)][C(s)] H . (2.2)

the notation is defined in the Symbols table. Substituting equation

(2.2) into (2.1) and solving for [C(s)] yields the output relation,

[C(s)] = [G()I[P(s)I1{I + [H(s)1{G(s)1[P(s)1} '[R(s)] (2.3)

Equation (2.3) gives the closedwloop-outppt response in terms of the
input vector. Suppose that the kth diagonal element of [H(s)] is
set to zero and all the elements of [R(s)] are nulled except the kth
element which is set to unity; the result is the frequency response
between the kth input and the outputs when the kth loop is open. To

simplify notation, define
[V(s)] A {1+ [H(s)1[G(s)1[P(s)1} " (2.4)

and

[U(s)] A [6(s)]I[P(s)T . (2.5)

Hence the open-loop complex frequency response of the kth system is

= ui(s) » v (s) (2.6)
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=
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Figure 4. Vector Representation of the
Multivariable Control System.
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where gk(s) and Xk(s) are, respectively, the kth row of [U{(s)] and
the kth column of [V(s)] with the kth diagonal element of [H(s)]
set to zero. By fixing the proper diagonal element of [H(s)] to
zero, it is obvious how equations (2.4), (2.5), and (2.6) can be
used to elvaluate the open-loop frequency response for each kth

system.

Evaluation of the Critical Frequencies

Next attention is focused on the determination of the critical
frequencies with respect to the design objectives. In CIP the
design is accomplished by requiring the open-loop frequency .response
to satisfy certain specifications. These design specifications are
converted to distances between certain critical points of the open-—
loop frequency response and certain points in the corresponding
complex plane where s = jw. The typical objective function for the

kth open-loop system is

*

d = {f{A+ Gk(jw)}[A + ck(jw)]* (2.7)

where A is the point in the complex plane from which the specifica-
tion is measured; e.g., for stability margins A is the (-1 + j0)
point. In equation (2.7), the response Ck(jw) is calculated from

(2.6) with Rk(jw) set equal to unity.

Calculation of the Partial Vectors

Now attention is directed to the calculation of the change in

the design cbjectives with respect to the free parameters of the
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controller., With this objective in mind, the parxtial derivative of

the distance d with respect to some parameter w is

3Cy (30) . 25,49

24 _ 1 - o G 1*h e
S 5 [A + Ck(Jm)] - - (A + Ck(3w2] &. d.
(2.8)
Equation (2.8) can be rewritten as
BCk(juD
3d _ L A
vl Re [A+ Ck(Jm)] . ‘. d . (2.9)

Evaluation of (2.9) depends on determining accurately the partial

term,VBCk(jw)law. Using the chain rule this becomes

3C, (jw) 3C, (jwy 96, ,
k = K . —1d (2.10)
ow oG, . ow
1ij

where Gij is the element of the controller [G(s)] in which the
free parameter w appears with i = 1,2,...,N system outputs and
j=1,2,...,M system states sensed,

The necessary equations for évaluating the first tem in (2.10)
are derived in the sequel. The partial of (2.3) with respect to

the controller element Gij gives

B:Ezf—s.)] = -[6(s)1[P(s) I + [B(e)1[6() I[P (s) 1} [H(s)]
ij

aéif”—?)] [P(s)1{T + [H(s)1[G(s)1[P(s)1} " [R(s)] +
13

o[G(s}]

[P(s) 1{I + [H(2)]1[6(s)1[P(s)1} 1R(s)] | (2.1D)
3Gij

Then, the Bck(s)/BGij is the kth element of (2.11) with the kth
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diagonal element of [H(s)] set to zero, and all the elements of
[R(s)] set to zero except the kth which is set to unity. In (2.11)

the partial term BIG(s)]/BGi is g zero matrix except for the (ij)th

|
element which is unity.

Next consideration is given to the evaluation of the second
term in equation (2.10). It is assumed that the (ij)th element of

[G(s)] is composed of a cascaded arrangement of transfer functionms,

i-e-,
K

6388 = kzl

2.12
Gijk(s) ( )
where K is the number of cascaded elements. The £th cascaded ele-

ment of the (ij)th element of [G(s)] has the general form

G, . (s) = =0~ (2.13)

Y YiignS
0=0 ijén

Then, the free parameters of this element are the x's and y's. If

w in (2.10) is the pth numerator coefficient of (2.13), then

BGi.(s) K +gP '
a__._J...... = ¥ ¢, (s) ——u (2.14)
X,. ~ -1k N
ijlp =1 Z - _e
k#L Zp “iiin
or
3c, . (s) +gP
3_31_._ = G .(s) . (2.15)
X, . ij M
ijlp X < S
ijfm
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Similarly if w in (2.10) is the pth denominator coefficient of

(2.13), then

8¢, . (s) K -sP
~_ - G, ., (s) > (2.16)
%59 =1 13K 1§ y n)
k#e 020 ijln
or
BGi.(s) -g?
5 = Gij(s) . (2.17)

ijlp g v ’ o
n=0 1jtn

By appropriately using equatioms (2.3), (2.9), (2.10), (2.12),

(2.15) and (2.17), the first oréer change of any CIP objective

function with respect to the free parameters of the controller can

be calculated.



CHAPTER TII

DESCRIPTION OF THE COMPUTATIONAL FLOW DIAGRAM

Implementation of the Algorithm

The algorithm implementation evolved with the following

objectives in mind.

1.

4.

Any linear, time-invariant system structure should be
acceptable,

Numerical problems should not restrict the method to low
order systems.

Computational requirements should be reasonable for high
order systems.

Monitoring of compensation at desired iteration levels
should be possible.

Partial derivatives should be exact,

A Synopsis of the Algorithm

Keying on the aforementioned goals, possibilities were weighed

to determine the most effective methods of implementing and computer

coding the algorithm. The following is a description of the princi-

ples and computational logic involved in producing an executable

version of the compensator improvement program for the multivariable

control system of Figure 2. In this sequel the logic flow diagram
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of the Continuance Criterion, (D) The Determination of the Gradient
Vectors Corresponding to the Active Constraints, and (E) Calculation
of the Directional Vector and the Compensation Enhancement. For a
detailed explanation of the particular subroutines used, refer to
alphabetical listing in Appendix A. The Fortran IV computer code is

listed alphabetically in Appendix B.

Section A: Data Input

Referring to the schematic diagram of TFigure 2, recall that the
multivariable s&stem may be viewed as n coupled feedback systems--—
one for each element of the input vector. With this view, the loop
transfer function of the kth system is obtainable by opening the
feedback path at o, and determining the response Ck(s)/Rk(S) with
all input R's set to zero except the kth element. Thus the variable
k in the computational flow diagram of Figure 3 is defined as the
respective subsystem in accordance with the corresponding element of
the input vector.

The input description of the multivariable configuration
requires discrete frequency data from each input to each output in
describing the plant system; whereas, the initial compensation for
each controller is described by a matrix of transfer functions.

With this ipformation the open-loop frequency response is obtained
for each of the n coupled systems. Likewise, for each subsystem, a
" get of eritical points, that is, frequencies at which marging of
stability or attenuation occur, is determined. Hence, the input
routine requires data of four types as shown in Table 1 and clari-

fied in the following discussion.



Table 1. Outline of CIP Data

Iteration Control
a. Mode, identification code
b. Start, stop, print iteratiomns
¢, Maximum, minimum step sizes
Etc,
Design Specifications
a. Desired Stability and Attenuation Radii
b. Frequency Ranges over which searches for

critical points are to be made

Description of Plant
a., Number of Control Inputs
b. Number of Outputs

c. Discrete frequency response data

Description of Compensation

a. Gain Constant in each channel

b. Number of Subcompensators in each channel

c. Coefficients for each subcompensator iﬂ first
and second order factors omnly

d. Constraints to be placed on the coefficients

29
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1. Iteration Control
First, user control parameters are entered; these include the
extremum step sizes to be taken on iterations, maximum iterations
for convergence, designation of iteratiéns to be printed, user
identification code, etc., Here also the user must specify the mode
used in the program to determine when an iteration has been com-
pleted. In particular, the mode designates which continuance
criterion must be used to determine whether the trial design at the
(i + 1)th iteration is an improvement in comparison to the results
at the ith iteration. One of two modes must be chosen:
i. Total Improved Frequency Response Mode (TIFR) re-
quires that from iteration to iteration no unsatis-
fied objectives or design specifications are allowed
to degrade and insures improvement jin at least one,
ii. Sum Improved Frequency Response Mode (SIFR) requires
that the sum improvement exceed the sum degradation
from iteration to iteration.
It is obvious that the TIFR mode produces a more stringent continuance

criterion on the compensation.

2, Design Specifications

The second portion of the input data -designates the design
specifications for achieving relative stability and relative
attenuation, In particular, the mathematical formulation of the
design problem is to determine the free parameters of the compen-
sators such that the objective functions satisfy a set of design

specifications, i.e., gain, phase, stability and attenuation
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margins. Mathematically, if.a total of n critical frequency response
points are chosen, thé problem can be expressed as a strict con-

straint mathematical programming problem of the form:

Determine the 5?
such that the constraints gi(gF) Z-bi s 1= 1,2,,..,n 3 (3<1)

where X represents the free compensator parameters, bi represents
the design specifications, and gi(gT) contains the objective func-
tions, that is, frequency response limitations and constraints.
Thus the general idea is to change the compensator coefficients so
that each constraint comes closer to being satisfied at each itera—
tion. Other methods of obtaining the design objectives could be
implemented; however, from a practical point ‘of view the method of
the strict constraint problem is particularly appealing in pro-
ducing a change vector for the compensator coefficients that
insures the existence of a Total and/or Sum Improved Response.
Furthermore, this method allows the margin radii specifications to
become frequency dependent. Conceivably, it is desirable that
regions of the frequency response be various distances from the

(-1 + jO) point in the GH(jw) plane while other regions be con-
strained to be greater or less than limitations with respect to the
origin of the GH(jw) plane. Thus in general a frequency response
is desired to have some basic shape which can be translated with
respect to frequency and not constrained te match exactly a desired.

frequency response.
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3. Description of Plant

The multivariable configuration of Figure 2 may be described
in two parts, the plant and the controller. First the description
of the uncompensated plant requires discrete frequency response
data between each input and each output channel. The choice of the
discrete data description for the plant was made to avoid compu-
tational difficulties that might be encountered in evaluating high
order transfer func£ions and to conserve computing time in the
iterative process of CIP, Furthermore, discrete frequency response
data is often the best information available for describing the

system.

4. Description of Compensation

Secondly, the initial compensation or.controller design is
necessa¥y for each control input. Again recall the objective of
this work is not to devélop a gself-contained, computer—aided design
algorithm but to providg the control engineer with a design aid.
In this regard, it is assumed.Ehat the designer knows the control
law necessary to enhance his design objectives. Normally the engi-
neer uses s—domain rational functions iﬁ investigating designs,
thus for simplicity, the compensation elements are described by
transfer functions in the form of cascaded first and second order

factors, that is,
i M ‘ . ' L

.

N1 - N2
‘I (BA. + ZB.s) 1 (ZC. + ZD.s + ZE.s%)
&( camgy =1t 3= 4 .
5) = (GAIN) il R .
I (PA, +PB,s) T (PC., + PD.,s + PE,s?)
. i i . 3 |
i=1 =1

(3.2)



33

Section B: ¥Frequency Response Manipulations

Figure 5 gives a detailed expansion of the logic of Section B
in Figure 3. Note that Section B is composed of four major rou-
tines in determining the frequency response: Delete Points, Add
Points, Calculation of the Closed~Loop Frequency Response, Calcu-
lation of Critical Points.

The Delete Points routine is designed to remove any frequency
points and corresponding response terms no longer of major concern
which might have been édded for accuracy on previous iterations;
however, the original data are always retained. The routine is
designed to save computer storage as well as' computer time in
response calcuiations and in scamning for margins. - This algorithm
is coded in the subprogram DELETE [10].

The Calculation of the Closed-Loop Frequency Response is per-
formed_by implementing'the equations developed in Section 3 of
Chapter II. In particular, the closed-loop output vector [C(s)] is

determined by the relation,
[c(s)] = [e(s)1[P(s)X + [H(s)I[G(s)][P(s)]} "LIR(s)] . (3.3)

Equation (3.3):gives the closed-loop output vector in terms of the
input vector. - Based on the theoretical concepts of Chapter IT,
suppose éhat the kth diagonal element of [H(s)] is set to zero and
all the elements of [R(s)] are nulled except the kth element which is
set to unity; the result is the frequency response between the kth
input and the outputs when the kth loop is open. Utilizing the

aforementioned notation,
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[V(s)] A {I+ [H(s)1[e(s)]1{P(s)]}} " (3.4)

and

[U(s)] A [6(s)I1[P(s)] . (3.5)

The open-loop frequency response of the kth system is

Ck(s)
Rk(S)

= Ek(S)y{{(S) ’ (3.6)

where EF(S) and Ek(s) are, respectively, the kth row of [U(s)]
and kth column of [V(s)]. By setting the proper diagonal element
of {H(s)] to zero, equations (3.4), (3.5), and (3.6) can be used to
evaluate the frequency response of each systemn.

This algorithm is coded in the main program using two sub-—
routines: EVAL and CRT. The subprogram EVAL evaluatesg the con-
troller at the specifiea frequencieg with the aid of the program
POLEV, a polynomial evaluation routine., EVAL then determines the
product of the controller response and the plant response, that is,ﬂ
[G(s)] * [P(s)]. With this transfer relation the subprogram CRT
determines the total response [C(s)] and selects the open-loop
frequency response of the kth system.

The Determination of the Critical Points is designed to yield
the critical points of the open—loop frequency response and to
ascertain whether they satisfy certain design specifications for
achieving the relative stability and relative attenuation margins.
Recall these design specifications are expressed mathematically as

the distances between certain critical points of the frequency
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response and particular points in the corresponding complex plane.

The typical objective function for the kth open-loop system is

d

It

{ta + ¢ G010 + ¢ G 1*} (3.7)

where A is the point in the complex plane from whieh the specifica-
tion is measured; for stability, gain, and phase margins A is the
(-1 + j0) point: fo? attenuation margins, the (0 4+ j0) point is
chosen. The design specifications include subprograms for deter-
mining the gain, phase, stability, and attenuation margins.

The subprogram to Add Points is designed to provide more data
around each of the critical frequency points, thereby, yielding a
more exact margin valug without the input of excessive data and the
consequent increase in étorage. This algorithm is encoded as ADDPTS
and uses an interpolate routine INTER, as well as the aforementioned
EVAL and CRT routines to update the frequéncy response for each
added data point.

As indicated in Figure 5, the frequency response and critical
margins are calculated for each kth system adding and deleting

frequency points as necessary.

Section C: Evaluation of the Continuance Criterion

Figure 6 represents the logic decision blocks of Section C in
Figure 3. These decision blocks are encoded in the main program
and are-designed to force the program into the specified continuance
criterion when an iteration has been completed. Recall that the

continuance criterion mode must be specified by the user as input
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data to determine whether the trial design at the (i + 1)th
iteration is an improvement in comparison to the results of the ith
iteration. The two modes available, the TIFR mode and the SIFR mode,
are as defined in Secfion A,

Note that for the first iteration the mode block is bypassed
thereby assuming that an improved solution has occurred and allowing
the program to continue to the determination of the partial vectors.

. If the SIFR/TIFR condition for the current iteration is satis-
fied the program checks user control data to decide whether the
maximum iteration condition has been exceeded. If the last
iteration has been reached the program sets a stop condition which
prohibits further manipulations of the active constraints and partial
vectors. Assuming the maximum iteration code has not been met, the
main program directs control to Section D.

Now if the SIFR/TIFR criterion has not been met, the program
interprets this condition to mean that the change in the compensator
coefficients was too large and control proceeds to decrease the step
size of the previous iteration in an attempt to force an improved

solution.

Section D: Determination of the Gradient Vectors

Figure 7-1is ad expanded view of Bloek D of Figure 3; Section D
is concerned with the determinatién of the active cdnstraints, that
is, the margins which do not satisfy the required design specifica-
tions, and their relation in evaluatiﬂg the partial vectors.

The selection of active constraints is coded within the main

program. CIP checks to determine which of the specified stability
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and attenuation margins do not satisfy the margin design specifi-
cations entered by the user as input data. As previously noted,

it is possible to demand any combination of margin requirements as
gain, phase, stability, and attenuati;n radii. These margins can
be manipulated so as to make the specifications cr constraints
frequency dependent. A list of the active radii requirements,
margins, and corresponding frequencies is then prepared to alleviate
any margins already satisfied. The program checks for any dupli-
cations in margins, in which case retaining only the first such
critical point found,

The second objective of Section D is the calculation of the
partial vectors as described in Section 3 of Chapter II. Reca}l
that the partial vectors represent the change in the design objec-
tives with respect to.the free parameters, that is, the compensator
coefficients of the controller. Thus the partial derivative of the
objective function 4 with respeect to some parameter w can be

expressed as

C, (jw)
ad . & k .
Ty Re {[A + Ck(Jm)] R v— > d . (3.8)

Accordingly, the partial term BCk(jw)IBW can be expanded by

the chain rule as

3Ck(jw) ) BQk(jw) . aGij
ow T 3G.. ow '
1

(3.9

where Gij is the element of the controller [G{(s)] in which the free

parameter w appears.
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Evaluation of the first term in'(B.Q)yields the relation

alC(s)]

Y = - [6(s)1[P(s) 1{I + [H(s)1IG(s)I[P(s) 1} " [H(s)] *

ij
"‘*“"8[3%{.3)] [P(s)1{I + [H(s)1[G(s)1IP(s)]1} ‘[R(s)] +
i3

U] (o) 11 + O IRE I} RG] (3.10)
1ij

Then, BCk(s)/BGij is the kth element of (3.10) with the kth
diagonal element of [H(s)] set to zero, and all the elements of
[R(s)] set to zero except the kth which is set to unity. In (3.10)
B[G(sﬂ/BGij is a zero matrix eéxcept for the (ij)th element which is
unity.

Evaluation of the second partial term in equation (3.9) is
acquired by assuming that the (ij)th element of the compensator

matrix [G(s)] is composed of a cascaded-_arrangement of transfer

functions, i.e.,

Gij(s? = I Gijk(s) ) (3.11)

k=1

where K represents the number of cascaded elements. Thus the 2th

cascaded element of the (ij)th compemsator has the general form

M
T ox.,., &
2o ijim
Gij!l.(s) = ——Ig—————-—*: (3.12)
V..
n=0 ijln

where the free parameters of this element are the x's and y's.
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Assuming the parameter w in (3.9) is the pth numerator coef-

ficient in (3.12), then the following expression is obtained:

36, (s) +sP
X, . - Gij(s) M (3.13)
ijfp Y ox <P
=0 ij%m

Similtarly, letting w represent the pth denominator coefficient

in equation (3.9), then
36, . (s) ~sP

= Gij(s) T—_n .
( EO Yijﬂns )

Thus equations (3.10), (3.13), and (3.14) can be used effective-

(3.14)
Fijtp

1y to determine the, first order change of any CIP objective function
with respect to the free parameters of the controller,

As indicated by the decision block, the partial vector of each
system is tabulated and stored in an 6rdérly array for later.use in
determining the directional vector in Section E. The partial vector
routine is coded in the subprogram PARTAL in conjunction with the
frequency response subroutine CRT; subroutine CRT determines the

partial term BCk(jm)/BGij in equation (3.9).

Section E: Calculation of the Directional Vector and

Compensation Enhancement

Of major significance in Section E is the manipulation of the
system partial vectors in obtaining a directiocnal vector using the

constraint improvement algorithm. (See Figure 8.)
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D
PARTIAL

VECTOR
CALCULATION

STOP DESIGN OUTPUT YES
CONDITION SPECS REQUIRED
SET? MET? ?
Y
CALL
QUTPUT
) CALL CIA
CALL DIRECTIONAL
OUTRUT VECTOR ROUTINE
Y
YES . POSSIBLE :
N\ . DID ADJUST
STOP CIA FAIL? VIOLATION OF PARTIALS
ZETA?
RECYCLE DOUBLE
TO B STEP SIZE
Y
YES ZETA CHANGE
REDUCE BOUNDARY A COMPENSATOR | C
STEP SIZE VIOLATIONS? COEFFICIENTS
A
Figure 8. Logic Diagram Representing the Calculation of the

Directional Vector and Corresponding Compensator
Enhancement of Section E.
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First the decision block of Section E tests to ascertain
whether the stop condition has been set. 1If so, the output routine
CUTPT is called; otherwise,; the méin program determines whether the
design specifications have been met and calls the output routine if
necessary. Assuming th; design objectives are not satisfied, the
program checks user data to determinme whether an output is desired
for the particular iteration. The directional vector then is cal-
culated with the aid of the Constraint Imprévement Algorithm {7] in
the subprogram DIRVEC. This subprogram also checks for routine
failure yielding a stop command. The subprograms MATMUL and MATINV
are auxiliary routines to DIRVEC for matrix multiplication and
inversion, fesPectivély.

In Figure 8, after calculating the diréctional vector and
assuming the CIA did not fail, CIP investigates the user option of
constraining the poles and zeros of compensation to lie within a
specified damping ratio sector. By limiting the compensation to
first and second order factors, the complexity of constraining the
compensation poles and zeros to’ lie within a sector defimed by con-
stant damping ratio lines as shown in Figure 9 is reduced greatly.
Hence the next step is the determination of the directions of move-
ment of the compensator poles and zeros on the specified zeta
boundaries. " In order to avoid a zeta violation, the directions of
these poles and zeros must be along the boundaries or into the
defined sector. If with the_present directional wvector the move-
ments of -these poles and zeros are in the wrong directions, judi-

ciously selected terms in the partial vectors are nulled and the
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directional vector is recomputed. This process is continued until
the directions of movement of a2ll compensation poles and zeros on
the boundaries do not result in a zeta violation. The checking of
the directions of movement of these poles and zeros and the setting
of the elements of the partial vectors te¢ zere is accomplished by
the subprogram XCHECK. This routine assures the existence of a non-
zero step size that will not produce a zeta violation by poles and
zeros on the boundaries.

Referring to Figure 8, after an acceptable directional vector
has been established in accordance with XCHECK, a step size is
selected, and in conjunction with this directional vector, the
individual compensator coefficients are effectively augmented. At
this point, a viplation in the zéta constraints can ocecur from an
inappropriate selection of the step size, i.e., usually if the step
size is téo large. Thus, the zeta constraints are checked., 1If a
violation occurs, the maximum step size that will not produce a
violation is computed and the compensator coefficients are rein-
cremented; otherwise, the program recycles to Sectiomn B in Figure 3.
The check for zeta violations, as well as the computation of a
maximum acceptable step size, is accomplished by the subroutine
YCHECK. The theory underlying this routine along with additional

usage information is presented in Appendix A,



CHAPTER 1V
INVESTIGATIONS AND EXAMPLES

In order to illustrate the practical utility of the multivaria-
ble Compensator Improvement Program, the improvements of the com-
pensators for space related examples are presented. This by no means
1imits the scope of the work to space oriented control systems, but
rather provides large system problems which have been investigated
by other means., In particular, three examples are discussed: (1) a
dual input, dual output system with uncoupled characteristics;

(2) a dual input, dual output system with coupling; (3) a dual input,

four output system exhibiting coupled characteristics.

Uncoupled Pual Input, Dual Output System

In this example the system under consideration is similar to
that of Figure 2 with M=2 controller inputs or measured states, and
N=2 controller ocutputs. Figure 10 shows the actual subsystem under
. investigation and is representative of the attitude control system
for a finned launch vehicle at a specified flight time following
launch [11]. Each subsystem has plant dynamics Ck(s)/Rk(s}
described by the uncompensated frequency response plot of Figure 11
where k represents the number of controller inputs and hence the
number of subsystems; k equals two in this example. Table 2
exhibits the twenty-eight discrete frequency points chosen to

describe the open~loop response of each subsystem. The compensation
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Figure 10, Block Diagram Representing Each Subsystenm
of the Finned Vehicle Example.

Table 2. TFrequency Response Input Data Describing
the Plant in the Finned Vehicle Example.

Data Complex Frequency  Uncompensated Plant Response

Points ‘RE[s] IM[s] RE[P] . IM[P]
1 0.000 0.100 =69, 6000 54.9000
2 0.000 0,132 -67.3000 36.6000
3 0.000 0.178 -63.3000 20.8000
4 0.000 0.240 ~57.2000 8.9000
5 0,000 0.347 -46,9600 - 0.5890
6 0.000 0.501 -34.8000 - 4,3200
7 0.000 0.646 -26.6000 - 4.3300
8 0.000 1.230 . ~10. 8800 - 1.5220
9 0.000 . 2.000 - 4,7100 ° - 0.3060

10 0.100 2.800 - 2.4800 - 0.1840.
11 0.200 3.600 ~ 1.5100 - 0.1020
12 0.250 4,000 — -~ 1.2200 - .0.0750
13 0.250 4,921 - 0.8079 G.0018
14 06.250 6.000 - 0.5369 0.0340
15 0.200 6.400 - 0.4690 0.0469
16 0.100 7.200 -~ 0.3630 0.0603
17 0.000 8.000 - 0.2870 0.0645
18 0.000 10.071 - 0,1666 0.0478
19 0.000 12.400 - 0.0956 0.0309
20 0.C00 15.600 - 0.0402 0.0013
21 0.000 18.327 - 0.5180 -~ 0.1090
22 0.000 1%9.191 - 0.1924 — 0.0525
23 0.000 19.638 — 0.1677 0.0249
24 0.000 20.563 - 0.0965% 0.0534
25 0.000 30.415 -~ 0.,013%9 0.0182
26 0.000 40,095 - 0.0047 0.0092
27 0.000 60.686 - 0.0006 0.0031

28 0.000 100,000 - 0.0001 0.0007
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matrix consists of identical compensators in the diagonal elements,

i.e.,

(1 4+ 10s)(5 + 1.258) .
(1 + 11s)(5 + 1.00s) °’

Gl]_(S) = Gzz(S) (4. 1) :

whereas, the off-diagonal terms are chosen as zero to inhibit any
coupling terms.

It is desired to modify the compensators, G11(S) and Gzz(s),
so that the closed-~loop step response of each subsystem reasonably
is damped and "ringing" caused by the low-damped high frequency modes
is negligible. Further, the DC gain of each compensator is chosen
so that the magnitudes of the steady-state errors to a velocity
input are less than 0.15. These specifications are satisfactorily

achieved by requiring that

(1) all sM's > O0.5when 0 < o

7

16.0 ,
(2) all AM's < 0.1 whenl6 < w < 100 ,
and (3) the DC gain of the compensator is greater

than 26.67, (4.2)

After 31 iterations, approximately 36 seconds of CPU time on a

Univac 1108 Computer, the design compensation is obtained as

(1.0 + 1.60084s) (5.0 + 5.57314s)
G11(8) = Gyp(s) = (1.0 + 16.39825) (5.0 + 1.14051s)

(4.3)

The compensated frequency response for edch kth subsystem is
illustrated ip Figure 12 in which all design specifications have

been accomplished. In particular, Entry A in Table 3 shows the
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Figure 12. The Improved Compensated Frequency Response of Example 1.
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Table 3.

System Specifications for the Finned Vehicle Examples.

Margin Margin Complex Frequency Desired Margin Active
Number Value RE[s] IM[s] Margin Type List
A. The Uncoupled System:

Iteration No., O Subsystem 1, 2.
1 42,2900 0.000 0.347 0.50 GM No
2 0.5036 0.200 6.400 0.50 GM Yes
3 7.5340 0.230 4.437 30.00 PM Yesg -
4 0.2241 0.000 19.190 0.10 AM Yes

Iteration No. 31
1 3.1130 . 0.000 0.673 0.50 GM No
2 30.0300 0.000 2.086 30.00 PM No
3 © 0.0920 ¢.000 19.1%0 0.10 AM No

B. The Coupled System:

Iteration No. O Subsystem 1.
i 42,2900 0.000 0.347 0.50 GM No
2 0.6114 6.000 8.000 0.50 GM Yes
3 11.0500 0.250 4.613 30.00 PM Yes
4 0.2976 0.000 19.190 0.10 AM Yes

Subsystem 2.
1 29,3000 6.000 0.347 0.50 M No
2 0.2010 0.200 3.600 30.00 PM Yes
3 0.2360 0.000- 19.190 0.10 AM Yes
Iteration No. 50 Subsystem 1.
1 2.4590 0.000 0.700 0.50 GM No
2 28.0300 0.000 1.882 30.00 PM No
3 0.0870 0.000 19.190 0.10 AM No
Subsysteﬂ 2.

1 30.0880 0.000 0.606 0.50 GM No
2 29.4700 0.000 1.882 30.00 PM " No
3 0.0960 0.000 19.190 0.10 AM No
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specified design objectives versus the final system specifications.
Similar results were obtained with the Compensator Improvement
Program By Mitchell and McDaniel in reference [1l] for the single

input, output system.

A Coupled Dual Input, Dual Output System

This example utilizes the same system as the previous illus-
tration but in this case the plant subsystems are coupled with non-
zero off-diagonal terms. Thus, the same uncomperisated frequency
response data is used to describe the diago;al terms of the plant
matrix [P(s)]. Table 4 gives the frequency response data des-
cribing the coupling terms, that is, Plz(s) and P21(s). The compen-—
sation matrix remains the same as deseribed in equation (4.3);
however, for generality, the compensator gain of the Gzz(s) element
has been altered to a factor of 0.7 instead of unity.

Requiring the same design objectives ‘as stated in equations

(4.2), the improved compensation elements,

o (o (1.0 + 1.427138) (5.0 + 6.52626s) S
118877 00 + 19.2239s) (5.0 + 1.25501s) ’

and

0.7(1.0 + 2.353648) (5.0 + 4.07685s) (4.5)

G = _ .
22(5) (1.0 + 15.2297s) (5.0 + 1.01990s)

are obtained after 50 iterations. Entry B in Table 3 shows the
desired objectives as compared to the final system specifications

after the compensation improvement.
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Table 4. ¥Frequency Response Data Describing the Coupling
Elements of the Plant Matrix [P(s)] in the Coupled

Finned Vehicle Example

Data Complex Frequency Uncompensated Plant Response

Point RE[s] IM[s] RE[P,,] [P, ,] RE(P,,;] TM[P,,]
1 0.0cC 0.100 0.1000 0.0005 0.2001 0.0066
2 0.000 0.132 0.1000 0.0066 0.2002 0.0088
3 0.000 0.178 0.1000 0.0009 0.2003 0.0118
4 0.000 0.240 0.1001 0.0012 0.2006 0.0159
5 0.000 0.347 0.1001 0.0017 0.2013 0.0230
6 0.000 0,501 0.1003 0.0029 0.2028 0.0331
7 0.000 0,646 0.1004 0.0032 0.2046 0.0425
8 0.000 1,230 0.1014 0.0058 0.2161 0.0786
9 0.000 2.000 0.1035 0.0086 0.2400 0.1200
10 0.100 2.800 0.1062 C.0134 0.2750 G.1492
11 0.200 3.600 0.1087 0.0112 0.3105 0.1681
12 0.250 4.000 0.1099 0.0115 0.3276 0.1744
13 0.250 4,921 0.1123 0.0119 0.3630 0.1866
14 0.250 6.000 0.1147 0.0118 0.4002 0.1988
15 0.200 6.400 0.1154 0.0118 0.1259 0.1935
16 0.100 7.200 0.1168 0.0115 0.4356 0.1940
17 0.000 8.000 0.1176 0.0102 0.4520 0.1742
18 0.0060 10.071 G.1201 0.0099 0.4952 0.1759
19 0.000 12.400 0.1215 0, 0087 0.5241 0.1568
20 0.000 15.600 0.1227 0.0073 0.5485 0.1340
21 0.000 18.327 0.1233 0.0063 0.5613 0.1183
22 0.000 19.191 0.1234 0.0061 0.5644 0.1139
23 0.000 19.638 0.1235 0.0059 0.5658 0.1118
24 0.000 20.563 0.1236 0.0057 0.5686 0.1076
25 0.000 30.415 0.1243 0.0040 0.5850 0.0759
26 0.000 4£0.095 0.1246 0.0030 0.5912 0.0585
27 0.000 60.686 0.1248 0.0020 0.5061 0.0391
28 0.000 100.000 0.1249 0.0012 0.5986 0.0239
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A Dual Input, Four Qutput System with

Coupled Characteristics

This example is represenéative of the Yaw/Roll Ascent Flight
Control System for the Space Shuttle., The system is similar to that
of Figure 2 with a plant possessing two control inputs and four out-
puts. The 23 discrete frequency response data chosen to describe
the plant dynamics are listed in Table 5. The compensation matrix
[G(s)] given in Table 6 actually is designed for use on the space
shuttle and exemplifies the complexity réquired in achieving a set
of design objectiwves.

Given the design requirements of Table 7, the CIP produced the
improved compensation matrix of Table 6 in 5 iteratioms, that is,

20 seconds of CPU time on the Univac 1108,

In summary, the CIP is a fast and effective design tool in the
area of compensation improvement. ¥For the Finned Vehicle examples,
approximately 28K words of core storage is required; the Shuttle
example executes in 32K of storage. 1In each example the programming

time and computer time is minimal.
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Table 5. Plant Dynamics Describing the Yaw/Roll
Ascent Flight Control System for Space
Shuttle Example.

Data  Frequency Uncompensated Plant Frequency Response Data
Point RE[s} RE[Pn] RE[PlZ] RE[P21] RE[P22] RE[?31] P32] RE[PM] RE[P“]
mis]  mMP,} MiP,,]  mMlR,,]  IMle,,] MR, 1 MRyl WP, MR, )
1 0,0000 - 2.8340 - 0.0431 - 10.6900 1.0700 2.7380 0.1860 31,2900 - 5.8820
0.0100 - 3.2070 - 0.0463 - 2,3320 - 0.1385 -13.7400 2,1720 22,7100 - 2.7820
2 0.0000 =~ 0.772Z - 0.0117 - 2.6520 1.1850 - 0.1172 0.1527 3.6560 - 1.9500
0.0185 - 1.1690¢ =~ 0.0171 - 0.1011 -~ 0.2079 - 2.6890 1.2350 1.9790 - 1.6310
3 0.0000 - 0.6223 - 0.0095 - 2.1060 -~ 1.1910 -~ 0.1571 0.1525 2.5500 - 1.5740
0.0209 - 1.0030 - 0.0147 ~ 0.1604 - 0.2360 - 2.0880 1.0930 1.3180 - 1.4430
4 0.0000 - 0.4073 -~ 0.0063 - 1.3360 1.1950 - 0.1815 0.1522 1.2320 - 1.0060
0.0275 -~ 0.7280 - 0.0108 0.2186 - 0.3130 - 1.2750 0.8303 0,5690 - 1.0950
5 0.0000 - 0.1988 - 0.0036 - 0.6279 1.1670 - 0,1668 0.1486 0.3088 - 0.4414
0.0507 - -.3513 - 0.0059 0.2656 - 0.5978 - 0.5097 0.4312 0.1152 - 0.5680
6 0.0000 - 0.1948 - 0,0045 - 0.5711 1.1680 - 0.1802 0.1479 0,3197 - 0.4330
0.0517 - 0.3422 -~ 0.0059 - 0.0029 . 0.6239 - 0.4985 0.4219 0.1078 -~ 0.5562
7 0.0000 - 0.1940 - 0.0049 - 0.8675 1.1520 - 0.1878 0.1476 0.3208 - 0.4318
0.0519 - 0.3403 - 0.0049 - 0.1351 - 0.6331 - 0.4795 0.4205 0.0795 - 0.5532
8 0.0000 ~ 0.6462 - 0.2679 - 1.2820 1.1400 0.6761 0.1210 - 0.0047 - 0.3364
0.0659 - 0.1136 - 0.0085 5.0450 -~ 0.9269 - 0,0904 0.3103 - 0.3594 - 0.4264
9 0.0000 0.5705 - 0.0246 4.4650 0.9682 0.7388 0.1190 0.4012 - 0.3467
0.0662 - 1.1130 0.0212 4.4800 - 0.9162 - 1.1540 0.3393 0.4899 - 0.4268
10 0.0000 - 0.1037 - 0.0046 3.7080 0.9895 0.0113 0,1401 0.4222 - 0.3450
0.0665 - 0.9970 0.0179 0.5986 - 0.8032 - 1.1280 0.3372 0.1397 - 0.4138
11 0.0000 - 0.2463 - 0.0002 0.4308 1,0820 - 0.2220 0.1466 0.2557 - 0.3347
0.0679 - 0.4227 0.001Z - 0.1450 ~ 0.7998 - 0.5402 0,3123 0.0532 - 0.401%
12 0.0000 - 0.1350 - 0.0016 - 0.3108 0.7750 - 0.1569 0.1307 0.0841 - 0.2253
0.1181 =~ 0.1243 - 0.0016 0.6162 - 1.5550 - 0.1698 0.1414 0.0189 - 0.1819
13 0.0000 - 0.13170 - 0.0015 0.0244 0.0043 - 0.1471 0.1175 0.0641 - 0.1865
0.1639 - 0.0639 - 0.0009 1.1130 - 2,3520 - 0.0%06 0.0737 0.0071 - 0.0914
14 0.0000 - 0.1046 - 0.0016 1.4280 - 2.3960 - 0.1408 0.1040 0.0581 - 0.1579
0.2246 - 0.018%9 - 0.0004 1.6570 ~ 3.0610 ~ 0.0301 0.0240 - 0.0057 ~ 0.0239
15 0.0000 - 0.1323 - 0.0066 7.6720 - 11.9200 - 0.1912 0.1158 0.0816 - 0.1780
0.3068 0.0349 0.0019 - 0.6730 0.5485 0.0449 - 0.0246 - 0.0363 0.0485
16 0.0000 - 0.5012 -~ 0.1355  37.5100 - 76.2100 ~ 0,7038 0.3409 0.2381 - 0.7026
0.3412 0.4944 0.3420 - 18,1200 78,4600 0.5483 - Q.1452 - 0.1522 0.7367
17 ¢.0000 - 0.2754 0.6667  90.5100 - 7.2760 - 0.8031 0.6909 0.6666 — 4.2170
0.3434 0.9189 0.7194 - 29.0500 168,8000 0.9950 - 0.2849 - 0,1838 1.5530
18 0.0000 0.7809 0.0304 - 89.6700  120,3000 1.1130 - 0,5521 - 0.7124 1.0020
0.3469 1.3760 - 0.B157 -220.4000 137,1000 2.5630 -~ 1,5400 - 1.6360 1.0260
19 0.0000 - 0.0097 0.0065 - 3.1110 2.2820 - 0,0285 0.0242 0.0258 - 2.4050
0.4312 0.0115 - 0.0080 5.8500 - 4,6220 0.0254 - 0.0282 0.0224 0.0314
20 0.0000 0.3911 - 0.1390  63.6500 =~ 22.3600 1.1070 - 0.3858 - 1.0980 0.3797
0.4517 0.2532 - 0.0870  10.1100 - 4.3860 0.7313 - 0.2731 - 0.6346 0.2498
21 0.0000 0.0027 - 0.0026 0.9412 - 0.6377 0,0001 - 0.0066 0.0044 0.0151
0.5654 0.6027 - 0.001% 1.0500 - 0.9433 - 0.0011 - 0.0299 0.0375 0.0538
22 0.0000 0.2691 =~ 0.0726  18.2600 - 5.4870 1.2830 - 0.3560 1.4590 0.4108
0.6600 - 0.1539 0.0343 - 41,9300 9.9780 - 0.7248 0.1372 0.8950 - 0.1667
23 0.0000 - 0.0263 - 0.0005 - 17.4500 3.5250 - 0,1362 - 0.0131 0.3378 0.1425
0.6677 - 0.1667 0.0404 - 16,6400 4.1580 - 0,8415 0.1809 1.4090 0.3044




Table 6. Compensation Matrix [G(s)] in Cascaded
Factor Form for the Space Shuttle Example.

COMPENSATOR (1,1}: GAIN = 1.0000
COMPENSATOR COEFFICIENTS: ’

ZA = .100000-01 B = .744312

ZC = 1.00000 0 = 1,02373 ZE = 8.16526
ZC = 1.00000 b = 2.30558 ZE = 2.01630
ZC = 1.00000 D = 1.22262 IE = 4.44622
ZC = 1.00000 0 = 1.02373 ZE = 8.16526
PA = .133000-01 PB = 1.18973

PC = 1,00000 PD = 4.,36098 PE = 18.9002
PC = 1.00000 P = 4.36008 PE = 18,9002
PC = 1.00000 PD = 2.38040 ‘PE = 3.99765
PC = 1.00000 PD = 4.36093 PE = 18.9002

COMPENSATOR (1,2): GAIN = .74500
COMPENSATOR COEFFICIENTS ‘

ZA = 1.00000 B = -,996201

ZA = .100000-01 8 = 1.01163

ZC = 1.00000 - D = .582803 ZE = 8.16205

ZC = 1.00000 2D = .656982 ZE = 10.4091

ZC = 1.00000 D = 576605 IE "= 2.04025

ZC = 1.00000 D = 1.20585 IE = 4.44328

PA = 1,00000 PB = " 50.0069

PA = .133300-01 PB = .983323

Pc = 1.00000 PD = 5.20890 PE = 18,5033

PC = 1.00000 PD = 5.99161 PE = 25,0002

PC = 1.,00000 . PD = b5.,32565 PE = 11.1114
= 1.00000 PD = 2,39359 PE = 4.00060

COMPENSATOR (1.3): GAIN = .74500
COMPENSATOR COEFFICIENTS

ZA = .000000 28 = 51.0048 .

ZA = .100000-0} ZIB = .869534 :

ZC = 1.00000 b = .583262 £ = 8.16477

¢ = 1.00000 ID = .657081 ZE = 10.4118
"2 = 1.00000 D = .582806 IE = 2.04267

¢ = 1.00000 b = 1.21041 ZE = 4.44575

PA = 1.00000 . PB = 50.0095

PA = .133000-01 PB = 1.10453

PC = 1.00000 PD = 5.21469 PE = 18.9011

PC = 1.00000 PD = 5.99959 PE = 24,9981

PC = 1.00000 PD = 5.33026 PE = 11,1092

PC = 1.00000 PD = 2.39180 PE = 3.99822Z

‘COMPENSATOR (2,4): GAIN = 1.0000
COMPENSATOR COEFFICIENTS

ZA = ,300000-01 B = ,995009

ZC = 1.00000 0 = .827221 ZIE = 8.76655
ZC = 1.00000 D = .992354 ZE = 6.25852
ZC = 1.00000 D = 2.00871 ZE = 1.56803
ZC = 1.00000 Zb = 1,20369 ZE = 4.45146
PA = .400000-01 PB = 1.00117

PC = T1.00000 PD = 4.34837 PE = 18.9029
PC = 1.00000 PD = 4.34837 PE = 18.5029
PC = 1.00000 PD = 3.33705 PE = 11.1106
PC = 1.00000 PD = 2.39557 PE = 3.99576




Table 6. (Continued) Compensation Matrix [G(s)] in
Cascaded Factor Form for the Space Shuttle.

COMPENSATOR (1,1): GAIN = 1.0000
COMPENSATOR COEFFICIENTS

ZA = .100000-01  ZB = 1.00000

ZC = 1.00000 7D = 1.00000 ZE = 8.16300

ZC = 1.00000 ZD = 2.28600 ZE = 2.01400

Z¢ = 1.00000 ZD = 1.20000 ZE = 4.44400

ZC = 1.00000 ZD = 1.00000 ZE =  8.16300

PA = .133000-01  PB = 1,00000

PC = 1.00000 PO = 4.34800 PE = 18.9030

PC = 1.00000 PD = 2.34800 PE = 18,9030

PC = 1.00000 PD = 2.40000 PE = 4.00000

PC = 1.00000 PD = 4.34800 PE = 18.9030
COMPENSATOR (1,2): GAIN = .74500

COMPENSATOR COEFFICIENTS:

ZA = 1.00000 ZB = -1.00000

ZA = .100000-01 2B = 1.00000

ZC = 1.00000 ZD = .571400 ZE = 8.16300

ZC = 1.00000 ZD = .645200 ZE = 10,4100

¢ = 1.00000 ZD = .571400 ZE = 2.04100

ZC = 1.00000 20 = 1.20000 ZE = 4.44400

PA = .133000-01  PB = 50,0074

PA = 1.00000 PB = 1.00000

PC = 1.00000 PD = 5.21700 PE = 18.9030

PC = 1.00000 PD ‘= 6.00000 PE = 25.0000

PC = 1.00000 PD = 5.33300 PE = 11.1111

PC = 1.00000 PD = 2.40000 PE = 4.00000
COMPENSATOR (1,3): GAIN = .74500

COMPENSATOR COEFFICIENTS

ZA = .000000 78 = 51,0074

ZA = .100000-01 2B = 1.00000

2 = 1.00000 ZD = .571400 ZE = 8,16300

ZC = 1.00000 ZD = .645200 ZE = 10.4100

ZC = 1.00000 2D = .571400 ZE =  2.04100

ZC = 1.00000 ZD = 1.20000 ZE = 4.44400

PA = 1.00000 ° PB = 5010074

PA = .133000-01  PB = 1.00000

PC = 1.00000 PD = 5.21700 PE = 18.9030

PC = 1.00000 PD = 6.00000 PE =  25.0000

PC = 1.00000 PD = 5.33300 PE = 11.1110

PC = 1.00000 PD = 2.40000 PE = 4.00000
COMPENSATOR (2,4): GAIN = .74500

COMPENSATOR COEFFIGIENTS

ZA = .300000-01 7B = 1.00000 _

ZC = 1.00000 2D = .857000 ZE = 8.16300

ZC = 1.00000 Z0 = 1.00000 ZE = 6.25000

ZC = 1.00000 20 = 2.00000 ZE = 1.56300

ZC = 1.00000 2D = 1.20000 ZE = 4.44400

PA = .400000-0t  PB = 1.00000

PC = 1.00000 PD = 4.34800 PE = 18.9030

PC = 1.00000 PD = 4.34800 PE = 18.9030

PC = 1.00000 PD = 3.33300 PE = 11.1110

PC = 1.00000 PD = 2.40000 PE = 4.00000

COMPENSATORS HAVING ZERQ CONTRIBUTION: (1,4): (2,1); (2,2); (2,3)
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Complex Frequency

Margin Margin Desired Margin Active
Number Value RE[s] IM[s] . Margin Type List
Subsystem No. 1, Iteration No. 0
i . 0.4163 0.000 0.0896 0.60 GM Yes
2 53.7400 0.00C0 0.0240 30.00 M No,
3 127.5000 0.000 0.0603 °30.00 ™ No
4 24,2100 0.000 0.0679 -30.00 PM Yes
5 0.0074 0.000 0.3412 0.10 AM No
6 0.0289 0.000  0.3469 0.10 AM No
7 0.0097 0.000 0.6600 0.10 AM No
8
Subsystem No. 2, Iteration No. 0
1 0.5941 0,000 0.0896 0.60 GM Yes
2 36.5000 0.000 0.0321 30.00 PM No
3 G.0885 0.000 0.3434 0.10 AM Yes
4 0.0076 0.000 0.6600 ¢.10 AM No
The Improved System Specifications
Subsystem No. 1, Iteration No. 5
1 .0.6120 0.000 . 0.0927 0.60 GM No
2 38,1800 0.000 0.0222 30.00 ™ No
3 143,9000 0.000 0.0616 30.00 PM No
&4 32.0100 0.000 0,0674 30.00 PM No
5 (.0307 0.000 0.3469 0.10 AM No
6 0,0098 0.000 0.4917 0.10 AM No
7 0.0041 0.000 0.6600 0.30 AM No
Subsystem No., 2, Iteration No. .5
1 0.6075 0.000 0.089%6 0.60 GM No
2 31.3600 0.000 0.0339 30.00 PM No
3 0.0843 0.000 .0.3434 0.10 AM No
4 0.0076 0.000 0,6600 0.10 AM No




CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS
Conclusions

Because of the complexity of technology and control laws, the
design of modern control systems has become increasingly compli-
cated. In this exposition, the theory and associated numerical
technique for achieving a computer-aided compensation design improve-
ment algorithm for the multivariable control system have been pre-
sented. The technique developed is applicable to linear, time-
invariant systems possessing multiple input, multiple output status
whose plant characteristics are described by discrete open~loop
frequency response data. The compensation matrix is entered as
transfer functions of cascaded first and second order polynomials.
The method was designed using a strict constraint algorithm to
alleviate the inherent problems generally associatgd with soft con-
straint cost functionals. The objective of the Compensator Improve-
ment Program is to modify in an iterative manner the free parameters
of the compensation yielding a system that satisfies specified
frequency response properties. The computer coding in the Fortran
IV language has been included and the practical utility of the
program illustrated with space related examples.

Chapter I contains a literature survey of the previous

research on the automatic design problem based on theory developed
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by classical design methods. Each of the aforementioned techniques
has been ascertained successful for the author's specified control
area, generally restricted to a single control input system;
however, the Compensator Improvement Algorithm t?] appeared most
readily applicable and available for extension tc the multivariable
control case with the objective of obtaining a suboptimal solution
to the specified constraints of the control design.

The theoretical concepts of the design algorithm are developed
in Chapter II. The mathematical derivations associated with the
algorithm in détermining the necessary closed-loop frequency
response, gradient vectors, and hence, the directional vectors,
have been deduced by exact means.

In Chapter II1 the obje;tive of the scﬁematic algorithm and the
computational flow diagram were introduged. This chapter contains
an explanation of the flow‘diagram referring to the theory and
synopsis of the subprograms in Appendix A.

Pragmatic examples illustrate the effectiveness of the
algorithm in Chapter IV. Three space related examples-were pre-
sented: (1) a dual input, dual output system exemplifying no
coupling; (2) a2 dual input, dual ocutput system with coupling;

(3) a Space Shuttle example with dual control inputs and four out~
puts.‘ The results herein verify the utility of the Compensator
Improvement Program as a practical method of compensation improve-

ment.
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In conclusion, this exposition has demonstrated that the classi-
cal control theory is amenable to systems with multivariable charac-
teristics. An important benefit derived from the use of the frequency
domain for linear time-invariant systems is the intuition it provides
in determining thé soundness of a system. The digital computer has
made possible the application of classical techniques to the optimal
design problem. .The ultimate contribution of this research eff&rt
is the development and implementation of an algorithm’to enhance
compensator design of systems possessing multivariable contrel char-

acteristics.

Recommendations

The employment ‘of any digital computer algorithm as an aid in
the aggregate .design process is perhaps as much an art as. the design
process itself.,  The use of the computer-aided design_program may
free the engineer from many burdensome and time-consuming calculations,
but it is the engineer who in essence must provide the framework in
which to enter the compensation in order to achieve the desired control
law. This then is perhaps the greatest 1iﬁitation of any'computer~
aided control design; that is, there is no supplanting the awareness
and judgement of an experiencedxéontrol engineer.

More realistically, however, the Compensator Improvement Algorithm
does possess minor limitations which could be reconciled. In particu-
lar,

1. CIP should be given the option of accepting either

discrete frequency response data or transfer function
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information., With the transfer function option, CIP
would calculate its own frequency response data.
Modifications should be made for CIP to accept
prefilters; these filters would be user designated
and not altered by the program.

CIP should be given the option of accepting sampled-
data systems without the necessity of the engineér
converting compensation into the W-plane; possibly
CIP coiuld be further extended to accept multirate
sampling problems,

The pracficallutility of CIP could be extended by
rendering the algorithm capable of producing a two
phase optimization program: in particular, the
present version of the algorithm would yield a de-
sign to meet a set of design objectives producing a
feasible solution while continuing to satisfy the
desired specifications. For the second phase, per—
haps a gradient projection technique could be uti-

lized in optimizing the necessary cost function.

In essence the major limitation of the CIP algorithm is its

restriction to linear, time-invariant control systems., The aspect:
of extending the work to nonlinear systems have not been contempla-
ted; this omission is regrettable since the occurrence of system

uncertainty is always a possibility. In regard to the restriction

‘



of time-invariance, the present GIP techniques are not amenable

to time~varying systems.

Mississippi State University
Mississippi State, Mississippi 39762

July 25, 1977
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APPENDICES



APPENDIX A

SUBPROGRAM SUMMARIES OF THE COMPENSATOR

IMPROVEMENT PROGRAM

Introduction

It is the bbjective of this Appendix to provide the basic con~
cepts in theory and/or programming techniques incorporated within
each subroutine. With the enclosed information any efforts made in
adaptations or modifications for solving related problems should be
reduced significantly. The subprograms are presented in alphabetdical

order for easy reference.
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Subroutine. ADDPTS

In an effort to minimize the input data storage required and
the correspoﬁding computer time used in manipulating extensive data,
the subprogram ADDPTS[9] generates additional frequency data. 1In
particular, if the spacing of the original response data in the
neighborhood of a critical point in the relative stability region
becomes too large, this subprogram interpolates the given data in
this neighborhood vielding a more accurate stability margin. This
design philosophy is based on the continuous natuée of the frequency
response over the complete range of frequencies, The added frequency
points are obtained in accordance with the routine INTER, an inter-
polation algorithm; a log type of interpolation is used in‘
determining all magnitudes; whereas, phases are calculated by linear
interpolation.

This subroutine alsc requires the routines CRT and EVAL for
updating the frequency response at the data points. The routine
DELETE is used in conjunction with ADDPIS to retain only the origi-
nal déta at each new iteration.

The following variables are designated for this subprogram:

Subprogram Variables

-Input Variables:

KPOINT — An integer variable used to denote the current number
of data points.
KIN - An integer variable that denotes the number of inputs

to the controller.



KOUT
NB
NM(I)
STBM(T)

KPTS(I,J)

CT(I,J)

G(1,J,X)

GC(I,J,K)

T(I,J,K)
OMEGA (I)

KPTMAX
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Integer variablé denoting the number of controller
outputs.

An integer used as a counter representing the starting
number of the margins to be investigated.

An integer array representing the number of margins
investigated for each subsystem,

A one dimensional real array containing the values of
the stability margins.

A two dimensional integer array containing the fre-
quency numbers of the margins in accordance with al
particular subsystem,

A two dimensional complex array containing the overall
frequency response of the system.

A three dimensional complex array containing the origi-
nal discrete data frequency response of the plant
system.

A compiex three dimensional array storing the compen-
sator response evaluated at the specified frequency
points. .

A complex three dimensional array in which the transfer
response [GCl-[G] is stored.

A one dimensional complex: array containing. the discrete
fréquency points.

An integer denoting the maximum number of discrete

frequency points allowable on a single iteration.
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NIT(I)

KINACT(I,J)

NML (1)

KACT(I,J)

KPOLD

KOLD(I)

KSYM
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An integer variable used to denote whether frequency
points were added.

An integer array denoting the number of inactive
margins for each subsystem.

A two dimensional array containing the integer numbers
corresponding to the frequencies of the inactive or
satisfied margins for each subsystem.

An integer array denoting the number of active margins
detected per subsystem.

A two dimensional integer array denoting the frequency
data numbers of the active or unsatisfied margins for
each subsystem.

An inieger denoting the number of data points on the
last iteration.

A one dimensional integer array containing the previous
data points.

An integer variable -used to reference the frequency

response of the particular subsystem being manipulated.

The following transient variables are used in the auxiliarv

subroutines CRT and EVAL and are not affected directly by this sub-

program; for more information regarding these variables refer to

the respective subroutine synopsis.

CRT:

EVAL:

C1,CI,WORKI

ZA,ZB,ZC,ZD,ZE,PA,PB,PC,PD,PE,
N1,N2,M1,M2,GAIN,KONT,A,B,C,D,E
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Output Variables:

The following output variables are defined as theilr respective
input counterparts, but as outputs have been updated to include the
newly generated data points: 6{(I,J,K), GC(I,J,K), T(I,J,K), KPOINT,

OMEGA (1), KINACT(I,J), KACT(I,J), KOLD(I).
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Subroutine CHANGE

The subprogram CHANGE is designed to change the indiwvidual com-
pensator coefficients in an orderly manmer to induce an improved
system. The change in the compensator coefficients is made in
accordance with the directional vector of the particular iteration.

Note that the éompensator elements are described by the transfer

functions in the form of cascaded first and second order factors,

that is,
N1 N2 ,
I (za, + ZB.s) H (2ZC. + ZD.s + ZE.s")
i=1 1 1 j=1 J J 3
G(s) = (GAIN) = . (a-1)
) M1 M2 ) _
I (pA; +PB;s) I (PC, + PD.s + PE.s%)
i=1 j=1 3 1

Recall that the ultimate goal of the Compensator Improvement
Proéram is the design of compensation so that the measurements of
the system performance are equal to or better than the system speci-
fications. The design of the compensators can be expressed mathe-

matically as the strict comstraint problem:

Determine E?

(A~2)

subject to gi(gi) z_bi, i=1,...,m
where x is a vector of the n compensator coefficients. The functions
gi(g?) contain measurements of the system performance in terms of
the compensator coefficients: thus, these functions represent the

stability and attenuation margins, as well as any constraints on the
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compensator coefficients. The constants bi are the system specifi-
cations.

Assuming that for equation (A-2) the trial solution vector at
the kth iteration is ESL » then a trial solution vector of a possible

improved solution at the (k <+ 1)th iteration is

T - T -

where [VG] is the Jacobian matrix evaluated at Xy and consists of
all the active constraints, i.e., the functions gi(xk) < bi' The

scalar h is a normalized step size. - The vector a is calculated as

= [ve'vel ¢ (A-4)

where ¢ is a vector of weighting constants initially set at unity.
The routine DIRVEC determines the directional vector 4 , where

a = [vela (a-5)

Thus the subprogram CHANGE ultimately applies the elements of this
directional vector to its corresponding compensator coefficients
weighted by the step size h.

* The program variables are defined as follows:

Subprogram Variables

Input Variables:

ZA(1,J,K) — A real three dimensional array representing the con-
stant terms of the first order factors of the

compensation polynomials.
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ZB(I,J,X) ~ A real three dimensional array containing the first
order factor coefficients of s.

zZC(1,J,K) —~ A real three dimensional array representing the con-
stant terms of the second order factors.

zd(I,J,K) - A three dimensional real array containing the s coef-
ficients of the second order factors.

ZE(1,J,.K) — A real three dimensional array ceontaining the s?
coefficients of the second order factors.

N1i(Z,J) - An integer array that denotes the number of cascaded
first order factors.

N2(L,T) - An integer array that denotes the number of cascaded
second order factors. -

ﬁV(I) - A real one dimensional array representing the
directional vector d in equation (A-5).

DEL - A real variable that-denotes the step éize h in (A-3).

KKK - An iqteger used to count the number of elements in
the directional vector. -

KIN - An integer denoting the number of controller inputs
or sensed states.

KouT - An integer denoting the number of controller outputs.

A,B,C - Parameter variables used to dimension the ar%ays by

the number of maximum allowable cascaded factors.

Qutput Variables:

The following output variables are defined in the same manner as
their respective input variables, but have been updated incremental-

ly in accordance with the directional vector and step size: ZA(I,J,K),

ZB(L,J,K), 2C(I,J,K), ZD(I,J,K), ZE(I,J,K).
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Subroutine CRT

The 'subprogram CRT has two major functions as denoted by the
input variable KEY. 1If XEY has been set to unity, the program
calculates the closed-loop frequency response [C(s)] in terms of

the input vector, that is,
[C(s)] = [G(s)1[P(s)}{T + [HCS)][G(S)][PCS)]}-—l[R(s)} . (a-6)

Thus the open-loop frequency response of the kth system can be
obtained by setting the kth diagonal element of [H(s)] to zero, and
by setting all the elements of [R{s)] to zero except the kth element
which is set to unity; the result is the frequency response between
the kth input and the ocutputs when the kth loop is open.

If KEY is entered as zero, the program is designed to aid the
subprogram PARTAL in. determining the partial term BCk(s)/BGij.

Actually, this term can be evaluated by the equation

Ble@ - _re(e)1rp() 1T + MH(s)1I6Ce) 1 R(e)1} " [(s)] —LEL .
ij ij

[P(e) HI + [H(s)1[6(s)1[P(s) 1} [R(s)]
+ 28O o)1 + () 1@ 1RO} RE T (3-7)
i
which bears semblance to equation (A-6). Then, BCk(s)IBGij is the
kth element of (A-7) with the conditions aforementioned.

Other routines used by this subprogram are the complex matrix

inversion and multiplication programs, MATINC and MATMUL
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The variables are defined in the following list:

CRT Subprogram Variables

Input Variables:

KEY

KSTM

T(I,J)"

KIN

KOUT

P(1,J)

Il

Jl

C1(1,J)

CI(X,J)

A switch variable which designates the subprogram
mode: if KEY is set to unity, the response of (A-6) is
returned; if KEY is set to zero, the partial term of
(A~7) is calculated and returned.

An integer variable denoting specific frequency point
under consideration.

An integef variable representing the system under con-
sideration, that is, k in the previous discussion.

A two dimensional complex array of the transfer response
[G(s)] - [P(s)]:

An integer denoting the number of control inputs,

An integer denoting the nuwmber of controller outputs.
A two dimensional complex array of the plant response.
An integer denoting the control input index of Gij in
(A-7).

An integer dencoting the control output index of the
term Gij in equation (A~7).

A two dimensional internal complex array containing the
total frequency response at a particular frequency
point.

An inte;nal two dimensional array storing the inverse

of the complex frequency response C1(r,J).
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WORKI(E,J) -~ A two dimensional complex array for internal subroutine
use,

A,B,D - Variables denoting dimension ailocatioms.

. "
]

Qutput Variables:

CT(I) - A one dimensional complex array representing the
response [C(s)] in equation (A-6).
PCG - A complex variable representing the partial term

ack(s)/acij in the previous discussion.



76

Subroutine DELETE

The subprogram DELETE gs designed in conjunction with the ADDPTS
routine in an effort to save computer storage and time in manipu~
lating unnecessary data. In particular, this subprogram deletes the
extra frequency points and their corresponding response terms gene—
rated by the ADDPTS routine when the maximum number of allowable
points has been generated; for accuracy, the original input data is
always retained.

The routine uses the following variables:

Subprogram Variables

Input Variables:

KPOINT - An integer counter to denote the number of frequency
points.

KIN ~ An integer denoting the numbet of controller inpﬁts
or the meaSuéed states.

KoutT ~ An integer varisble representing the number of con-
troller outputs or plant inputs from the controller.

OMEGA(I) - A one dimensional complex array of. frequency terms.

G(I,J,K) - A three dimensional complex array consisting of the
frequency response describing the plant system.

NIT(I) ~ An integer ;rray denoting the number of inactive or
satigfied margins detected.

KINACT(I,Jd) - A éwo dimensional integer array of the frequency

numbers of the corresponding inactive margins for

each subsystem.
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NML (T) - An integer array denoting the total number of active
or unsatisfied margins detected per subsystem.
KACT(T,J) - A two dimensiondl integer array of the frequency

data of the active margins.

ITER - An integer representing the present iteration.

KPOLD — An integer denoting the total number of frequency
points.

KOLD(T) — An integer array of the original frequency points

reference numbers.
KNEW(I) ~- An integer array of the generated frequency numbers.
A,B,C,D,E — Dimension allocations; set by parameter statement

in the main program.

Qutput Variables:

The following output variables correspond to their respective
input variables, but have been updated b§ the subprogram deleting

the extra data: OMEGA(I), G(I,J,K), KINACT(I,J), KACT(I,J), KOLD(I).
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Subroutine DIRVEC

The objective of the subprogram DIRVEC is to calculate the
directional vector of the constraint improvement algorithm. The

directional wvector d is calculated as
d = [VGla (4~8)

where VG is a matrix of order (n,m) whose columns comsist of the
gradients of the active constraints. The m component column vector

a is determined by
a = [ve'vel™l ¢ (a-9)

where ¢ is a m component column vector whose elements are all

positive. The order m corresponds to the number of compensator co-
efficients. Auxiliary subprogramg include the matrix Inversion for
real variables MATINV and the matrix multiplication MATMUL routines.

Definitions of the input and output variables are as follows:

Subprogram Variables

Input Variables:

G(I,J) ~ A two dimensional array whose columns are comprised
of the gradients of the active constraints.

NM - Integer value used to designate the number of columns
in G, that is, the number of active constraints.

KPARC — Integer variable that represents the number of rows

in G, that is, the number of compensator coefficients.
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WEIGHT (I) ~ A real one dimensional array that contains the
column matrix ¢ of equation (A-~9).

E,F,Z,H - Parameter variables for allocating dimemsion storage.

The transient variables, Al,AT, and WORKR, are used in the
auxiliary subprograms MATINV and MATMUL and are not affected direct-

1y in this routine.

Output Variables:

DV ~ A real one dimensional array which corresponds to theée

directional vector d in (A-8).
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Subroutine EVAL

The subprogram EVAL is designed to evaluate the compensator
matrix [G(s)] at each discrete frequency point. Recall the compen-
sation elements are polynomials of the form of cascaded first and

second order factors, that is,

N1 N2 ,
I (ZA, + ZB.s) @ (ZC, + ZD,s + ZE.s")
i=1 - * ! d 4

G(s) = (CAIN) — = — - (4~10)
I (PA, +PB,s) I (PC, + PD_s + PE.s?)
=1 T g 4 ]

The subprogram utilizes the polynomial'evaluation routine POLEV,

This subroutine also calculates the transfer relation [é(s)]-
[P(s)] for each frequency point using tbe matrix multiplication
program MATMUL.

The subprogram uses the following variables:

Subprogram Variables

Input Variables:

XF - A complex variable denoting the discrete frequency
point.
G(I,J, X} -~ A three dimensional complex array containing the
original discrete data frequency response of the plant.
K ) ~ An integer wvariable used to denote the cugrent
number of the frequency data point.
KIN ~ An integer Qariable denoting the number of inputs

to the controller.
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KOUT — An integer that denotes the number of controller out-
puts.
ZA(1,J,K) - A real three dimensional array containing the constant

terms of the first order factors of the numerator.
ZB{I,J,K) .= A real three dimensional array containing the first
- order factor coefficients of s in the numerator.
ZC(1,3,K) - A real three dimensional array representing the con-
stant terms of the second order numerator factors.
ZD(1,J,K) - A real three dimensional array.containing the s coef-
ficients of the second order factors of the numerator.
ZE(1,J.K) — A real three dimensional array storing the s? coeffi-
cients of the second order factors.in the numerator.
PA(I,J,K) - A real three dimensional array containing the constant
terms of the first order denominator factors.
PR(I,J,K) - ‘A real three dimensional array containing the first
order denominator factor coefficients of s.
PC(I,J,.K) - A real three dimensional array-representing the con-—
stant terms of the second order denominator factors.
PD(I,J,K) - A real three dimensional array containing the s coeffi-
cients of the second order factors in thé denominator.

2 coeffi-

PE(1,J,K) ~ A real three dimensional array storing the s
cients of the second order denominator factors.

N1(1,J) - An integer array that denotes the number of cascaded
first order factors in the numerator.

N2(1,J) - An integer array that denotes the number of second

order cascaded factors in the numerator.
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M1(I,J) - An integer array denotihg the number of cascaded first
ordér factors in the denominator.

M2(1,J) ~ An integer array that denotes the number of second
order cascaded factors in the denominator.

G%IN(I,J) - A two dimensional real array containing thg DC gain
of each compensator polynomial.

RONT (Z,.J) - A two dimensional integer array designating whether
the DC gain for tﬁe particular channel is allowed to
vary: d1f XKONT is unity, éhe géin may vary; if KONT
is two, the gain is not allowed to vary.

A,B,C,D — These variables are defined by a parameter statement
in the main program and designate maximum storage al-
locations in regards to the order of thé'arrays.

Output Variables:

GC(I,J,K) - A three dimensional complex array storing the compen-
sator response evaluated at specified frequency points.
T(I,J,K) - A complex three dimensional array in which the transfer

response [GC] * [G] is stored.
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Subroutine GAINMG

. The purpose of the subprogram GAINMG is to locate and calculate
the gain margins of a system represented by a discrete open-loop
frequency response. With fi as the ith frequency-5pecified, the
corresponding complex frequency response can be represented in real
and imaginary terms as GRi and GIi respectively. Thus the following

sequence can be formed to detect the occurrence of a gain margin:

U, = GI; - 6I; , . (A-11)

A gain margin is located whenever Ui becomes either negative or

zero. The frequency number of the gain margin is taken as i or i-1

depending on whether IGIJ >'[Gqu1| or IGIiI §_|GIi_l|; the gain
margin is calculated as
STBM = |1, + 6r, + jer, | (4-12)

where k is either i or i-1.

The following variables are designated for the subprogram:

Subprogram Variables

Input Variables:

-OMEGA(I) - A complex one dimensional array that contains the
specified frequencies in ascending order for
deseribing the systenm.

GTOTAL(I) - A complex one dimensional array containing the com—
pensated open-loop frequency response for the Ith

frequency.
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FQMIN

FQMAX
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An integer number of frequency points used to des-
cribe the open-loop frequency response of the system.
The lowest frequency for which gain margins are
detecteé.

The largest frequency for which the gain margins are
to be detected.

The integer used as a counter for the number of
margins located. For example, assume NM is initially
2 and this program locates 3 margins; these margins

would be labelled as margins 3, 4, and 5 respectively.

Qutput Variables:

NM

KPTS(I)

STBM(TI)

~ This is the number that designates the last gain

margin found.

-~ A one dimensional integer array that contains the

frequency members of the margins found.

- A one dimensional real array that contains the margin

values corresponding to the frequency pointer KPIS.
These margins are measured in terms of distances
from the point (-1 + jO) in the complex GH{jw)

plane.
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'Subroutine INTER

INTER is a subptogram designed in conjunction with the
ADDPTS routine to interpolate spécified input data, thereby
generating new data. The algorithm is designed to yield a2 log type
of interpolation in détermining all magnitudes; wheréas, phases are

calculated by a linear interpolation scheie.

The variables aré defined in the listing:

Subprogram Variables

Input Variables:

s ~ A complex number comnsisting of the lower bound of the
quantity to be interpolated.
T ~ A complex number consisting of the upper quantity bound

of the interpolation.

Qutput Variable:

R ) - A complex number representing the resultant of the

interpolation.
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Subroutine MATINC

Subroutine MATINC determines the inverse of a matrix of complex
elements by the Gauss-Jordon reduction method. It is assumed that
no diagonal elements of the original matrix are zero. -If in applying
the reduction procedure the magnitude of the ith element of the ith
pivot row is of magnitude less than 1.0 x 10-25, the inverse matrix
is assumed nonexistent.

The input, output variables are defined as:

Subprogram Variables

Input Variables:

XX(1,J) ~ A complex two dimensional square array whose inverse
is desired. ‘

N - An integer denoting the number oé rows and columns in
matrix XX(I,J).

X(1,7) - A complex array containing the generated augmented
matrix.

A,B,C - Parameter vafiables denoting storage allocation.

Output Variables:

YY(1,J) - A complex two dimensional array that contains the

inverse of the XX(I,J) array.
IER — The error code of the subprogram. If IER is zero,
no error was incurred; if IER is unity, the matrix

is assumed to be singular.
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Subroutine MATINV

The subprogram MATINV uses the Gauss-Jordon reduction method
in determining the inverse of a matrix of real elements. The
procedure and program variables of this routiné are defined in the
same manner as in the subprogram ﬁATINC but with application to the
real matrix XX(I,J) and its inverse YY(I,J) composed of real

elements only.
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Subroutine MATMUL

Subroutine MATMUL is designed to determine the product of a
matrix A of order (n,%) by a matrix B of order (L,m). The elements
cij of the resultant matrix C of order (n,m) are obtained-by the
equation

2
c,. =} (A-13)

a,, b, . .
%=1 ik _kg

This subprogram is designed to operate on either real or com-
plex matrices as specified by the input variable NC. The input,

output variables are designated as follows:

Subprogram Variables

Input Variables:

AC(I,T) - A complex two dimensional array representing the °
matrix A as aforementioned when the subprogram is used
in the complex mode.

BC(I,J) - A complex two dimensional array representing the
aforementioned matrix B.

AR(I,J) - A real two dimensional array corresponding to matrix A
in the previous discussion when the subprogram is

used in real term mode only.

BR(I,J) ~ A real two dimensional array corresponding to a real
matrix B.

N -~ An integer variable denoting the number of rows in the
matrix A.

L -~ An integer variable denoting the number of columns in A,
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NC

A,B,C,
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An integer variable denoting the number of rows in
matrix B in the above discussion.

An integer variable that denotes the number of columns
in matrix B.

An integer variable used to designate the proper
storage placement when multiplying three dimensional
matrices; for the two diménsional case set ND to unity.
An integer which designates whether the program is to
multiply real or complex matrices. 1If NC is zero, the
complex matrices AC, BC, CC are used; if NC is unity,
the real matrices AR, BR, CR are manipulated.

These variables are defined by a parameter statement in
the main program and designate maximum storage capabili-

ties in regard to the order of the matrices.

Output Variables:

CC(I1,J,ND) - A complex three dimensional array that contains the

CR(I,J,ND)

complex elements cij in equation (A-13),

-~ A real three dimensional array containing the resultant

matrix C when the subprogram is in real mode.
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-Subroutine NYQUIST

The subprogram NYGQUIST determines the number of closed-loop
poles of a cleosed-loop system inside a certain enclosed contour of

the s-plane. The number of closed-loop poles within the comntour is

from the relation

Z = P+N |, (A-14)

where Z is the number of closed-loop poles, i.e., the number of
roots of the characteristic equation inside the conteour; p is the
number of open-loop poleé within the contour, and N is the glgebraic
sum of the encirciements around the (-1 + i0) point by the frequency
response. Note the encirclements around the (-1 + jO0) point are
assumed positive if clockwise and negative if counterclockwise.

The NYQUIST encirclements are counted by application of the

equation:
+1 F M
N = INTEGER(Z &+ ~=+ ) {ANGLE[1 + G(s_.)]
2 1=2 i
- ANGLE [1 + G(si_l)]}/'rr} (A-15)

where the operator INTEGER yields only the integer portion of the
caleulation in brackets, and . P is the number of poles on the con-
tour. It is assumed that the contour is symmetric with respect to
the real axis in the s-plane; hence the frequency response G(s) is
symnetric about the real axis of the G{s)-plane. Thus in

equation (A-15), only frequency points on that portion of the
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contour in the upper hailf-plane are used in the evaluation. The

fraction ¥ 1/8 is used to account for the fact that the frequencies

Sy and S) s the first and last frequency peoints respectively, may not

actually be on the real axis. It is assumed that the points are

chosen so that the sum of the angles is within m/4 radians of the

correct value. The positive and negative signs are chosen in agree-—

ment with the the sign of the summation respectively.

The input, outpub variables are defined as follows:

Subprogram Variables

Input Variables:

N

G(1)

NRHP

NCON

F(I)

An integér variable that denotes the number of fregquency
response points supplied by the user, i.e., M in (A-15).
A complex one dimensional array containing the frequency
response G(s) where s is chosen along the contour,

An integer number of the open-locop poles inside the
contour, i.e., P in the previous discussion.

An integer number of open-loop poles located on the
contour.

A real vériable denoting the maximum frequency tange.

A complex one dimensionaljarray containing the

specified frequency peoints.

Output Variables:

NCIRL

NZ

An integer representing the number of encirclements
around the (-1 + jO) point.
An integer of the number of poles of the closed-loop

system inside the contour,
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Subroutine OUTPT

The purpose of this subprogram is to output certain information
at various stages of the main program. Three areas of information
available for output are: Compensator Informatiom, Frequency
Response Information, and Stability Margin-Data.

If the user desires data on the compensation matrix, the:
selector variable N is set to zero and the program outputs the
compensator values at the last iteration.

By setting the selector variable to unity, the overall frequency
response data is the output.

For investigating the stability margins, the selector variable
is set to two. The corresponding output data includes:

1. The margin numbers

2. The frequency where each margin occurs

3. The value of each margin

4, The desired value of each margin

5. The type of margin, i.e,, phase margin (P}, gain margin

@), stagility margin (8), or attenuation margin (A)

6. The directioﬁal vector at the last iteration.
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Subroutine PARTAL

The Compensator Improvement Program is given the ability to
determine the necessary partial derivatives of the wvarious active
margins, assuming a frequency response along algeneral contour, by
the subprogram PARTAL. ¥n order to develop this‘subroutine, the
theoretical derivations of Section 3 of Chapter II, were implemented
to yield these partial derivatives.

Recall that in designing compensation, CIP searches the compen-
sated frequency response C(jw) over specified ranges of frequency to
determine which margins do not satisfy the desired walues. TFor the
unsatisfied or active margins, the design specifications are con-
verted to distances between certain critical points of the open-loop
frequency response and particular ppints in the corresponding complex
plane; that is, the typical objective function for the kth open-loop

system is
a = {a+c Gwlla+ Ck(jm)]*}%- (A-16)

where Ck(jw) is the kth system's compensated response and A is the
point in the complex plane from which the specification is measured.
Generally, point A is chosen as the (-1.0 + j0.90) point for stability
margins and (0.0 + 30.0) for attenuation margins.

PARTAL determines the gradients of these design objectives with
respect to the compensator coefficients of the controller. Thus, the

partial derivatives of d with respect to some parameter w is
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ow ow

aC, (jw)
od Re{[A +¢ GwTF -_lﬁ-——} +ad . (A-17)

Evaluation of (A-17) depends largely on determining BCk(jw)law

accurately. Using the chain rule this becomes

ac. (jw ac, (ju oG, .
RO S e & (a-18)
ow oG ow

i3

where Gij is the element of the controller [G(s)] in which the free
parameter W appears.
As derived in Chapter II, the first term in equatiom (A-18)

may be evaluated by taking the kth element of

afc(s)] _

G —[e(s) HP{s)1{T + [G(s)1[P(s)IIH(S) T} " [H(s)] ELBGC(_SB_ .
ij . i

[P(s)1{I + [H(=)1{G(s)J[B(s)1} MIR(S)]
{A-19)

+ 20G [poy1{x + () 1[6() TR ()T} T [R(S)]
1]

where the kth diagonal element of [H(s)] is set to zero and all the
elements of [R(s)]-are set to zero except the kth which is set to
unity. Note also that B[G(s)]/BGij is a zero matrix except for
the (ij)th element which is unity.

The second term in (A-18), BGijIBW , is derived in Chapter IT.
Assuming the (ij)th element of [G(s)] is composed of a cascaded

arrangement of tramsfer functioms, i.e.,
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K
G, . = I c., A=-20
1 (s) o 1Jk(S) ( )
where K is the number of cascaded elements. The f%th cascaded

element of the (ij)th compensator of [G{s)] has the general form

=0 1j£ms
g, () = o . (A-21)
ij ? n
V... 5
a=0 ijln

Then, the free parameters of this element are the x's and y's. If

w in (A-17) is the pth numerator coefficient of (A-21), then

3, , (s) +sF
Gij<s>(—u***“‘;) -
T ox,., s
ij%m

m=0

(A-22)
09X, ,
ijlp

Similarly, if w represents the pth denominator coefficient of (A-21),

then

(A-23)

Equations (A-16), (A-18), (A-22)}, and (A-23) indicate how the needed
partial derivatives can be calculated. The subprogram PARTAL imple-
ments these equations including the necessary logic for determining
the pertubation points A and the orderly arrangement of the terms of

the partials, The subprogram alsc performs the necessary
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manipulétions in calling the subroutine CRT which is used to deter-
mine Ck(jm) in equation (A-16).

The input/output variables are defined in the following list.
Note the compensator coefficients and related data enter the sub-

program through a common block.

Subprogram Variables

Input Variables:

OMEGA (1) - A complex one dimensional arrav that contains the
specified frequencies in ascending order for describing
the systemn,

NFREQ ~ An integer variable denoting the number of active
margins to be improved.

CT(I) - A one dimensional complex array represented by the
compensated closed-loop frequency response C(s) in
equation (A-19).

KPTS (1) - An integer array used as a pointer to denote the
frequency nugber of the margin investigated.

TYPE(TI) - A reél array used to denote the type of margin being

- investigated.
T(I,J,k) -~ A three dimensional compiex array containing the

transfer product of the compensation G(s) and the
plant response P(s) for the specified frequencies.
P(1,J,K) —~ A complex three dimensional array describing the open-

loop freqﬁency response of the plant.
¢(1,J,K) - A complex three dimensional array representing the

compensation evaluated at the specified frequencies.
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KSYM ~ An integer used for addressing the proper system
arrays.

PFX(I,J), - A two dimensional real array containing the partials

PFY(I,J) of the numerator and denominator compensators respec-
tively. ‘

A,B,C,D, — Parameter variables denoting dimension allocations.

E,F,Z

The following wvariables are used to describe the compensation
polynomials; please refer to the Squrogram EVAL for a complete
description: KIN,KOUT,ZA,ZB,ZC,ZD,ZE,PA,PB,PC,PD,PE,N1,N2,M1,M2,
GAIN,KONT.

The transient vatriables apply to the following auxiliary sub-
program and are not affected directly in this routine:

Subprogram CRT: C1,CI,WORKI

OQutput Variables:

NPARC - An integer wvariable that represents the number of
partials determined.
PG(I1,J) ~ A two dimensional real array representing the 3d/dw

in (A-17).
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Subroutine PHASEM

The subprog;am PHASEM is used to detect and calculate the phase
margins of an open-loop control system represented by a discrete
frequency response. The open-loop frequency response is assumed to
be given in terms of real and imaginary values. In particular given
the ith frequency as fi’ the corresponding real and imaginary parts
of the frequency response are GRi and GIi. The phase margins occur

at the real zero crossings of the sequence:
2
S, = 1.0 - [GR, + jGL,]| . (A-24)
i i i
Next the following sequence is formed:
Uy, = §, + 8 . (A~25)

If U, < 0, then either 8§, or 8,
i— i i-1

zero crossing. Regardless of which condition has occurred, the

is a zero or Si has made a

frequency number of the phase margin is chosen as i or i-~l depending

on the smaller magnitude of Si or S, The corresponding margin is

i-1°

calculated as
STBM = [1.0°+ GR, + Jc;zkl (A~26)

where k d4is ejther i or i-1 as mentioned above.

The following variables are defined for this program:
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Subprogram Variables

Input Variables:

OMEGA(TI)

GTOTAL(I)

KPQINT

FOMIN

A complex one dimensionai array that contains the
specified frequencies in ascending order for describing
the system.

A complex one dimensional array containing the compen~—
sated open-loop frequency response for the Ith specified
frequency point.

The integer number of frequency points used to describe
the opén-loop frequency response of the system.

The lowest frequency for which the particular margins
are to be determined.

The integer used 'as a counter for the number of margins

located,”

Qutput Variables:

NM

STBM(I)

-—

This is the number that designates the last margin
found.

A one dimensional real array that contains the margin
values corresponding to %he frequency pointer KPTS(I).
These margins are measured in terms of distances from

the (-1 + j0) point in the complex GH(jw) plane.
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Subroutine POLEV

The purpose of this subprogram is to evaluated polynomials
at specified frequency points. The frequency data is complex in
‘nature. The routine is designed with an internal subfunction to
avoid inmaccuracies in raising a complex variable to a power. The

input, output variables are defined as follows:
Subprogram Variables

Input Variables:
FW{I) - A one dimensional real array containing the poly-
nomial coefficienéé in ascending order.
X ~ An integer denoting the order of the polynomial.
X - The complex variable of evaluatiom.

Qutput.Variables:

F - The complex resultant of the evaluation.
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Subroutine SRMINS

The purpose of this subprogram is to calculate the maxima or
minima of a discrete data open-loop frequency response with respect
to a chosen point along the real axis. For example, assﬁme GRi and
GIi are the real and imaginary response terms corresponding to the

ith frequency point. The following sequence is formed:

o . 2 _
U, = |P+GR; + j6I| . (a-27)

where P represents the negative point of investigation located on

the real axis. Another sequence is generated as follows:

v, = U, -1 . (A-28)

If v, -V,

corresponds to a relative maximum with respect to point P. Otherwise,

<0 and vi—l > 0, then the (i-1) frequency point

if Vi . Vi—l is less than or equal to zero and vi—l < {4, then the
(i-1) frequency is a relative minimum with respect to P.
The definitions of the variables are the same as those in the

routine PHASEM with the following additional input variables:

Subprogram Variables

Input Variables:

P - The negative value of the real axis point for which
maxima or minima are to be located.

N -~ An integer variable to determine whether éhe program
is to determine maxima or minima. Maxima are investi-

gated if N is unity; minima are found if N equals -1.
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Subroutine XCHECK

The XCHECK routine is not designed to check for dampine ratio
violations, but is necessarv to assure ?hat compensator noles and
zeros on the specified zeta boundaries do not result in a zeta
violation upon incrementation. The technique employed for designing
the compensation is to adjust the directional vector by zeroing the
corresponding partial vector terms until the directions of movement
of the above mentioned poles are within the defined sector. In this
effort, the subsystem values of the zeta damping factor and the
undamped natural frequency w, must be calculated and compared to the
user specifications.

Recall that the form of the compensation used by CIP is cascaded
first and second order factors. 1In the case of first order factors
if either of the coefficients is negative the program defaults with
an error signal denoting the occurrence of a zeta violation, and,
consequently, the run is terminated automatically; this can only
occur on the first iteration because on succeeding iteratioms the
subprogram, YCHECK, assures that a zeta violation cannot occur. The
assumption here is that the user has erred in his initial selection
of compensation.

If either of‘the coefficients is zero, the result.is a root at
the origin or at infinity. In this case the avoidance of a zeta
violation is assured by forcing the corresponding terms of the
directional vector to be nonnegative. This is implemented by first

checking the signs of the corresponding terms of the directiomal
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vector; if these signs are negative, the corresponding terms of the
partial vector are zeroed and the directional wvector is recomputed.
On each iteration the number of wariable coefficients is reduced by
the number of terms in the directional vector forced to zero in this
manner. If the number of variable coefficients becomes less than
the number of active margins the CIA will fail and the run will
terminate automatically.

In the case of second corder factors the program calculates the

mn and zeta as defined by the following second order factor:

_ 2 2 —
T(s) = s° + 2§mns + . (A-29)

This equation can. be related to the CIP form of second order factors
as.

T(s) = a, +a;s+ azs2 : (A-30)

Comparing (A-29) and (A-30) it is easily seen that

w o= Va,/a, N (A-31)
o= @)/ (2w + a) . (4-32)

The damping ratio ¥ is checked to determine if a zeta violation
has occurred. If such an occurrence is detected, as with first
order factors the program is automatically terminated.

If the value of [ indicates roots of the second order factor

on the £ boundaries, the next step is to determine whether these
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roots will result in zeéta violations upon incrementation of the
c&mpensator coefficients. Thi; is accompiished by checking the sign
of the change in £ from incrementation;

The change in zeta witH respect to the change'in the coeffic-

ients of (A-30) is

AZ 1 e +Llpa -2y (A-33)
£ - a _j- a - — a —
2wy, 2a0§2 o a; t 2a; 2

where Aagy, Aa,, and Aa, are the elements of the directional vector
corresponding to a;, a,, and a,. If A;. is negative a zZeta
violation is inevitable. In order to avoid such an occurrence,
assoclated terms of the partial vectors are zeroed and the directional
vector is recommputed. This is continued until AZ is nonnegative.
As with the first order factors the number of variable coefficients
is reduced,

The program variables are defined as follows:

Subprogram Variables

Input Variables:

KIN —- An integer variable that denotes the number of

inputs to the controller.

KOUT - Integer variabie denoting the number of controller

‘ outputs.

ZA(I,J,K) ~ A real three dimensional array representing the
constant terms of the first ordér factors.

ZB(1,J,K) ~ A real three dimensional array containing the first

order factor coefficients of s,
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ZC(1,J,K) A real three dimensional array representing the

constant terms of the second order factors.

ZD(I,J,K) - A three dimensional real array containing the s
coefficients of the second order factors.

ZE(I,J,K) - A real three dimensional a?ray containing the g?
coefficients of the second order factors.

N1(I,J) - An integer array that denotes the number of cascaded
first order factors for each subsystem.

Nz(1,J) - An integer array that denotes the number of cascaded
second order factors for each subsystem.

DV (1) — A real one dimensional array representing the
directional vector d in equation (A-5).

ZETA - A real wvariable that denotes the desired minimum
damping rétio.

KXK - An integer used to count the number of elements in
the, directional vector.

PG(L,J) - A two dimensional array containing the partial
9d/9w in equation (A~17).

XRE - A program contrpl integer,

LEV - An integer denoting'the number of variables allowable
for change.

NAM - An integer variable that represents the number of
active, that is, unsatisfied margins.

NRTR1 — An integer denoting whether first order factors are

constrained to the left half GH(jw) plane: 4if 1, the

factors are unconstrained; otherwise, constrained.
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NRTR2 ~ Same as NRTR1 but applying to second order factors.
A,B,C,D,E - Parameter variables used to dimension the arrays by

the number of maximum allowable elements.

Output Variables:

The following output variables are defined in the same manner
as their respective input variables, but have been updated in the

subprogram: PG(I,J), KKK, KRE, LPV.
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Subroutine YCHECK

The subprogram YCHECK is desighe& to detect compensation poles
or zeros that have been forced outside the allowable camping ratio
sector due to incrementation of the coefficients. If such is the
case, the routine selects a maximum step size which will inhibit the
zeta boundary violation while continuing to produce an improved
solution.

Recall that the CIP compensator data is described by transfer
functions in cascaded first and second order factors. Similar ta
the XCHECK subprogram, YCHECK examines the first order compensator
factors for possible right half plane roots. If such a root is
found, the program reduces the step size until the root is marginally
in the left half plane.

Assuming that all the first order roots are now in the left
half plane, the subprogram proceéds to- investigate the second order
factors for possible zeta boundary violations. A typical second

order factor of the form

T(s) = a, + a;s + a232 (A-34)
vields the relation for the- undamped natural frequency.
s (A~35)
ang the zeta damping ratio as

g = (@)/Qu -+ a,) . (A-36)



108

Upon comparison with the user specified damping ratio, if a zeta
violation is incurred, the deincrementation of the second order
coefficients continues iteratively until no violation occurs. From
this increment a new step size is calculated and the routine returns
to the main program to determine the compensator coefficients in
accordance with this step size.

The input and output variables are defined in the following

list,

Subprogram Variables

Input Variables:

KIN -~ An integer variable that denotes the number of inputs
to the controller.

KOUT ~ Integer variable denoting the number of controller
outputs.

ZA(1,J,K) - A real three dimensional array representing the con-
stant terms of the first order factors.

ZB(1,J,K} =~ A real three dimensional array containing the first
order factor coefficients of s.

Z2¢(1,3,K) =~ A real three dimensional array representing the con-
stant terms of the second order factors; i.e., a,
in (A-34). ‘

Zh(1,J,K) = A real three dimensional array containing the s coef-

ficients of the second order factors; i.e., a, in

(a-34).



109

ZE(1,J,K) - A real three dimensional array containing the s2
coefficients of the second order factors; i.e., a,
in (A-34).

NI1(Z,J) ~ An integer array that denotes the number of cascaded
first order factors for each subsystem.

N2{1,T) - An integer.array dencting the number of cascaded
second order factors for each subsystem.

DV(I) —~ A real one dimensional array representing the
directional vector d in equation (A-5).

ZETA - A real variable that denotes the desired minimum

. damping ratio.

KKK - An integer used to count the number of elements in
the directional vector.

STEP - A real variablie denoting-the step size .

PMG ~ A real variable denoting the magﬁitude of the partial
vector.

KRE ~ A program control integezr.

A,B,C,D,E - Parameter variables used to dimension the arrays by
the maximum numger of elements allowable.

NRTIR1, - An integer denoting whether first or second order

NRTR2 factors, respectively, are constraimed to the left half

plane: 4f 1, the factors are unconstrained; otherwise,

constrained.

Qutput Variables

The following variables are defined in the same manner as their
respective input variables, but have been updated in the subprogram:

STEP, KKK, KRE, LPV.
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FORTRAN IV LISTING OF THE COMPENSATOR

TMPROVEMENT PROGRAM

This appendix containg a complete Fortran version of the
Compensator Improvement Program for Multi-variable Control Systems.
The program is completely self-contained, i.e., it requires no
system library, etc. The necessary data input is explained in the
comment statements preceding the main program. The subprograms are
listed in alphabetical sequence. For information regarding sub~
program theory or variables, tefer to the respective synopsis of

Appendix A,
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THE MULTIVARIABLE COMPENSATOR IMPROVEMENT PROGRAM
CREATED AT
MISSISSIPPI STATE UNIVERSITY
ELECTRICAL ENGINEERING DEPARTMENT
BY

L, L, GRESHAM

Jo Re MITCHELL
AUGUST 1977

7 Ci LT Ty ey

CIP MAIN PROGRAM

PARAMETER A=2, B=4, C=4, 0=100, E=20, F=10=AxBxC, H=4,
iS*4+BxC, E2=z2=xE
PARAMETER EXPLANATION:

A COINCIDES WITH THE MAX MD. OF CONTROL INPUTS

8 COINCIDES WITH MAX NO, OF QUTPUTS

C COINCIDES WITH THE MAX COMPENSATOR FACTORS

D COINCIDES WITH MAX NQ, OF FREQUENCY DATA POINTS
£ IS MaX NU, OF MARGIN POINTS ALLOWABLE.

F

H

C

£

C

L

C

C

<

C

C

C IS 10=C -

C 15 THE MAX, NO, OF FREQ, DEPENDENCE OF DESIGN SPECS,
c €5 IS 5%(

c E2 1S 2+E

C A2 IS 2%A

C CIP DATA CARDS

CCARD NO, VARIABLES READ FORMAT

C i MODE,NZERO1,NZEROZ,,iPOLE!L AlL,&6X,51I5,2G10,5
L NPOLEZ2,KEY,ZETAZ,ZETAP

C 2 D 1544

C 3 KSTART,KQUIT,KPOINT, 615

C KPRINT,KIN,KQUT

C 4 STPMAX ,STPMIN,PINACT 3F10.5
C 5 KEYOUT(1),1=1,4 415

c & NOMCTR{I) NOLRHP(I),I=1,KIN 615

c a GMF(L),GMR{L) L=t ,NG 8610,3
C .

C .

C . -

C  9+#NG PMF (L) PMR(L) ,L=1,NP 8G10.3
¢ .

C N

c .

€ 10+NG+NP T SMF{L),SMRILY,L=1,NS 8610,3
C

c

c

A2z2%A,

Ch=
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€
c
C
C
c
c
c
c
c
c
C
C
C
c
c
c
C
C
c
c
C
C
c
c
c
€
C
c
C
C
c
€
c
c
c
C
C
T
c
c
C
C
c
C
C
¢
C
c
c
£
C
o
C
c
c

{1+NGHMP NS  ASF (L), ASF(L) ,L=1,NA 8G10,3
12+NG+NP+NS+NA Fl,F2, « +» »+F10 8G610,3
OMEGA(K),G(1,J,K),J=l,KIN,
. I=1,K0UT 4620,5
GAINCYI,J) NLCI,J),N2(1,0),
. MiC(IpJ)sM2CT,J) ,KONT(I,J) G10.3,515
. ZACI J,L),2BCI,J,L),L=1,N1 7G10,5
2C(I+J,L):2001,d,L),,2ECT,Jd4L3,
. L=1,N2 7G10.5
. PACT,J,L3,PBCYI,J,/L) L2, M] 7610.5
PC{I,daL),PDCL,J,LY,PECTSJeL Yy
. £=1,M2 7610.5

DEFINITIONS OF I/0 VARIABLES

ITERATION CONTROL DATA

MGDE =~DETERMINES WHETHER THE PROGRAM IS TO OPERATE IN THE
SuUM IMPROVEMENY FRQUEMCY MODE (SIFR) OR THE TOTAL
IMPROVEMENT FREQUENCY MODE (TIFR), IF DATA CARD
BLANK THE PROGRAM AUTOMATICALLY DEFAULTS TO THE
TIFR 40DE. IF SIFR IS5 DESIRED THEN MODE=SIFR,

NZERO{=DETERMIMES WHETHER 1-37 ORDER ZERO FACTORS ARE ;
CONSTRAINED TO L.H.P, (IF ,EQ, TO 1, UNCONSTRAIMED
OTHERWISE, CONSTRAINED).

NZERO2~SAME, L AS NZEROL, EXCEPY FOR 2-MD ORDER FACTORS,

NPOLE1~SAME AS NZERO1, EXCEPT FOR 1-ST ORDER POLE FACTORS,

NPOLEZ2~SAME A3 NZEROI EXCEPT FOR 2-ND ORDER POLE FACTORS,

ZETAZ= MINIMUM DAMPING RATIOS FOR COMPENSATOR ZERQS; APPLIES

ONMLY IF NZERO ,NE.l.

KEY = ¢ , NYRUIST SUBPROGRAM NOT CALLED

ZETAP = SAME A5 ZETAZ APPLIED TO POLES

KSTART =STARTING ITERATION NO,

KQUIT = STOPPING ITERATION NUMBER

KPOINT =NO, OF POINTS FROM OPEN LOOP FREG, RESPONSE USED
IF KPOINT=0, READ A FREQUENCY, THEN FACH CHANNEL’S

STPMAX ~MAXTMUM CHANGE TO 8E MADE IN COMPENSATOR COEFFICIENTS
SMALLEST COMPENSATOR COEFFICIENT OF THE INITIAL
COMPENSATOR]

STPMIN - MINIMUM STEP SIZE DESIGNATOR

PINACT «~LARGEST DIFFERENCE BETWEEN A& CONSTRAINT AND ITS

CESIRED VALUE IN GOING FROM INACTIVITY TO ACTIVITY

KPRINT = NO. OF ITERATIONS SKIPPED BETWEEN PRINTING OF IMFOR,

KEYQUT=1 , REQUESTS PRINTOUT
KEYOUT=0 , NO PRINTOUT
KEYOUT (1) '~ COMPLETE ITERATION OUTPUT
KEYOUT(2) = OUTPUT COMPEMSATOR IMFORMATION
KEYQUT(3) < CUTPUT FREQUENCY RESPONSE
KEYOUT(4) = QUTPUT MAPGIMN SPECIFICATIONS
NONCTR(I) = NUMBER OF POLES UM CONTOUR
NOLRHP (1) - MUMBER OF POLES INMSIDE CONTOUR
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VARIABLES FOR MARGIN RADII SPECIFICATIONS

NUMBER OF MARGIN RADII TO BE SPECIFIED:

NG = NO, OF GAIN MARGIN RADII SPECIFIED

NP = NO. OF PHASE MARGIN RADII SPECIFIED

NS = NG, OF STABILITY MARGIN RADII SPECIFIED
NA = NO, OF ATTENUATION MARGIN RADII SPECIFIED

VARIABLES FOR GAIN MARGIN RADII DESIGNATIONS
IF FREG .GT. GMF(I) BUT .L7. GMF(I+1) DESIRED MARGIN
IF FREQ .GT. GMF(I+1) BUT LT, GMF{I+2) DESIRED MARGIN
ETC, ;
1F FREQ ,GT, GMF{NF) PESIRED MARGIN

VARIABLES FOR PHASE MARGINMN RADII DESIGMATIONS
IF FREG .GT., PMF(I} BUYT ,L7. PMF(I+1) DESIRED MARGIN
IF FREQ (GT.PMF(I+1) BUT ,LT. PMF(I+2) DESIRED MARG.N
ETC.
IF FREQ .GT. PMF(NF) DESIRED MARGIN
VARIABLES FOR STABILITY MARGIMN RADII1 DESIGHATIOMS
IF FRE® .67, SMF{I) BUT ,LT. SMF(I+1) DESIRED MARGIN
IF FREQG .G7. SMF(I+1) BUT .LT. SMF(I1+2) DESIRED MARGIN
ETC.
IF FREG .GT, SMF(NF) DESIREDC MARGIN

"o 1] (LI

1|

VARIABLES FOR ATTENUATION MARGIN RADII DESIGNATIONS
IF FREQ .FT. ASF{l) BUT .LT., ASF(I+§) DESIRED MARGIN
IF(FREA .GT, ASF(l+1) BUT .LT, ASF(1+2) DESIRED MARGIN
ETC,
IF FREG .67, ASF(NFJ DESIRED MARGIN

"

F1

(13

F2 = FREQUENCIES BETWEEM WHICH G,M,"S ARE FOUND

F3 3 F4 « FREQUENCIES BETWEEN WHICH P.M,’S ARE FOUND
FS5 ¢t F6 = FREQGUENCIES BETWEEN WHICH S.M,’S ARE FOUND
F7 ¢ F8 « FREGUENCIES BETWEEN WHICH A.M,”S ARE FOUND

VARIABLES FOR PLANT DYNAMICS

KIN IS MO, OF CONTROL INPUTS

KOUT IS5 NO, OF QUTPUTS

OMEGA(I) = ITH FREQ.(ASSUMED TO BE IN HZ.)

G(I,JsK) = PLANT DYNAMICS WITH INDEX F(KIN,KCUT,KPOINT}

DESCRIPTION OF COMPENSATION

GAIN(I}=-DEMOTES INITIAL D, £, GAIN VALUE FOR I~-TH CHANNEL
KONT(I)=D,C, DESIGNATOR FOR I~TH THANNEL

KONT(I)=1 GAIN ALLOWED TO VARY

KONT(I)=2 GAIN NOT ALLOWED TO VARY

GMR(I)
GMR(I+11

GMR (NF)
PMR(I)
PMR(I+13
PMR (NF)

SMR{I)
SMR(I+1)

SMR(NF)
ASR(I)
ASR(I)
ASR(NA)
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10
20
30
40
50

60

N1(I,J) = NO. OF 1ST ORDER NUMERATOR COEFFS. GF COMPENSATOR (I,J)
M2{I,J) = NO. OF ZND DKRDER MUMLRATOR COEFFS, GF COMPENSATOR (I,J)
M1{1,J) = MO. OF 15T ORDER DENONVMINA, COEFF3, OF COMPENSATOR {1.,J)
M2(1,J) - NO, OF 2ND ORDER DENOVINA, COEFFS, OF COMPENSATOR (1.J)
KTH CASCADE COMPENSATOR(I,J,K) COEFFICENTS W#HERE I=aKIN, J=KOUT
FIRST ORDER MUMERATOR FACTOR COEFFICIENTS: (ZA + ZB*S)
ZA(1,J,K) = 15T GRDRER "NUM. FACTOR CONSTANT OF KTH CASCADE COMP
ZB(I,J,K} = 15T ORDER MUMERATOR FACTOR COEFFICIENT(ZB%S) OF KTH
SECOND ORDER NUMERATOR FACTOR COEFFICIENTS: (ZC + ZD*S + ZExS*xx2)
ZC(I,Jd,K) = 2ND ORDER MUM, FACTOR CONSTANT OF KTH CASCADE COMP,
ID(1,J,K) = COEFFICIENT ZD*S OF KTH CASCALE COMPENSATOR
ZECIsJ,K) = COEFFICTIEMT ZE*xS*x*2 0OF KTH CASCADE COMPENSATOR
FIRST ORDER DENOMINATOR FACTOR COEFFICIENTS: (PA + PBxS)
PA{I«J,K) = 1ST ORDER DENOMINATOR FACTOR CONSTANT
PB{I,JsK) = 1ST ORDER DENOMINATOR FACTOR CUOEFF, (PB%xS) OF KTH
SECOND ORDER DENOMINATOR FACTOR COEFFICIENTS:(PC+PD*S+PE*S%%2)
PC(I,J,K) = 2ND ORDER DENOM, FACTOR CONSTANT OF KTH CASE, COMP,
PO(I,J,K) = COEFFICIENT PDxS OF KTH CASCADE COMPENSATOR
PE(I,J,K) = COEFFICIENT PE4#Sx%x2 OF KTH CASCADE COMPENSATOR
INTEGER TYPE,TYACT,ACTIVE,ACTDES, XXP, XXG,XXS,XXA
COMPLEX G(B,A,D);GCLA,B,D)Y, T(A,4,D),OMEGA(D) ,CT(D,A),PCG,CL1(A,A):C
1TCA,AY  WORKI(A,A2) .
DIMENSION KONT(A,B), GAINCA,B), Ni{A,B), N2(A,B)Y, MI(A,B)Y, M2(A,B)
1, ZA(A,B,C), ZBCA,B,C), ZC(A,B,CY, 2D(A,8,C), ZE(A,B,C), PACA,B,C)
2, PB(A,B,C}, PC(A,B8,C), PD{A,B,C), PE(A,B,C), GMF{HY, GMR(H), PMF(
3H), PMR(H), SMF(H), SMR(H), ASF(H), ASR(H), NM{A,, XOLD(D)}, PGLE.F
4}, DV(F)}, WEIGHT(E), KMIN(A), SML(E,A), TYACTC(E), RQ(E,A), TYPE(E,
S5A4), ACTIVE(E,A), STBM(E,A), KPLS(E,A), NIT(A), KINACT(E,A), NMLC(A)
By KACT(E,A), ID(15), ACTDES(2)}, PFX(E,E), PFY{E,E), WORKR(E,E2}, K
TNEW(DY, NOMCTRCA), NOLRHP(A), KEYOUT(4) .
COMMON ITER,KSTART
GATA TBLANK,XXP,XXG,%XS,XXA /4H +1HP,1HG ,1HS,1HA/ ACTDESC(1).,ACT
IDES(2),ITIFR /3HYES,2HNG,UHTIFR/ .

KPTMAX=D
DATA INPUT BLOCK - * e - » . - . - » - ) » [ 3 L ) - - » L ] - L] [ ] - . L
ITERATIOM CONTROL DATA , . . . ‘u

READ (5,10) MODE,NZERCI,NZEROZ, NPULEl NPULEa KEY:ZETAZ S ZETAP, 10
FORMAT (A4,6X,515,2610,5/1544)
WRITE (6,20) ID

FORMAT (1H1,10X,15A4)
WRITE (6,30) NZERO!,NZERD2,NPOLEL, NPOLEB

FORMAT (*0°,5X,"NZERO1=7,12,* NZER02=’,12,” NPOLE1=’,12,° NPOLEZ
=7,12)

IF {(MODE,EQ,IBLAMNK) MODE=ITIFR

WRITE (6,40) MODE
FORMAT (“07,5X, THE PROGRAM TS IN THE *,Ad,* MCDE?)
READ (S450) KSTART,KQUIT,KPOINT,RPRINT,KIM,KOUT,STPMAX,STPMIN,PINA
1CcT

FORMAT (615/3F10.5)
READ (5,60) (KEYOUTC(I),I=1.,4)

READ (5,60) (MONCTRCI)},NOLRHP{I),I=1,KIN)
FORMAT (&15)
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70
80

949

100

110

120

130

140

150

160

170

180

190

200

2140

220

DESIGN SPECIFICATION DATA , ¢ 4 ¢ o 2 2 o o a &
READ (5,60) NG,MP,NS;NA,NV

WRITE (6,80) KSTART,KQUIT,KPOINT,KPRINT

READ MARGIM FREQUENCIES IMN ASCENDING ORDER

READ (S,70) {(GMF(K),GMR(K),K=1,NG)

READ (S,70) (PMF(L),PMRIL),L=1,NP}

READ (5,70) (SMF(X),SNMR{K),K=1,NS)

READ (S,70) (ASF(LY,ASR(L),L=1,NA)

READ (S5,70) F1,F2,F3,FU,F5,F6,F7,F8,F9,F10
FORMAT (B8G10,3)

FORMAT (*0°,5X,"START ITER = *,14,”* STOP ITER = *,I4,2X,"NQ, OF
LFREQ, POINTS = *,15,2%X, PRINT INCREMENT = 7,15}

WRITE (6,90) KIN,KOUT

FORMAT (’0°,5X, "NUMBER OF CONTROL INPUT CHANNELS=7,15,5X,” MUMBER
1QUTPUT CHANNELS = *,1I5,/)

WRITE (6,100) STPMAX,STPMIN,ZETAZ,ZETAP,PINACT

FORMAT (’0°,5%X,"MAXIMUM DESIGNATED STEP SIZE =*,F10.5 6%, "MINIMUM
IDESIGNATED STEP SIZE = *,G10.5/6X,  MINIMUM COMPENSATOR ZEROS ZETA
2z *,G10,5/6%, "MINIMUM COMPENSATOR POLES ZETA = 7,G610,5/6X, AMT. AR
IOVE SPECS. TO BE KEPT IN ACT,.=",F10,9)

DO 110 I=1,KIN

WRITE (6,120) I,NONCTRCI),NOLRHP(Y)

FORMAT (“0°*,5%X,"FOR SYSTEM ND.”,13,*; NONCTR=*,I3,* AND NOLRHP=’
13)

WRITE (6,130) NG,NP,N3,NA -

FORMAT (’'0',5X%X,"NG="12,* ,NP=",12," ,N3=7,12," ,NAz",I2)

WRITE (6,140}

FORMAT (70°SX,”DESIRED MARGIN RADII DESIGMATIONS®,///6X,”DESIRED
1*GAIN MARGIN DESIGN SPECIFICATIONS?)

WRITE (6,150) (GMF(K},GMR(K) ,K=1,NG)

FORMAT (/,15%,*1F FREQUENCY .GE.",F10,5,5X,"DESIRED MARGIN IS':FIO
1,5)

WRITE (6,160) FL,F2
FORMAT (* *,5%,"GAIN MARGINS ARE DETERMINED BETWEEN THE FREQUERCIE
18 OF*,F10.5,2X,"AND’,F10.5)

wWRITE (6,170)

FORMAT (°0°,5X, DFSIRED PHASE MARGIN DESIGN SPECIFICATIONS?)
WRITE (6,150) (PMF(L),PMR(LY,L=1,NP)

WwRITE {(6,180) F3,F4

FORMAT (* ©,9%, PHASE MARGINS ARE DETERHINED BETWEEN THE FREGQUENCI
1ES OF ,F10,5,2%:,"AND",F10.5)

#RITE (6,190)

FORMAT (”0*,5%, ”DESIRED STABILITY MARGIN DESIGN SPECIFICATIONS®)
ARITE (6,150) (SMF{K),SMR(K),X=],NS)

VIRITE (6,200) F5,F6

FORMAT (* *,S5X,’ STABILITY MARGINS ARE FOUND BETwWEEM THE FREGUENCIE
15 OF*,F10.5,2X,"AND*,F10,5)
WRITE (6,210)

FORMAT (70°,5X,"DESIRED ATTENUATION MARGIN DESIGN SPECIFICATIONST)
WRITE (6,150} (ASF(K),ASR(X),K=1,NA)
WRITE (6,220) F7,F8 :

FORMAT (* *,5X,"ATTENUATION MARGINS ARE FOUND BETWEEN THE FREQUENC
11ES OF " F10.5,2X,"AND" ,F10,5)

READ OATA ON O.L. SYSTEM , , . .

I,J,% ALWAYS DENOTE COUMTER KIN KOUT KDATA POINT RESPECTIVELY
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230
240
250
260

270
C

280
290
300

310
320

330

349

550

. READ COEFFICIENTS IN ASCENDING POWERS OF S, IN 1ST AND 2ND ORDER

WRITE (6,230)
FORMAT (5X,"UPEN LOOP SYSTEM INPUT FRERUENCY RESPOMSE: 7,/,31X,°CO
IMPLEX OMEGA’, 13X, "COMPLEX G(JW)"/,5%X, "DATAZ,3%, "CHANNELCT,J) ,5%,"*
SREAL (VM) "»SX, “IMAGIW) *,S5X, "REALCG) " ,5X, "IMAG(G) ", /)

DO 260 K=1,KPOINT

READ (5,240) OMEGA(K), ({G(I,J,K),J=1,KIN),I=1,KOUT)

FORMAT (4G20,5%)

DO 260 I=i,KxOUT

DO 260 J=1,KIN

WRITE (6,250) K,1,J,0MEGA(K]},B(1,J,K)

FORMAT (5X%,13,2(5%X,12)},2(5%,2610.4))

CONTINUE

COMPENSATOR INPUT DATA ¢t 3 8 & 8 e ¢ o 8 T e = a2 ¥ s ¥ s & &
DO 320 I=1,KIN

DO 320 J=1,K0UT

READ (5,270) GAIN(I,JY,N1CI,J) ,N2CT,Jd) MICT,Jd) M2CE,d),KONT(TI,J)
FORMAT (1G10.%,51I5)

NC=NMI(T,J)

IF (NC.E@.0)Y GO TO 280 .

READ (5,310) (ZACI,J,L),ZB(I,J,L),L=1,NC)
NC=N2(I,J)

IF (NC.EQ.0) GO TO 290 .

READ (S,310) (2CCI,J,L),2DCT,J,L),ZECT,J,L),L=1,NC)
MC=M1(1,d)

IF (MC,ER,0) GO TO 300

READ (5,310} (PA(I,Jd,L),PBCI,J,L) L=t ,MC)
MC=M2(I,J)

IF (MC,EQ,0) GO 7O 320

READ (9,310) (PC(I,J,L),PDCI,JsLYPECT,J, L) ,L=1,MC)
FORMAT (7G10,5)

CONTINUE

DATA INPUT COMPLETED . s & % % 3 w 8 8 85 e & ® ¢
DETERMINE NO. OF INDEPE“DENT PARAMETERS

KNOT=0Q

LNOT=0

KVARY=0

DO 330 1={,KIN

DO 330 J=1,K0UT

KNQT= KhUT+2*N1(IrJ)+3*N2(I J)
LNOT=LNOT+2%M1 (I, J)+3*M2(1,J)
KVARYSKVARY+N1(I,J)+4N2(I,J)*2
KVARYZKVARY+MI (I, J)+M2(1,J)*x2

IF (KONT(I,J).ED.1) KVARYZKVARY+1

NPARC=KNOT+LNCT

ITER=KSTART

STEP=STPMAX

STPOLD=3TPMAX

KPOLD=KPOINT

00 340 I=1,KPOLD

KOLD(I)=1

KPRz~

DATA RADZ /114,591559/

D0 360 I=1,NP

IF ((PMR{I1).GE,0,).AND,(PMR(I},LE,180,)) GO TQ 360
WRITE (6,350)

FORMAT (*07,5X,."*xx*xx HEY DUMMY YOU HAVE MADE A MISFAKE®” (ON THE
{PHASE MARGIN SPECIFICATIONS #%xx”)
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STOP
360 PMR{I}=2,%*SIN(PMR(I)/RADZ)
FNYQT=AMAX] (GMF (NG) , PMF (NP) ,SMF (NS)})
370 KRESET=0

IF ((ITER,EQ.KSTART),OR, (KPOINT.LT,1.5%*KSTAND)Y) GO TO 380

CALL DELETE (KPOIMT,KIN,KOUT,OMEGA,G,NIT,KIMACT,NML,KACT,ITER,KPOL
10, KOLD  KNEW,A,B,C,D,E)

KRESET=1
C CALCULATION OF COMPENSATED FREGQUENCY RESPONSE . 4 « & o s & » o o
380 D0 390 K=1,KPOINT
399 CALL EVAL (OMEGA(K) ,GC,G,T,X,KIN,KQUT,Z4A,7ZB,2C,20,ZE,PA,PB,PC,PD,H
TE,N1,N2, M, M2,6AIN,KONT,A,B,C,D)

KPR=KPR+1

IF (ITER,NME,KSTART) GO 70 4400

IF (KEYOUT(2),EG.1) CALL QUTPT (OIKSYMIKPOIMTICT{i’KSYM)IUMEGAJITH
IRy N,KPTS(1,KSYM) KMIN, STBM(1,KSYM) ,RQ, TYPE(1,KSYM) ,ACTIVE,KIN,
2 KOUT,ZA,ZB,ZC,Z0,ZE,PA;PB,PC,PD,PE, N1 N2, M1 ,M2,GAIN,KONT,A,B,C /K
3oLD)

IF (ITERL.GT.KQUIT) GO TO 1020
£ DETERMINATION « OPEN LODP FREQUENCY RESPUNSE CT OF KSYM + o « + =
4400 NAM=0

NSUM=G

MAD=0

LPV=KVARY
AD'.):i'E'iS

DO 750 KSYM=1,KIN
KPLAST=KPOINT

DO 410 K=1,KPOINT
CALL CRT (1,K,KSYM,T{1,1/K)KIN,KOUT,CTC(1,KSYM),G(L,1,K)},PCG,1I1,J1
1"CII'CIr‘?ORKI'AfBrD)
IF (KEYOUT(3).ER.1) CALL QUYPT (1,KSYM,KPOINT,CTCL,KSYM),OMEGA, ITE
1R/ N,KPTS(1,KSYM) ,KMIN,STBM(L,KSYM) ,RA,TYPE(L,XSYM) ,ACTIVE,KIN,
2 KOUT,ZA,ZBsZC, 2D, 2E,PA,PB,PC,PD,PE, N1, N2, M1 ,M2,GAIN,KONT,A,B8,C,H

3aLn)
410 CONTINUE .
c DETERMINATION OF MARGINS *® & ® 3 4 & & F ¥ T 2 § @ * 4 ¥ € w 8 ¥
420  NM(KSYM)=0
C DETERMINATION OF GAIN MARGIMS BETWEEN F1 AND F2:

CALL GAINMG (CTC1,KSYM),KPOINT,NM{KSYM),F1,F2,KPTS{1,KSYM),STBM(1,
IKSYM), OMEGA)

KPMaNM(KSYMY+1

NGMS=NM{KSYM)

IF (NM(KSYM),.EQ.0) GO TO 440
CALL ADDPTS (KPOINT,KIN,KOUT,1,NM(L1),STBM(1,KSYM),KPTS(1,1),0T (1,1
1)/G G0, T,0MEGA KGDBAK  KPTMAX, NIT,KINACT, M¥L, XA  TC1,1),KPOLD,KOLD,K
25YM,C1,CI, WORKI,ZA,78,2C,Z0,ZE,PA,PB,PC,PD,PE N1, N2, M1, M2,GAIN,KOK
3T,A,8,C,0,E)

IF (KPOIMT.GT.KPTMAX) GO TO 450

IF (KGOBAK,EQ,1) G0 TO 420

N=MM(KSYM)

C SETTING DESIRED STABILITY RADII OF GM”S:

DO 430 I=1,N

TYPE(I,KSYM)=XXG

KWHICH=KPTS(I,KSYM)
FREHZ=AIMAG {OMEGA (KWHICH))
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430
440

450
460

470

480
490

500

510

520

530

DO 430 L=1,NG

IF (FREHZ.GE.GMF(L)) RQCI,KS5YMI=GMR{L)

CONTINUE

NM(KSYM)=NGMS

DETERMINATION OF PHASE MARGIMS BETWEEN F3 AND F4:

CALL PHASEM (CT(1,KSYM),KPOINT,NM(KSYM) F3,Fa4,KPTS(1,KSYM),STEMIL,
1KSYH) , OMEGA)

N=NM(KSYM)

IF (M.LT.KPM) GO TO 490

CALL ADDPTS (KPOINT,KIN,XOUT,KPM,NM(1),STBM(1,KSY?),KPTS(1,1),CT(1
1,13,G,GC, T+OMEGA, KGOBAK , KPTMAX,NIT,KINACT,NML,KACT(1,1),KPOLD,KOLD
2,K5YM,C1,C1,WORK1,ZA,2B,2C,ZD,Z€E,PA,PB,PC,PD,PE,NI,N2, ML ,M2,GAIN,K
I0NT,4,8,C,D,E)

IF (KPOINT.LE.KPTMAX) GO TO 479
WRITE (&,860) KPTMAX )
FORMAT (70°,5X,3C1H*),2X, “TERMINATION REASON: NO, OF FREQ. ""POIN
1TS HAS EXCEEDED*,1%9,2X,3(1H*))

GO TO 900

1F (KGUBAK.EQ.1} GO TO 440

N=NM(KSYM)

SETTING DFSIRFED STABILITY RADII OF P,M,”S:
DO 480 I=KPM,N

TYPECI,KSYM)sXXP

KAHICHEKPTS(I,KSYM)

FREHZ=AIMAG (OMEGA(KWHICH))

D0 480 L=z=1,NP

IF (FREHZ.GE.PMF(L)) RACI,KSYMI=PMR(L)
CONTINUE

KPM=N+14

CONTINUE

KLAST=NM(KSYM)

MM(KSYM)=KLAST

KSTRMzKPM :
DETERMINATION OF STABILITY MARGINS

CALL SRMINS (CTCL,KSYM),KPOINT,NMIKSYM) ;1,01 ,F5,F6,KPTS(1,K5YM) ST
18M( 1 ,K5YM),OMEGA)

NENM{KSYM)

IF (N,LT.KPM) GO TO 599

CALL ADCPTS (KPOINT,KIN,KOUT,KPM,NM(1y,STBM{L,KSYM)  KPTS(1,1),CT(!
1,1),6,6C, T,0MEGA, KGOBAK, KPTMAX ,NIT,KINACT,NML,KACT(1,1),KP0OLD,KOLD
B,KSYMpCl,CI.WGRKI,ZA,ZB;ZC:ZD:ZE:PA:PB;PC.;PD:'PE;NI:N2:MI;MEIGAINIK
SONT,A,B,C,D,E) .

IF (KPOINT.GT.KPTMAX) GO TO 450

IF (KGOBAK.EQ.1) GO TO 500

IF (ITER,EQ,KSTART) GO TO 510

IF (KEY,EQ,0) GO TO 530

CALL NYQIST (XPOIMT,CT(1,KSYH) ,NOLRHP (KSYM)}  NONCTR(KSYM) NCIRL ,NZ,
1FNYQT, OMEGA)

IF (MZ.E@.0) GO TO 530

IF {ITER,NE,KSTART) GO TO 760

WRITE (6,520) KSYM

FORMAT (*0°,5X,”WITH THE INITIAL COMPENSATION FOR SYSTEM MO.‘,13,1
1%, "HAS CLOSED LOOP POLES INSIDE THE CONTOUR IN THE’” PHASE STABILI
2ZATION REGIONT)

CONTINUE

IF (KPR+1,NE.KPRINT) 60 TO 530
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540

550

560

570
580

590

600

610
620

SETTING DESIRED STABILITY MARGINS

N=NM{KSYM)

DO 540 I=KPM,N

TYPE(I,KSYMY=XXS

KAHICH=KPTS([,KSYM)

FREHZ=AIMAG (OMEGACKWHICH))

DO 540 L=1,NS

IF {(FREHZ,GE.SMF{L)) RG(I,K8YM)=SMR(L)

CONTINUE

CHECK TO SEE IF ANY P.M,."S,G.,M.”8; OR §5.M,’S ERUAL

IF THERE RESULTS SOME THAT ARE EQUAL ONLY THE FIRST IS RETAINED,
IF (KSTBM,LE.L1) GO TO 580

DO 570 LB={,N

NSG=LB+1

CONTINUE

IF (NSG.GT.NM(KSYM)) GO TO 580

DO 570 I=NSG.N

IF (KPTS{LB,KSYM), NE.KPTS(I,KSYM)) GO T0O S57¢

N=N={

DO Se60 L=LB,N

KPTS(L,XKSYMI=KPTS(L+i,K8YM)

STBM(L,KSYM)=STBM(L+1,KSYM)

RO(L,KSYMISRA(L+L1,KSYM)

TYPECL,KSYMI=TYPE(L+1,K5YM)

GO TO 550

CONTINUE

CONTINUE

KPM=N+1

CONTINUE

KPADD=KPOINT=KPLAST

IF (KPADD,NE.O) WRITE (6,600) KPADD,ITER,KPOINT

FORMAT (1HO,SX,I13,1%,34HPOINTS WERE ADDED OM ITERATION NO,,Y4,/10X4
1,26HNQ,. OF FREQ. POINTS IS NOW,I14)

KMIN(KSYM)=N

IF ({ITER.EQ.,KSTART).OR.(KRESET.EQ.1)) KSTAMD=KPOINT
DETERMINATION OF ATTENUATION MARGINS

CALL SRMINS (CT(I;KSYMJ,KPOINT,NH§KSYM}:0.:-1;F7;F8;KPTS(1pKSYMJ;S
1TBM(I ,KSYM) , OMEGA)

SETTING DESIRED STABILITY MARGINS - s+ & % & ¥ & % a4 ® 8 w s ®
N=NM(KSYM}

IF (M,LT.KPM) GO TO &20

00 610 I=KPM,N

TYPE(I,KSYMI=XXA

KHHICH=KPTSC(I,X8YM)

FREHZ=AIMAG(OMEGA {XKWHICH)}

D0 610 L=1,NA

IF (FREHZ.GEL.ASF(LJ)) RQ(I,KS5YM)}=ASR(L)

CONTINUE

CONTINUE

CHECKING MDDE REQUIREMENTS - » [ ] - L] [ ] [ ] » - » L ] . » - L] - » 2 .
IF (ITEFLEQ.KSTART) GO0 TO 7590

PORN=1,

NZNM{KSYM)

NISNIT(KSYM)

NL =N (KSYM)

IF {(N.EQ.C} GO TO 750

KCHMIN=MINO(N,NL+NI)

KKK=0
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640

650
660

670

680
690
700

710

720

730

740
750

760

170

7580
799

800

810

00 660 I=1,N

DO 630 J=1,NL

DO 630 K=-2,2

IF (KPTS(I,KSYM).EQ.KACT(J,KSYMI+K) GO TO 650
DO 640 J=1,NI )
DO 640 K==2,?2

IF (KPTS(IlKSYM) EQ.KINACT (I, KSYM)+KJ GO TO 650
GO TO 660

KEKK=KKK+1

CONTINUE

IF (KKK.LT.KCHMIN} GO TO 760

NSUMaNSUM+N

00 740 I=ti,N -
IF {I1.GT.KMIN(KSYM)) PORM=={],

IF (PORMx(STBM(I,KSYM)}=RO(I,KSYM}).GE.D.) GO TO 7&0
IF {(NIT(KSYM).EQ,0) GO TO 700

DO 690 J=i,NI

DO 670 Kzwg2,?2

IF (KPTS(I,KSYM),EQ.KINACT(J,KSYM)+K) GO TO &80
60 TO 690

IF (PORM* (RO(I,KSYM)=STBM(I,KSYM)).GT.PINACT) GO TGO 760
CONTINUE

IF (NL,EB.0) GO TO 740

DO 710 J=1,NL

DO 719 K==2,2

IF (KPTS({I1,KS8YM) ,EQ.KACT(J,KSYMI+K) GO TO 720
MAD=MAD+!

GO TO 749

CONTINUE

IF (MODE.NE.ITIFR) GO TO 730

IF (PORM®(STBM(I,KSYM)=SML(J,XKSYM)),LT.=»1,E=~06) GO TO 7690
CONTINUE

ADD=ADD+PORMA(STBM{I,KSYM) =SML{J,KSYM))
CONTINUE

CONTINUE

IF (ITER,EQA,KSTART) GO TO 800

IF (MAD.ER.NSUM) ADD=1,

IF (ARD.GT.0.) GO TO 77¢

STEP==ARS{STEP)/2.

IF (ABS(STEP)}.LT.STPMIN) GO TO 780

ITER=ITER=L

KPR=KPR=1

GO TO 98¢

STEP=1,.41416=ABS(STPOLD)

IF (ABS(STEP),GT,STPMAX) STEP=STPMAX

GO TO 800

QUTPUT CONTROL

ARITE (6,790) STPMIN:

FORMAT (*07,5%, “xxxx TERMINATION = STEP SIZE LESS THAN ,G615.5,2X/

17%%x%x%x"}
GO TO 900
NAMi=¢

IF ((KPR.EQ.KPRINT),OR, (ITER,EQ.KSTART), OR.(ITER.EQ. FGUIT)) WRITE
1(6,810) STEP

FORMAT (70°,25X, "PRESENT STEF SIZE =7,615.5)
DO B4 KSYM=1,KIN

N=NM(KSYM)

KEMZKMIN(KkSYM)
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880
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870

DETERMINING ACTIVE MARGINS « v e

NIT(KSYM)=O

K=0

DO 830 I=1,N

PORM=z1,

IF (I.GT,KMIN(KSYM)) PORM==1,.

IF (PORMST8M(I,KSYM) ,LT.PORM*RQ(I,KSYM)) NAMi=!

IF (PORMASTBM(I,KSYM),GT.PORM*xRA(I,KSYM)+PINACT)Y GO TQ 820 .

ACTIVE CONSTRAIMTS

TYACT IS NO, OF TYPES ACTIVE

KACT IS POINTER TO ACTIVES

K=K+l

TYACT(KI=TYPEC(I,KSYM)

KACT(K,KSYMISKPTS(I,KSYM)

SML (K, KSYM)=STBM(I,KSYM) ~

ACTIVE(I,KSYMI=ACTDES (1}

GO YO B30

INACTIVE CONSTRAINTS

NIT{KSYMI=NIT(KSYM) +}

NAR=NIT(KSYM)

KINACT(NOQ,KSYMI=KPTS(I,KSYM)"

ACTIVE(T KSYMI=ACTDES(2)

CONTINUE

IF ((KEYOUT(H4).EQ.1).AND.({{KPR,EQKPRINT),0R,(ITER.EQG.KSTART),OR, (
IITER,EQ.KQUIT))) CALL OQUTPT (2,KSYM,KPOINT,CT(1,KSYM},OMEGA,ITER,N
2,KPTS(1,KSYM) ,KSM,STBM(1,KSYM) ,RU(1,KSYM), TYPE(L . KSYM) ,ACTIVE(!,KS
IYM) G KINSKOUT,ZA 2B, 2C, 2D+ ZE,PA,PB,PC,PD,PE,N1,N2, I, M2, GAIN,KONT,A
4,8,C,K0LD)

NML (KSYM) =K .

CALL PARTAL (OMEGA,NML{KSYM),CT(1,KSYM),KACT(1,KSYMN),TYACT(1),T,6G,
IGC-KSYM351fCIrWORKI!A:BrCPDrEpF:CSpPG(NAM+1rl)aPG(NAM}IrKNUT+1}qu
EN'KOUT!ZAlZBfZC!ZDIZEJPAJQEPPCFPDJPEfNILNEIMI]MEIGAINIKONTJ

NAM=NAM+NME (KSYM) -

CONTINUE ,

NORMALIZING PG

D0 860 I=1,NAM

SUM=0,

D0 850 J=1,NPARC
“SUMSSUM+PG (T, J) x%2

SUM=DSART (SUM)

D0 860 J=1,NPARC

IF (SUM.LT:0,1E~06) SUM=1.E-06

PG(I,J)=PG(I,J1/5UM

IF (ITER.GE,KQUIT) WRITE (&,870)

FORMAT (707" ,5X, "%xx TERMINATION REASON: MAXIMUM ITERATIQNS x*%x")

IF (ITER.GE,KQUIT) GO TO 900

IF (NAM{,.NE,0) GO TD 920

WRITE (6,880)

FORMAT (70*,15X, "**%xx ALL SYSTEM REQUIREMENTS HAVE BEEN MET %x%xx?)

WRITE (6,890) ITER

FORMAT (’0°,5X,”THE SUBOPTIMAL COMPENSATOR OCCURRED ON ITERATION N
106.: “*,I3,/5X,*%ITH THE EOLLOWING COEFFICIENTS: */)

DO 91¢ XK§YM=],KIN

NE=NM(KSYM) :

IF (KEYOUT(1),.,EQ.1) CALL JUTPT (3,KSYM,KPOINT,CT(L1,KSYM),OMEGA,ITE
IR N, APTS{L,KEYM)  KIMIN(KSYM),STBM(L ,KSYM),RA(1,KSYM), TYPELL,KSYM),A
ECTIVE(1IKSYM)IKINIK0UT’2AIZB!ZC!ZD'ZEJPAIPBIPCIPDfPEle,NapMIjMajG
3AIN,KONT,A,8,C,KOLD).
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920
930
G40

950

950

970

980

P90
1000
1010
1020
-

b

INTS EXCEEDS THE NO, OF ALLOWABLE VARIRABLES #xxxx’)

M ROL,NZERG2,LPV,A,B,C,D,E,;F KKK)

ILEL,NPOLEZLPV,A,BsC,0D,E,F,KKK)

1EROL yNZERC2,DV,A,B,C,DrLE KKK, STEP)

10LEL ,NPOLEZ,DV,4,8,C,D,E,KKK,3TEP)

STOP

SET DOT PRODUCT

DO 930 Nz=i,NAM

WEIGHT (N)}=1,

IF (NAM,LE.LPV) GO TO 960
WRITE (6,950)

FORMAT (70°7,5X, "%xxxx TERMINATION REASOM = NO, OF ACTIVE CONSTRA]

STOP
CALL DIRVEC (PG,NAM,NPARC,DV,WEIGHT,PFX,PFY,WORKR,E,F,C5,E2)
KRE=Q
KKK=0
CALL XCHECK (KIN,KQUT,ZA,2B,2C,Z0,ZE,N1,N2,0V,ZETAZ,PG,NAM,KRE,NZE

IF {(KRE+EQa3)ANDL(ITERLEQ,KSTART)) GO TO 1000
IF (KRE,EQ.1} GO TO 940
CALL XCHECK (KIN,KOUT,PA,PB,PC,PD,PE,M1,M2,DV,ZETAP,PG,NAM,KRE,NP(

IF (fKRE-EG.3J.AND.(ITER.EQ.KSTARTJ] GO TO 1000

IF {KRE,EG.1) GO TO 9490

P3a=0,

L0 970 1=1,NPARC

PSA=PSA+DV(I)%xx2

PMG=SQRT(PSR)

IF (PMG,LT.1,E=-08) PMG={,E~08

DEL=8TEP/PMG

KKK=1

CALL CHANGE (ZA,ZB,ZC,20,ZE,N1,N2,DV,DEL,KKK,KIN,KOUT,A,8,C)
CALL CHANGE (PA,PB,PC,PD,PE,ML,M2,DV,DEL  KKK,KIN,KOUT,A,8,C)
IF (KRE,NE,3) STPOLD=STEP ’

IF (KRE.EQ.,3) STEP=STEP+STPOLD

KKK=0

IF {KRE,EG,3) GO T0 990

KRE=0

CALL YCHECK (KIN,KOUT,Ni,N2,ZA,ZB,ZC,20,ZE,KRE,STPOLD,PMG,ZETAZ,NZ

CALL YCHECK (KIN,KOUT,®i,M2,PA,P8,PC,PL,PE,KRE,STPOLD,PMG,ZETAP, NP}

IF (KRE,EQ.3) GO TQO 980
KRE=0

ITER=ITER+]

GO TO 370

WRITE (6,1010)

FORMAT (70%,5X,"**x TERMINATION REASON: [INITIAL COMPENSATORS DO N
10T SATISFY ZETA CONSTRAINTS *x%x7)
STOP

END
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SURROUTINE ADDPTS

SUBROUTINE APDPTS (KPOINT KIM,€OUT 18, HM, STAM, KPT3,CT,6,6C,T,0MEGA
1,KGOBAK, KPTMAX , NIT,KINACT,NML,KACT,KPOLD,KOLD,KSYM,Ct,CI1, wORKI,ZA/
278,ZC, LD, ZE,PA,PB,PC,PD,PE, ML, N2, M1, M2, GAIN,KONT, 4,B8,C,0,E)

SUBPROGRAM DESIGNED TO GENERATE ADDITIONAL FREQUENCY DATA:
PROGRAM INCORPORATES ThE ROUTINES CRT, INMTER, AND TRFR,

SUBPROGRAM VARIABLES:

KPOINT « INTEGER NUMBER OF CURRENT DATA POINTS

KIN -~ INTEGER NUMBER OF CONTROLLER INPUTS

KOUT =~ INTEGER NUMBER OF CONTROLLER QUTPUTS

NB = STARTING NO, OF MARGINS TO BE IMVESTIGATED

NM » INTEGER NUMBER OF MARGINS INVESTIGATED

STBM(I)} = REAL ARRAY OF STABILITY MARGINS

KPTS(1) = INTEGER ARRAY OF FREQUENCY NOS, OF MARGINS

CT(DH - COMPLEX ARRAY OF FREQUENCY RESPUNSE

G{I,J)K) = 3D COMPLEX ARRAY OF DISCRETE FREQ, RESPONSE
GC(I,J,K)~ COMPLEX ARRAY OF COMPENSATION EVALUATED AT DISCRETE PT
T(I,J,K) = COMPLEX ARRAY OF TRANSFER RESPONMSE GuxG IS STORED
OMEGA(I) =~ COMPLEX ARRAY OF DISCRETE FREQUENCY POINTS

KPTMAX = MAXIMUM NUMBER OF FREQUENCY POINTS ALLOWABLE

NIT = AN INTEGER OF INMACTIVE MARGIMS

KINACT(I)= ARRAY OF INTEGERS CORRESPONNDING TO INACTIVE MARGINS
NML -« AN INTEGER DENQTIMG ACTIVE MARGIMNS DETECTED

KACT(I) = FREQUENCY DATA NUMBERS OF ACTIVE MARGINS

KPGLD - INTEGER OF DATA POINTS OF LAST ITERATION

KOLD(I) =+ INTEGER ARRAY OF PREVIOUS DATA POINTS

KS¥M = INTEGER REFERENCE TO PARTICULAR 3JUBSYSTEM

COMMON ITER,KSTART
INTEGER A,8,C,D,E
DIMENSION CT(D,A), G(B,4,0), GC(A,B,D), KACTI(E, A}, KIMNACT(E,A), KO
1LDCL), KPTSCE,A), NITCA), NMCAY, NMLCA), OMEGA(D), STBM(1}, T{A,A,
20)

KGOBAK=0

NXSNM{KSYM)

DO 110 N=NB,NX

K=KPTS (M, K5YM)

DG1=CABS(CT(K, KSYM)=CT(K=1,KSYM})
DG2=CABS(CT{(K+1,KSYM)=CT(K,KSYMH))
IF (37BM({M;,GT,5,+0G1} GO TO 100
K=K+}

IF (K.,EQ.2) GO TO 100

CONTINUE

KPOINT=KPOINT+1

IF (KPOINT,GT.XPTMAX) RETURN
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SEPARATING MATRICES TO ADD NEW FREQUENCY POINT

DO 30 M=KPOINT,K,=1

OMEGA(M)=0OMEGA(M=1}

pg 20 I=1,KIN

CT{M,1)=CT{M=~1,1)

D0 20 J=1,KIN

TCI T MI=T(I,JeM=1)

b0 30 I=1{,KIN

DO 30 J=i,KOUT

G{J,I,M)=6G(JS,T,M=1)

GC(I,J,M)=GC(I,J,M=1)

KGOBAK=1

CALL INTER (OMEGA{K=1),0MEGA(K=2),0MEGA(K=1))

00 40 I=1,K0UT

DO 40 J=1,KIN

CALL INTER (G(l,J,K=1),G{I,J,K=2),G(I,J,K=1))

CALL EVAL C(OMEGA(K=~1},GC,G,T,K=1,KIN,KQUT,2A,2B,2C,20,ZE,PA,PB,PC,
1PD,PE,NL,M2,ML,M2,GAIN,KONT,4,B8,C,D)

DO 50 I=1,KSYM

CALL CRT (HK-IrInglflfK'ljpKINfKUUTlCT(lJIJIG!PCGIIIIJ1JC1FCIIHO
1RKI,A,B,D)

NXSNM(I)

00 S0 L=1,NX

IF (KPTS(L,I)}+GE.K=1) KPTS(L,I)=KPTS(L,I)+1
IF (ITER.EQ.KSTART) GO 7O 8¢

DO 70 I=1,KIN

NY=NIT(I)

NZ=NML (1)

D0 &0 L=1,NY

IF (KINACT(L,I).GE.K=1) KINACT(L,I)= KINACT(L;I)+‘
DO 70 L=1,NZ

IF (KACT(L,1).GE.K=1) KACT(L:I)—KACT(L!I)+1
CONTINUE .

po 90 L=1,KPOLD

IF (KOLD{L).GE.K=1) KOLD(L}= KULD(L)*I

IF {STBM{N),GT.5,*xDG2) G0 TO 110
STBM{N)=6,*DGe

K=K+2

IF {K.GT.KPOINT) GO TO {10

GO0 TO 10

CONTINUE

RETURN

END




125

OO0 0

=W

OO0 GOOOnNnOOaOOn

SUBROUTINE CRHANGE

£

'SUBROUTINE CHANGE(ZA,ZB,2C,ZD,ZE;N1,N2,DV,DEL /KKK, KIN,KOUY,4,8,C)

DééiGNED TO CHAMGE COMPENSATOR COEFFICIENTS ACCORDING TO THE DIREC%-
10NAL VECTOR

INTEGER 4,8,¢ .
DIMENSTION ZACA,B,C).ZBCA,B,CY+2CCA,B,CY20(A,B,C),ZE(A,B.,C),DV(L]
c JM1(A,B),N2{4A,B)

00 4 I21,KIN
DO 4 J=i.K0UT
WXz, J)

[F{MX,E3.0)G0 TO 2
DO 1 Lsl,NX
ZACL, I L0201, J,L)Y+DVIKKK)*DEL
ZR(0,J,L3=20(T,J . LI+DVIKKK+1I*DEL
KKKZKKK+2
NLz=%2(1,J)

IF{NX,kQ.,0) GO TO 4
DU 3 L=t X
ZCC1,Jd,L)=ZCL1,J.L)¢DV(KKK)=xDEL
0T, J L)=2Z0 (T, Je LY +0V (KKK +1 ) XDEL
ZECT s JoL)SZECL+JsLY+DVIRKK+2) *DEL
KKKZKKK+3 )
CORT INUE
RETURN

END

SURRDUTINE CRT

SURRDUTINE CRT (KEY s K KSTM, T KINSKQUT,CT,P,PCG,TI1,J1,CL,CI,nDRKI, A
1,R8,9)

SUBRPROGRAM PERFORMS 2 FUNCTIONS DENOTED BY THE INPUT KEY:

KEY IS 1, CLOSED LOOP FREOUFNLCY RESPONSE CT(S) IS FOUMD IN
TER4S OF INPUT VECTOR: KEY IS 0, SUBPROGRAM AIDS PARTAL IN
DETERMINING THE PARTIAL OF ©(8) wRY, G(S)IJ, PROGRAM IN=

CORPORATES MATTNC, MATMUL ROUTINES,

SUBRPOGRAM VARTIABLES:

KEY = PROGRAM MODE VARIAPLE

KSTM™ = SUHSYSTEM IM COLSIDERATION

T(I,J) = COMPLEX THANSFER RESPOMSE G(S)*P(S)
K - NU, GF CONTROLLER INPUTS

KENUT - NO, OF CONTRQOL OUTPUTS

P{I,J) = COMPLEX PLANMT RESPONSE ARRAY

11 - CONTROL INPUT INDEX OF G(S)IJ

J1 -~ CONTROL GUTPUT INDEX OF G(S)IJ

(1} = COMPLEX CLOSED LOQP FREQUEMCY RESPONSE
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TK 18 THE KTH COLUMN OF T(S)
CI IS THE KSTM RESPONSE
ZERQING THE KTH COLUMN OF (T(S) + I):

INTEGER A,B,D

COMPLEX C1(A,A),TCA,A),CI{A,A)»P(B,A),CT(D),PCG
b0 10 I=1,KIN

DO 10 J=1,KIN

C1(I,JI=CHMPLX(0,.,0.)

IF (L.NE.KSTM) C1(1I,J3=T(I,J)

IF (T1.EQ.KSTM) CL(I,J)=sCMPLX{0,,0.)

IF (T EQed) C1CI,JI=CMPLX(1,,0,)+C1(I,J)
CONTINUE

CALL MATIMC (C1,KIN,CI,IER,WORKI,A,A,2%A)

IF (IER.EG,2) GO TO 40

CALL MATMUL (T,CI,Cl,CYl . T,T,KIN,KIN,KIN,KIN,1,0,4,A,1)
CTC(K)=CI1{KSTM . K5TM)

Ct AT THIS POINY IS TOTAL RESPONSE C IN NOTES.

IF {KEYJER.!) RETURN

PCG=0,0

DO 20 I=1,KIN

PCG=PCOHP(JI,II%CI(T,¥STM)

IF (I1.EQ.KSTV) GO TO 30

PCG==CL(KSTH,I1)*PCG

CONTINUE

RETURN

SRITE (6,50) KSTM,

FORMAT (/SX:'INVERSE MATRIX INDETERMINATE BY THIS METHOD AT KSYM=
1°,13,7K= ", 13/)

RETURN

‘END

SUBROUTINE DELETE

SUBRUUTINE DELETE(KPOINT,KIN,KOUT,OMEGA,G,NIT, KINACT NML,KACT,
CITER,KPOLD,KOLD,KNER,A,B,C,D,E)

IMTEGER A,B,C,D,E

COMPLEX OMEGA,G

DIMENSION OMEGA(DY,G(B, AlD)IKIhACT(E'A)INIT(A)IKACT(E A),KOLD(D),
CNML (A) »KNEW(D)

L=0

DO "7 K=1,KPOINT

DO 4 I=1,KIN

NX=NIT(1)
IF(NXL,EQ,0) GD TO 2

DO 1 J=1,NX
IF(K.ERLKINACT(J,1)) GO 7O 6

MXSNML(I) )
IF(NX.EG.0) GO TO 4
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DO 3 J=i,NX
IF(K,EQ.KACT(J,I)) GO TO 6
CONTINUE
00 5 J=1,KPOLD
IF(K,EQ.KOLDRCJ}) GO TO &
60 TO 7
L=bL+l i
KNENW{L)=K
CONTINUE
ADELET=KPQINT =L
KPOINT=L
DO 8 K=1,KPOINT
L=KNEW(K)
GHMEGA(K)=OMEGA(L)
DO 8 I=1,KO0UT
DO 8 J=1,KIN
G(I,2.4)=G(1,J,L)
DO 12 K=1,KPOINT
DO 12 I=1,KIN
ANX=NIT(T)
D0 9 J=1,NX ]
IF(KNER{K) EQG.KINACT(J,I)IKINACT(J,I)=K
nxzhtML (1)
DO 1.0 J=st,NX .
IF(KHEW(K) . EQ.KACT(J,I)IKACTC(J,I)=K
RO 11 J=1,.KPOLD
IFCKILO(J) W EQLRKNEW(KIIKOLD(J) =K
CONTINUE
ARITE{(H6,13)KDELET,ITER
FORMAT(1HD,5%,1%,2%,“POINTS WERE DELETED ON ITERATION NO, ‘*I3)
RETURN .

END

SUBROUTINE DIRVEC

SUBROUTINE DIRVEC(G6,NVM,KPARC,DV,WEIGHT,A1,AI,WORKR EsFsZsH)

DIRECTIONAL VECTOR PROGRAM

SUBPROGRAM DESIGNED TO. CALCULATE THE DIRECTIOMAL VECTOR OF
THE CONSTRAINT IMPROVEMENT ALGORITHMM, DIRECTIONAL VECTOR
OV CALCULATED AS
BY = (#G)=A ‘
WHERE #G IS (M,M) GRADIENT MATRIX WHOSE COLUMNS ARE THE
GRADIENTS OF THE ACTIVE CONSTRAINTS: COLUMN VECTOR A IS
ot A = INV(BG AG)I*Cy

COLUMN «C I'S M. COMPONENT VECTOR OF POSITIVE ELEMENTS; M-'IS

WUMBER OF COMPENSATOR COEFFICIENTS.

- 1

i
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FINITIONS OF 1/0 VARIABLES

~-MATRIX #HOSE ROWS CONTAIN THE GRADIENT VECTORS OF THOSE
STABILITY MARGINS ONLY CONSIDERED PERTINENT
=NUMBER OF STABILITY MARGINS CONSIDERED PERTINENT

ARC =NO. ROWS IN G, I.E., COMPENSATOR COEFFICIENTS

(I} —~REAL ARRAY OF DIRECTIOMAL VECTOR

IGHT-WEIGHTING FACTOR VECTOR

INTEGER E,F,Z.H
DIVENSION p(E:Fl,Al(E,E);AI(E:E),WEIGHT(IJ,DV(I)
DO 2 K=1,NM
DO 2 J=K,hM
SLhi=0,
DN 1 I=1,KPARC
SUMSSUM+GE(T, TI*G(K,I)
AlL(J,K)= SUM
A1 (K,J)= SuM
COMTIMNUE
IF(N™,6T.1) GO TGO 3
AICL,10=1,781(01. 1)
A1(1,1)= wEIGHT(Y) *» AI(1,1)
GO TO &
CONTINUE
CaLt MATINV(AL,NY,A],IER, ¥0RKP E.E, HJ
IF(IER,EQ,0) GO TO.S
AarITE(6,4). .
FORMAT(* 0',15x.'**** TERMINATION: PARTIALS NOT LIMEARLY INPEPENPE
CHT %%x%xx")
STOP
CALL MATMUL(AL,Y,Y AT, WEIGHT, AL NM, NM,NM,1,1,1,E,E,1)
CONTINUE
D0 8 [=1,KPARC
SuM= D,
NO 7 JE1,NM
SUM=SUMG{J, I)*A1(J,1)
DV(I)=SUM
RETURN

END
SUBROUTINE EVAL

SUBROUTINE EVAL (XFsGCrGr T KsKIN,KOUT,,ZA,ZB,2C,20,ZE.PA,PB,PL,PD,P
lthi'Na;MlpMEIGArNIKONTlAlBICID)

INTEGER A,B,C.D

COMPLEX GCX GCY,GCN,GCD,GC (A, B D),G(B,A,D),T(A,28,D)
DIMENSION Ni(&,8), COEF(3), ZA(A,B,C), ZB(A,B, C): ZC(A,BsC), 2ZD(A,
16,C),» ZE(A,R,C), PA{A,B,C), PB(A,8,C), PC(A,B,C), PD(A,B,C), PE(A,
2B,C) ., GAIN(A B, NE(A,B); MI(A,B), M2({A,B)
COMPLEX XF
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EVALUATION OF GC, THE COMPENSATOR TRANSFER
DO 90 I=1,KIN
DO 90 J=1,K0UT
GCX=CMPLX({1,,0,)
GCY=CMPLX({1,.,0)
GCN=CMPLX(1QIOUJ
GCD=CMPLX (L, ,0,)
WC=N1(I,J)
IF (NC.EQ.0) GO TO 20
DO 10 L=1,NC
CREF(1)=Za(1,J,L.)
CQEF (2)=ZRB(1,J,L)
CAatL POLEV (COEF,1.,XF,GCX)
GCh=GCX*GCN
CONTINUE
MC=My (I,J)
If (MC.ER,0) GO TO 40
po 30 L=1.,MC
COEFC(1)Y=PACI,J,L)
COEF(22=PB{1,J.,L)
CALL POLEV (COEF,1,XF,GCY)
GCD=GLYXGCD
CONTINUE
iF (GCD.ER.0,) GCO=CMPLX(1.,0.)
GCR=GCN/GCD
NCEN2(T1,J0)
IF (NCL.EQ,0) GG TOQ 60
Nno 50 L=t1,NC
COEF{1)=2C(I,J.,1)
COEF(2)=2D(1,J.,L)
COEF(3)=ZE(I,J.,L) .
CaLL POLEV (COEF,2,XF,GCX)
GCN=GCX*GCN
CONTINUE
MC=M2(1,J)
GCD=CMPLX(i.,0.)
IF (MC.EQ.0) GO YO 8O
po 70 L=t,MmC
COEFC{1)I=PC(I,JsL)
COEF(2)=PD(I,Jd,L)
CNEF(3)I=PE(I,J,L)
CALL POLEV (CCEF,2,X%XF,5CY)
GCD=GCY*GCD
CAhTINUE
CONTINUE
IF {(GCD,.EQ,0,) GCD=CMPLX(1..,0,)
GC(I,J,KI=GATNH(I,JIXGCN/GED
CONTINUE

GC*G TRANSFER FUNCTION

HERE STARTS TRAISFER GCx6 0,L. FREQUENCY RESPONSE
CALL MATMUL (6C{1,1,K),G6(1,1,K),T/GC,GC,GC,KIN,KDUT,KQUT,KIN,K,0,4

1,8,8)
RETURN

END
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SUBROUTINE GAINMG

SUBRDUTINE GAINMG (GTOTAL,KPOINT,NM,FOMIN,FOMAX,KPTS,STBM,OMEGA)

SUBPROGRAM FOR CALCULATING GAIN MARGINS

DEFINITIONS OF I/0 VARIABLES

GTOTAL=-COMPLEX ARRAY OF COMPENSATED OPEN FREG, RESPONSE
KPOINT=ND. OF PQINTS

OMEGL «ARRAY OF FREQS,

NM «COUNTER : )

KPTS «FREQUENCY %0S, NHERE MARGINS OCCUR

ST6m  =STABILITY. MARGINS OF MARGINS

FGVIN =LOWER FREBG, FOR MARGIN DETECTION

FOYAX = UPPER FREQ, FOR MARGIN DETECTION

COMPLEX O“EGA,GTOTAL .
DIMENSION GTOTALC1), KPTS(1), STBM(1), OMEGA(1)

P=i.0

DG 30 I=1,KPQINT

S2EAIMAG(GTNTALILIY)

IF (1.E®.1) St=52

IF (AIVAG(OMEGA(I)) GT.FOMAX) RETURN

IF CAIMAG(OMEGA(IN).LT,FOMINY G0 TO 20

IF (ABRS(S2).LT1.1.0E=-20) GO TO 10

SGNRS2/ABS(52) -

IF (51+564.GT.0,0) GO 7O 20

1F ((REAL(GTOTAL(I}YWGE,0.) +ANDL(REAL(GTOTAL(I~1)).GE,0.)) GO TO 2
10

I1=1=1 .

IF (ABS{(82).LT,ABS(51)) Ii=]

WMo lipie |

KPTS(NM)=TE

FRAC=S1/(81=52)
STBMINM)=CABS(P+FRACAGTOTAL(I)+(1,=FRACI*GTOTAL(I=1))
S51=52

CONTINUE

PETURN

END
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SUBRDUTINE INTER

SUBROJTINE INTER{S,T,R)
INTERPOLATION SUBPROGRAM

SUBPROGRAM INTERPOLATES SPECIFIED INPUT DATA IN
CONJUCTION WwITH ADDPTS ROUTINE; MAGNITUDES ARE
INTERPOLATED LOGARITHMICALLY, PHASES LINEARLY,

SUBPROGRAM VARIARLES: .

S5 ~« COvPLEYX LOWER BOUND OF QUANTITY INTERPOLATED
T = CO¥PLEX UPPER BOUND OF QUANTITY INTERPOLATED
R = CUVPLEX RESULTANT OF THE INTERPOLATION

COMPLEX S5,T,R
DATA PI/3.14159205358979/

XSSORT(CARS(S) *CARS(T))

Y=0,
IF({Xx.GT.1.E-§0)) GO TO ¢

GO To 2

CONTINUE

USATAVZ (ATMAG(S),REAL(S))

VEATANZ(AINMAG(TY,REALLTY)
IF(U.LT.0.) V=sv+2,.*PI
IF(VLLT,0,) VEV#2,%PI

Y=(t+V)/2,

IF(ABS(U=Vv) . GT,PIYY=Y=P]
IF(ABS(Y=-U),GT,PI/2.)Y=Y=-P]

R=CMPLX{X*CNSCY), X*SIN(Y))

RETURN

END
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SUBROUTINE MATINC

SUBROUTINE MATINC (XX,N,YY,IER,XsA,B,C)

SUBROUTINE FOR FINDING AN INVERSE OF A MATRIX

X = MATRIX FOR WHICH INVERSE IS .TO BE TAKEN
N = RIMENSION OF SQUARE MATRIX X

Y = INVERSE QF X

1ER = ERROR CODE

IER= 0 = NO ERROR EXISTS
IER® 2 =~ MATRIX DOES NOT POSSESS AN INVERSE

INTEGER A,B.C
DIMENSION XX(R,8), YY{A,A), X(A,C)
IMPLICIT COMPLEX (D=H,0-2)

00 10 I=i,N

O 10 J=1,n
XCT1,3)=%Xx(1,.0)

CONTIMNUE

1ER=0

NE2sN+N

Ni=i+]

DO 20 I=1,N

D0 20 KsNt,N2

L=K=N . -

IF (L.NE.1)} X{(I,K)=CMFLY(0,.,,0.)
IF (L.ER,I) X{I,K)=CMPLX(1.,0.)
COMTINUE

B0 50 I=1,N

IF (CABS(X(I,13).LT.1,0E=P5) GO TG 70O
SCRwan=X(I,1)

DO 30 K=i.,N2
X{I,K)}=X(I,K)/SCRN

b0 S50 L=1.,N

IF (L.E®.I) GO TO S0
SLuP=X(L,I)

bn 40 K=1,N2
XCL,KI=X{L,K)=SLOP*X(I,K)
CONTINUE

CONTINUE

DD 60 I=1,N

DD 60 K=N1,N2

L=K=N

YY(I,LY=X{I,K)

GD TQ 8¢

IER=¢

RETURN

END
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SUBROUTINE MATINV

SUBROUTINE MATINV (XX,N,YY,IER,X,E+ZsH)

INTEGER E,2Z2,H
DIMENSION XX(E,Z), YY(E,Z), X(E,H)

DO 10 I=1.N

DO 10 J=1,N
XC1+eddSXX(I, )

N2=N+N

Nizn+1

00 20 I=i,N

DN 20 K=H1,N2

L=K=N

IfF (L.NE.IY X(I,K)=0,
IF (L.ERN.I) %(I.,K)=1,
COMTINUE

DO 50 I=1,N

IF (a8S8(X(1,1)).LT,1.E=-25) GO TO 70
SCRu=X(I,1) -

DC 30 A=],N2
X(I,XK)=X{I,K)/SCRW

PO S0 L=i,N

IF {L.EB.I) GO TD 50
SLOP=X(L,I) -

PO 40 K=t,N2

Y{L,K)= XfL!K)‘SLUP*X(I K)
CONTINUE

CONTINUFE

DO 60 I=1,N

DO 60 K=N1,N2

L=K=N

YY({I,L)=X(1,K)

GO TO 89

IER=2

RETURN'

END

SUBROUTINE MATMUL

SUBROUTINE MATMUL (AC,BC,CC,ARBR,CRyN,L LI, M,ND,NC,4,8,C)
SUBROUTINE MATRIX_MULTIPLIC&TIUN

MATRIX MULTIPLICATION MULTIPLIES A % B
#ATRIX AC IS N X L
MATRIX BC IS L X M
MATRIX CC IS THE RESULTANT MATRIX N X M
MATRIX CR IS5 REAL RESULTANT

NC IS COMPLEX KEY:
NC=0: AC,BL,CC, ARE COMPLEX MATRICES
MC=1F AR,RBR,CR,ARE REAL MATRICES
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IMTEGER A,8.,C

COMPLEX AC,BC,CC

DIMENSION AC(4,B), BC(B,A), CC(A,A,ND), AR(A,B), BR(B,C), CR(A,C,N
iD)

IF (NC.EG.1) GG TO 20

Do 10 I=1,N

00 10 J=1,M

CCL{I,JsNDI=CMPLX(0.,0.)

Do 10 K=i.,L

CCUI,J/ND)=CCCI,J NDI+AC(T,KIABC(K,J)
RETURN

DO 30 I=1,N

DO 30 J=1,M

CR(I,JsND)}=0,

DO 30 K=1,L
CR(I,JsND)=CR{I,J,NDI+AR(TI,K)*BR(K,J)
RETURN

END

SUBROUTINE NYQIST

SUBROUTTINE NYRIST (M,G,NRHP,NCON,NCTRL,MZ,FMAX,F)

COMPLEX G(1),F(1)
DOUBLE PRECISION P
DATA PI /3,1415926%3589790+00/

KC=HCON/2

LC={NCON+1Y/2

Cl1=ATANZ (AIMAG(G(1) ), 1. 0+REALIG(1)]))
SUNMZ=CI+ABS(ATAMN2(0.,0,1,0+REAL(G(1)))I*ABS(CLY/CE
IF (KC.WE.LC) 3UM=0,0

DO 10 I=2,N

C2=ATANZ(AIMAG(G(I)) 1. 0+REAL(G(I)))

DIFF=C2=C1

IF (ABS(DIFF).GT,.PI) DIFF=C2=Ci+2,0xPI*ABS(C1)/C1
SUM=SUM=DIFF .

IF (AIMAG(F(I)).GT.FMaX}) GO TO 20

Cl=c2

I=N

SUMS+C2=ABS{ATANZ(0,0,1 . 0+KEALCG(I))))*xABS(C2)/C2+3UM
SUMZ2,0% (SUM+C2)+PI*NCON
SUNMSUM+ABS(SUMYXPT/ (4, 0%xSUM)

HCIRL=SUMN/(2,0+P])

NZ=NRHP+WCIRL

RETURN

Eqb
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SUBROUTINE OUTPT

SUBRQUTINE OQUTPT (N,KSYM, KPOINT,CT,OMEGA,ITER,NM,KPTS,KMIN,STBM,RG
1,TYPE,ACTIVE,KIN,KOUT,ZA,ZB,2C,Z0,2ZE,PA,PB,PC,PD,PE,N1,N2,M1,M2,GA
SIN,KONT,A,5,C,K0LD)

SUBPROGRAM DESIGNED TQ QUTPUT INFORMATION IN THREE AREAS
AS DESIGNATED BY THE KEY N:
KEY:
N=0, OUTPUT COMPENSATOR INFORMATION
N=1, OUTPUT FREGUENCY RESPONSE
Nz=2, QUTPUT,STASILITY MARGINS INFORMATION
=3, COYPLETE OUTPUT INFORMATION

IR ERERARE RS AR EE]

INTEGER A,B,C

INTEGFR TYPE,ACTIVE,XXP,ZDUMB

COMPLEX CT(1),0MEGACL) X

DIMENSINY GATM(A,B), KOMT(A,BY, NICA,BY, N2(A,B), MI{A,B), M2(A,B)
1, ZA(A,B8,C), Ib(A,B,C), ZC{A,B,C), ZDCA,B,C), ZE(A,B,C), PA(CA,B,C)
2, PB{A,&,CYy PC(A,B.,C), PD(A,B,CY, PECA,B,C), KPTS(1}, STBM(1), RQ
301+ ACTIVECL) s TYPE(1), KOLD(1)

DATA IbK,IAT,XXP,RADE /tH ,1H*71pr11u.591559/

IF (N.ER.2Y GO TO 170

IF {(%.EQ.1) GO 7O 110

IF (KSY#,EQ,1{) wRITE (6,20)

DO 100 I=1,KIN

00 100 J=1,K0UT

IF (GAINC(I,J).ER.0.) GO 7O 80

GRITE (6,303 1,J,GAIN(I,J)

MC=N1(I, )

IF (NC.RELG) WRITE (6,40) (ZACI J,LY,ZB{T,J,L),L=1,NC)

NC=N2(I,d)

IF (MCLNE,0) WRITE (6,50) (2C(I,J,L3,2DCI,J,L),2ECT,J,L),L=1,N0)
NC=Mi(I:J)

IF (MCWNELO0) WRITE (6,60) (PACI,JeL),PBCI,J L) ,i=1,M0)

MC=m2(1,J) :

IF (MC.NE,0) wWRITE (6,70) (PC(I,J,L),PD(I,J,L),PE(I,J,L),L=1,MC)
WRITE (6,10) I,J,KONT(T,d)

10 FORMAT (°07,5%X,”* DC GAIN CONSTRAIMT FOR EACH CHANNEL [ IF KONT=1,
1 ALLOAED TO VARY; o[F KONT =2 , HELD CONSTANT)”,/,7X, KONT( *,13.,°,
2°,13,7) = *,13%3,/)

20 FORMAT (/,5X, THE COMPENSATIGN ELEMENTS ARE DESCRIBED BY TRANSFER
1 FUNCTIONS IN®,/,5%, CASCADED FIRST AMD SECOND ORDER FACTORS:*:/,3
21X, N7 1A%, 27, /31X, PR .(2ZA ¢+ ZB 8) PR (ZC + ZD S + ZE Sxx2)°,
3/,50&.’1:[',ax,'l',SX,'I',3X;'J=1’;3!;'J'SX.'J'éxp’J',/18X;'(GAIN)
D e L L o L LT ERN e S5 PR
51°,14X,°M2°,/,31X,"FR (PA + FB $) PR (PC + PD 8 + PE S5%%2)°,/,30
X" I=1 1 I J=i J J J°7)

30 FORMAT (/,5X, COMPENSATORE?,I3,7,7,13,7)¢ GAIN = *,G10,5,/)

40 FORMAT (15X, "COMPENSATOR COEFFICIENTS:?,/,(15X,"ZA = *,G12,6,10X%,"*
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210

220

230
Ra0

250
L1

12B = ",G12.6))
FORMAT (15X,°ZC
FORMAT (15X,’PA
FORMAT (15%,°PC
GO0 TO 100

WRITE (6,90) I,J
FORMAT (10X,”COMPENSATORC”,I3,*,",13,") HAS ZERO CONTRIBUTION,?)
CONTINUE

IF (NJNE,3) RETURN

WRITE (6,120) KSYM

FORMAT (/,%X,”THE FREQUEANCY RESPONSE OF SYSTEM NO, “,I3,° IS: “,/4
17, ‘DATA, 10X, "COMPLEX OMEGA’,10X, COMPLEX CT*,10X, "MAG & PHASE "+ /
2)

L=t

DO 140 K=1,KPDINT

ZDUMB=IRK

IF (K,NE,KQLD(L)) GO TO 130

ZDURB=IAT

L=L+1

CONTINUE
X=CMPLX(CABS(CT(K)),ATAR2(AIMAG(CT(K)),REAL(CT(KY)I%57,295779)
WRITE (6,160) ZDUMB,K,OMEGA(K),CT(K) X

wRITE (6,150}

FORMAT (*0°,79,°* DENOTES ORIGINAL FREQUEMCY POINTS®)

FORMAT (BX,AI;I'SpSX,eGl0.6,Sx‘,EGIO.a,SX,BGIO.HJ

IF (N,NE.3)} RETURWN

WRITE {6,1B0) K3YM,ITER

FORMAT (“0”,25X,"SYSTEM NO. *.13,°, ITERATION NO, ",I4)

no 270 1=1,NM

K=KPTS5(1)

IF (I1.EQ.XMIN+1) GO TO 190

IF (I.EQ2,.1) GO TO 220

GO TO 240

WRITE (6,200}

FORMAT (°0°,25X,"ATTENUATED FREGUENCY INFORMATIDN®/)

WRITE (6,210)

FORMAT (707, T2,°N0, ¢ T7, "MARGIN RADIUS?,T26,FREQUENCY*, T4, *DESIR
1ED0 MARGIN’,TS7, "MARGIN TYPE’»T7G,*ACTIVE’/}

GO TO 2490

WRITE (6,230)

WRITE (6,210}

FORMAT (“0*,25X, "RELATIVE STABILITY INFORMATION?/)
XDUuME=STBM( 1)

YDU¥B=RQ(I)

IF [(TYPE(I).NE.XXPJ GO TO 2%0
XOUMB=RAD2+ASIN(XDUMB/2,)

YOUMB=RADZ*ASIN(YDUMB/2,)

WRITE (&,260) I,XDUMB,OMEGACK),YDUMB,TYPE(I),ACTIVE(I)
FORMAT (* '.72,IE,TB;GIO.H,TEO,GIO.&,TBIuGlO.ﬂpTQSaGIO.Q,TbS:Al;IT
12,A3)
CONTINUE
RETURN

*¢G12,6,10X, 72D
“¢G12,6,10%,°PB
*:Gl2.6,10X,7PD

1

“rG12.6,10X%,72E *,G12.6)
‘,612,6)

",612.,6,10%X,°PE = 7,G12.6)

END
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SUBROUTINE PARTAL

SUBROUTINE PARTAL (OMEGA, NFREQ,CT;iKPTS,TYPE,T,P,G;KSYM,C1,CT,WORK]

1,4,8,C,0,E,F,Z,PFX,PFY,KIN,KOUT,ZA,28,2¢C,Z0,2E,PA,PB,PC,PD,PE,NI1,N
22+sM1 M2, GAIN,KONT)

COMPLEX ANUM,PCG,GEA,B,D),OMEGA(D),Q,XV,CT(D),DIST,PGX(3),T(A,A,D]|
1,P(B,s4,D)

INTEGER A4,B,C,D,E,F,2Z

INTEGER TYPE,XXT

DIMENSION N1(A,B), N2(A,B), ™1(A,B), M2(4,8), ZA(A,B,C), ZB(A,B,C)
1, ZC(A/H,C), ZD(A,H,C), ZE(A,B,C), PA(A,B,C), PB(A,B,C), PC(4,B,C)
2, PO(A,B,C), PE(A,B,C), KONT(A,BI, GAINCA,B)

DIMENSIDN KPTS(L1), TYPE(1), XXT(4), PFX{(E,Z), PFY(E,2Z)

DATA IBLANK,XXT /4d ¢ 1HG, 1HP, 1HS, {HA/

NOP=O

PO 190 K=1,NFREG

KNHICH=KPTS(K)

SGN=+1.

IF (TYPE(K) ENQ.XXT(4)) SGN=«i,

IF (TYPE(K).E@.XXT(1)) GO TO 10

IF (TYPE(K).EQ.XXT(2)) GO TO 30

IF (TYPE(R)ER.XXT(3)) Q=CMPLX(~1.,0.)

IF (TYPE(K),EQ.XXT(4)) Q=CMPLX(0.,0,)

G0 10 &0

Do 20 L=0,1

IF (AIMAG(CT(KWHICH+L)Y)*AIMAG(CT(KWHICH+L-1}).LE.O.) GO TO 50
Do 490 L=0,1

IF ({CABS(CT(KWHICH+L)})=1,)*{CABS(CT(KWHICH+L=1))~1,}.LE.0.) GO TO
1 50
DISTSCT(KAHICH+L)~CT{hkWHICH+L~1}
XV=CONJG{CT(KHICHI+1,)
DIST=CONJG{DIST)/CARSI(DIST)
DIST=CHPLX(AIMAG(DIST),REAL(LIST))
IF (REAL(DIST#XV),.GT,.0,.,) DIST==DIST
R=CT(KNHICH)I+4S.,*xDIST
DIST=CONIG(~Q+CT(KWHICH)})
XV=OMEGA(KWHICH)

KHOT=0

LNOT=0

PO 180 I=1,KIN

bho 180 J=1,K0UT

INP=KONT(Y,J)

CALL CRT (E,KWHICH'KSYM'T(I,l,K'ﬂHICH)fKINrKOUTlCT;P[llllKWHICH)pPC
IGrIlJ7C1rCI,WORKI;ArB'D‘)
PCGSPCG*GAIN(I. )
HCOMD=N1(I,J)

IF (NCOMD.EQR.C) GO TO 90
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180
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D0 80 N=1,NCOMD

IF (N,GT,1) T10P=2
ANUM=ZA (T, NY+ZB(I,J NY&XY
PGX(1)=G{L,J,KNHICH) ZANUM

PGXC(2)ZPGXC1)Y%XY

Do 70 L=i1,2
PFXCK,KNDT+L)=2 . #REAL(PCG*PGX(L)*DIST*SGN)
IF (I0P.EQR.2) PFX(K,KNOT+§)=0.0
KHNOT=KNQT+2

NCOMD=N2(I,J)

IF (NCOMD.EG.0) GO TO 120

00 110 W=1,NCOMD

IF (N,GT,1) JOPs2

ANUMZZC (T, J,N)+{Z0C1,J/N)HZECT I, NI XXV IRXY
PGX(13=G{)l,J,KNRICH])/ANUM
PGX{2)=PEX{1)XY

PGX(3II=PGX(2)xXV

PO 100 L=1,3
PEX(K,KHOT+L}=2 , *REAL(PCG*PGX(L)XDIST*SGN)
IF (I0OP.EG.2) PFX(K,KNOT+13=0,0
KNOT=KNOT+3

DENDMIRATOR PARTIALS

NCOMD=ML(1,J)

IF (NCOMDLER,D) GO TO 150 .

DO 140 N=1,NCOMD

IF (N.GT.1) [0P=2

ANPMZPA (T, JsNY+PR(T.J, NY XXV
PGX(1)=G(T1,J,KaHICH]}/ANUM

PGX(2)=PGX(1)*xxXV

IF (I0P,EG,2) PGX(1)=CMPLX(0,.,0.2

pn 130 L=1.2
PFY{K,LNOT+L)==2 . xREAL (PCG*PGX(L)*DIST*SGN)
IF C(IOP.Ed.2) PFY(K,LNOT+{)=0,0

LUGT=LNOT+2

MCOMD=M2(1,J)

IF (hCOMD,ER,0) GO TO 180

nO 170 N=1,NCOMD

IF (H,GT,1) JOP=2

ANUM=PC (L, oMY+ {(PD(1,J N H+PECT, Jo NI RXV)AXY
PGX(1)=G(I,J,KWHICH)/ANUM

PGX{2)=2PGX(L1)*XV

PEX(3)I=PEX (2} %XV

IF (IGF.EN.2) PGX(1)=CMPLX(0,,0,)

0D 160 L=1,3
PEY{K,LNOT+L)==2,%*REAL{PCG*PGX(L)*DIST*SGN)
IF (IDP.EQ.2) PFY(X,LMOT+1)=0,0

LNOT=LNOT+3

CONTINUE

CONTINUE -
RETURN

END
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SUBROUTINE PHASEM

SUBROUTINE PHASEM(GTOTAL ,KPOINT,NM,FGMIN,FOMAX,KPTS,STBM,OMEGA)

SUBPROGRAM FOR CALCULATING PHASE MARGINS

DEFINITIGONS oF I/0 VARIABLES

GTOTAL=COMPLEX ARRAY OF COMPENSATED OPEN LOOP FREQ, RESPONSE
KPOINT=N0O. OF POINTS
OMEGA =~ARRAY QOF FREQS,

NM

~COUNTER

KPTS =FREQUENCY NOS., WHERE MARGINS OCCUR
STM  «3TABILITY MARGINS OF MARGINS

FGYIN «LOWER FREQ. FOR MARGIN DETECTION
FogMAX = UPPER FREQ, FOR MARGIN DETECTION

DIMENSION GYOTALCL),KPTSC1),STBM(L),OMEGACLY
COMPLEX OMEGA,GTOTAL

P=1,0
DG 3 I=1,KPOINT
SO=CABS(GTOTALCI})
§52=50=1,0
IF(I.EQ,.1)51=82
IF(ATHMAG{OMEGA{T)) 6T .FRMAX)RETURN
IF(AIMAG(AMEGA(I)) LT FOMINIGO TO 2
IF(AuS(Sa).LT.l.OE-ZOJGQ Y0 !
S5GN=52/4BS5(52)
IF(S5145GN,67,0,01G0 TO 2
Il=1=}
IF{ABS(52). LT ARS(S1))Ii=1
WM=NMel _
KPTS{NM)=IT

IF{31,EN,52)81=1.E=C¢
FRAC=S1/(51-52}) -
STBM(NM)=CABS(P+FRACXGTOTALCI}+ (1. =FRACY*GTOTAL(I=1))
§1=82
CONTINUE
RETURN
END

SUBROUTINE POLEV

SUBHOUTIHE POLEV(FW;K,X;FI

PROGRAM FOR EVALUATING A PQLYMOMIAL AT A COMPLEX FREQUENCY

DEFIMITIONS OF I/0G VARIABLES

Fw
K
X

‘«VECTOR POLYMOMIAL COEFFICIENTS
«0RDER OF POLYNOMIAEL -
~COMPLEX FREGUENCY OF EVALUATION
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io
20

OO OoOOoOOOnnoe

10
20
-150

40

50

K
F

N

COMPLEX X,S5UM,F
DIMENSION FW(1)

SUMFW(K+1)
IF(K,EQ.0) GO TO 20
DO 10 I=K,1,=-1
SUM=FH{I) + SUM=xYX
F=5UM

RETURN

EMD

SUBROUTINE SRMINS

14A)

SUBPROGRAM FOR DETERMINING THE MINMUNS OF THE OPEN LOOP FREOQUENCY
RESPONSE #ITH RESPECT TN THE ~1 POINT WHEN GIVEN POINTS ON THE
OPEN LOOP REQUENCY RESPONSE

DESCRIPTION OF 1/0 VARIABLES
KPOINT = NUMBER POINTS OF THE OPEN LQOP FRER, RESPONSE GIVEN
OMEGA =~ CGRRESPONDING FREGUENCIES OF CHOSEN POINTS
PTS -FREQUENCY NGS, ®HERE MARGINS OCCUR
GMIN  ~MINIMUM FRU, CONSIDERED
P =POINT #,R.T, A MAX, OR MIN, IS OESIRED
=DETERAINES WHETHER A MAX, OR MIN. I5 DETERMINED

COMPLEX OMEGA,GTOTAL
DIMENSION GTOTAL(1), KPTS(1), STBM(1), OMEGA({1)

ASNiI=0.0

81=0.0

IF {(N.LT,0) Si=1,0E15

DO S50 I=1,KPOINT

IF (AIMAG(OMEGA(I)),GT,FOMAX) RETURN
IF (ATAAG(OMEGACI)) LT, FAMINY GO TD S50
S52=CABS(P+GTOTALCI ) xx2

ASNE2=52-51 .

IF (ASNZ2=®L) 10,50,10

IF (ASNI*ASN2) 20,40,40

IF (ASH1%N) 30,40,40

MM=NM+]

Ii=]=1

KPTS(NM)=T1

STBH(Nit)=SRRT(S1)

51=82

ASNizASHZ

CONTINUE

RETURN

END

SUBROUTINE SRMINS (GTOTAL:KPDINT;NM,P;N;FGMIN;FQMAX,KPTS;STBM;OMEG
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10

20

30

40
30

40

SUBROUTINE XCHECK

SUBROUTINE XCHECK (KIN:KOUT,ZArZB:ZCrZDrZElNIrNaibthETArpsoNAH!K
1E+NRTR1,NRTR2,LPV,A,B,C,D,E,F,KKK)

INTEGER A,RB,C,D,E,F
DIMENSION ZA(A,B,C), ZB(A,B,C), ZC(A,B,C), ZD(A,B,C), ZE(A,B,C),
11Ca,8), N2{A,B), PGCLE,F), DV(1), KJUMP(3)

DO 100 I=1,KIN

DO 100 J=1,KQUT

Kl=nN1(1,J)

IF (K1.EQ.0) GO TO SO

DO 40 K=1,K1

IF (NRTR1.EQ.1) GO TO 4¢

IF (2A(1,J0,K),.GT.i.E=05) GO TO 20
IF (DV(KKK+1).,G6E.0.) GO TO 20
KRE=} -

DO 10 [=1,Nav

PG{L,KKK+1)=0,

LPVv=PV=-]

CONTINUE

IF (ZR({1,J:K).GT.1.E~0%) GO TO 40
IF (Z8{I,J,X).LT.0.) GD TO ti0

IF (DV(KKK+2),GE.0.)} GO TO 40
KRE=1{

DO 306 L=1,NaM

PG(L,KKK+2)z0,

LPVZLPV=1

KKK=KKK+2

K22 (I,J)

IF (K2.£EQ,0) GO TO 100

DO 90 K=1,k2

IF (NRTR2.EG,.1) GO TO 90 °
WH=SQRTCZC(T,J.KYI/Z2E(3,J.,K))
2127001, J,K)/Z (24 *xHNX2ZE(T,J,K))

IF (27.GE.ZETA+1.E-03) GO TO 90
IF (ZT.LTLZETA) GN TO 110
PaN=(ZE(I,J,KIXDV(KKK#1)=ZC(I,J,K)*DV(KKK$3))/ (2. *HN*ZE(I,J,K)*x%2]
AINC==-STEP/PMG

CEL==AINC
WNEZSORT(ZC(I,J,KI/ZE(T,J.K))
ZET=ZD(I,J,KI/ (2. % ZE(T 1 J,K))
IF (ZET.GEL.ZETA+1,E=03) GO 71O S0
IF (ZET.LTL.ZETA) GO TO 40 -

GO T0 50

DEL=DEL/2,.

AINC=AINC+DELXSGN
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50
60

10

20
30

AO=ZC(I,J,K)+AINCRDVIK2+])
A1=Z20(I,J,K)+AINC*DV{K2+2)
A2=ZE(IerK)+AINC*DV(¥2+3)
ZET=A1/(2.*x82*SQRT.(AQ/A2))

IF (ZETL.LTLZETA} SGN==1,0

IF (ZET.GEJZETA+0,999E~03) SGN=1,0.
IF (ZET.LT.ZETA) GO TO 490

I¥ (ZET.GELZETA+0,.999E~03) GO TO 40
CALL SELECT (STEP,STPNEW, AINC*xPMG)
KRE=3

KZ2=K2+3

CONTINUE

RETURN

-SUBRQUTINE SELECT (STEP,STPNEwW,STPTRY)

1F (STEP.GE,0,) STPMEW=AMIN] (STPNEW,STPTRY)
IF (STEP.LT,.0.) STPNEW=AMAXI-(STPNEW,STPTRY)
RETURN

END

SUBRDUTINE YCHECK

SUBROUTIME YCHECK (KIN,KOUT,N1,N2,2A,28,2C,ZD,ZE,KRE,STEP,PMG,ZETA
1sNRTR1,NRTR2,DV,A,8,C,D,E,K2,STPREWY

INTEGER A.B,C,D(E ’ ’
DIMENSION ZA(A,R,C), ZB(A,B,C), ZC(A,B,C)s ZD(A,B,C), ZECA,B,C)s N
11(4,B), N2(a,B), DV(1)

DO 60 I=1,KIN

DC &0 J=1,K0UT

Ki=N1(l,J)

IF (K1.E@.0) GO 7O 30

D0 20 K=i4K1

IF (NRTRI.EN,1) GO TO 2¢

IF (Za(I,J,%x3.GE,0.) GO TO 10
KRE=3

NDEL=ZA(I,Jd,x)/DVIK2+1)

CALL SELECT (STEP,STPNEW, (DEL+,000001)%PMG)
IF (Z8(1,J,K),GE.0,) GD TO 20
kRE=J

DEL=ZB(I1,J,K)/DV({K2+2)

CALL SELECT (STEP,STPNEW, (DEL+,000001)«PMG)
Ke=K2+2

CONT INUE

Klane(l,J) -

IF (k1.E2,0) GO To &

DO S50 K=1,K1

IF (NRTRZ.EG,1) GO TO SO
SGN=1.0

AINC==STEP/PMG

DEL==AINC .
WN=SQRT(ZC(I,J,K)/ZE(T,J,K)})
ZET=ZD(I,J K)/ (2 *WN2ZE(I,J,K))
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40

50

IF (ZET.GE.ZETA+1.,E-03) GO TO SO
IF (ZETLLT.ZETA) GO TO 40

GO 10 SO

DEL=DEL/2,

AINC=AINC+DEL *SGN
20=ZC(I1,J,KI+AINCxDV(K2+!)
A1=2D(1,J,K)+AINC*DV(K2+2)
A2=Z2E(1,J.,KI+AINC*DV(K2+3)
ZET=A1/(2.%xA2%3GRT(AO/A2))

IF (ZET.LTL.ZETA) SGN=~1,0

IF (ZET.GE.ZETA+0,.999E~03) S56N=1,0
IF (ZET.LT.ZETA) GO TO 40

IF (ZET.GE.ZETA+0.999E=-03) GO TO 40
CALL SELECT (STEP.STPNEw,AINC*PMG)
KRE=3

K2=K2+3

CONTINUE

RETURN

SUBROUTIWE SELECT (STEP,STPNEwW,S5TPTRY)

IF (STEP,GE.Q0.) STPMEW=AMIN] (STPNEW,STPTRY)
IF (STEP.LT.0.) STPNEw=AMAX1(STPNEW,STPTRY)
RETURN

END.
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