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ABSTRACT

Analytic solutions for non-linear differential equations are
difficult, time consuming and largely impractical for reasonably large
values of the independent variable. The purpose of this study was to
develop a technique for analytic (algebraic) solutions of autonomous and

nonautonomous equations of the type

3 n
E : d
c. oB f(t) = g(t) + kN [f, fr, £ etc,]

n=0

with the help of a digital computer,

In the equation n is an integer and q is a small integef. ch is
a constant. g(t) is a forcing function. N [f, fr, fn etc} is the non-linear
term while k is the ugsual "small" parameter. N does notf contain the
independent variable t (time) explicitly. £(t) is a continuous bounded
function with finite initial conditions.

Two operational transform techniques have been programmed for
the solution of equations of this type. To develop computer techniques
only relatively simple non-linear differential equations have been con-
gidered. The theorem of Poincare/ assures the convergence in all cases
considered for "small" values of k.

In the few cases considered.it has been possible to assimilate
the secular terms into the solutions.

For cases where f(t) is not a bounded function a direct series
golution is developed which can be shown to be an analytic function.

All solutions have been checked against results obtained by
numerical integration for given initial conditions and constants.

While the results of this study may be regarded as experimental
in character it seems evident that at least certain types of non-linear
differential equations not only can be solved with the help of a digital
computer but that except for quite elementary equations must be solved

in this way.
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1. INTRODUCTION

Engineers and physicists have been interested in non-linear
problems for many years. While graphical methods or hand-calculated
values for numerical integration could sometimes be employed, the use-
fulness of ‘such solutions was largely restricted by the tedious calculations
and techniques. With the advent of digital and analog computers numeri-
cal and graphical solutions could be obtained for most engineering prob-
lems. Sucli solutions require definite numerical values for design con- .
stants and initial conditions and many different runs are necessary to
establish the character of the solution.

In many cases analytic (algebraic) solutions might prove gquite
helpful if not too complicated since the effect of changing design con-
stants or initial conditions could be recognized from the form of the
solution. This would be particularly true if the results could be approxi-
mated with two or three terms. Unforiunately analytic solutions for non-
linear differential equations are both difficult and time consuming and,
in most cases, quite impractical for large values of the independent vari-
able.

During the past seven years the author and his students conducted
a series of investigations leading to analytic solutions for non-linear and
linear differential equations using a digital computer. Madhul showed
that it was possible to solve a non-linear differential equation using a
power series in the independent variable, time. This approach was both
cumbersome and unsuited to machine manipulation. It was evident that
if machine calculations were to be used an operational or transform type
of solution would be required.

C]:'ecraft2 developed solutions for several non-linear equations
but only for cases where the solutions were known. Shiva3 showed that
a linear differential equation with a variable coefficient could also be
solved by a technique which could be adapted to computer operations.
Regan4 programmed a computer for certain derivative operations and

Erk'anli5, Cheng? and Wang8 developed tables of transforms for special



functions. Numerical solutions for the van der Pol equation were ob-
tained by Chen6 while numerical sclutions for the Mathieu equation were
computed by Leeg. |

The purpose of this report is to present the resulis of an experi-
mental study in the use of a digital computer to obtain analytic solutions
for certain types of non-linear differential equations. The solutions are
limited to bounded analytic functions and convergence is assured by
Poincaréh Theoremlo. Appropriate cases include many of the equations
usually discussed in text-books such as certain forms of the van der Pol
and Duffing equations. ‘

One section is devoted to direct series solutions where the results
are unbounded analytic functions,

It is sometimes said that calculations which can be done by hand
can always be programmed on a digital computer. TUnfortunately it is
not unusual to find that the whole procedure must be revised to carry
through a given problem. In the case of non-linear solutions the power-
ful perturbation method would be very difficult to program due to the
series of solutions required for the unknown coefficients. An operational
type of solution seemed advisable since a computer could easily be pro-
grammed to perform the required operations. It should be emphasized
that the Laplace Transform is employed only in evaluating the equation
as presented. In particular the solution of several simultaneous non-
linear differential equations ;t)y Laplace Transforms is not involved.

Two different techniques are described. The first type is closely
associated with the dévelopment of a Maclaurin's series by repeated
differentiations while the second type evaluates the time function directly.

A discussion of the conditions for convergence of the operational
solution will be followed by an example presented in some detail.

An outline of the computer operations is then followed by a2 number
of examples which show the power and weakness of the method. In each
case the numerical values are substituted in the analytic solution to obtain
a graphical solution which is then compared with a solution obtained by

numerical integration.



2. TYPE OF EQUATION CONSIDERED

The primary purpose of this study was to develop a method for
obtaining analytic solutions for non-linear differential equa-tions using
a digital computer. For this reason the equations selected were as
simple as possible,

All equations are of the form:

q n

z L Cn Ztn I(t) = g(t) + kN Ef, 1, f'f', etc.] (1)

n=0

Here n is an integer and g is a small integer. c, is a constant. g(t) i_s
a foreing function. N [f, fr, 1, etc.] is the non-linear ferm in polyno-
mial form while k is the usual "small" parameter. The equation is
autonompous if the forcin,; function is a constant and nonautonomous if it
is not a constant. f(t) is a bounded continuous single valued analytic
function. All terms are limited to functions which may be developed in
Taylor's series.

Equation (1) is the form usually considered in text books on non-
linear differential equations and convergence of the solution is assured
if the parameter k is small enough on the basis of the theorem of
Poincaré 10.

"All solutions are therefore analytic functions.



3. CONVERGENCE OF THE OPERATIONAL
SOLUTION

Consider a function of the type

=]

£(t) = E :kmfm(t) @)

m=0

f(t) is a bounded, continuous, single valued function uniformly convergent
in some closed interval 0 £t <h, h >0. All fm(t) are similarly defined

(See Reference 11). In addition

o0 n
ant
£(t) = E T
0

a restriction required by the technique in the solution.

The Laplace direct transform is

dt (3)

where p is a complex number with real part greater than zero.
Equation (3) is to be carried through by integration by parts.
Since all fm(t) are bounded functions the upper .limit contributes nothing
to the final result:
o)

pt =~ £
Em(p) = p fm(t) e dt = E — (4)
A 0 n=0 P

The result in pﬂn is always absolutely and uniformly convergent in p
(See Reference 12),

If the upper limit on the integral in (4) is removed the result is an
"open-end integral" and the result in (4) may then be obtained by a series

of differentiations carried through by a computer.



When all fm(t) converge uniformly and the integral in (4) con-

verges
o] 0 el a
-pt., _ ; : n t ~-pt
p fm(t) e "dt=p I fm (0) T e " dt

0 n=0 0

0 fmn(o)

= :>: T m = Fm(p) . (5)
n=0 p

That is, the function and the series in t" have identical transforms and
all Fm(p) are absolutely and uniformly convergent; fm(t) is in terms
of a Maclaurin's series.
Now uniformly converging series can be summed (Reference 11):
o0 Kk f B
Fe = ), D —r_n-i-nl(—m (6)
= n=0 P

o0
m=0

If {6) is now inserted in the inverse transform

ctjoo
£(t) = L % Plap (7

2mj

c-joo
each of the p-nth terms may be evaluated separately and the results added

to obtain

o]
() = >
m=0

-~ Data’ comes from’ the machine:innthe form

4 r k £ %0) :
F:(p)fvé ‘ :>: — (9)
=0 n=0 P

where g and r are integers. Normally q < 6 and r < 30. The symbol A«

. >°° . kmfmn(o)tn .
7 ___{ n & * ( )
n=0

indicates an approximation.



The direct series result equivalent to (8) is then

. a r kmfmn(O)tn
f(t) v E E o . (10)
m=0 n=0

The series (8) is a convergent series by definition and since all

fm(t) are uniformly convergent (10) is always the first portion of a con-
verging series which may be carried as far as necessary.

If the raw data of (8)are sortedon km and the p_nth terms summed
in terms of known functions,

g
F(p)»v E k F_ (0 ] (11)
m=0
If these Fm(p) are now evaluated by the inverse transform,
g
f(t) v E kmfm(t). (12)
m=0

Since f{t) and all fm(t) are bounded functions and the series is
uniformly convergent, f(t) converges if q = .

Equation (12) is a "summation solutiont.

Such summation solutions are much more effective than the direct
series solutions in producing results.

In the direct series solution all data areevaluated directly. It is
not necessary to recognize the Fm(p) in order to obtain a direct series
solution.

On the other hand, a summation solution uses a few terms to
recognize an operational term and the resulting solution converges to a
usable result for much larger values of t than the direct series type of
solution.

As might be expected summation solutions quite frequently have
secular terms. These terms can be assimilated’into the solution in some

cases. With a computer presumably a sufficient number of them could be



obtained so that the series thus formed would be a good approximation
for the unknown function over the desired range. In this case the con-
dition of uniform convergence is not usually valid.

All summation solutions do not have secular terms, and in at
least one instance, the solution for the pendulum, the frequency of oscilla-
tion can be predicted and no secular terms appéar. This suggests that
with proper summation of terms A\n £(0), £'(0) etec., k} ,‘f_-n {f({)), £1(0),
ete, k, t} where the coefficients An and the time functions contain k and
the boundary conditions the results are the same as for Lindstedi's
method13.

Operational solutions for-equations defined in Section 2 are formal
gsolutions of the equations. Convergence is assured for bounded functions
if the parameter k is small enough and a sufficient number of terms is
available. )

In the special case where the formal solution f(t) can be recognized
as a bounded, continuous, single valued function uniformly convergent in
some closed interval 0 <t <h, h > 0 and k is small enough the result con-

verges. Such results are analytic functions.



4, DERIVATIVE OPERATIONAL METHOD

Two operational methods have been developed for the solution of
suitable non-linear differential equations using a computer., The
"derivative" or "open-end integral" method is explained in this section
by the solution of a well known first order equation. Section 5 explaing
the operations for the "expansion" method.

Consider the equation

£1 & Af = -Bf° (13)

where A and B are positive constants. B is "small". Physically one.
may visualize this e'quation as non-linear braking for a rotating mass.
The solution f(t) is therefore a bounded function.

Rewrite (13) as

£l = <Af - BES (14)

and let £(0) = a, the oniy initial condition.

The direct transform is

[ve]
F(p) = p f £(t) e Plat, (15)

0
Integrating by parts:

"'pt <0 oo
F(p) =p :fe_p__ \ + _i:!a__f £1 e_ptdt

o0
=a +j fr e Pay, (16)
0

Since the function f(t) is bounded the upper limit in (15) never
contributes to the final result and the integration by parts turns into
a series of differentiations with the lower limit £{0) = a inserted.

Continuing the integration by parts after substituting (14) in (16)



(4]
Flp) = a + f (-Af - Bf3) e Plat

0
oD
=a-A £ e Pl
0
w .
- B 2 o Py
0
o0 3
=a-%“‘—+-—%- f'e"ptdt'B;
0
"
- % 3r?sr o Pyt (17)
0

This procedure can easily be programmed on a computer using

a defined operation which may be designated as the "open-end integrzl":

F(p) = p [ £(t) e Plat
0

b n

_ E * £7(0)

= o (18}
n=0 P ‘

where fn (t) is the n th derivative.

If the inverse transform is used term by term

n
£75(0) t (19)

f(t) = o

n=0
which is Maclaurin's series for f(t).
Continuing with the derivative operations with Equation (18) the

computer gives, for the first seven derivative operations:
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p) = a - aA + a\3B + aAz + 4a3AB + 38.5B2
p =a p 2
p
an® + 132°A%R + 272°AB% + 152 B
3
p
+ aA4 + 409.3A3B + 174a5A2B2 + 24Oa7AB‘3 + 105:9.91?:4
Z
p
[aﬁ + 1212°A%B + 990224382 + 25505 4283 + 26252°AR%
L+ 9452'1R°
5
D
2a% + 3642°A%B + 53132°4%R2 + 22,880a A%R3
Ll 41,475a°a28% + 34,0202 1AR% + 10,3952 13R85
5
p
aA’ + 1093a°A%B + 27,6572°A582 + 186,165a A%B3
+ 532,875a°4%8% + 747,405211428% + 500,355213AR°
L+ 135,1352 %87
T
p
+ 4+ 4+ (20)

The Maclaurin's series equivalent to (19} is:

{ah + a3B)’c + (a.A2 + 4a3AB + 33.5B2)t2

£t = a - = 5]

(aa3 + 1323428 + 2729482 + 152 'B)S
31!
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(an? + 202538 + 1742°428% + 2402 AR®

4.1

+ 1052°BH)tt

+
(aA5 + 121a3A4B + 990&5A3B2 + 25503.7A233 + 2625a9AB4

+ 9458.11}35)1:5

2 &

3,5 5,42 7,353

+ (aa® + 3642°4%8 + 5312°4%B2 + 228002458

+41,475a°A28% + 34,0202 'aB® + 10,3952 13858

6!

3 T.4_3

- (aA” + 109322458 + 27,657254%B2 + 186,165a'a%B

+ 532,875a°4°B% + 747,4952 1A% R% + 500,3552 12

+ 135,135 08 )"

AB®

70

+ 4+ 4+ (21)

This is the direct series solution for Equation (13) approximated
by the first eight terms. The (infinite) series converges if B is "small
enough". (However, see Section 11,)

Figure (1) shows, in graphical form, the result of substituting
the indicated values in nineteen terms of Equation (21) extended. The
values for the direct series solution are shown superimposed on a
solution by numerical integration.

Finite power series solutions of this type only represent the
functions for relatively small values of the independent variable. Eventually
the sign of the last term causes the series solution to go above or below the

numericzal solution.
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If the computer data for Equation (20) (nineteen terms) are sorted

on Bn and the p-n terms are summed (if l pﬂ is large) the first three

terms are

' 3 5.2
F(p) = ap a Bp 3a B'p

(0+A) ~ (p*A) (pF3A) ' (pFA) (pr3A) (pr5A) T 7 (22)

If these terms are evaluated by the inverse transform

3
At_ a'B At _ -2At

3
°g® - -2At, 2
-e )

i o (23)

This is the "summation solution". .
Convergence is assured if B is small enough.

To test for uniform convergence by the " M" test

o0 N
3 5_2 73
_ a B 3 aB o a B
2 M =atsgr— +tg —3 — * 15 3 (24)
n=0

A A

since all of the exponential coefficients of (24) are less than one for any

value of t gince

s8]
: ;\ a
M _= (25)
n . )
n=0 l/l -

a B
A

provided B is small enough.

The series (23) is therefore absolutely and uniformly convergent
t >0 for
aZB

0 < N

<1, (26)
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In this case the terms of Equation (23) may be summed by binomial

expansgion provided

2
aAB (1-e28h1 < (27)
giving
L o -At
£(t) = i (28)
- 5
14 aAB (1 _e-ZAt)

If the solution of one case is known the result may sometimes be
stated in a more general form.

The solution of the equation

df q_
— TAL+Bf =0 (29)

where q is a positive integer is:

a e-At
f(t) =

1
E_ a(q':B (e-A(q-l)t_l')Sq'l

for suitable values of the constants.

(30)



15

5. SOLUTION BY EXPANSION

The Laplace Transform method of solution may easily be adapted
to machine calculations using a method which has been designated as the

"expansion" method since the key operation is to expand the solution as

f=f1+f2+f3++++. (31}

The results appear to match solutions obtained by the summation
derivative process of Section 4. In fact the operational root functions
for the summation procedure are readily predicted by a rough study
using the expansion principle.

As an example in the use of the method consider the equation

£ xf=ge VP4 k (£204 £ ‘ (32)

with £(0) = a. {f(t) may only be a bounded function.

The direct transform gives

- &P 2 .
(p + x)E(p) = ETI_—};_— +ap + J(f + ff') (33)
and
£
= gp ap k 2
F(p) = (ptx) (pt+y) + pt+x + P+ X O_“:_ (f7 + ff') {34)

Applying the inverse transform to Equation (34)

xt_ e-yt) -xt

+ae

_gle”
£(t) = —

-1 1 ¢ 2
+k{f [p+x Li(f +ff')}

R TR TR : (35)
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where

(e-xt - e-yt) -xt

f1=g ST +ae . (386)

Equation (35) is more easily carried out by changing to Heaviside
notation using the definition -

1

DEp+X (37)

and expanding the non-linear terms

f1+f2+f3+++=

) 2
f1 + kD [fl + flfl']

2
+ kD [fz + 2f1f2 + fl'f2 + f1f2' + f2f15|

2
+ kD [fB + 2f1f3 + 2f2f3

LETIE P 2 SLCE S AR % 5 +f3f3']

+ 4+, (38}

In Equation (38) each bracket term on the right can be paired with
a term on the left

- |
£, = kD |_f1 + flfl':l (39)
a 2
£, = kD Frfz v oLf) 1,
L _
FEE) fzfl'J (40)
_ 2
f4 = kD [fs + 2f1f3 + 2f2f3

+ fl'f3 + fsfzf + flfs' + fzfs' + f4f'3'] . {41)
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Since f, is known f, may be obtained by a "Heaviside shift" which
may easily be programmed on a computer. When f2 is known f3 may be
found. This procedure may be continued to obtain as many terms as
requirqd.

The computer program is based on the following operation:

-1
1 xt,n N
I Py I{e t )] = f(t) (42)

where x and y are real and n is a positive integer including zero.

There are two cages:

Casel y=-x

ext tn+1

) = 51—

(43)

Case IT YE-x
-yt

ft) = (an)] —S
{_ (x+y)} {n+1)

xt n
-g

t
i— (x+y)} %t
_ xt tn-l

e
{ ey e

L

-

ext tO

{- et} ™00 s

While the machine program handles only real values of x and y

(44)

the results may be converted into sinusoidal quantities quite readily.
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6. THE PENDULUM

The equation of motion for an idealized pendulum is

5— = = k sin @ {45}

where k is the ratio of the gravitational constant to the length of the
pendulum. 8(t) is the angle of displacement in radians.

The solution for the period of oscillation is well kn.own14 in this
case and the expansion method would generate secular terms since sin 6
would be approximated by the first few terms in 9.

The derivative method also generates secular terms if the data is
sorted on k before summation. Knowing the period14 one may approxi-

mate the rotational velocity as

Vi

Wy = (46)
1 2 - 7 3
1 2 1.3 4 1.3,5 6
P (g ) B orlgg) B orlggg) Brte
2
where [32=—b— and b = 8'(0).

4k

If data in p is then summed on the basis of the odd harmonics of
Wy for £(0) = 0, £'(0) = b

3 5 7
_ bp _ b 3b 3b P
F(p) = ——— [8 T st 2++£l 2 5., 2 . 2
(p Ty ) 4096% (p +w1 Mp +9w1 )
 3p° . 15b " . 513b° i
33 ZOLBE o 2
+ p
: T 3. 2 . 3.9 :
81b11 . 81b13 (p +m1 Xp +9w1 Hp +25L=J1
+  + y b
1,048,576k 16,777,216k

Lo+ o+ (47)
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The transforms may easily be evaluated to obtain the approxi-

mation

. 3
3 5 7 sin w,i
B(t) = m-—-b sin wlt - [b + 3b + 3b + +‘] 1

1 8 olZk  4h96x? 6w13
b7 1567 513b° 81p1t
132~ * goask T 5t 3
262,144k 1,048, 576k
13 sin5w t
+ _@2__4 PR _____é_.-
16,777,216k 1500

1
(48)

The maximum value of b = £/(0) for which v, is valid is ZW .

If this value is used for the series forming the coefficients they appear
to converge very rapidly and it is assumed that they do converge.

If sin wlt is replaced by its maximum value one may then examine
the first three terms of the alternating series. Again they appear to be
absolutely convergent and the assumption is made that the result is ab-
solutely and uniformly convergent and is therefore a solution for the
original differential equation for the case where £(0) = 0 and %' (0)=h
in radians per second, -

Figures (2) through (5) show analytic resulis compared with re-

sults obtained by numerical integration for four cases.
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7. SECOND ORDER EQUATION

24

One of the most interesting equations under study was the second

order equation

£1 4+ (xty) £1 + xyf = ki2.

(49)

Here x and y are real and positive while k is a small positive or

negative real number.
In addition

+*mx{ny

(50)

where m and n are any positive integers. If this inequality does not hold

multiple roots will appear causing secular terms in the final resuli.

Evidently x and y must be irrational numbers.

In the following operational transforms the initial conditions will

be abbreviated as
f(0) = a, fY{0) = b, (51)

The first three terms of the complete solution by the derivative

operational method are

F(p) =

p(ap+btaxtay)

(p+x) (pty)

+ kp

+k2p

(p2a2+2pabtdabxt2b2+3paxt2a’x2+3pa’y+daby+6a‘xy+2ay?)
(p+x) (pty) (p+2x) (p+xt+y) (p+2y)

2p4a3+16p3a3x+10p3a2b+102p2a3xy+6szasz+62p2a2by+20pzab2+

~— -

2bSpa3x2y+120pa2bX2+270pa2bxy+84pab2x+84pab2y+20pb3+

132a°x g+ 72a2bxo +252a b y+ T2ab x>+ 144ab xy+24b° x+

24b3y+ 16p3a3y+46p2a3x2+5 6pa3x3+46p2a3y2+24a3x4+2OSpasxyz-i-

120paby2+56pa’yo+204ad x>y 242522 by xt T2ab y o+ 132a°

| 72a%hy S +240 552 -

Xy3+

(p+x) (p+y) {(p+2x) (p+x+y) (p+2y) (p+3x) (pt2x+y) (ptx+2y) (p+3y)
(52)
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If this equation is evaluated it represents three terms of a formal
solution of Equation (49). Each term multiplied by a given power of k is
made up of negative exponentials added together. If x and y are irrational
numbers there will be no repeatecd roots. If it is assumed that the infinite
series of such terms behave in the same way some finite constant Mm
may always be chosen to replace each k multiplier and we have

o

5 KM > £(t). (53)
n=0

If these M., follow a normal pattern they eventually decrease with

increasing n so that all Mn may be replaced by the maximum value M.

3 0
M E k® > £(t) (54)
1n=0

Evidently the result, under these assumptions, converges abso-
lutely and uniformly for t > 0 when k is sufficiently small.

Fortunately it is not necessary 1o rely on so many assumptions
since Poincaréé theorem assures convergence for sufficiently small
values of k in any case.

Now Equation (52} is the solution of Equation {49) in operational
form. The operational solution is sometimes as interesting as the final
evaluation for £{t). In this case the initial and final value theorems
applied to the individual terms show that the final value of f(t) is zero
for all three terms and the initial value is zero except for the first term
where £{0) = a.

A computer program evaluated Equation (52) directly for given

values of x, y, £f(0), £'(0) and t. The result is shown as Figure 6.
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Memory space in the computer is always at a premium with
these solutions, While Equation (52) contained both fnitial conditions
(a and b) the next term would have required more memory than available.
One may obtain more terms (k") by sorting data either £(0) = a = 0 or
£'(0)=b =0,

Equation (55) shows the operational solution for £1(0) = b = 0 and
f(0) = a

F(p) =alp® +xp +yp) + Ea2(p3 + 3xp® + 2x%p + 3yp° + 6xyp *+ 25%p)
(p+=x)(p +v) (p+x)p+y)p+2x)(p +2y)(p +x +¥)-

2p° + 16xplt + L6x2p3 + 102xyp3 + 206x2yp® + 206xy2p2 + 132¢yp
+ 20ly®p + 1679 + U632 + 562397 + 56y3p% + 2lxlip

+ a3 b 130633p + 2038 :
e+x)p+y)p+ex)p+x+y)p +2y)p + 3x)(p +2x +y)

(p+x+29)p + 3y)

6 + 3042537 + 13,L66x290°

+ 13,h66x7207 + 39,922x3ypl + 63,76l2y2p + Wik, 136x3y%p3

+ 1h,136x%3p> + 15k, 9hleliy?p? + 219, 7hlix3y3p? + 65,360x5y2p

+ 118,656xhy3p + 2330xyp6 + 1090)r2p6 + 39h2y3p5 + 32‘6C'XL'Pll

+ 63,856xlyp3 + 39,920xy3p + 10,008x5p° + 52,152x5yp°

+ 82605"ph + 6LB0xBp2 + 16,992xByp + 63,856xy"p3 + 10,0085

+ 1728xTp + 15h,Slix?yip? + 52,152xy5p2 + 64B0yop2 + 118,656x3yHp

+ Bat I+ 63,360:255p + 16,992x5%p + 1728y7p
p+x)p+ty)p+2ax)pt+x+y)ip+2y)p +3x)(p +2x +y)

(p+x+2y)(p+37)(p +hx)p + 3x +y)p +2x +2y)(p + x + 3y)
(p + Ly)

10p° + 162xpT + 162yp7 + 1090x°p
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80p12 + 2336xp1L + 2336yp L + 30,288x2p20 + 43,176xypi0

+ 749,840x%yp? + 7h9,8L0xy2p? + 5,137,232x3yp0 + 8,029, 90lx2y2p8
+5,137,232xy308 + 22,467,296xtyp | + 18,758,176:3y2p7

+ 18,758,176x2y3p  + 22,167,296xylpT + 65,13, 30Ux5yp®

+ 181y, 709, Loty 2p6 + 256,159,560x3y3p0 + 184, 749, LL0x2ylp0

+ 128,382,ooogé§p5 + 452, 361,232x5y2p5 + 816,660,89%xky3p°

+ 816,660,896x3ybp° + L52,361,232x2y5p5 + 71l,697,18lby2pl

+ 1,610,209,192x5y % + 2,093,793, T12xbyliph + 1,610,209,192x3y5p
+ 714,697,138l 00!t + 701,604k, 736 Ty2p3 + 1,917,317,088x5y3p>

+ 3,110,628,512x55lp3 + 3,110,628,512xly5p3 + 1,917,317,088x37°p>
+ 388,007,040x0y%p% + 1,259,061,216x7y3p2 + 2,477,021, 376<53p2

+ 3,089,808,696x595p2 + 2,477,021, 376xly5p2 + 92,00:,800x%5%p

+ 348,8L2,880x0y3p + 81L,798,080xTyip + 1,231,879,680x0y5p
+1,231,879,680:5y0p + 30,288y2p10 + 229,920x3p7 + 1,13k,000xlp®
+ 229,92053p% + 3,810,528x5p7 + 1,13L,0005p8 + 8,888, 9llecOpd

+ 63,L43,30Lxy p0 + 3,810,52855p7 + 8,888, 9hlypS + 167,238,528xTypl
+ 10,37h,240xTp° + 128,382,000x70p° + 138,276,288x5yp>

+ 15,760,520x5p" + 11,374,240y T> + 65,473,920%yp° + 11,166,336x%3
+ 167,238,528y Tpt + 15,769,9205%% + 13,478,L00x10p

+ 11,589,568x*%p% + 701,6Ll,736x2yTp> + 138,276,288xy5p3

+ 11,166,3365%° + 829,Lh0x 1y + 1,259,061,216x3y7p

+ 388,007,040x2y%p% + 65,473,920xy%p? + 11,589,5685 Cp?

+ 81h,798,080x4yTp + 348,812,880y p + 92,0Lh,800x25%p =

+ /2 b+ 13,178,L00xy1% + 829, hhoytlp
(p+x)p+y)p+2x)(p+x+y)(p+2y)(p +3x)(p *+2x +y)(p +x +2y)
(p+37)p+x)p+3x+y)p+ex+2y)(p+x+3y)p + hy)p + 5x)
(p+hx+y)p+3x+27)(p+2x+3y)p +x+ by)p + 5y)

(55)
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Equation (56) is the operational solution for f(0) = a = 0 and
f1(0)=5o

F(p) = bp + 2Xb°p
(p+x)(p +¥) p+x)p+y)p+2x)(p+tx+y)p+ 2y)

+ K2b3 (20p% + 2hpx + 2lpy)
p+rx)p+y)p+ox)p+x+y)p+ 2y)(p + BX)(p + 2x + Y)(p Fx* o) (p +

[6°0Ph + 206007 + 397) + 38080 + 72p°) + B976xyp”

+ ot L+ 662l (x2yp + xyPp) + 1728(x3p + y3p)
p+rx)p+)p+2x)(p+x+y)(p+2y)p + X)p +2x +y)pt+x+2)

(p+ 3y)p + hx)(p + 3x + y)(p + 2x + 2y)(p + x + 3y)(p + Liy)

39,6007 + 1i3,520(xp® + ypb) + 1,972,080(:%p° + y2p°)

+ 1,27 ,160xyp5> + h,LLS?,B?é(XBPh + 33ty + 15,;82,128&2@1‘ + xyzph)
+ 5,405,184 (xkp3 + yhp3) + 27,102,336 (x3yp> + xy3p3) '
+ Lk, 428, 70Ux?y®p3 + 3,345,108 (<5p? + ¥°p?)

+ 22,809,600(xlyp?® + xylip?) + 53,211,840(x3y%p? + x2y3p°)

+ 7,257,600(5yp + xy°p) + 22,752,000(xby?p + xzyl‘p) )

+ K° L+ 32,617,680(x3y7p) + 829,40(xp + ¥0p)
prx)p+P+2x)p+tx+y)p+2y)(p+3x)p+ex+y)p+x+2y)

(o +3y)(p + hx)(p + 3x + y)(p + 2x + 2y)(p + x + 37)(p + ly)(p + 5x)

(p+hx+3)p + 3x +2y)(p + 2x + 3y)(p + x + by)(p + 5y)

R

(58)

Figure (7) shows the results for the analytic solution compared with the
results of numerical integration for k negative. Evidently the magnitude
of k = -0.3 is "too large" for convergence or more than 5 operational

terms are required.
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The actual evaluation of Equation (49) as a time function is more
quickly and more easily carried out by the expansion method, but in this ‘
case any numerical check solution must be programmed on the computer.‘

As an example take the case where (0} = 0 and £'(0) = b, which is
the evaluation of Equation (56). WNotice particularly that the constant "a'
is not £(0) as usual but a newly defined constant. :

Equation (48) may be written in Heaviside notation with one boundary

condition as

[p2 + (x+y) p + xy] I=Dbp+ kf2 (57)
where £f(0) = 0 and f'(0) = b
2
bp kf
T = o — 58
() (p+x) {p+y) {(pt+x) (pty) (58)
1 a
= + c 9
(prx) (pty) {pt+x) Pty (59)
where
as —-l— and ¢ = ——1—-———
y-x X-y
- -xt . -yt a c 2
£{t) = abe + bce + = + 5Ty ] kf (60)
f.=.f1+f2+f3+f4+++ (61)
and
2 _,2
7 = fl
(5.2 928 1)
2 172
F (.2 of £ + 26.1.)
3 13 273
2
+ (f4 + 2f1f4 + 2f2f4 + 2f3f4)

+ + + (62)
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f(t)=f1+f2+f3+f4++ and

= | & _c
D= [p+x + p+y] (63)
f1 = abh e-xt + be e-yt (64)
£ = Dk (£.%) (65)
9 = 1
f. = Dk (£.2 + 2f.1.) (66)
3= 2 1's
2
£, = Dk (5, + 2f £, + 26,5,). (67)

In carrying these operations out with the computer the two terms
of fl are set up as shown in Equation (64). A multiply program then forms
f 1-2. All terms are then given a common denominator so they may be
packed into the smallest number of terms. The next step is to multiply
all terms by k. ﬁ:ach of the operators of Equation (63) is then applied
individually to kf 12. A common denominator is then found so that the
terms may be packed. The result is then read out in decimal anch punched
as a hexadecimal tape for future operations.

The résults are carried in the machine as algebraic quantities and
exponentials so there is no need for laborious hand calculations.

In this particular case no secular terms appear since it is assumed

that the inequality of Equation (50) is satisfied.
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The approximation carried out through the k3 term only is

given by
f(t)=f14_rf2+jf3+f4+++ .
Where
f, = ab e~ Xt 4+ pe =Vt
£y = ke | - a3e'Xt(e‘Xt-l) - 2azce'rt’(e"yt-l) + a028~xt(e(x—2y)t_1)
X ¥ X=2Y
- azce"'yt(e(y'2x)t-l) - 2a02e‘yt(e‘Xt'-'-l) - c3e"yt(e'yt’-1)
o 2X=y x ¥
f3 = Kop3 | + ase-xt(e'2Xt—l) - 2a5e'Xt’(e-Xt'-1) + hahce"xt(e-(x-}y)t-l)
x? x¢ y(xty)
- hahce'xt(e‘Xt—l) - a3c2e~xt (e2¥t1) + 2a3c2e*b (e *t-1)
xy y(x-2y) x(x-2y)
+ alge™xb (em2xt ) - 2gltce=xt (eVbt1) + Lia3cle b (e'(x"'Y)t—l)
x(2x-y) y(2x=y) x{xty)
- ha3cPe Xt (e V1) + alcle b (e2Yb1) - 22203 P (eVb1)
T 7
+ 2glice*b (e-(x+y)t_1) - Zahce-xb(e'yt-l) + 2a302e-Xt(e-2yt-l)
x(xty) Xy : y2
- ha3c?e Xt (e Vb ) + 232038-xt(e(x-3y)t_1) + 2a203e'n(e'y't'—1)‘
¥ (x~2y) (x~3y) y(x=2y)
+ 2a302e'n(e‘(X+Y)t;-1) + 2a3cze“n(e(x°2y)t-1)
(2x=y) (xty) (2x-y) (x-2y}
+ 22203 (™2 1) + ha?e3e=xb (o (X270t 1)
Xy X(x=-2y)
- 2acke X (o (X=3¥)b 1) + 2ache=xt (o (=27t 1)
| y{x-3y) ¥ (x~2y)

Cont.
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+ kgb3

+ 1o

3¢

+ 2altee™¥b (e(y“k)t-l) - Zahc,e'yt(e (y—-2x)t_1)-

x(3x=y) x{2x~y)
+ 2a3cze~yt(e'QXt-l} - ha3c23'yt(e(y"2x)t-l)
Xy y(2x-y)
- 2a2c3e VP (e=(x¥7)b1) + 222c3e Vb (o (y-2%)b1)
{(x=2y Hxty) (2x=y }(x=2Y)
+ QaBGze“yt(e(y'3x)t-1) - 2a3c2e b (Xt ) + 2a203e Vb (2%t 1)
(3x-y )} {(2x=y} x(2x=y) x2
- haledeTt (e *bo1) + 2ache'yt(e'(X+y°t-l) - 2aché'yt(e*Xt-l)
xe y(xty) Xy
+ a3c2e"yt(e'QXt-1) - 2a3c29'yt(e“xt-1) + hazc3e—yt(e'(X+y)t-l)
xa X2 y(x-i-y)
- hache"yt(e*Xt—l) - ache'yt(e'zyt—l) + 2ache‘Wt(e'xt-1)
xy L YR=2Y} x(x~2y)
+ aEGBe"Yt(e'QXt-l) -~ 2a2c3e'yt(e'yt—1) + hacheiyt(e"(X+y)t-1)
x(&x-y) . y(2x=y) _ x(x+¥y)
- Lache Vb (eTE1) + cOe Vb (™2 1) = 205 Vb (e Tba1)
L Xy ¥ Ty
- a7eqxt(e'3Xt-1) + a7e*xt(e-2xt~1) - haéce'Xt(e_(ZX+y)t-l)
3x3 x xy(2xty)
o+ ga6ce-xb(e-=-2xt__l) + 2a5029-xt (e-(xﬂy)t_l) - a5026-xt. (e-2x‘t_.l)
x°y x(x-2y) (x+2y) x2 (x-2y)
- 2a60e’Xt(e"3Xt~1) + 2a60e*Xt(e"(x+Y)t-l)
3% (2x~y) x(2x=y) (x+y)
- Ladele¥b(e~(2x1)t 1) 4 Badc?e~%t (e~ (7))
%2 (2xty) v x%(xty)
- lOahc3e"xt(e'(X+2Y)t-l) + lOahGBqut(e'cx+y)t-l)
Xy \x+ey) Xy {x¥y)

Cont.
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3%

+ 13pl

- alg™t (eXto1) + 11a8ce=Xt (e-(x-i-y b)) - hasca"xt(e'rb—l)

X3 Xy (x+y) x2y
- adc2ext (e'2yb-l) + 2a5c2e"xt (e"xt-l) + asce"’{t(e“am-l)
xy(x~2y) x° (x=2y) x2 (2x~y)
~ 2afce™Xb (e™Vba1) = hascze_xt’(e"yt'-l) + Sathe"xt‘(e'zyt-l)
xy(2x-y) x4y xy°
- 10ake3e~xt (e=Vb-1) - hascze"Xt (e-(x+2y)t._1)
e (x+2y)
+ 8a5023"xt(e'(x"'Y)t-l) + hahCBe'Xt(e'Byt‘-l)
¥ (x+y) 3y% (x-2y)
~ halte3exb (e~ (XH¥)b 3y _ )ja5,2,%b (e~ (Bx7)% )
y(x=2y )¢ty ) y(Zx=y)(2xty)
+ hascze-ﬁ'(e'zyt-l) - hchhe"Xb(e‘3yt-1) + ha3che'x‘bte'2yt-l)
2y% (2x-y) 3y? ¥
- hasc2e"n (é"xt—l) - 2ahc3e'Xt(e"2yt-l) + ha}‘*c3e"xb (e'“-l)
v yé (x-2y) xy(x-2y)
+ 2a902¢=xt (e"zm-l) = Ladc2e Xt (e7¥to1) = ha3c’-‘e%(e"3’t‘-1)
xy(2x-y) ¢ (2x-y) y3
+ a3che“Xt(e(x"l‘Y)t-1) + adclig=xt (e~2¥t1)
(x~by) (x-2y)2 y(x-2y)?

+ 2alicde b (e=(x125)b 1) 4 palto3ext (o (x-37)t
(x~2y ) (x¥2y ) (2x~y) {ex~y) (x=2y }{x=3y)

+ La3cllext (e=3¥t.1) + haéche‘xb (e (x-3y )t-l)
xy{x=2y) X{(X-2y ){x=3y)
- 2a2c5ext (e (xd;y)t__l) + 23205¢=%b ( e(x'By)t-l)
y(x=-ay ) {x-2y} y(x=3y)(x-2y)
- a3chext (e"'xt-l) - ahCBe"’xb (e=2xt.1) + Qahc3e"xt(e"yt-1)
x(x-2y)? x(2x=y) (x-2y) ¥ (2xy) (x~2y)

e —

Cont.
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f3 Continued

+ 130l | = hadde (e~ + hadclle X (eTE1) - a?cSe X (e-2¥E-1)
x(x-2y) (xty) xy(x-2y) 72 (x-2y)
+ 2azcse'x‘3(e'yb-l) - adclext (e=Xt_1) + 2a502e-x{:(e-(x*y)t_1) '
7 (x-2y) ' 3x(2x-y)2 (2x=7)2 (x+y)
- hahCBe'xt' (e'(zm)t-l) + hahc3e"ﬁ(e'(x"v)t-l)
x(Zx-y)(2x*y) x(2x-y} (xty)
- 2a3cle=xt (e-(x+2y)t_1) + 2a3che"rt’(e"(]‘+y)t-l)
yi2x=-y ) (x+2 yf) y{2x=y)(x¥y)
+ a5c2e¥b (o (X2Y) 3y + 2alie3eXb(e=2Vb 1)
(2x-y)? (x~2y) xy (2x-y)
+ lalte3ext (e (X'2Y)t-1) - 2a3che"Xt ( e(X-‘;‘y -)t-l)
x(2x=y ) (x=~2¥) o ylexy) (x=3y)
+ 2a3cke X (o (320t ) 5 3ke b (=X )
y(2x~y) (x~2¥) x° (x+2y)
+ ha3che‘xt (e=2¥tu1) = hazcge"x':'(e'3yt-l) + 2a2c5e"x':’(e'2yt’-l)
x°y 3xy° xy*
+ La3cheXb(e (x2¥)b_y _ LalcSe=Xb (o (x=37)b_7)
. x%(x=2y) xy (x=3y)
+ ha2chemxt (e(x-2y)t_1) + acle=xt (e (x=Ly)t 1)
xy (x-2y) 72 (x-liy)
- 2acbexb(e(X=37)b_1) + acbe=xt (o(X=2¥)t ).
¥2 (x=3y) ¥° (x-2y)
- aBce=b {e (y—hx)t_l) + 2a8e~¥b (e(y=3x)t-1)
x2 (hx-y) x¢ (3x-y)
- LaSc2e Tt (e=3Kb _1) + JaSc2e=Tb(e(y=3)t 1)
3%y xy (3x-y)
+ 2ale3e=yt (e-(2x+y)t_l) - 2ahe3gvt (e(y-Bx)t_l)
x{(2x¥y) (x~=2y ) x(3x=y }{x<2y)
- 2a502e-y‘b(e(y-—hx)t_l) + a5c2€-yt(e-2rb_1) - hahGBe‘yt(e'th’—l)
L x{x-y)(2x-y) x2 (2x-y) 23

Cont.
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+ 13l

3%

+ hahc3e"yt(e"2x*'-1) - 10a3che“yt'(e'(2x*y)t'—1) + 5a3che'yb (e=2xb
x3 xy(2x~y) - x%y
- (a6ce‘3'b (e(y—Zx)t,_l) + 2a0¢2e=Tb (e-2xt_-_|_)
%2 (2x-y) x%y
- ascae'yt(e(y“zx)t-l) - 2altc3e~vt (e'(m )t-l)
. xy(2x=y}) X (x=2y }(x*y}
+ Zahcg'e"yt(e (y—-2x)t_1) + 2&562e'yt(8(y-3x)t-1)
x(2x=y ) {x-2y) x{3x-y ) (2x-y)-
- 23502e-yt(e—xt_1) - hahc3e"'yt(e‘ﬁ-—1) + 10a3che"y'b(e"(xﬁ)t'—1)
_ x2 (2x-y) x° xy(xty)
- 10a3che"yt(e'ﬁ-1) - hahc3e'yt(e"(2xw>t—l) + hahc3e"ﬁ'(e'2xt-l)
x2y ¥¢ (2xty) xy®
+ hadcle Vb (e=(x*27)b1) = 2a3cle TV (2P 1) - alic3eTt (=300 )
¥y (x=2y)? *xy (x=~2y) xy(2x~y)
+ Lalte3e=Tt (e"'(x"'y)t’-l) - hazcse“yt,(e'(x+237)t'—1)
y(2x-y)(x+y) ¥ (x+2y)
+ 33205&—y'b(e-(x-ly)t_1) - hahc3e-yt(e(y-2x)t_1)
Plxty) ¥ (2x~y)
- ha3cle o (e~(x¥¥)b) + adcleTb (e (y-2x)t y)
y(x-2y) (x+y) y(2x-y) (x-2y)
+ hahc3e"yt( e(y‘3x)t-l) - ﬁahc3e'y'f‘( e¥t1) - hazcse'yt(e'xt-l)
¥ (3x=y ) (2x=y} xy(2x=y) xy©
- a2c56-y'b(e-3yt_1) + 2a2¢5 e"ﬁ(e—(xﬂ)t-l)
3y(x-2y)2 (x~2y) (xty)
+ 2adcle~yb(e~(2x*y)b 1) - alcleVb(e-2ybo1)
(2x+y) (2x=y ) (x~2y) y(2x-y) (x-2y)
+ hazcse“yb(e‘(X+2y)t-l) - 2a2cPe-¥b(e~2yt1) + 2ac69'5"t(e"3yt-l)
x(x=2y) (x+2y) xy(x-2y) 3y (x=2y)
- acée"yt(e‘zﬁ—i) - a2¢5eYh (e(y—2x)t_1)
¥° (x=2y) (2x~y) (x=2y)?

Cont..
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f3 Continued

+ Il _:Ea3che‘3’t (e(y‘k)t-l) + 2a3cle Tt (eXt1) - 2a2058'yt(e'2xt-1)
(3x=y) (2x=y) (x~2y)  x(2x-y)(x=2y) x° (x=2y)
+ hazcse“ﬁ(e"m—l) - 2ac6e"yt(e'(x'l'y)t-1) + 2acée"yt(e"ﬁ‘-1)
x€ (x~2y) ¥ {(x-2y) (xty) xy(x-2y)
- ahOBe-yt(e(y-lD:)t.l) + ahCBe‘yt(e-axh-l) - ha3che-yt(e"3x:b-1)
(Lx—y) (2x-y)2 x(2x~y)? 32 (2x-y)
+ 2a3che"yt(e"2’¢—1) - QanSe“yt(e'(éxﬁ’)t—l) + a2c5g~Tt (e"ax*'-l)
x? (2x~y) ¥ (2x=y) (2x+y) xy (x=2y)
- l‘c?‘e"':"'t"(e"y'{"-}.) + lL‘=.13c',l‘e"3ﬂ"(e"(:""'-ir )t—l) - ha3che'yt(e‘yt-1)
~ y(2x-y)e x(2x-y) (xty) xy (2x-y)
+ a2cDeyt (e=2¥to1) - 2a2c53"yb(e"yt-1) - hazcse'ﬁ' (e—-(2x+y)t_1)
¥° (2x=y) 2 (2x-y) x2 (2xty)
+ 8a200e~Tt (e'(xW)t-ly - hac6e‘yt(e‘('x+2y)t-—l)
%2 (x+y) o xy(x+2y)
+ hacée'yt(e’(xW)t-l) - LalcSe-yt (e~Tbo1) + hacée"y:t(e'zyt-l)
xy(xty) x%y 2xy*
- l&ac6e‘3’t(e"3’t—l) - ole=¥t(e=3¥t1) + cleVt (e-2y'b_1)
xy2 . 3y3 y3
- cle T (e-¥b1)
y3

f 4 is shown in the Appendix.
For given numerical values of x and y one could probably show
uniform convergence for this result. It is much easier to depend upon

. ’t
Poincares theorem for k small enough to agsure convergence,
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8. ASSIMILATION OF SECULAR TERMS

Transform solutions are formal solutions of the differential
equation. When repeated roots occur in the operational transform
secular terms appear in the solution. In cases similar to the pendulum
where the period (for oscillatory functions) is known the summation of
p‘_n may be carried out by the computer, or if a problem is first solved
by hand the summation can be carried out by the machine but there would
be no point in wasting machine time.

One may adopt the point of view that with machine solutions a
sufficient number of secular terms may easily be obtained to approximaite
the solution or one may attempt to recognize the secular terms in such
a way as to asgimilate them into the solution as known functions. Asan
example of the two methods consider ihe equation

£ 4+ o%f = -f?, (69)

A formal solution to this equation may be obtained by the derivative
process or by the expansion method.

The derivative process, after summation and sorting gives Equation
(70) directly while the expansion method (after appropriate changes in

constants) gives Equdtion (71) directly.

F(p) = ap2 _ kaz(p2+2m2)
P/ = 5= 5 9. .9 .32
p (p +w™) (p"+4w")

k2a3 (2p4+10¢,.)2p2 - 12w4)

+
2, 2,2 2+4w2) (p2+9w2)

(p +7)" (p

13a% (10p8+15002pErag00tp+12000°

(pz+w2)2 (p2+4w2)2 (p2+9w2) (P2+16w2)

12 0 4 6

+3,88002p%465,0400 p%+444, 44005

+942,88005p%-3,040,3200 %p2-5,760,0000 2

2 2.3 2 2.2 2
(p "+ )" (p +4w™) (P2+9w2) (P2+16w2)2 (p2+25w2

+k*a® (80p

)

)

+ 4+ (70)
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When F{p) is evaluated as a time function:

f(t) = a cos wt

ka2
+ 5 {(cos 2wt + 2 cos wt - 3)
Buw
k2a3
+ —— (3 cos 3wt + 16 cos 2wt + 29 cos wt + 60 wt (sin wt) - 48)

144

kK a

3 4
+ —— (5 cos 4wt + 45 cos 3wt + 480 cos 2wt + 595 cos wt

This equation may be rewritien as

i(t) =

2 2 3 3 4 ’
{a + ka2 + 291{2‘ + 595k Z‘ + + ) cos wt
3w 144y 21600
2 2 3 3 4
+( kaz 161{43. + 480k a ++) cos 2wt
6w 1444 2160w

2 3 3 4
3k a +45k8‘ + 4+ 4 ) cos 3wt

+
144&)4 2160w6

3 4
+(M'6~ 4+ 4+ ) cos 4wt

2160w
kzas k3a4
+ {(60wt) + {900pt) sin wt
[ 1440* 216010
‘3 4

(300&)’% k a sin 2wt
2160y
[1a2 a8k?:® 1125k 2t

- 7 + 1 + — — + + 4.

| 20 1444 21600

21600" . 300yt (sin 2wt) + 900 wt (sin wt) - 1125)
. (71)

(72)
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To assimilate the secular terms (sin wt and sin 2wt) the relation

cos(wtp) t = cos wt cos Pt - sin wt sin Bt

2,2 4.4
= cos wt (1 - [321:' + B;, + 4 +)
2,3
=sinwt (2 - B4y (73)
is compared with the cos wt and sin wt terms of Equation (72).
2 2 3
(a + ka2 -1-29]‘{514 ++ ) cos wt
3w 144, '
2 3 3 4
+t [(60:,3) k a 2+ (900w) ksa ] sin wt .’ (74)
144 2160w

Divide the coefficient of (t sin wt) by the coefficient of cos wt. The
result is: )

2 2 3 3
b ks 5 k
3 + 85 (75)

120 18w

therefore in Equation (73) B is the negative of this value.
The new rotational velocity is

2 2 3_3
wrpew(l- 252 KA Ly, . (76)
12y 18w

The coefficient of (f sin 2wt) when divided by the leading coefficient

of cos 2wt gives

9 5k2a2w
——
12w

which maiches the second term on the right of (76} since this is double

frequency.
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The period is

= 27 (77)
Y1
Figure 8 shows the graphical result of the solution by numerical integration
for k=0.1,p=1and f{0) = 1,

tH

27 _ 6.283

~ 5(0.01) _ 5(0.001) ~ 1-0.0045
(1) (1 12 18

T 6,31 seconds

which appears to check the period in the figure,

In Figure 9 £(0) has been changed to 3. In this case

27

. 5(0.01) (3)%° _ 5(0.001) (3)
T2 18

n}

T = 6,58 seconds

3

which is probably very close to the period of the numerical solution
for this case.

The solid line therefore represents the solution with the secular
terms assimilated for both figures.

Equation (71) may therefore be rewritten dropping the sine terms
and changing w to 4 in the cosine terms, The w terms in the denominators

are unchanged.

2
£(t) = kaz (cos 2w, t+ 2 cos w t - 3)
Bw
k2a3
+ (3 cos 3w,t + 16 cos 2w .t + 29 cos w,t - 48)
4 i i 1
1444
k3a4
+ B (5 cos 4w11: + 45 cos 3wlt + 480 cos 2w1t
21600" | 595 aog vt~ 1125) (78)

The crosses in both Figure 8 and Figure 9 indicate the equivalent
solutions for Equation (71) including the secular terms as shown in this
equation,

Convergence is assured if the factor ka /m2 is small enough.
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9. THE VAN DER POL EQUATION

The van der Pol equation is perhaps the most interesting equation
studied. .
£ - A(L-f2) £t +BE=0 (79)
The work on the computer was actually carried out with two

different equations

£ - Af1 & BE = -k£2£! (80)
where k = A in the solution
and

2 2

-2+ (X7 - Y )E=0 31)

where
f 3
2 A o2
XzA-—sz Y=\/(A 2f_k) -B 82)

X and Y are time functions,

In the final resulis

2
X(O): é_.:.z_a_k. =x and
(A~a2k)2
Y(O)= _'2‘—'—-‘—-B=y

where a = £(0) and b = £7(0). Again k = A for the van der Pol Equation.
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The first four operational terms for Equation (80) for the case

f{(0) = 0 and f'(0) = b are listed as Equation (83).

F(p) = bp - 2Kb3p?
(p° = &p + B) (02 - Ap + B)(p? = 3p + B + 24°)(p? - 3hp + B)

+ 60K200p5 + WBK20OBpS — 252k2b5apt - LBOKPLOABRE + 2L0KPbSA%3

(p° — Ap + B)(p® - 3hp + B + 222)(p2 = 34p + 9B)(p? - Shp + B + 64°)

(p° - SAp + 25B)(p? - BAp + 9B + la?)

%BLOK3Tpl0 — 112,680K307apd + 743, 352K307a%8 + 209,16030 780 |
- 2,512,536530 7837 ~ 2,193,648K30TaBp7 + L,587,02hx30 a0
+11,329,032K30Ta28p0 + 1,616,280K30782p0 - k,290,2L:08%074p5
- 2l 11, 264k36Ta3Bp5 - 13,073,832K7074B2%p° + 1,612,600K3b7A5pk
+ 21,,876,180k30 TabEpl + 38,517,0728367A2B2p + 1,008, 720k36 TBpl

- 9,676,80063078°8p3 ~ 38,425;92083b74382p> - 11,96, 180K3b7AB3p3

- |+ 1,112,000630 7848202 "+ 12,868,800%3p74%83p2 = 756,0006% Blp® ]
(2 - 4p + B)(p? - 3Ap + B + 242)(p° - 34p + 9B)(p® - Shp + B + 64%)

(2 - SAp + 25B)(p® - SAp + 9B + La®)(p? - 7Ap + B + 128%)

(p? — TAp + 25B + 642)(p° - TAp + LSB)(p® - TAp + 9B + 1042) (83)

This was the first second order equation attempted and no
summation was obtained for the general case where both initial condi-

tions were present or for the case £(0) = a and £'(0) = 0.
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Figure 10 shows the analytic solution for the case £(0) = 0,
f'{0) =1, K=2.25, B=1and A = -2.25. (Since A is negative the equation
is not in the standard form for the van der Pcl equation.) The solid
lines, as usual, are the numerical sclutions., The agreement is surprisingly

good since both numerical and analytic results are approximations,



Numerical solution FUAf'+Bf= —kFLf’
.8 x X X Analytic soluﬁ(:)n flo)=0 b=F'(o)=1.00
=-2.25 k=225
f{t) B=1.00
]\ b
4
(1)
). (i
. ' S FIGURE 10
-7
] i ] L
0 5 {0 15 20 25 30 35
110 Seconds

8%
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The first three terms of the operational solution for Equation

(81) for f(0) = a and f'(0) = 0 are

2
F(a’p) = igp_ﬁii.z]_s.p_?.

- 6xh'p3 + l2x2y2p3 - Gyhp3.+ hhxsp2 - 88x3y2p2
+ Ka? L2 6 b 2 2.h 6
+ bxy™p© - Shxp + 1lhixYyp - 66x°yp + Gy p
(M17) 31433

2o52x5012 1 786212 | 756,250 17 . 262y5012 4 10, 360%7p1
-31,080:x5y2p1 + 31,080x3yp1L - 10,360xy6p11 - 183,18x8p10
553,008:052p10 - 560,136:dyMp70 & 193,840x%y 610 - 3561y8p10
+ 1,835,000x7p7 - 5,623,488xTy%p? + 5,860, 22k5y1p? - 2,190, lixdy6pd
+ 118,368xy%p7 - 11,588,472x2%8 + 36,430,80x8y28 — 39,775, 728:651pB
+ 16,626,86lx"y%8 1,707,512y 8,8 +48,416, b6l p7 -158,060,0158x%2p T
+ 1811,083,360x 'y 88,081, 132:5y67 411,016, 656x358p7 =102, 00057107
+k2° | - 136,102,200x12p8 + 167,291,696x10%52,5 - 589, 682, 02lxBylp6
+ 326,341,182x%5 %0 ~12,315,272x "y pCi 189, 901x25 106 255, 160, 35251305
~ 932,617,728x 5200 + 1,290,557,981% b5 - 828,061, kli0xTy5p5
+ 239,608,416y p525,137,9206351%5 11190, 33637125 -306,109, 612 gl
+ 1,20L,893, Th8x oy %l ~1,842,131,132x10hpk &+ 1,36),110, 308xBy6plk
193,25, 820x°y Bolts 75,809, 561y 10pb 3, 338 Ity 120l 213, 191 , 832253
910,349,256x %57 p + 1,541, 77k,060x yt3 - 1,307,009}, 50k y 5
+571,950,696x Ty%p3-119,115,096x5510p3+9,538,632x3y12p3-65, 678, 9,0x 16,2
30k, 917,120x %52 - 570,702,960 125kp2 5k7,560,000x10y652
282,79k, 760x8y8p? 1 75,559,680x0510p2 -9,215,280xby12p2 ;1);,0),0y10p8
- 23,2567 %° 417,388y b 1196, 3y M3 +360,000x%5 M52 860y 26,2

+

+

Z
(412)° (431" (33) iy i g
where : (84)
Mun = (’p2 - 2WXp + w2x2- n2y2)
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and the first four terms for f{0) = a and £'(0) = b are

F(o,p) = bp = 2K0°p

+ k2% (60p° ~ 5olxp + 1308xp3 - 3u8y%p> - 960x3p? + 960xy )
My M58 5 3ty My g '
"~ 68L0pt0 + 225,360xp7 - 3,182,568x7p8 + 209,16052p8 + 25,087,58Lx;
- 1,987,2962pT = 120,35k, 792xk06 + 18, 608,688x2y2p0 - 1,616, 2805l
+ 358,725,56:°p° = 247,585, Liox3y2p> + 26,147, 66kucylip
+ 07 |- 647,316,888x6ph + 69l,177,L16x4y20 ~ 151,085, lliBx2ylipl
+ 1,005, 7205%p% + 646,993,920xTp3 - 1,01L,259,200x55%p>
+ 397,194, 240x3yp3 — 29,928, 960xy%p3 ~ 276,511, 200x5p2
+ 602,985,600:0y2p2 — 375,681,600xly4p2 + 48, L51,200x2y5p2

|+ 756,000y0p2
My M3y Mg gl Mo g by Mg Sl sbi

Here

U = (32 - 2wp + w22 - n2y2) (85)

No satisfactory evaluation of Equation (84) has been obtained due
to the large number of multiple roots. A computer program is available
to evaluate this equation as a time function for given numerical values of
the constants and the initial condition but unfortunately there appear to

be tqoo few secular terms to approximate the function.
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The expansion type of solution might be very helpful here in

identifying the series of secular terms and attempting to assimilate

them.
Equations (84) and {85) were generated with the idea of simplifying

the root structure of Equation (83). Notice that the roots for Equation

{84) are

L2 22 22
m =(p” - 2wxXp + W X ny)

= [pz -w{A - azk)p

2
2
+(w2-n2)(A“2—ak) +B] 4 (86)

where w and n take on the values shown in (84). Since a = f(0) this means
that at least one initial value occurs in the root structure.
Equation (85) is the same as Equation (83) if the values for x and

y are substituted in the equation £(0) = a = 0.

. /) .
Poincare's theorem insures convergence for small values of k

so the result is an analytic function.
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10. DUFFING'S EQUATION

The general form of Duifing's Equation is usually given as;
£ + cft + rf= -.kf3 + G cos wt. (87)

If the general solution for this equation was of sufficient impor-
tance it could no doubt be obtained. In Heaviside notation with two initial

conditions the original equation becomes

(p*x) (p+y) f = ap2 + bp + (x+y) ap + G cos wt - g (88)
where a = £ (0) and b = £1(0). ”
ap2 + bp + (x+y) ap + G cos wt | 1 X f3 (89)
(p+x) (pty) (ptx) (pty) (ptx) (pty) :

Even an approximate solution through the k3 term for this equation
would take a great deal of time on a large computer. To reduce com-

puter time take a = b = 0 and y = % so the equation now becomes:

3
£ = Gzcos ;Jt - 2kf — . (90)
p +x p +x
The first term on the right hand side is
¢ = _G (cos wt - cos xt) (91)
1 2 2
(x ~-w")
- 1 3
fz - = k —'2—2—- f]_ B (92)
porx
_ 1 2 2 2
f3 = -k —-—2——-—2——} 3f f, + 36, f, + 4, (93)
p +x

f=f1+f2+f3+++. (94)
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Computer results give:

- kG
2 8x (XZ R w2)3
0% 18x 2x
5 3 L e e Y
X - W© 9% - X - %
1 .
+ e cos xty 9t sin xt
- 4—132_ cos 3xt - —;8}{—2 cos wi
(x7 ~t)
2% 3x
(—;'2‘—-?('6—2) cos 3wt + zm cos (x-2w)t
- Zw_('ii_xw)—_ cos (x + 2wt
6x

cos (2x + w)t

+ (3x + w) (x + )

6x ‘
tEET o x oy °of (2x - wit. (95)

fq (secular terms only)
2 .5 2
“k G . 8t cos xt

- (2)6}:2 (X.‘Z _ L‘12)5 2

87t 324xt 378xt 30xt | .
+{ 5% + 5 5 + 5 5 + 5 3 sin xt
¥ - 9%” - w ¥ = 9w

27t , T2Txt .
" Ix ‘ sin 3xt - 5o (%5E) gin {(x + 2wt

108xt . RS 108xt sin (2x+w)t
+ sin (2x - )} t + (Bxte) (Zr0)

(B3x-w)(x-w)

27 xt
20 (2-w)

sin (x-2w)t|. (S‘IB)
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Rearranging the terms in (91), (95) and (96):

_ G cos wi 9kG3 kG.3 cos 3wt
fre —5—— -~ — g coswl - —5—am——bo—p
(x" - w’) 4 (x-w) 4(x -~w) (x -%7)
2' 2
..__i_..G_z__’ cos xt {1-( Q;Gztz ]é! ++}
(x"-w ) Bx (x ~w ) ¢ .
’ 2 3
—sinxt'—gE%S—,+++] - ;Gz 23'[cos Sxt (1 + +)
“8x (x7-w) 32x° (x"-1")

2
-B(Qth +++) sin3xt]
2 2.2
8x(x -w)

3
+ 3kG [cos {x - 2}t (1 ++4)

16w (x-w) (Xz—wz)3

2 \
_(_Ej_%__(_}_t_z +++) sin (x - 2w)t
8x (x"-w")

3 kG3

16w (x+w) (X2 -wz)

3 [cos (x+2w)t (1 + +)

/9kc™
8x (xz-wz)

— + + +) sin (x + Zw)t]

3 S 2 :
+ kG cosxt(1++)-4(—gﬂ}—-t—'——+-l) sinxt]
2 2.4 2 2.2
8 (x“-0°) 8x(x " -w")

3
+ SkG [;03(2X+wﬁ (14 +)

4 (3x + w) (xtw) (xz‘-wz)3
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&
-2 El‘_Gzt__z—z + +) sin (2x+m)tJ
8x (x"-w)
3% Go
+ g cos (2x-w)t (1 + + )
4 (3x-w) (x-w) (X -w")
-2 ( ng t + +) sin (Zx-u)t]
8x (x -w ) B
3 2
+ 2k2G:3 5 5 cos xt (1 + 4+ ) - (M—++)sinuél
4 (x"-w”)” (x7-9%7) 8x(X-uJ)
3 2
+ ‘SGZ 3 [cosxt(l++)- 87k2G t22' ++)sinx%
32" {(x -w ) L 4x (¥ -w )
3 2
+ 921{(2}3 55 [cosxt(l++) (21th22 +-!)sinx1£|
4 (x7-0)" (9% -w") SX(X - )
(97)
With the substitutions:
2
s e (98)
8x (x - )
S o =2 (99)
x -w)
2 - %) = m (100)

a very rough approximation for the first two terms gives
f(t) = z [rCOS wt - cos (X+B)1;J

Im~ ©os wt + ——5—sg + — COS (3x+3 B}t

K 3 [ 9 cos 3 wt 1
TRz )
4 (x7-9w) 32%
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_3 3
160 (K"'b.)) cOSs (x—2w+[3)t + mw) cos (x+2w+p)t
8m 4 (3x+) (x+w)

3

cos {2x-wtpH

T 2 (3%~0) (x-w)

2
- ——Zi——-—z—— cos {x + -}-8-5--~kz—--) i
4 (x" - 9w7) X
2
1 87 kz
- —o— co8 (x+ —==1 )t
32x. 4x
9 .21 kz? 1
- Ty cos {x + gz )13 . {(101)
49" -10") ( .

Actually the number of terms available from computer results is
still insufficient to establish Equation (101 } as the approximate solution
through the first two terms, (ko and kl). The agsumptions in regard to
the trigonomeiric relationships are obvious. Evidently one must choose

suitable values of w, x, G and k.
" Figure 11 shows the usual numerical solution compared with the

evaluation of Equation (101) for the parameters indicated.



Numerical solution
x x x Analytic solution (2terms only)

o

£'3x2f=G cos cot-kf3 -.

,/’A

FIGURE ]

| Duffings Equation
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— t seconds
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.D p—
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11, DIRECT SERIES SOLUTIONS

Direct series solutipns may be divided into two categories:

I. Cases when f(t) is not only bounded but meets the requirements
of Section 3 for the Laplace transform type of solution.

Section 4 shows an example of the direct series solution for
Equation (13) and Figure 1 shows the graphical result for the numerical
compared with the analytic result for given numerical constants.

I1. Cases where £(t) may or may not be bounded. The transform
method of solution does not apply but the derivative computer programs
are identical for either Case ] or Case II solutions. Case II solutions
include all equations under Case I.

The "open-end integré.l " of Section 3, Equations (4) and (18) may
be interpreted as a defined operation which does not involve the Laplace
transform. It does however provide a formal solution in the form of a
Maclaurin's series.

Define

d Il
Fp)=p [ 1) e Plat = :>: % (102)
0 =0 P

The integration is to be carried out by parts and is, of course, a

series of differentiations. g is the number of derivatives involved,
usually less than 60. (1) is the n th derivative of £(t).

X 1 . . . . .
Now if 5 1is defined as in Heaviside's calculus
P

n
1 t
TR n!
P

(103)

and Equation (102) is evaluated as
g

O ot
)= » (104)

=0
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which is Maclaurin's series for f(t) through the q th term. Kaplan15 has
examined equations of the type considered here and has shown that they
always converge to an analytic sdélution for g—peo.

Figures 12 and 13 show results for summation and direct series
solutions compared with the solution by numerical integration for two
equations having Case I solutions. For the same number of derivatives
the summation solution maintains accuracy for much larger values of time.

Figures 14 and 15 show comparative results for problems under
Case II. No summation solution is available in these two cases.

Kaplan's method of showing convergence also allows an estimate
for the rgmainder of the series after n terms so the accuracy can be

" estimated in solutions under Case II.
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12, COMPUTER PROGRAMMING AND OPERATIONS

While some simple non-linear problems may be solved by hand
calculations, even relatively simple problems are best solved by the use
of a digital computer.

The programming is carriéd out using the same operations as
would be used by hand calculations. Active memory is at a premium so
the various operations should be broken down into what might be called
irreducible steps. Results are stored on cards, paper tape or preferably
magnetic tape.

The numerical coefficients for the ferms generated by the process
of differentiation cannot be carried in floating point since the last digit
of the coefficient is required. In fixed point one must carry coefficients
involving some 112 bits or more and sign. A variable word length machine
is desirable but not mandatory. p

The format for the individual terms should be arranged to carry
as many variables as practical in addition to the large coefficient since
another problem may require additional variables.

The basic programs required include a program for differentiation,
one for summation, one for the numerical evaluation of the transforms and
a program for the final evaluation of the time functions.

The program for differentiation inveolves the input of the individual
terms, the differentiation of this term to obtain the next term or terms
and a compare and pack routine to store the generated terms in a list in
memory. After all terms of a given derivatix}e have been processed the
next set of terms forming the next derivative is output to tape and i'npuig
again to obtain the next derivative. Since each derivative depends upon
the tape made from the previous derivative it is essential to check each

operation carefully for errors if possible.
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The summation operation can be performed using all available de-
rivatives which will go into the computer at one time.

The storage space required is considerably reduced if the de-
rivative terms can be sorted on the basgis of the power of the non-linear
coefficient involved since this decreases the number of terms to be
summed in one rumn.

If the space required is still more than the available space in
memory, additional sorting may be carried out on the powers of the initial
conditions,

The actual "summation" computer program is a multiplication
operation. If the operational expression

p+A
(p+B) (p+C) (p+D)

is expanded in memory as a binomial expansion in negative powers of p

and the whole list of terms is multiplied successively by (p+B), then (p+C)
and finally by (p+D) the final result in memory is (p+A)}, the numerator.

The numerators of the individual terms are then processed to
include the number of roots in each operational expression. This will be
called a "numerator tape".

A complete set of the required roots and the initial conditions plus
the parameters are then input to an evaluation routine. The numerator
tape is input, a term at a time, and for each term the machine evaluates
the inverse Laplace Transform and stores the result with a compare and
pack routine. The result is the "analytic solution® for the first few terms.

While some operational solutions may be evaluated by hand, and the
resulting time function summed into a closed form solution, the usual pro-
cedure is to obtain the result as a numerical solution in the independent
variable, time. This is then compared with the equivalent numerical so-
lution to determine the range for which the analytic solution is accurate.

The Heaviside shift prograr for the expansion type solution always

holds data in the form .
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(Numerator Polynomial) e mt

(Denominator PoIynomial)

Except for the numerical coefficients all terms are in algebraic form.
This program evaluates the solution faster than the derivative type of
solution. Unfortunatély the final result must be programmed to evaluate
the function in terms of time.

The direct series solution can be evaluated by substituting the
numerical value of each constant into the series. Each constant is then

multiplied by t" and added to obtain the sum of the finite series.
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13. CONCLUSIONS

The principal objective of this study was to develop suitable
mathematical and programming techniques to obtain analytic solutions
for appropriate types. of non-line-ar differential equations using a digital
computer.

Two general methods have been developed for the solution of the
type of equation considered. For most bounded functions the expansicm‘
method is quicker and consequently less expensive in terms of computer
time, The derivative method, however, is much more flexible since the
solutions may be of bounded or unbounded functions. Summation solutions
may be obtained, perhaps in several forms. (Under certain circumstances
the results might, for instance, be summed as a Fourier Series.‘) While.
the direct series type of derivative solution provides a numerical solution,
it is very expensive in terms of computer time and is much less effective
than the equivalent summation solution uging the same data.

The technique of checking the validity of equations through the use
of numerical integration is a very important step in any analytic solution
since it provides an engineering type of assurance that the "gmall para-
meter, " k, is "small enough, " at least for that case, and that a sufficient
number of terms for convergence is available. Figure 16 shows a case
where a very large number of terms would be necessary for reasonable
accuraqy. It is surprising that the analytic and numerical solutions match
as closely as they usually do since both are approximations. The ‘numeri-
cal solution has another important function, it points out any peculiarity in
the solution which might otherwise have been overlooked.

The appearance of gecular terms in non-linear solutions has always
been a handicap in hand solutions. Since these terms rarely seem to have
any pattern it is pure drudgery to compute them by hand and accuracy is
imperative. With computer solutions accuracy must be checked at every

step, particularly in input and output, but over-all accuracy is more or
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less assured. One may obiain a sufficient number of secular terms to
approximate the function or one may be able to recognize the pattern and
assimilate the terms into available functions. In either case the computer
is an invaluable aid.

This study may be regarded as of an experimental character. Much
is yet to be done. No attempt has been made to make a thorough study of
any of the equations considered. In many instances the same equation
may have many different forms depending upon the va.lue. of the parameters
and the initial conditions. Since initial conditions frequently appear as a
part of the argument of the functions involved, the resulting solution may
be gquite complicated in siructure,

One may well ask why analytic solutions are of interest since
digital computers may easily be programmed to provide numerical solu-
tions. The answer is, of course, that numerical solutions can no more
take the place of analytic solutions for non-linear work than they could
for linear work. One analytic solution is likely fo provide more under-
standing of a given phenomenon than many numerical solutions.

. Many books and papers have been written on the theory of non-
linear differential equations, but the student finds discouragingly few
actual solutions, ‘While the techniques which have been developed during
this study are merely an entering wedge and appropriate for a particular
type of equation, they point to the possibility of using a computer for
analytic solutions in other non-linear areas and indicate that any real
future progress in non-linear mathematics is likely to be closely

associated with computer work.
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+ Lallg3e=yt(e=2xt_1) . Bal"c?e‘yt(e(y"zx)t-l)
xy° y2 (2%-y)-

~ La3ce=Tt (e"'(x“}' 2:‘r)t-l) + La3ckte=b (e (y-2x)f_ll
(x=3y) (x+2y) (x-2y) (2x=y) (x=3y) (x~2y)

- 2a3cle Tt (e_zxt'...;_)_ + ha3cle vt (e(37-2x)to7)
xy(x-2y) y(2x~y) (x~2y)

+ hah—GBQ-yt (e (y-zx)t-l) - hahCBe"Y'b(e'(xW)t-l)
— (xFy ) (2x-y)2 - (2x-y) (x=2y) (x+y)

-; uahCBe—ytﬁ(e(y-zx)t_l) - sa3chewyt(e-(2x+y)t_1)
(2x-y )2 (x-2y) xy(2xty)

- ha3che"‘yt(e(y"2x)t—1) ~ Ba3che=Tt (e=(xt¥)t 1)
xy{2x~y) x(x=2y) (x+y)

+ Gchhe“Wt(e(y-Qg)t-l) + ha2cseiyt(e-(x+QY)t‘l)
x(x=~27) (2x-y) y{x=3y) (x+2y)

- 4a2c? e (e (y=2x)t ) . 8a2cSe-Tt(e~(Xt7)t_3)
y(2x=y ) (x-3y) yxFy){x=2y)

+ hazcge"ﬁ'(e (y-2x)b_qy - LaScle=Th (o (F-lx)t_3)

y(2x=y) (x~2¥) x(lix-y) (3x=y)

+ hascze“yt(e'xt—l) + hascze"'yb(e(y"k)t-l) - hascze‘yb (e"xt-l)
x2 (3x-y) x(3x=y) (2x=y) x2(2x-y)
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- hatha"yt (9'3"{"-1) + hahc3e"yt(e'xt-1) + Bathe'yt'(e(y':x)t’-l)
2y <2y y(3x=y) (2x=y)

- 12altc3et (e"xt-l) + ha3che'yt(e‘(2x*?)t-l) - ha3che'3't(e‘xt'-1
xy{(2x~y) (x-2y)(2xty) (x+y) " x(x=2y) (x+y)

- haBGhe'ﬁ(e(y"Bx’)t-l) + BaBQhe"'yt(e'ﬁ'-l)
Bx=-y)(2x-y){x=2y) x{2x=-y}{x-2y)

- ha.-hc3e"yb(e(y'hx)t-l) + halte3eTb(e=Xbu1) + Lallc3e-¥t(e2Xt1)
(bx=y) (3x-y) (2x-¥) Cx(3x-y) (2x-y) x=(2x~y)

- hahc3e"yt(e"xt-1) - ha3che"yt (e"m-l) + !.;a3che"yt’(e"xb-l)
x=(2x-y) . ) x>

+ ha3che'yb(e“2x£-l) - 8a3cle-vt (e-Xt'—l) - ha2cse'ﬁ(e'(2wn-lf
x . (2xty) (x+y)

+ ha2c59"yt(e"’x'°-l) + 2a205e'yt(e‘2ﬂ-1) - 1232053-y'b(e-xt_1)
xy(xty) X%y x2y

- 2alleIe T (eIt ) + 2ah03e"yt’(e'x{"-l) + 2altc3e T (e~2Xb)
3x3 x3 x3

- hahCBe‘yt(e”Xt-l) - 8a3che“yb(e'(2x"'3’)t-1) + Badclte Tt (e~¥b.1)
x3 y(2xty) (xty) xy(x+y)

+ La3cle Wt (e=2xb.1) - 16a3cle TP (e Kb-1) + 22276V (e=(XF2VIV,
x2y x%y y(x-2y) (x+2y)

+ 2a2c5eTb (e=Xt1) - 2a2cse"3"t(e'2x"‘-l) + 12a2c5¢Th (e Xb_1)
xy (x=2y) x° (x2y) € (x=2y)

- 2a3che'yt(e‘3xt-1) + 2a3che-yb(e"xt_1) + haBGHB—Yt‘(e-(W)t_l)_
3x2 (2x-y) x2 (2x=y) y(2x=y) (x+y)
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+ oo [ - haBChe“yt'(e'Xt-l) - 332056-y'b(e-(2x+y)£_1) + Bazcse'yb(e"xt-l)
xy(2x~y) x(2x+y) (x+y) X2 (xty)

+ 1622c5e~Tb(e=(X4¥)b1) - 2acPe~Tb(e=(x+2y)to
xy (xty) ¥ (x+2y)

+ 2acée'3’t(e"’d‘-l) + ).;acé‘e‘?r”-"(e'(x'i"-";r )t—l) - hacée'yt(e'xt-l)
xy° ¥ (xty) xy* )

-~ 2a5c2e'yb(e'3Xt-l) + ZaScee'yb (e-xt-l) + 285028-yt(e-2xt_1)
3x3 x> x3

- ha5 cze‘yb (e*b-1) ~ Ba"‘CB e~Tb( e-(Zrl'y)t'_l) + 8altc3e~vt ( e'Xt-l)
x3 y(2x+y) (x+y) xy(x+y)

- 12ahc3e'yt(e'°¢-l) + 2adcteyt (e"(x*' 2y)t_1) - 2&3che‘yt(e"ﬁ-—};l
x°y y{x~2y)(x+2y) xy(x-2y)

- 2a3che'yt(e"2Xt-1) + ha3che‘“yt(e"xt-1) - 2alie3g=t (e'm-l)
x° (x~2y) 'J_cz(x-i?y) o P (2xey) L

+ Eahcf'e"y'b(e'm-l) + hahc:;e’yt(e"(m)t-l)
x° (2x~y) ¥ (2x=y) (x+5)

- BaBGhe'yt(e"(sz)t-l) + BaBGhe"yt(e"Xt'-l)
x (2x+y) (xHy) x4 (x+y)

+ Badcte T (o=t )t 1) o 242:56=Tb (o= (x+2¥)E )
Xy y? (x+2y)

+ 282656 T (e V1) + [a2cPe b (e~(XTTIP) - ha2cde ¥t (eb1)
xy* ¥ (x+y) xy?

- hahc3e"yt(e"(2x"'y)t-l) + halle3e=yt (eXb 1)
x(2x+y) (x+y) x (x+y)
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‘r:haMGBS-yt (e'(xW)t—‘j,) - hchhe"yt (e-(x'*?y)t __1)
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xy (x+y) ¥2 (x+2y)

+ ha3che'ytte'xt-1) + Ba3clte~¥b (e'(x+y)t-1) - Ba3clte¥t (e"d’-l)
xy* ¥ {x+y) xy?

- hazcse"yt (e=3vt.1)+ ha205e"yb (e=Xt_3) + ha.acse"'yt' (e=Xt_1)
3y (x~3y) (x=2y) x{x~3y) (x=2y) xy(x=2y)

- haBGhe'yt(e"(2X+Y)t’-l) + Lia3cle=yt (eXt_1) - 2a3che"ﬁ‘(e"23t-l)
(2x+y) (2x-y) (x+y) x(2x-y)(x+y) ¥(2x=y ) (x~2y)

- haZede™Vb { e-(x+2y)t_1) + La2cPe Tt (eXb1) -~ hazcsé-yt (e=2¥b)
xy(x+2y) x2y xy (x=2y)

+ hacée"yb (e"3yt’—l) - hacée‘yt(e"}d’-l) - ‘Zacée"yt‘(e"eyt—l)
352 (x=-3y) xy(x-3y) ¥ (x=2y)

+ hacée'yt (e7*to3) - hathe"Yt (e=3xt_3) + hathe"yt(e"yt—l)
xy(x=2y) . 3x< (3x-~y) xy(3x-y)

- haltc3e=rt (e"yt-l) + hag’che"ﬁ (e”Tt.1) + yfél‘?ﬁ(eéxy—-’l)
xy(2x-y) xy* xy(2x~y)

- Badcke-yb(eVt1) + hazcse"yt(e'(X+2y)t-l) - La?cde V(e V1)
¥° (2x-y) (xt2y) (x=2y) (xty) . y(x=2y)(x+y)

- 222656 Tt (e7P¥E) + alcSe T (e=Tb-1) - Laddte Vb (e=3xb))
x(2x~y) (x~2y) y(2x~y) (x-2y) 3x(3x=y) (2x=y) -

+ ha3ch;‘yt(e‘yt—l) + hadcle=vb (e~ XVt 1) _ ha3cle Tt (e¥ta1)
y{(3x=y){(2x~y) x(2x=y) (xty) xy (2x-y)

- 4a2c5e Yt (e"(sz)t-l) + haacse"‘yt.(e'yt’-l)

L x2(oxHy) x°y
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+ k3l .H:Zaéce"yt' (e(y")-'x)t-l) + Za6ce'ﬁ" (e (7~2x)t-1)
%2 (lx~y) x{2x-y)

+ h;a.éce*yb (e{y=3x)t1) - habee=¥t (e (v=2x)b1)
x2 ( 3x-y) %2 (2x=y)

- 8aPc2e Vb (e=3%b1) + 8aSc2e Tt (e (72X )t 1)
3xy (x+y) y(2x=y) (x+y)

+ Badc2e Tt (e(y'k)t-l) - 12a%c2e=¥t (e(y-Ex)t_l)
xy(3x-y) xy(2x-y)

+ 2alte3e Tt (e=(2XV)E ) L alig3eTb (o (y-2X)b )
y(2xty) (x-2y) y{2x-y) (x-2y)

- halte3e=vt (e {y=3x)t -1) + hahc-ae ~7t (e (y-2x)t -1)
x(3x~y) (x=2y) x (2x~y) (x-2y)

- 2a5629'yt(e(y44-x)t..1) + 235c28-ﬁ(e (y-2x)t_1)
x{lix=y) (2x=y) x(2x-y)2

+ 2a5029"3’*‘(e'2x{"—l) - haEGQe—y‘b(e(y-—2x)t_1) - Balte3e=yb(e=3xt1}
xy(2x=y) y(2x~y)2 3x2 (xty)

+ Balte eyt (e (y-2x)t._1) + Sathe'Yb(e"z’Ct-l)
x(2x=y) (xty) x°y

- aah(,Be-yt (e(Y"2X)t..]_) - QaBQhe"Yb(e_(Z}H'y)t-l)
xy(2x=y) ¥ (2x+y)

+ 2.5&3&)"9'3"t (e(y"‘Qx)t-l) + 2a3che'yt(e"2ﬁ-l)

2 (2x-y) xy°

- ha3che"3’t(e(y“2x)t—l) - baSGQe“yt(e'm—l)
¥© (2x-y) 32 (xty)
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r"”--F_E:za.zc:ge"m" (e"'(w )t-—l) - 8a2che-¥t (e~¥ta1)
X (x+y) x%y

- LacSe T (e=(x*2¥)t 1) + Liacle~Tt(e=Tt~1)
y(xty ) (xt2y) ¥4 (x+y)

+ hacée"yt (e‘(m)t-l) - 12a06e"'yb (e V1)
xy(x+y) Xy~

- 2&3che'yt(e'(2x4'y)t-l) + QaBOhe‘yt(e'yb—l)
x? (2x+y) %y

- ha3che"3’t(e"(x+y)t-l) - ha-Bche"Yb (e'yb-l)
%% (x+y) x°y

- 8a2cse"yt(e"(x+2y)t-l) + Saecge"yt(e"yt-l) - Bazcse"yb(e"yt-l)
x(x+y) (x+2y) ¥e (xty)

+ 2ac8e~yt(e=37621) = 22c6eFb(e-Tbo1) - hacleTb (e~ (1Tt 1)
3y° (x~2y) y2 (x~2y) x{xcty)k=2y)

+ J.[Laf.:éez"?"'t (e=¥t-1) - 2a2c5e'ﬁ(e"(axW)t-l) + 2a%¢c5e ¥t (V1)
xy(x=2y) x(2xty) (2xy) xy(2x=y)

+ 2a205&-—y‘b(e-2y‘b_1) - ha2053-yt(e—yt_1) - Sacée‘ﬁ(e'(ﬁzﬂt—l)

¥° (2x-y) ] ¥ (2x=y) x(x+y) (x+2y)

+ Bacée"yb(e"yt-]_) + hacse"yt (e-2yb.1) - 2c7e‘yt(e‘33’t.il
xy (x+y) x5 33

+ 2¢7e" Vb (e=¥tu1) + 26TeTVh(e=2Vbo1) - hc7e'yb(e“yt-l)

y> y3 ¥

plus terms having a multiplier with a power of k larger than 3.
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