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ABSTRACT
 

Analytic solutions for non-linear differential equations are 

difficult, time consuming ana largely impractical for reasonably large 

values of the independent variable. The purpose of this study was to 

develop a technique for analytic (algebraic) solutions of autonomous and 

nonautonomous equations of the type 

qn 3Cn nd n f(t) = g(t) + kN I f', f" etc. 

n=O 

with the help of a digital computer. 

In the equation n is an integer and q is a small integer. c n is 

a constant. g(t) is a forcing function. N If, f f", etcj is the non-linear 

term while k is the usual "small" parameter. N does not contain the 

independent variable t (time) explicitly. f(t) is a continuous bounded 

function with finite initial conditions. 

Two operational transform techniques have been programmed for 

the solution of equations of this type. To develop computer techniques 

only relatively simple non-linear differential equations have been con­
/ 

sidered. The theorem of Poincare assures the convergence in all cases 

considered for "small" values of k. 

In the few cases considered-it has been possible to assimilate 

the secular terms into the solutions. 

For cases where f(t) is nota bounded function a direct series 

solution is developed which can be shown to be an analytic function. 

All solutions have been checked against results obtained by 

numerical integration for given initial conditions and constants. 

While the results of this study may be regarded as experimental 

in character it seems evident that at least certain types of non-linear 

differential equations not only can be solved with the help of a digital 

computer but that except for quite elementary equations must be solved 

in this way. 
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1. INTRODUCTION 

Engineers and physicists have been interested in non-linear 

problems for many years. While graphical methods or hand-calculated 

values for numerical integration could sometimes be employed, the use­
fulness of such solutions was largely restricted by the tedious calculations 

and techniques. With the advent of digital and analog computers numeri­

cal and graphical solutions could be obtained for most engineering prob­

lems. Such solutions require definite numerical values for design con­

stants and initial conditions and many different runs are necessary to 

establish the character'of the solution. 

In many cases analytic (algebraic) solutions might prove quite 

helpful if not too complicated since the effect of changing design con­

stants or initial conditions could be recognized from the form of the 

solution. This would be particularly true if the results could be approxi­

mated with two or three terms. Unfortunately analytic solutions for non­

linear differential equations are both difficult and time consuming and, 

in most cases, quite impractical for large values of the independent- vari­

able. 

During the past seven years the author and his students conducted 

a series of investigations leading to analytic solutions for non-linear and 

linear differential equations using a digital computer. Madhu showed 

that it was possible to solve a non-linear differential equation using a 

power series in the independent variable, time. This approach was both 

cumbersome and unsuited to machine manipulation. It was evident that 
if machine calculations were to be used an operational or transform type 

of solution would be required. 

Crecraft 2 developed solutions for several non-linear equations 

but only for cases where the solutions were known. Shiva 3 showed that 
a linear differential equation with a variable coefficient could also be 

solved by a -technique which could be adapted to computer operations.
4 

Regan programmed a computer for certain derivative operations and 
5 7 8Erkknli , Cheng ,and Wang developed tables of transforms for special 
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functions. Numerical solutions for the van der Pol equation were ob­

tained by Chen 6 while numerical solutions for the Mathieu equation were 
9computed by Lee 

The purpose of this report is to present the results of an experi­

mental study in the use of a digital computer to obtain analytic solutions 

for certain types of non-linear differential equations. The solutions are 

limited to bounded analytic functions and convergence is assured by 
10Poincar4& Theorem . Appropriate cases include many of the equations 

usually discussed in text-books such as certain forms of the van der Pol 

and Duffing equations. 

One section is devoted to direct series solutions where the results 

are unbounded analytic functions. 

It is sometimes said that calculations which can be done by hand 

can always be programmed on a digital computer. Unfortunately it is 

not unusual to find that the whole procedure must be revised to carry 

through a given problem. In the case of non-linear solutions the power­

ful perturbation method would be very difficult to program due to the 

series of solutions required for the unknown coefficients. An operational 

type of solution seemed advisable since a computer could easily be pro­

grammed to perform the required operations. It should be emphasized 

that the Laplace Transform is employed only in evaluating the equation 

as presented. In particular the solution of several simultaneous non­

linear differential equations by Laplace Transforms is not involved. 

Two different techniques are described. The first type is closely 
associated with the development of a Maclaurin's series by repeated 

differentiations while the second type evaluates the time function directly. 

A discussion of the conditions for convergence of the operational 

solution will be followed by an example presented in some detail. 

An outline of the computer operations is then followed by a number 

of examples which show the power and weakness of the method. In each 

case the numerical values are substituted in the analytic solution to obtain 
a graphical solution which is then compared with a solution obtained by 

numerical integration. 
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2. TYPE OF EQUATION CONSIDERED 

The primary purpose of this study was to develop a method for 

obtaining analytic solutions for non-linear differential equations using 

a digital computer. For this reason the equations selected were as 

simple as possible. 

All equations are of the form: 
qn 

Z i 
n= 0t 

Fn d n f(t) = g(t) + kNIf fl, f", etc 

Here n is an integer and q is a small integer. cn is a constant. g(t) is 

a forcing function. N If,f ', f", etc. ] is the non-linear term in polyno­

mial form while k is the usual "small" parameter. The equation is 

autonomous if the forcing function is a constant and nonautonomous if it 

is not a constant. f(t) is a bounded continuous single valued analytic 

function. All terms are limited to functions which may be developed in 

Taylor fs series. 

Equation (1) is the form usually considered in text books on non­

linear differential equations and convergence of the solution is assured 

if the parameter k is small enough on the basis of the theorem of 
ri0


Poincare 

All solutions are therefore analytic functions. 
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3. 	 CONVERGENCE OF THE OPERATIONAL 

SOLUTION 

Consider a function of the type 

o 

f(t) = " . kmfm(t) (2) 

m= 0 

f(t) is a bounded, continuous, single valued function uniformly convergent 

in some closed interval 0 < t < h, h > 0. All f£ (t) are similarly defined 

(See Reference 11). In addition 
n
00at 

f(t)n 

0 

a restriction required by the technique in the solution. 

The Laplace direct transform is 

-Co0 

F(p) = p 	 f(t) e-Ptdt (3) 

where p is a complex number with real part greater than zero. 

Equation (3) is to be carried through by integration by parts. 

Since all fm(t) are bounded functions the upper limit contributes nothing 

to the final result: 

Fm(p) = p fm(t) e dt n - (4) 
p0 n= P 

The result in p-n isalways absolutely and uniformly convergent in p 

(See Reference 	 12). 

If the upper limit on the integral in (4) is removed the ;result is an 

"open-end integraltI and the result in (4) may then be obtained by a series 

of differentiations carried through by a computer. 
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When all fm(t) converge uniformly and the integral in (4) con­

verges
 

t n  p fm(t) e-Ptdt = p f() -pt
e-Pdt
 

n=O 0 

00 fm(O) F 
(5)n Fa(p)Ls Pn=0 


That is, the function and the series in tn have identical transforms and 

all F (p) are absolutely and uniformly convergent; f r(t) is in terms 

of a Maclaurin's series. 

Now uniformly converging series can be summed (Reference 11): 

F(p) : 0 kmn (6) 

m=0 n=O P 

If (6) is now inserted in the inverse transform 

c+jDo 
f(t)- 2=1f F(p) ePtdp (7)e (p 

fc-jo2irj fCjO p 

each of the p-nth terms may be evaluated separately and the results added 

to obtain
 
z kmfn(o)tn 

f(t) = n (8) 

m= 0 n=O 

Data' come's from'the-riiadhine-jnnthe form 

q r kf(O)
F :(p)' V in m(9 

Pm=O n=O 

where q and r are integers. Normally q < 6 and r < 30. The symbol $ 

indicates an approximation. 
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The direct series result equivalent to (8) is then 

q r n 0tnq r k f (0)tn 
f(t) In (10) 

m=0 n--0 

The series (8) is a convergent series by definition and since all 

fm(t) are uniformly convergent (10) is always the first portion of a con­
verging series which may be carried as far as necessary. 

If the raw data of (9)are sortedon km and the p-nth terms summed 

in terms of known functions, 

q 

F(p) " Z kmFm(). (11) 

m=0 

If these Fm(P) are now evaluated by the inverse transform, 

q 

f(t) nL kf(t). (12) 

m=0
 

Since f(t) and all f (t) are bounded functions and the series is 

uniformly convergent, f(t) converges if q = oo. 

Equation (12) is a "summation solution". 

Such summation solutions are much more effective than the direct 

series solutions in producing results. 

In the direct series solution all data ai-e evaluated directly. It is 
not necessary to recognize the F (p) in order to obtain a direct series 

solution. 

On the other hand, a summation solution uses a few terms to 

recognize an operational term and the resulting solution converges to a 

usable result for much larger values of t than the direct series type of 

solution. 

As might be expected summation solutions quite frequently have 

secular terms. These terms can be assimilated'into the solution in some 

cases. With a computer presumably a sufficient number of them could be 
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obtained so that the series thus formed would be a good approximation 

for the unknown function over the desired range. In this case the con­

dition of uniform convergence is not usually valid. 

All summation solutions do not have secular terms, and in 5t 

least one instance, the solution for the pendulum, the frequency of oscilla­

tion can be predicted and no secular terms appear. This suggests that 
with proper summation of terms A f(O), f'(O) etc., kjfn f()0 f'(O), 

etc. k, t} where the coefficients An and the time functions contain k and 

the boundary conditions the results are the same as for Lindstedt' s 
13method
 

Operational solutions for -equations defined in Section 2 are formal 

solutions of the equations. Convergence is assured for bounded functions 

if the parameter k is small enough and a sufficient number of terms is 

available. 

In the special case where the formal solution f(t) can be recognized 

as a bounded, continuous, single valued function uniformly convergent in 

some closed interval 0 < t < h, h > 0 and k is small enough the result con­

verges. Such results are analytic functions. 
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4. DERIVATIVE OPERATIONAL METHOD 

Two operational methods have been developed for the solution of 

suitable non-linear differential equations using a computer. The 

"derivative" or "open-end integral" method is explained in this section 

by the solution of a well known first order equation. Section 5 explains 

the operations for the "expansion" method. 

Consider the equation 

f' + Af = -Bf 3 	 (13) 

where A and B are positive constants. B is "small". Physically one. 

may visualize this equation as non-linear braking for a rotating mass. 

The solution f(t) is therefore a bounded function. 

Rewrite (13) as 

Bf 3f = -Af - (14) 

and let f(O) - a, the only initial condition. 

The direct transform is 

GO 

F(p) = p f(t) e-Ptdt. 	 (15) 

Integrating by parts: 

12F(p)F-) p fe -I 
P t e 	 P + f' e-Ptdtj
 

0
 

=a +/ fV e-Pt dto 	 (16) 

Since the function f(t) is bounded the upper limit in (15) never 

contributes to the final result and the integration by parts turns into 
a series of differentiations with the lower limit f(0) = a inserted. 

Continuing the integration by parts after substituting (14) in (16) 



9 

00 

=a-+ (-AfePt-dt Bf-

0 

f3- B e-Ptdt 

0 

Aa +A f, e-Pt Pa 

a + Ptdt B 

0 

+ __B 00 3f 2fV e-Ptdt. (17) 

0 

This procedure can easily be programmedon a computer using 
a defined operation which may be designated as the " opeir-end integral": 

F(p) = p / f(t) e-Ptdt 

0 

f'(0) (18) 
nnn=O P 

where fn (t) is the n th derivative. 

If the inverse transform is used term by term 

00~ 
f (t) = . inno(19)fnt)'=(19) 

n=0 

which is Maclaurin's series for f(t). 

Continuing with the derivative operations with Equation (18) the 

computer gives, for the first seven derivative operations: 
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3aA + aB 
p 

+ 2aA 3 5 2+ 4a3AB + 3a5B
2P 

aA 3 + 13a3A2B + 27a5AB 2 

3 
p 

+ 15aTB 3 

aA 4 + 40a3 A 3B + 174a5A2B2 
4 

p 

+ 240a 7AB + 105a9 B4 

aA5 + 121a3A4B + 990a5A3B2 

+ 945a 
5 

p 

+ 2550a7A2B3 + 26259AB4]
+llBA5 

aA6 + 364a3A5B + 5313a5A4B2 + 22,88a7AB3 

+ + 41,475a9A2B 4 + 34,020a 11AB5
6 

p 

+ 10,395a 13B 

aA7+ 1093a3 A 6B + 27,657a5A5B2 + 186,165a A B3 
AB+ 509,365aAB 

* 532,875a9A3B4 + 747,495a 1 A2 B5 13 

* 1.35, 1352L15B 7 

6 

7 
p 

. . . . 

The Maclaurin's series equivalent to (19) is: 

(20) 

(t)a (aA + a3B)t + (aA2 + 4a 3AB + 3a5 B2)t 2 

315 2 73 

(aA3 + 13a3A2B + 27a5AB 2 + 15a7B3)t 3 

3Z 



+ 240a7AB 3 + 105a9B4)t 4 
(aA 4 + 40a3A3B + 174aSA2B 2 

+ 3 5 

(aA 5 + 121a3A4B + 990a5A3B 2 + 2550a7A2B3 +2625a9AB 4 

+ 945a 11B 5)t 5 

5&
 

+ (aA 6 + 364a3A5B + 531a5A4B 2 + 22,800a7A3B 3 

+ 41,475a9A2B4 + 34,020a 11AB 5 + 10,395a 13B6)t6 

(aA 7 + 1093a3A6B + 27,657a5A5B2 + 186,165a7A4B 3 

+ 532,875a9A3B4 + 747,495a1lA2B5 + 509,355a 13AB 6 

+ 135,135a 15B )t 7 

7?1 

(21) 

This is the direct series solution for Equation (13) approximated 

by the first eight terms. The (infinite) series converges if B is "small 

enough". (However, see Section 11.) 

Figure (1) shows, in graphical form, the result of substituting 

the indicated values in nineteen terms of Equation (21) extended. The 

values for the direct series solution are shown superimposed on a 

solution by numerical integration. 

Finite power series solutions of this type only represent the 

functions for relatively small values of the independent variable. Eventually 

the sign of the last term causes the series solution to go above or below the 

numerical solution. 
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If the computer data for Equation (20) (nineteen terms) are sorted 

on Bn and the p-n terms are summed (if I pjj is large) the first three 

terms are 

F(p) ap a3Bp + _ 3a5B2p(p+A) (p-A) (pp3A) (p+A) (p+3A) (p+5A) (22) 

If these terms are evaluated by the inverse transform 

f(t) = a e-At a 3B -At -2At 
-2A e (1-e 

-2At) 2 
a5B 2 -At3 2 (1-e8 e 

8 A 2
 

5 a7B 3 -At -2At) 3 

16e (- e 

++++ .(23) 

" This is the summation solution".
 

Convergence is assured if B is small enough.
 

To test for uniform convergence by the " M" test
 

00 3 5 2 7 3 
M=a+ a B 3 aB 5 aB (24)1n 2A 8 2 A7316 

n= n A A 

since all of the exponential coefficients of (24) are less than one for any 

value of t since 

0 M a (25) 
An=0 1-

provided B is small enough. 

The series (23) is therefore absolutely and uniformly convergent 

t > 0 for 
a2B 

0 < aB < . (26)
A 
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In this case the terms of Equation (23) may be summed by binomial 

expansion provided 

a 2 3 <(1 e-2At) 1 (27) 

giving 

-At 
f(t) = a e (28) 

aB (I e-2At )1+ A"(--

If the solution of one case is known the result may sometimes be 

stated in a more general form. 

The solution of the equation 
dfq 

+ A f =d- + Bf q 0 (29) 

where q is a positive integer is: 

-At 
f(t) = a e (30) 

a(q- 1)B (e- A(q- 1)t_ 

for suitable values of the constants. 
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5. SOLUTION BY EXPANSION 

The Laplace Transform method of solution may easily be adapted 

to machine calculations using a method which has been designated as the 
"expansion" method since the key operation is to expand the solution as 

f = f1 + f2 + f3 + + + + . (31) 

The results appear to match solutions obtained by the summation 

derivative process of Section 4. In fact the operational root functions 

for the summation procedure are readily predicted by a rough study 

using the expansion principle. 

As an example in the use of the method consider the equation 

f' + xf = ge - yt + k ( f2 _, fff, ) (32) 

with f(O) = a. f(t) may only be a bounded function. 

The direct transform gives 

(p+x)F(p) pgP + ap +kj (f2 + ff,) (33) 
gp + Y 

and 
F(p) - p + a p + k T(f 2 + ff, (34)

(p+x) (p+y) p + x p+ x -) 

Applying the inverse transform to Equation (34) 

x t )f(t) g (e - - e- y +ae -xt
 
y-x
 

+k (f2 + ff,) 

_ ffl + f2 + f3 .++ + + (35) 
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where 
(e-xt e-yt) -xt 

fl = g y x + ae (36) 

Equation (35) is more easily carried out by changing to Heaviside 

notation using the definition 

D+--1-- (3 7) 

and expanding the non-linear terms 

f£ +f2 +f3 ++-+=
 

fl kD [f12 + f 1 f1 ] 

+ kD [f22 + 2f1f2 + f 1 f 2 + f f 2 ' + f2f 

+ kD If3 2 + 2flf 3 + 2f2f 3 

+ f1 f 3 + f 3 f 2 ' + f 1 f3 ' + f 2f 3 + f 3f3 

+ + + +. (38) 

In Equation (38) each bracket term on the right can be paired with 

a term on the left 

f2 k-D fl2 + lf'1 (39) 

+ f+2f2 f + f 
f3 
f
 

L3 krf2 ' 1 2 1 2 

+ f1 f2 ' + f2flJ (40) 

f4 kD If32 + 2f 1 f 3 + 2f 2 f 3 

+ f f3+ f3f2 f+ f £ + f2 f + ff3ll (41) 
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Since f1 is known f2 may be obtained by a "Heaviside shift" which 

may easily be programmed on a computer. When f2 is known f3 may be 

This procedure may be continued to obtain as many terms asfound. 

required. 

The computer program is based on the following operation: 

(42)ct y f (eXtt n ] = f(t) 

real and n is a positive integer including zero.where x and y are 

There are two cases: 

Case I y= -x 
eXt tn+l (43)f(t) - n + -, 

Case IT y.Y6-x 

f(t) = (nK x+)(n+l) 

e x t tn 

(ttn-i) 
_(1 )n-

(x+y) ( (nl) 

jext t 0 

k- (x+y) (nl)(0) -f (4 

While the machine program handles only real values of x and y 

the results may be converted into sinusoidal quantities quite readily. 



18 

6. THE PENDULUM 

The equation of motion for an idealized pendulum is 

d2
 
-2 - k sin 0 
 (45) 

dt2 

where k is the ratio of the gravitational constant to the length 	of the 

pendulum. 	 6(t) is the angle of displacement in radians. 
14The solution for the period of oscillation is well known in this 

case and the expansion method would generate secular terms since sin 0 

would be approximated by the first few terms in 0. 

The derivative method also generates secular terms if the data is 
sorted on k before summation. Knowing the period 14 one may approxi­

mate the rotational velocity as 

Wl = 2 2 	 2 (46) 
1 2 1.3 4 1.3.5 6 

1 +(-- ) f+( 2.4 +( 2.4.6 
b2 

2where 4--- andb = 0'(0). 

If data in p is then summed on the basis of the odd harmonics of 

W1for f(O) = 0, f'(0) = b 

bp -
3 +3b 5 3b 7 + 2 p 

(p)+w 12 8. 4096k2 (p2 +W12)(p2+9w1 
2 ) 

3b5 15b 7 513b 9 
+ +2 

32 2048k 262,144k2 

4-	 p
2 2 2 2 2 

81b 1 1 81b 1 3  (p +w1 )(p +9W 1 )(p +2 5w1 
+ 3 + 	 4. 

1,048,576k 16,777,216k 

(47)+ + 
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The transforms may easily be evaluated to obtain the approxi­

mation 

3b 5 3b 7 + sin3 witb [b3
O(t) sin wt 4096k2 6 3 

81b 11
 
15b 7 513b 9 


3b5 ++ 
+.2- +248k+262,144k 2 1,048,576k 

81b 13 . sin5w1 t 
16,777,216k 4 150w1 

5 

(48) 

The maximum value of b = f1 (0) for which w1 is valid is 2'V-. 

If this value is used for the series forming the coefficients they appear 

to converge very rapidly and it is assumed that they do converge. 

If sin w It is replaced by its maximum value one may then examine 

the first three terms of the alternating series. Again they appear to be 

absolutely convergent and the assumption is made that the result is ab­

solutely and uniformly convergent and is therefore a solution for the 

original differential equation for the case where f(0) = 0 a nd f' (0) = b 

in radians per second. 

Figures (2) through (5) show analytic results compared with re­

sults obtained by numerical integration for four cases. 



-.< 

0.5 

0.4 

0.3 
oo O~t /8(o)=0 

Solutions of 
d z a = sin 
dtz ^ 

Numerical 
x -xAnalytic 

6'(o°)1I/4 

-0.1 

-0.4-0.3 

-0.4 _ 

FIGURE 
_ _ 

2 
_ 

0 2. 4 6 8 10 1?. 14 16 



1.2 

1.0 

0.8 

0.6 

0.4 

0. 

____ 

_ __ 

___ 

_ 

olutions ford z ".=_K sin 0 

dt 2 ~sn 

- Numerical 
x X Analytic 

z 
.0 

-OZ 
CO'.°l=3/4 

-02 - _ 

D-0.6 

-10 ___FIGURE 3 

-. 

0 4 6 8 i10 12 14 16 



1.50 ,___
 

1.00 

.75 

.50 

2 25z.. a-o -

-Solutions for
d'20 
dt - K5in 

Numericz& 
x x Analytic, 

K= I/Z0(o) =0 

(0) = 1 

.Z5 

.­50 _ 

-1.00 
FIGURE 4 

-1.50 

0 2 4 6 8 10 12 14 16 



5olufions for 
dB-t.-S = -KsinO 

z 
-< 

2.0-

1.0 
o 
0.5 

0 

.x
1.5 

x 
Numerical 
AnalyticK=VZ 

6_(o!=b
O'(o) = 1.3 

-0.5 

< -1.0 

-1.5 

- Z. 0 __ __ 

-2.5 

-3.0 
FIGURE 51 

0 2 4 6 8 10 I? 14 16
 



24
 

7. SECOND ORDER EQUATION 

One of the most interesting equations under study was the second 

order equation 

f" + (x+y) f' + xyf = kf2 (49) 

Here x and y are real and positive while k is a small positive or 

negative real number. 

In addition 

+ mx ny (50) 

where m and n are any positive integers. If this inequality does not hold 

multiple roots will appear causing secular terms in the final result. 

Evidently x and y must be irrational numbers. 

In the following operational transforms the initial conditions will 

be abbreviated as 

f(0) = a, f'(0) = b. (51) 

The first three terms of the complete solution by the derivative 

operational method are 

F(p) = 
p(ap+b+ax+ay) +
 

(p+x) (p+y)
 

+ kp (p2a2+2pab+4abx+2b2+3pa2x+2a2x2+3pa
2y+4aby+6a2xy+2a2y2 

(p+x)(p+y)(p+2x)(p+x+y)(p+2y) 
43 33 32 23 22 22 2 2" 

2 2p a +16p a x+10p a b+102p a xy+62p a bx+62p a by+20p ab + 
+kp 32 22 2 2 2 3 

206pa x y+120pa bx +270pa bxy+84pab x+84pab y+20pb + 
33 2 3 2 2 22 2 3 

132a x y+72a bx3I+252a bx y+72ab x +144ab xy+24b x+ 
3 3232 33 232 3432 

24b3y+16p3a3y+46p 2a x +56pa x +46p a y +24a x +206pa xy + 
2 2 33 322 2 2 22 3 3 

120pa by +56pa y +204a x y +252a by x+72ab y +132a xy + 
4
 

72a 2by3+24a3y


(p+x) (p+y) (p+2x) (p+x+y) (p+2y)(p+3x)(p+2x+y)(p+x+2y)(p+3y)
 

(52)
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If this equation is evaluated it represents three terms of a formal 

solution of Equation (49). Each term multiplied by a given power of k is 

made up of negative exponentials added together. If x and y are irrational 

numbers there will be no repeated roots. If it is assumed that the infinite 

series of such terms behave in the same way some finite constant Mm 
may always be chosen to replace each k multiplier and we have 

On> f(t). (53) 

n= 0 

If these Mn follow a normal pattern they eventually decrease with 

increasing n so that all Mn may be replaced by the maximum value M. 

M Y kn > f(t) (54) 

n=O
 

Evidently the result, under these assumptions, converges abso­

lutely and uniformly for t > 0 when k is sufficiently small. 

Fortunately it is not necessary to rely on so many assumptions 

since Poincares theorem assures convergence for sufficiently small 

values of k in any case. 

Now Equation (52) is the solution of Equation (49) in operational 

form. The operational solution is sometimes as interesting as the final 

evaluation for f(t). In this case the initial and final value theorems 

applied to the individual terms show that the final value of f(t) is zero 

for all three terms and the initial value is zero except for the first term 

where f(0) = a. 

A computer program evaluated Equation (52) directly for given 

values of x, y, f(0), f' (0) and t. The result is shown as Figure 6. 
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Memory space in the computer is always at a premium with 

these solutions. While Equation (52) contained both initial conditions 

(a and b) the next term would have required more memory than available. 

One may obtain more terms (kn ) by sorting data either f(0) = a = 0 or 

f'(0) = b = 0. 

Equation (55) shows theoperational solution for f' (0) = b 0 and 

f(0) = a 

F(p) = 	a(p2 + xp + yp) + 1a 2 (p3 + 3p2 + 2x2p + 3yp2 + 6xyp + 2y2p) 
(p + x)(p + y) (p + x)(p + y)(p + 2x)(p + 2y)(p + x + y)­

2p + 16xp4 + 46x2 p3 + lO2xyp3 + 206x2yp2 + 206xy2 p2 + 132x3yp 

+ 2o4x 2y2p + l6yp4 + 46y2p3 + 56x3p2 + 56y3p2 + 24xp 
a3" 	 +132xyp + 24y4p 

(p + x)(p + y)(p + 2x)(p + x + y)(p + 2y)(p + 3x)(p + 2x + y) 

(p + x + 	2y)(p + 3y) 

jQ98 + 162xp7 + 162yp 7 + 109Ox2p6 + 39h2x3p 5 + 13,466x2yp5 

3

+ 13,466x&2p 5 + 39,922x3yp 4 + 63,7642y2p4 + J4,136x3y2p

+ 14E,136x2y3p3 + 15h,9h4xW 2p2 + 219,7lx3y3p2 + 63,36ox 2p 
2 p4+ 118,656#y 3p + 2330x 6 + 1090y2 p6 + 3942Y 3P5 + 826o0

+ 63,856xyp3 + 39,922xy3p
4 + 10,008x5p3 + 52,152x5yp 2 

3
2 + 16,992x6yp + 63,856xy1 p3 + 10,008y5p± 8260y4p4 + 6480x6p

+ 1728x 7p + l54,9h4x 2y4p2 + 52,152xyp2 + 6480y 6p2 + 1:8,656x yhp 

+ K~ah + 63,360x 2 y5 p + 16,992xyp + 1728y7p'
 

(p + x)(p +-y)(p + 2x)(p + x + y)(p + 2y)(p + 3x)(p + 2x + y)
 

(p + x + 	2y)(p + 3y)(p + px)(p + 3x + y)(p + 2x + 2y)(p + x + 3y) 

(p + 4y)
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8p12 + 2336xp I I + 2336yp 11 	+ 30$288x2plO + 63,176xypI0
 

9
+ 749,84ox 2yp 9 + 749,84oxy2 p + 5,137,232x3yp8 + 8,029,90px2y2p 8 

+ 5,137,232xy3p8 + 22,467,296x4yp7 	+ 48,758,176x3y2p7 

+ 48,758,176x 2y3p7 + 22,467,296xy4p7 + 65,443,304x5yp6 

+ 184,7493h4OxW 2p6 + 256,h59,56ox3y3p6 + 184,749,44ox2yP 6
 

6 2
+ 128,382,OOx yp5 + 452,361,232x5y p5 + 816,660,896x4y3p5
 

5 5 +
+ 816,66o,896x~y4p5 + h52,36 ,2322y p 71,697,1816YP 

+ 	1,61o,2o9,192x5Aph + 2,o93,7 93,712xbp5 + 1,610,209,192x3yp4 

2+ 714,697,184x2y6p4 + 701,644,736x7y p3 + 1,917,317,088x6y3p3 

3+ 	3,11o,628,512x5y4p3 + 3,11o,628,512x45p3 + 1,917,3l7,O88xy 6p

2+ 	388,007,OhOx8y p2 + 1,259,O61,216xl~y~p2 + 2,h477,021,376$+yp2 

5 2
+ 3,089,805,696x5y p2 + 2,h77,021,376xhy6p2 	+ 92,O14h,8OOx9y p 

+ 3h8,8h2,88Ox8y~p + Slls,798,0oBx7yhp + 1,231,879,680x6ylp 

+ 	1,231,879,680x-y6p + 30,28812pl0 + 229,920x3p9 + 1,13h,ooox4p 8 

8 6+ 229,92oy3p9 + 	3,8Jo,528x5p7 + 1 13hOOO p + 8,888,4h 6p

+ 	65,hh3,30bxy5p6 + 3,81O,528y5p7 + 6,8886,9hh/p 6 + 167,238,528x yp4 
3+ 14,374,24Ox7p 5 + 128,382,O00Oxy6p5 + 138,276,288x8yp

3+ 15, 76 9, 92Ox8p4 + Jl,374,24Oy7p5 + 	65,h73,920xmyp2 + 11,166,336x9p

+ 167,238,528xy7p4 + 15,769,92Oylp4 	+ 13,478,400x1Oyp 

+ 4,589,568xlOp2 + 701,644,736x2y7p3 + 138,276,288xyp3 

+ 	11,166,336y9p3 + 829,440xll + 1,259,061,216x3y7p2
 

l 2

+ 388,007,04ox2ylp2 + 65,73,92Oxyp	 2 + 4,589,568°Yp

+ a14,79a8,0s0xhY7P + 3h8,8J42,88Ox3y 	p + 92,Olsh,800x2y9pN 

+x! L+ 13,h78,hOxy10p + B29,hhOy~Np 

(p + x)(p + y)(p + 2x)(p + x + y)(p + 2y)(p + 3x)(p + 2x + y)(p + x + 2y) 

(p +-3y)(p + bx)(p + 3x + y)(p + 2x + 2y)(p + x + 3y)(p + hy)(p + Sx)
 
(p+ bx + y)(p + 3x + 2y)(p + 2x + 3y)(p + x + 4y)(p + 5y)
 

(55)
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Equation (56) is the operational solution for f(O) = a = 0 and
 

f'(0) = b.
 

F(p) = bp + 2Kb 2 p 
(p + x)(p + y) (p + x)(p + y)(p + 2x)(p + x + y)(p + 2y) 

K2b 3+ 	 (20p 2 + 2hpx + 24py) 

(p + x)(p + y).(p + 2x)(p + x + y)(p + 2y)(p + 3x)(p + 2x + y)(p + xt + 2y)(p + 

600p4 + 2760(xp3 + yp3 ) + 3888(x2p2 + y2p2) + 8976xyp 2 

+ 	K3b4 I+ 6624(x2yp + xy2p) + 1728(x3p + y3p) 

(p + x)(p + y)(p + 2x)(p + x + y)(p + 2y)(p + 3x)(p + 2x + y)(p + x + 2y) 

(p + 3y)(p + 4x)(p + 3x + y)(p + 2x + 2y)(p + x + 3y)(P + 4Aw 

39,600p 7 + 443,520(xp6 + yp6 ) + 1972,080(x2p5 + y2pS) 

+ 	4,274,16oxyp 5 + h,457, 3 76(x3ph + y3p4) + 15,682 , 1 26(x2yp4 + xy2p4) 

+ 5,405,184(x4p3 + y4p3) + 27,402,336(x3yp3 + xy3p3) 

2y2 p3 2 + y5 2 )+ 	hh,428,70x + 3,345,408(x5p p 

+ 	22,8O9,600(xhyp2 + xAp 2 ) + 53,211,80(x39p 2 + x2y3p2) 

+ 	7,257,60o(x5p + xy5p) + 22, 752,oO(x4h2p + x2+p) 

b5+ + 32,647,68o(c3y3p) + 829,440(x 6p + y6p)
 
(p + x)(p + y)(p + 2x)(p t x + y)(p + 2y)(p + 3x)(p + 2x + y)(p + x + 2y)
 

(p + 3y)(p + bx)(p + 3x + y)(p + 2x + 2y)(p + x + 3y)(p + 4iV)p + 5x)
 

(p + 4x + y)(p + 3x + 2y)(p + 2x + 3y)(p + x + hy)(p + 5y)
 

(56) 

Figure (7) shows the results for the analytic solution compared with the 

results of numerical integration for k negative. Evidently the magnitude 

of k = -0. 3 is " too large" for convergence or more than 5 operational 

terms' are required. 
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The actual evaluation of Equation (49) as a time function is more 

quickly and more easily carried out by the expansion method, but in this 

case any numerical check solution must be programmed on the computer. 

As an example take the case where f(0) = 0 and f' (0) = b, which is 

the evaluation of Equation (56). Notice particularly that the constant I"aft 

is not f(0) as usual but a newly defined constant. 

Equation (49) may be written in Heaviside notation with one boundary 

condition as 

[p2 + (x+y) p + xy] f= bp + kf 2 (57) 

where f(O) 0 and f1(0) = b 

kf 2bp + (58) 
(p+x) (p+y) (p+x) (p+y) 

1 aa + C (59)(p+x) (p+y) (p+x) p+y 

where 

1 1 
a and c I 

y-x x-y 

-
f(t) =, abe -x t+ bce y t + [a + P kf2 (60) 

f=f I + f2 + f3 + f4 + + + (61) 

and 

f2 = f1
2 

+ (f 2 + 2flf 2 ) 

* f32 + 2flf3 + 2 f3 ) 

+ (f42 + 2flf4 + 2f2f4 + 2f 3 f4 ) 

* . . (62) 
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f(t) = fl + f2 + f3 + f4 + + and 

D -. + (63) 

- x t - y t  f= abe + bce (64) 

2 )  f2 =Dk (f1 (65) 

f = Dk (f 2
2 + 2fIf 2 ) (66) 

f4= Dk (f3 2 + 2f1f3 + 2f2f3). (67) 

In carrying these operations out with the computer the two terms 

of f are set up as shown in Equation (64). A multiply program then forms 

f*1. All terms are then given a common denominator so they may be 

packed into the smallest number of terms. The next step is to multiply 

all terms by k. Each2 of the operators of Equation (63) is then applied 

individually to kf 1
2 . A common denominator is then found-so that the 

terms may be packed. The result is then read out in decimal and punched 

as a hexadecimal tape for future operations. 

The results are carried in the machine as algebraic quantities and 

exponentials so there is no need for laborious hand calculations. 

In this particular case no secular terms appear since it is assumed 

that the inequality of Equation (50) is satisfied. 
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The approximation carried out through the k 3 term only is 

given by 

f(t) = f1 + f 2 + f3 f+ + + + 

Where 

e- x t f 1= 	ab + bc e-Yt 

kb2f2 = - a3 e-Xt(e-Xt-1) - 2a 2 ce-Xt(e-yt-l) + ac2e-Xt(e(X-2y)t-1)
 
x y x-2y
 

- 2ce-Yt(e(Y-2x)t l) - 2ac 2e-Yt(e-Xt1l) - c 3e-Yt(e-Yt-1) 
2x-y x y 

k2b 3f3 + a5e-Xt(e-2xt-1) - 2a 5 e-t(e-Xt-1) + Iahce-xt(e-(x+y)t-1)
 

x2 
 x7 	 y(x-y) 

- 4ahce-yt(e-xt-) a3 2 e-xt(e-2Yt-1) + 2a3c2e-xt(e-Xt-1) 
xy y(x-2y) x(x-2yJ 

+ 	ahce-A(e-2xtd1) 2ahce-Xt(e-Yt1) + ha3c2e-Xt(e-(x+y)t-l) 
x(2x-y) y(2x-y) x (x+y) 

2- ha3c 2 e-Xt(e-Yt-1) + a c3 e-xt(e-2yt-1) - 2a2c3e-xt(e-Yt-1) 

+ 	2ahce-Xt(e-(X+y)tl) - 2atce-Xt(e-Yt-1) + 2a3c2e-Xt(e-2yt-1) 
x(x+y) xy y2 

' - 4a3c 2 e-Xt(e-Yt-1) + 2a 2 c3 e-Xt(e(x-3Y)t-l) + 2a 2 c3 e-Xt(e-Ytb1) 
yZ (x-2y) (x-3y) y(x-2y) 

+ 2a3c2 e-Xt(e-(Xy)t-1) + 2a 3 c2e-Xt(e(x-2y)tl) 
(2x-y)(x+y) (2x-y)(x-2y)
 

+ 2a2c 3 e-Xt(e-2yt-1) + 4a2c3e-Xt(e(X-2y)t-l) 
xy 	 x(x-2y)
 

- 2ache-Xt(e(X-3y)t-l) + 2ache-xt(e(X-2y)tl) 
y(x-3y) 	 y(x-2y)
 

Cont. 
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f3 Continu
 

+ 	Ob3 + 2a4ce-A(e(Y-3x)t-l) - 2a4cjg-yt(e(Y-2x)t-l)-

x(3x-Y) x(2x-y)
 

+ 2a3c2e-yt(e-2,t_,) - 4a3c2e-yt(,a(y-2x)t_,)
 
XY 	 Y(rx---T-­

- 2a2c3e-Yt(e-(x-Y)t-1) + 2a2c3e-yt(e(Y-2x)t-1)
 
(x-2y)(X+Y) kLX-YAX-2y)
 

+ 2a3c2e-y'(.(Y-3x)t-1) - 2a3c2e-yt(e-xt-1) + 2a2c3e-yt(e-2xt-1)
 
(3x-y)(2x-Y) x(2x-y) x2
 

- 4a2c3e-Yt(e-xt-1.) + 2ac4e-yt(e-(X+Y)t-1) - 2ac4 -yt(e-xt-j) 
x2 Y(X+Y) XY 

+ a3c2e-yt(e-2xt-1) - 2a3c2e-yt(e-xt-1) + 4a2c3e-yt(e-(x+y)t-1) 
x2 --­ x7- Y(X+Y) 

- 4a2c3e-yt(e-xt-1) - ae4e-yt(e-2A-1) + 2ae4e-yt(e-xt-1) 
xy 	 .. y(x-2yT- x (-X---2 Y) 

+ a2c3e-yt(e-2xt-1) - 2ac3e-yt(e-yt-1) + 4ae4e-yt(e-(X+Y)t-l) 
x(2x-y) y(2x-y) -7-x-ry) 

4ac4e-A (e-yt-1) + c5e-Yt(e-2A-1) 2c5e-yt(e-yt-1)'
 
xy Y2 

k3b4 a7e-xt(e-3xt-1) + a7e-xt(e-2xt-1) 
4a6ce-xt(e-(2x+y)t-,)
 

3x3 X3 xy(2x+y)
 

+ 2a6ce-xt(e-2xt-1) + 2a5c2e-xt(e-()L+2y)t-1) _ a5c2e-xt(e-2xt_,)
 
X2y x(x-2y)(x+2y) X2(X-2y)
 

- 2a6ce-lt(e-3xt-1) + 2a6ce-xt(e-,(X+Y)t-1)
 

3xz(2x-y) x(2x-y)(x+y)
 

- 4a5c2e-xt (e-(2x+y)t_,) + 8a5c2e-xt(e-(X+Y)t-1)
 
x2(2x+y) 1 X7(x+y)
 

- lOa4c3e-xt(e-(x+2y)t-1) + loa4c3e-xt(e-(X+Y)t-1) 
xy(x+2y) XY(X+Y) 

Cont.
 



35 

f3 Continued
 

+ k3b4 a7e-oct(e-xt-1) +4a6ce-xt(e-(x+y)t-1) - 4a6ce-xt(s-Tt-1) 
x3 -xy(X;7 ­ .2y 

a5c2e-xt(e-2yt..:L) + 2a5c2e-xt(e-xt-,) + a6ce-xt(e-2xt_,)
xykx-;Zy) x2(x-2y) - -- x7(2x-y) 

2a6re-xt(e-yt-1) - 4a5c2e-xt(d-yt_,) + 5a4c3e-lt(e-2yt-1) 
xy(2x-y) x - xy, 

lOa4c3e-xt(e-yt.-l) - 4a5c2e-,t(e-(x+2y)t-l) 
x3re -y2(x+2y) ­

+ 8a5c2e-xt(e-(x+y)t-1) + 4a4o3e-x'(e-3yt-,)
 

Y (X+Y) (x-2y) 

4a4c3e-xt(e-(x+y t-1) ­-- 4a5c2e-xt(e-(2x'y)t_,)
 
y(X-2y*+y) -- 7y2x-y)VX+Y) 

+ 4a5c2e-xt(e-2yt-1) - 4a3c4e-xt(e-3yt-l) + 
4a3c4e-xt'(e-2yt-1)
 
2y (2x-y) 5y7- y3 

- 4a5c2e-xt(6-xt-'L) 2a4c3e-xt(e-2yt-1) + 4a4c3e-xt(e-xt-1)
 
XYZ yL(x-2y) - xy(X-2y)
 

" 2a5c2e-xt(e-2xt-1) 4a5r2e-xt(e-Yt-1) - 4,,3,4.-xt(,,-Yt-,)
 
xy(2x-y) y3
 

" a3c4e-'Dct(e(x-4y)t-1) + a3c4e-xt(e-2,yt-1) 

(x-4y)(x-2y)2 y(x-2y)2
 

" 2a4c3e-xt(e-(x+2y)t_,) + 2a4c3e-xt(e(x-3Y)t-l
 
(x-2y) (xT2yT7x-yT- (2x-y) (x---2y) (x-3yT­

" 4a3c4e-xt(e-3yt-1) + 4a3c4e-xt(,,(X-3y)t-1)
 
jxy(x-?Y) xCx ZYM-3y)
 

- 2a2c5e-xt(e(x-4y)t-1) + 2a2c5e-xt(e(x-3y)t-1)
 
y(x-4y)(x-2y) ---- -ykx--3y)kx-2y)
 

- a3c4e-x(e-xt-1) - a4c3e-xt(e-2xt-1) + 2,4,3,-xt(,-Yt-1)
 
x(x-2y)2 x(2x-y)(x-2y) y(2x-y)(x-2y)
 

Cont.
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f3 Continu
 

+ k3b4 - 4a3c4et(e-(x17)t-l) + 4a3c4e-xt(e-Yt-1) - a2c5e-xt(e-2Yt-1)
 

x(%-2y)(X+Y) 	 xy(x-2y) y (x-2y)
 

- a5r2 -x'(,-3t-l)+ 2a5c2e-xt(e-(x+y)t_,)
2a2c5e-xt(e-yt-1) 

3x(2x-y)2 (Zx-y)2(x+y)
-7x2y) 


- 4a4c3e-x+ e-(2x4y)tj) + 4a4c3e-xt(e-(X+Y)t-1)
 
XVX-Y) k2xlly) 	 x kZX-Y) kxltyy 

- 2a3c4e-xt(e-(x+2y)t_,) + 2a3c4e-xt(e-(x+y)t-1)
 
y(2x-y)(x+2y) y(2x-y)(x+y3
 

" a5c2e-xt(e(X-2y)t-1)+ 2a4c3e-xt(e-2yt-1)
 

(2x-y)2(x_2y) xy(2x-y)
 

" 4a4c3e-xt(e(x-2y)t_,) - 2a3c4e-xt(e(x-3y)t-1)
 
x(2x-y)(x--2y) y(2x-y)(x-3y)
 

" 2a3c4e-xt(e(x-2y)t_,) - 4a3c4e-xt(e-(x+2y)t -1)
 

y(2x-y)(x-2y) X'(x+2y)
 

" 4a3c4e-xt(e-2yt-1) - 4a2c5e-xt(.-3yt-,) + 2a2c5e-xt(e-2yt_,)
 
X2y 3V4 xy2
 

" 4a3c4e-xt(e(X-2y)t-1) - 48205e-xt(e(x*-3y)t-,)
 

x(X-PY) xY(X-3y)
 

" 4a2c5e-xt(e("-2y)t-1) + ae6e-xt(e(x-'Ly)t-l)
 

xy(X-2y) y2(x-4y)
 

- 2ac6e-xt(e(X-3y)t-1) + ae6e-xt(e(X-2y)t-1).
 

Y2(x-3y) yl(X-2y)
 

- a6ce-yt(e(y4=)t-1) + 2a6ce-yt(e(Y-3x)t-1)
 
X2(4x-y) X Ox-Y)
 

- 4a5c2e-yt(e-3xt -1)+ 4a5c2e-yt(e(Y-3x)t -1)
 

3x'ffY-	 XYOX-Y) 

+ 2a4c3e-yt(em(2x+y)t_,) - 2a4c3e-yt(e(Y-3x)t-1)
 
x(2x4y)(X--r7- x(3x-y)(x-2y)
 

- 2a5c2e-yt(e(y 4x)t-1) + a5c2e-yt(e-2xt-1) - 4a4c3e-yt(e-3xt-1) 

x(4xmy)(2x-y) X2(2x-y) _3)c3 

Cont.
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+ 	k3b4 + 4a4c3e-yt(e-2xt-1) - loa3c4e-yt(e-(2x+,Y)t-l) + 5a3c4e-Yt(e-2xt-I 

x3 xy(2x-7) x2y 

_',6,.-yt(,(y-2x)t_,) + 2a5c2e-yt(e-2xt-1) 

X2(2xy) X; y 

4a5c2e-yt(e(Y-2x)t-1) - 2a4c3e-Yt(e-(r7)t-1)
 
.xy(2x-y x(x-2y)kx+y)
 

+ 2a4c3e-yt(e(Y-2x)t-1) + 2a5c2e-yt(e(Y-3x)t-1) 
x (2x-y) (x-2yy- x(3x-y)(2x--Y)­

- 2a5c2e-yt(e-xt-1) - 4a4c3e-yt(e-xt-1) + lOa3c4e-yt(e-(x+Y)t-1) 
x2(2x-y) X3 xy(x+y) ­

- lOa3c4e-yt(e-xt-1) - 4a4c3e-Yt(e-(2x+y)t_,) + 4a4c3e-yt(e-2xt-1) 
X Y y?(2x+y) XYZ 

" 4a3c4e-yt(e-(x+2y)t-1) - 2a3c4e-yt(e-2xt-1) - 4a4c3e-yt(e-3)t-1) 
y(x-2y)2 xy(x-2y) 3xy(2x-y) 

" 4a4c3e-yt(e-(x+y)t-1) - 4a2c5e-yt,(e-(x+2y)t-l) 

y(2x-y)(x+y) Y2(x+2y)
 

" 8a2c5e-yt(e-(X+Y)t-1) - 4a4c3e-yt(e(y-2x)t-,)
 

y2(x+y) 	 ? (2x-y) 

- 4a3c4e-Yt(e-(X+Y)t-1) + 4a3c4e-yt(e(y-2x)t_,)
 
Y(x:--2y) (x+YT- y(2x-y)(x-2y)
 

+ 4a4c3e-yt(e(Y-3x)t-l) 
- 4a4c3e-Y Wxt-l) - 4a2c5e-yt(e-xt-1) 
Y(3x-y)(2x-Y) xy(r--7- x3rz 

- a2c5e-yt(e-3yt-1) + 2a2c5e-yt(e-(x+y)t-,)
 

3Y(x-2y)2 (x-2y)2(x+y)
 

" 2a3c4e-yt(e-(2x+y)t_,) a3c4e-yt(e-2yt-1)
 
(2x+y)(2x-y)(x-2y) (2x-y)(x-2y)
 

" 4a2c5e-yt(e-(X+2y)t-1) 2a2c5e-A(e-2yt-1) + 2ae6e-yt(e-3Yt-1)
 
x(x-2y)(x4,2y) xy(x-2y) 3Y(x-2Y)
 

ae6e-yt(e-2yt-1) - a2c5e-yt(e(y 2x)t-1)
 

y2(x-2y) (2x-y)(x-2y)l
 

Cont.
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f3 Continued 

+ k 3b4 - 2a3c4e-Yt(e(Y-3x)tl) + 2a3c4e-Yt(e-Xt-l) - 2a2c5e-Yt(e-2xt1) 
(3x-y) (2x-y) (x-2y) x(2x-y) (x-2y) x4 (x-2y) 

+ 	4a2c5e-yt(e-Xt-1) - 2ac6e-Yt(e-(x+y)t-1) + 2ac6 e-Yt(e'Xt-1) 
x2 (x-2y) y(x-2y) (x+y) xy(x-2y) 

-	 a4c3e-Yt(e(Y-4X)t-1) + a4c3e-Yt(e-2Xt-l) - 4a3c4e-yt(e't-1) 
(4x-y)(2x-y) 2 x(2x-y) 2 3x2 (2x-y) 

+ 2a3oce-t(e-2Xt1) - 2a2c5e-Yt(e-(2x)t1) + a2oe-Yt(e'2xt1) 

x2 (2x-y) y(2x-y)(2x+y) xy(x-2y) 
- a4c3e-Yt(e-Ytl) + 4a3c4et(e-(X+y)tJl) - 4a3cheYt(etl) 

y(2x-y)2 x(2x-y) (x+y) 	 xy(2x-y) 

+ 	a2 c5e-Yt(e-2yt-1) - 2a2c5e-Yt(e-Yt-1) - 4a2cre-t(e-(2x+y)t-1) 

y2(2x-y) y2 (?x-y) x2 (2x'Iy) 

+ 	8a2c5e-Yt(e-(X+y)t-l)- 4ac 6 e-yt(e-(X+2y)t-l) 
x2 (x+y) xy(x+2y) 

+ 	4ac6e't(e-(X+y)t-l)_ 4a2c5e-Yt(e-Ytl) + 4ac6 e-Y(e-2yt_l) 
xy(x+y)' x2y 2x 

- 4ac6e-Yt(e-Yt-1) - c7e-Yt(e-3Yt-1) + c7e-Yt(e-2Yt-l) 
x 333 y3 

- c~e-Y (e-Yt~l) 

y3 

f4 is shown in the Appendix. 

For given numerical values of x and y one could probably show 
uniform convergence for this result. It is much easier to depend upon 
Poincares theorem for k small enough to assure convergence. 
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8. ASSIMILATION OF SECULAR TERMS 

Transform solutions are formal solutions of the differential 

equation. When repeated roots occur in the operational transform 

secular terms appear in the solution. In cases similar to the pendulum 

where the period (for oscillatory functions) is known the summation of 

p-n may be carried out by the computer, or if a problem is first solved 

by hand the summation can be carried out by the machine but there would 

be no point in wasting machine time. 

One may adopt the point of view that with machine solutions a 

sufficient number of secular terms may easily be obtained to approximate 

the solution or one may attempt to recognize the secular terms in such 

a way as to assimilate them into the solution as known functions. As an 

example of the two methods consider the equation 

f,, + w2 f = _kf2 (69) 

A formal solution to this equation may be obtained by the derivative 

process or by the expansion method. 

The derivative process, after summation and sorting gives Equation 

(70) directly while the expansion method (after appropriate changes in 

constants) gives Equdtion (71) directly.
2 2 

22p2 2 ka2 2(p2 +2w 2 )
F(p) ap 

P +W (p2+W2)(p2+4co) 

Ska 3 ( 2 p4+10ow2p 2 - 12w4 

(p2+w2)2 (p2+4w2) (p2+9w) 

k3a4 (lop6+15O2p4+440w4p2+1200tw
6 

(p2+ )2(p2+4w2)2 (p2+9w2)(p2+16w2 

45 12 2 10486 

+k4a 5 (80p +3,880w p +65,0 40w p +444,44 0w p 

8 4 10 2 12 
+942,880w p -3,040,320w1 p -5,760,000w ) 

(p2+ 23)(p2 +4w 2)2 (p2+9W2)2 (p2+16w 2)2 (p2+25w 2 

. . . (70)
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When F(p) is evaluated as a time function: 

f(t) = a cos Ut 
ka 2 

+ -2 (cos 2t + 2 cos wt - 3 )
2
 

6w
 

k2a3
 
48	 )+ 	 ka (3 cos 3wt+ 16 cos 2wt +29 cosw t+ 60wt (sint)­

144w 

3 
4
 

+ 	 k (5 cos 4w + 45 cos wt3 + 480 cos 2t + 595 cos ut 
2160w6 + 300wt (sin 2tt) + 900 wt (sin ot) - 1125) 

(71) 

This equation may be rewritten as 

f(t) = 

(a+ ka2  
+ 	29k2a3 595k3a4 +)ost
3w2 144 + 2160W 6 

ka2 3 	 416k a 480k a
+ + )+ 	( 2 + + 6 cos 2wt 

6o2 	 2160w
144w 


32a3 4534
 

+ 	 ( 2 + 45k +++) cos 3wt 
144w4 2160w
 
53a4
 

5k a +++) lcos4wt 
6
 

2160w
 

'3 4
 
S(3o0t) k a -si 2wt
 

2160wO 

+ +r + 48k a 1125k3 a 	 (72) 

L2w 2 144W4 2160 1 
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To assimilate the secular terms (sin wt and sin 2wt) the relation 

cos(w4- ) t = cos wot cos Pt - sin t sin Pt
 
2t2 4t4 .
 

= cos wt (I- 2tf ++t)
 

P2t3
Pt
= sin wt ( 
+ +1 3 (73) 

is compared with the cos &otand sin wt terms of Equation (72). 

ka2 3
29ka
 
(a + 

3w
22 14 4w4 ++) Cos wt
 

S60) + (900ow) k3a4 sin wt (74) 
144
w 2160w6
 

Divide the coefficient of (t sin wt) by the coefficient of cos wt. The 

result is; 

5 ka 5 ka (75) 
-
18& b12w 


therefore in Equation (73) p is the negative of this value. 

The new rotational velocity is 

5k2a2 5k3a3
 

1)=. (76)12w 18w 6 

The coefficient of (t sin 2cot) when divided by the leading coefficient 
of cos 2wt gives 

2 ( 5k a 
w) 

which matches the second term on the right of (76) since this is double 

frequency.
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The period 	is 

T 	=- T (77) 

Figure 8 shows the graphical result of the solution by numerical integration 

for k= 0.1, w = 1 and f(0) = 1. 

T- 21T 	 6.283 6.31 seconds(1)(1 	 5(0.01) 5(0.001) 1- 0.0045
 
12 1-8
 

which appears to check the period in the figure. 

In Figure 9 f(0) has been changed to 3. In this case 

T 2ir 	 = 6.58 seconds
 

1 5(0.01) (3) 2 5(0.001) (3)3
 

12 -18
 

which is probably very close to the period of the numerical solution 

for this case. 

The solid line therefore represents the solution with the secular 

terms assimilated for both figures. 

Equation (71) may therefore be rewritten dropping the sine terms 
and changing w to w1 in the cosine terms. The to terms in the denominators 

are unchanged. 

2
kaf(t) =-2 	 (cos 2t 1 t+2 cos wt- 3) 
6w 

2a3
 
+ k (3cos 3wit + 16 cos 2o1t+ 29 cos w1 t - 48)

144w4 

3a4
 
+ 	- (5 cos 4o 1t + 45 cos 3wlt + 480 cos 2w 1t 

2160w + 595 cos wt - 1125) (78) 

The crosses in both Figure 8 and Figure 9 indicate the equivalent 

solutions for Equation (71) including the secular terms as shown in this 

equation. 

Convergence is assured if the factor ka/w2 is small enough. 



df 2 	 k= 0.1 Numerical 
w=I.O x xx Equation(71) 

7. 	 a= 1.0 

-I 	 -.... 
FIGURE 8 

ka small 
-Z 	 co2 

0 	 2.0 4.0 6.0 
-
t
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I 
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p 

Numerical 

Equation (71) 

1.00 __ 

f(t) 0 __ 

S-1.00 __ _ 

-2.00 
d2 f +w'f =-kf 

k =0.1 
co= 1.0 
a=3.0 

k large FIGURE 9 

0 .8 1.6 Z.4 3.2 4.0 4.8 
-t 

5.6 6.4 7.2 
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9. THE VAN DER POL EQUATION 

The van der Pol equation is perhaps the most interesting equation 

studied. 

f" - A( - f 2 ) V + Bf = 0 (79) 

The work on the computer was actually carried out with two 

different equations 

f" - Af' + Bf = -kf 2 f' (80) 

where k = A in the solution 

and 

f" -2Xf' + (X -y2 f =O 81) 

where 

22 f2
A - f2k

22 = (A- 2-fk) 

-B 82) 

X and Y are time functions. 

In the final results 

X(O) A 2 a x and 
i 2)
 

Y (0) -a2 - B= y 

where a = f(0) and b = ft(0). Again k = A for the van der Pol Equation. 
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The first four operational terms for Equation (80) for the case 

f(O) = 0 and ft(0) = b are listed as Equation (83). 

2Kb3p 2 
-F(p) bp 

(p2 - kp + B) (p2 - Ap + B)(p 2 - _ttp + B + 2A2)(p2 - 34P + B) 

+ 	 60K2b5p5 + 3h8K2bBp3 - 252K2bApLL - h80Jb 5ABp2 + 240bA2p3
 

(p2 - Ap + B)(p2 _ 3Ap + B + 2A2 )(p 2 - 3Ap + 9B)(p 2 - 5Ap + B + 6A2)
 

+ 4A2 ) (p2 	 - 5Ap + 25B)(p 2 - 5Ap + 9B 

8 
- 112,68OK3b7Ap9 + 743,352K bAkp + 209,16OX 3b7Bp8 6840K3b7p'0 


7 2,h93,648K3b7ABp7 + 4,587,02hKVb7Akp 6 
- 2,512,536KVbA 3p ­

+ fl,329,032K3bA2Bp6 + 1,646,28oK3b7B2p6 - 4,290,24oK3b7A5p5
 

- 24,411,264K3b7A3Bp5 - 13,O73,832K3b7AB2p5 + 1,612,80OK3b7A
6p4
 

+ 2h,876,180K bALBph + 35,517 0?2K3b 	 B2p + h,OOS,72oK3b7B3ph 

33
9,676,800K3b7A5 Bp3 - 38,425920KIb7A3B2 p - 14,96448OK3b7 AB3p

1h112,000K3bYA4B2p 2+ 12,868,80OK3b7A2B3p2 - 7-6,000K-Yb. 
2
.(p 2 - Ap + B)(p 2 - 3Ap + B + 2A2)(p _ 	3AP + 9B)(p 2 - SAp + B + 6A2) 

2(p2 _ SAp + 25B)(p 2 - SAp + 9B + hA2)(p - TAp + B + 12A2)
 

(p2 - 7Ap + 25B + 6A2)(p 2 - TAp + 49B)(p 2 - TAp + 9B + 10A2 ) (83)
 

This was the first second order equation attempted and no 

summation was obtained for the general case where both initial condi­

tions were present or for the case f(Q) = a and f' (0) = 0. 
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Figure 10 shows the analytic solution for the case f(0) = 0, 

f'(0) = 1, K= 2.25, B = 1 and A = -2. 25. (Since A is negative the equation 

is not in the standard form for the van der Pol equation.) The solid 

lines, as usual, are the numerical solutions. The agreement is surprisingly 

good since both numerical and analytic results are approximations. 



.8 

fitB)
.6 

f 

x x 
Numerical solution 
Analytic solutibn 

f"-Af'+Bf= -kf fV 
f(o)=o b=f'(o)=I.qO 

A=-2.25 k= 2.25 
= 1.00 

f1(t) .. _ __ _ 

FIGURE 10 

0 5 to 
i 

15 
EE 

ZO 

1O Seconds 

II 
Z5 30 

I 
35 



49 

The first three terms of the operational solution for Equation 

(81) for f(O) = a and f'(O) = 0 are 

2 ­F(a,p) = a(P 2xp)
 
Mil
 

+ Ka3 6xhp3 + 12x 2 9p3 - 6yhp3.+ Wjxp2 - 88x3y2p21j+ 3K 4xyhp2 - 5 +6 iisxhy2p - 66 2 4~+~ 9 

(M11) 2M3 1M3 3 

11
 "P52xp12 + 756xy2p12 756x2y4p? + 252y6p12 + 10,360x7p

-31,00x~y2p12 + 31,O8Ox3y4pll - io,360xy6p11 - 183,148x8plO 

" 553,008x6y2p lo  56o,136xbyhp:O + 193,84ox2y6plO _ 3564y8p1 o 

9 2+ 1,835,040x9p - 5,623,488x7y p9 + 5,860,224x5yhp9 - 2,190,144x3y6p9 

" l18,368xyp 9 - 11,588,472xlOp8 + 36,430,84oxSy2p 8 - 39,775,728x6yhp8 

+ 16,626,864xySp8 	-1,7O7,544x2ysp8 +h8,416,h6b4xlp 7 -158,060,08x9y2p7
 

+ 184,083,36oxT}$p7 -88,054,432x5y6p7 +lh,016,656x3
y8p7 -402,OOOxy1Op7 

+K2a5 - 136,102,200x12p6 + 467,291,696xlOy2p6 - 589,682,024x~y4p6 

6
+ 326,3h1,52x y 6 72,315,272x4y8p6,489,0o42ylp +255,1 60,352x1p 

- 932,617,728xlly2p5 + 1,290,557,984Nxip5 - 825,061,44Ox7y6p5 

+ 	239,608,416x5y8p5-25,137,92Ox3yl0p5 +490,336xy12p5 -306,409,612xlIpI4 

2+ 1,204,893,748xl2y p4 -1,842,131,l32xlOy4p4 + 1,364,410,3o8xSyA4 

-493,254,820x6 S8p4 75,809,564x4yI % 4 -3 ,335,444x2y12p4+213,491,832xip 3 

13
- 910 ,349256xy 	3 + 1,51a,74,o0xl yJ434_ 1,3o7,094,504x99y6p3 

+571,950,696x7y8p3-19,o5,096x5ylOp3+9,538,632x3y12p 3-65 ,678,94ox I6p2
 

+ 304,9]7,120x14y~p2 - 570,702,960xl2yhp2 + 547,560,OOxlOy6p2
 

- 282,794,760x8yp2 t75,559,680x6ylOp2 -9,215,280x4y12p2 +14,040ylOp8 

- 23,256y12p6 +17,388y14p4 -196,344xyJI 3 +36o,OOox2yl4p2 -4860y16p2 

3 2 2(Mll) (M31) (M33) 51 53M55 (84)
 
where (+4n
M wn __(p2 - 2mp +wx 2- ny 2)
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and the first four terms for f(0) = a and f1(0) = b are 

2
 - 2Kb3pF(bp) = bp 


1111 '1lM31 33 

2+ K2b 5 (60p5 - 504xp4 + 1308x2p 3 - 348y2 p3 - 960x 3p + 	960xy2 p2 ) 
"11M31M33S'5M5A5 

- 6840plO + 225,360xp9 - 3,182,568x2p8 + 209,160y2p8 + 	25,087,584x3j
 

7
- 4,987,296xy2p - 120,354,792x% 6 + 48,608,688x2y2p6 - 1,646,28yl 
+ 358,725,456Pp 5 - 247,585,44Ox3y2p5 + 26,147,664xy4p5 

+ K 7 - 647,316,888x6p4 + 6914,77,416xhy2p4 - 154,085,448x2y4ph 

3
+ 4,005, 7201p 4 + 646,993,920x7p - 1,O14,259,200x5y2p3 

+ 	397,194,240x3y4p3 - 29,928,960xy6p 3 - 276,511,200x8p2 

6 p2+ 602,985,60ox6y2p2 - 375,681,60oxh24p2 + 48,451,20ox 2y

L+756,000y8p2 
1111M335153 5571 73 7077 

Here 

n- (p2 _ 2wvxp + w2x2 - n2y2 ) 	 (85) 

No satisfactory evaluation of Equation (84) has been obtained due 

to the large number of multiple roots. A computer program is available 

to evaluate this equation as a time function for given numerical values of 

the constants and the initial condition but unfortunately there appear to 

be too few secular terms to approximate the function. 
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The expansion type of solution might be very helpful here in 

identifying the series of secular terms and attempting to assimilate 

mwn =(p2 2wxp + w2x 2 

them. 

Equations (84) 

the root structure of Equation (83). 

and (85) were generated with the idea of simplifying 

Notice that the roots for Equation 

(84) are 

- - n2y 2) 

Ip - (A - a 2k)p 

A-a~k 

+(w2 _n 2)( 2a + (86) 

where to and n take on the values shown in (84). Since a = f(O) this means 

that at least one initial value occurs in the root structure. 

Equation (85) is the same as Equation (83) if the values for x and 

y are substituted in the equation f(O) = a = 0. 

Poincares theorem insures convergence for small values of k 

so the result is an analytic function. 
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10. DUFFING' S EQUATION 

The general form of Duffing' s Equation is usually given as: 

f" + cf' 	 + rf = -. kf 3 + G cos wt. (87) 

If the general solution for this equation was of sufficient impor­
tance it could no doubt be obtained. In Heaviside notation with two initial 

conditions the original equation becomes 

2 kf 3(p+x) (p+y) f = ap + bp + (x+y) ap + G cos wt -	 (88) 

where a 	= f (0) and b = f'(0). 

(p+x) (p+y) + (p+x) (p+y) 	 1pxfp+y) 

Even an approximate solution through the k3 term for this equation 

would take a great deal of time on a large computer. To reduce com­

puter time take a = b = 0 and y = x so the equation now becomes.: 

f G cos wt k f 3 

p 2 +x 2 2 2 	 (90) 

The first term on the right hand side is 

f= G 	(cos wt - cos xt) (91)
(x2 _ 2) 

f- k [p2 +2 	 (92)j h 
- =kf3	 2+x 

+f = - P2 2 [ f 2 (9)
3 ~ ~~ x 2(3 

f =f I +f 	 2+ f 3+ + + (94) 
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Computer 	results give: 

k G3 , 
f2 	 223

8x 	(x - w2) 3 

[2 9x 18x 2x
 

- 9x -w x 92
 

+ 	 4x cos x 9t sin xt 

1 18x 
- x 	 cos 3xt-2 cos tt 
Tx-	 (x2 _ W2) 

2x 	 3x 
Cos 	 3wOt + 2w (XW os (x-2w)t(x 2 _ 9w 2 ) 

(x 

3x cos (x + 2w)t
2wo (x+w) 

+ 63 ox + ) cos (2x + to)t(3x+w) (x + w) 

+ 	 (3x6x - ) os (2x - )t (95) 

f3 	 (secular terms only) 
- k2 G5 81t 

2 cos xtw2)5
(2)6x2 (x2 2 g 

87t 324xt 378xt + SOxt s+ 2x x+ x2_w2 +- w G12 xx2 -S- 9w0z22 9 

- 7 sin 3xt 2 7xt sin (x + 2w)t
Tx- 2w (x+w) 

+ 108xt 	 sin (2x - t + lO108xt sin (2x+w)t
(3x 	- w) (x- w) (3x+w) (x+w) 

27Vxt t 

+ 	 2w (x-t) sin (x-2w) (9'6) 
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Rearranging the terms in (91), (95) and (96): 

kG3G 	cos wt -9 kG.3 cos 3wt-~---2 2= 	 cost - _______ 
2 )34 	(x 2-w (x2 -9w2)(x 2 _ 2) 4 (x2-w2) 

2 
G2 2-2 cos xt (8x( (x 2 '+ )t 1 

( x x-) 2_w x(x-o 2
 

-snxt:kG2ts ixt-8x (x 2 - +G+ + + s[in 32x2 3 _wo)i 3+
 w2) 3 -	 t (x2 2x) 

/9 k G t -++ si3x 

+ 3 k G3 2cos 	 (x - 2w)t (1+ +) 

16w (x-w) (x -w2) 

-99k Gt + sin(x -2w)t]
 
Bx2_ 22t )
 

3 	kG3 Los (x+2w)t (1 + 
16w6(x+w) (x2-2) 	 ++ 

9kG2 t ++ sin (x + 2w)] 
8x (x -2_2)
 
9kG3 [c _ xt 1
 

+ k 	 OSsxt (I + +) -4 ( 9kGt + sin
32 22
 

8 (x 2-to2 )4 8x(x2-w2) 2
 

kG3+ 	 3 ( 2 [os (2x+w)t (1+ +)
 
4 (3x + o) (x+w) (x2 -2)3
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-2 9kG/- t + +) sin (2x+u)tJ
 
8x (x2-to
 

cos (2x-w)t (1 + + + 4 (3 (x-w) (x :-W2)734 (3x-wo) 

-2 (8x9kG2(x2-u)Z)t z2 + sin (2x-o)t]. 

2 3 2
(xk G 8x (x2-2/159) +)sit 
k 3 [Cos xt (++ )fl7kG t +)sin 

2 2 2(X2 ()2)3 2x 2 

+ kG 3 ( / k G 2t + +)sin xt 

+ (2 2 )3 Cos 4 "(c+Sx / 4-L2) 

9 k G3 r_(2+ / 2lGt ++)sinxt
223 22++) [Co 7 2 , 

4 (x -wo Sx 2 x x- 22x2,-
(97) 

With the substitutions: 

(98)9 k G2 


8x (x 2-W2 )
2
 

(99)G
x2 _2) 

(100)2 )
(x -t M 

a very rough approximation for the first two terms gives 

f(t)= z [cos ot - Cos (x+3)t 

k z 3 cos 3 wt + 1 cos (3x+3P)t9- cos wt + 4 (x2-9W2) 32x 2 
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3 31 6w (- os (x-2w+p)t + 16wxw) cos (x+2w+p)t 

9 cos (x+4p)t - (3+) s) (2x+w+2P)t 

4 ( cos (2x-w+P)t
 
1 15kz 2
 

1 cos (x + ) t 
4 (x2 9W2 ) 8X
 

1 Cos(x+87 kz 2
 

52x.
 

9 *21 kz 2 
)t 1(101)

2 2- c os(x + 
4(9x -w2) 8 

Actually the number of terms available from computer results is 

still insufficient to establish Equation (101 ) as the approximate solution 
0 1

through the first two terms, (k and k ). The assumptions in regard to 

the trigonometric relationships are obvious. Evidently one must choose 

suitable values of w, x, G and k. 

Figure 11 shows the usual numerical solution compared with the 

evaluation of Equation (101) for the parameters indicated. 
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11. DIRECT SERIES SOLUTIONS 

Direct series solutipns may be divided into two categories: 

I. Cases when f(t) is not only bounded but meets the requirements 

of Section 3 for the Laplace transform type of solution. 

Section 4 shows an example of the direct series solution for 

Equation (13) and Figure 1 shows the graphical result for t~e numerical 

compared with the analytic result for given numerical constants. 

II. Cases where f(t) may or may not be bounded. The transform 

method of solution does not apply but the derivative computer programs 

are identical for either Case I or Case II solutions. Case II solutions 

include all equations under Case I. 

The "open-end integral" of Section 3, Equations (4) and (18) may 

be interpreted as a defined operation which does not involve the Laplace 

transform. It does however provide a formal solution in the form of a 

Maclaurin' s series, 

Define 

F(p) = p (t) e-Ptdt in(0) (102)
n 

0 n=0 P 

The integration is to be carried out by parts and is, of course, a 

series of differentiations. q is the number of derivatives involved, 

usually less than 60. fn(t) is the n th derivative of f(t). 

Now if 1 is defined as in Ieaviside 's calculusn 
p 

-- n (103) 
n nJ 

p 

and Equation (102) is evaluated as 

f(t) = fn(0)tn (104) 
n=0 
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which is Maclaurin's series for f(t) through the q th term. Kaplan 1 5 has 

examined equations of the type considered here and has shown that they 

always converge to an analytic solution for q.-)c. 

Figures 12 and 13 show results for summation and direct series 

solutions compared with the solution by numerical integration for two 

equations having Case I solutions. For the same number of derivatives 

the summation solution maintains accuracy for much larger values of time. 

Figures 14 and 15 show comparative results for problems under 

Case II. No summation solution is available in these two cases. 

Kaplan's method of showing convergence also allows an estimate 

for the remainder of the series after n terms so the accuracy can be 

estimated in solutions under Case I. 
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12. COMPUTER PROGRAMMING AND OPERATIONS 

While some simple non-linear problems may be solved by hand 

calculations, even relatively simple problems are best solved by the use 

of a digital computer. 

The programming is carried out using the same operations as 

would be used by hand calculations. Active memory is at a premium so 

the various operations should be broken down into what might be called 

irreducible steps. Results are stored on cards, paper tape or preferably 

magnetic tape. 

The numerical coefficients for the terms generated by the process 

of differentiation cannot be carried in floating point since the last digit 

of the coefficient is required. In fixed point one must carry coefficients 

involving some 112 bits or more and sign. A variable word length machine 

is desirable but not mandatory. -

The format for the individual terms should be arranged to carry 
as many variables as practical in addition to the large coefficient since 

another problem may require additional variables. 

The basic programs required include a program for differentiation, 

one for summation, one for the numerical evaluation of the transforms and 

a program for the final evaluation of the time functions. 

The program for differentiation involves the input of the individual 

terms, the differentiation of this term to obtain the next term or terms 

and a compare and pack routine to store the generated terms in a list in 

memory. After all terms of a given derivative have been processed the 

next set of terms forming the next derivative is output to tape and input 

again to obtain the next derivative. Since each derivative depends upon 

the tape made from the previous derivative it is essential to check each 

operation carefully for errors if possible. 
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The summation operation can be performed using all available de­

rivatives which will go into the computer at one time. 

The storage space required is considerably reduced if the de­

rivative terms can be sorted on the basis of the power of the non-linear 

qoefficient involved since this decreases the number of terms to be 

summed in one run. 

If the space required is still more than the available space in 

memory, additional sorting-may be carried out on the powers of the initial 

conditions. 

The actual "summation" computer program is a multiplication 

operation. If the operational expression 

p+A 
(p+B) (p+C) (p+D) 

is expanded in memory as a binomial expansion in negative powers of p 

and the whole list of terms is multiplied successively by (p+B), then (p+C) 

and finally by (p+D)the final result in memory is (p+A), the numerator. 

The numerators of the individual terms are then processed to 
include the number of roots in each operational expression. This will be 

called a "numerator tape" . 

A complete set of the required roots and the initial conditions plus 

the parameters are then input to an evaluation routine. The numerator 

tape is input, a term at a time, and for each term the machine evaluates 
the inverse Laplace Transform and stores the result with a compare and 

pack routine. The result is the "analytic solution" for the first few terms. 

While some operational solutions may be evaluated by hand, and the 
resulting time function summed into a closed form solution, the usual pro­

cedure is to obtain the result as a numerical solution in the independent 

variable, time. This is then compared with the equivalent numerical so­
lution to determine the range for which the analytic solution is accurate. 

The Heaviside shift program for the expansion type solution always 

holds data in the form 
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(Numerator Polynomial) tne mt
 

(Denominator Polynomial)
 

Except for the numerical coefficients all terms are in algebraic form. 

This program evaluates the solution faster than the derivative type of 

solution. Unfortunately the final result must be programmed to evaluate 

the function in terms of time. 

The direct series solution can be evaluated by substituting the 

numerical value of each constant into the series. Each constant is then 

multiplied by tn and added to obtain the sum of the finite series. 
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13. CONCLUSIONS 

The principal objective of this study was to develop suitable 

mathematical and programming techniques to obtain analytic solutions 

for appropriate types. of non-linear differential equations using a digital 

computer. 

Two general methods have been developed for the solution of the 

type of equation considered. For most bounded functions the expansion 

method is quicker and consequently less expensive in terms of computer 

time. The derivative method, however, is much more flexible since the 
solutions may be of bounded or unbounded functions. Summation solutions 

may be obtained, perhaps in several forms. (Under certain circumstances 
the results might, for instance, be summed as a Fourier Series.) While. 

the direct series type of derivative solution provides a numerical solution, 

it is very expensive in terms of computer time and is much less effective 

than the equivalent summation solution using the same data. 

The technique of checking the validity of equations through the use 
of numerical integration is a very important step in any analytic solution 

" s m since it provides an engineering type of assurance that the all para­

meter, " k, is "small enough, " at least for that case, and that a sufficient 

number of terms for convergence is available. Figure 16 shows a case 
where a very large number of terms would be necessary for reasonable 

accuraby. It is surprising that the analytic and numerical solutions match 

as closely as they usually do since both are approximations. The numeri­

cal solution has another important function, it points out any peculiarity in 

the solution which might otherwise have been overlooked. 

The appearance of secular terms in non-linear solutions has always 
been a handicap in hand solutions. Since these terms rarely seem to have 

any pattern it is pure drudgery to compute them by hand and accuracy is 

imperative. With computer solutions accuracy must be checked at every 

step, particularly in input and output, but over-all accuracy is more or 
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less assured. One may obtain a sufficient number of secular terms to 

approximate the function or one may be able to recognize the pattern and 

assimilate the terms into available functions. In either case the computer 

is an invaluable aid. 

This study may be regarded as of an experimental character. Much 

is yet to be done. No attempt has been made to make a thorough study of 

any of the equations considered. In many instances the same equation 

may have many different forms depending upon the value of the parameters 

and the initial conditions. Since initial conditions frequently appear as a 

part of the argument of the functions involved, the resulting solution may 

be quite complicated in structure. 

One may well ask why analytic solutions are of interest since 

digital computers may easily be programmed to provide numerical solu­

tions. The answer is, of course, that numerical solutions can no more 

take .the place of analytic solutions for non-linear work than they could 

for linear work. One analytic solution is likely to provide more under­

standing of a given phenomenon than many numerical solutions. 

Many books and papers have been written on the theory of non­

linear differential equations, but the student finds discouragingly few 

actual solutions. While the techniques which have been developed during 

this study are merely an entering wedge and appropriate for a particular 

type of equation, they point to the possibility of using a computer for 

analytic solutions in other non-linear areas and indicate that any real 

future progress in non-linear mathematics is likely to be closely 

associated with computer work. 
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-jx3 X3 -xs,-­

- 4a7e-xt(e-xt-1) 8a6ce-xt(e-(2x+y)t_,) + 8a6ce-xt(e-xt-l)
 
X3 y(2x+y)(x+y) xy(x+y)
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+ 	16a5c2 e-xt(e--(x+y)t-1) - 8a5c2e-xt(e-xt-1)
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Cont.
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r4 Continued
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f4 Continued
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" 4aic4e-xt(e-3y'-l) + 4a3c4e-xt('e(x-2y)t_,)
 
3y(x-2y)(x+y) (x-2y)2(x+y)
 

- 4a3c4e-xt(e-(X+Y)t-1) 4,,3c4,a-xt(e(X-2y)t-1)
 
(x-2y)(2x-y)(x+y) (2x-y)(x-2y)2
 

- 4a4c3e-xt(e-(2x+y)t_,) 4a4c3e-xt(e(x-2y)t-,) 
(3x-y)(2x-YMx+7) (x-2Y)(3x-Y)(7x--Y-7 

+ 2a4c3e-y-t(e-2yt-1) + 4a4.3.-Xt(.(x-2y)t-l)
 
xy(2x-y) x(2x-y)(x-2y)
 

- 4a3c4e-xt(e-(x+2y)t-1) - 4a3o4e-xt(e(x-2y)tj)
 
X2(x+2y) X2(x_2y)
 

+ 4a3c4e-Xt(e-2yt-1) + Ba3e4e-xt(e(X-2y)t-l) - 4a2c5e-xt(e-3yt-1)
 
x2y X2(x-2y) 3y2(x+y)
 

- 4a2c5e-yt(e(X-2y)t-1) + 2a2o5e'xt(e-2Yt-1)
 
xy2
Y(x-2y)(x+y) 


Cont.
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+ k3b4 + 12a2c5e-xt(.(x-2Y)t-l) - 2a4o3e-xt(e-(x-2y)t-1)
 
xy(x-2y) xy(-x+2y) ­

- 2a4c3e-xt(e(x-2y)t-1) + 2a4c3e-xt(e-27t-1)
 

x2(x-2y) x2y
 

+ 4a4c3e-xt(e(x-2y)t-1) - Ba3c4e-xt(e-3yt-1) 
X'(x-2y V (x+Y) 

- 8a3c4e-xt(e(x-2y)t-1) + 8 a3c4e-xt(e(x-2Y)t-1) 
y(x-2y)(x+y) xy(x-2y) 

- 2a2c5e-xt(e(x-4y)t'-l) + 2a2 5e-xt(e(x-2y)'-l)
 
y(X_2y)2
Y(x-4y)(x-2y) 


- 2a2c5e-xt(e-2yt-1) ­ 4a2c5e-xt(e(x-2y)t_,)
 
xy(x-2y) x(x-2y)2
 

- 2a3c4e-xt(e-(x+2y)t-,) - 2a3c4e-xt(e(x-2y)t'-l)
 

x(2x-y)(x+2y) x(2x-y)(x-2y)
 

- 4a3c4e-xt(e(x-3y)t-,) + 4a3c4e-xt(e(x-2Y)t-l)
 

Y zx-y)(X-3y) y(2x-y)(xz2y)
 

- 8a2c5e-xt(e-3yt-1) - 8a2c5e-xt(e(x-2y)t_,) 

3xy(x+y) - x(x-2y)(x+y) 

- 8a2c5e-xt(e-(x+3y)t-1) + 2ac6e-xt(e(x-4y)t-1)
 

XY(x-3Y) 72(x-4y)
 

- 2ae6e-yt(e(x-2y)t-,) - 4ac6e-xt(e(X-3Y)t-1)
 

y2(x-2y) -7(x-3y) 

+ 4ae6e-xt(e(x-2y)t _1)
 

yl'(x-2y) 

Cont.
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+ k3b4 + La5c2e-yt(e(Y-2x)t-1) + 2a5c2e-yt(e-2xt'l)
 
x(2x-y)(x+y) xly
 

- 4a4c:3,-Yt(e-(2x+y)t_,) + 4a4c3e-Yt(e(Y-2x)t-l) 
7-2x+y) y2(2x-y) 

+ 4a4c3e-yt(e-2xt-1) - 8a4c3e-yt(e(Y-2x)t-1) 
XY2 Y2(2x-y)­

- 4a3c4e-yt(e-(X+2y)t-1) + 4,3,,4e-yt( (Y-2x t-l)
 
(X-3Y)(x+2Y)(x-2Y) (2x-y)(x-3Y)(x-2y)
 

- 2a3c4e-yt(e-?A-1 + 4a3o4e-yt(e(Y-2x)t-1)
 
xy(x-2y) y(2x-y)(x-2y)
 

+ 4a4c3e-yt(e(y4x)t-1) - 4a4c3e-yt(e-(X+Y)t-1) 
(x+Y)(2x--y)2 -- (2x-y)(x-2y)F;7­

+ 4a4c3e-Yt(e(Y-2x)t-1) - 8a3c4e-yt(e-(2,+y)tll
 
(2x-y)2(x-2y) xy(2x+y)
 

4a3o4e-Yt(e(Y-2x)t-1) - 8a3c4e-yt(e-(X+Y)t-1)
 
xy(2x-y) x(x-2y)(x+y)
 

+ 8a3c4e-yt(e(y-2x)t-1) + 4a2c5e-Yt(e-(x+2Y)t-,)
 

x(x-2y)(2x-y) Y(x-3y)(x+2y)
 

4a2c5e-yt(e(y-2x)t_,) - 8a2c5e-yt(e-(X+Y)t-1)
 
Y(2x-y)(x-TYT y(x+y)(x-2y)
 

" 4a2c5e-yt(e(Y-2x)t-1) - 4a5,2e-yt(e(Y-4x)t-l)
 
y(2x-y) (x--2y - x(4x-y5(3x-y5­

" 4a5c2e-yt(e-xt-1) + 4a5c2e-Yt(e(Y-3x)t-1) - 4a5c2e-A (e-xt_,) 
xT3x-y) x (--bc-y) (2x-y) X2(2x-y) 

Cont.
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+ k3b4 74a4de-y (e--Ut-l) + 4.4c3e-yt(e--xt-1) + 8a4c3e-Yt(e(Y- x)t-j) 
3x2y X-Ty-- Y(3x-y)(2x-y) 

- 12a4c3e-yt(e-'Yt-1) + 4a3e4e-Yt(e-(2x-'Y)t-1) - 4a3c4e-Yt(e-yt-1
 
xy(2x-y) (x-2y)(2x+y)(x+y) X(X-?Y)(X+Y)
 

- 4,3,4,-Yt(,(Y-3x)t-l) + 8a3c4e-yt(e-xt-1)
 
(3x-y)(2x-yT(x--Yy7- x(2x-y)(x-2y)
 

- 4a4c3e-yt(e(Y-4x)t-1) + 4a4r3e-yt(e-xt-1) + 4a4c3e-yt(e--Ixt-1)
 
(4x-y)(3x-y)(2x-Y) X(3x-Y)(2x-y) xe(2x-y)
 

- 4a4c3e-yt(e-xt-1) 4a3o4e-yt(e-3yt-1) + 4a3c4e-Yt(s-xt-l) 
X, (2x-y) 3x3 X3 

+ 4a3c4e-yt(e-2xt-1) 8a3c4e-yt(e-Lt-1) 4a2r,56-yt(e-(2x47)t_,, 

x3 x3 Y(2x+y)(X+Y) 

+ 4a2c5e-yt(e-xt-1) + 2a2o5e-yt(e-2xt-1) 12a2c5e-yt(e-xt-1)
 
xy(x+y) x2y x2y 

- 2a4c3e-yt(e-3xt-1) + 2a4c3e-yt(e-xt-1) + 2a4c3e-yt(e-2xt-1)
 

37 X-1 X-T 

- 4a4c3e-yt(e-xt-1) 8a3c4e-yt(e-(2x+y)t_,) + 8a3c4e-yt(e-xt-1)
 
x3 y(2x+y)(x+y) xy(x+y)
 

" 4a3c4e-yt(e-2xt-1) 16a3c4e-yt(e-xt-1) + 2a2c5e-yt(e-(x+2y)t-3
 
x2y x2y y(x-2y)(x+2y)
 

" 2a2c5e-yt(e-xt-1) 2a2c5e-yt(e-2xt-1) + 12a2e5e-yt(e-xt-1)
 
xy(x-2y) XI(x-2y) x2(x-2y)
 

- 2a3c4e-A(e-3xt-1) + 2a3c4e-yt(e-yt-1) + 4a3c4e-Yt(e-(X+Y)t-l).
 
3x2(2x-y) x2(2x-y) y(2x-y)(x+y)
 

3ont.
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+ k3b4 4a3o4e-yt(e-xt-1) - 8a2c5e-yt(e-(2x+y)t_,) + 8a2c5e-yt(e-xt-1) 
xy(2x-y) x(2x+y)(x+y) I XZ(X+Y) 

" 16a2c5e-y-t(e-(x+y')t-1) - 2ac6e-yt( -(x+2y)t-1
 
xy(x+y) Y,(X+2y)
 

" 2ac6e- t(e-t-l) + 4ae6e-yt(e-(x4y)t-1) 4ae6e-yt(e-xt-l) 
X3;2 Y7(-X+-Y) xy, 

- 2.5.2.-yt(.-3xt_,) + 2a5c2e-yt(e-xtj) + 2a5c2e-yt(e-2xt-1)
 
3x3 x3
 

- 4a502	e-yt(e-xt-1) - 8a4c3e-yt(e-(2x+y)%.j) + 8a4c3e-yt (e-xt-i)
 
x3 y(2x+y)(x+y) xy(x+y)
 

- 12a4c3e-yt(e-xt-1) + a3c4e-yt(e-(x+2y)t-1) - 2a3c4e-yt(e-xt-1)
 
x2y y(x-2y)(x+2y) xy(X-2y)
 

- 2a3c4e-yt(e-2xt-1) + 4a3c4e-yt(e-t-1) 2a4c3e-yt(e-3't-1)
 
X2(X_2y) X2(x_2y) 3x2(2x-y)
 

+ 2a4c3e-yt(e-xt-1) + 4a4c3e-yt(e-(x+y)t-1)
 
_Jx (2x-y) y(2x-y)(x+y)
 

- 8a3c4e-'Yt(e-(2x+y)t_,) + aa3c4e-yt(e-xt-l)
 
x(2x+y)(x+y) xz(x+y)
 

" 8a3c4e-yt(e-(X+Y)t-1) - 2a2c5e-yt(e-(x+2y)t-i) 
xyTx-+-y7- y2(x+2y) 

" 2a2c5e-y'(e-xt-1) + 4.2.5,,-yt(,-(x+y)t_,) - 4a2c5e-Yt(e-xt-1)
 
xy2 -- 7(x+y) XY2
 

4a4c3e-Yt(e-(2x+y)t_,) + 4a4c3e-yt(e-t-1)
 
x(2x+y)(x+y) X2(x+y)
 

Cont.
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+ 	 k3b4 '"74a4o3e-yt(e-(X+Y)t--l) - 4a3e4e-yt(e-(x+2y)t-l)
 
Y2(X+2y)
xy(x+y) 


+ 4a3c4e-yt,(e-xt-,) + 8a3c4e-Yt(e-('+Y)t-1) - 8a3c4e-yt(et-1)
 
xy2 y2(x+y) xy2
 

- 4a2c5e-Yt(e-3Yt-l)+ 4a2o5e-yt(e-xt-1) + 4a2c5e-yt(e-xt-1) 
3y(x-3y)(x-2y) -x7x--5y77x--Ty-) xy(x-2y) 

- 4a3c4e-A(e-(2x+y)t_:L) + 4a3c4e-Yt(e-t-1) - 2a3c4e-yt(e-2yt-1)
 
(2x+y)(2x-y)(x+y) x(2x-y)(x+y) y(2x-y)(x-2y)
 

- 4a2c5e-yt(e-(X+2Y)t-1) + 4 ,2a5e-yt(e-xt-1) 
- 4a20.5,e-yt(e-2yt_,)
 
xy(x+2y) x2y xy(x-2y)
 

+ 4ae6e-yt(e-3yt-1) - 4ac6e-A (e-xt-1) - 2ac6e-yt(e-2yt-1)
 
7(X-3Y) xy(x-3Y) y2(X-2y)
 

+ 4ac6e-y'(e-t-1) - 4a4c3e-yt(e-3xt-1) + 4a4c3e-yt(e-yt-1)
 
xy(x-2y) 3x2(3x-y) xY(3x-Y)
 

- 4a4c3e-yt(e-yt-1) + 4a3c4e-yt(e-yt-1) + 4a3c4e-yt(e"lt*-l)
 
xy(2x-y) 
 XY2 	 xy(?X-Y) 

- 8a3c4e-yt(e-yt-1) + 4a2c5e-y'(e-(x+2y)t-1) - 4a2c5e-yt(e-Yt-1)
 

7(2x-y) (x+2y)(x-2y)(x+y) y(x-2y)(x+y)
 

- 2a2c5e-yt(e-2xt-1) + 4a2c5e-yt(e-Yt-1) 4a3c4e-yt(e-3xt-1)
 
x(2x-y)(x-2y) y(2x-y)(x-2y) 3x(3x-y)(2x-y)
 

+ 4a3c4e-yt(e-yt-1) + 4a3c4e-yt(e-(X+Y)t-j) 4a3c4e-yt(e-Yt-1)
 
y(3x-y)(2x-y) x(2x-y)(x+y) xy(2x-y)
 

4a2c5e-Yt(e-(2x+y)t-1) + 4a2c5e-yt,(e-yt-1) 
X2 (2x+y) X2y 

Cont.
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f4Continued
 

+ k3b4 2a6ce-yt(e(Y-4x)t-1) + 2a6ce-yt(e(y-2x)t-l)
 

X2(4x-y) il(2x-y)
 

+ 4a6ce-yt(e(Y-3x)t-1) -4a6,,-yt-(, (y-2x)t-l) 

X2(3x-y) X2(2x-y) 

- 8a5c2e-yt(e-3xt-1) + 8a5c2e-yt(e(Y-2x)t-1)
 
3xY(x+Y) y(2x-y)(x+y)
 

" 8a5c2e-yt(e(3"-3")t-1) 12a5c2e-yt(e(y-2x)t-,)
 
xy(3x-y) xy(2x-y) 

" 2a4c3e-Yt(e-(2x+y)t_,) 2a4c3e-yt(e(Y-2x)t-1)
 
y(2x+y)(x-2y) y(2x-y)(x-2y)
 

4a4r3,,-Yt(e(Y-3x)t-1) + 4a4c3e-yt(e(Y-2x)t-l)
 
X(3x-Y)(x-2y) x(2x-y)(x-2y)
 

2a5c2e-yt(e(Y-4x)t-1) + 2a5c2e-yt(e(Y-2x)t-1)
 
x(4x-y)(2x-y) x(2x-y)2
 

" 2a5c2e-yt(e-2xt-1) - 4a5c2e-yt(e(Y 2x)t-1) - 8a4c3e-Yt(e-3xt-1)
 
-T2 -(X+y)xy(2x-y) y(2x-y)2 


" 8a4c3,,-yt(e(Y-2x)t-1) + 8a4c3e-yb(e-2xt-1) 
x(2x-y)(x+y) xr­

- 8a4c3e-Yt(e(Y-2x)t-1) - 2a3c4e-yt(e-(2x+y)t_,)
 
xy(2x-y) y (2x+y)
 

+ 2a3o4,-Yt(,(y-2x)t_,) + N,3c4e-Yt(e-2xt-j)
 

y2(2x-y) xy
 

- 4a3c4e-yt(e(Y-2x)t-1) - 4a5c2e-yt(e-3xt-1) 
y2(2x-y) 31 1(x+y) 

Cont.
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+ Ob4 6a2c5e-yt(e-(x+y)t-1) - 8a2c5e-yt(e-yt-1)

X,(X+Y) x r
 

Zj­

bac6e-yt(e-(X+2y)t-1) + Lac6e-yt(e-yt-1)
 

y(x+y)(x+2y) Y,(X+Y)
 

+ 4ac6e-A(e-(xi7)t-1) - 12ae6e-yt(e-Yt-1)
 

xycx+y) x3r, 

- 2a3c4e-yt(e-(2x+y)t-:L) + 2a3c4e-yt(e-yt-1) 

x2 (2x+y,) X2y 

- 4a3e,4e-Yt(e-(Y+Y)t-1) - 4a"3c4e-yt(e-yt-1)
 

xz(x+y) XT
 

- 8a2.5.-Yt(.-(x+2y)t-1) + 8a2c5e-yt(e-yt-1) 8a2o5e-yt(e-yt-1)
 

x(x+y)(x+2y) Y2(x+y) W
 

" 2ac6e-Yt(e-3yt-l) 2ac6e-yt(e-3t-1) 4ae6e-yt(e-(X+V)t-1) 

33r2 (X-2Y) YZ (X-2y) X(X+Y) -2y) 

" 4ac6e-yt(e-yt-1) 2,2,5,-Yt(,-(2x,Y)t-1) + 2a2c5e-yt(e-Yt-1)
 

xy(X-2y) x(2x4y)(2x-y) xy(2y-y)
 

" 2a2c5e-yt(e-2yt-1) - 4a2o5e-yt(e-3rt-1) - 8ac6e-yt(e-(X+2y)t-1)
 

3rz(2x-y) y2(2x-y) X(X+Y)(x+2y)
 

" 8ac6e- t(e-yt-l) + bac6e-yt(e-27t-1) - 2c7e-Yt(e-3Yt-1)
 

xy(x+y) xy2 3Y3
 

" 2c7e-yt(e-Yt-1) + 2c7e-yt(e-2yt-1) - 4c7e-yt(e-yt-1) 
L -- 7y- y3 313 

plus terms having a multiplier with a power of k JArger than 3.
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