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NOMENCLATURE

aspect ratio

refers to closed circuit around a wing section
correction accuracy

total wing drag coefficient

total wing 1lift coefficient

total drag

pressure drag

skin friction drag

spanwise force

integral operator

total 1ift

portion of circuit C, i =1, 2, 3, 4
Reynolds number based on wing chord
denotes control surface

portion‘of control surface S, 1 =1, . . ., b
denotes wing surface

correction function

denotes control volume

free-stream velocity

wing span

local wing chord

mean geometric chord

section drag coefficient

section lift coefficient

iii
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->
ds,d infinitesimal length vectors for line integrations
-5
£ net body force
n outward unit normal to surface §
P static pressure
P, total pressure at infinity
P local total pressure
q, free-stream dynamic pressure
t time
+ 3 ] ‘ 3
u Eulerian fluid velocity
-
u streamwise component of u, positive downstream
. >
uy spanwise component of u
-5
u, vertical component of u, positive upward
X,V,2 Cartesian coordinates
X,¥,2 unit vectors along Cartesian directions x, y, z, respectively
Y, spanwise location of trailing portion of a horseshoe vortex
CCR,
Y 8w
T strength of vortex filament; circulation
> . ’
z vorticity
Cartesian co nents of 4
gx’Cy’Ez esi mpo o 4
u viscosity
v : kinematic viscosity
p fluid density
o .
T

shear stress tensor

Subscript e refers to an equivalent vortex

Superscript w denotes value in region of viscous wing wake



DETERMINING THE LIFT AND DRAG DISTRIBUTIONS ON A
THREE-DIMENSIONAL AIRFOIL FROM FLOW-FIELD
VELOCITY SURVEYS
Kenneth L. Orloff

Ames Research Center
SUMMARY

The application of the incompressible momentum integral equation to a
three-dimensional airfoil is reviewed. The objective is to interpret the
resulting equations in a way that suggests a reasonable experimental technique
for determining the spanwise distributions of 1ift and drag. Consideration
is given to constraints that must be placed on the character of the vortex
wake structure shed by the wing, to provide the familiar relationship between
1lift and bound vorticity. It is shown that the induced drag distribution is
not directly measurable, but can be obtained, via the 1lift distribution,
approximately for a deflected wake and exactly for a planar wake. A novel
technique is presented for obtaining the spanwise 1ift distribution from
velocity surveys behind the wing. Moreover, it is shown that it is only
necessary to survey a short distance above and below the wing trailing edge.
While the measured lift coefficient is not the true value, it is, neverthe-
less, accurate. The necessary formalism is developed to correct these
measured values by using an equivalent single vortex model to account for the
unmeasured portion of the downward (or upward) momentum. Examples are
presented for several typical loading distributions and the results of a
numerical simulation of the suggested experiment are discussed.

INTRODUCTION

This paper deals with the application of the momentum integral equation
to an airfoil that is generating both 1lift and drag. The objective is to
interpret the resulting equations in a way that suggests a reasonable
experimental technique for determining the spanwise distributions of 1ift
and drag on a three-dimensional wing.

The motivation for the analysis has been largely due to the development
and success of the laser velocimeter for conducting wind-tunnel flow diagnos-
tics. Conventional velocity measuring techniques are either cumbersome or
lack the required accuracy. for conducting flow surveys. With the laser
velocimeter, however, these drawbacks are overcome, and one may assume (as
is done in the momentum analysis to follow) that accurete three-dimensional
velocity data are available, as may be required in the application of the
resulting equations.
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The guiding philosophy in the analysis herein is that one should be
dutifully aware of the true meaning of the data that are obtained experimen-
tally. Flow characteristics that are easily measurable should be measured
accurately; those that are not directly measurable with sufficient accuracy
should be either replaced by equivalent measurementc that are accurate or
should be computed from an equivalent model of the flow, the parameters of
which are based on the experimental data whose limitations are well understood.

MOMENTUM ANALYSIS

The integral form of the momentum equation may be written as

~ —>' ~ PN
J2 ohav+foi@ - tyas= fofav-fphas+§ G-Das (@
A S \Y S S

where % is the net body force per unit mass at points within the volume
V, and 7 is the shear stress tensor at points on the closed surface S
surrounding V. As is conventional, n is the outward unit normal to the
surface S, p 1is the static pressure, p the fluid density, and U the
Eulerian fluid velocity. If the flow is assumed to be steady, and no body
forces are present, then equation (1) simplifies to

foi@ - das = - § piids+ § G- Das @
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Two different control surfaces S are considered. Figure 1 depicts a
control surface that would be used to compute the total 1lift and drag on the
airfoil. The effects of the airfoil on the fluid are represented by corre-~
sponding variations in the velocities, static pressures, and shearing
stresses on the control surface.

To compute the sectional 1lift and drag, the control surface in
figure 2 is used.  This surface is basically the same as that of figure 1,
except for the infinitesimal thickness Ay. Also, while the wing surface S
forms part of the closed surface S, the portions on Sg and Sg in figure 2
which cover the airfoil cross section are not part of the closed control
surface. ‘

w

For either of these control surfaces, the momentum.equation (2) may be
written as
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We note the following four observations with respect to equation (3):
L J. pU(J + D)dS vanishes since U - i = 0 at all points on the
Sw
wing surface.
~ > .
® Appendix A shows that J; (n+T1)dS =0 for i=1, . .., 6
1
when the Reynolds number (cV_/v) >> 1.
L Jg (n - E)dS = —Dsfﬁ where DSf is the drag due to skin friction.
W
Also, we assume the lift generated by the shearing forces at the
surface of the wing to be negligible compared to the pressure 1lift;
hence, this integral has a negligible z-component.
bd —.f pa dS represents the net pressure force exerted by the airfoil

SW

" surface on the fluid. This is exactly minus the force exerted by

the fluid on the airfoil. In component form,

—f pn ds = —Dpx and —f pn, ds = ~Lz
S S
w w

where both the form drag and the induced drag are contained in DP.

~Incorporating these observations into equation (3), we obtain, after

separating into components,



\
= - 2 -
L= j; pu U, dy dz j; (puz + p)dx dy j; pu;xuz dy dz
1 2 3
2 -
+ f (puZ + p)dx dy + L puyuz dx dz j; puyuz QX dz
SL} 5 6
= = 2 - - 2
D= DSf + Dp = L (puy® + pldy dz j; puu_ dx dy j; (pux + p)dy dz
! ’ | ’ > (4)
+fs pu u dx dy + j; puxuy dx dz - j; puxuy dx dz
4 5 6
= dy dz - dx dy - [ u u_ dy dz
Fy -fs puxuy y dz ‘/; puyuz‘ y ./; P X"y Yy
1 2 3
+f pu u_ dx dy + f (pu.? + p)dx dz - f (pu_? + p)dx dz
S vz S v s, 7 )

F,, a spanwise force, can exist for the control surface of figure 2, but
vanishes for a wing having bilateral symmetry with a control surface as
shown in figure 1.

Several of the terms in equations (4) require a knowledge of the static
pressure on the control surface., Experimentally, these pressures would be
difficult to measure accurately; undetected, small changes over a large
surface area can produce a considerable error in the resulting force computa-
tion. Since the accurate measurement of the velocity is somewhat more
convenient (especially with the laser velocimeter), the static pressures
in equations (4) are replaced with the total pressure and the local velocity

= -2 2 4 2 2
P=Pp -7 (ux + uy + u, )
This substitution is helpful in two ways: (1) a difficult measurement has
been replaced by simpler ones; (2) the total pressure pr is the total head
Py 1in all regions that have not suffered viscous losses.

Using this replacement of the static pressure and nondimensionalizing
the velocities by V_, and x, y, and z by ¢, the mean geometric chord,
we obtain '
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where p is the total pressure at infinity and Pr is the local total
pressure at any point on 53.

Total Lift and Drag

We now proceed to let all surfaces of the control volume in figure 1
expand to infinity, with the exception of surface S,;. To maintain Fy =0,
Sg and Sg expand symmetrically about the centerline of the wing. On these
remotely located surfaces, uy ¥ u, = 0 and uy~1l. 1If we substitute into ;
equations (5) the coefficient representations for lift and drag, L = q,.Cy, (bT)

and D = quD(bE),

*® had P, ~ P
= = - + + + ———=] dy dz
CD !Rf <l ux uy uz N y
-0 . .

where the integration is over the rear surface 83.

(6)

In equations (6), the analytical expressions for the 1lift and drag
coefficients require a knowledge of the velocity and total pressure distribu-
tions in the wake of the airfoil only. On the other hand, it is unlikely
that the implied technique would be implemented experimentally, since the
region of the wake that must be measured is extensive; further, the procedure
would be influenced by the interference of thée wind-tunnel walls. Even if the
entire flow could be mapped accurately, the same values could be obtained with
much less difficulty by using a force balance. O0f greater interest are the
wing sectional properties, which cannot be obtained from force measurements.

5



Section Lift and Drag

We return to equations (5) and consider the control surface presented in
figure 2. The differential dy is now Ay and the area integrations over
Sl’ S, SS’ and S, become line integrations along Lis Ly, Ly and L,
respectively, with width Ay. L and D are represented by L = qmcl(cAy),
and D = q,c4(cdy), where the coefficients, cy and cgq, are now the section
values and c¢ is the local chord. Equations (5) are now written as

cc 2f uugdz-f (uz—uz-uz)dx—2f uu dz )
L X z z X y X 2z
L, ; L, L, |

+J‘ (uz—uz-—uz)dx+—g—[fuu dx.dz—f uu dxdz]
z X y Ay Yy 2z y z
L S . | S¢

L

]

» . 2 . 2 _ 2 - - 2 _ 2 _ 2
cey J;‘ (ux uy u, )dg 2!; u dx J; (ux uy u, Y dz ¢ (7)
) ,

+2f u u dx+—2-—f uu dxdz-f uu dx dz
1, X2 Ay S Xy g X'y

v 5 6
: Py, = P
-+.[’ (-ili;—Jl) dz
L3 ®

The equation for the spanwise force, F,, has been dropped from the analysis
at this point because it is found not to lead to anything of special interest
for configurations that have bilateral symmetry.

The assumption is now made that the flow velocity around the airfoil is
changing smoothly and slowly enough with respect to y  that the integrands
in the remaining surfaces integrals in equations (7) can be expressed to
first order as

9
(uyuz)6 = (uyuz)5 + [3; (uyuz)]s Ay

, (8)
(uxuy)G = (uxuy)5 + [By (uxuy)] Ay

where subscripts 5 and 6 refer to the surfaces Sg and S;, respectively,
and the subscript S indicates evaluation of the derivative at the surface
spanned by the closed circuit C, defined by L,, L and L,. The normal
to S is taken in the positive y-direction. Substituting equations (8) into
the surface integrations of equations (7),
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Appendix B shows that the surface integrals on the righthand side of equa-
tions (9) can be written as

(9)

]
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Ay y 2 X y z X z
S L . L2 ,
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(10)
Equations (7) may, therefore, be reduced using equations (10)
ce, = Zf-’; (uxl;y - uygx)dx dz
(11)

It

po - PT
cey fos (uyéz -~ uzeya‘dx gz + . (T) dz
3

> - :
where ¢ = curl u 1is the vorticity vector.

Equations (11) are not yet in a form to suggest a reasonable experimental
technique for determining the aerodynamic coefficients ¢y and cq- The method
implied by these equations requires detailed distributions of the velocity
field over the entire surface S. The additional need for the vorticity
distributions requires that the derivatives of the velocity be determined from
the data, reducing the accuracy of coefficient results. - Hence, before our
analysis can continue, some assumptions must be made regarding the character
of the flow, 1in order to further simplifty equations (11).



Lifting~Line Approximation

If the flow field of interest can be adequately described by a Iifting-
line model, at least over the region enclosed by the closed circuit C, then
equations (11) can be simplified considerably. The assumed geometry, shown in
figure 3, reduces the wing cross-sectional area to zero about the bound
vortex. The surface denoted by the double integration in equations (11) is
therefore the entire area spanned by C. This allows the use of Stoke's
Theorem, which reduces the problem to a line integral around C, if equa-
tions (11) can be put into a form that is compatible with this theorem.

To apply Stoke's Theorem, we note two implicit restrictions of the
lifting-line model: '

® Tf the lines of shed vorticity are allowed downward deflection,
due to mutual induction, but spanwise deflection is forbidden, then
Cy is nonzero only along the bound vortex. Hence, it is only
nonzero at x = z = 0, where we must have uy, = 1.

® . vanishes along the bound vortex. It is nonzero only along a
trailing line of shed vorticity of strength dI'(y). However, if
no spanwise wake deflection is allowed, then Uy = 0 3along these
lines.

Using the two restrictions above, the lift coefficient is

ce, = ZI‘!' (uxz;y - uy?;x)dx dz = 2.‘:‘; cy dx dz

Writing Ly = v e curl 4 we may apply Stoke's Theorem,
N -> >
ce =foy-curlﬁdxdz=2fu'd9' (12)
% S C

where y is precisely the unit normal to the surface S. This is a familiar
result for two-dimensional flows, but it is also valid for a three-dimensional
flow with the two lifting-line restrictions above.

If the lifting-line model is used to simplify the drag coefficient, the
"planar wake" assumption must be made, which additionally requires g, = 0,
whereas this value was not restricted for the 1lift coefficient. With this
additional restriction,

po - pT
ce. = =2 u dx dz + +—]dz
d jjs‘ 2’y L ( 4 )

0
3

z =0 on S,«then

P, =P
cey = -u (ZII z - dx dz) +f <—9—~——?—>dz

3

Since ¢y is nonzero only at x



where u, 1is the value of the downwash at the bound vortex at the point
where it is intersected by S. This is further reduced to

po"PT
ccy = —uz(ccg) + . —~?£:——— dz (13)
3

The first term in equation (13) is precisely the induced drag. However,
it is not possible to measure experimentally the induced downwash wu, at the
chordwise location of the wing center of pressure (bound vortex). Hence, from

< lifting~-line theory we replace u, with (in dimensional form),
b/2 H_( "
_ L R |
u () = 45 v a4y (14)
-b/2

Writing T(y"') = (1/2)Vmc(y')c2(y'), the nondimensional form of equation (14)
becomes . P
b/2c B/By'(ccl)

'y -y

1

uz(y) = & dy' (15)

-b/2c

Substituting equation (15) into equation (13),
ccy b/2¢ B/By'(ccl)
_— e— . ' N
ey B ) S dy' + ————= dz (16)
~-b/2¢c 3
Hence, the induced drag is not explicitly determined, but is only implicit
via the lift distribution under severe restrictions (i.e., no vertical or

spanwise wake deflection). At any rate, it is first necessary to determine
the lift distribution accurately from equation (12).

555 EXPERIMENTAL CONSIDERATIONS

If the lifting-line model is assumed to represent the real flow ade-
- quately, at least in the region of the control surface, then equation (2)
suggests that one can determine the section-lift coefficient experimentally
by measuring the appropriate velocity components on the closed contour C.
If the orientation of the loop remains rectilinear to the flow, then the
extent of circuit C 1s not restricted as long as the vorticity passing
through it remains constant. As the loop expands, however, the velocity wari-
ation about free-stream cgnditions becomes smaller; to sense these changes
with sufficient accuracy to perform the integration in equation (12) becomes
increasingly difficult.
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To measure the flow velocities along the loop C with a laser velocim~
eter, one must have 'spanwise" optical access to the flow, as indicated in
figure 4. Such a view of the selected spanwise location may, however, be
hindered by obstacles such as engine nacelles, flap pods, etc. To measure
arcund these obstacles, the loop may become so large that the accuracy of the
measurement is compromised. Additionally, spanwise access may not be feasible,
as in a large wind tunnel (e.g., Ames 40- by 80-Foot Wind Tunnel). See
figure 5. Hence, it would be convenient to extend the results of the previous
sections to the spanwise loading when only limited optical access is available.
The next section presents such an extension of the theory.

Lift Distribution from Wake Surveys

Equation (12) can be written

¢

ccq=2f3~&=2f udz+f u dx-—f u dz-—[ u_ dx
X% V4 X 2 X
. L1 : L2 L Lu

C 3

If the boundaries L,, L,, and L, are allowed to exﬁand to infinity, then
u, = 0 on L1 and up, =1 on L, and L,. Then we have

cc, = —JT: u, dz = —2'/-; u, dz (17)

3 ' ’

Because an experimental traverse along L, can be made over only a finite
distance between z; and z, (see fig. 6), we express equation (17) as

, - “
1
ce, = —ZJ’ u, dz - 2] u, dz + (CCSL) (18)
z — meas
2 n
where
(ccz) = -f u dz
meas z,

is the '"measured” value between the limits z, and z .1 The first and second
terms in equation (18) relate to the z-component of the linear momentum,
which is present outside the measured region. This momentum must be accounted
for if we are to have an accurate value for the section 1ift coefficient.

The difference to be expected between the true value of ccy and the

measured value (ccz) can be shown by formulating a computer code to
meas

Because the experiment is simulated precisely on a minicomputer,
the numerical computation of the 1lift coefficient is referred to as the
"measured" value; the quotation marks are intended to distinguish this
from an actual wind-tunnel measurement. ‘

10
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generate a flow field and then performing the experiment numerically.
Appendix C presents the details of this flow-field generation routine and the
relevant equaticns. Note that the generator aliows for a nonplanar wake, but
there is no spanwise vorticity, Zy, in the free wake. Figure 7 shows, in
flow chart form, the e¢xperimental simulation that uses this velocity field as
a basis for the "measurements." This routine is carried out on a high-speed
minicomputer with a graphics display terminzl. The figures shown in Appen-
dix D are reproductions of the hardcopy from this terminal.

Figure 8 compares the known ccg distribution with that determined by a
wake survey over a finite distance, z; to z,. The points for the "measured"
loading have been obtained from the experimental simulation routine. The
flow-field generator produces a superposition of two horseshoe systems, one
shed inboard at y = 1.32 and the other near the tip at y = 3.38. The core
radius of the outer vortex, set to 0.12, provides ccy = 0 at the wing tip,
y = 3.50. The survey limits have been chosen as one mean geometric chord <c
both above and below the "trailing edge'; the survey is made at 0.9 mean chord
behind the bound vortex. The comparison is understandably poor because a
significant portion of downward momentum is contained in the unmeasured
region and has been neglected. Also, note that the "measured" loading in
figure 8 does not extend inboard from y = 0.5. This has been done inten-
tionally since it is unlikely that one could obtain data any closer in a real
experiment because of fuselage width.

Correction of "Measured" Lift Distribution Using Equivalent Vortex Model

The difference between the "actual' and "measured" loadings in figure 8
can be accounted for by modeling the flow analytically in the unmeasured
regions. The parameters of the model are determined by the character of .the
data obtained in the measured region.  The correction terms in equation (18)
can then be computed and the corrected lift coefficient determined.

The assumption is made that there exists a single "equivalent" horseshoe
vortex that contains an amount of downward momentum in the unmeasured regions
that is very nearly equal to the momentum generated in these regions by the
span loading of interest. TIf it is further assumed that this horseshoe is
planar, then the induced velocity component u, at any point (x, y, z) in the
flow due to the equivalent system can be shown to be (see appendix C),

uze =Y, [Ax + B(yoe - y) + c(yOe + y)] (19).

‘where the subscript e refers to the equivalent vortex, vy, = (ccz) /81  is
e

the strength‘of the vortex, Yo is the spanwise location of the trailing
) o ,

portion of the horseshoe, and A, B, and C are given by

11



y y_ -
A= + + (x2 + 22)7}
| V2 + y+2 + 22 2+ y 2 + 22

- -

B = + 1|y 2 + 27!

C = + 1 (y_*_2 + zz)“1
__/x2 + y+2 + 22

where Yy =Y +yandy_=y0 -y,

0
e e

Substituting equation (19) into equation (18),

ce, = 2y [XI(A) + y_I(B) + y I(C)] + (ccy) (20)
meas

where I(F) is the definite integral operator

o v zl :
I(F) =j' F dz +J' F dz | (21)
Z

2 -0

The indefinite form of the integrals in equation (21) may be evaluated iand
shown to be N

A y, sin 6 y_ sin ¢
ﬁ dz = 1 [tan—1 (—-—t————) + tan ! (—————-)]
: X X X

'/;3 dz 2 Ftan"1 (X—S-—i-t-l—i>+ tan™! (—) L (22)
. - J |
ﬁ dz 1 tan~ ! xsin 6}, tan™! <_z_
; Yy Y+ Y4/

i< l"‘

z
y y_

where )

Z Z

Vx2 + y_z + z2

sin 6 =

and sin ¢ =

2 2 2
/x +y+ + z

With attention being given to the signs of the numerators and denominators
in equation (22), equation (20) can be expressed as

12



1
= - = for - < <
cc, 5y (ec ) T, + (Ccﬁ)meas o Yo, £ Yo,

1
ce, = == (cc,) T + (cc ) for y >y L (23)
A 2T Le = £ meas Oe }
cc =L (cc ) T + (cc.) for y < -y
& 27 e = [} 0
meas e
J
where
y, sin B _ (% sin 62 y_ sin ¢,
T, = tan™! <_;t______%) + tan”! <——~——~——~ + tan™! | ————
+ X v X
+
X sin ¢2 - zy 22
+ tan™! | ————=} + tan — | & tan_l(-—— -7 ¥% 7 24)
y_ ' vy
This solution is restricted to 2z, = -z;; subscript 2 in equation (24)

denotes evaluation of sin 6 and sin ¢ at 2z = z,. The distance behind the
bound vortex at which the survey has been made is given by x, and vy is the
spanwise location where the correction is desired.

Note, from equations (23) and (24), that the correctioﬁ is completely
determined by specifying two values: (Ccl)e and Yy » the strength and loca-
e

tion, respectively, of the equivalent vortex. To obtain these values, two
known conditions are invoked relevant to the corrected distribution ceg .
These two conditions are:

® The value of ccy at the wing tip must be zero.

® The area beneath the ccg distribution must equal the total 1lift
coefficient of the wing, Cj,.
The first condition is satisfied only if Yo is located inboard of the wing

e .
tip. It then follows from the second equation of equations {Z3) that

(ccz)e = er-~(cc

T_ K)meas at tip (25)

T_ contains both Yo and (ccg)e so that closure of the solution requires

the second condition to be invoked. This is accomplished numerically by
iterating the solution, as indicated in figure 9.

13



Results from Numerical Experiments

Figure 10 shows the results obtained by applying this iteration scheme
(fig. 9) to the data in figure 8. The equivalent vortex is located at
Yo = 2.79, with a strength (Ccl)e = 1,42, The area beneath the corrected
e

data matches Cy = 1.08 to within 1%.

The agreement between the corrected data and the "actual" loading in
figure 10 is good, except in the areas noted. If, however, the extent of the
measured region were greater than 2z, = 1.0, in this case, then the corr.ction
scheme should be more accurate. To verify this, we refer to figure 11, which
shows uncorrected loadings for several survey distances 2z, from 0.5 to
2.0 chords above and below the wing. Clearly, as survey distance z,
increases, more momentum contributes to the "measured" value. Figure 12
presents the corrected loadings for the most extreme values of 2z, in fig-
ure 11. As expected, the loading is more faithfully reproduced at 2z, = 2.0
than at =z, = 0.5.

To quantify the accuracy with which this correction scheme reproduces
the "actual" loading, the area mismatch in figure 10 is used and the following
definition is applied:

‘L

Correction accuracy = (1 - ares mismatc#) x 100% (26)
The correction accuracy (abbreviated CA) in figure 12 indicates a mismatch
of less than 4% for the survey of 2.0 chords, compared to more than 20% mis-
match for a survey of 0.5 chords.

It is of interest to consider the application of this equivalent vortex
correction technique to several different loading distributions. The loadings
chosen to represent typical aircraft configurations are described in table 1.
The results obtained for wake surveys of these loadings at x = 0.9 for
z, = 0.5 and z, = 2.0 are presented in figures 13, 14, and 15. = Intermediate
values of 2z, and a complete accounting of the results are provided in
appendix D.

Figure 15 indicates that, for the elliptic distribution, a correction
accuracy of 95.8% can be attained for a wake survey of only 0,5 chords above
and below the wing. This finding is in sharp contrast to the value of 78.1%
obtained for the flap/tip combination (fig. 12) with the same survey distance.
Moreover, the 30°/0° and 30°/30° loadings indicate correction accuracies that
are intermediate between these values. To understand this trend more thor-
oughly, we refer to figure 16, which shows the correction accuracy for the
loadings studied as a function of survey distance - z,. These data suggest
that as the loading distribution deviates further from the elliptic, the
required survey distance must increase to maintain a given percentage accuracy
in the agreement with the "actual" distribution. Equivalently, this means
that the single vortex equivalent model becomes less adequate as the loading

14
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shifts predominantly inboard, exhibiting less resemblance to an elliptic load-
ing. On the other hand, appendix D reveals that an acceptable reproduction of
the loading is obtained with the single vortex correction when the correction
accuracy is greater than about 93%. Therefore, if one were to conduct the
wind-tunnel experiment with a laser velocimeter, a minimum survey distance
would be required to obtain an accurate (93%) loading distribution. Figure 16
suggests the following guidelines for any loading similar to those presented
herein:

Minimum survey distance

Loading (93% accuracy)
Flap/tip 1.4

30/0 1.0

30/30 0.8
Elliptic 0.3

Distribution of Induced Drag

Equation (16) provides a means for determining the spanwise distribution
of induced drag:
ce, b/2e S/By'(ccg)
= — —— v
(ecy)y = 5o e dy (27)
-b/2¢8

This expression was obtained by assuming that: (1) the wake is entirely
planar (Cy =g, = 0), and (2) the induced drag can be expressed as the product
-uz(ccy) with up obtained from the lift distribution. Even though the flows
in the previous section have induced downward deflection, it is instructive

to assume that the "actual" induced drag can be represented by -uy,(ccy), and
that the computed drag can be obtained numerically from equation (27) using
the ccp data resulting from the wake surveys of the previous section.

Figures 17, 18, and 19 present the induced drag distributions obtained
from the loadings in figures D-9, D-14, and D-20 of appendix D, for the 30/0,
30/30, and elliptic cases, respectively. As the loading shifts predominantly
inboard (30/0 and 30/30), the high induced drag at the tip decreases, as
expected. These figures must, however, only be used to infer regioms of high
and low induced drag and overall trends, since equation (27) contains assump-
tions that cannot be closely satisfied.. Even the "actual" drag shown is not
precise because the wake is not truly planar, and -u, d1s obtained from the
kriown (deflected) flowfield. Nevertheless, the three examples in these
figures have been. included for completeness.

Conveniently, the velocity wake surveys may be conducted along the same
path Lj as that used to determine the viscous drag. Knowledge of the three-
dimensional velocity along this line allows one to preset the orientation of
the total pressure probe so as to align it more precisely with the mean flow
direction, thereby improving its accuracy.
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SUMMARY AND LIMITATIONS

An analysis of the momentum integral equation has shown that the local
section-lift coefficient on a wing is determined solely by the net vorticity
passing through a closed circuit C when certain restrictions are placed on
the character of the inviscid wake structure. It was shown that, when downward
deflection of the shed vorticity is present, but spanwise deflection is absent
within the circuit C, the relationship in equation (12) is valid.

The analysis has assumed the bound vortex line to lie along the y-axis
with ¢y = 0. The analysis does, however, proceed identically from equa-
tion (11) when wing sweep is considered. In this case, {x has a finite
value along the bound vortex, but spanwise deflection of the trailing vortex
system is again forbidden, and symmetry provides u, = 0 at all points on the
bound vortex. Hence, the examples presented for the swept-wing transport-type
loadings are still meaningful.

A method has been developed for determining the spanwise 1lift distribu-
tion from wake measurements only. The equivalent vortex correction technique
has been shown to be adequate as long as the wake survey line extends suffi-
ciently far above and below the wing trailing edge. The required survey
distance has been shown to be governed by the degree to which the loading is
concentrated inboard.
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TABLE 1.- LOADINGS USED FOR FLOW-FIELD SIMULATION

Loading‘ Number of horseshoe
designation vortices used for CL Remarks
: flow-field generator
Flap/tip 2 1.08 Loading presented in figures 8,
10, 11, and 12. Both vortices
of same sense.
30°/0° 3 1.12 Similar to flap/tip loading but with
additional vortex of opposite sense
shed from inboard edge of the flap.
Simulates transport aircraft of
aspect ratio 7 with inboard flap
deflected by 30° and the outboard
flap retracted.
30°/30° 5 1.19 Simulates transport ailrcraft of aspect
: ratio 7 with both flaps deflected by 30°.
Elliptic 8 1.66 Approximates, stepwise, an elliptic 1lift
distribution.
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Figure l.- Control surface for computation of total lift and drag.




Control surface for computation of section lift and drag.

Figure 2.-




[ . H P R B Y S PR am DRI EN B L B Bt

§x x
SHED VORTICITY
Figure 3.~ Lifting line approximation showing integration circuit C,
bound and shed vorticity. .

R S P



s e R T I

e

| A
~ ~ //
Nussen <
VELOCIMETER - WIND-TUNNEL
~ g TEST SECTION

Figure 4.~ Experimental situation which allows for spanwise optical access.
Typical of smaller facilities (e.g., Ames 7- by 10-Foot Wind Tunpel).

Section 1ift coefficient can be determined from ccz = 2 c 4. de.



S~ WAKE
l / TRAVERSE

b Figure 5.—- Experimental situation which only allows for limited optical access.
L Typical of large facility (Ames 40- by 80-Foot Wind Tunnel). Section lift

i coefficient determined by correcting measured ce, using an equivalent
|} vortex.




z* WAKE y
/ SURVEY LINE

A

| UNMEASURED
| REGION

\L

. MEASURED '\
REGlON

\
~Nz=29
\
~ Z=0
UNMEASURED

z2=12q
| | REGION

\

Figure 6.- Measured region determined by finite length of experimental traverse
over only portion of wake survey line. Flow is modeled in unmeasured
regions to generate a correction to measured value of ccy.



—————

INDEX SPECIFYING
FLOWFIELD TO BE
GENERATED

|
|
x
|
|
y

r7r7rrrrrr

/

/ FLOW FIELD/
GENERATOR ;‘

ISV IINNY

ENTER: )

DISTANCE BEHIND BOUND
VORTEX FOR SURVEY

SURVEY LIMITS ABOVE AND
BELOW WING, 21 AND z,

(USUALLY TAKE zp = —z4)

7

SET UP GRAPHICS DISPLAY
ON CRT

cgy

ENTER: I

SPANWISE LOCATION, v,
WHERE CC{ IS TO BE
“MEASURED"’

'

g

“MEASURE" u, AT .05C
INCREMENTS BETWEEN
zq AND rd)

DATA
LOOP

v

CALCULATE (CCY) meas
AND PLOT VALUE
ON CRT DISPLAY

KEYBOARD

KEYBOARD

IISII

qul

Figure 7.~ Flow chart for numerical wake survey experiment.



20~
e ————
\ “ACTUAL"
_ \ LOADING
\
|
)
1.0} |
o ?\
[}
“MEASURED" 1)
LOADINGS Qb= ——— == —— —,
CCﬁ | \\\‘ rk N
]
: \
l'. 0"0 | gx ,
’ oo o, |
%o
B ITIP
| LOCATION
: |
-1.0 al | | | . | Lﬁ 1 1 [
0 1 2 3 4
WING v
€

Figure 8.- Difference between "actual" and '"measured" loading distribution for

finite traverse distance. z, = -z, = 1.0, x = 0.9.

R



BEGIN
CORRECTION

ENTER:

TOTAL LIFT
COEFFICIENT, C

CHOOSE: ;
INITIAL VALUE OF yge = 1.0

COMPUTE: Y

(CCy)e FROM EQT. (25)
USING (CCp) yoqs AT TIP

Y

CORRECT ALL DATA USING

 THESE VALUES OF (CCfle -
AND yoe FROM EQT. (23) INCREASE yog BY

SPECIFIED -
&“ : AMOUNT

DETERMINE AREA UNDER A
RESULTING CURVE OF (CCy)
'y VERSUS y. ADD IN LINEAR
. REGION FROM (CC/)e ATy =0.0
B TO CORRECTED DATA POINT
ATy=05.

COMPARE: {

IS AREA WITHIN SPECIFIED “NO”
PERCENTAGE OF CL.? ‘
TYPICALLY 1%

PLOT: & YEST

MEASURED, CORRECTED, AND
~ ACTUAL DISTRIBUTIONS

LIST: Y e
yoe AND ACCURACY OF FIT
TO ACTUAL LOADING

=

Figure 9.~ Flow chart for numerical correction to lift coefficient.

B RS NS SR LN 2 '




e

1.0 -

©® CORRECTED DATA
- == “MEASURED"” LOADING

—=— "“ACTUAL" LOADING

88% REGIONS OF AREA
{ MISMATCH

Figure 10.- Corrected data showing comparison to "actual' loading when 1lift
coefficient C; = 1.08 'is matched to within 1%.

strength of (‘Ccﬂ,)e = 1.42.

Equivalent vortex has



"ACTUAL”

2.0 /LOADING
B |

1.0

CCE —

B

Figure 11.-~ Uncorrected loading for several survey distances.




| —% A 20 96.1%
® \ ® 05 781%

» | ——— “ACTUAL"” LOADING

CCy 1.0

e T T T e Ty e e it L R e it

% : Figure 12.~ Corrected loadings showing the increased accuracy of the correction
b ' with increasing survey distance.




Lo 22 CA
A 20 969%
@ 05 808%

+ “MEASURED"
— — “ACTUAL"”

Cccy

Figure 13.- Equivalent vortex correction applied to 30°/0° loading. Drawing
shows assumed locations of shed vortices for flow-field generator.



!
// ! /

e ————t———— - e e Y, ]

- \’l
TQ:: 038 § ¥ &

?1 .321 .52

2.44

3.38

Z2 CA
20 S554%
05 90.3%

+ “MEASURED”
— —“ACTUAL"

| ] [ B
0 1 2 3 4
oy

Figure l4.- Equivalent vortex correction applied to 30°/30° loading. Drawing
shows assumed locations of shed vortices for flow-field generator.




ccy

g , ‘ z2 CA
A 20 982%
@ 05 958%

I B +  “MEASURED”
| —— “ACTUAL"

} -1.0 | 1 ] 1 L ] ] 1 J
H - -1 '

Figure 15.-~ Equivalent vortex correction applied to an approximately elliptic
loading.




100 - R
Qe
N 90
5
o) UNACCEPTABLE
3 - BELOW 93%
(&) - b= -
2 80
5
E O FLapr/TIP
o O 300
T 70 b < 30/30
Q A ELLIPTIC
60 | i L N
0 0.5 1.0 15 2.0 25

SURVEY DISTANCE, z;

Figure 16.- Correction accuracy of the equivalent vortex model as a function
of survey distance for several loadings.



B AR E VS SEEIA S e R R . L.

6 - “ACTUAL"

CCyq 2 -

3 ‘ - 0 1] " . -
Figure 17.- Comparison of "actual' induced drag, uz(ccx)meas

the distribution computed from equation (27). 30°/0° loading.
Cy = 1.12.

, and




“ACTUAL"

CCy

-

Y

Figure 18.- Comparison of "actual" induced drag, —uz(ccz)me , and

v as
the distribution computed from equation (27). 30°/30° loading.
C; = 1.19.

L



From
6 - , eq. (27)

Al “ACTUAL"

o

CCqy

o
?-*——
--?_
wdlon

-2 -

—4F

6 | | L L l ] I 1 J
0 1 2 3 4

Y

Figure 19.- Comparison of "actual" induced drag, -u, (c:cﬂl)m‘3 , and

the distribution computed from equation (27). . Elliptic loading.
CL = 1.66. B :



APPENDIX A
ANALYSIS OF THE SHEAR STRESS TERMS IN THE INTEGRAL MOMENTUM EQUATION

76 determine the relative importance of the shear forces on the control
surface (figs. 1 and 2) compared with the other terms in equation 3), we
- assume that it is valid to conduct a two—dimensional analysis. The orders of
magnitude and the trends should be similar in three dimensions.

Momentum Equation in Two Dimensions
In the two-dimensional approximation of the flow, equation (3) simplifies
; to ; .
| - -—f p-liu dz + f pgu dx + f p—L:u dz - f pﬁu dx LN
L x L z - L x -/L z
1 2 3 Ty L
=f pf(dz—f 'pidx'—f p%dz+]-p?zdx--D5{-L§—D§c
I L L L P st
! 2 3 Y '
A A |
+ J (n = t)dL (A1)
L, thru L,
Separating into components,
= - 2 - 2
L ./11 pu u, dz A (puz + p)dx A pu_u_ dz + ‘/L‘ (puZ + p)dx }
1 2 3 b
+ f G,
L, thru L, L :
; (A2)
¥ - - 2 5 _ 2 '
D Dp + Dsf -/1‘, (puX + p)dz A puu, dx -/1: (pu,X + pldz
IR 1 2 3
fl A <
it B + .
i +L pu_u, dx f (1 T)X ds
' L L, thru L
4 /

Fliminating the static pressures with p = pp ~ (p/2) (’ﬁxz + uzz) and
nondimensionalizing,

37



c, =2 uu dz - (u 2 - u 2)dx - 2 uu dz + (u ?2 - u 2)dx )
L L ' L 2 x T z L
1 2 '3 n
1 A <>,
+ i / @7 de
L. thru Lu
¢ (A3)
= 2 2 - _ 2 _ 2 dz + 2 dx :
4 f (ux u, )dz 2/ uu, dx f (ux u, Ydz uu
L L L L
1 2 3 4
Pg = P &
+/ (————T)dz + = f (n o« T)_ d2
9 q,.c x
L3 L1 thru LL+ Y,

Modeling of the Shear Stress Tensor

The shear stress tensor is written in general form as

: ‘Bu; 3ux auz
.1 —_— ¢ —=
© 12 ax 9z ox
T =1
ou du ou
_ X Z R —
9z 9x 0z

If the flow is represented (fig. A-1) by a superposition of the free-stream
flow, a bound vortex, and a viscous wake,

o= w I z)- w_ I x\-
u = (VOo + u + o rz)x + (uy o r2>z

where [ is the strength of the bound vortex and the superscript. w denotes
a perturbation term due to the viscous wake. These wake terms vanish every-
where except in the wake region. The stress tensor now becomes,

i

W W w 2 _ 2 ’
aux 2T xz aux auz r * 2
2 .. 2 XE + -2 4=
o ox T pH 9z ox T r4
T = w (A4)
W w
Mo M Lr x2-2? , Nz 2z
3z ax T P 3z T gt

Since the trace of the matrix remains invariant and vanishes for an -incompres-
sible flow,
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(A5)

as expected.

Evaluation of the Shear Forces

To carry out the integration indicate ed by the last term in equations (A3),
we need to compute (X ) and (5 - T). Using (A5),

- W ~
Py xe
ox T B
A 3. <>, r
G.DH=0Q 0@ =n| .
du_, du 2 P
x !, 2z I (x° - 2%
| 0z 9x 1r< rh )
- W . > (46)
u du 2 2
X Z T'{xc ~ 2z
b |
9z 9x T rh )
I <
(z+1)=(0 1(t) =u w
Ju
g X 20 x2z
L x T
~

Equation (A6) is valid everywhere. If, however, it is assumed that the
shearlng due to the viscous wake is only significant over a locallzed reglon
along L ther we have elsewhere,

-9 Xz fx? - 22
2 = n
~ <, r A <> r
(x « 1) = ur and (z » T) = £ (A7)
m 2 2 m
X" — 2 9 X2
rt T

The shear terms in equations (A3) may now be written as

~ < ~ < - A <> ~
f (n - ?) dg = —f (x = 1) dz +f (z « 1) dx +f (x f?) dz
z L z i z L z
1 2 3

L1 thru Lq
P : ’

- (z -+ T)z dx | (A8)

k pEe Lbf <, ‘ < ‘ <>

(a ¢ 't)X dg = - (% - 'r)x dz +f (z T),X dx -}-f (x -+ T)X dz

L, thru L, L, J1, : L, |
- (z - 't)X dx ‘ - (A9)

L, | -



The integrations are greatly simplified and no generality is lost if we choose
the symmetric controur in figure A-2.

Using equations (A6) and (A7) in (A8),

PN . “ T
(n é'r)) dg = —5‘—[
V4

fKEi;Efdz] +£U€_23iz_dx
K W W
K .2 _ .2 “fdu du
4 2L X =2 4 +u X+ -2 )4z
T ct _ 3z 9x _
-K X=€ —K X=€
e
+ 8L [—J 2xz dx]
™ rh

Since the integrands of the first and third terms are even in x and z,
these terms cancel. Also, since the integrands of the second and last
terms are odd in x and z, these terms cancel. Equation (A9) is analyzed
similarly and the result is

L1 thru Lu,

% W
du du
a o x z i
/ (n - T)z dg = u[ 52 + o dz |
L, thru L,+ L, -
(A10)
du
~ <>, :
(n - T)x dg = 2u/ az dz
L1 thru LL} L:_3
The last terms in (A3) may, therefore, be written nondimensionally as
w w
' ' Ju du
~ <>,
L (n- 1) d& = 2 X -2 )z
L q.c z Rec L 9z 9x ?
. 3 | i
L1 thru L, ?, (A11)
' W [T
1 ' du o i
L G .9 d =2 f X 4z
q c , x Re 9xX
“ L, thru L ¢ 7Ly
1 L J

where Re, = pch/u is the flow Reynolds number based on wing chord. Clearly,
when the velocity gradients in the wake are of order unity, then these terms
are negligible for Re, >> 1. This is certainly the case for most wind-tunnel
flows.
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1 APPENDIX B

EXPANSION OF THE SURFACE INTEGRALS IN EQUATIONS (9)

The terms that are to be expanded are

—2/ v (ulu )dx dz
s VY F (81)

—2/; a—y- (uxuy)dx dz

Using the chain rule and then using the principle of continuity, (Bl) becomes

du r Bu 5u

i . 2] v T dxdz + 2ffu —Fdx dz - 2f] u £ dx dz (B2)
: z 09X zZ 02 y 9y

JS 'S S

1y * du ; Ju du '

2 u ==X dx dz + 2 u —2dx dz - 2ff « =% ax dz (B3)
g X 3 g X 9z s Y 9y

By where the surface integrations are now shown explicitly by the double integral.

Evaluation of (B2)

x on L ou
3 g z
- u ——— dx)dz
X 09X
X on L1

First term: dintegrate by parts to get

3u
2-[/- u —2dxdz=2Jluu
I S z 0X X z

i

il
N
o~
e
c
o
N
|
[\
o
o
X
e
N
o
N
|
[\
m’§
c
x
Q>
R
o
"
o
N

Second term:

ou du 2 :
2 u —2 dx dz = f Z_dz)dx = u ?
S z 92 0z z




Third term:

du
- u-,—-z-dxdz
g v 9y

Bu ou du
- u ——ldxdz—Z u —L dx dz
y By 9z y 93z
S S
au Ju
_ u | =2 —,a—l’)dxdz—fudeJrfuzdx
g Y\ 3y z L v LY

2 [

(B2) is now written as

—f uxu dz-'-_/‘(u -uz)dx.+2fuu dz—f(uz—uz)dx
Ll LXZ L 2 y

"
ou Ju
- <~—— )dxdz—f/]u ——-—dxdz
3y
Noting that ‘” —2 4x dz —f u 2 dx —f u ? dx, we now have
X 1 X

N

3

~[/i(uu)dxdz=—2/ u_u dz+/(u - —uz)dx+2/ uu dz
oy y 2 X ; X z
et . Ly t

2 2 BUZ
- (u ¢ - - Ydx + 2 ~————--——- dx dz
L z ax
4

' Bu ou
- ‘u -2 - dx dz
g Ay 0z

Evaluation of (B3)

ou k
Zﬂu —a;x-dxdz=juzdz—['ux2dz
s X L, * L
: 3
Second term: dintegrate by parts to get

du
Zf u —2 dx dz
g ¥ 9z

First term:

i
N
=
b
NC?

(B4)
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Third term:

du u du ou
- u —-}idx dz = - - —X)ax dz - 2 '——ldx;dz
y 9y ox y ox
S S
au J
—[[ < J)dxdz—/ uzdz+/ u 2 dz
ox L y L y
3

(B3) now is written as

/(u —uz)dz+2/ u u dx+/(yu2-u2)dz-2/ u u dx
X X z
L L
I
) Bu ou
-2 u (== - )dxdz—Z u—dxdz
s Y\ 9y
| Buz
Noting that 2/]u —— dx dz=/ u2dz—/ uzdz, we obtain,
2 0x z z
S L3 L : ;

1

-2[/ (uu)dx dz=-/ (u ? —.-uz--uz)dz+2/ uu dx
[ X v z L X2

; X z
3 LL»?
ou ou o 9u Ju
+ 2 u | =< - dedz—? u J————dxdz
o V\ ox 2y z \ 3z ax
S / S
(B5)
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APPENDIX C
THE INDUCED VELOCITY AT A POINT (%, y, z) DUE TO A HORSESHOE VORTEX

To calculate the induced velocity at a point P, we use the Biot-Savart
Induction Law

— >
»> I ds x 1t
du = 7= 3 (c1)

A >
where the vector quantities are defined by ﬁ}gure C-1l. The vector r from
Ehe gource element of vorticity of length ds to point P is either

g, Ty, or r_, depending on the section of the horseshoe being considered.

It can be shown that the induced velocity at P  due to the bound vortex is
given by

Vo t ¥ Yo = ¥ - 2
S S VRS (2 ) -
/X?‘ + (yO + Y)2 + 22 \/x2 + (yo - Y)2 + z?2 (C2)

The induced velocity at P due to the trailing portion of the horseshoe on
the positive y-side of the origin is given by '

Gt [/ = + 1][% -y zz]‘l (2§ + (v, - ¥)2]
“ % SN T S 1. i
L by e - (C3)

~ and the induced velocity at P due to the trailing portion on the negative

y-side of the origin is given by

- T ’F ’ x ] o 2 -1 ~ ) ~
u = : + iy, + V)% + = lzy - (y, + W)z]  (C&)

Combininyg (C2), (C3), and (C4) and separating components,

ARETE
uX = V°° + W Az
u = ——-—T‘— (B - C)Z AR E ‘ (CS)
y b o R
o L o
u, = - g [ax + (v, y)B + yy * ¥)CY

where
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T AR TR

Vo + ¥ Yo = Y _
A=[ 0 + ][x2+22]1

X2+ (yy + 2+ 22 x2+ (y - y)2 4+ 2P

m— x ] -
. [/x2+ (yo = M + 22+l_[(yo -2+

(@]
]

[ ~ + 1[Gy, + N2+ 2217
/x2 + (yO +y)2 + 22 J

Nondimensionalizing u by V_, and x, y, z by ¢,

u, = 1 + vyAz

u = vy(C - B)z (C6)
y

u, = -y[Ax + B(y, - y) + C(y  + y)]

with A, B, and C unchanged but all terms now nondimensional, and ¥y = cc, /87
. . 2
is the nondimensional vortex strength,

To protect against singularities in the wake, a finite core diameter r.
is specified for the trailing portions of the horseshoe. This is accomplished
by replacing

g = L X + 1 if  (y. -2+ 22<¢ 2
2 | J2 2 2 0 c
r | Vxc + (y. - y)“ + z
c 0
¢c=-1 ( X + 1 if (y, +y)2 +22<r?2
r2 | /A2 2 2 0 c
o Lvxo+ (yO +y)e+ 2z

To allow for downward deflection of the wake, we assume that in a
superposition of N horseshoes, each vortex trails downward at angle
ei(i =1, 2 ..., N) induced by the other vortices (see fig. C-2).

We want to calculate the downwash velocity u induced on the bound

. z
vortex at location where T is shed. To do this we again use the

i ,
Biot=Savart Induction Law. Assuming that all other vortices trail straight
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back, it can be shown that the induced velocity at vy, due to the other

i
vortices on the (+) y-side of the centerline is given by

N T
1 z: |
_- U™ S c7
uz 47 (yo - Y, ) (c7)
. 1 5

The induced velocity at Yo due to all vortices on the (-) y-side of the
i

centerline is given by

N
S N S H 8)
z_ 4 (yo +‘y0) .
j=1 i b
Combining. (C7) and (C8), the total induced downwash is
| N
L 2T4¥o, T,
w, == . 2 (C9)
Zi 4t 4 }72 -Y2 2y0
=1 704 05 i
it
quil
If we take the induced angle as € =7y , then in nondimensional form,
N 2
ijoj Y,
€, = - (C10)
i g2 g2 2 .
| 1#]
where
N (eey)y
i T 4y e 8

The flow field is now generated in the following manner:
(i) Specify (x, y, z) where the velocity is desired.

(ii) Determine rotated coordinates (x', y', z") for the ith horseshoe by

x! cos €, 0 -sin g, X
i i

y' t= 0 1 0

z' sin e, 0 cos £, /
i i

with e computed by equation (C10).

&7



(iii) Compute velocities in the rotated coordinate system, (u_', u
X

uz'), using equation (C6).

(iv) Compute (ux, uy, uz) by rotating back to the x, y, z frame

i 1
ux cos Ei 0 sin Ei ux
u = 0 1 0 u '

y
-cq 1]
uz sin Ei 0 cos Ei u_

Steps (i) through (iv) are carried out for each horseshoe and the total
induced velocity at P 1is then obtained by linear superposition.
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Figure C-1.~ Horseshoe vortex and coordinate system.
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