General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
MULTIMODAL FAR-FIELD ACOUSTIC RADIATION PATTERN - AN APPROXIMATE EQUATION

by Edward J. Rice
Lewis Research Center
Cleveland, Ohio 44135

TECHNICAL PAPER to be presented at the
Fourth Aeroacoustics Conference
sponsored by the American Institute of Aeronautics and Astronautics
Atlanta, Georgia, October 3-5, 1977
Abstract

The far-field sound radiation theory for a circular duct was studied for both single mode and multimodal inputs. The investigation was intended to develop a method to determine the acoustic power produced by turbofans as a function of mode cut-off ratio. This information is essential for the design of acoustic suppressors in engine ducts. With reasonable simplifying assumptions the single mode radiation pattern was shown to be reducible to a function of mode cut-off ratio only (modal indices removed). With modal cut-off ratio as the dominant variable, multimodal radiation patterns can be reduced to a simple explicit expression. This approximate expression provides excellent agreement with exact calculations of the sound radiation pattern using equal acoustic power per mode. Radiation patterns for cases other than equal modal power are presented using the approximate radiation equation. An approximate expression for the duct termination losses as a function of cut-off ratio is also included.

Introduction

The far field acoustic radiation pattern produced by a single mode in a circular duct has been presented for flanged ducts as well as for unflanged ducts. Multimodal radiation patterns representing the summation of the contributions of the many modes have been studied. Besides being very time consuming it was not obvious how cases other than equal acoustic power or amplitude per mode could be handled using exact calculations for the multimodal case. A method is presented here which makes this calculation possible by using a cut-off ratio biasing function.

This paper presents an analysis in which the single mode radiation equations can be summed analytically into a multimodal radiation pattern. The single mode theory is first simplified into a function only of mode cut-off ratio which means that the actual modal identification is suppressed, and all modes with approximately the same cut-off ratio will have approximately the same radiation pattern. A modal density function, which is also a function only of mode cut-off ratio, is used to estimate the number of modes significantly contributing to the pressure at a far-field observation point. The single mode pressure amplitude and number of modes contributing are then combined to give a resultant mean-square pressure at the far-field observation point. This procedure yields a simple explicit expression which is then compared to exact calculations using equal power per mode. The extension to the more general case of unequal power per mode is also presented. An approximate expression for the duct termination loss as a function of cut-off ratio is developed. Calculations using the multimodal far-field radiation expressions are compared with experimental data.

The concept that the far-field radiation pattern is a function of acoustic power versus mode cut-off ratio is useful for acoustic liner design purposes. The propagation of sound through lined ducts has previously been shown to be a function of cut-off ratio. The work presented here represents a part of a simplified acoustic liner design program under development. The noise source information needed for the liner design can be obtained directly from the far field radiation pattern.

Symbols

- \(c \): speed of sound, m/sec
- \(D \): duct diameter, m
- \(D \): modal density function, see eq. (15)
- \(f \): frequency, Hz
- \(I_T \): acoustic intensity transmitted out from termination, N/m\(^2\)sec
- \(I_{INC} \): acoustic intensity incident upon duct termination, N/m\(^2\)sec
- \(J'\): derivative of the Bessel function of the first kind of order \(m \) with respect to its argument
- \(k \): side lobe index (see eq. (24))
- \(m \): spinning mode lobe number (also order of Bessel function)
- \(N \): fraction of the total number of modes whose principal lobes contribute at any far field position, see eq. (16)
- \(n \): exponent on cut-off ratio biasing function, see eq. (18)
- \(P \): far field acoustic pressure amplitude, see eq. (1), N/m\(^2\)
- \(P_D \): acoustic pressure in the duct, N/m\(^2\)
- \(P_m \): due to multimodal summation of principal lobes, N/m\(^2\)
- \(P_p \): at the peak of the principal lobe, N/m\(^2\)
- \(P_s \): due to side lobes, N/m\(^2\)
- \(R \): reflection coefficient at duct termination
- \(r \): radial coordinate in cylindrical system, m
- \(r_o \): radius of cylindrical duct, m
- \(\alpha \): hardwall duct mode eigenvalue, see eq. (3)
- \(\beta \): cut-off ratio biasing function, see eq. (18)
- \(\eta \): frequency parameter, \(fD/c \)
- \(\theta_R \): duct termination dimensionless acoustic radiation resistance
- \(\mu \): radial mode number
- \(\xi \): mode cut-off ratio, see eq. (4)
- \(\xi_{mic} \): cut-off ratio for mode whose principal lobe peaks at a given far field microphone position
The single mode far-field acoustic radiation expression will first be developed as a function of cut-off ratio. The summation required for the multimode case will then be derived. The equations without steady flow will be used here as an illustration.

Single Mode Equation

A far-field mean-squared pressure radiation expression for a flanged circular duct for equal acoustic power per mode can be expressed as,

\[p^2 = \frac{(\eta n)^3 \sqrt{(\eta n)^2 - \alpha^2 \sin^2 \phi} \left[J_m'(\eta n \sin \phi) \right]^2}{\left[1 - \left(\frac{\alpha}{\eta} \right)^2 \right] \left[\alpha^2 - (\eta n \sin \phi)^2 \right]^2} \]

Equation 1 was derived for zero Mach number, negligible end reflections, and a constant has been omitted. Note that subscripts \(m, \mu \) should appear on \(P^2 \) and \(\alpha \) to denote the lobe number \(m \) and the radial mode index \(\mu \), but they are omitted here for brevity.

Let the mode cut-off ratio be defined as,

\[\xi = \frac{\eta n}{\alpha} \]

which is consistent with previous results. Using eq. (4) in eq. (1) yields,

\[p^2 = \frac{\sin^2 \psi \sqrt{1 - 1/\xi^2 \left[J_m'(\eta n \sin \psi) \right]^2}}{\left[1 - \left(\frac{\alpha}{\eta} \right)^2 \right] \left[1/\xi^2 - \sin^2 \psi \right]^2} \]

Note that in eq. (5) the modal identity remains in the \(m/\alpha \) term and in the Bessel function order \(m \). Two assumptions are made. First, \(\left(\frac{m}{\alpha} \right)^2 \ll 1 \)

and second,

\[J_m'(\eta n \sin \phi) \approx \frac{2}{\eta n \sin \phi} - \frac{2}{\eta n \sin \phi - \alpha} \]

which can be obtained from published expressions.

Equations (5) and (7) are valid except for the first few radial orders of the higher lobe number modes. Using eqs. (4), (6), and (7) in eq. (5) yields,

\[p^2 = 2 \sin \psi \sqrt{1 - 1/\xi^2 \left[\sin \left(\eta n \sin \psi - 1/\xi \right) \right]^2} \]

Equation (8) shows that the radiation pattern is a function of cut-off ratio \(\xi \) only, and that modal identity has been suppressed being now implicitly involved in \(\xi \). The frequency parameter \(\eta \) of course remains but this involves only the usual inputs of frequency and duct diameter \(D \). Provided that conditions given by eqs. (6) and (7) are not radically violated, all modes with the same cut-off ratio have identical radiation patterns. One difference between the approximate eq. (8) and the more exact eq. (1) occurs in the number of side lobes occurring forward \((\psi < \psi_p) \) of the principal lobe. Equation (8) shows that for a given cut-off ratio \(\xi \) and frequency parameter \(\eta \) there are a constant number of these side lobes. However, for eq. (1) the number of these side lobes is dependent upon the radial mode number \(\mu \). This error occurs due to the difference between the small argument behavior of the sine function and the Bessel function. Since the side lobes are generally ten to fifteen decibels below the principal lobe this error in the forward side lobes is of little consequence in a multimodal radiation pattern.

From eq. (8) it can be seen that both the numerator and the denominator go to zero when

\[\sin \psi_p = \frac{1}{\xi} \]

which approximately defines the location of the principal lobe peak pressure. The subscript \(p \) has been added to \(\psi \) to signify the angle for the peak pressure. A limiting procedure on eq. (6) yields for the magnitude of the principal lobe,

\[p^2_p = \eta n \sqrt{1 - 1/\xi^2} = \frac{\eta \cos \psi_p}{2 \sin \psi_p} \]

where eq. (9) was also used. The same result occurs using the exact eq. (1) if the approximation of eq. (6) is used.

Equation (8) also shows that the principal lobe extends between angles...
which represents the fraction of the total number of modes whose principal lobes contribute to the pressure at angle ψ. The simplest possible way of integrating the amplitude and mode number effects is to multiply eq. (10) by eq. (16) to yield

$$P^2 = 2 \cos \psi$$ \hspace{1cm} (17)

Equation (17) is seen to be a simple expression for the far-field pressure at any angle ψ due to many modes with equal acoustic power per mode. In figure 1, eq. (17) is compared to an exact calculation using an exact summation of eq. (1) for over one thousand modes (A. V. Saule, unpublished). The agreement between the exact and approximate calculations is seen to be excellent. This justifies the approximations made earlier.

Unequal Acoustic Power Per Mode

It is desirable to have a simple expression comparable to equation (17) for other than equal acoustic power per mode. It is also of interest to alter the expression so as to keep it a function of cut-off ratio since propagation in acoustic liners has been correlated with cut-off ratio.\(^6,7\) A cut-off ratio biasing function can be defined as

$$\beta = 1/E^n$$ \hspace{1cm} (18)

where the exponent (n) serves to alter the acoustic power distribution as a function of cut-off ratio which represents a modal power shift. Equation (1) can be multiplied by the cut-off ratio biasing function $1/E^n$ to produce a shift in acoustic power away from equal power per mode ($n = 0$). This is not the only biasing function which could be used, but it is both simple and convenient in form and will be used in this initial effort. Exact calculations of the sum of the mean-square pressure at any microphone position (fixed y) could be made by summing over all the propagating modes (varying eigenvalue α) with the cut-off ratio used for each mode to calculate the power biasing function.

As in the case of equal acoustic power per mode, instead of performing the exact calculation just outlined, a simpler procedure will be used to approximate the summation over modes or integration over cut-off ratio. First eq. (10) for the principal mode peak value is multiplied by the cut-off ratio biasing function to yield,

$$P^2 = \frac{p^2}{\pi} \frac{\sqrt{1 - 1/E^2}}{\frac{1}{n!} \sqrt{1 - 1/E^2}} = \frac{n!}{n!} \frac{1}{2} \frac{1}{\sqrt{1 - 1/E^2}}$$ \hspace{1cm} (19)

Equation (19) is then multiplied by the number of modes eq. (16) whose principal lobes can contribute to the mean-square pressure at the far-field angle ψ. This results in:

$$E^2 = 2 \cos \psi \sin n \psi$$ \hspace{1cm} (20)

Figure 3 shows a plot of eq. (20) for four values of the exponent n. As n is increased the acoustic power distribution is shifted toward cut-off.
higher angles with a noticeable reduction in the power near the inlet axis. The peak value of eq. (20) is located at \(\tan \psi = \sqrt{n} \).

The biasing function \((1/q^2) \) used here is desirable for \(n > 0 \) but is not completely satisfactory for \(n < 0 \). In the latter case no absolute maximum occurs and the mean-square pressure near the inlet axis continually increases as \(n \) is reduced (mode larger negative). As mentioned previously, this first attempt at the biasing function was made for convenience and further experimentation must be performed when making quantitative fits to real data. Qualitative fits to several sets of data will be shown after reflection from the duct termination effects and the contribution of side lobes have been included in the radiation pattern.

Duct Termination Loss as a Function of Cut-Off Ratio

The acoustic power loss (due to reflection) at the duct termination will be determined for each individual mode. Thus modal interactions as considered by Zorumski\(^{11,14} \) will be neglected and the results are only approximate. The power loss will be shown to be a function only of cut-off ratio.

The pressure in the circular duct has the form,

\[
P_D = e^{j(wt - k_\eta)} \left[\frac{\sqrt{-j\mu_\chi}}{\sigma + I_\eta} \right] \left(\frac{\epsilon}{\epsilon_0} \right) (21)
\]

where

\[
\tau = \sqrt{1 - \left(\frac{\epsilon}{\epsilon_0} \right)^2} = \sqrt{1 - \frac{1}{\epsilon^2}} (22)
\]

given in terms of mode eigenvalue and cut-off ratio. Note that hard walls and zero axial Mach number are used here for simplicity. The reflection coefficient \(R \) in eq. (21) accounts for the reflection back from the duct termination which represents acoustic power lost to the far-field. The boundary condition at the duct end, in terms of radiation resistance \(\epsilon_R \) and reactance \(\chi_R \), is used to evaluate \(R \). The ratio of transmitted to incident acoustic power intensity can then be evaluated as

\[
\frac{I_T}{I_{\text{INC}}} = \frac{4 \epsilon_R}{(1 + \epsilon_R^2)^2 + (\chi_R^2)^2} (23)
\]

The radiation impedance components \((\epsilon_R \text{ and } \chi_R) \) for the first two axisymmetric \((m = 0)\) radial modes are plotted in figure 4. These calculations were made using the method of reference 11. Note that when these calculated impedance components are plotted versus mode cut-off ratio the results for the two modes are almost coincident. In addition, radiation impedance calculations for spinning modes were presented in reference 12 plotted as a function of nondimensional frequency minus cut-off frequency. These calculations showed the same trends as shown in figure 4. The impedance components rapidly increased through cut-off \((\epsilon = 1)\) with only minor variations among modes in the oscillatory parts of the curves beyond the cut-off point. This implies that the radiation impedance is approximately dependent only on cut-off ratio. Also note in eq. (23) that the remaining term \((\epsilon) \) is only a function of cut-off ratio (see eq. (22)). Thus the duct termination loss is approximately only a function of cut-off ratio.

Calculations using eq. (23) and the radiation impedance components of figure 4 are shown in figure 5. The slight difference in radiation impedance components causes a small difference in termination loss. A further approximation will be made completely ignoring the small differences in radiation impedance among modes (when considered as a function of cut-off ratio). For relatively large cut-off ratios \(\epsilon_R \approx 1 \) and \(\chi_R \approx 0 \). Using these values in eq. (23) yields,

\[
\frac{I_T}{I_{\text{INC}}} = \frac{4 \epsilon_R}{(1 + \epsilon_R^2)^2 (1 + \epsilon^2)} (24)
\]

Equation (24) is purely a function of cut-off ratio and is plotted versus \((\epsilon - 1)\) as the solid line in figure 5. This approximate relationship is seen to adequately describe the termination loss calculations shown in figure 5 and due to the previously described results of reference 12 is expected to provide an adequate result for all of the modes. It can be seen in figure 5 that the duct termination loss is large only near mode cut-off. For cut-off ratios greater than 1.2 the loss is less than one decibel. Equation (24) has been used for the termination loss for the results which are presented in later figures.

The termination loss thus joins the list of duct lining phenomena which appear to be approximately related only to mode cut-off ratio. These include acoustic liner modal optimum impedance and maximum possible attenuation\(^{6,7} \) and modal far-field radiation pattern \((eq. (8))\).

Effect of Side lobes on Multimodal Radiation Pattern

As previously discussed, the side lobes in the radiation pattern have considerably lower amplitude than the principal lobe and were ignored in the approximate calculations presented in figures 1 and 2. They were, of course, automatically contained in the exact calculations of figure 1 and are seen to have very little effect. However, when the termination loss is included which mainly reduces the principal lobes at higher angles (near cut-off), the radiation pattern is dominated by the side lobes from modes whose principal lobes fall nearer to the inlet axis (well-propagating modes with larger cut-off ratios). Also when duct liners are included, the principal lobes may be drastically reduced over a far-field angle range, and a noise floor results from the side lobes of the less attenuated modes. The side lobes are thus included in the results shown later in this paper.

Equation (8) shows that the \(k^{th} \) side lobe (counting from the principal lobe) peaks at the angle \((\psi_{k})\) given by,
where the plus and minus signs take care of side-lobes at angles greater than and less than that of the principal lobe. Equation (25) is the parallel of eq. (9) for the principal lobe. Using eq. (25) and using a procedure similar to that used for the principal lobe the number of modes whose kth side-lobe contributes to the mean-square pressure at the far field angle \(\psi \) is determined as,

\[
N_g = \frac{2}{\eta \, \delta_{pa}}
\]

where \(\delta_{pa} \) is the cut-off ratio of the mode whose kth side-lobe peaks at the angle \(\psi \) and is given by

\[
\frac{1}{\delta_{pa}} = \sin \psi - \frac{(2k + 1)}{2n}, \quad k < \eta \sin \psi - 1/2
\]

for side-lobes above the principal lobe and

\[
\frac{1}{\delta_{pa}} = \sin \psi + \frac{(2k + 1)}{2n}, \quad k < \eta (1 - \sin \psi) - 1/2
\]

for side-lobes below the principal lobe.

Finally the multimodal contribution of the kth side-lobe is

\[
B_{pa} = \frac{4}{n \eta^2 \delta_{pa}^2 \left[1/\delta_{pa}^2 - \sin^2 \psi\right]^2}
\]

A summation over the side-lobes is required using eqs. (27) and (28).

Comparison of Calculated Radiation Patterns with Experimental Data

Several sets of experimental radiation directivity patterns will be compared to the calculated patterns derived in the previous sections. Although the ultimate intent of this work is to infer the acoustic power distribution as a function of cut-off ratio, this has not been done rigorously here. The cut-off ratio biasing function is considered preliminary and for illustrative purposes only at this time. Several interesting qualitative features of the data-theory comparisons, however, will be pointed out.

In figure 6 four sets of data considered to be broadband noise\(^{13}\) are plotted. Only inlet noise is present since aft noise is ducted away. The solid curve represents the multimodal equal power per mode theory with the biasing exponent equal to zero (\(n = 0 \)). The comparison of the data with the theory shows this broadband noise to be very close to equal acoustic power per mode. The data are seen to be almost unchanged when the tunnel flow is added. Equal power per mode is a very appealing result for broadband noise since this is usually associated with random processes.

Figure 7 shows some broadband data\(^{14}\) for the NASA Fan B on a static outdoor test stand. This data has been carefully analyzed to remove the multiple pure tones from the broadband contribution.\(^{14}\) Also an attempt has been made to remove the radiated noise contributed from the fan aft duct or jet. A comparison of the data with the equal acoustic power per mode calculation shows the data to agree very well with this curve. Thus for the two different fans tested in two different facilities, as represented by figures 6 and 7, the broadband noise radiation patterns appear to be very close to that expected for equal acoustic power per mode.

Blade passage frequency data from two fans

An attempt was made to compare the experimental data with theory. The trends fit relatively well with the theoretical curves shown with \(n = 1/2 \) or 1. These data are shifted away from equal power (\(n = 0 \)) towards cut-off. This is evident from the higher radiation at larger angles and the reduced radiation toward the inlet axis.

A sample of the blade passage frequency directivity data for the Lycoming YF-102 engine tested at NASA-Lewis is shown in figure 9. The solid curve is the multimodal theory for equal acoustic power per mode. Except for small aberrations near the axis and centered at 65\(^\circ\), the curve fits the data very well. The deviation at 65\(^\circ\) may represent the contribution of an additional single mode, the rotor locked mode with forty lobes (\(n = 40 \)). Only the first radial order of this mode can propagate. The dashed line represents the adding of this mode to the theoretical curve. This helps to explain the deviation at the higher angles. This illustrates a reasonable procedure which can probably be used in future data analysis. After deviations in the radiation pattern have been determined to be truly valid, a limited number of physically sensible modes may be added to the underlying smooth multimodal radiation pattern. No attempt has been made to explain the deviations of the data near the axis.

This very limited comparison of data with theory has pointed out that a variety of acoustic power versus cut-off ratio (or modal) distributions are to be expected from experimental data. Some of the differences might be due to different fan designs or to different experimental test installations.

Concluding Remarks

A simple explicit equation has been derived for multimodal far field acoustic radiation from a flanged circular duct for arbitrary acoustic power-cutoff ratio distribution. The approximate expression agrees very well with exact calculations when equal acoustic power per mode is specified. The approximate expression was based upon only the principal lobes of the modal radiation pattern, but additional expressions are provided to account for the side-lobes in cases where they must be included. The derivation used an approximate integration of a continuously distributed modal distribution which will certainly be of questionable validity if only a few modes are propagating. Approximate expressions for the single mode far-field radiation pattern and duct termination loss were presented. Exact modal identification
has been suppressed in these two expressions and they have been shown to be functions only of the modal cut-off ratio. This is convenient since previously it has been shown that the sound propagation in the noise suppressor itself is predominantly only a function of cut-off ratio.

Several sets of experimental data for inlet radiated noise were compared to theoretical curves. This comparison, although qualitative at this time, has shown that a variety of acoustic power-cutoff ratio distributions might be expected. These may depend upon the spectral nature (tone or broadband) of the noise, the fan characteristics, or the test installation. Some distributions are fairly smooth versus angle while some may require the addition of some physically sensible modes.

Reference

Figure 1. - Schematic of modal principle lobes of radiation contributing to a far-field microphone signal.

Figure 2. - Comparison of exact and approximate multi-modal far-field directivity patterns for equal acoustic power per mode.
Figure 3. - Far field multimodal directivity variation with cut-off ratio bias function exponent.

Figure 4. - Variation of duct termination radiation impedance components with cut-off ratio.
Figure 5. Modal transmission loss at duct termination.

Figure 6. Comparison of multimodal equal power per mode directivity to experimental data obtained in a wind tunnel (ref. 13).
Figure 7. - Comparison of equal power per mode multimodal directivity to experimental data from NASA Fan B (ref. 14).

Figure 8. - Comparison of fan blade passage frequency data with calculated far-field multimodal directivity patterns.
LYCOMING YF102 BLADE PASSAGE FREQUENCY DATA

EQUAL ACOUSTIC POWER PER MODE

EQUAL ACOUSTIC POWER PER MODE PLUS THE ROTOR LOCKED MODE ($m = 40, \, u = 1$)

Figure 9. - Comparison of experimental data with calculated multimodal directivity pattern.