
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

JPL PU6L1CATION 77-24

Software Design and
Documentation Language

"

I

ASP - C -1 ~5C46) SOF1~AEE tES GN ANC N77-3 2 7S3
DOCU f E ITICN lAN(UAGE (J e t fr o pulsicn lat .)
80 p He ADS /Me ACl CS l 09E

National Aeronaut ics and
Space Administrat ion

Jet Propulsion Laboratory
California Institute of Technology
Pasadena , California 91103

U c as
GJ / ol 7 5

I

COMMUNICATION
BY MEANS OF
SOFTWARE DESIGN
AND DOCUMENTATION
LANGUAGE .oc.

SOOL

PROGRAMMER~ ~

COMMUNICATION
BY MEANS OF
PROGRAMMHIIG
LANGUAGES.

SDDL

IDOL

SOFTWARE DEVElOPMENT TEAM COMMUNICATIONS

I

JPL PUBLICATION 77-24

Software Design and
Documentation Language

Henry Kleine

July 1, 1977

National Aeronaut ics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

,

77-24

PREFACE

The work described in this report was performed by the Information Systems Division of the Jet Propulsion Laboratory.

ACKNOWLEDGMENT

Many aspects of the methodology for using SDDL, and enhancements to the language and the processor, evolved from its application to the design of two programs: the Vehicle Economy and Emissions Program (VEEP), and the Solar Array Manufacturing Industr; Simulation (SAMIS). The current capabilities, present methodology, successful application, and future prospects of SDDL are, in large measure, due to the many contributions of the members of these design teams. For their many excellent suggestions, critical reviews of this document, critique of new processor capabilities, conscientious application of SDDL to the design tasks, and hours of philosophical discussion of the goals of a software design tool, I wish to express my thanks to Richard V. Morris, Donald A. Heimburger, Marcia A. Metcalfe, Bruce L. Kleine, Robert G. Chamberlain, Steve M. Jacobs, Robert L. Norton, and Gerhard J. Klose.

v

,

•

&

77-24

ABSTRACT

The objective of the Software Design and Documentation Language (SDDL) is to provide an effective communications medium to support the design and documentation of complex software applications. This objective is met by providing (1) a processor which can convert design specifications into an intelligible, informative machine-reproducible document, (2) a design and documentation language with forms and syntax that are simple, unrestrictive, and communicative, and (3) methodology for effective use of the language and processor.

The SDDL processor is written in the SIMSCRIPT II programming language and has been implemented on the UNIVAC 1108 and the IBM 360/370 machines.

vi

l

I

77-24

CONTENTS

I. INTRODUCTION ---------------------------------------_________ 1-1

A. SDDL OBJECTIVE -- 1-1

B. SDDL PROCESSOR -------------------------------------___ 1-2

1. Document Formatting ---------------------------------__ 1-2

2. Software Design Summary Information ------------------ 1-2

3. Processor Control Capabilities ------------------------ 1-3

C. SDDL OVERVIEW --- 1-3

1. SDDL Syntax --- 1-3

2. SDDL Structures ------------------------------------___ 1-4

D. SDDL METHODOLOGY ------------------------------------__ 1-10

1. Uses of the Software Design Document (SDD) ------------ 1-10

2. Representation of Data Structures --------------------- 1-10

3. Representation of Control/Procedural Structures ------- 1-11

4. Specification of Module Interfaces ---------------_____ 1-14

5. Inclusion of Management Information in the SDD -------- 1-14

6. Additional Uses of the Cross Reference Capability ----- 1-15

II. SDDL USER'S REFERENCE GUIDE ----------------------------_____ 2-1

A. CONTINUATION OF INPUT LINES --------------------------- 2-1

B. CONTINUATION OF OUTPUT LINES -------------------------- 2-1

C. SDDL SYNTAX DEFINITION LEVELS ------------------------- 2-2

1. Primitive Definitions (Level 0) ----------------------- 2-2

2. Secondary Definitions (Level 1) ----------------------- 2-3

3. Keyword Statement Definitions (Level 2) --------------- 2-7

4. Control Directives (Level 3) -------------------------- 2-16

5. SDDL Syntax Overview Diagrams (Level 4) --------------- 2-33

vii

l

77-24

III. SAMPLE DESIGN --- 3-1

IV. USING THE SDDL PROCESSOR IN THE JPL Ul108 ------------------- 4-1

BIBLIOGRAPHY -- 5-1

Figure

1-1. SDDL Processor Action --------------------------------- 1-6

Tables

1-1. SDDL Control Structure Keywords ----------------------- 1-5

2-1. SDDL Primitive Definitions ---------------------------- 2-3

viii

77-24

SECTION I

INTRODUCTION

The frontispiece is a conceptual view of the software development
process. It identifies members of the software development team and
shows the many communication links over which information must flow.
The team members and the information flow shown in the diagram are
a part of every software development project regardless of the number
of individuals actually involved. Even when the entire task is done
by a single person, it is still essential to have precise, accurate,
orderly communication among the various roles the individual performs.
With orderly communication, decisions made last month can be acted
upon correctly this month, and valid information will be available
later when maintenance responsibilities may have to be assumed by others.

The diagram also suggests that a computer programming language
is a satisfactory communications medium for only a few links; primarily
between programmer and machine, and secondarily among programmers.
All other higher-level team communication requires less restrictive,
more human-oriented media to be effective.

Historically, software development has suffered because of the
lack of an effective communications medium for these high-level links.
One may generalize that everyone has experienced some painful results
of imprecise and/or incomplete communication in every aspect of life.
Programmers suffer immediately when imprecise, incorrect, or incomplete
directions are executed by the computer exactly as stated. Managers
and customers are affected more seriously because bad communications
at the design stage may compound the error by allowing the programming
effort, with all its problems, to proceed toward an elusive or erroneous
goal.

As long as the communication between members of the
software development team remains fuzzy, the misunderstanding will
continue and software development costs will be higher than they need
be. Software maintenance gets into the act later, when maintenance
programmers must deal with poorly written, out-of-date documentation,
which, by Murphy's Law, is certain to ,be inconsistent where it matters.

Effective communication is not sufficient to insure efficient
software development, but it is certainly necessary. Therefore, the
Software Design and Documentation Language (SDDL) has been developed
to satisfy this necessity.

A. SDDL OBJECTIVE

The objective of SDDL js to satisfy the c0.amunications requirements
of the software design and documentation process. This objective is
met by providing

1-1

I
I

I
I

/

,
,

77-24

(1) A processor which can conver·t design specifications into
an intelligible, informative, machine-reproducible Software
Design Document (SDD).

(2) A program design and documentation language with forms
and syntax that are simple, unrestrictive, and communicative.

(3) A methodology for effective use of the language and the
processor.

B. SDDL PROCESSOR

The purpose of the SDDL processor is to translate the designer's
creative thinking into an effective communications document. The processor
must perform as many automatic functions as possible, thereby freeing
the designer's energy for the creative design effort.

Some of the automatic functions which the processor, in its current
state of development, performs are listed below.

1. Document Formatting

(1) Indentation by structure logic.

(2) Flow lines for accentuating structure escapes.

(3) Flow lines for accentuating module invocation.

(4) Line numbering and/or card $equencing for input deck editing.

(5) Logic error detection.

(6) Special handling for title pages and text segments.

(7) Input and output line continuation.

(8) Line splitting (i.e., printing part of the line so that
the last ~:aracter lines up at the right-hand margin).

2. Software Design Summary Information

(1) Module invocation hierarchy.

(2) Module cross reference (where each module is invoked).

(3) Cross reference tables for selected words or phrases
appearing ~n the document. Selection is controlled by
the user.

1-2

I

"

17-24

(4) Table of contents showing all titles and modules, and the
location of the tables described above.

(5) Page reference numbers on module invocation statements.

3. Processor Control Capabilities

(1) Page width.

(2) Structure indentation amount.

Page ejection.

(4) Input line numbering sequence.

(5) Keyword specification.

(6) Selection of words for inclusion in the cross reference
tables.

(1) Number of right-hand columns for card sequence numbers.

(8) Execution time options for suppressing selected processor
features.

C. SDDL OVERVIEW

1. SDDL Syntax

The SDDL syntax consists of keywords, used to invoke design
structures, and a collection of djrectiyes, which provide the user with
control of processor actions such as indentation, page width, start
of a new page, etc. Execution time options allow the user to selectively
suppress design summary information.

Input to the SDDL processor consists of a sequence of SDDL statements.
An SDDL statement begins and ends with a line (or record) of the input
medium, unless continuation is explicitly indicated by placing an ampersand
(&) in the last non-blank character of the line. Continued lines
are concatenated into a single statement for processing. Any natural
language text, including a blank line, is an acceptable SDDL statement.
Keywords are recognized only in context, that is, only when they appear
as the first word of the input statement.

The user is provided complete control of the choice of keywords
by ~I SDDL directive which allows unlimited addition or deletion of
keywords. User control of keyword selection is one of the most important
features of SDDL because it allows the designer to command the capabilities
of the processor in the way which is best suited to communicating the
intent of the design.

1-3

I

-

"\

77-24

A complete description of the SDDL semantics is given in Section II
and summarized there in the SDDL Syntax Overview diagrams.

2. SDDL Structures

The basic forms of the language are the module and block structures,
and the Module Invocation statement. A design is stated in terms of
modules that represent problem abstractions which are complete Q.i~

independent enough (relative to the level of the design) to be treated
as separate problem entities. Modules are the highest-level structure.
They may not be nested. Descriptive names are given to the modules,
and their interrelationships are stated explicitly by the Module Invocation
statements. A Module Invocation statement is the equivalent of the
subroutine CALL 3tatemp.nt in a programming language.

Blocks are the lower-level structures. They are used to build
representations of abstractions which should (relative to the specific
design) be a part of and appear with the higher-level abstraction
represented by t~e module. Thus blocks must be nested within modules
and may be ne3ted within other blocks to any reasonable (i.e.,
understandable) depth. Examples of the use of blocks are the
representa:ions of Structured Programming concepts such as IF-THEN
ELSE and LOOP-REPEAT.

Both kinds of structures may have up to four parts!

(0 Initiator (required)

(2) Terminator (optional)

(3) Escape (optional)

(4) Substructure (optional)

Structure parts are specified by statements which begin with a keyword
that has been defined as the part name. Table 1 displays the SDDL
default keywords for both kinds of structures and their corresponding
structure parts.

Th~ actions taken by the pr0cessor in response to keyword sta~ements
are fully explained in Section II and sUlllIlar.ized :;'0 Figure 1. These
actions are quite simple but very effective for communicating design
information. Indentation of statements within structures, and flow
lines to highlight structure escapes and module invocations providr
visual, two-dimensional information display which captures all of the
advantages offered by flowcharts without their attelldant disadvantages
and constraints.

A simple illustration is presented following Figure 1.

1-4

I

77-24

Table 1-1. SDDL Control Structure Keywords -
INITIATOR TERMINATOR ESCAPE SUBSTRUCTURE

MODULE PROGRAM ENDPROGRAM EXIT PROGRAM -- ---

PROCEDURE ENDPROCEDURE EX ITPROCEDUR E

IF ENDIF ELSE
ELSEIF

BLOCK SELECT ENDSELECT CASE

LOOP ENDLOOP EXITLOOP
REPEAT CYCLE

CALL CALI. N/A N/A N/A
DO

PROCESSOR I LlNENUMBER
CONTROL I EJECT

I INDENT
I DEFINE
IMARK

IWIDTH
NSTRING
NSEQUENCE
NTERMINATE

-.
I TITLE

I'END

I
I

ITEXT I

1-5

\

I
77-24

STATEMENT TYPE ENCOUNTERED

DEFINITION NUMBER~ 2.1 22 2.3 2.4 2.5 2.6 1.6

ACTION TAKEN

Slatement entered in table of contents

All nested. open structures are
closed witl. error messages

New page started in the output file

Indentation level decreased

Statement written to output file

Indentat ion level increased

Lett arrow (escape level indicator)
added to the output file

Right arrow (call Indicator! added
to the outPUt file

SubS\>quent input iines are
diverted to a holding buffer

The lines in the holdlO9 buffer are wrillen
to the output file (bowed in by ... ")

Sub\elluent input lines are d.verted
back for normal processing
ContrOl pararneters of the SOOL
processor are altered

..... ---- --

Figure 1-1.

- --"
~

...
-- -- ...

---- ---- -- -- ---- -- --
....
.... ...

SDDL Processor Actious

1-6

'1
3.7 4.6

·"',",I""'V""'"'~'~T'··"·{""i·."I'·"'¥')·."'~w<~r"··"U:;II.·;~~,~·~~l:'\~~"r..~ __ ""':'4~·~·>'::I:"'''·'''~''~·;o.!·l,<''f!''"""......,r·;~~J''\''''~·~~'~f''~~.iI •• ' •• '.'',!1_C!l~II!'M.":-:l'''lr~~Ji>'~

t ,

j' #
77-24 ,

I In most of the following examples. the SDDL input statements j! l are shown with the resulting output produced by the processor. In
t practice, the input source listing is rarely needed. Where the source

statements are shown, as in the example below, it should be understood
that the line numbering, including the colon, was added and is not
part of the input statement.

Example:

As input:

I: PROGRAM EXAHPLE TO DEMONSTRATE THE BASIC SDOL STRUCTURES
2:(THE LINE ABOVE IS A MODULE INITIATOR STATEMENT WHICH ESTABLISHES
3:"EXA~PL[" AS THE NAME OF THIS PROGRAM/MOOULE.
4f:
5:IF THiS CONDITION IS THUl (BLOCK INITIATCR "IF"I
6:ACT ON T~ls STATEMENT (PASSiVE STATEMENT,
7:ELSE (SUBSTRUCTURE STATEHlNT FOR "IF")
8:ACT ON THE FOLLOWING STATEMENTS ,ANOTHER PASSIVE STATEMENT)
9:

lO"LOOP FOR INDEX • 1 TO SOMETHING ,BLOCK INITIATOR "LOOP")
11 (PASSIVE STATEMENTS CAN BE PLACED ANyWH(~E)

12 CAll SUBROUTINE (MovUlE INVOCATIoN STATEMENT)
13 THE NAME OF THl HODULE INVOKED IN THE PREVIOUS STATEMENT
141 IS "SUBROUTINE"
IS If T~lRE IS ~OT~ING lEFT TO 00 'NESTED BLOCK INITIATOR "If")
16 EXITlOOP (ESCAPE STATEMENT "LooP")
17 ENDlf ,TERMINATOR STATEMENT "'ESTED "IF")
18 ENDLOOP (TERMINATOR STATEMENT "LoOP")
19
20.ENDIF ,TER~IHATOR STATEMENT "If"'
21 ENOPHOGRAM (MODULE TERMINATOR STATEMENT "PROGRAM",
22
23 PROCEDURE SU8HOUTINE
241

25 NOTE: A MODULE INITIATOR STATEMENT CAUSES THE START Of A NEW PAGE-
26
27 SELECT CASE 8A~ED ON SOMl CRITERIoN (BLOCK INITIATOR "SELECT")
28:
29:CAS[l: CHECK FOR SUBROUTINE ABORT (SUBSTRUCTURE STATEMENT fOR "SELECT")
JO:IF THERE IS NO MOHE DATA TO BE RlAO (BLOCK INITIATOR "IF",
31:EXITPROCEDURE (ESCAPE STATEMENT "PROCEDURE")
32:ENDlf
33:
34f:CASE 2: CHECK fOR SUBROUTINE ERROR (SUBSTRUCTURE STATEMENT fOR "SELEcT")
35:1f AN ERROR OCCUHS (blOCK INITIATOR "If"'
36:PRlrIT A~ ERRO~ MESSAGE (PASSIVE STATEMENT)
37:ENDIF
38:
39:CASE 3: INVOKE ANOTHER SUBROUTINE (SUaSTRUCTURE STATEMENT FOR "SELECT")
~O:DO ANOTHER SU~ROUTINE (MODULE INvOCATION STATEMENT'
~1:NOTE: "DO" IS A SYNONYM fOR "CALL" (PASSIVE STATEMENT)
'12:
't3:ENDSELECT ITEHMlhATOR STATEMENT "SELECT",
~4f:ENDpROClOURE (MODULE TEkMINATOR STATEMENT "PROCEDURE")

1-7

-

I

I
f

77-24

As output:

TA8~E OF CONTENTS 'AG[I
P'~E LI~E •••

NUMBER NUHijER MODULE NAME

LINE
1
2
3
It
5
6

7
8
9

10
11
12
13
PI
15
16
17
18
19

1
2

1

1
2l

PROGkAM EXAMPLE TO OEMONSiRATE THE 8ASIe SDDL STRUCTURES
PROCEOURE SU8RQUTI~E

MODULE REFERE~CE ,"EE

MODULE - CROSS REfERENcE LISTING

PROGRAM EXAMPLE TO DEMoNSTRATE THE BASIC SDCL STRUCTURES
.THE LINE A~OVE IS A MODULE INITIATOR STATEMENT WHICH ESTABLISHES
"EXAMPLE" AS THE NAME OF THIS PROGRAM/MODULE'

IF THiS CONDITION IS TRUE (BLOCK INITIATOR "If"'
ACT ON THIS STATEMENT (PASSIVE STATEMENT)

ELSE (SUBSTRUCTURE STATEMENT FOR "IF",
ACT ON THE FoLLOwIN& STATEMENTS (ANOTHER PASSIVE

LOOP FOR INDEX. 1 TO SOMETHIN~ (BLOCK INITIATOR "LOOP"'
(PASSIVE STATEMENTS CAN aE PLACED ANYWHERE'

CALL SUBROUTINE ("ODULE INVOCATiON STATEMENT'·-.·_·.-·-·_··>'
THE NA"E OF THE MODULE INVOKED IN THE PREVIOUS STATEMENT
IS "Su8ROUTlNE"
IF THERE IS NOTHI~G LEFT TO DO (NESTED BLOCK INITIATOR "If·,

<---_-EXIT~OOP (EstAPE STATEMENT "LOOp·,
ENOlf (TERMINATOR ST~TEMENT NESTED "IF"'

[NDLOOP (TERMINATOR STATEMENT "LOOP"'

20 ENOIF (TERMINATOR STATE~ENT "IF"I
21 ENOPROGRAM (MODULE TERMINATOR ~TATEHENT "PROGRAM",

1-8

1

77-24

PROCEDURE SUBROUTINE

NOTE: A MODuLE INITIATOR STATEMENT CAUSES THE START 0, A NEW PAGr.

CASE I: CHECK FUR SUBROUTINE AloRT ,SUBSTRUCTURE STATEMENT FOR ·SELE:T·,
IF THERE IS NO MORE DATA TO BE READ ,BLOCK INITIATOR ·1'-'

< •••••••• EXITPROCEDURC (ESCAPE STATEMENT "PROCEDURE",
ENDI,

CASE Z: CHECK FOR SUBROUTINE ERROR ,SUBSTRUCTURE STATEMENT FOR ·SELECT",
If AN ERROR OCCURS ,BLOCK INITIATOR •• ,",

PRINT AN ERROR MESSAGE ,pASSIVE STATEMENT'
ENOl,

CASE ,: INVOKE ANOTHER SUBROUTINE ,SUBSTRUCTURE STATEMENT 'OR ·5ELECT·,
00 ANOTHER SUBROUTINE 'MODULE INVOCATION 5TATEMENT' •• • ••• ·.·.·>(,
NOTE: "DO" IS A SYNONYM FOR ·CALL· (PASSIVE STATEMENT,

LINE
U
211
2S
26
27
Z8
29
lO
31
32
33
311
lS
36
37
38
19
110
III
liZ
II, E~DSELECT ,TERMINATOR STATEMENT -SELECT·'
4 .. ENDPROCEDURE ,MODULE TtRMINATOR STATEMENT ·PROCEDURE",

•••••••••••••• MODU~E REFERENCE TREE ••••••
LN PAGE

1 1 EXAMPLE
Z 2. SU8RouTINE
l ••• ANOTHER

MODULE
CROSS ~EFERENCE LISTING

lDENTIFIER· •• • •• ~~·+········+··+······················ ..•.••.•.••..•...•.•.••..•
ANOTHER

PACit
LINES

EXAMPLE
~AG£

!.INES
SUBROUTI~E

PAGE
LI~E~

PAGE
L.I i~ts

2 PROCEDU~E SUdROUTINE
Ita

1 PROGRAM EXAMPLE
1, 3

1 PROCiRA" EXAMPLE
12, lit

2 PROCEDURE SUBROUTINE
Z3. 29, 3", 39, Ita

1-9

\

I
"

77-24

D. SDDL METHODOLOGY

The following discussion of techniques and styles is intended as
a guideline or list of suggestions for using the capabilities of the
SDDL language and processor to fullest advantage in striving for the
goal of an informative and communicative Software Design Document.

The ceader is encouraged to examine these suggestions with a
critical eye. Accept what is useful, adapt to your own requirements
and taste, and invent new methods, but always keep in mind that the
primary purpose of the Software Design Document is to communicate
information to other people.

1. Uses of the Software Design Document

Throughout the development of the software design, the SDD always
represents the definitive word on the current status of the ongoing,
dynamic design development process. It is easily updated and readily
accessible, in a familiar, informative, readable form, to all members
of the development team. This makes the SOD an effective instrument
for reconciling misunderstandings and disagreements in the evolutionary
development of design specifications, engineering support concepts,
and the software design itself. Using the SOD to analyze the design
makes it possible to eliminate many errors which otherwise might not
be detected until coding is attempted.

As a project management aid, the SOD is very useful for monitoring
progress and for recording task responsibilities.

The SOD has been found to be very effective in its primary role
as the specification for coding the design. To date, there is no experience
with the use of the SOD for software maintenance, but since the SOD
is easily revised, and revisions are automatically cross referenced,
the outlook for this purpose is favorable.

2. Representation of Data Structures

A thorough knowledge of the content and organization of its input
and output data is an essential prerequisite to understanding a program.
For this reason, much attention was focused on developing data structure
representations that effectively display data organization and content.
SDDL techniques that facilitate achieving this goal include:

o Group the data into appropriate data description modules located
in the beginning pages of the SOD.

o Provide descriptive names for variables.

o Use the period (.) (it lies low on the printed line and does
not interfere with readability) to connect the words of a
descriptive phrase to form a variable name.

1-10

77-24

o Use the underscore to connect the words of a descriptive phase
to form a module name.

o Use the single or double quote mark to identify single word variable
names for cross referencing.

o Include information about the data (e.g., units, mode, dimension,
etc.) in the data structure module.

o Group all data which describe attributes of a design entity with
the entity they describe, and provide an entity name which can be
used as a qualifier with the attribute.

o If the program is to be implemented in a language that does
not permit the use of descriptive variable names, include the
name to be used in the program code in the data structure.

o Define ENTITY (or another suitable word) to be a block initiator
keyword to provide automatic indentation. Use the ITERMINATE
directive to terminate the block without printing a Termination
statement.

Example:

PROGRAM VEHICLE-COMPONENTS DATA STRUCTURE

ENTITY ENGINE:
PCT.PEDAL

'RPM'
'TORQUE'
MIN.TORQUE
MAX.TORQUE

'HORSEPOWER'

[PCTPED]
[ENGRPM]
[TORQUE]
[MINTOR]
[MAXTOR]

(VECTOR) (HPOWER]

ENDPROGRAM VEHICLE_COMPONENTS DATA STRUCTURE

PERCENT
REV/MIN
FT*LB
FT*LB
FT*LB
HP

PROGRAM DYNAMIC_SYSTEM-PARAMETERS DATA STRUCTURE

ENDPROGRAM

3. Representations of Control/Procedural Structures

The constructs of Structured Programming, such as modules (e.g.,
PROGRAM - RETURN - ENDPROGRAM), iterations (e.g., LOOP - CYCLE/EXITLOOP -
REPEAT), conditionals (e.g., IF - ELSE - ENDIF), and selections (e.g.,
SELECT - CASE - ENDSELECT) are used in a similar manner for software
design. The difference is that for software design, the structures
should convey human-oriented, natural language information to the
level of precision and completeness necessary to communicate the design,
but free of the syntax constraints and detailed information requirements
imposed by programming languages.

1-11

I

r
!

L , 1 I 5

77-24

Example: Module and block structures, high-level statements

1 PROGRAM MAIN ROUTINE
2 LOOP UNTIL THERE IS NO MORE DATA
3 READ THE DATA AND CHECK IT
4 IF THE DATA IS BAD OR INCOMPLETE
5 (-----CyCLE TO THE NEXT CASE
6 ELSE
7 CALL DATA_PROCESSING ROUTINE---------) (9)
8 ENDIF
9 REPEAT
10 TERMINATE THE PROGRAM
11 ENDPROGRAM

o If the design must specify a list of conditions where all must be
tested and acted upon if true (in contrast to the SELECT-CASE
ENDSELECT construct, which finds and executes only the first true
condition), a new structure is recommended in place of a sequence of
IF-ENDIF structures. Use the #DEFINE directive to establish
the following structure:

CHECK - block initiator
ENDCHECKLIST - block terminator
CONDITION - substructure

Example:

As input:

l: a DEFINE BLOCK CHECK, ENDCHECKLIST., CONDITION
2:
J:PROGRAH FOR VACATION PREPARATION
'I:
S:CHECK AND ACT ON ALL TRUE CONDITioNS IN THE FOLLO~lNG LIST
6 :
7:CO NDITION: CAR NEEDS TO BE SERVICED
e:TAKE CAR TO THE SERVICE STATION
9:GET GAS AND OIL

10:INF'LATE TIRES
11 :
12'CONDITloN: OELIVERIES HAVE TO BE CANCELLEO
13 CANCEL NEWSPAPER
1'1 CANCEL MILK
15
16 CONDITION: TRIP HAS TO BE PLANNED
17 (iET HAPs
18 MAKE HOTEL RESERVATIONS
19
20 ENDcHECK LIS r
21 [NDPROGRAM

1-12

i
!

f·
~
l
~"

~
f
~
!. ,
i

f

1
i
[
f
t
~
?

""'

77-24

As output:

LINE PAGE 1
1 PROGRAM FOR VACATION PREPARATION ..
5 CHECK AND ACT ON ALL TRUE CONDITIONS IN THE fOLLO~ING LIST
6
1
8
9

10
11
12
13
1"
15
16
11
18
19
20
21

CONDITION: CAR NEEDS TO BE SERVICED
TAKE CAR TO THE SERVICE STATION
GET GAS AND OIL
INFLATE TIRES

CONDITiON: OELIVERIES HAVE TO BE CANCELLED
CANCEL NEWSPAPER
CANCEL MILK

CONDITION: TRIP HAS TO BE PLANNED
GET MAPS
MAKE HOTEL RESERVATIONS

ENDCHECKLIST
EfJOPROGRAM

o The following forms are recommended for use when the design has
progressed to the point where engineering calculations need to
be expressed:

Example 1: Equation not yet determined

CALCULATE VEHICLE.STATE: DISTANCE. TRAVELLED (TARGETTED)
- GIVEN: VEHICLE.STATE: DISTANCE. TRAVELLED (CURRENT)
- VEHICLE.STATE.VELOCITY (CURRENT)
- VEHICLE.STATE.ACCELERATION (TARGETTED)
- TIME INCREMENT

Example 2: Equation included

COMPUTE VEHICLE.STATE: DISTANCE. TRAVELLED (TARGETTED) =
D + V-T + (A/2)-T--2

D == VEHICLE.STATE: DISTANCE. TRAVELLED (CURRENT)
V == VEHICLE.STATE: VELOCITY (CURRENT)
T == TIME.INCREMENT
A == VEHICLE.STATE: ACCELERATION (TARGETTED)

Indentation in the examples above may be imposed by indenting the input
~tatements or by defining COMPUTE to be a Block Initiator keyword.

1-13

77-24

4. Specification of Module Interfaces

Explicit specification of the data passed between modules and
accessed from a global store will eliminate many debugging problems
in the coding and integration stages.

o Use the words GIVEN and YIELD to specify parameters transmitted to
and returned from a module. Use the word USING to specify global
variables accessed.

o List ~he GIVEN and YIELD parameters with Module Invocation
statements.

Example:

NOW CALCULATE_DRIVE_WHEEL_OUTPUT_REQUIRED-------------------------> (38)
• GIVEN: VEHICLE.STATE:
• SCHEDULED.TIME
• YIELD: VEHICLE.STATE: TIRE.RPM, ACCELERATION
• WHEEL FORCE REQUIRED
• WHEEL TORQUE REQUIRED

In this example, NOW is the Module Invocation keyword. Th~ lines
specifying arguments passed to and from the module all begin with an
asterisk to emphasize their association with the Invocation statement.

o List USING, GIVEN, and YIELD parameters with Module Initiator
statements.

Example:

PROCEDURE TO CALCULATE_DRIVE_WHEEL_OUTPUT_REQUIRED
••
• •
• USING; DRIVE. POWER. TRAIN: DATA •
• CHASSIS: DATA •
• GIVEN; VEHICLE.STATE: •
• SCHEDULED.TIME •
• YIELD; VEHICLE.STATE: TIRE.RPM, ACCELERATION •
• WHEEL FORCE REQUIRED •
• WHEEL TORQUE REQUIRED •
• •
••

The parameters in this structure are set off by using the
ITEXT - lEND directives to enclose them in a box formed by asterisks.
In addition to the GIVEN and YIELD arguments, the USING category lists
global parameters which are accessed by the module.

5. Inclusion of Management Information in the SDD

Project management information, just as program design, must
be kept up to date and accurate. The SDD is the ideal place to maintain

1-14

· f 77-24

this information, and the language can be used effectively to present
the information. Listed below are several Module Initiator statements
which have been used effectively in the VEEP and SAMIS programs. These
examples are intended to ~uggest kinds of management information, as
indicated by their wording, which might be included in the SOD.

6.

PROGRAM OBJECTIVES
PROGRAM REVISIONS MEMORANDA
PROGRAM MEETING CALENDAR & AGENDA
PROGRAM DOCUMENT READING CONVENTIONS
PROGRAM COMPLETION SCHEDULE

Additional Uses of the Cross Reference Capability

The SOD typically will contain much information, i~ addition
to the names of design parameters, for which it would be useful to
have a cross reference. Individual cross reference tables for each
type of information can be obtained by associating a different cross
reference title with each (see the 'MARK directive). Some that have
proved to be useful appear below in a sample design, showing the form
of the IMARK directive which establishes the cross reference charac
ter, and the way in which the data appear in the main body of the SOD.
The pound sign (I) has been used in the input to cause some information
to be printed at the right-hand margin of the SOD for increased
readability.

Example:

As input:

I:.HARK REVISIONS I FOOTNOTES [FrLE NAMES I
Z:.MARK UpDATE RESPONSIBrLITY ?
l:PROGRAM TO PROCESS CUSTOMER DATA. CREfll
~:READ NAMES FROM CUSTOMERIFILE • 11
S:MATCH NAMES TO CREOrT DATA. ?HK
6:WRI~E CREDIT INfO TO CREOITlflLE • 12
7:ENOPROGRAM

1-15

(
I
j

1

77-24

As output:

TABLE OF CONTENTS PAGE I
PAGE LINE •••

NUM8ER NUMBER MO~ULE NAME

1

2

3

It

pROGRAM TO PROCESS CUSTOMER DATA

REViSIONS - CROSS REFERENCE LISTING

FOOTNOTES - CROSS RtFERENCE LISTING

FILE NAMES - CHOSS REFERENCE LISTING

5 UPDATE RESPONSIBILITY. CROSS REFERENCE LiSTING

LINE
3 PROGRAM TO PROCESS CUSTOMER DATA
It READ NAMES FROM CUSTOMEHIFILE
5 MATCH NAMES TO CREDIT DATA
o WRITE CREDIT INFO TO CREOITIFIL[
7 ENDPROGRAH

REVISIONS
CROSS REFERENCE LISTING

PAGE ,
[REFll

PAGE

I'
7HK
I~

2

IDENTIFIER •••••••••••• •••••••••••••••••••••••••••••••• ••••• + ••••••••

II
pAGE 1 PROGRAM TO pROCESS

L.INES If

12
PAGE 1 PROGRAM TO PROCE~~

LINES 6

1-16

77-24

FOOTNOTES
CROSS REFERENCE LISTIN~ PAGE 1

IDENTIFIER •••••••••••• •••••••••••••••••••••••••••••••• ••••••••••••••

tREFl
PAGE

LINES
1 PROGRAM TO PROCESS

1

FILE NAMES PAGE .. CROSS REFERENCE LISTING
IDENTIFIER •••••••••• •••••••••••••••••••••••••••••••••• ••••••••••••••

CREDIT.FILE
PAGE 1 PROGRAM TO PROCESS

LINES •
CUSTOMERIFILE

PAGE 1 PROGRAM TO PROCESS
LINES 4f

UPDATE RESPONSIBILITY
CROSS REFERENCE LISTING PAGE 5

IDE~TIFIER •••••••••• ···+·················+············

PAGE
LINES

, PROGRAM TO PRoCESS
5

1-17

-

77-24

SECTION II

SOOL USER'S REFERENCE GUIDE

lnRui to the SDDL processor consists of a sequence of design state
ments and processor conti'ol directives.

Statements and Directivea beg~n and end with a line (or record) of
the input medium, unless line continuation is explic.tly indicated, as
described below. Continued lines are concatenated into a single statement
for processing.

A. CONTINUATION OF INPUT LINES

A continuation mark, the ampersand can be used to concatenate
several input lines/cards into a single SDDL input st.atement. The
following rules apply to its use:

(1) If the last non-blank character (excluding card sequence numbers
-- see ISEQUENCE directive) of an input line is an ampersand,
the processor will concatenate the next line of input with
the current line to form a single statement.

(2) The ampersand which caused the continuation is removed
from the newly formed line, but all other characters, including
other ampersands and blanks, are used as they were input
to form the new line.

(3) The continuaticn mark may be used on as many subsequent
input lines as desired to form a single SDDL statement
or directive out of several input lines.

(4) If the resulting input statement exceeds the allowable
output line space, it will be handled as described below.

B. CONTINUATION OF OUTPUT LINES

Occasionally a line of output may be l?ng enough to extend beyond
the right-hand page margin. When this occurs, the processor handles
the line in the following way:

(1) Beginning at the appropriate indentation level, 3S many
characters (including blanks) of the input line as space
permits are printed on the current line.

(2) On the next line of the document, an ampersand is printed
one space to the right of the current indentation level,
and the remaining characters are printed immediately following
the ampersand. Step 2 is repeated as many times as necessary
to complete the line.

2-1

r
1

77-24

(3) If the indentation level is such that no characters can
be printed on the first line, then step 2 is repeated with
output beginning at the left margin instead of at the indentation
level.

Example:

As input:

1 PRIOR LINE
2 THIS IS AN EXAMPL&
3 E OF A LONG INPUT &
4 LINE & A LONG QUTP&
5 UT LINE
6 NEXT LINE

As printed:

1 PRIOR LINE
2 THIS IS AN EXAMPLE OF A LONG INPUT LIN

&E & A LONG OUTPUT LINE
6 NEXT LINE

C. SDDL SYNTAX DEFINITION LEVELS

The SDDL syntax definitions are subdivided into five levels. The
primitive definitions are presented in Level O. Secondary definitions
based on the primitive definitions are in l~vel 1. Level 2 contains
SDDL statement definitions. The SDDL control directives are defined
in level 3. Finally, an overview diagram of an SDDL program, based
on definitions in levels 2 and 3, is given in level 4. The definitions
in levels 1 through 4 are accompanied by flow diagrams which specify
the requirements and options of the syntax. To interpret the diagram,
trace the flow line from the term being defined to the end of the definition.
Boxes which are unavoidable are requirements, boxes which can be bypassed
are options, and boxes which can be returned to are r~peatables. The
contents of a box may refer to another definition or a literal. To
differentiate between them, definitions appear in smaller type, with
the definition number in the lower right-hand corner, and literals,
in larger type, have no accompanling number.

1. Primitive Definitions (Level 0)

The following description and discussion of SDDL is based on the
short list of primitive definitions shown in Table 2. Note e$pecially
that the definition of a letter includes the pcund sign in addition
to the alphabet. Also note that initially no ~~RK characters are
defined. As will be explained later ~;~ the discussion of the 'MARK
directive, any punctuatlon may be converted to a HARK by user specification.

2-2

I 77-24

Table 2-1. SDDL Primitive Definitions

Definition
Number Name

0.1 character set

0.2 letter

0.3 digit

0.4 punctuatil)n

0.5 mark

0.6 e.o.s.

DescripU' ,

The entire set of allowable characters
(including the blank).

The alphabet (A-Z) and the pound sign (f).

The digits (0-9).

The characters remaining after letter,
digit, and the blank have been deleted from
the entire character set.

Any punctuation which has been converted
by a control directive. (Initially, this
is the empty set.)

The end of an input statement or directive,
determined by the end-of-line/record
indicator (e.g., carriase return) of an
input line without a continuation mark.

2. Secondary Definitions (Level 1)

The definitions of identifier, number, and word shown below are
based on the SDDL primitive definitions shown in Tab~e 2.

-~~ U:TTER

2-3
•
j
,

I
.... '-......--.. _ ..•

77-24

L

Note that a number may not have a decimal point. This constraint
only affects SDDL control directives and has no impact on the design
statements which appear in the SDD.

As shown above, a word can be an identifier, a number, or punctuation;
in short, any token or object definable under the preceding definitions
of the language. As in natural languages, the space or blank is a
very important part of the syntax which is needed for delimiting or
~eparating words.

2-4

77-24

Example:

ABC123 X YIZ?E 12 4W

Lexical analysis of the above line yields the following words:

ABC 123
X
YlZ
?
E
12
4
W

(identifier)
(identifier)
(identifier)
(punctuation)
(identifier)
(number)
(number)
(identifier)

If ? had previously been converted to a mark, the result would yield
the following words:

ABC 123
X
YlZ?E
12
~

W

1." STAID£NT

(identifier)
(identifier)
(identifier)
(number)
(number)
(identifier)

[.0.5.

A statement, as shown in the diagram above, consists of a sequence
(including the null case) of words.

1.5 K('MlRD

'l'be SDDL processor is keyword-driven. A keyword is an indentifier
which has been predefined to be the name of a structure part (initiator,
terminator, escape, substructure), a Module Invocation word, or a
control directive. Keywords are recognized only in context, i.e.,
only when they appear as the first word, though not necessarily starting
in the first column, of the statement or directive.

The primary function (in the sense that it precedes and supports
everything else) of the processor is to reproduce the input statements

2-5

.. ~\ .. \ .. }~ .. ? l l"""l l.-.---.--.--' .. ' , ..

I

77-24

on the SDD output file in a manner which enhances t~e reader's capabililty
to understand the resulting document with the least effort. This is
accomplished by indentation of statements within structures, and
superimposition of flow lines to highlight structure escapes and module
invocations. The actions taken by the processor in response to specific
statement types are described below.

1.6 PASSIVE STATEMENT

A Passive statement is any statement which does not begin with
a keyword. Passive statements may be used to convey any design information
as desired but they do not have any special meaning to the processor
as do the Keyword statements.

Passive statements are processed as follows:

(1) Since Passive statements must be imbedded within a module
structure, if one does not already exist, the processor
supplies a module, with an error message.

(2) The entire statement is scanned for the appearance of any
identifiers which have been deSignated for inclusion in
the cross reference tables. The means for deSignating
identifiers for inclusion in the cross reference tables
is explained under the discussion of the 'MARK and the
'STRING directives.

(3) The input line number (i.e., the number corresponding to
the statement's sequential location in the input medium)
is written at the left margin.

(4) The entire statement including all blanks is copied to
the SDD output file beginning at the current point of
indentation.

(5) If the statement contains a pound sign, the portion
of the statement which follows will all be right shifted
so that the last non-blank char~cter lines up at the right
margin. The pound sign itself is replaced with a space.
This feature has many important applications which are
examined under the discussion of the 'MARK directive.

~ 2-6
•
r

77-24

Example:

As input (input line:1)

ADD 1 # COUNT CASES

As output:

LINE PAGE 1

PROGRAM STATEMENT SUPPLIED BY PROCESSOR

1 ADD 1 COUNT CASES

3. Keyword Statement Definitions (Level 2)

This section describes the Keyword statements which drive the
processor formatting actions. The actions are summarized in
Figure 1.

2.1 MODULE INITIATOR

HOOULE
INITIATOR r-....... --------........,~ IDENTiFiER

KEYWORD
(TABLE l)

Example:

TO

FOR
POCTUATION

PROGRAM TO READ THE PROGRAM INPUT

(1) The keyword PROGRAM is recognized as a Module Initiator.

(2) The optional noise ~ord TO (FOR or punctuation are
alternative noise words) is ignored.

(3) The next identifier, READ, is established as the module
name and recorded for future cross referencing. The remaining

2-7

1-- ~

; >

71-24

words, including the second appearance of PROGRAM, are
all passive (i.e., they are handled as though they were
part of a Passive statement).

(4) Since a module is the highest-level structure and may not 1
be nested within other structures, the processor termtnates
any open structures (i.e., structures which have been initiated
but left unterminated) with appropriate error messages.

(5) The entire Module Initiator statement is entered into the
SOD table of contents.

(6) The module structure is entered into a push-down (last-
in, first-out) structure stack for later matching with subsequent
statements specifying other parts of the structure.

(7) A new page of the SDD is started with appropriate heading.

(8) The indentation point is set to level zero (just to the
right of the location of the input line number field).

(9) The statement is written to the SOD output file in the
manner described above for Passive Statements.

(10) The indentation is increased one level by moving the
indentation point the required number (default: 3) of spaces
to the right.

2.2 BLOCK INITIATOR

Example:

9LOCK
INI TlAT~ I--".....--------.;:--~
KEYI()RI)

(TABL[I)

LOOP UNTIL FILES A, B & C HAVE BEEN READ

[.o.s.

(l) The keyword LOOP is recognized as a Block Initiator keyword.

I
$

2-8

I
f I 5

..
. f

r
"

(2)

(3)

(4)

77-24

Since blocks must be nested within modules, if an open
module does not already exist, the processor supplies a
module with an error message.

The block structure is placed on the structure stack, as
described above in step 6 of the Module Initiator statement.

The statement is written to the SDD output file, as described
above for Passive statements.

(5) Indentation is increased one level (see step 10 for the
Module Initiator statement).

2.3 riJ~:"INATOR

__ .-.j TERMINATOR t-.,.......-------~-..
KEYWORD E.0.5.

(TABLE 1) '-----"'-...;;..;.""

Example:

ENDPROGRAM TO READ INPUT

(1) The identifier ENDPROGRAM is recognized as a Terminator
keyword.

(2) The structure stack is searched for a matching Structure
Initiator. If none is found, the statement is processed as a
Passive statement and is followed by an error message. No
furthel' action is taken.

(3) If a matching structure is found, all intervening open
structures are terminated with error messages;

(4) The structure to be terminated is removed from the top of the
structure stack;

(5) Indentation is decreased one level (shifted left) to match
the indentation of the Structure Initiator statement.

(6) The statement is written to the SDD output file in the
manner of a Passive statement.

i
j
f
f

!
f

·1 ----
7

? ;; in

77-24

,-__ ~~nwc~~,-______________ ~~~
KE'MlRO

(TAIl.E 1)

Example:

ELSE TRY ANOTHER ALTERNATIVE

E.O.S.

(1) The identifier ELSE is recognized as a Substructure keyword.

(2) The structure stack is searched for a matching Structure
Initiator. If none is found, the statement is processed as a
Passive statement and followed with an error message. No
further action is taken.

(3) If a matching structure is found, all intervening, open
structures are terminated with error messages.

(4) Indentation is decreased one level (shifted left) to match
the indentation of the Structure Initiator statement.

(5) The statement is written like a Passive statement.

(6) Indentation is increased one level (shifted right), as
when the structure had just been initiated, in effect re
initiating the structure.

2-10

I I ! 1 ..a t ; t 7E
f

77-24

ESCAPE
KE'fHORl>

<TABLE 1)

.--_-------_~_tIOI E.O.S.

Example:

EXITLOOP IF DELTA < EPSILON

(1) The identifier EXITLOOP is recognized as an Escape keyword.

(2) The statement is written to the SDD in the manner described
for the Passive statement.

(3) The structure stack is searched for a matching Structure
Initiator. If none is found, an error message is added
to the SOD output file.

(4) If a matching structure is found, the escape statement
is completed by the addition of a flow line (left arrow)
extending from the current indentation level to the
indentation level of the Structure Initiator statement.

2-11

,

i
;

I
I

j
,

77-24

Example:

CALL : INITIALIZATION ROUTINE

(1) The identifier CALL is recognized as a Module Invocation
keyword.

(2) The optional punctuation, :, is ignored.

(3) The identifier INITIALIZATION is established as the name
of the module to be invoked and recorded for module cross
referencing.

(4) The statement is written to the SDD in the manner described
for a Passive statement.

(5) The output line is augmented by a flow line (right arrow)
extending from the rightmost non-blank character of the
statement to within five columns of the right-hand margin.

(6) The last five columns of the output line are filled in
with parentheses enclosing the page number of the module
referenced by the Module Invocation statement.

The processor actions for SDDL statements described above are
summarized in Figure 1. The following example illustrates the statements
as they might be combined in a simple design:

2-12

I
I

i ,
,.

>

77-24

Example:

As input:

I:PROGRAM TO SUMMARIZE DATA
Z:CALL INITIaLIZE
3:LOOP UNTIL aLL NUMBERS HAVE BEEN READ
.. :READ A VALUE
5:CALL ERRORCHECK
6: IF THE ERROR CHECK INDICATES AN ERROR
7: PRINT THE FoLLOWING MESSAGE
8: -SOMETHING'S WRONG-
,:CYCLE BACK FOR ANOTHER ITERATION

10:ELSE
II:SUM VALUES, SQUARED VALUES
IZ:INCREMENT COUNTER
13:ENDIF
1 .. :REPEAT
15:DISPLAY MEAN AND STANDARD DEVIATIoN
16:ENDpROGRAM
17·PROCEDURE TO INITIALIZE
18 VARIABLE
19 SUM
20 SUM of SQUARES
21 COUNT
22 LOWER BOUND
23 UPPER BoUND
2.. PROCEDURE FoR ERRORCHECK

INITIAL VALUE
0.0 'REAL
0.0 'REAL
a 'INTEGER
o 'REAL

100.0 'REAL

25 INITIALIZE [RRORCHECK TO INDICATE AN ERROR
26 IF LOWER BOUND < VALUE
27:IF VALUE < UPPER BOUND
28:RESET [RRORC"ECK TO INDICATE NO ERROR
2,:EXITLOOp
lO:tNDLOOP

L

2-13

I
f 1 1 I c

'" ,
'(7-24

As output:

TABLE or CONTENTS PAGE
PAGE LINE •••

NUMBER NUMBER MoDULE NAME

1
2
J

If

5

1
17
2"

pROGRAM TO SUMMARIZE DATA
pROCEDURE TO INITIALIZE
pROCEDURE FOR ERRORCHECK

MODULE REFERENCE TREE

MODULE • CROSS REFERENCE LISTING

LINE PAGE ,
1 PROGRAM To SUMMARIZE DATA
2 CALL INITIALIZE-----.---- _____ ._-_-_________ • ________ .>C 2)

J LOOP UNTIL ALL NUMBERS HAVE BEEN READ
If READ A VALUE
5 CALL ERRORCHECK ______________ - ___ • __ ._ •• _____ • ____ .>C JJ

, IF THE ERROR CHECk INDICATES AN ERROR
7 PRINT THE rOLLOWING MESSAGE
8 -SOMETHING'S WRONG-
9 <--.·-CYCLE BACK FOR ANOTHER ITERATION

10 ELSE
11 SUM VALUES, SQUARED VALUES
12 INCREMENT COUNTER '3 ENDIF
'If REPEAT
15 DISPLAY MEAN AND STANDARD DEVIATIoN
" ENDPROGRAM

LINE
, 7

'8
19
20
21
22
23

PROCEDURE TO INITIALIZE
VARUBLE
SUM
SUM or SQUARES
COUNT

INITIAL VALUE
0.0

LOWER BOUND
UPPER BOUND

ENDPROCEDURE - STMT SUPPLIED BY

."4 "~tf~"~c
I > 7

I

S

2-14

I
f

0,0
o
o

100,0
PROCESSOR

1

PAGE 2

REAL
REAL

INTEGER
REAL
REAL

I 5

I

-

I
; >

LINE
2 ..
2S
26
27
28
2.

•••••
30

•••••

77-24

PROCEDURE FOR ERRORCHECK
INITIALizE ERRORCHECK TO INDICATE AN ERROR
I' LOWER BOUND < YALUE

I' VALUE < UPPER 10UND
RESET ERRORCHECK TO INDICATE NO ERROR
EXITLOOP
• •• ERROR ••• INCORRECT MODULE ESCAPE WORD
ENDLOOP
••• ERROR ••• INCORRECT MODULE TERMINATOR

ENDIF • STMT SUPpLIED BY PROCESSOR
ENDIF • STMT SUPPLIED BY PROCESSOR

ENDPROCEDURE • STMT SUPPLIED BY PROCESSOR

•••••••••••••• MODULE REFERENCE TREE ••••••
LN PAGE

1 1 SUMMARIZE
2 2. INITIALIZE
1 l. ERRORCHECK

MODULE
CROSS REFERENCE LISTING

1

PACiE

PAGE

IDENTIFIER ••• • •••••• •••••• •• •••••••••••••••••••••••••• ••••••••••••••

ERROR CHECK
PAGE

LINES
PAGE

LINES
INITIALIZE

PAGE
LINES

PAGE
LINES

PAGE .
LINES

SUMMARIZE
PAGE

LINES

s

1 PROGRAM TO SUMMARIZE
S ••

3 PROCEDURE FOR ERRORCHECK
z ... 2S. 28

1 PROGRAM TO SUMMARIZE
2

2 PROCEDURE TO INITIALIZE
17

3 PROCEDURE 'OR ERRORCHECK
2S

1 PROGRAM TO SUMMARIZE
1

2-15

1
I

t f 1 I .
5

77-24

~. Control Directives (Level 3)

Control directives allow the user to set processor control
specifications (e.I., pale width, indentation) and to cause some immediate
actions to be taken (e.I., pale eject). Control directives are read,
interpreted, and acted upon by the processor. They are not written
to the SDD output file and hence are not seen in the final document.
Control specifications set by directives are put into effect as soon
as they are interpreted and remain in effect tor all subsequent input,
or until overridden by another directive. Directives can be used to
set and reset processor control specification~ as often as desired.
The SDDL control directives are defined and deucribed on the followinl
pales. The sequence of presentation is intended to avoid lookahead
cauaed by definitions baaed on terms defined on subsequent pases.

Control directive ke~ords all bel in with the pound siln character.
They are preaet (aee Table 2) and must not be altered. The user must be
careful not to define a new mean ins for a control directive keyword
(aee 'DEFINE directive) since it will cause the ~reaet detinition
to be overridden.

'3.1 KARK DIRECTlVE

#MARK l------,.------~-----.. E.O.S
I.-~~:':':""...J

IDENTIfIER

Selection of words or identifiers tor cross reterencinl 1s
controlled by the 'MARK and the 'STRING directives. When usinl the
'MARK directive, the deaisner specities a list of punctuation which
the processor :-:'.' 'l subsequently treat in the tollowing manner:

(1) AJ.~ ", ~i.!tuat1on appearinl in the statement is converted
into a MARK (syntax detinition 0.5), i.e., those characters
which are used to torm identitiers. They can then be used
as connectors to build a single identifier out of separate
worda.

2-16

i
'.

77-24

Example:

'MARK •
EVFRY.GOOD.BOY DOES FINE

(2) Every identifier which includes a HARK, such as in
EVERY.GOOD.BOY in the example above, is included in
a cross reference listing produce~ at the end of the
design document.

Titles for the cross reference listings may be supplied by placing
any string of characters (except punctuation) prior to the punctuation
to be converted. If no title is supplied prior to the first punctuation
jn the directive, a blank title is assumed.

The SDDL processor provides individual cross reference listings
for each unique title found in the IHARK and/or ISTRING directives.
Identifiers containing HARKs which were specified with identical titles
are merged into a single cross reference listing. Titles are considered
to be identical if, after deleting leading and following blanks, they
are an exact, character-by-character match, including internal (between
word) blanks. Identifiers which contain marks associated with several
unique titles will appear in each appropriate cross reference. These
conventions are exemplified below, andu additional, more comprehensive
example is given following the 'STRING directive.

Example:

'MARK ?I DATA ITEMS J REVISIONS $

'MARK ; DA'fA ITEMS .:

The HARKs specified in the above example are associated with the titles
as follows:

CROSS R~FER£NCE LISTING

?

DATA ITEMS
CROSS REFERENCE LISTING

REVISIONS
CROSS REFERENCE LISTING

$

2-17

> I
2

I

t 1 I 5

77-24

#5TRI NG I-----_-----~-----t E.O.S 1..-____ '--:.=.::..1

This directive allows the user to specify one or more punctuation
marks to be used as string delimiters. The purpose of enclosing text
within string delimiters is to have it included in a cross reference
table at the end of the document. The following rules govern the use of
this feature.

(1) Several HARKs may be specified as string delimiters but no
distinction is made between left (opening) or right (closing)
delimiters

Example:

'STRING ()
1 SAMPLE STATEMENT (STRING ONE(
2) STRING TWO (NOT A STRING) STRING ABC)

In the above example, the following text segments are defined and
will be cross referenced:

"STRING ONE" "STRING TWO" "STRING ABC"

(2) Preceding and following blanks are excluded from the string,
but interior blanks are indluded.

Example:

'STRING '
LINE 1
LINE 2
LINE 3

ABC O'
'ABC 0
'ABC 0'

The strings in LINE 1 and LINE 2 are the same because they match
exactly after preceding and following blanks are stripped off.
The string in LINE 3 does not match the others because it
does not have the same number of spaces between ABC and O.
Each unique string, where uniqueness i3 defined by rules
1 and 2, becomes a single entry in the cross reference.

2-18

/

-

, , .. ,,,1., , , ,.J.

77-24

(3) If the closing delimiter is omitted, the string is terminated
by the end of the input statement.

Example:

'STRING '
LINE 1 'ABC' AND 'DEF G

Strings ABC and DEF G are recognized.

(4) If the text enclosed in string delimiters consists of a
single identifier, regardless of preceding or following
blanks, it is recognized as described above, but in addition,
the processor will thereafter recognize and cross reference
the named identifier whether it appears with or without
delimiters.

Example:

'STRING "
LINE 1
LINE 2

"VEHICLE "
VEHICLE AND VEHICLE

In the above example, VEHICLE is recognized anJ the cross
reference will show that it was found once in LINE 1 and
twice in LINE 2.

(5) A title for the cross referencing of text strings may be
supplied by including any characters except punctuation
between the 'STRING keyword and the first MARK to be
converted to a string delimiter.

The title (including the null case) supplied with the #STRING
directive is compared with the titles supplied with the 'MARK directives
for merging of the cross reference listings. When several 'STRING
or 'MARK directives with conflicting title specifications are used,
the rule followed is that the last usage overrides all prior usage.

2-19

77-24

Example:

As input:

1,IMARK?, DATA ITEMS' REVISIoNS I
2:IMARK DATA ITEMS .a
3a'STRING DATA ITEMS"
~:PROGRAM TO READ DATA AND ·CHECK" IT
~:READ VEHICLE: • MAX.RPM. 'POwER • "AND WHAT EYER ELSE THERE 15 •
,alF ANY yALUES ARE UNKNOWN? OR UNTESTED?
7:CHECK THE DATA" FOR DOUBTFUL.sTuFF? 1&
IIENDIF
,:AN ADDITIONAL CHECK MAY IE NEEDED HERE

&O:ENDPROGRAM

As output:

TABLE OF CONTENTS PAGE I
PAGE LINE •••••••••••••••• ~ ••••••••••••••••••••••••••••••••••••••

NUMBER NUMBER MODULE NAME

I

2

3

~

5

,

LINE
It
5

,
7
I ,

10

pROGRAM TO READ DATA AND "CHECK" IT

MODULE REFERENCE TREE

MODULE - CROSS REFERENCE LISTING

DATA ITEMS - CROSS REFERENCE LISTING

REVISiONS. CROSS REFERENCE LISTING

CROSS REFERENCE LISTING

PROGRAM TO READ DATA AND ·CHECIC" IT
READ YEHICLE: • MAX. RPM •• POWER • "AND

'RE IS "
IF ANY VALUES ARE UNKNOWN? OR UNTESTED?

CHECK THE DATAII FOR oouBTFUL.STUFF?
ENDIF
AN ADDITIONAL CHECK MAY BE NEEDED HERE

ENDPROGRAM

2-20

PAGE 1

WHAT EVER ELSE THE

11

/

•

X:5 3d

77-24

DATA ITEMS
CROSS REfERENCE LISTING PAGE ~

IDENTIfiER ••••••••••••• ••• •• •••••••••••••••••••••••••• ••••••••••••••

'POWER
PAGE 1 PROGRAM TO READ

LINES 5
AND WHAT EVER ELSE THERE IS

PAGE 1 PROGRAM TO READ
LINES 5

CHECK
PAGE 1 PROGRAM TO READ

LINES ~. 7. 9
DOUBTfUL,STUff?

PACiE 1 PROGRAM TO READ
LINES 7

MAX,RPM
PAGE 1 PROGRAM TO READ

LINES S
VEHICLE:

PAGE 1 PROGRAM TO READ
LINES S

REVISIONS
CROSS REfERENCE LISTING PAGE 5

IDENTIFIER ••• • •• • ••• •••••••••••••••••••••••••••••••••• ••••••••••••••

11
PAGE

LINES
1 PROGRAM TO READ

7

CROSS REFERENCE LISTING PAGE'
IDENTIFIER •• •• •• •• •• •••••••••••••••••••••••••••••••••• ••••••••••••••

DATAII
'AGE 1 PROGRAM TO READ

LINES 7
DOUBTFUL,STuFf?

PAGE 1 PROGRAH TO READ
LINES 7

UNKNOWN?
PAGE 1 PROGRAM TO READ

LINES 6
UNTESTED?

PAGE 1 PROCIRAM TO hEAD
LJNES 6

2-21

r

I

I

I
I

77-24

The 'DEFINE directive is used to specify new or to delete old SDDL
keywords. To select the desired action, one of the four words shown below
must follow the SDDL keyword, 'DEFINE.

MODULE BLOCK CALL NULL

3 • 3 DEn foE 01 RECTI VE UllDlLE. BLOCK)

~~~:tirG~====:;7' IDENTIfIER 

--".--------_----..j ~.O.5. 

IDENTIfiER 

The word MODULE or BLOCK is used to define a control structure. In 
SDDL, a control structure has four parts: 

(1) Initiator: Increases the indentation level for subsequent 
lines. 

(2) Terminator: Closes all nested struntures left open ant, 
returns the indentation level to that of the 
Initiator statement. 

(3) Escape: A left arrow is added to the statement to 
indicate the program control flow. The arrow 
extends from the indentation level of the 
escape statement to the indentation level of 
the Initiator stutement. 

(4) Substructure: Closes all nested structures left open, returns 
the indentation level to that of the Initiator 
statement, prints the line, and increases the 
indentation level. 

When defining a module or block, names for the four parts must be 
specified in the order shown above. Any punctuation may be used to 
separate the part names, but care must be taken to avoid using a MARK 
(i.e., punctuation which has been converted to a MARK by the IMARK 
directive). Names for any of the parts except the initiator may be 
omitted by using consecutive punctuation to show where a name has been 
left out. Any text following the name of the substructure will be 
ignored. Synonyms for part names, except for the initiator name, may be 
established by additional 'DEFINE directives. 

2-22 



77-24 

Indentation specific to the named structure may be indicated 

by including an unsigned integer between the word MODULE (BLOCK) and 

the initiator name. If a zero is specified or the integer is omitted, 

the current default indentation amount (see IINDENT) will be used. 

Example (three equivalent directives): 

'DEFINE MODULE 10 PROGRAM, END, STOP, ENTRY POINT 
'DEFINE MODULE 10 PROGRAM END, STOP ENTRYPOINT 
'DEFINE MODULE 10 PROGRAM END STOP ENTRY POINT WHATEVER 

~ indentation initiator terminator escape substructure 

module 10 PROGRAM END STOP ENTRY POINT 

Example: 

IDEFINE BLOCK BEGIN END 

~ indentation initiator terminator escape substructure 

block 

Example: 

default BEGIN END 

IDEFINE BLOCK START, FINISH, LEAVE 
IDEFINE BLOCK START" SCRAM 
IDEFINE BLOCK 2 START, , VAMOOSE 

indentation initiator terminator escape substructure 

block 2 START FINISH 
LEAVE 
SCRAM 
VAMOOSE 

Note that in this example, the last directive established the indentation 

amount to be two columns, overriding the default indentation amount indicated 

on the previous directives. 

2-23 



77-24 

rrAm--".------~--., r.o.s. 

lDENTifIER 

The word CALL is used with the 'DEFINE directive to establish 
synonyms for the Module Invocation keyword (default keywords are CALL 
and DC), which indicates that a module is to be invoked at the p01nt 
whe~e the statement occurs. The identifiers to be defined as synonyms 
are listed after the word CALL. Punctuation for separating the words 
is optic;,nal. 

Example: 

Example: 

'DEFINE CALL PERFORM EXECUTE, GOGOGO 
'DEFINE CALL DOITNOW 

'MARK 
'DEFINE CALL DO.IT.NOW, PERFORM 

The identifier DO.IT.NOW (also PERFORM) becomes a Module 
Invocation keyword because the period has been converted to a MARK 
by the prior 'MARK directive. Where DO.IT.NOW appears in the context 
of a keyword (first word of the statement), it will not be included 
in the cross reference table. 

When a Module Invocation statement is encountered, the processor 
places the statement in the output file with the appropriate indentation 
and adds a right arrow from the rightmost character in the line to 
the right margin. Matching parentheses are added to the right of the 
arrow to provide a place for adding the page number of the called module. 
If the module that is referenced in the Module Invocation statement 
has been defined on a prior page, the page number is supplied in the 
allocated space when the statement is encountered. Page reference 
numbers which cannot be supplied immediately must be filled in on a 
second pass ~ver the output file. The user may exercise the P option 
at execution time to suppress the second pass, which supplies the remaining 
page reference numbers. 

2-24 



... 

77-24 

t-?""------- --~---~ (.0.5. 

PUNCTUAT I ON 

IDENTIFIER 

The NULL action of this directive provides a means for returning 
any previously defined keywords to the state of being undefined. 
Punctuation may be used as a keyword separator, if desired. MARKs 
which have been converted to letters by a previous IMARK or 'STRING 
directive may also be listed for redefinition as punctuation. MARKs 
being redefined in this manner must have adjacent blanks or punctuation 
to disassociate them from other text. 

Example: 

'DEFINE NULL PROGRAM, ENDPROGRAM PROCEDURE 

The words PROGRAM, ENDPROGRAM, and PROCEDURE are not recognized 
as keywords in the statements following this directive. 

Example: 

IMARK .$ 
#DEFINE NULL DO.IT.NOW $ 

The word DO.IT.NOW is no longer a keyword and $ reverts 
to punctuation again. The periods in the keyword DO.IT.NOW are part 
of th", ident ifier (unlike the $ in the example), and therefore the status 
of thl~ period remains unchanged; Le., it is still a MARK. 

Example: 

'MARK . 
#DEFINE NULL. DO.IT.NOW 

This example differs in that the status of the period is reconverted 
to punctuation first and is treated as such in the remainder of the 
statement. Therefore, DO, IT, and NOW are the words which become undefined. 
If DO, IT, and NOW are already undefined, they are not affected. 

2-25 

• 



i PSi • 
1 i i 

I i 
I 1 

a 
1 

77-24 

--------~r---~------------f~-~~-------~----~~1~r-l-.O-.S-.--~//?J __ O.~G 
~'MBER PIORD 

"----....c~1.2C1 ~ 

This directive is a generalized terminator for block structures. 
It may be used in place of a number of specific terminators (specific 
terminators must match their respective initiatl)rs) to terminat'::! the 
n innermost, nested, open bl00l~ structures. If no integer is specified 
in the directive, only one structure will be terminated. If n is greater 
than the number of open block structures, they will all be terminated, 
but the module structure will not Ce affected. 

Example: 

As input: 

l:PRO,RAM "TERMINATE" EXAMPLE 
2:IF P INDENT I LEVEL 
J:LOOp Q INDENT I LEVEL 
~:INOENTATION IS J LEVELS DEEP 
S:ENDLOOP • SPECIFiC TERMINATOR 
6:ENDIF - SPECIFIC TERMINATOR 
7:IF P INDENT I LEVEL 
8:LOOp Q INDENT I LEVEL 
9:INDENTATION IS 3 LEVELS DEEP 

10: 8 TERMINATE 100 
11:ALL BLOCK STRUCTURES ARE TERMINATED _ MODULE NOT AFFECTED 
12:IF P INDENT' LEVEL 
IJ:LOOP Q INDENT I LEVEL 
l~:INDENTATION IS 3 LEVELS DEEP 
lS: 8 TERMINATE ONLY ONE STRUCTURE TERMINATED 
16:IF P INDENT 1 LEVEL 
17:JNDENTATION IS STILL J LEVELS D£Ep 
18:ENOPROGHAM • STRUCTURES LEFT OPEN ARE TERMINATED BY THE PROCESSOR 

2-26 



p 1 P i 1 1 ,-, 
, 
t 

77-24 

As output: 

LINE PAGE 
1 PROGRAM MTERMINATE- EXAMPLE 
2 IF P INoENT 1 LEVEL 
J LOOP Q INDENT 1 LEVEL 
~ INDENTATION IS 3 LEVELS DEEp 
S ENOLOOP • SPECIFIC TERMINATOR 
6 ENDIF - SPECiFIC TERMINATOR 
7 IF P INDENT 1 LEVEL 
8 LOOP Q INDENT 1 LEVEL 
q INDENTATION IS J LEVELS DEEp 

11 ALL BLOCK STRUCTURES ARE TERMINATED - MODULE NOT AFfECTED 
12 IF P INDENT 1 LEVEL 
13 LOOP Q INDENT 1 LEVEL 
1~ INDENTATION IS J LEVELS DEEp 
16 IF P INDENT 1 LEVEL 
17 INDENTATiON IS STILL J LEVELS DEEP 

ENDIF - sTHT SUPPLIED BY PROCESSOR 
ENOIF - STMT SUPPLIED BY PROCESsOR 

18 ENDPROGRAM • STRUCTURES LEFT OPEN ARE TERMINATED By THE PROCESS 
'OR 

3.5 TEXT DiRECTiVE 

~tlTEXTi ~'-~R-D-~ .. \ E.O.S. 

Examples: 

ilTEXT 

//TEXT COMMENTARY BEGINS ON NEXT LINE 

The HTEXT directive is used to signal the beginning of a sequence 
of lines (not statements) of text intended as commentary to the SDD. 
When this directive is encountered, the processor performs the following 
actions: 

(1) The words following the keyword are ignored. 

(2) The processor begins reading input lines into a holding 
buffer and continues until it encounters an input line 
whose first non-blank character is the pound sign. 

(3) The lines buffered in step 2 (this does not include the 
line which terminated step 2) are not analyzed as statements 
but simply saved unaltered. 

2-27 

1 & 



( 
" 

77-24 

(4) The buffered lines, enclosed in a box formed by asterisks, 
are then written to the SDD output file at the current 
level of indentation. 

(5) The line which signaled the end of step 2 (the buffering 
step) is then processed in the usual way. Thus, any control 
directives or any statement which begins with a pound sign 
may be used as a terminator and still be recognized for 
regular processing. If no action other than termination 
of the text statement is desired, the lEND directive may 
be used. 

E.0.5. 

ioDRD 

This directive has no effect other than that of terminating line 
buffering for ITEXT and HTITLE directives. 

3.7 TITLE DiRECTiVE 

~#T lTLE/-(,,..-------=:J--~c--~ .. jl.... _E_._0_.5_. __ 
L

A---oo....;. • ..:.Jo 

~~~--D----~~ 

Example:

ITITLE SDDL DESIGN DOCUMENT

This directive is used to produce a title page in the SDD. The
ITITLE directive is similar to the ITEXT directive, but different in
that the ITEXT directive resembles a Block Initiator' statement while
the ITITLE directive resembles a Module Initiator statement. The
processor performs the following actions in response to input of a
HTITLE directive.

(1) The keyword ITITLE is recognized.

(2) The initial pound sign is stripped off, and the remainder
of the directive is entered into the SDD Table of Contents.
Title line entries in the Table of Contents are preceded
by a blank line and are written two columns to the left

2-28

77-24

of module entries in order to distinguish them as the
beginning of a document section.

I ...

(3) All structures left open are terminated with error messages.

(4) As in the case of a HTEXT directive, the processor reads
and buffers input lines until it encounters a line whose
first non-blank chara~ter is a pound sign. Termination
of the title text is the same as for the HTEXT directive.

(5) A new page is started in the SDD output file.

(6) A title page is formed by (a) enclosing the lines in a
box formed by asterisks, (b) centering each line within
the box, and (c) centering the entire box on the page.

'\
1'1 NUHB[R

This directive provides control of the starting point of the
input line numbering sequence which the pr~cessor produces in the left
margin of the SDD.

The input line numbers supplied ~y the SDDL processor correspond
exactly to the positional line numbers of the data element (card deck)
of the input ~o tte SDDL processor. This feature obviates the listing
of the raw input f'jr revising and augmenting the SDD. Where more than
one element (deck) is used as input to SDDL, it is desirable to reset
the line counter so that numbering can be made to match the subsequent
elements (card decks.)

If this instruction is issued without an accompanying integer, the
processor will begin numbering subsequent lines from 1; otherwise it will
begin numbering with the value specified by the integer. The syntax of
this directive allows noise to be used for commentary if desired.

Examples:

#LINENUMBER 1001 STARTS THE NEXT ~LEMENT

IlLINI:.NUMBER

2-29

77-24

tUIDlR ~D

The SDDL IINDENT directive allows the user to override the default
value for the number of spaces to be skipped for automatic statement

indentation.

User-defined structures (see 'DEFINE directive 3.3) which
do not have a specific indentation amount declared and SDDL initial
structure definitions always use the current default indentation value.
The initial value of the system defined default indentation amount

is three spaces.

Text following the integ~r (i.e., noise) ruay be used for commentary
if desired. If no integer is specified in the directive, the default
value of three spaces is assumed.

Examples:

IINDENT 5 SPACES UNLESS OTHERWISE SPECIFIED

IINDENT SET TO DEFAULT OF THREE SPACES

3.10 ~JDTH DiRECTiVl

I

The IWIDTH directive provides user control of the width of the
output pages. The default page width is 80 characters = 20 em (b in.).

An integer specifyirlg the width, in characters/output line,
should be supplied. If the integer value is not in the ran~e 60-130,
an error message will be printed and the pa~e width will not be altered.
If no integer is specified in the directive, the default value of bO
columns is assumed.

This directive may be used as many times as desired throughout
the program. ~ach use affects only th~ ~utput which f'ollows it.

2-30

77-24

Example:

HWIDTH 130 COLUMNS FOR A TABLE

'WIDTH RESUME NORMAL PAGE WIDTH

3.11 EJlCT DiRECTlVE

I

This dil'ecti ve provides immediate control of the start of a new page in the SDD. This page control is over and above the automatic new page start caused by (1) a title, (2) the beginning of a new module, or (3) page overflow. When 3 module becomes lengthy enough to cause an overflow to a new page, it is 0ften desirable to control the start of the new page to prevent a group of lines from being split over a page boundary.

The 'EJECT directive, without an accompanying integer, causes a new page to be started beginning with the next SDDL statement in the input stream.

EXalllples:

IIEJECT

IIEJECT A PAGE NO MATTER WHAT

When an integer is included in this command, it causes a new page to be started only when the remainder of the page cannot accommodate the number of lines specified by the value of the integer. An integer value greater than 50 gives rise to an error message and causes the directive to be ignored. Ncise following the integer is ignored and may therefore be used for commentary.

Examples:

IIEJECT 5

IlEJECT 7 THE FOLLOWING 7 LINES MUST BE HPT TUGETHER

2-31

•

77-2~

3.12 SEQUENCE DIRECTIYE

E.0.5.

"-Jf1BER

The ISEQUENCE directive is provided for card input to the SDDL
prv~essor. When SDDL is used in a timesharing environment with file
management and editing capabilities, card sequencing is unnecessary.
In this case, the full 80 colL'!JlflS of the input line may be used entirely
for JDDL statements and directives and the ISEQUENCE directive can
be ignored, except to avoid its inadvertent use. The input line numbers
supplied in the left margin of the output file correspond exactly to
the line to edit the input file for corrections and updates and may
be reliably used for this purpose. This feature makes it unnecessary
to print out copies of the raw input file.

Where cards are used as the input medium, it may be desi~able to
have card sequence numbers at the right-hand edge of the card, in which
case the ISEQUENCE directive must be used to different1~te between the
input text and the sequence numbers. As shown in the ~yntax diagram
above, t.he #SEQUENCE keyword may be followed by an optional integer.
This integer may be used to specify the numbel' of rightmost columns to be
considered to contain sequence numbers. If no integer is supplied or a
value greater than 8 is specified, the default value of eight characters,
columns 73 through 80, is assumed. An integer value of zero has the
effect of disabling the card sequence capability. When the HSEQUENCE
capability is used, the input line (except for the sequence numbers) is
handled in t.he usual way, and the sequence numbers are printed in the
rightmost columns of the output page as determined by the 'WIDTH directive
(default = 80 columns). Where an input line is continued over more than
o~e card, only the sequence number of the last card is printed.

Example:

#SE;QUENCE ~

Columns 1 through 76 of the input deck are as,'3umed to contain
SDDL statements vi' 'JHc.;tives, and columns 77 through 80 are assumed to
contain sequence numbers.

2-32

•

77-24

5. SDDL Syntax Overview Diagrams (Leyel 4)

".0 SDDL PROGRAM

".1
TITLE
DiRECTIVE

4.2 MODULE

MODULE
'---.-.I INITiATOR

STAfEMENT

STATEMENT
STATEMENT

MATCHING
I--~ TERMI NATOR

~----'~~ STATEMENT

2-33

4.3 STATEMENT GROUP

4.5 BLOCK

BLOCK
--.... INITIATOR

STATEMENT

STATEJ1ENT

ESCAPE
STATEMENT

TEXT GROUP

BLOCK

CONTROL
DIRECTlVE

77-24

STATEMENT
STATEJ1[NT

.1 STATEMENT A : ~ATCHING
I--~-· -"""'t""""-t TERMiNATOR

GROUP ~ STATEt1ENT

2-34

TERMiNATE
DIRECTiVE

I

/

•

1,

4.6 CONTROL DlRECTlVE

HARK
DiRECTIVE

STRitfJ
DiRECTIVE

DEfiNE
DIRECTIVE

END
DIRECTIVE

L j NEItJI1BER
DiRECTIVE

INDENT
DiRECTIVE

WiDTH
DiRECTIVE

EJECT
DiRECilVE

5[QU(NCE

DIRECTiVE

'" ,'.' ''''J. I

77-24

2-35

I
I
I

1

1 I

77-24

SECTION III

SAMPLE DESIGN

Two examples are presented to illustrate the capability and potential
of the SDDL processor. The design of the SDDL processor itself is
the subject of the first example. Only a smal'. subset of the actual
SDDL design is shown in order to reduce the example size to expedient
proportions. Even this small, top-level portion of the SDDL processor
deSign, however, reveals information which has an important impact
on the processor.

The second example demonstrates some of the actions taken by
the processor in response to error situations. The subject material
is not intended to convey any meaningful design information.

Example 1. Top-level SDD for the SDDL processor:

As input:

1:. MARK REVISJor~s , PROGRAM PORTABILITY CONSIOERATIONS ?
2 ,MARK ROUTI~ES ANO FUNCTIONS _ DATA ITE~S

l 'STRING DATA ITEMS"
If .DEFINE BlOCK '2. LICjT
S 'DEfINE 8~OCK 2 MEMBER
6 'DEfINE BlOCK LOOP, •• BEGI~
7 'TITLE SOOL EXAMPLE
8
9 SOFTwARE OEsI~N AND OOCU~ENTATloN LANGUAGE

10
11
12 t ,AN ILLUSTRATION OF THE APPLICATIoN OF SDDl USING THE)
13 ,SDOl PROCESSOR ITSELF AS T~E OBJECT OF THE EXAMPLE,)
149
IS
16
17
18
19

'END
PROGRAM OBJECTIVES
'TEXT

THE oBJECTIvE OF SDD~ IS TO pRoVIDE AN ErFECTIVE COMMUNICATIONS
MEDIUM TO Sup~aRT THf DESIGN 4ND DOC~MENTATION OF COMPLEX SOFT~ARE

20 APPLICATIO~S. THIS UBJ~CTIVE IS MET BY PROvlDI~G:
Z 1 :
22: ,11 A DESl·.i.~ ANi) .)OClJMEIHATIO~ ~.~NGUAiiE wITH F'ORMS AN~ SYNTAX
23: THAT AriE SlM~~E. ~~RESTRICTIVE. A~D COMHUNICATIVE
214:
2S: ,l) A PROC~SSO~ w~ICH CAN CONVERT OESIGN SPECIFICATIONS INTO AN
26: INTELLIGIBLE. l~FO~MATIVE. MACHINE REPRODUCIBLE DOCUMENT
21:
28: (3) METHODULOGY FO~ ~FrECT1~E USE Of THE LANGUAGE AND PROCESSOR
29:
JO:·EIIj~
31:PROGRA~ DATA_jTRuCTU~E ANu GLJSSA~Y

32:

3-1

I

77-24

A GLOBAL CHARACTER ARRAY CONTAINING 33 INPUT-TEXT.BUFFER
3~
35

A SINGLE INPUT STATEMENT fORMED 8Y
CONCATENATION Of CONTINUED INPUT LINES

36
37 TEXT.LENGTH
38
39
~O LIST: TOKEN.DICTIONARY
~1 MEM8ER ENTITY: ENTRY
~2·CHARACTER.COU~T
~3 TEXT.POINTER
~~
~5 PROGRAM~NAME
~6
~7

48
~9 LIST: REFERENCE.LIST
50
51 MEMBER ENTITY; "REFERENCE"
52 PAGE. NUMBER
53 LINE.NUMBER
5~ 8TERMINATE ~
55
S6 LIST: MnDUlE.STACK
S7
58 MEM8ER ENTITY! NODE
59 NODE,NAME
60 INDENTATION.COLUMN
61 8TERMINATE 2
62 ~NDPROGRAH DATA.STRUCTURE
63 PROGRAM MAIN ROUTINE
6~ CALL INITIALIZATION ROUTINE
6S LOOP UNTIL ALL INPUT OATA HAS
6, CALL GET.STATEMENT 8 11
67 ·YIELD TEXT.LENGTH
68

THE LENGTH Of THE CURRENT INPUT LINE
(TRAILING BLANKS NOT INCLUDED)

LINKED lIST OF DICTIONARY ENTRIES
POINTER TO A SINGLE DICTIONARY ENTRY
NUMBER Of CHARACTERS IN THE ENTRY
POINTER TO THE CHARACTER ARRAY
CONTAINING THE TEXT Of THE ENTRY
IF ENTRY IS A KEYWORD THIS IS THE
lOCATION OR IDENTIFICATION OF THE
ROUTINE fOR PROCESSING THE STHT
VALUE-O If ENTRY IS NOT A KEYWORD
fJRST-IN,fIRST-OUT LIST Of
REfERENCES TO THE ENTRY

PUSH DOW~ STAcK Of NODES REPRESENTING
THE NESTED STRUCTURES OF THE'DESiGN

(IF.LOOP,PROGRAM.ETC)

BEE~ PROCESSED

'9 CALL TOKEN.FINDER (FINDS THE fIRST TOKEN IN THE STATEMENT)
10 .YIELD TOKEN. TYPE
71
72 IF TOKEN,TYPE IS "IDENTifIER"
73 CALL ENTABLE TO FIND THE TOKEN IN TH~ TOKEN.DICTIONARY
1~ ENDlf
7S
76 IF THE TOKEN wAS FOUND AND IT IS A KEYWORD
17 CALL K[yWORD.PROCESSOR
78 ELSE THE STATEM(NT DOES NOT BEGIN WITH A KEyWORD
"tIF THE MODULE,STACK IS EMPTY
80 PUSH A pROGRAM MODULE ON THE MODULE. STACK
81 ENDlf
82 CALL SOuRCE.LISTER TO SEND THE STATEMENT TO THE OUTPUT FILE
83 ENDlf
8~

85 FLUSH ANY "ERROR MESSAGES" TRlbGERED By THE STATEHENT
86 REPEAT

3·2

87:CALL WRAP.UP
aa EXITPROGRAH
8' ENDpROCiRAM
'0 PROCEDURE: GET.STATEMENT. 11

'1 .USING INPUT,TEXT,BuFFER
'2 .YIELD TEXT,LENGTH

'3
,~ READ AN INPUT RECORD

77-24

'5 LOOP UNTIL A ~ON·BLANK RECORD IS rOUND

'6 IF THE MODULE,STACK 15 NOT EMPTY (A MODULE EXISTS'

'7:PRINT THE INPUT ~EcoRO NUMBER AND A BLANK LINE TO THE ·SDD"

'S'ENDIF
" READ ANOTHEH INPUT RECORD

100 REPEAT
101 COPY THE INPUT RECORD INTO THE INpUT,TEXT.BUFFER

102 SET TEXT. LENGTH • "USABLE COLUMNS"(80 - CARD SEQUENCE COLS) • 111

103 LOOP
10~ FIND THE LAST NON-BLANK CHA~ACTER IN INPUT.TEXT,8UFFER

105 SET TEXT,LENGTH • CoLUMN NUMBER OF THE CHARACTER

106 IF THE CHARACTER IS NOT A CONTINUATION,MARK

107 EXITPROcEDURE
loa ENDIF
10' SUBTRACT 1 FROM THE TEXT. LENGTH (BACK UP OVER THE CONTINUATION,HARK,

110.IF THERE Is NU,~ORE DATA (END OF FILE ENCOUNTERED,

111 EXITPROCEDURE
112 ENOIr
113 IF THE SPACE ~EFT I~ INPUT,TEXT.BuFFER < 80 CHARACTERS. 111

11~ EXPAND INPUT,TEXT,BuFFER 9Y AT LEAST 80 'HARACTERS • ?~?

115 ENOIF
116 READ IN ANOTHER I~PUT RECORD
117 COPY THE INPUT RECORD INfO INPUT'TEXT.SuFFER 8EGINNING AT TEXT,LENGTH

118 ADD ·USA8LE COLUMNS" TO TEXT,LENGTH

11' R(PEAT
120 ENDPROCEDURE
III PROCEDURE fO~ INITIALIZATION
122 READ IN EXECUTION TIME OPTION FLAGS fROM EXECUTION STATEMENT

12l OPTloN.e· 9R~~~pOl~T
12~ oPTIoN.e· CROSS REFE~ENCE

125 OPTloN'E· "ERRO~ ~ESSA~ES"
126 oPTIoN.K. KEYWORDS
127 oPTloH.M· HO~ULE CROSS RCFERE~CE

128 uPTloN,P· PAGE REfERENCE NUMBERS

12' OPTION,R a REr~RENCE TREE
130 OPTION.T· TABLE OF CONTENTS

131
132 If OPTION.~ IS NOr s[T bR~AKPUJNTING 15 REQUIHED

Ill'READ IN KEMAl~OER OF E~ECUTION STATEMENT

IJ~ IF A NAME 15 ~PECIFl£~ FOk THE SOD OUTPuT fILE

1 35 SET UP A ~ U !;i ~ r~ E" A T I 0 I~ 5 H t p i'I IT H So~

136 F.NOlf
137 CATALOG AN~ ASSIGN SOD AS THE OUTPUT FILE
138 If THE CATALO~ STEP FAILlO
1 j, PH I NT AN ERRM~ Mt;;S~A CJE

3-3

I~O·TERMINATE THE PROCESSOR
1~1 EXITPROCEDURE
1"2 ENOl'
llfJ BREAKPOINT THE OUTPUT TO
llflf ENOIF
llfS ESTABLISH THE FOLLOWIN,
llf6 CHARACTERS.PER.WORD

77-24

SOD

MACHINE DEPENDENT CDNSTANTS
- 6 1,.7 BUFFER. COUNT - lit (1,.-,-8,. CHARS/LINE) l1f8" READ.UNIT
- 5 1,.9 WRJTE~UNIT
- 6 150 DEFAULT. INDENT
- 1 151 RIGHT~"ARGIN - eO 152

153
151f
ISS
156
157
158
159
160
161
162
1'3
161f
165
16'
167
168

INITIALIZE INPUT.TEXT.BurFER To AT LEAST 80 CHARACTERS ESTABLIsH TOKEN.DICTIONARY DATA STRUCTURE

169
170
171
172
173
17,.
175:

CALL KEyWORD.SET.UP TO ESTABLISH DEFAULT KEYWORDS EXITPROCEDURE
ENDpROCEDURE
PROCEDURE FOR KEY~ORD_SET.UP
LOOP USING THE FOLLOWING DATA PAIRS

" - POUND SlG~ IN KEYWORDS BELOW)
KEYWORD PROCEDURE NAME -.---.-
'H,ARIe
ISTRING
'INDENT
'LINENUMBER
'TEXT
'TITLE
'END
'DEFINE
IEJECT
'wIDTH
'SEQUENCE
'TERMINATE

----~---------SET.DATA.CHAR
5 E T .5 T ~< I N G _ C H A R
SET.I~DENTATION
SET.LtNENUH8ER
BOX. TE)'T
BOX.TEXT
END.CONTROL
C'::f."INE.WORDS
EJECT.PAGE
SET.pAGE.WIDTH
CARD:SEQUENCING
8LI NO_T(RHINATOR

176:BEGIN ITERATION
177:FORCE THE KEYWORD INTO THE TOKEN.DICTIONARY

• 11
• 11
• 11
• II
• 11
• II
• II
• 11
• II
• II
• II
• 11

178:STORE THE PROCEDURE NAME INTO PROGRAM. NAME OF THE ENTRy 1'9:ENDLOOP
180:ENDpROCEDURE

3-4

•

• -'77
• ???
• ??7
• ???

• ???

77-24

As output:

••
• •
•
•
•
•

SOfTWARE OESI~N AND OOCUMENTATION LANGUAGE
•
•
• •

• ,AN ILLUSTRATION Of THE APpLICATION Of SDOl USING THE' •
• ,SDOl PROCESSOR ITSELF AS THE OBJECT OF THE EXAMPLE.' •

•
•

•
•

••

TABLl Of CONTENTS PACiE
PAGE LINE .+++++.+.,+ •• +++.+.+ •• ++++++++++++++++++++.++++ •• +++++ •••••••••••••

NUMBER NUMBER MODULE NA~E

o
1
2
J
Ii
5
6

7

8

12

13

7 TITLE ~UDL EXA~PLE

16 pROGPA" ODJECT I Vl'i
31 pROGR~" ~ATA_STRUCTURE AND GLOSSARY
63 pROGRAN M~lN ROUTINE
90 p~OC[DURE: GlT.STATEMENT

121 pROCEDURE fOR INITIALIZATIoN
158 pROCEOURE fOR KEY~ORO_SET.UP

MaCULE REFERENCt TREE

MOCULE - CROSS REFERENCE LISTING

DATA ITEMS - CR05~ RlFERENCE LISTlhG

REVISIONS - CROSS REfERENCE LISTING

PRO~RAH PORTAUILITY CONSIDERATIONS - CHOSS REfERENCE LISTING

ROuTINES ANU fUNCTIONS - CROSS REfERENCE LISTING

3-5

11

77-24

LINE
PAU

'6 PRO'RA" OIJECTIYES

17
II
It
20
2.
·22
U
21f
21
U
27
21
It
10

LINE
11
32
13
3'1
35
3.
37
18
19
'10
'II
'12
'13
"'I
'IS
'I,
'17
'18
If'
50
51
52
53
55
5.
57
5a
5'
60
6Z

....•.............. ~
• •
• THE OIJECTIYE 0' SDD~ IS TO PROYIDE AN EF'ECTIYE COMMUNICATIONS.

• MEDIUM TO SUPPORT THE DESIGN AND DOCUMENTATION 0' COMP~EX SOFTWARE.

• APP~ICATIONS •. THIS OBJECTIYE IS MET IY PROYIDIN~: •

• • •
(I' A DESI,N AND DOCU"ENTATION ~ANGUA'E ~ITH 'ORMS AND SYNTAX

THAT ARE'SIMP~E, UNRESTRICTIVE, AND COMMUNICATIVE

• • •
• • • •

• •

(21 A PROCESSOR WHICH CAN CONYERT DESI,N SPECI'ICATIONS INTO AN •

INTELLIGIILE, INFORMATIVE, MACHINE REPRODUCIILE DOCUMENT •
•

(l, "ETHODOLOGY FOR EFFECTIVE USE 0' THE LANGUAGE AND PROCESSOR.

'. • • •
••

ENDPROGRAM • STMT SUPPLIED BY PROCESSOR

PROGRAM DATA.STRUCTURE AND GLOSSARY

INPUT_TEXT,BUFFER

TEXT,LENGTH

LIST: TOKEN.DICTIONARY
MEMBER ENTITY: ENTRY

CHARACTER. COUNT
TEXT·POINTER

PROGRAM,NAME

LIST: REFERENCE.LIST

MEMBER ENTITY: "REFERENCE"
PAGE.f04UMBER
LINE.HUMBER

MEMBER ENTITY: NODE
NODE.NAME
INDENTATION.COLUMN

ENDPROGRAM DATA.STRUCTURE

3-6

PAGE 2

A 'LOBA~ CHARACTER ARRAY CONTAINING
A SINGLE INPUT STATEMENT FORMED IY
CONCATENATION OF CONTINUED INPUT LINES

THE LENGTH OF THE CURRENT INPUT LINE
'TRAI~ING B~ANKS NOT INCLUDED,

LINKED ~IST OF DICTIONARY ENTRIES
POINTER TO A 5ING~E DICTIONARY ENTRY

NUMBER OF CHARACTERS IN THE ENTRy
POiNTER TO THE CHARACTER ARRAY
CONTAINING THE TEXT 0' THE ENTR'
I' ENTRY IS A KEYWORD THIS IS THE
LOCATION OR IDENTIFICATION OF THE
ROUTINE FOR PROCESSING THE STMT
VALUE-O IF ENTRY IS NOT A KEYWORD
FIRST-IN,FIRST.OUT ~IST 0'

REFERENCES TO THE ENTRY

PUSH DOWN STACK OF NODES REPRESENT IN,
THE NESTED STRUCTURES OF THE DESIGN

LINE
63
61f
6S
66
67
68
U
70
71
72
73
7'1
7S
76
77
78
H
80
81
82
83
81f
as
86
87

77-24

PAGE
PROGRAM MAIN RoUrlNE

CALL INITIALIZATION ROUT1NE---__ -_- __ • __ -_. _________ ._ ••• _._ ••••••)(

LOOP UNTIL ALL INPUT DATA HAS BEEN PROCESSED
CALL GET.STATEME~T -----.--._-.-.--•• - ••• --___________ •••••• 11>(
eVIELD TEXT,LENGTH

CALL TOKEN.FINDER (FINDS T~E FIRST TOKEN IN T~E STATEMENT'---··)(
eYIELD TOKE~,TYPE

IF TOKEN,TYPE IS "IDENTIFIER"
CALL ENTA8LE TO FIND THE TOkEN IN THE TOKEN,DICTIONARY--.-•• >(

[NDlf

IF THE TOKEN WAS FOUND AND IT IS A KEYWORD
CALL KEYwOMD.PROCESSOR--------------.-------.-- ••••••••• - •• ->(

ELSE THE STATEMENT DOES NOT BEGIN WITH A KEYWORD
IF THE ~ODULE.5TACK IS EMPTy

PUSH A PROGRAM MODULE ON THE MODULE,STACK
ENDIF
CALL SOURC~_LISTER TO SEND THE STATEMENT TO THE OUTPuT FILE->(

ENDIF

FLUSH ANY "ERROR MESSAGES" TRIGGERED BY THE STATEMENT
REPEAT CALL WRAP.UP-·----·---·_·-----·_-·-.·-.·-·-·····_-----····-·······>c

1

S'
'I'

88 <--EXITPROGRAM
89 £NDPROGRAM

LINE
90
'1
'2
9J
'If
95
'6
97
98

" 100
101
102
103
10 ..
lOS
106
107
108
10.
110
111
112
113
11"
liS
116
117
118
11.
120

PROCEDURE: GET.STATEMENT
eUSING INPUT,TEXT.BUFFER
eYIELD TEXT.LENGT~

READ AN INPUT RECORO
LOOP UNTIL A NON-BLA~K RECORD IS rOUND

IF THE MO~ULE.STACK 15 NCT EMPTY IA MODULE EXISTSI

PAGE

PRINT T~E INPUT RECORD ~UM8ER ANU A BLANK LINE TO THE ·SDD·
ENDIF
READ ANOTHER INPuT RlCORD

REPEAT
COPy THE INPUT R(CO~D INTO THE INpUT.TEXT.BUFFER

If
11

SET TEXT.LEN~TH • "U~A8LE COLUMNS", 80 - CARD SEQUENCE COLS. 117
LOOP

FIND T~E LAST NON-dLANK CHARACTER IN INPUT.TEXT.BUfFER
SET TEXT.LENGTH • COLUMN NUMBER OF THE CHARACTER
IF THE C~AR.CTER IS NOT A CONTINUATION,MARK

<-·------EXITPROCEDU~£
ENDIF
SUBTRACT 1 fROM THE TEXT.LENGTH (BACK UP OVER THE CONTINUATION,MARK)
IF THERE IS HO MORE DATA tlND OF FILl ENCOUNTERED,

<--------EXITPROCEDURE
ENDIF
IF THE SPACE LlFT IN INPUT.TEXT_BurFER < 80 CHARACTERS 777

EXPAND INPUT.TEXT.BUFrE~ RY AT LEAST 80 CHARACTERS 777
ENDIF
kEAD I~ A~OTHEH INPUT ~E'ORD
COpy THE I"PUT RECORD INTO IHPuT.TEXT,aUFfER eEGINNING AT TEXT,LENiT"
ADO -USAbLE COLUMNS" TO TE~T,LENGTH

REPEAT
ENDPROCEDURE

3-1

•

I . ,

-

LINE
l2a
122
12'
12"
125
IU
127
au
12'
130
13a
132
au
1.1't
U5
136
U7
U.
U'
a .. o
1"1
1"2
"'3 I
1"5
I'"
1't7
I'"
1'"
150
151
152
153
1511
ISS
156
157

77-24

~ROCEDURE FOR INITIALIZATioN
READ IN EXECUTION TI"E OPTIoN FLA,S fROM EXECUTION ~TATE"ENT

O~TloN.I • IREAK~OINT
O~TloN.C • CROSS REFERENCE
O~TloN.E • -ERROR "E5SA&ES-
O~TloN.K • KEYWORDS
O~TloN." • MODULE CROSS REfERENCE
O~TloN.P • PA&E REFERENCE NUMIERS
O~TloN.R • REFERENCE TREE
O~TloN.T • TAILE Of CONTENTS

If O~TloN.I IS NOT SET eREAKf~INTIN& IS REQUIRED
READ IN RE"AINOER OF EXECUtioN STATEMENT
If A NAME 15 SPECIFIED FOR THE SOD OUTPUT FILE

SET UP A iUSE RELATIONSHIP wiTH SOD
ENDIF
CAT'LOG AND A5SIftN SOD AS THE OUTPUT fILE
If THE CATALOG STEP FAILED

PRINT AN E~ROR MESSAGE
TERMINATE THE PROCESSOR

<·····-·-EXITPROCEDURE
ENDIF
BREAKPOINT THE OUTPUT TO SOD

ENDlf
ESTABLiSH THE FOLLOWiNG

CHARACTERS,PER,WORD
BUFrER,COUNT
REAO,vNIT
WRITE,UNIT
DE FA U I,. T , I NO £'4 T
RIGHT,MARGIN

MACHINE DrPENDENT CONSTANTS
• 6
• I" (1 .. -,-8 .. CHARS/LINE)
• 5
• 6
• J
• aD

INITIALIZE INPUToTEXT,BUfFER To AT LEAST 80 CHARACTERS
ESTABLiSH TOKEN,DJCTJONAHY DATA STRUCTURE
CALL KEYWORD.SET.UP TO ESTABLISH DEFAULT KEYWOkDS-••• __ • ___ • ___ ._.>(

<.-EXITPROCEDURE
ENDPROCEDURE

I.INI
UI
'U'
160
ua

PROCIDURE fOR KEYWORO_.ET_U~
LOO, USIN, THE fOLLOWING OAT' PAIRS

'U
IU
16 ..
U.
U.
167
161

'" 170
17,
'7Z
'U
" ..
'" '" ''''' '" 17.
110

1 _."._-

'1 • ~OUND sIGN IN KEY~ORDS IELOW,
KI,WORD PROCEDURE NAME -..... .
'MARK
"TRIN'
'INDENT
'LININUMIU
'TJIT
'TIlLE
"'NO
'D,flNE
"JECT
'WIDTH
's,eUENCE
'TERMINATE

IUIN ITERnlON

• •••••••••••••
S[T~DATA.CHAR
SET .5'" I NG.CHAR
SET.INDENTATION
SET.LINENUMIU
10X.TUT
lOX. TExT
hD.CONTROL
DEflN'.WORDS
[JECT.""
S[T."U.WIDTH
CARD.SleU'NCIN'
ILINO.T[RMINATOR

fORCE THE KEYWORD INTO THE TOKEN.DICTIONARY
STORE THE 'ROCEDURE NAME INTO ~RO'RAM.NAME Of

£HDLOO'
END'''OCEDU"I

3-8

THt ENTRY

•

,,., ,,., ,,., .,,'1

,,,
"

•

'1
.1 ..
II
'1 .,
I' la
I' la ..
II

77-24

•••••••••••••• "OOULE RE'UENCE TREt • ••••• PAil 7
LN PAil

1 1 O'''ECT I VES

I Z DAU:STRUCTURE

1 , MUN .. , • INITIAL.IUTlON
I , • • KEYWORO.SET .U, , If • iET .STATEMENT
7 • ! TOKEN.'INDER

• • • ENUIL.E

• • • KETWORO.'ROCESSOR
10 • • SoURtE.L ISTER
11 • • WRAP.UP

MOOUL.E
CROSS RE'ERENCE LISylNG PAGE •

10ENTI'IER·.·· •• •• •• •••••• •• •••••••••• •• • ••• ••••••••• •••••••••••••••••••••••••••

DAu.STRUCTURE
'AGE 2 'ROGRA" OATA.STRUCTURE

L.INES 11. U
ENTAlL.E

'AGE , 'ROGRA" "AIN
LINES 13

GET.STATEMENT
'AGE 1 'ROGRAM MAIN

LINts "
'AGE ~ 'ROCEOURE: GET.STATE"ENT

LINts .0
INITIALIUTION

PAGE 1 PROGRA" MAIN
LINES ,~

PAGE S PROCEDURE FOR INIT1AL.IZATiON
L.INts 12 &

KEYWORD.PROCESSOR
PAGE 1 PROGRA" MAIN

L.INES 77
KEYWORD.SET.UP

'AGE 5 PROCEDURE 'OR INITIAL.IIATION
LINES &55

'AGE , PROCEDURE 'OR KEYWORD.SET:UP
L.INts IS.

"UN
PAGE 1 PROGRA" KAIN

L.INES U
OIJECTIVES

'AGE 'ROGRA" OBJECTIVE5
LINES U

SOURCE.LISTER
'AGE 1 PROGR~" MAIN

LINES U
TOKEN.'INDER

PAGE 1 PROGRA" HAIN
LINES ••

WU,.U,
PAGE 1 PROGRA" MAIN

L.I NU 17

3-9

77-24

OAU ITEMS
CR055 REFERENCE LISTING ,

IDENTIFIER·.··.+·· •• ··.··+ •• ·+.··+.+~·.+ •• • •• • •• •• •• •• ••••••••••••••• + ••••••••••

BUFFER. COUNT
PAGE 5 PROCEDURE fOR INITIALIZATIO~
i.P~ES 1"7

CHARACTERS.PER.WORD
PAGE 5 PROCEDURE rOR INITIALIZATION
. LINES 1 .. 6

CHARACTER. COUNT
PAGE 2 PROGRAM OATA.STMUCTURE

LINES "2
CONTINUATION'~ARK

PAGE .. PROCEDURE: GET.STAiEMENT
LINES 106. 10'1

DEfAULT. INDENT
PAGE 5 PROCEDURE fOR INITIALIZATION

LINES 150
ERROR M,SSAGES

PAGE l PROGRAM MAIN
LINES 85

PAGE 5 PROCEDURE F~R INITIALIZATION
LINES 125

I;')~~TIFIER
PAGE l PROGRAM HAI~

i.INES 72
INDENTATIO~.COLUHN

PAGE 2 PROGRAM DATA.STRUCTURE
I.INES 60

INPUT.TEXT.BUFfER
PAGE 2 PROGRAM DATA.STRUCTURE

LINES II
PAGE .. PROCEDURE: GET.STATEHENT

LINES 91, 101, 10", 113, II~, 117
PAGE S PROCEouaE fOR INITIALIZATiON

I.INES 15.)
L 1I4E' NUMBER

PAGE 2 PROGRAM DATA.STRUCTURE
I.INES 53

"ODULe. SUCK
PAGE 2 PR~GRAM DATA.STRUCTURE

LINES S6
PAGE 3 PROGRAM HAIN

LINES 79, 80
PAGE .. PROCEDURE: GET.STATEMENT

LINES 96
NODE. NAME

PAGE l PROGRAM DATA.STRUCTURE
LINES 59

OPTION.B
PAGE 5 PROCEOUHL fOR INITIALIZATION

LINtS 123. 132
OPTION.C

PAGE 5 PROCEDUHL fOR INITIALIZATION
1.1 NES 12"

OPT! ON.E

3-10

•

•

77-24

DATA ITEMS
CROSS REFERENCE LIST I NG flAGE a 0

IDENTIFIER· •• • •••••• ••••• ••• •• •• • ••• •• ••

PAGE 5 PROCEDURE FOR INItIALIZATION
LINES 12S

OPTION.1e
PAGE 5 flROCEOURE f~R INITIALIZATION

LINES 126
OPTION.M

PAGE 5 PROCEDURE fOR INITIALIZATION
'..INES 127

OflTlON.fI
PAGE 5 flROCEOURE FOR INITIALIZATION

LINES 128
OPTloN.R

PAGE 5 flROCEOURE fOR INITIALIZATION
LINES 12'

O .. T .,N. T
PAGE 5 PROCEDURE fOR INITIALIZATION

LINES UO
PAi£,NUMBER

PAGE l PROGRA" OATA.STRUCTURE
LINES SZ

'ROGRAM.NAME
PAGE 2 PROGRAM DATA.STRUCTURE
LI~ES 4tS

PAGE • PROCEOURE fOR KEYWORO.SET:U,.
LINES 178

READ. UNIT
PAGE 5 PROCEDURE FOR INITIALIZATION

LINES au
REFERENCE

PAGE 2 PROGRAM DATA.STRUCTURE
LINES 51

PAGE 5 PROCEDURE rOR INITIALIZATioN
LINES 12~. 127. 128. 129

REFERENCE.LIST
PAGE 2 PROGRA" DATA.STRUCTURE

LINES 4t9
RIGHT,MARGIN

SOD

PAGE 5 PROCEOURE fOR INITIALIZATION
LINES 151

PAGE
I.INES

PAGE
lINES

TEXT.I.ENGTH

~ PROCEDURE: GET.STATEMENT
97

5 PROCEDURE FOR INITIALIZATION
13~. 135. 137, 1~3

~AGE 2 PROGRAM DATA_ST~UCTURE
I.INES 37

PAGE 3 PROGRAM MAIN
liNES 67

PAGE ~ PROCEDU~E: CiET.STATEMENT
I.INES 92, 102. lOS. 109, 117. lie

TEXT,POINTER
PAGE 2 PROGRAM DATA.STRUCTURE

3-11

,
j

17-24

onA J T["S
CROSS REFERENCE LISTING PAiE 11

IDENTIFIER ••

LINES 0
TOKEN,DICTIoNARY

. PAGE 2 PROGRAM DATA.STRUCTURE
LINES .. 0

PAGE l PROGRAM MAIN
LINES 73

PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 'IS ..

PAGE 6 PROCEDURE FOR KEYWORO.SET:UP
LINES 177

TOKEN.TYPE
PAGE 3 PROGRAM HAIN

L.INES 70, 72
USABLE COLUMNS

PAGE .. PROCEDU~E: GET.STATEMENT
LINES 102, IU

WRITE_UNIT
PAGE 5 PROCEDURE FOR INITIALIZATION

LINES 1'19

REVISiONS
CROSS REFERENCE L 1ST I NG PAGE 12

IDENTIFIER+.+++ ••••• + •• + •••••••••••••••••••••••••••••••••••••• + ••••• + •••••••••••

11
PAGE

L.INES
PAGE

LI",ES
PAGE

LINES

l PROGUM MUN
66

.. PROCEOURE: GET.STArEMENT
90

6 PROCEOU~E FOR KEYWO~O_SET_Up
163. 16", 165. 1", 167, 16a. 1". 170, 171, 172, 17l, 17 ..

PROGRAM PORTABILITY CONSIDERATIONS
CROSS REFERENCE LISTING PAGE 13

IDENTIFIER ••••••• + ••• + ••••••••••••

?7?
PAGE

LINES
PAGE

LINES

.. PROCEOUHE: GET.STATEMENT
102; 113, 11"

5 PROCEDURE FOR INITJALIZATION
1"', 1 .. 7. l .. a , Itt', lf13

3-12

I

77-24

ROUTINES ANO fUNCTIONS
CROSS REfERENCE LISTING 1"

IDENTlfIER·.·· •• •• •• •••••• •• ···.·······+·.·.·······.·· .•......•....•...•..•..•.•
eLIND.TERMINATOR

KEYWORO .. 5tT:UP PAGE 6 PROCEDURE fOR
LINES 17lt

IOX.TEXT
PAGE 6 PROCEDURE FOR KEYWtlRO.S£T.Up

LINES : 67 t 168
CAltD.SEQUENCING

KEYWORD .. SEt:UP PAGE 6 PROCEDURE FOR
'LINES 17J

DEflNE.WORDS
KEYWORD.S£t:UP PAGE 6 PROCEDURE FOR

LINES 170
EJECT.PAGE

KEYWORO.SET:Up PHE 6 PRO(.EDURE 'OR
LINES 171

END.CONTROL
PAGE 6 PROCEDURE 'OR KEYWORO.SET:UP

LINES ." SET .DATA.CHAR
PAU , PROCEDURE fOR KEY\l/ORD.SET:UP

LINES lU
SET.INDENTATION

KEYWORD.SU:UP PAGE , PROCEDURE FOR
LINU US

SET.LINENUMIER
KEY\l/ORD.SU:UP 'AGE 6 PROCEDURE fOR

LINES '66
SET.PA\iE.WIDTH

KEYWORO.SET:UP PAGE 6 PROCEDURE fOR
LIN'ES 172

SET.STRING.CHAR
KEYWORO .. SET:UP PAGE , PROCEDURE fOR

LINES 16 ..

3-13

•

77-24

'" ,

Example 2. Illustration of SDDL responses to sample input errors:

As input (part 1):

l:IDEFINE NULL PROCEOURE. E.OPROCEOURE. EXITPROCEOURE ~
2: SELECT, CASE [NDStLEcT ENOIF
3:IOEFINE HODULE FUNCTION END RETURN
~:IOEFINE BLOCK IF ALWAYS
s:IOEFJNE BLOCK GIVlN. ENOOATA, .yIELDING
6: I OEFINE BLoCK GIVE~ ••• USING
7:PROCEOURE TO ILLUSTRATE THE CONTINUATION CAPABILITIES FOR INPUT &
8:0F LONG LINES & fOR OUTPUT Of LONG LINES
9'lOOP

10 LOOP AGAIN
11 IF NOW IS THE TIML
12 DO IT AS BEST YOU CAN
13 GIVEN INPUT ARGUMENTS
l'ol INPuT 1
IS Jt~PuT 2
16.USINij COHMON ~AR1A8LES
17 ITEM 2
18 ITEM 3
19 YIELDING RETUH~ ARGUMENTS
20 ANSwER
21 tNnnATA FOR PROC~DURE INTERFACE
22 SELECT IS NOT A KEYwORD ANYMO~E
23 IINDENT 20 COLUMNS FROH NO~ ON
2~ If ANSWER • A~AIN

25 CYCL.E
26 ELSEIF ANSWER • STOP
27 EXITPROCEOURC
28 EXITPROG~AM
29 RC TURN
30 ELSe:
31 EXITLOop
32 ALWAYS
33:IF A
3,.:L.OOp 6
35: IF C
36:l00P D ~RAPS AROUND THE L.EFT MARGIN BECAUSE Of THE DEEP INDENTATION
37 IINDENT • If
38 I~OtNTATION AMOUNT IS SlT TC If BUT THE PROCESSOR WILL UNINDENT CORRECTLY
19 ENDLOOP
~O AN IF STATEMENT WILL. BE CLOSED BY THE PROCESSOR
Ifl ENOLOOP
~2 NEXT. l STRuCTURES ARE TERMINATED BY THE TE~MINATION DIRECT'VE
'13 lTERMINATE l
'Ilf 'INALL.Y ENDPROGRAH CLOSES THE REMAINING OPEN BLoCKS
If5 E.Ni>PROCiRAM
'16 ILINENUMBER

3-14

I

As input (part 2):

1 FUNCTION FOR IT
2 GIVEN
3 FIRST INPUT
.. SECOND INPUT
S USING GLOBAL VARIABLES
6 A
7.8

77-24

a:YIELDING OR RETURNING CALCULATIONS
, ANSWER 1

10 ANSWER 2
11 END DATA
12 LOOP UNTIL DONE
13 IF TODAY IS TUESDAY
1" THiS MUST BE BELGIUM
lS:SERIOUSLY. FOLKS 'NOTICE HOW THIS LINE IS SPLIT
16:IF A LINE HAS A POUND SIGN. THE pROCESSOR
17:LI NtS UP THE PART AFTER THE' AGArNST THE RIGHT MARGIN
lS:THE REMAINDER OF THE DOCUMENT WILL BE
19:WRAPPED UP BY THE END OF FILE HARKe

Execution step:

@SDDL·SDDL.SDDL
@ADD SDDL.SDDL.INPUT1
ILINENUHBER
@ADD SDDL·SDDL.INPUT2
@FREE SDD.
@SYM SDD.,HOLD/HOLD,G9300A

3-15

LINE

7

,
10
11
12
13
1 ..
15
U
17
11
It
20
ZI
ZZ
Z"
Z5
U
27

11-24

As output:

PAGE
PRO'RAM ~ STATE"ENT SUPP~IED BT PROCESSOR

PROCEDURE TO ILLUSTRATE THE CONTINUATION CAPABILITIES FOR INPUT OF LONG
'LINES ~ FOR OUTPUT OF LONG LINES

LOOP
LOa,. AGAIN

IF NOW IS THE TIME DO IT AS BEST TOU CAN __ ~_-_____ .-____ • __ • __ ._. _____ --____ >(2)

GIvEN INPUT ARGUMENTS
INPUT I
INPUT 2

USING COMMoN VARIABLES
ITEM 2
ITEM 3

YIELDING RETURN ARGUMENTS
ANswER

ENODATA FOR PROCEDURE INTERFACE
SELECT IS NOT A KEYWORD ANYMORE
IF ANSWER. AGAIN

<.-... ·_-_··.·· .. ·· .. ·._ .. CYCLE
ELSEIF ANswER • STOP

EXJTPROCEOURE
Z8 <------------.-.--.--.---.---.-.ExJTpROGRAM
Z9 RETURN

•••••
30
II
lZ
3l
l ..
l5
l6

38

••• ERROR •••
ELSE

<···--·----··-··--~··----·EXITLOOP
AI,.WAYS
IF A

LOOP 8

INCORRECT "ODULE ESCAPE WORD

IF C
LOO ,p 0 wRApS AROUND YHE LEFT MARGIN 8ECAUSE OF THE DEEP INDENTATION

,INDENTATION A~OUNT IS SET TO "BuT THE PROCESSOR WILL UNINDENT CORRECTLy
39 END

'LOOP
'to AN

'IF STATEMENT ~ILL BE CLOSED BY THE PROCESSOR

I

ENDIF - STMT SUPPLIED 8T
Ifl ENOLOOP
"Z NEXT, 3 STRUCTURES ARE TERMINATEO BY THE TE

~~HINATION OIRECTIYE
.... FINALLY EN~PROGRA~ C~OSF.S T~F. REMAINING OPEN BLOCKS

ENOL~OP ~ STHT SUPPLIED By PROCESSOR
"5 ENDPROG~AH

3-16

r

LINE
1
2
l
If
5

FUNCTION FOR IT
GIVEN

FIRST INPUr
SE:COND I NP'JT

USING GLOBAL JARIAaL~S
6 A
7 8

77-24

8 YIELDING ON RETURNING CALCULATIONS
9 ANS'~E~ 1

10 ANSWE~ 2
tNOGIVEN - STMT SUPPLIED st PROCESSO~

11 t::NO DATA

LINE
PROGRAM - STATEMENT SUPPLIED BY PROCESSOR

12 LOOP UNTIL DONE
13 IF TODAY IS TUESOAY
lit THIS MUST BE BELGIUM

PAGE 2

PAGE 3

15 SERIOUSLY, FOLKS NOTICE HOW THIS LINE IS S'LIT

...

16 IF A LINE HAS A POUND SIGN THE PROCESSOR 17 LINES UP THE PART AFTER THE AGAINST THE RIGHT MARGIN 18 THE REMAINDER OF THE DOCUMENT WiLL 8E 19 WRAPPED UP BY jHE END OF FILE HARK.
ENDIF - STMT SUPPLIED BY PROCESSOR

ENDIF - STMT SUPpLIED BY PROCESSOR
ENDLOOP - STHT SUPPLIED BY PROCESSOR

ENDPROGRAH - STHT SUPPLIEO By PROCESSOR

3-17

" 1 1 I
t. .•. • .. ,· ... ~ ... ,·tN·...;J .'<..~ ••. ~ ... ~ l'4\'":r..

77-24

SECTION IV

USING THE SDDL PROCESSOR ON THE JPL Ul108

Since SDDL usage (except for system tests and experimental runs)

always involves large volumes of input and output, it is most practical

to prepare the input in advance of the processing and to send the output

to a printer for later, off-line perusal. In conformance with this

primary operating mode, the processor has been designed to automatically

handle the necessary U1108 EXEC 8 file cataloging and output stream

breakpointing. The procedure for using the processor is as follows.

After the SDDL input has been loaded into one or more elements

(say, QUAL'FILE.INl and QUALIFILE.IN2), it is processed and printed

by entering the following EXEC 8 commands:

@SDDLISDDL.SDDL[,options] [SDD-output-filename.]

@ADD QUAL'FILE.INl

@ADD QUALIFILE.IN2

@EOF
@FREE SDD.
@SYM SDD.,HOLD/HOLD,G9300A

Option
Meaning

B

c

E

K

M

P

R

T

Supresses catalog and areakpoint operations. All output

goes directly to the terminal.

Suppresses data element ~ross reference tables.

Suppresses ~rror messages.

Suppresses generation of default Keywords (e.g., PROGRAM,

IF, etc.).

Suppresses Hodule cross reference table.

Suppresses second pass editing operation to supply missing

tage references on Module Invocation statements.

Suppresses module Reference tree.

Suppresses Iable of contents.

The first command invokes the SDDL processor. The usages of

all processor options shown above are consistent in that, when exercised,

they all cause a feature or a~tion of the processor to be suppressed.

Thus if no options are exercised, the processor performs all its functions.

The user also has the option to supply an output file name. If

none is given, the name SDD. is selected as the default name of the

output file. If the user does supply a name, an EXEC 8 @USE relationship

is set up equivalencing SOD. to the name supplied by the user. The

4-1

,

77-24

user-supplied output file name must end with a period. If it is incorrectly specified, the processor will write an error message and terminate without processing the input.

With the output file name established, the processor then performs the equivalent of the following EXEC 8 operations:

@ASG,A SOD. or @ASG,UP SOD.
@BRKPT PRINT$/SDD

and begins processing the input stream.

When all of the input data has been processed, a second-pass, editing operation is prepared to supply the page reference numbers which were unavailable during the first pass (see P option above). The second-pass editing operation will be set up by the SDDL processor and performed independently by a Text Editor program. This step is automatic and, except for brief messages to report the state of system, is transparent to the user.

To set up the second pass, the SDDL processor writes appropriate editing commands to a scratch file (SIMU1.) and then queues the file (@ADD SIMU1.) for execution when the processor 1s finished.

When the second-pass editing is finished, the message PAGE REFERENCE EDITING COMPLETED will appear on the terminal, and the output may be sent to the printer with the appropriate eSYM command.

Sample execution setup:

@SDDL'SDDL.SDDL
@ADD QUAL'FILE.IN
@FREE SOD.
@SYM SDD.,HOLD/HOLD,G9300A

The SDDL processor and several user's information elements are contained in a read-only file named SDDL'SDDL. The following elements are contained in this file:

SDDL'SDDL.SDDL
SDDL'SDDL.INFO
SDDL'SDDL.XQT
SDDL'SDDL.INPUTl
SDDL'SDDL.INPUT2
SDDL'SDDL.USERS

Processor executable element
User's information memo
Sample execution element
Sample SDDL input element (part 1)
Sample SDDL input element (part 2)
Mailing list for SDDL information bulletins

4-2

I

77-24

BIBLIOGRAPHY

Baker, F. T., "Structured Pro~ramming in a Production Programming
Environment," IEEE Trans. on Software Engr., Vol. SE-l, No.2, pp.
241-252, June 1975.

Baker, F. T., and Mills, H. D., "Chief Programmer Teams, II Datamation,
Vol. 19, No. 12, pp. 58-61, Dec. 1973.

Basili, V. R., SIMPL-X. A Language for Writing Structured Programs,
Nat. Tech. Info. Service Report AD755-703, U.S. Dept. of Commerce,
Springfield, VA, Jan. 1973.

Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,"
Datamation, Vol. 19, No.5, May 1973.

Brinch Hansen, P., liThe Purpose of Concurrent Pascal," Proceedings
of the 1975 International Conference on Reliable Software, IEEE Catalog
No. 75 CH0940-7CSR, pp. 305-309. (Also published in SIGPLAN Notices,
June 1975, pp. 305-309.)

Brinch Hansen, P., Concurrent Pascali A Programming Language for Operating
System Design, California Institute of Technology Information Science
Technical Report No. 10, Pasadena, CA, April 1974.

Brooks, F. P., "The Mythical Man-Month," Datamation, Vol. 20, No. 12,
pp. 45-52, Dec. 1974.

Caine, S. H., and Gordon, E. K., "PDL--A Tool for Software Design,"
Program Design Language Reference Guide, Caine, Farber, and Gordon,
Inc., Pasadena, CA, Sept. 18, 1974.

Constantine, L. L., Fundamentals of Program Design, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1976.

Dahl, O. J., and Hoare, C. A. R., "Hierarchical Program Structures,"
in Structured Programming, Academic Press, New York, 1972.

Dijkstra, E. W., "Notes on Structured Programming," in Structured
Programming, Academic Press, New York, 1972 (pa.ticularly pp. 16-23).

Flynn, J., SFTRAN User's Guide, Comput. Memo. 914-337, Jet Propulsion
Laboratory, Pasadena, CA, July 1973 (JPL internal document).

Hoare, C. A. R., "Notes on Data Structuring," in Structured Programming,
Academic Press, New York, 1972.

Katzan, H., Jr., Advanced Programming, D. Van Nostrand Reinhold Co.,
NJ, 1970, pp. 153-163.

Kernighan, B. W., and Plauger, P. J., The Elements of Programming Style,
McGraw-Hill Book Co. New York, 1974, pp. 36-39.

5-1

77-24

Kleine, H., and Morris, R. V., "Modern Programming: A Definition,"
SIGPLAN Notices, Vol. 9, No.9, Sept. 1974, pp. 14-17.

Liskov, B., and Zilles, S., "Programming with Abstract Data Types,"
SIGPLAN Notices, March 1974, pp. 50-59.

Luppino, F'. B., and Smith, R. L., "Programming Support Library Functional
Requirements," Vol. V of Structured Programming Series, RADC-TR-74-
300, U. S. Air Force, July 25, 1974.

Mi ller, E. F., Jr., A Comoendi um of Language Extensions to Support
Structured Programming, RN-42 , General Research Corp., Santa harbara,
CA, Jan. 1973.

Mills, H. D., "Top-uoWD Programming in Large Systems," in Debugging
TechniQues in Large Systems, Edited by R. Rustin, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1971, pp. 43-45.

Mills, H. D., Mathematical Foundations of Structured Pro£ramming, IBM
Document FSC 72-6012, IBM F'ederal Systems Division, Gaithersburg, MD,
Feb. 1972.

Myers, G. J., Composite Design; The Design of Modular Programs, Technical
Report TROO.240b, IBM, Poughkeepsie, N. Y., Jan. 29, 1973.

Robert, D. C., "File Organization Techniques," Adyances in Computers,
Vol. 12, Academic Press, New York, 1972.

Shneiderman, E., "A Review of DeSign Techniques for Programs and Data,1t
Software-Practice and Experience, Vol. 6, 1976, pp. 555-567.

Shneiderman, B., et al., "Experimental Investigations of the Utility
of Detailed F'lowcharts in Programming," COmmunications of the ACM,
Vol. 20, No.6, June 1977, pp. 373-381.

Tausworthe, R. C., Standardized Development of Computer Software.
Part 1, Methods, SP 43-29, Jet Propulsion Laboratory, Pasadena, CA,
July 1976.

5-2

	0028A02.JPG
	0028A03.JPG
	0028A04.JPG
	0028A05.TIF
	0028A06.TIF
	0028A07.TIF
	0028A08.TIF
	0028A09.TIF
	0028A10.TIF
	0028A11.TIF
	0028A12.TIF
	0028A13.TIF
	0028A14.TIF
	0028B01.TIF
	0028B02.TIF
	0028B03.TIF
	0028B04.TIF
	0028B05.TIF
	0028B06.TIF
	0028B07.TIF
	0028B08.TIF
	0028B09.TIF
	0028B10.TIF
	0028B11.TIF
	0028B12.TIF
	0028B13.TIF
	0028B14.TIF
	0028C01.TIF
	0028C02.TIF
	0028C03.TIF
	0028C04.TIF
	0028C05.TIF
	0028C06.TIF
	0028C07.TIF
	0028C08.TIF
	0028C09.TIF
	0028C10.TIF
	0028C11.TIF
	0028C12.TIF
	0028C13.TIF
	0028C14.TIF
	0028D01.TIF
	0028D02.TIF
	0028D03.TIF
	0028D04.TIF
	0028D05.TIF
	0028D06.TIF
	0028D07.TIF
	0028D08.TIF
	0028D09.TIF
	0028D10.TIF
	0028D11.TIF
	0028D12.TIF
	0028D13.TIF
	0028D14.TIF
	0028E01.TIF
	0028E02.TIF
	0028E03.TIF
	0028E04.TIF
	0028E05.TIF
	0028E06.TIF
	0028E07.TIF
	0028E08.TIF
	0028E09.TIF
	0028E10.TIF
	0028E11.TIF
	0028E12.TIF
	0028E13.TIF
	0028E14.TIF
	0028F01.TIF
	0028F02.TIF
	0028F03.TIF
	0028F04.TIF
	0028F05.TIF
	0028F06.TIF
	0028F07.TIF
	0028F08.TIF
	0028F09.TIF
	0028F10.TIF
	0028F11.TIF

