General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Software Design and Documentation Language

(NASA-CR-155046) SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE (Jet Propulsion Lab.)
80 p HC AOS/MF ACT
CSCI 09E

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103
COMMUNICATION BY MEANS OF SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE SDDL.

SOFTWARE DEVELOPMENT TEAM COMMUNICATIONS.
Software Design and Documentation Language

Henry Kleine

July 1, 1977

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103
PREFACE

The work described in this report was performed by the Information Systems Division of the Jet Propulsion Laboratory.

ACKNOWLEDGMENT

Many aspects of the methodology for using SDDL, and enhancements to the language and the processor, evolved from its application to the design of two programs: the Vehicle Economy and Emissions Program (VEEP), and the Solar Array Manufacturing Industry Simulation (SAMIS). The current capabilities, present methodology, successful application, and future prospects of SDDL are, in large measure, due to the many contributions of the members of these design teams. For their many excellent suggestions, critical reviews of this document, critique of new processor capabilities, conscientious application of SDDL to the design tasks, and hours of philosophical discussion of the goals of a software design tool, I wish to express my thanks to Richard V. Morris, Donald A. Heimbucher, Marcia A. Metcalfe, Bruce L. Kleine, Robert G. Chamberlain, Steve M. Jacobs, Robert L. Norton, and Gerhard J. Klose.
ABSTRACT

The objective of the Software Design and Documentation Language (SDDL) is to provide an effective communications medium to support the design and documentation of complex software applications. This objective is met by providing (1) a processor which can convert design specifications into an intelligible, informative machine-reproducible document, (2) a design and documentation language with forms and syntax that are simple, unrestrictive, and communicative, and (3) methodology for effective use of the language and processor.

The SDDL processor is written in the SIMSCRIPT II programming language and has been implemented on the UNIVAC 1108 and the IBM 360/370 machines.
CONTENTS

I. INTRODUCTION.. 1-1
 A. SDDL OBJECTIVE.. 1-1
 B. SDDL PROCESSOR.. 1-2
 1. Document Formatting.. 1-2
 2. Software Design Summary Information................................ 1-2
 3. Processor Control Capabilities.. 1-3
 C. SDDL OVERVIEW.. 1-3
 1. SDDL Syntax... 1-3
 2. SDDL Structures... 1-4
 D. SDDL METHODOLOGY... 1-10
 1. Uses of the Software Design Document (SDD)..................... 1-10
 2. Representation of Data Structures.. 1-10
 3. Representation of Control/Procedural Structures............... 1-11
 4. Specification of Module Interfaces...................................... 1-14
 5. Inclusion of Management Information in the SDD.............. 1-14
 6. Additional Uses of the Cross Reference Capability............. 1-15

II. SDDL USER'S REFERENCE GUIDE.. 2-1
 A. CONTINUATION OF INPUT LINES... 2-1
 B. CONTINUATION OF OUTPUT LINES.. 2-1
 C. SDDL SYNTAX DEFINITION LEVELS.................................... 2-2
 1. Primitive Definitions (Level 0)... 2-2
 2. Secondary Definitions (Level 1).. 2-3
 3. Keyword Statement Definitions (Level 2)............................ 2-7
 4. Control Directives (Level 3)... 2-16
 5. SDDL Syntax Overview Diagrams (Level 4)......................... 2-33
III. SAMPLE DESIGN --- 3-1

IV. USING THE SDDL PROCESSOR IN THE JPL U1108 ------------------- 4-1

BIBLIOGRAPHY -- 5-1

Figure
1-1. SDDL Processor Action -- 1-6

Tables
1-1. SDDL Control Structure Keywords ------------------------------- 1-5
2-1. SDDL Primitive Definitions -------------------------------------- 2-3
SECTION I
INTRODUCTION

The frontispiece is a conceptual view of the software development process. It identifies members of the software development team and shows the many communication links over which information must flow. The team members and the information flow shown in the diagram are a part of every software development project regardless of the number of individuals actually involved. Even when the entire task is done by a single person, it is still essential to have precise, accurate, orderly communication among the various roles the individual performs. With orderly communication, decisions made last month can be acted upon correctly this month, and valid information will be available later when maintenance responsibilities may have to be assumed by others.

The diagram also suggests that a computer programming language is a satisfactory communications medium for only a few links; primarily between programmer and machine, and secondarily among programmers. All other higher-level team communication requires less restrictive, more human-oriented media to be effective.

Historically, software development has suffered because of the lack of an effective communications medium for these high-level links. One may generalize that everyone has experienced some painful results of imprecise and/or incomplete communication in every aspect of life. Programmers suffer immediately when imprecise, incorrect, or incomplete directions are executed by the computer exactly as stated. Managers and customers are affected more seriously because bad communications at the design stage may compound the error by allowing the programming effort, with all its problems, to proceed toward an elusive or erroneous goal.

As long as the communication between members of the software development team remains fuzzy, the misunderstanding will continue and software development costs will be higher than they need be. Software maintenance gets into the act later, when maintenance programmers must deal with poorly written, out-of-date documentation, which, by Murphy's Law, is certain to be inconsistent where it matters.

Effective communication is not sufficient to insure efficient software development, but it is certainly necessary. Therefore, the Software Design and Documentation Language (SDDL) has been developed to satisfy this necessity.

A. SDDL OBJECTIVE

The objective of SDDL is to satisfy the communications requirements of the software design and documentation process. This objective is met by providing
(1) A processor which can convert design specifications into an intelligible, informative, machine-reproducible Software Design Document (SDD).

(2) A program design and documentation language with forms and syntax that are simple, unrestrictive, and communicative.

(3) A methodology for effective use of the language and the processor.

B. SDDL PROCESSOR

The purpose of the SDDL processor is to translate the designer's creative thinking into an effective communications document. The processor must perform as many automatic functions as possible, thereby freeing the designer's energy for the creative design effort.

Some of the automatic functions which the processor, in its current state of development, performs are listed below.

1. Document Formatting
 (1) Indentation by structure logic.
 (2) Flow lines for accentuating structure escapes.
 (3) Flow lines for accentuating module invocation.
 (4) Line numbering and/or card sequencing for input deck editing.
 (5) Logic error detection.
 (6) Special handling for title pages and text segments.
 (7) Input and output line continuation.
 (8) Line splitting (i.e., printing part of the line so that the last character lines up at the right-hand margin).

2. Software Design Summary Information
 (1) Module invocation hierarchy.
 (2) Module cross reference (where each module is invoked).
 (3) Cross reference tables for selected words or phrases appearing in the document. Selection is controlled by the user.
3. Processor Control Capabilities

(1) Page width.
(2) Structure indentation amount.
(3) Page ejection.
(4) Input line numbering sequence.
(5) Keyword specification.
(6) Selection of words for inclusion in the cross reference tables.
(7) Number of right-hand columns for card sequence numbers.
(8) Execution time options for suppressing selected processor features.

C. SDDL OVERVIEW

1. SDDL Syntax

The SDDL syntax consists of keywords, used to invoke design structures, and a collection of directives, which provide the user with control of processor actions such as indentation, page width, start of a new page, etc. Execution time options allow the user to selectively suppress design summary information.

Input to the SDDL processor consists of a sequence of SDDL statements. An SDDL statement begins and ends with a line (or record) of the input medium, unless continuation is explicitly indicated by placing an ampersand (&) in the last non-blank character of the line. Continued lines are concatenated into a single statement for processing. Any natural language text, including a blank line, is an acceptable SDDL statement. Keywords are recognized only in context, that is, only when they appear as the first word of the input statement.

The user is provided complete control of the choice of keywords by an SDDL directive which allows unlimited addition or deletion of keywords. User control of keyword selection is one of the most important features of SDDL because it allows the designer to command the capabilities of the processor in the way which is best suited to communicating the intent of the design.
A complete description of the SDDL semantics is given in Section II and summarized there in the SDDL Syntax Overview diagrams.

2. SDDL Structures

The basic forms of the language are the module and block structures, and the Module Invocation statement. A design is stated in terms of modules that represent problem abstractions which are complete and independent enough (relative to the level of the design) to be treated as separate problem entities. Modules are the highest-level structure. They may not be nested. Descriptive names are given to the modules, and their interrelationships are stated explicitly by the Module Invocation statements. A Module Invocation statement is the equivalent of the subroutine CALL statement in a programming language.

Blocks are the lower-level structures. They are used to build representations of abstractions which should (relative to the specific design) be a part of and appear with the higher-level abstraction represented by the module. Thus blocks must be nested within modules and may be nested within other blocks to any reasonable (i.e., understandable) depth. Examples of the use of blocks are the representations of Structured Programming concepts such as IF-THEN-ELSE and LOOP-REPEAT.

Both kinds of structures may have up to four parts:

1. Initiator (required)
2. Terminator (optional)
3. Escape (optional)
4. Substructure (optional)

Structure parts are specified by statements which begin with a keyword that has been defined as the part name. Table 1 displays the SDDL default keywords for both kinds of structures and their corresponding structure parts.

The actions taken by the processor in response to keyword statements are fully explained in Section II and summarized in Figure 1. These actions are quite simple but very effective for communicating design information. Indentation of statements within structures, and flow lines to highlight structure escapes and module invocations provide visual, two-dimensional information display which captures all of the advantages offered by flowcharts without their attendant disadvantages and constraints.

A simple illustration is presented following Figure 1.
Table 1-1. SDDL Control Structure Keywords

<table>
<thead>
<tr>
<th>MODULE</th>
<th>INITIATOR</th>
<th>TERMINATOR</th>
<th>ESCAPE</th>
<th>SUBSTRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODULE</td>
<td>PROGRAM</td>
<td>ENDPROGRAM</td>
<td>EXIT PROGRAM</td>
<td></td>
</tr>
<tr>
<td>MODULE</td>
<td>PROCEDURE</td>
<td>ENDPROCEDURE</td>
<td>EXITPROCEDURE</td>
<td></td>
</tr>
<tr>
<td>BLOCK</td>
<td>IF</td>
<td>ENDIF</td>
<td></td>
<td>ELSE ELSEIF</td>
</tr>
<tr>
<td>BLOCK</td>
<td>SELECT</td>
<td>ENDSELECT</td>
<td></td>
<td>CASE</td>
</tr>
<tr>
<td>BLOCK</td>
<td>LOOP</td>
<td>ENDOLOOP</td>
<td>EXITLOOP</td>
<td>CYCLE</td>
</tr>
<tr>
<td>CALL</td>
<td>CALL</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CALL</td>
<td>DO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCESSOR CONTROL</td>
<td>#LINENUMBER</td>
<td>#EJECT</td>
<td>#INDENT</td>
<td>#DEFINE</td>
</tr>
<tr>
<td>PROCESSOR CONTROL</td>
<td>#TITLE</td>
<td>#TEXT</td>
<td>#END</td>
<td></td>
</tr>
<tr>
<td>ACTION TAKEN</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Statement entered in table of contents</td>
<td>←</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All nested, open structures are closed with error messages</td>
<td></td>
<td>←</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New page started in the output file</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Indentation level decreased</td>
<td>←</td>
<td></td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Statement written to output file</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Indentation level increased</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Left arrow (escape level indicator) added to the output file</td>
<td></td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Right arrow (call indicator) added to the output file</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Subsequent input lines are diverted to a holding buffer</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>The lines in the holding buffer are written to the output file (boxed in by "**")</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Subsequent input lines are diverted back for normal processing</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Control parameters of the SDDL processor are altered</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
</tbody>
</table>

Figure 1-1. SDDL Processor Actions
In most of the following examples, the SDDL input statements are shown with the resulting output produced by the processor. In practice, the input source listing is rarely needed. Where the source statements are shown, as in the example below, it should be understood that the line numbering, including the colon, was added and is not part of the input statement.

Example:

As input:

```
1: PROGRAM EXAMPLE TO DEMONSTRATE THE BASIC SDDL STRUCTURES
2: (THE LINE ABOVE IS A MODULE INITIATOR STATEMENT WHICH ESTABLISHES
3: "EXAMPLE" AS THE NAME OF THIS PROGRAM/MODULE)
4:
5: IF THIS CONDITION IS TRUE (BLOCK INITIATOR "IF")
6: ACT ON THIS STATEMENT (PASSIVE STATEMENT)
7: ELSE (SUBSTRUCTURE STATEMENT FOR "IF")
8: ACT ON THE FOLLOWING STATEMENTS (ANOTHER PASSIVE STATEMENT)
9:
10: LOOP FOR INDEX = 1 TO SOMETHING (BLOCK INITIATOR "LOOP")
11: (PASSIVE STATEMENTS CAN BE PLACED ANYWHERE)
12: CALL SUBROUTINE (MODULE INVOCATION STATEMENT)
13: THE NAME OF THE MODULE INVOKED IN THE PREVIOUS STATEMENT
14: IS "SUBROUTINE"
15: IF THERE IS NOTHING LEFT TO DO (NESTED BLOCK INITIATOR "IF")
16: EXIT LOOP (ESCAPE STATEMENT "LOOP")
17: ENDIF (TERMINATOR STATEMENT NESTED "IF")
18: END LOOP (TERMINATOR STATEMENT "LOOP")
19:
20: ENDIF (TERMINATOR STATEMENT "IF")
21: ENOPROGRAM (MODULE TERMINATOR STATEMENT "PROGRAM")
22:
23: PROCEDURE SUBROUTINE
24:
25: NOTE: A MODULE INITIATOR STATEMENT CAUSES THE START OF A NEW PAGE.
26:
27: SELECT CASE BASED ON SOME CRITERION (BLOCK INITIATOR "SELECT")
28:
29: CASE 1: CHECK FOR SUBROUTINE ABDORT (SUBSTRUCTURE STATEMENT For "SELECT")
30: IF THERE IS NO MORE DATA TO BE READ (BLOCK INITIATOR "IF")
31: EXIT PROCEDURE (ESCAPE STATEMENT "PROCEDURE")
32: ENDIF
33:
34: CASE 2: CHECK FOR SUBROUTINE ERROR (SUBSTRUCTURE STATEMENT FOR "SELECT")
35: IF AN ERROR OCCURS (BLOCK INITIATOR "IF")
36: PRINT AN ERROR MESSAGE (PASSIVE STATEMENT)
37: ENDIF
38:
39: CASE 3: INVOKE ANOTHER SUBROUTINE (SUBSTRUCTURE STATEMENT FOR "SELECT")
40: DO ANOTHER SUBROUTINE (MODULE INVOCATION STATEMENT)
41: NOTE: "DO" IS A SYNONYM FOR "CALL" (PASSIVE STATEMENT)
42:
43: END SELECT (TERMINATOR STATEMENT "SELECT")
44: END PROCEDURE (MODULE TERMINATOR STATEMENT "PROCEDURE")
```
As output:

```
1 PROGRAM EXAMPLE TO DEMONSTRATE THE BASIC SDDL STRUCTURES
2 "EXAMPLE" AS THE NAME OF THIS PROGRAM/MODULE
3 IF THIS CONDITION IS TRUE (BLOCK INITIATOR "IF")
4 ACT ON THIS STATEMENT (PASSIVE STATEMENT)
5 ELSE (SUBSTRUCTURE STATEMENT FOR "IF")
6 ACT ON THE FOLLOWING STATEMENTS (ANOTHER PASSIVE STATEMENT)
7 LOOP FOR INDEX = 1 TO SOMETHING (BLOCK INITIATOR "LOOP")
8 (PASSIVE STATEMENTS CAN BE PLACED ANYWHERE)
9 CALL SUBROUTINE (MODULE INVOCATION STATEMENT)---------(2)
10 THE NAME OF THE MODULE INVOKED IN THE PREVIOUS STATEMENT
11 IS "SUBROUTINE"
12 IF THERE IS NOTHING LEFT TO DO (NESTED BLOCK INITIATOR "IF")
13 <-----EXITLOOP (ESCAPE STATEMENT "LOOP")
14 ENDF (TERMINATOR STATEMENT NESTED "IF")
15 ENDOLOOP (TERMINATOR STATEMENT "LOOP")
16 ENDF (TERMINATOR STATEMENT "IF")
17 ENDP (MODULE TERMINATOR STATEMENT "PROGRAM")
```
NOTE: A MODULE INITIATOR STATEMENT CAUSES THE START OF A NEW PAGE.

SELECT CASE BASED ON SOME CRITERION (BLOCK INITIATOR "SELECT")

CASE 1: CHECK FOR SUBROUTINE ABORT (SUBSTRUCTURE STATEMENT FOR "SELECT")

CASE 2: CHECK FOR SUBROUTINE ERROR (SUBSTRUCTURE STATEMENT FOR "SELECT")

CASE 3: INVOKE ANOTHER SUBROUTINE (SUBSTRUCTURE STATEMENT FOR "SELECT")

ENDSELECT (TERMINATOR STATEMENT "SELECT")

ENDPROCEDURE (MODULE TERMINATOR STATEMENT "PROCEDURE")
D. SDDL METHODOLOGY

The following discussion of techniques and styles is intended as a guideline or list of suggestions for using the capabilities of the SDDL language and processor to fullest advantage in striving for the goal of an informative and communicative Software Design Document.

The reader is encouraged to examine these suggestions with a critical eye. Accept what is useful, adapt to your own requirements and taste, and invent new methods, but always keep in mind that the primary purpose of the Software Design Document is to communicate information to other people.

1. Uses of the Software Design Document

Throughout the development of the software design, the SDD always represents the definitive word on the current status of the ongoing, dynamic design development process. It is easily updated and readily accessible, in a familiar, informative, readable form, to all members of the development team. This makes the SDD an effective instrument for reconciling misunderstandings and disagreements in the evolutionary development of design specifications, engineering support concepts, and the software design itself. Using the SDD to analyze the design makes it possible to eliminate many errors which otherwise might not be detected until coding is attempted.

As a project management aid, the SDD is very useful for monitoring progress and for recording task responsibilities.

The SDD has been found to be very effective in its primary role as the specification for coding the design. To date, there is no experience with the use of the SDD for software maintenance, but since the SDD is easily revised, and revisions are automatically cross referenced, the outlook for this purpose is favorable.

2. Representation of Data Structures

A thorough knowledge of the content and organization of its input and output data is an essential prerequisite to understanding a program. For this reason, much attention was focused on developing data structure representations that effectively display data organization and content. SDDL techniques that facilitate achieving this goal include:

- Group the data into appropriate data description modules located in the beginning pages of the SDD.
- Provide descriptive names for variables.
- Use the period (.) (it lies low on the printed line and does not interfere with readability) to connect the words of a descriptive phrase to form a variable name.
Use the underscore to connect the words of a descriptive phase to form a module name.

Use the single or double quote mark to identify single word variable names for cross referencing.

Include information about the data (e.g., units, mode, dimension, etc.) in the data structure module.

Group all data which describe attributes of a design entity with the entity they describe, and provide an entity name which can be used as a qualifier with the attribute.

If the program is to be implemented in a language that does not permit the use of descriptive variable names, include the name to be used in the program code in the data structure.

Define ENTITY (or another suitable word) to be a block initiator keyword to provide automatic indentation. Use the #ITERMINATE directive to terminate the block without printing a Termination statement.

Example:

PROGRAM VEHICLE-COMPONENTS DATA STRUCTURE

ENTITY ENGINE:
 PCT.PEDAL [PCTPED] PERCENT
 'RPM' [ENGRPM] REV/MIN
 'TORQUE' [TORQUE] FT*LB
 MIN.TORQUE [MINTOR] FT*LB
 MAX.TORQUE [MAXTOR] FT*LB
 'HORSEPOWER' (VECTOR) [HPower] HP

ENDPROGRAM VEHICLE-COMPONENTS DATA STRUCTURE

PROGRAM DYNAMIC_SYSTEM_PARAMETERS DATA STRUCTURE

.
.
.

ENDPROGRAM

3. Representations of Control/Procedural Structures

The constructs of Structured Programming, such as modules (e.g., PROGRAM - RETURN - ENDPROGRAM), iterations (e.g., LOOP - CYCLE/EXITLOOP - REPEAT), conditionals (e.g., IF - ELSE - ENDIF), and selections (e.g., SELECT - CASE - ENDSELECT) are used in a similar manner for software design. The difference is that for software design, the structures should convey human-oriented, natural language information to the level of precision and completeness necessary to communicate the design, but free of the syntax constraints and detailed information requirements imposed by programming languages.
Example: Module and block structures, high-level statements

```plaintext
PROGRAM MAIN ROUTINE
  LOOP UNTIL THERE IS NO MORE DATA
  READ THE DATA AND CHECK IT
  IF THE DATA IS BAD OR INCOMPLETE
    → CYCLE TO THE NEXT CASE
  ELSE
    CALL DATA_PROCESSING ROUTINE———> (9)
  ENDIF
  REPEAT
  TERMINATE THE PROGRAM
ENDPROGRAM
```

If the design must specify a list of conditions where all must be tested and acted upon if true (in contrast to the SELECT-CASE-ENDSSELECT construct, which finds and executes only the first true condition), a new structure is recommended in place of a sequence of IF-ENDIF structures. Use the #DEFINE directive to establish the following structure:

- CHECK - block initiator
- ENDCHECKLIST - block terminator
- CONDITION - substructure

Example:

As input:

```
1: #DEFINE BLOCK CHECK, ENDCHECKLIST, CONDITION
2: PROGRAM FOR VACATION PREPARATION
4: CHECK AND ACT ON ALL TRUE CONDITIONS IN THE FOLLOWING LIST
6: CONDITION: CAR NEEDS TO BE SERVICED
8: TAKE CAR TO THE SERVICE STATION
9: GET GAS AND OIL
10: INFLATE TIRES
11:
12: CONDITION: DELIVERIES HAVE TO BE CANCELLED
13: CANCEL NEWSPAPER
14: CANCEL MILK
15:
16: CONDITION: TRIP HAS TO BE PLANNED
17: GET MAPS
18: MAKE HOTEL RESERVATIONS
19:
20: ENDCHECKLIST
21: ENDPROGRAM
```
As output:

```
LINE 3 PROGRAM FOR VACATION PREPARATION
5 CHECK AND ACT ON ALL TRUE CONDITIONS IN THE FOLLOWING LIST
7 CONDITION: CAR NEEDS TO BE SERVICED
8 TAKE CAR TO THE SERVICE STATION
9 GET GAS AND OIL
10 INFLATE TIRES
12 CONDITION: DELIVERIES HAVE TO BE CANCELLED
13 CANCEL NEWSPAPER
14 CANCEL MILK
16 CONDITION: TRIP HAS TO BE PLANNED
17 GET MAPS
18 MAKE HOTEL RESERVATIONS
20 ENDCHECKLIST
21 ENDPGRAM

The following forms are recommended for use when the design has progressed to the point where engineering calculations need to be expressed:

Example 1: Equation not yet determined

CALCULATE VEHICLE.STATE: DISTANCE.TRAVELLED (TARGETTED)
* GIVEN: VEHICLE.STATE: DISTANCE.TRAVELLED (CURRENT)
* VEHICLE.STATE: VELOCITY (CURRENT)
* VEHICLE.STATE: ACCELERATION (TARGETTED)
* TIME INCREMENT

Example 2: Equation included

COMPUTE VEHICLE.STATE: DISTANCE.TRAVELLED (TARGETTED) =
D + V*T + (A/2)*T**2
D = VEHICLE.STATE: DISTANCE.TRAVELLED (CURRENT)
V = VEHICLE.STATE: VELOCITY (CURRENT)
T = TIME.INCREMENT
A = VEHICLE.STATE: ACCELERATION (TARGETTED)

Indentation in the examples above may be imposed by indenting the input statements or by defining COMPUTE to be a Block Initiator keyword.
```
4. Specification of Module Interfaces

Explicit specification of the data passed between modules and accessed from a global store will eliminate many debugging problems in the coding and integration stages.

- Use the words GIVEN and YIELD to specify parameters transmitted to and returned from a module. Use the word USING to specify global variables accessed.

- List the GIVEN and YIELD parameters with Module Invocation statements.

Example:

```
NOW CALCULATE_DRIVE_WHEEL_OUTPUT_REQUIRED-------------------------> ( 38)
* GIVEN: VEHICLE.STATE:
  * SCHEDULED.TIME
* YIELD: VEHICLE.STATE: TIRE.RPM, ACCELERATION
  * WHEEL FORCE REQUIRED
  * WHEEL TORQUE REQUIRED
```

In this example, NOW is the Module Invocation keyword. The lines specifying arguments passed to and from the module all begin with an asterisk to emphasize their association with the Invocation statement.

- List USING, GIVEN, and YIELD parameters with Module Initiator statements.

Example:

```
PROCEDURE TO CALCULATE_DRIVE_WHEEL_OUTPUT_REQUIRED

* USING; DRIVE POWER TRAIN: DATA
* CHASSIS: DATA
* GIVEN; VEHICLE STATE:
  * SCHEDULED TIME
* YIELD; VEHICLE STATE: TIRE RPM, ACCELERATION
  * WHEEL FORCE REQUIRED
  * WHEEL TORQUE REQUIRED
```

The parameters in this structure are set off by using the #TEXT #END directives to enclose them in a box formed by asterisks. In addition to the GIVEN and YIELD arguments, the USING category lists global parameters which are accessed by the module.

5. Inclusion of Management Information in the SDD

Project management information, just as program design, must be kept up to date and accurate. The SDD is the ideal place to maintain
this information, and the language can be used effectively to present the information. Listed below are several Module Initiator statements which have been used effectively in the VEEP and SAMIS programs. These examples are intended to suggest kinds of management information, as indicated by their wording, which might be included in the SDD.

- PROGRAM OBJECTIVES
- PROGRAM REVISIONS MEMORANDA
- PROGRAM MEETING CALENDAR & AGENDA
- PROGRAM DOCUMENT READING CONVENTIONS
- PROGRAM COMPLETION SCHEDULE

6. Additional Uses of the Cross Reference Capability

The SDD typically will contain much information, in addition to the names of design parameters, for which it would be useful to have a cross reference. Individual cross reference tables for each type of information can be obtained by associating a different cross reference title with each (see the #MARK directive). Some that have proved to be useful appear below in a sample design, showing the form of the #MARK directive which establishes the cross reference character, and the way in which the data appear in the main body of the SDD. The pound sign (#) has been used in the input to cause some information to be printed at the right-hand margin of the SDD for increased readability.

Example:

As input:

```
1: #MARK REVISIONS & FOOTNOTES & FILE NAMES &
2: #MARK UPDATE RESPONSIBILITY ?
3: PROGRAM TO PROCESS CUSTOMER DATA & (REF1)
4: READ NAMES FROM CUSTOMERFILE & %1
5: MATCH NAMES TO CREDIT DATA & ?HK
6: WRITE CREDIT INFO TO CREDITSFILE & %2
7: ENDPROMGRAM
```
As output:

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
<th>LINE</th>
<th>NUMBER</th>
<th>NUMBER</th>
<th>MODULE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>PROGRAM TO PROCESS CUSTOMER DATA</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>REVISIONS - CROSS REFERENCE LISTING</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>FOOTNOTES - CROSS REFERENCE LISTING</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>FILE NAMES - CROSS REFERENCE LISTING</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>UPDATE RESPONSIBILITY - CROSS REFERENCE LISTING</td>
</tr>
</tbody>
</table>

LINE

<table>
<thead>
<tr>
<th>PAGE</th>
<th>LINE</th>
<th>NUMBER</th>
<th>NUMBER</th>
<th>MODULE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>PROGRAM TO PROCESS CUSTOMER DATA</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>READ NAMES FROM CUSTOMER$FILE</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>MATCH NAMES TO CREDIT DATA</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>WRITE CREDIT INFO TO CREDITS$FILE</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>ENDPROGRAM</td>
</tr>
</tbody>
</table>

REVISIONS

CROSS REFERENCE LISTING

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>PAGE</th>
<th>LINE</th>
<th>NUMBER</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>%2</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
SECTION II
SDDL USER'S REFERENCE GUIDE

Input to the SDDL processor consists of a sequence of design statements and processor control directives.

Statements and Directives begin and end with a line (or record) of the input medium, unless line continuation is explicitly indicated, as described below. Continued lines are concatenated into a single statement for processing.

A. CONTINUATION OF INPUT LINES

A continuation mark, the ampersand can be used to concatenate several input lines/cards into a single SDDL input statement. The following rules apply to its use:

1. If the last non-blank character (excluding card sequence numbers -- see #SEQUENCE directive) of an input line is an ampersand, the processor will concatenate the next line of input with the current line to form a single statement.

2. The ampersand which caused the continuation is removed from the newly formed line, but all other characters, including other ampersands and blanks, are used as they were input to form the new line.

3. The continuation mark may be used on as many subsequent input lines as desired to form a single SDDL statement or directive out of several input lines.

4. If the resulting input statement exceeds the allowable output line space, it will be handled as described below.

B. CONTINUATION OF OUTPUT LINES

Occasionally a line of output may be long enough to extend beyond the right-hand page margin. When this occurs, the processor handles the line in the following way:

1. Beginning at the appropriate indentation level, as many characters (including blanks) of the input line as space permits are printed on the current line.

2. On the next line of the document, an ampersand is printed one space to the right of the current indentation level, and the remaining characters are printed immediately following the ampersand. Step 2 is repeated as many times as necessary to complete the line.
(3) If the indentation level is such that no characters can be printed on the first line, then step 2 is repeated with output beginning at the left margin instead of at the indentation level.

Example:

As input:

1 PRIOR LINE
2 THIS IS AN EXAMPLE &
3 E OF A LONG INPUT &
4 LINE & A LONG OUTPUT &
5 UT LINE
6 NEXT LINE

As printed:

1 PRIOR LINE
2 THIS IS AN EXAMPLE OF A LONG INPUT LINE &
3 E & A LONG OUTPUT LINE
6 NEXT LINE

C. SDDL SYNTAX DEFINITION LEVELS

The SDDL syntax definitions are subdivided into five levels. The primitive definitions are presented in Level 0. Secondary definitions based on the primitive definitions are in level 1. Level 2 contains SDDL statement definitions. The SDDL control directives are defined in level 3. Finally, an overview diagram of an SDDL program, based on definitions in levels 2 and 3, is given in level 4. The definitions in levels 1 through 4 are accompanied by flow diagrams which specify the requirements and options of the syntax. To interpret the diagram, trace the flow line from the term being defined to the end of the definition. Boxes which are unavoidable are requirements, boxes which can be bypassed are options, and boxes which can be returned to are repeatables. The contents of a box may refer to another definition or a literal. To differentiate between them, definitions appear in smaller type, with the definition number in the lower right-hand corner, and literals, in larger type, have no accompanying number.

1. Primitive Definitions (Level 0)

The following description and discussion of SDDL is based on the short list of primitive definitions shown in Table 2. Note especially that the definition of a letter includes the pound sign in addition to the alphabet. Also note that initially no MARK characters are defined. As will be explained later in the discussion of the #MARK directive, any punctuation may be converted to a MARK by user specification.
Table 2-1. SDDLPrimitive Definitions

<table>
<thead>
<tr>
<th>Definition Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>character set</td>
<td>The entire set of allowable characters (including the blank).</td>
</tr>
<tr>
<td>0.2</td>
<td>letter</td>
<td>The alphabet (A-Z) and the pound sign (#).</td>
</tr>
<tr>
<td>0.3</td>
<td>digit</td>
<td>The digits (0-9).</td>
</tr>
<tr>
<td>0.4</td>
<td>punctuation</td>
<td>The characters remaining after letter, digit, and the blank have been deleted from the entire character set.</td>
</tr>
<tr>
<td>0.5</td>
<td>mark</td>
<td>Any punctuation which has been converted by a control directive. (Initially, this is the empty set.)</td>
</tr>
<tr>
<td>0.6</td>
<td>e.o.s.</td>
<td>The end of an input statement or directive, determined by the end-of-line/record indicator (e.g., carriage return) of an input line without a continuation mark.</td>
</tr>
</tbody>
</table>

2. Secondary Definitions (Level 1)

The definitions of identifier, number, and word shown below are based on the SDDL primitive definitions shown in Table 2.
Note that a number may not have a decimal point. This constraint only affects SDDL control directives and has no impact on the design statements which appear in the SDD.

As shown above, a word can be an identifier, a number, or punctuation; in short, any token or object definable under the preceding definitions of the language. As in natural languages, the space or blank is a very important part of the syntax which is needed for delimiting or separating words.
Example:

ABC123 X Y#Z?E 12 4W

Lexical analysis of the above line yields the following words:

- ABC123 (identifier)
- X (identifier)
- Y#Z (identifier)
- ? (punctuation)
- Y (identifier)
- 12 (number)
- 4 (number)
- W (identifier)

If ? had previously been converted to a mark, the result would yield the following words:

- ABC123 (identifier)
- X (identifier)
- Y#Z?E (identifier)
- 12 (number)
- 4 (number)
- W (identifier)

A statement, as shown in the diagram above, consists of a sequence (including the null case) of words.

1.5 Keyword

The SDDL processor is keyword-driven. A keyword is an identifier which has been predefined to be the name of a structure part (initiator, terminator, escape, substructure), a Module Invocation word, or a control directive. Keywords are recognized only in context, i.e., only when they appear as the first word, though not necessarily starting in the first column, of the statement or directive.

The primary function (in the sense that it precedes and supports everything else) of the processor is to reproduce the input statements.
on the SDD output file in a manner which enhances the reader's capability to understand the resulting document with the least effort. This is accomplished by indentation of statements within structures, and superimposition of flow lines to highlight structure escapes and module invocations. The actions taken by the processor in response to specific statement types are described below.

1.6 Passive Statement

A Passive statement is any statement which does not begin with a keyword. Passive statements may be used to convey any design information as desired but they do not have any special meaning to the processor as do the Keyword statements.

Passive statements are processed as follows:

1. Since Passive statements must be imbedded within a module structure, if one does not already exist, the processor supplies a module, with an error message.

2. The entire statement is scanned for the appearance of any identifiers which have been designated for inclusion in the cross reference tables. The means for designating identifiers for inclusion in the cross reference tables is explained under the discussion of the #MARK and the #STRING directives.

3. The input line number (i.e., the number corresponding to the statement's sequential location in the input medium) is written at the left margin.

4. The entire statement including all blanks is copied to the SDD output file beginning at the current point of indentation.

5. If the statement contains a pound sign, the portion of the statement which follows will all be right shifted so that the last non-blank character lines up at the right margin. The pound sign itself is replaced with a space. This feature has many important applications which are examined under the discussion of the #MARK directive.
Example:

As input (input line=1):

ADD 1 # COUNT CASES

As output:

LINE

PROGRAM STATEMENT SUPPLIED BY PROCESSOR

1 ADD 1 COUNT CASES

3. Keyword Statement Definitions (Level 2)

This section describes the Keyword statements which drive the processor formatting actions. The actions are summarized in Figure 1.

Example:

PROGRAM TO READ THE PROGRAM INPUT

1) The keyword PROGRAM is recognized as a Module Initiator.

2) The optional noise word TO (FOR or punctuation are alternative noise words) is ignored.

3) The next identifier, READ, is established as the module name and recorded for future cross referencing. The remaining
words, including the second appearance of PROGRAM, are all passive (i.e., they are handled as though they were part of a Passive statement).

(4) Since a module is the highest-level structure and may not be nested within other structures, the processor terminates any open structures (i.e., structures which have been initiated but left unterminated) with appropriate error messages.

(5) The entire Module Initiator statement is entered into the SDD table of contents.

(6) The module structure is entered into a push-down (last-in, first-out) structure stack for later matching with subsequent statements specifying other parts of the structure.

(7) A new page of the SDD is started with appropriate heading.

(8) The indentation point is set to level zero (just to the right of the location of the input line number field).

(9) The statement is written to the SDD output file in the manner described above for Passive Statements.

(10) The indentation is increased one level by moving the indentation point the required number (default = 3) of spaces to the right.

Example:

LOOP UNTIL FILES A, B & C HAVE BEEN READ

(1) The keyword LOOP is recognized as a Block Initiator keyword.
(2) Since blocks must be nested within modules, if an open module does not already exist, the processor supplies a module with an error message.

(3) The block structure is placed on the structure stack, as described above in step 6 of the Module Initiator statement.

(4) The statement is written to the SDD output file, as described above for Passive statements.

(5) Indentation is increased one level (see step 10 for the Module Initiator statement).

Example:

ENDPROGRAM TO READ INPUT

(1) The identifier ENDPROGRAM is recognized as a Terminator keyword.

(2) The structure stack is searched for a matching Structure Initiator. If none is found, the statement is processed as a Passive statement and is followed by an error message. No further action is taken.

(3) If a matching structure is found, all intervening open structures are terminated with error messages;

(4) The structure to be terminated is removed from the top of the structure stack;

(5) Indentation is decreased one level (shifted left) to match the indentation of the Structure Initiator statement.

(6) The statement is written to the SDD output file in the manner of a Passive statement.
Example:

ELSE TRY ANOTHER ALTERNATIVE

(1) The identifier ELSE is recognized as a Substructure keyword.

(2) The structure stack is searched for a matching Structure Initiator. If none is found, the statement is processed as a Passive statement and followed with an error message. No further action is taken.

(3) If a matching structure is found, all intervening, open structures are terminated with error messages.

(4) Indentation is decreased one level (shifted left) to match the indentation of the Structure Initiator statement.

(5) The statement is written like a Passive statement.

(6) Indentation is increased one level (shifted right), as when the structure had just been initiated, in effect re-initiating the structure.
Example:

EXITLOOP IF DELTA < EPSILON

(1) The identifier EXITLOOP is recognized as an Escape keyword.
(2) The statement is written to the SDD in the manner described for the Passive statement.
(3) The structure stack is searched for a matching Structure Initiator. If none is found, an error message is added to the SDD output file.
(4) If a matching structure is found, the escape statement is completed by the addition of a flow line (left arrow) extending from the current indentation level to the indentation level of the Structure Initiator statement.
Example:

CALL : INITIALIZATION ROUTINE

(1) The identifier CALL is recognized as a Module Invocation keyword.

(2) The optional punctuation, :, is ignored.

(3) The identifier INITIALIZATION is established as the name of the module to be invoked and recorded for module cross referencing.

(4) The statement is written to the SDD in the manner described for a Passive statement.

(5) The output line is augmented by a flow line (right arrow) extending from the rightmost non-blank character of the statement to within five columns of the right-hand margin.

(6) The last five columns of the output line are filled in with parentheses enclosing the page number of the module referenced by the Module Invocation statement.

The processor actions for SDDL statements described above are summarized in Figure 1. The following example illustrates the statements as they might be combined in a simple design:
Example:

As input:

1: PROGRAM TO SUMMARIZE DATA
2: CALL INITIALIZE
3: LOOP UNTIL ALL NUMBERS HAVE BEEN READ
4: READ A VALUE
5: CALL ERRORCHECK
6: IF THE ERRORCHECK INDICATES AN ERROR
7: PRINT THE FOLLOWING MESSAGE
8: "SOMETHING'S WRONG"
9: CYCLE BACK FOR ANOTHER ITERATION
10: ELSE
11: SUM VALUES & SQUARED VALUES
12: INCREMENT COUNTER
13: ENDIF
14: REPEAT
15: DISPLAY MEAN AND STANDARD DEVIATION
16: ENDPGRAM
17: PROCEDURE TO INITIALIZE
18: VARIABLE INITIAL VALUE
19: SUM 0.0 #REAL
20: SUM OF SQUARES 0.0 #REAL
21: COUNT 0 #INTEGER
22: LOWER BOUND 0 #REAL
23: UPPER BOUND 100.0 #REAL
24: PROCEDURE FOR ERRORCHECK
25: INITIALIZE ERRORCHECK TO INDICATE AN ERROR
26: IF LOWER BOUND < VALUE
27: IF VALUE < UPPER BOUND
28: RESET ERRORCHECK TO INDICATE NO ERROR
29: EXIT LOOP
30: ENDDOOP
As output:

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE NUMBER</th>
<th>LINE NUMBER</th>
<th>MODULE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TABLE OF CONTENTS</td>
</tr>
</tbody>
</table>

1. PROGRAM TO SUMMARIZE DATA
2. PROCEDURE TO INITIALIZE
3. PROCEDURE FOR ERRORCHECK
4. MODULE REFERENCE TREE
5. MODULE - CROSS REFERENCE LISTING

LINE

1. PROGRAM TO SUMMARIZE DATA
2. CALL INITIALIZE-----------------------------(2)
3. LOOP UNTIL ALL NUMBERS HAVE BEEN READ
4. READ A VALUE
5. CALL ERRORCHECK-----------------------------(3)
6. IF THE ERRORCHECK INDICATES AN ERROR
7. PRINT THE FOLLOWING MESSAGE
8. "SOMETHING'S WRONG"
9. CYCLE BACK FOR ANOTHER ITERATION
10. ELSE
11. SUM VALUES & SQUARED VALUES
12. INCREMENT COUNTER
13. ENDIF
14. REPEAT
15. DISPLAY MEAN AND STANDARD DEVIATION
16. ENDPROGRAM

LINE

17. PROCEDURE TO INITIALIZE
18. VARIABLE
19. INITIAL VALUE
20. REAL
21. REAL
22. INTEGER
23. REAL

ENDPROCEDURE - STMT SUPPLIED BY PROCESSOR

2-14
LINE 24 PROCEDURE FOR ERRORCHECK
 25 INITIALIZE ERRORCHECK TO INDICATE AN ERROR
 26 IF LOWER Bound < VALUE
 27 IF VALUE < UPPER Bound
 28 RESET ERRORCHECK TO INDICATE NO ERROR
 29 EXITLOOP
 30 ENDDO

** ** ERROR ** ** INCORRECT MODULE ESCAPE WORD

** ** ERROR ** ** INCORRECT MODULE TERMINATOR

ENDIF = STMT SUPPLIED BY PROCESSOR
ENDIF = STMT SUPPLIED BY PROCESSOR
ENDPROCEDURE = STMT SUPPLIED BY PROCESSOR

********** MODULE REFERENCE TREE **********

<table>
<thead>
<tr>
<th>LN</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 SUMMARIZE</td>
</tr>
<tr>
<td>2</td>
<td>2 INITIALIZE</td>
</tr>
<tr>
<td>3</td>
<td>3 ERRORCHECK</td>
</tr>
</tbody>
</table>

MODULE CROSS REFERENCE LISTING

IDENTIFIER

ERRORCHECK
 PAGE 1 PROGRAM TO SUMMARIZE
 LINES 5, 6
 PAGE 3 PROCEDURE FOR ERRORCHECK
 LINES 24, 25, 28

INITIALIZE
 PAGE 1 PROGRAM TO SUMMARIZE
 LINES 2
 PAGE 2 PROCEDURE TO INITIALIZE
 LINES 17
 PAGE 3 PROCEDURE FOR ERRORCHECK
 LINES 25

SUMMARIZE
 PAGE 1 PROGRAM TO SUMMARIZE
 LINES 1
Control Directives (Level 3)

Control directives allow the user to set processor control specifications (e.g., page width, indentation) and to cause some immediate actions to be taken (e.g., page eject). Control directives are read, interpreted, and acted upon by the processor. They are not written to the SDD output file and hence are not seen in the final document. Control specifications set by directives are put into effect as soon as they are interpreted and remain in effect for all subsequent input, or until overridden by another directive. Directives can be used to set and reset processor control specifications as often as desired. The SDDL control directives are defined and described on the following pages. The sequence of presentation is intended to avoid lookahead caused by definitions based on terms defined on subsequent pages.

Control directive keywords all begin with the pound sign character. They are preset (see Table 2) and must not be altered. The user must be careful not to define a new meaning for a control directive keyword (see #DEFINE directive) since it will cause the preset definition to be overridden.

1.1 MARK DIRECTIVE

Selection of words or identifiers for cross referencing is controlled by the #MARK and the #STRING directives. When using the #MARK directive, the designer specifies a list of punctuation which the processor will subsequently treat in the following manner:

(1) All punctuation appearing in the statement is converted into a MARK (syntax definition 0.5), i.e., those characters which are used to form identifiers. They can then be used as connectors to build a single identifier out of separate words.
Example:

```
#MARK.
EVERY.GOOD.BOY DOES FINE
```

(2) Every identifier which includes a MARK, such as in EVERY.GOOD.BOY in the example above, is included in a cross reference listing produced at the end of the design document.

Titles for the cross reference listings may be supplied by placing any string of characters (except punctuation) prior to the punctuation to be converted. If no title is supplied prior to the first punctuation in the directive, a blank title is assumed.

The SDDL processor provides individual cross reference listings for each unique title found in the #MARK and/or #STRING directives. Identifiers containing MARKs which were specified with identical titles are merged into a single cross reference listing. Titles are considered to be identical if, after deleting leading and following blanks, they are an exact, character-by-character match, including internal (between word) blanks. Identifiers which contain marks associated with several unique titles will appear in each appropriate cross reference. These conventions are exemplified below, and an additional, more comprehensive example is given following the #STRING directive.

Example:

```
#MARK  ?! DATA ITEMS % REVISIONS $
#MARK  ; DATA ITEMS .:
```

The MARKs specified in the above example are associated with the titles as follows:

```
CROSS REFERENCE LISTING

?! ;

DATA ITEMS
CROSS REFERENCE LISTING
%

REVISIONS
CROSS REFERENCE LISTING
$
```
This directive allows the user to specify one or more punctuation marks to be used as string delimiters. The purpose of enclosing text within string delimiters is to have it included in a cross reference table at the end of the document. The following rules govern the use of this feature.

(1) Several MARKs may be specified as string delimiters but no distinction is made between left (opening) or right (closing) delimiters.

Example:

```
#STRING ()
1 SAMPLE STATEMENT (STRING ONE(
2 ) STRING TWO (NOT A STRING) STRING ABC)
```

In the above example, the following text segments are defined and will be cross referenced:

"STRING ONE" "STRING TWO" "STRING ABC"

(2) Preceding and following blanks are excluded from the string, but interior blanks are included.

Example:

```
#STRING ' 
LINE 1 'ABC D'
LINE 2 'ABC D ' 
LINE 3 'ABC D'
```

The strings in LINE 1 and LINE 2 are the same because they match exactly after preceding and following blanks are stripped off. The string in LINE 3 does not match the others because it does not have the same number of spaces between ABC and D. Each unique string, where uniqueness is defined by rules 1 and 2, becomes a single entry in the cross reference.
(3) If the closing delimiter is omitted, the string is terminated by the end of the input statement.

Example:

```
#STRING '
LINE 1 'ABC' AND 'DEF G
```

Strings ABC and DEF G are recognized.

(4) If the text enclosed in string delimiters consists of a single identifier, regardless of preceding or following blanks, it is recognized as described above, but in addition, the processor will thereafter recognize and cross reference the named identifier whether it appears with or without delimiters.

Example:

```
#STRING "
LINE 1 "VEHICLE"
LINE 2 VEHICLE AND VEHICLE
```

In the above example, VEHICLE is recognized and the cross reference will show that it was found once in LINE 1 and twice in LINE 2.

(5) A title for the cross referencing of text strings may be supplied by including any characters except punctuation between the #STRING keyword and the first MARK to be converted to a string delimiter.

The title (including the null case) supplied with the #STRING directive is compared with the titles supplied with the #MARK directives for merging of the cross reference listings. When several #STRING or #MARK directives with conflicting title specifications are used, the rule followed is that the last usage overrides all prior usage.
Example:

As input:

```
1:MARK DATA ITEMS % REVISIONS %
2:MARK DATA ITEMS *
3:STRING DATA ITEMS "
4:PROGRAM TO READ DATA AND "CHECK" IT
5:READ VEHICLE: , MAX.RPM , $POWER , "AND WHAT EVER ELSE THERE IS"
6:IF ANY VALUES ARE UNKNOWN? OR UNTESTED?
7:CHECK THE DATA!! FOR DOUBTFUL$STUFF? $1
8:ENDIF
9:AN ADDITIONAL CHECK MAY BE NEEDED HERE
10:ENDPROGRAM
```

As output:

```
TABLE OF CONTENTS PAGE 1

NUMBER NUMBER MODULE NAME
1 4 PROGRAM TO READ DATA AND "CHECK" IT
2 MODULE REFERENCE TREE
3 MODULE - CROSS REFERENCE LISTING
4 DATA ITEMS - CROSS REFERENCE LISTING
5 REVISIONS - CROSS REFERENCE LISTING
6 CROSS REFERENCE LISTING

LINE PAGE 1
4 PROGRAM TO READ DATA AND "CHECK" IT
5 READ VEHICLE: , MAX.RPM , $POWER , "AND WHAT EVER ELSE THE
6RE IS"
7 IF ANY VALUES ARE UNKNOWN? OR UNTESTED?
8 CHECK THE DATA!! FOR DOUBTFUL$STUFF? $1
9 ENDIF
10 AN ADDITIONAL CHECK MAY BE NEEDED HERE
10 ENDPROGRAM
```
DATA ITEMS
IDENTIFIER
CROSS REFERENCE LISTING
PAGE 4

$POWER
PAGE 1 PROGRAM TO READ
LINES 5
AND WHAT EVER ELSE THERE IS
PAGE 1 PROGRAM TO READ
LINES 5

CHECK
PAGE 1 PROGRAM TO READ
LINES 4, 7, 9

DOUBTFUL-STUFF?
PAGE 1 PROGRAM TO READ
LINES 7

MAX-RPM
PAGE 1 PROGRAM TO READ
LINES 5

VEHICLE?
PAGE 1 PROGRAM TO READ
LINES 5

REVISIONS
IDENTIFIER
CROSS REFERENCE LISTING
PAGE 5

$1
PAGE 1 PROGRAM TO READ
LINES 7

IDENTIFIER
CROSS REFERENCE LISTING
PAGE 6

DATA11
PAGE 1 PROGRAM TO READ
LINES 7

DOUBTFUL-STUFF?
PAGE 1 PROGRAM TO READ
LINES 7

UNKNOWN?
PAGE 1 PROGRAM TO READ
LINES 6

UNTESTED?
PAGE 1 PROGRAM TO READ
LINES 6

2-21
The #DEFINE directive is used to specify new or to delete old SDDL keywords. To select the desired action, one of the four words shown below must follow the SDDL keyword, #DEFINE.

MODULE **BLOCK** **CALL** **NULL**

3.3 DEFINE DIRECTIVE (MODULE, BLOCK)

The word MODULE or BLOCK is used to define a control structure. In SDDL, a control structure has four parts:

1. **Initiator:** Increases the indentation level for subsequent lines.
2. ** Terminator:** Closes all nested structures left open and returns the indentation level to that of the Initiator statement.
3. **Escape:** A left arrow is added to the statement to indicate the program control flow. The arrow extends from the indentation level of the escape statement to the indentation level of the Initiator statement.
4. **Substructure:** Closes all nested structures left open, returns the indentation level to that of the Initiator statement, prints the line, and increases the indentation level.

When defining a module or block, names for the four parts must be specified in the order shown above. Any punctuation may be used to separate the part names, but care must be taken to avoid using a MARK (i.e., punctuation which has been converted to a MARK by the #MARK directive). Names for any of the parts except the initiator may be omitted by using consecutive punctuation to show where a name has been left out. Any text following the name of the substructure will be ignored. Synonyms for part names, except for the initiator name, may be established by additional #DEFINE directives.
Indentation specific to the named structure may be indicated by including an unsigned integer between the word MODULE (BLOCK) and the initiator name. If a zero is specified or the integer is omitted, the current default indentation amount (see #INDENT) will be used.

Example (three equivalent directives):

```
#DEFINE MODULE 10 PROGRAM, END, STOP, ENTRYPOINT
#DEFINE MODULE 10 PROGRAM END, STOP ENTRYPOINT
#DEFINE MODULE 10 PROGRAM END STOP ENTRYPOINT WHATEVER
```

<table>
<thead>
<tr>
<th>type</th>
<th>indentation</th>
<th>initiator</th>
<th>terminator</th>
<th>escape</th>
<th>substructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>10</td>
<td>PROGRAM</td>
<td>END</td>
<td>STOP</td>
<td>ENTRYPOINT</td>
</tr>
</tbody>
</table>

Example:

```
#DEFINE BLOCK BEGIN END
```

<table>
<thead>
<tr>
<th>type</th>
<th>indentation</th>
<th>initiator</th>
<th>terminator</th>
<th>escape</th>
<th>substructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>block</td>
<td>default</td>
<td>BEGIN</td>
<td>END</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
#DEFINE BLOCK START, FINISH, LEAVE
#DEFINE BLOCK START, , SCRAM
#DEFINE BLOCK 2 START, , VAMOOSE
```

<table>
<thead>
<tr>
<th>type</th>
<th>indentation</th>
<th>initiator</th>
<th>terminator</th>
<th>escape</th>
<th>substructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>block</td>
<td>2</td>
<td>START</td>
<td>FINISH</td>
<td>LEAVE</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SCRAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VAMOOSE</td>
<td></td>
</tr>
</tbody>
</table>

Note that in this example, the last directive established the indentation amount to be two columns, overriding the default indentation amount indicated on the previous directives.
The word CALL is used with the #DEFINE directive to establish synonyms for the Module Invocation keyword (default keywords are CALL and DO), which indicates that a module is to be invoked at the point where the statement occurs. The identifiers to be defined as synonyms are listed after the word CALL. Punctuation for separating the words is optional.

Example:

```
#DEFINE CALL PERFORM EXECUTE, GOGOGO
#DEFINE CALL DOITNOW
```

Example:

```
#MARK
#DEFINE CALL DO.IT.NOW, PERFORM
```

The identifier DO.IT.NOW (also PERFORM) becomes a Module Invocation keyword because the period has been converted to a MARK by the prior #MARK directive. Where DO.IT.NOW appears in the context of a keyword (first word of the statement), it will not be included in the cross reference table.

When a Module Invocation statement is encountered, the processor places the statement in the output file with the appropriate indentation and adds a right arrow from the rightmost character in the line to the right margin. Matching parentheses are added to the right of the arrow to provide a place for adding the page number of the called module. If the module that is referenced in the Module Invocation statement has been defined on a prior page, the page number is supplied in the allocated space when the statement is encountered. Page reference numbers which cannot be supplied immediately must be filled in on a second pass over the output file. The user may exercise the P option at execution time to suppress the second pass, which supplies the remaining page reference numbers.
The NULL action of this directive provides a means for returning any previously defined keywords to the state of being undefined. Punctuation may be used as a keyword separator, if desired. MARKs which have been converted to letters by a previous #MARK or #STRING directive may also be listed for redefinition as punctuation. MARKs being redefined in this manner must have adjacent blanks or punctuation to disassociate them from other text.

Example:

```
#DEFINE NULL PROGRAM, ENDPROGRAM PROCEDURE
```

The words PROGRAM, ENDPROGRAM, and PROCEDURE are not recognized as keywords in the statements following this directive.

Example:

```
#MARK .$
#DEFINE NULL DO.IT.NOW $
```

The word DO.IT.NOW is no longer a keyword and $ reverts to punctuation again. The periods in the keyword DO.IT.NOW are part of the identifier (unlike the $ in the example), and therefore the status of the period remains unchanged; i.e., it is still a MARK.

Example:

```
#MARK .
#DEFINE NULL . DO.IT.NOW
```

This example differs in that the status of the period is reconverted to punctuation first and is treated as such in the remainder of the statement. Therefore, DO, IT, and NOW are the words which become undefined. If DO, IT, and NOW are already undefined, they are not affected.
This directive is a generalized terminator for block structures. It may be used in place of a number of specific terminators (specific terminators must match their respective initiators) to terminate the innermost, nested, open block structures. If no integer is specified in the directive, only one structure will be terminated. If n is greater than the number of open block structures, they will all be terminated, but the module structure will not be affected.

Example:

As input:

1:PROGRAM "TERMINATE" EXAMPLE
2:IF P INDENT 1 LEVEL
3:LOOP Q INDENT 1 LEVEL
4:INDENTATION IS 3 LEVELS DEEP
5:ENDLOOP - SPECIFIC TERMINATOR
6:ENDIF - SPECIFIC TERMINATOR
7:IF P INDENT 1 LEVEL
8:LOOP Q INDENT 1 LEVEL
9:INDENTATION IS 3 LEVELS DEEP
10:#TERMINATE 100
11:ALL BLOCK STRUCTURES ARE TERMINATED - MODULE NOT AFFECTED
12:IF P INDENT 1 LEVEL
13:LOOP Q INDENT 1 LEVEL
14:INDENTATION IS 3 LEVELS DEEP
15:#TERMINATE ONLY ONE STRUCTURE TERMINATED
16:IF P INDENT 1 LEVEL
17:INDENTATION IS STILL 3 LEVELS DEEP
18:ENDPROGRAM - STRUCTURES LEFT OPEN ARE TERMINATED BY THE PROCESSOR
As output:

```
LINE PAGE 1

PROGRAM "TERMINATE EXAMPLE"
IF P INDENT 1 LEVEL
LOOP Q INDENT 1 LEVEL
INDENTATION IS 3 LEVELS DEEP
ENDDOUBLE - SPECIFIC TERMINATOR
ENDIF - SPECIFIC TERMINATOR
IF P INDENT 1 LEVEL
LOOP Q INDENT 1 LEVEL
INDENTATION IS 3 LEVELS DEEP
ALL BLOCK STRUCTURES ARE TERMINATED - MODULE NOT AFFECTED
ENDIF - STATEMENT SUPPLIED BY PROCESSOR
ENDDOUBLE - STATEMENT SUPPLIED BY PROCESSOR
ENDIF - STATEMENT SUPPLIED BY PROCESSOR
ENDPGRAM - STRUCTURES LEFT OPEN ARE TERMINATED BY THE PROCESSOR

3.5 TEXT Directive

Examples:

#TEXT

#TEXT  COMMENTARY BEGINS ON NEXT LINE

The #TEXT directive is used to signal the beginning of a sequence of lines (not statements) of text intended as commentary to the SDD. When this directive is encountered, the processor performs the following actions:

1. The words following the keyword are ignored.
2. The processor begins reading input lines into a holding buffer and continues until it encounters an input line whose first non-blank character is the pound sign.
3. The lines buffered in step 2 (this does not include the line which terminated step 2) are not analyzed as statements but simply saved unaltered.

EN"
(4) The buffered lines, enclosed in a box formed by asterisks, are then written to the SDD output file at the current level of indentation.

(5) The line which signaled the end of step 2 (the buffering step) is then processed in the usual way. Thus, any control directives or any statement which begins with a pound sign may be used as a terminator and still be recognized for regular processing. If no action other than termination of the text statement is desired, the #END directive may be used.

3.6 END DIRECTIVE

This directive has no effect other than that of terminating line buffering for #TEXT and #TITLE directives.

3.7 TITLE DIRECTIVE

Example:

#TITLE SDDL DESIGN DOCUMENT

This directive is used to produce a title page in the SDD. The #TITLE directive is similar to the #TEXT directive, but different in that the #TEXT directive resembles a Block Initiator statement while the #TITLE directive resembles a Module Initiator statement. The processor performs the following actions in response to input of a #TITLE directive.

(1) The keyword #TITLE is recognized.

(2) The initial pound sign is stripped off, and the remainder of the directive is entered into the SDD Table of Contents. Title line entries in the Table of Contents are preceded by a blank line and are written two columns to the left.
of module entries in order to distinguish them as the 
beginning of a document section.

(3) All structures left open are terminated with error messages.

(4) As in the case of a #TEXT directive, the processor reads 
and buffers input lines until it encounters a line whose 
first non-blank character is a pound sign. Termination 
of the title text is the same as for the #TEXT directive.

(5) A new page is started in the SDD output file.

(6) A title page is formed by (a) enclosing the lines in a 
box formed by asterisks, (b) centering each line within 
the box, and (c) centering the entire box on the page.

3.8 LINENumber Directive

This directive provides control of the starting point of the
input line numbering sequence which the processor produces in the left
margin of the SDD.

The input line numbers supplied by the SDDL processor correspond 
extactly to the positional line numbers of the data element (card deck) 
of the input to the SDDL processor. This feature obviates the listing 
of the raw input for revising and augmenting the SDD. Where more than 
one element (deck) is used as input to SDDL, it is desirable to reset 
the line counter so that numbering can be made to match the subsequent 
elements (card decks.)

If this instruction is issued without an accompanying integer, the 
processor will begin numbering subsequent lines from 1; otherwise it will 
begin numbering with the value specified by the integer. The syntax of 
this directive allows noise to be used for commentary if desired.

Examples:

#LINENumber 1001 STARTS THE NEXT ELEMENT

#LINENumber
The SDDL #INDENT directive allows the user to override the default value for the number of spaces to be skipped for automatic statement indentation.

User-defined structures (see #DEFINE directive 3.3) which do not have a specific indentation amount declared and SDDL initial structure definitions always use the current default indentation value. The initial value of the system defined default indentation amount is three spaces.

Text following the integer (i.e., noise) may be used for commentary if desired. If no integer is specified in the directive, the default value of three spaces is assumed.

Examples:

#INDENT 5 SPACES UNLESS OTHERWISE SPECIFIED

#INDENT SET TO DEFAULT OF THREE SPACES

The #WIDTH directive provides user control of the width of the output pages. The default page width is 80 characters = 20 cm (8 in.).

An integer specifying the width, in characters/output line, should be supplied. If the integer value is not in the range 60-130, an error message will be printed and the page width will not be altered. If no integer is specified in the directive, the default value of 80 columns is assumed.

This directive may be used as many times as desired throughout the program. Each use affects only the output which follows it.
Example:

```
WIDTH 130 COLUMNS FOR A TABLE

WIDTH RESUME NORMAL PAGE WIDTH
```

3.11 EJECT DIRECTIVE

This directive provides immediate control of the start of a new page in the SDD. This page control is over and above the automatic new page start caused by (1) a title, (2) the beginning of a new module, or (3) page overflow. When a module becomes lengthy enough to cause an overflow to a new page, it is often desirable to control the start of the new page to prevent a group of lines from being split over a page boundary.

The #EJECT directive, without an accompanying integer, causes a new page to be started beginning with the next SDDL statement in the input stream.

Examples:

```
#EJECT

#EJECT A PAGE NO MATTER WHAT
```

When an integer is included in this command, it causes a new page to be started only when the remainder of the page cannot accommodate the number of lines specified by the value of the integer. An integer value greater than 50 gives rise to an error message and causes the directive to be ignored. Noise following the integer is ignored and may therefore be used for commentary.

Examples:

```
#EJECT 5

#EJECT 7 THE FOLLOWING 7 LINES MUST BE KEPT TOGETHER
```
The #SEQUENCE directive is provided for card input to the SDDL processor. When SDDL is used in a timesharing environment with file management and editing capabilities, card sequencing is unnecessary. In this case, the full 80 columns of the input line may be used entirely for SDDL statements and directives and the #SEQUENCE directive can be ignored, except to avoid its inadvertent use. The input line numbers supplied in the left margin of the output file correspond exactly to the line to edit the input file for corrections and updates and may be reliably used for this purpose. This feature makes it unnecessary to print out copies of the raw input file.

Where cards are used as the input medium, it may be desirable to have card sequence numbers at the right-hand edge of the card, in which case the #SEQUENCE directive must be used to differentiate between the input text and the sequence numbers. As shown in the syntax diagram above, the #SEQUENCE keyword may be followed by an optional integer. This integer may be used to specify the number of rightmost columns to be considered to contain sequence numbers. If no integer is supplied or a value greater than 8 is specified, the default value of eight characters, columns 73 through 80, is assumed. An integer value of zero has the effect of disabling the card sequence capability. When the #SEQUENCE capability is used, the input line (except for the sequence numbers) is handled in the usual way, and the sequence numbers are printed in the rightmost columns of the output page as determined by the #WIDTH directive (default = 80 columns). Where an input line is continued over more than one card, only the sequence number of the last card is printed.

Example:

#SEQUENCE 4

Columns 1 through 76 of the input deck are assumed to contain SDDL statements or directives, and columns 77 through 80 are assumed to contain sequence numbers.
5. SDDL Syntax Overview Diagrams (Level 4)

4.0 SDDL PROGRAM

4.1 TITLE GROUP

4.2 MODULE

2-33
4.6 CONTROL DIRECTIVE

MARK DIRECTIVE 3.1
STRING DIRECTIVE 3.2
DEFINE DIRECTIVE 3.3
END DIRECTIVE 3.6
LINE NUMBER DIRECTIVE 3.9
INDENT DIRECTIVE 3.9
WIDTH DIRECTIVE 3.10
EJECT DIRECTIVE 3.11
SEQUENCE DIRECTIVE 3.12
SECTION III
SAMPLE DESIGN

Two examples are presented to illustrate the capability and potential of the SDDL processor. The design of the SDDL processor itself is the subject of the first example. Only a small subset of the actual SDDL design is shown in order to reduce the example size to expedient proportions. Even this small, top-level portion of the SDDL processor design, however, reveals information which has an important impact on the processor.

The second example demonstrates some of the actions taken by the processor in response to error situations. The subject material is not intended to convey any meaningful design information.

Example 1. Top-level SDD for the SDDL processor:

As input:

```
1: #MARK REVISIONS & PROGRAM PORTABILITY CONSIDERATIONS ?
2: #MARK ROUTINES AND FUNCTIONS - DATA ITEMS
3: #STRING DATA ITEMS
4: #DEFINE BLOCK '2 LIST
5: #DEFINE BLOCK 2 MEMBER
6: #DEFINE BLOCK LOOP, , BEGIN
7: #TITLE SDDL EXAMPLE
8:
9: SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE
10:
11: (AN ILLUSTRATION OF THE APPLICATION OF SDDL USING THE)
12: (SDDL PROCESSOR ITSELF AS THE OBJECT OF THE EXAMPLE.)
13:
14:
15: #END
16: PROGRAM OBJECTIVES
17: #TEXT
18: THE OBJECTIVE OF SDDL IS TO PROVIDE AN EFFECTIVE COMMUNICATIONS
19: MEDIUM TO SUPPORT THE DESIGN AND DOCUMENTATION OF COMPLEX SOFTWARE
20: APPLICATIONS. THIS OBJECTIVE IS MET BY PROVIDING:
21:
22: (1) A DESIGN AND DOCUMENTATION LANGUAGE WITH FORMS AND SYNTAX
23: THAT ARE SIMPLE, UNRESTRICTIVE, AND COMMUNICATIVE
24:
25: (2) A PROCESSOR WHICH CAN CONVERT DESIGN SPECIFICATIONS INTO AN
26: INTELLIGIBLE, INFORMATIVE, MACHINE REPRODUCIBLE DOCUMENT
27:
28: (3) METHODOLOGY FOR EFFECTIVE USE OF THE LANGUAGE AND PROCESSOR
29:
30: #END
31: PROGRAM DATA STRUCTURE AND GLOSSARY
32:
```
A GLOBAL CHARACTER ARRAY CONTAINING
A SINGLE INPUT STATEMENT FORMED BY
CONCATENATION OF CONTINUED INPUT LINES

THE LENGTH OF THE CURRENT INPUT LINE
(TRAILING BLANKS NOT INCLUDED)

LINKED LIST OF DICTIONARY ENTRIES
POINTER TO A SINGLE DICTIONARY ENTRY
NUMBER OF CHARACTERS IN THE ENTRY
POINTER TO THE CHARACTER ARRAY
CONTAINING THE TEXT OF THE ENTRY
IF ENTRY IS A KEYWORD THIS IS THE
LOCATION OR IDENTIFICATION OF THE
ROUTINE FOR PROCESSING THE_STMT
VALUE=0 IF ENTRY IS NOT A KEYWORD
FIRST-IN, FIRST-OUT LIST OF
REFERENCES TO THE ENTRY

PUSH DOWN STACK OF NODES REPRESENTING
THE NESTED STRUCTURES OF THE DESIGN
(IF, LOOP, PROGRAM, ETC)

CALL INITIALIZATION ROUTINE
LOOP UNTIL ALL INPUT DATA HAS BEEN PROCESSED
CALL GET STATEMENT # 91
YIELD TEXT LENGTH
CALL TOKEN FINDER (FINDS THE FIRST TOKEN IN THE STATEMENT)
YIELD TOKEN TYPE
IF TOKEN TYPE IS "IDENTIFIER"
CALL ENTABLE TO FIND THE TOKEN IN THE TOKEN DICTIONARY
ENDIF
IF THE TOKEN WAS FOUND AND IT IS A KEYWORD
CALL KEYWORD PROCESSOR
ELSE THE STATEMENT DOES NOT BEGIN WITH A KEYWORD
IF THE MODULE STACK IS EMPTY
PUSH A PROGRAM MODULE ON THE MODULE STACK
ENDIF
CALL SOURCE LISTER TO SEND THE STATEMENT TO THE OUTPUT FILE
ENDIF
FLUSH ANY "ERROR MESSAGES" TRIGGERED BY THE STATEMENT
REPEAT
CALL WRAP_UP
EXITPROGRAM
PROCEDURE: GET_STATEMENT
USING INPUT, TEXT, BUFFER
YIELD TEXT, LENGTH
READ AN INPUT RECORD
LOOP UNTIL A NON-BLANK RECORD IS FOUND
IF THE MODULE, STACK IS NOT EMPTY (A MODULE EXISTS)
PRINT THE INPUT RECORD NUMBER AND A BLANK LINE TO THE "SDD"
ENDIF
READ ANOTHER INPUT RECORD
REPEAT
COPY THE INPUT RECORD INTO THE INPUT, TEXT, BUFFER
SET TEXT, LENGTH = "USABLE COLUMNS" (80 - CARD SEQUENCE COLS) = ???
LOOP
FIND THE LAST NON-BLANK CHARACTER IN INPUT, TEXT, BUFFER
SET TEXT, LENGTH = COLUMN NUMBER OF THE CHARACTER
IF THE CHARACTER IS NOT A CONTINUATION, MARK
EXITPROCEDURE
ENDIF
SUBTRACT 1 FROM THE TEXT, LENGTH (BACK UP OVER THE CONTINUATION, MARK)
IF THERE IS NO MORE DATA (END OF FILE ENCOUNTERED)
EXITPROCEDURE
ENDIF
IF THE SPACE LEFT IN INPUT, TEXT, BUFFER < 80 CHARACTERS ???
EXPAND INPUT, TEXT, BUFFER BY AT LEAST 80 CHARACTERS ???
ENDIF
READ IN ANOTHER INPUT RECORD
COPY THE INPUT RECORD INTO INPUT, TEXT, BUFFER BEGINNING AT TEXT, LENGTH
ADD "USABLE COLUMNS" TO TEXT, LENGTH
REPEAT
PROCEDURE FOR INITIALIZATION
READ IN EXECUTION TIME OPTION FLAGS FROM EXECUTION STATEMENT
OPTION.B = BREAKPOINT
OPTION.C = CROSS REFERENCE
OPTION.E = "ERROR MESSAGES"
OPTION.K = KEYWORDS
OPTION.M = MODULE CROSS REFERENCE
OPTION.P = PAGE REFERENCE NUMBERS
OPTION.R = REFERENCE TREE
OPTION.T = TABLE OF CONTENTS
IF OPTION.B IS NOT SET BREAKPOINTING IS REQUIRED
READ IN REMAINDER OF EXECUTION STATEMENT
IF A NAME IS SPECIFIED FOR THE SDD OUTPUT FILE
SET UP A GUSE RELATIONSHIP WITH SDD
ENDIF
CATALOG AND ASSIGN SDD AS THE OUTPUT FILE
IF THE CATALOG STEP FAILED
PRINT AN ERROR MESSAGE
140: TERMINATE THE PROCESSOR
141: EXITPROCEDURE
142: ENDIF
143: BREAKPOINT THE OUTPUT TO SDD
144: ENDIF
145: ESTABLISH THE FOLLOWING MACHINE DEPENDENT CONSTANTS
146: CHARACTERS*PER*WORD = 6 # ??
147: BUFFER*COUNT = 14 (14*6=84 CHAR/S/LINE) # ??
148: READ*UNIT = 5 # ??
149: WRITE*UNIT = 6 # ??
150: DEFAULT*INDENT = 3
151: RIGHT*MARGIN = 80
152:
153: INITIALIZE INPUT*TEXT*BUFFER TO AT LEAST 80 CHARACTERS # ?
154: ESTABLISH TOKEN*DICTIONARY DATA STRUCTURE
155: CALL KEYWORD_SET_UP TO ESTABLISH DEFAULT KEYWORDS
156: EXITPROCEDURE
157: ENDP]ROCEDURE
158: PROCEDURE FOR KEYWORD_SET_UP
159: LOOP USING THE FOLLOWING DATA PAIRS
160: ($ = POUND SIGN IN KEYWORDS BELOW)
161: KEYWORD:
162: =========
163: MARK:
164: STRING:
165: INDENT:
166: LINENUMBER:
167: TEXT:
168: TITLE:
169: END:
170: DEFINE:
171: EJECT:
172: WIDTH:
173: SEQUENCE:
174: TERMINATE:
175:
176: BEGIN ITERATION
177: FORCE THE KEYWORD INTO THE TOKEN*DICTIONARY
178: STORE THE PROCEDURE NAME INTO PROGRAM*NAME OF THE ENTRY
179: ENDELPOP
180: ENDP]ROCEDURE
SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE

(AN ILLUSTRATION OF THE APPLICATION OF SDDL USING THE)
(SDDL PROCESSOR ITSELF AS THE OBJECT OF THE EXAMPLE.)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE NUMBER</th>
<th>LINE NUMBER</th>
<th>MODULE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>TITLE SDDL EXAMPLE</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>PROGRAM OBJECTIVES</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>PROGRAM DATA_STRUCTURE AND GLOSSARY</td>
</tr>
<tr>
<td>3</td>
<td>63</td>
<td>PROGRAM MAIN ROUTINE</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>PROCEDURE: GET_STATEMENT</td>
</tr>
<tr>
<td>5</td>
<td>121</td>
<td>PROCEDURE FOR INITIALIZATION</td>
</tr>
<tr>
<td>6</td>
<td>158</td>
<td>PROCEDURE FOR KEYWORD_SET-UP</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>MODULE REFERENCE TREE</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>MODULE - CROSS REFERENCE LISTING</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>DATA ITEMS - CROSS REFERENCE LISTING</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>REVISIONS - CROSS REFERENCE LISTING</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>PROGRAM PORTABILITY CONSIDERATIONS - CROSS REFERENCE LISTING</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>ROUTINES AND FUNCTIONS - CROSS REFERENCE LISTING</td>
</tr>
</tbody>
</table>

3-5
THE OBJECTIVE OF SDDL IS TO PROVIDE AN EFFECTIVE COMMUNICATIONS MEDIUM TO SUPPORT THE DESIGN AND DOCUMENTATION OF COMPLEX SOFTWARE. THIS OBJECTIVE IS MET BY PROVIDING:

1. A DESIGN AND DOCUMENTATION LANGUAGE WITH FORMS AND SYNTAX THAT ARE SIMPLE, UNRESTRICTIVE, AND COMMUNICATIVE
2. A PROCESSOR WHICH CAN CONVERT DESIGN SPECIFICATIONS INTO AN INTELLIGIBLE, INFORMATIVE, MACHINE REPRODUCIBLE DOCUMENT
3. A METHODOLOGY FOR EFFECTIVE USE OF THE LANGUAGE AND PROCESSOR

ENDPROGRAM - STMTH SUPPLIED BY PROCESSOR

A GLOBAL CHARACTER ARRAY CONTAINING A SINGLE INPUT STATEMENT FORMED BY CONCATENATION OF CONTINUED INPUT LINES

THE LENGTH OF THE CURRENT INPUT LINE (TRAILING BLANKS NOT INCLUDED)

LINKED LIST OF DICTIONARY ENTRIES

POINTER TO A SINGLE DICTIONARY ENTRY NUMBER OF CHARACTERS IN THE ENTRY
POINTER TO THE CHARACTER ARRAY CONTAINING THE TEXT OF THE ENTRY IF ENTRY IS A KEYWORD THIS IS THE LOCATION OR IDENTIFICATION OF THE ROUTINE FOR PROCESSING THE STMTH
VALUE=0 IF ENTRY IS NOT A KEYWORD FIRST-IN, FIRST-OUT LIST OF REFERENCES TO THE ENTRY

PUSH DOWN STACK OF NODES REPRESENTING THE NESTED STRUCTURES OF THE DESIGN

(IF, LOOP, PROGRAM, ETC)
LINE 63  PROGRAM MAIN ROUTINE
64 CALL INITIALIZATION ROUTINE-------------------------->( 5) PAGE 3
65 LOOP UNTIL ALL INPUT DATA HAS BEEN PROCESSED
66 CALL GETSTATEMENT-----------------------------------( 4)
67 *YIELD TEXT.LENGTH
68 CALL TOKEN_FINDER (FINDS THE FIRST TOKEN IN THE STATEMENT)---->( 1)
69 *YIELD TOKEN.TYPE
70 IF TOKEN.TYPE IS "IDENTIFIER"
71 CALL ENTA8LE TO FIND THE TOKEN IN THE TOKEN,DICTIONARY------>( 1)
72 ENDIF
73 IF THE TOKEN WAS FOUND AND IT IS A KEYWORD
74 CALL KEYWORD.PROCESSOR------------------------------->( 1)
75 ELSE THE STATEMENT DOES NOT BEGIN WITH A KEYWORD
76 IF THE MODULE,STACK IS EMPTY
77 PUSH A PROGRAM MODULE ON THE MODULE,STACK
78 ENDIF
79 CALL SOURCE,LISTER TO SEND THE STATEMENT TO THE OUTPUT FILE>)( 1)
80 ENDIF
81 FLUSH ANY "ERROR MESSAGES" TRIGGERED BY THE STATEMENT
82 REPEAT
83 CALL WRAP.UP------------------------------------------>( 1)
84 ENDPROCEDURE
85 <---EXITPROGRAM
86 ENDPROGRAM

LINE 90 PROCEDURE: GET,STATEMENT
91 *USING INPUT,TEXT,BUFFER
92 *YIELD TEXT.LENGTH
93 READ AN INPUT RECORD
94 LOOP UNTIL A NON-BLANK RECORD IS FOUND
95 IF THE MODULE,STACK IS NOT EMPTY (A MODULE EXISTS)
96 PRINT THE INPUT RECORD NUMBER AND A BLANK LINE TO THE "SDD"
97 ENDIF
98 READ ANOTHER INPUT RECORD
99 REPEAT
100 COPY THE INPUT RECORD INTO THE INPUT,TEXT,BUFFER
101 SET TEXT.LENGTH = "USABLE COLUMNS" (80 = CARD SEQUENCE COLS) 777
102 LOOP
103 FIND THE LAST NON-BLANK CHARACTER IN INPUT,TEXT,BUFFER
104 SET TEXT.LENGTH = COLUMN NUMBER OF THE CHARACTER
105 IF THE CHARACTER IS NOT A CONTINUATION,MARK
106 ENDPROCEDURE
107 ENDIF
108 SUBTRACT 1 FROM THE TEXT.LENGTH (BACK UP OVER THE CONTINUATION,MARK)
109 IF THERE IS NO MORE DATA (END OF FILE ENCOUNTERED)
110 ENDPROCEDURE
111 ENDPROCEDURE
112 IF THE SPACE LEFT IN INPUT,TEXT,BUFFER < 80 CHARACTERS 777
113 EXPAND INPUT,TEXT,BUFFER AT LEAST 80 CHARACTERS 777
114 ENDIF
115 READ IN ANOTHER INPUT RECORD
116 COPY THE INPUT RECORD INTO INPUT,TEXT,BUFFER BEGINNING AT TEXT.LENGTH
117 ADD "USABLE COLUMNS" TO TEXT.LENGTH
118 REPEAT
119 ENDPROCEDURE
121 PROCEDURE FOR INITIALIZATION
122 READ IN EXECUTION TIME OPTION FLAGS FROM EXECUTION STATEMENT
123 OPTION.B = BREAKPOINT
124 OPTION.C = CROSS REFERENCE
125 OPTION.E = "ERROR MESSAGES"
126 OPTION.K = KEYWORDS
127 OPTION.M = MODULE CROSS REFERENCE
128 OPTION.P = PAGE REFERENCE NUMBERS
129 OPTION.R = REFERENCE TREE
130 OPTION.T = TABLE OF CONTENTS
131
132 IF OPTION.B IS NOT SET BREAKPOINTING IS REQUIRED
133 READ IN REMAINDER OF EXECUTION STATEMENT
134 IF A NAME IS SPECIFIED FOR THE SDD OUTPUT FILE
135 SET UP A DUSE RELATIONSHIP WITH SDD
136 ENDIF
137 CATALOG AND ASSIGN SDD AS THE OUTPUT FILE
138 IF THE CATALOG STEP FAILED
139 PRINT AN ERROR MESSAGE
140 TERMINATE THE PROCESSOR
141 \---------------EXITPROCEDURE
142 ENDIF
143 BREAKPOINT THE OUTPUT TO SDD
144 ENDIF
145 ESTABLISH THE FOLLOWING MACHINE DEPENDENT CONSTANTS
146 CHARACTERS.PER.WORD = 6
147 BUFFER.COUNT = 14 (14*6=84 CHAR/S/LINE)
148 READ.UNIT = 5
149 WRITE.UNIT = 6
150 DEFAULT.INDENT = 3
151 RIGHT.MARGIN = 80
152
153 INITIALIZE INPUT.TEXT.BUFFER TO AT LEAST 80 CHARACTERS
154 ESTABLISH TOKEN.DICTIONARY DATA STRUCTURE
155 CALL KEYWORD.SET.UP TO ESTABLISH DEFAULT KEYWORDS
---------------------
156 \---------------EXITPROCEDURE
157 ENDPROCEDURE

158 PROCEDURE FOR KEYWORD.SET.UP
159 LOOP USING THE FOLLOWING DATA PAIRS
160 (B = POUND SIGN IN KEYWORDS BELOW)
161 KEYWORD PROCEDURE NAME
162 -------- ---------------
163 MARK SET_DATA_CHAR
164 STRING SET_STRING CHAR
165 INDENT SET.INDENTATION
166 LUNIT SET.LINENUMBER
167 TEXT BOX.TEXT
168 TITLE BOX.TITLE
169 SEND END_CONTROL
170 DEFINE DEFINE_WORDS
171 SEJCT EJECT_PAGE
172 WIDTH SET_PAGE_WIDTH
173 SEQUENCE CARD SEQUENCING
174 TERMINATE BLIND TERMINATOR
175
176 BEGIN ITERATION
177 FORCE THE KEYWORD INTO THE TOKEN.DICTIONARY
178 STORE THE PROCEDURE NAME INTO PROGRAM.NAME OF THE ENTRY
179 ENDDOOP
180 ENDPROCEDURE

3-8
DATA ITEMS
CROSS REFERENCE LISTING

IDENTIFIER

BUFFER_COUNT
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 147
CHARACTERS_PER_WORD
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 146
CHARACTER_COUNT
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 42
CONTINUATION_MARK
PAGE 4 PROCEDURE: GET_STATEMENT
LINES 104, 109
DEFAULT_INDENT
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 150
ERROR_MESSAGES
PAGE 3 PROGRAM MAIN
LINES 85
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 125
IDENTIFIER
PAGE 3 PROGRAM MAIN
LINES 72
INDENTATION_COLUMN
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 60
INPUT_TEXT_BUFFER
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 33
PAGE 4 PROCEDURE: GET_STATEMENT
LINES 91, 101, 109, 113, 119, 117
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 153
LINE_NUMBER
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 53
MODULE_STACK
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 56
PAGE 3 PROGRAM MAIN
LINES 79, 80
PAGE 4 PROCEDURE: GET_STATEMENT
LINES 196
NODE_NAME
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 59
OPTION_B
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 123, 132
OPTION_C
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 124
OPTION_E

3-10
77-24

DATA ITEMS CROSS REFERENCE LISTING

IDENTIFIER

PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 125
OPTION
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 126
OPTION
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 127
OPTION
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 128
OPTION
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 129
OPTION
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 130
PAGE NUMBER
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 52
PROGRAM NAME
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 45
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 178
READ UNIT
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 148
REFERENCE
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 51
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 124, 127, 128, 129
REFERENCE LIST
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 49
RIGHT MARGIN
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 151
SDD
PAGE 4 PROCEDURE: GET_STATEMENT
LINES 97
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 134, 135, 137, 143
TEXT LENGTH
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 37
PAGE 3 PROGRAM MAIN
LINES 67
PAGE 4 PROCEDURE: GET_STATEMENT
LINES 92, 102, 105, 109, 117, 118
TEXT POINTER
PAGE 2 PROGRAM DATA_STRUCTURE
DATA ITEMS
CROSS REFERENCE LISTING
IDENTIFIER

LINES 43
TOKEN-DICTIONARY
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 40
PAGE 3 PROGRAM MAIN
LINES 73
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 154
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 177
TOKEN-TYPE
PAGE 3 PROGRAM MAIN
LINES 70, 72
USABLE COLUMNS
PAGE 4 PROCEDURE: GET_STATEMENT
LINES 102, 110
WRITE_UNIT
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 149

REVISIONS
CROSS REFERENCE LISTING
IDENTIFIER

91
PAGE 3 PROGRAM MAIN
LINES 66
PAGE 4 PROCEDURE: GET_STATEMENT
LINES 90
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174

PROGRAM PORTABILITY CONSIDERATIONS
CROSS REFERENCE LISTING
IDENTIFIER

777
PAGE 4 PROCEDURE: GET_STATEMENT
LINES 102, 113, 114
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 146, 147, 148, 149, 153
ROUNINES AND FUNCTIONS
CROSS REFERENCE LISTING PAGE 19

IDENTIFIER

BLIND TERMINATOR
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 174

BOX TEXT
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 167, 168

CARD SEQUENCING
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 173

DEFINE WORDS
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 170

EJECT PAGE
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 171

END CONTROL
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 169

SET DATA CHAR
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 163

SET INDENTATION
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 165

SET LINED NUMBER
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 166

SET PAGE WIDTH
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 172

SET STRING CHAR
PAGE 6 PROCEDURE FOR KEYWORD_SET_UP
LINES 164
Example 2. Illustration of SDDL responses to sample input errors:

As input (part 1):

1: #DEFINE NULL PROCEDURE, ENDPROCEDURE, EXITPROCEDURE &
2: SELECT, CASE ENSELECT ENDP
3: #DEFINE MODULE FUNCTION END RETURN
4: #DEFINE BLOCK IF ALWAYS
5: #DEFINE BLOCK GIVEN, ENDDATA, *YIELDING
6: #DEFINE BLOCK GIVEN, USING
7: PROCEDURE TO ILLUSTRATE THE CONTINUATION CAPABILITIES FOR INPUT &
8: OF LONG LINES & FOR OUTPUT OF LONG LINES
9: LOOP
10: LOOP AGAIN
11: IF NOW IS THE TIME
12: DO IT AS BEST YOU CAN
13: GIVEN INPUT ARGUMENTS
14: INPUT 1
15: INPUT 2
16: USING COMMON VARIABLES
17: ITEM 2
18: ITEM 3
19: YIELDING RETURN ARGUMENTS
20: ANSWER
21: ENDDATA FOR PROCEDURE INTERFACE
22: SELECT IS NOT A KEY WORD ANYMORE
23: #INDENT 20 COLUMNS FROM NOW ON
24: IF ANSWER = AGAIN
25: CYCLE
26: ELSEIF ANSWER = STOP
27: EXITPROCEDURE
28: EXITPROGRAM
29: RETURN
30: ELSE
31: EXITLOOP
32: ALWAYS
33: IF A
34: LOOP B
35: IF C
36: LOOP D WRAPS AROUND THE LEFT MARGIN BECAUSE OF THE DEEP INDENTATION
37: #INDENT = 4
38: INDENTATION AMOUNT IS SET TO 4 BUT THE PROCESSOR WILL UNINDENT CORRECTLY
39: ENDLOOP
40: AN IF STATEMENT WILL BE CLOSED BY THE PROCESSOR
41: ENDLOOP
42: NEXT, 3 STRUCTURES ARE TERMINATED BY THE TERMINATION DIRECTIVE
43: #TERMINATE 3
44: FINALLY ENDP PROGRAM CLOSES THE REMAINING OPEN BLOCKS
45: ENDP
46: #LINENUMBER
As input (part 2):

1: FUNCTION FOR IT
2: GIVEN
3: FIRST INPUT
4: SECOND INPUT
5: USING GLOBAL VARIABLES
6: A
7: B
8: YIELDING OR RETURNING CALCULATIONS
9: ANSWER 1
10: ANSWER 2
11: END DATA
12: LOOP UNTIL DONE
13: IF TODAY IS TUESDAY
14: THIS MUST BE BELGIUM
15: SERIOUSLY, FOLKS #NOTICE HOW THIS LINE IS SPLIT
16: IF A LINE HAS A POUND SIGN # THE PROCESSOR
17: LINES UP THE PART AFTER THE # AGAINST THE RIGHT MARGIN
18: THE REMAINDER OF THE DOCUMENT WILL BE
19: WRAPPED UP BY THE END OF FILE MARK.

Execution step:

@SDDL*SDDL.SDDL
@ADD SDDL*SDDL.INPUT1
@LINENUMBER
@ADD SDDL*SDDL.INPUT2
@FREE SDDL.
@SYM SDDL.,HOLD/HOLD,G9300A
As output:

```
LINE 7
10 LOOP
10 LOOP AGAIN
11 IF NOW IS THE TIME
12 DO IT AS BEST YOU CAN
13 GIVEN INPUT ARGUMENTS
14 INPUT 1
15 INPUT 2
16 USING COMMON VARIABLES
17 ITEM 2
18 ITEM 3
19 YIELDING RETURN ARGUMENTS
20 ANSWER
21 ENDDATA FOR PROCEDURE INTERFACE
22 SELECT IS NOT A KEYWORD ANYMORE
23 IF ANSWER = AGAIN
24
25 <--------------------------CYCLE
26 ELSE IF ANSWER = STOP
27 EXITPROCEDURE
28 EXITPROGRAM
29 RETURN
30 ELSE
31 <-----------------------------EXITLOOP
32 ALWAYS
33 IF A
34 IF C
35 LOOP B
36 IF D WRAPS AROUND THE LEFT MARGIN BECAUSE OF THE DEEP INDENTATION
37 INDENTATION AMOUNT IS SET TO 4 BUT THE PROCESSOR WILL UNINDENT CORRECTLY
38 END LOOP
39 IF STATEMENT WILL BE CLOSED BY THE PROCESSOR
40 ENDLOOP
41 END LOOP = STMT SUPPLIED BY
42 NEXT, 3 STRUCTURES ARE TERMINATED BY THE TERMINATION DIRECTIVE
43 FINALLY ENDP HGRAM CLOSES THE REMAINING OPEN BLOCKS
44 ENDL00P = STMT SUPPLIED BY PROCESSOR
45 ENDP HGRAM
```
FUNCTION FOR IT
GIVEN
FIRST INPUT
SECOND INPUT
USING GLOBAL VARIABLES
A
B
YIELDING OR RETURNING CALCULATIONS
ANSWER 1
ANSWER 2
END GIVEN - STMT SUPPLIED BY PROCESSOR
END DATA

PROGRAM - STATEMENT SUPPLIED BY PROCESSOR
LOOP UNTIL DONE
IF TODAY IS TUESDAY
    THIS MUST BE BELGIUM
    SERIOUSLY, FOLKS
    IF A LINE HAS A POUND SIGN
    LINES UP THE PART AFTER THE
    THE REMAINDER OF THE DOCUMENT WILL BE
    WRAPPED UP BY THE END OF FILE MARK.
    ENDIF - STMT SUPPLIED BY PROCESSOR
ENDIF - STMT SUPPLIED BY PROCESSOR
ENDLOOP - STMT SUPPLIED BY PROCESSOR
ENDPROGRAM - STMT SUPPLIED BY PROCESSOR
SECTION IV
USING THE SDDL PROCESSOR ON THE JPL U1108

Since SDDL usage (except for system tests and experimental runs) always involves large volumes of input and output, it is most practical to prepare the input in advance of the processing and to send the output to a printer for later, off-line perusal. In conformance with this primary operating mode, the processor has been designed to automatically handle the necessary U1108 EXEC 8 file cataloging and output stream breakpointing. The procedure for using the processor is as follows.

After the SDDL input has been loaded into one or more elements (say, QUAL*FILE.IN1 and QUAL*FILE.IN2), it is processed and printed by entering the following EXEC 8 commands:

```
@SDDL SDDL[,options] [SDD-output-filename.]
@ADD QUAL*FILE.IN1
@ADD QUAL*FILE.IN2
@EOF
@FREE SDD.
@SYM SDD.,HOLD/HOLD,G9300A
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Suppresses catalog and Breakpoint operations. All output goes directly to the terminal.</td>
</tr>
<tr>
<td>C</td>
<td>Suppresses data element Cross reference tables.</td>
</tr>
<tr>
<td>E</td>
<td>Suppresses Error messages.</td>
</tr>
<tr>
<td>K</td>
<td>Suppresses generation of default Keywords (e.g., PROGRAM, IF, etc.).</td>
</tr>
<tr>
<td>M</td>
<td>Suppresses Module cross reference table.</td>
</tr>
<tr>
<td>P</td>
<td>Suppresses second pass editing operation to supply missing Page references on Module Invocation statements.</td>
</tr>
<tr>
<td>R</td>
<td>Suppresses module Reference tree.</td>
</tr>
<tr>
<td>T</td>
<td>Suppresses Table of contents.</td>
</tr>
</tbody>
</table>

The first command invokes the SDDL processor. The usages of all processor options shown above are consistent in that, when exercised, they all cause a feature or action of the processor to be suppressed. Thus if no options are exercised, the processor performs all its functions. The user also has the option to supply an output file name. If none is given, the name SDD. is selected as the default name of the output file. If the user does supply a name, an EXEC 8 @USE relationship is set up equivalencing SDD. to the name supplied by the user. The
user-supplied output file name must end with a period. If it is incorrectly specified, the processor will write an error message and terminate without processing the input.

With the output file name established, the processor then performs the equivalent of the following EXEC 8 operations:

`@ASG,A SDD. or @ASG,UP SDD.
@BRKPT PRINT$/SDD`

and begins processing the input stream.

When all of the input data has been processed, a second-pass, editing operation is prepared to supply the page reference numbers which were unavailable during the first pass (see P option above). The second-pass editing operation will be set up by the SDDL processor and performed independently by a Text Editor program. This step is automatic and, except for brief messages to report the state of system, is transparent to the user.

To set up the second pass, the SDDL processor writes appropriate editing commands to a scratch file (SIMU1.) and then queues the file (`@ADD SIMU1.`) for execution when the processor is finished.

When the second-pass editing is finished, the message PAGE REFERENCE EDITING COMPLETED will appear on the terminal, and the output may be sent to the printer with the appropriate @SYM command.

Sample execution setup:

```plaintext
@SDDL*SDDL.SDDL
@ADD QUAL*FILE.IN
@FREE SDD.
@SYM SDD.,HOLD/HOLD,G9300A
```

The SDDL processor and several user's information elements are contained in a read-only file named SDDL*SDDL. The following elements are contained in this file:

- SDDL*SDDL.SDDL: Processor executable element
- SDDL*SDDL.INFO: User's information memo
- SDDL*SDDL.XQT: Sample execution element
- SDDL*SDDL.INPUT1: Sample SDDL input element (part 1)
- SDDL*SDDL.INPUT2: Sample SDDL input element (part 2)
- SDDL*SDDL.USERS: Mailing list for SDDL information bulletins
BIBLIOGRAPHY


Tausworthe, R. C., Standardized Development of Computer Software. Part I, Methods, SP 43-29, Jet Propulsion Laboratory, Pasadena, CA, July 1976.