General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

JPL PUBLICATION 77-24

Software Design and

Documentation Language

{NASRA-CR-155C46)

SCFIWARE LCESIGN BANLC
DOCU¥ENT2TICN LANCUAGE
80 p HC RA0S/ME AC1

{Jet Fropulsicn

CSC1 09E

National Aeronautics and

Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

lak.)

s -
N77-32753
Unclas
G37ze1 45075
','/";‘?4'777'-;&
tg\%g'J"(’»
7N
N, .*‘ /\)
—.;/'
A 2+
4%Q}k *P
"«i’_n..' b

MANAGER\

COMMUNICATION
BY MEANS OF
SOFTWARE DESIGN
AND DOCUMENTATION 5
LANGUAGE SDDL. j" %0,

‘m - -

PROGRAMMER

MAINTENANCE
PROGRAMMER

PROGRAMMER

COMMUNICATION
BY MEANS OF
PROGRAMMING
LANGUAGES [l

SOFTWARE DEVELOPMENT TEAM COMMUNICATIONS

JPL PUBLICATION 77-24

Software Design and
Documentation Language

Henry Kleine

July 1, 1977

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

77-24

PREFACE

The work described in this report was performed by the Information
Systems Division of the Jet Propulsion Laboratory.

ACKNOWLEDGMENT

Many aspects of the methodology for using SDDL, and enhancements
to the language and the processor, evolved from its application to
the design of two programs: the Vehicle Economy and Emissions Program
(VEEP), and the Solar Array Manufacturing Industry Simulation (SAMIS).
The current capabilities, present methodology, successful application,
and future prospects of SDDL are, in large measure, due to the many
contributions of the members of these design teams. For their many
excellent suggestions, critical reviews of this document, critique of
nNew processor capabilities, conscientious application of SDDL to the
design tasks, and hours of philosophical discussion of the goals of
a software design tool, I wish to express my thanks to Richard V. Mcrris,
Donald A. Heimburger, Marcia A. Metcalfe, Bruce L. Kleine,
Robert G. Chamberlain, Steve M. Jacobs, Robert L. Norton, and
Gerhard J. Klose.

T7-24

ABSTRACT

The objective of the Software Design and Documentation Language
(SDDL) is to provide an effective communications medium to support
the design and documentation of complex software applications. This
objective is met by providing (1) a processor which can convert design
specifications into an intelligible, informative machine-reproducible
document, (2) a design and documentation language with forms and syntax
that are simple, unrestrictive, and communicative, and (3) methodology
for effective use of the language and processor.

The SDDL processor is written in the SIMSCRIPT II programming
language and has been implemented on the UNIVAC 1108 and the IBM 360/370
machines,

vi

T7-24

CONTENTS
INTRODUCTION mwecem e mmm oot 1=1
A. SDDL OBJECTIVE =ewceeeeo — ——— ———— 1-1
B. SDDL PROCESSOR =~==eccmemmccm e ccrecccemcememmee e 1-2
1. Document Formatting ==eeeeee oo m o 1=2
2. Software Design Summary Information ——--eemeceecacaaac 1=2
3. Processor Control Capabilities ==eeeececcommmemcaoo_. 1-3
C. SDDL OVERVIEW —_— - - 1-3
1. SDDL Syntax —-— B e TSP 1-3
2. SDDL Structures e cceecces s e—————————— 1=-4
D. SDDL METHODOLOGY =mmmmmemmm oo oo ccm oo cmccem e e e e e 1210
1. Uses of the Software Design Document (SDD) =e=—-emccaoo 1-10
2. Representation of Data Structures =—eeeammmcmcacocceao 1-10
3. Representation of Control/Procedural Structures ------- =11
5, Specification of Module Interfaces =e==—ecommmmeceacaoo 1-14
5. Inclusion of Management Information in the SDD =eeaeme- 1-14
6. Additional Uses of the Cross Reference Capability ==—=-= 1-15
SDDL USER'S REFERENCE GUIDE ==e==-mmmeeecccccccccccccmmcoeoeoe 2a1
A, CONTINUATION OF INPUT LINES =-memcmecccmcmmmmmcceeee 21
B. CONTINUATION OF OQUTPUT LINES ecocecmmmmmcmcmmmccmecae 21
C. SDDL SYNTAX DEFINITION LEVELS —coommm—mccccccccecce——ae)
1. Primitive Definitions (Level 0) eewemmmmcmmcccccccacoao 2.2
2. Secondary Definitions (Level 1) ecmccmmcemccmcccccacaaas 2=3
3. Keyword Statement Definitions (Level 2) =weememcamcenee =7
4, Control Directives (Level 3) =-cccecccccmcmmcmmcccccac- 2-16
5. SDDL Syntax Overview Diagrams {Level 4) e=ecceccocmcmccaao 2=33

vii

T7-24

III. SAMPLE DESIGN - s 3-1
IV. USING THE SDDL PROCESSOR IN THE JPL U1108 ec-eceemmccmmmcmcmen 41
BIBLIOGRAPHY cemcmm e 5=1
Fi

1-1. SDDL Processor ACtion ————cemmmmccmcccccccccccceccceaa- 1-6
Iables

1-1. SDDL Control Structure Keywords =———e—eacemcccaccacaaa. 1-5

2-1. SDDL Primitive Definitions ==e=eeeececmcccccccmccaacaa- 2-3

viii

77-24

SECTION I

INTRODUCTION

The frontispiece is a conceptual view of the software development
process. It identifies members of the software development team and
shows the many communication links over which information must flow.
The team members and the information flow shown in the diagram are
a part of every software development project regardless of the number
of individuals actually involved. Even when the entire task is done
by a single person, it is still essential to have precise, accurate,
orderly communication among the various roles the individual performs.
With orderly communication, decisions made last month can be acted
upon correctly this month, and valid information will be available
later when maintenance responsibilities may have to be assumed by others.

The diagram also suggests that a computer programming language
is a satisfactory communications medium for only a few links; primarily
between programmer and machine, and secondarily among programmers.
All other higher-level team communication requires less restrictive,
more human-oriented media to be effective.

Historically, software development has suffered because of the
lack of an effective communications medium for these high-level links,
One may generalize that everyone has experienced some painful results
of imprecise and/or incomplete communication in every aspect of life,
Programmers suffer immediately when imprecise, incorrect, or incomplete
directions are executed by the computer exactly as stated. Managers
and customers are affected more seriously because bad communications
at the design stage may compound the error by allowing the programming
effort, with all its problems, to proceed toward an elusive or erroneous
goal.

As long as the communication between members of the
software development team remains fuzzy, the misunderstanding will
continue and software development costs will be higher than they need
be. Software maintenance gets into the act later, when maintenance
programmers must deal with poorly written, out-of-date documentation,
which, by Murphy's Law, is certain to be inconsistent where it matters.

Effective communication is not sufficient to insure efficient
software development, but it is certainly necessary. Therefore, the
Softwere Design and Documentation Language (SDDL) has been developed
to satisfy this necessity.

A. SDDL GBJECTIVE

The objective of SDDL is to satisfy the coamunications requirements
of the software design and documentation process. This objective is
met by providing

1-1

B.

creative thinking into an effective comm

(1)

(2)

(3)

77-24

A processor which can convert design specifications into
an intelligible, informative, machine-reproducible Software
Design Document (SDD).

A program design and deccumentation language with forms
and syntax that are simple, unrestrictive, and communicative.

A methodology for effective use of the language and the
processor.

SDDL PROCESSOR

The purpose of the SDDL processor is to translate the designer's

unications document. The processor

must perform as many automatic functions as possible, thereby freeing
the designer's energy for the creative design effort.

state

Some of the autematic functions which the processor, in its current
of development, performs are listed below.

Document Formatting

(1
(2)
(3)
(4)
(5)
(6)
(1)
(8)

Indentation by structure logic.

Flow lines for accentuating structure escapes.

Flow lines for accentuating module invocation.

Line numbering and/or card sequencing for input deck editing.
Logic error detection.

Special handling for title pages and text segments.,

Input and output line continuation.

Line splitting (i.e., printing part of the line so that
the last craracter lines up at the right-hand margin),

Software Design Summary Information

(1)
(2)

Module invocation hierarchy.
Module cross reference (where each module is invoked),

Cross reference tables for selected words or phrases

appearing in the document. Selection is controlled by
the user,

T7-24

(4) Table of contents showing all titles and modules, and the
location of the tables described above.

(5) Page reference numbers on module invocation statements.

3. Processor Control Capabilities
(1) Page width.
(2) Structure indentation amount.
(3) Page ejection.
(4) Input line numbering sequence.
(5) Keyword specification.

(6) Selection of words for inclusion in the cross reference
tables.

(7) Number of right-hand columns for card sequence numbers.

(8) Execution time options for suppressing selected processor
features.

C. SDDL OVERVIEW
1. SDDL Syntax

The SDDL syntax consists of keywords, used to invoke design
structures, and a collection of directives, which provide the user with
control of processor actions such as indentation, page width, start
of a new page, etc. Execution time options allow the user to selectively
suppress design summary information.

Input to the SDDL processor consists of a sequence of SDDL statements.
An SDDL statement begins and ends with a line (or record) of the input
medium, unless continuation is explicitly indicated by placing an ampersand
(&) in the last non-blank character of the line. Continued lines
are concatenated into a single statement for processing. Any natural
language text, including a blank line, is an acceptable SDDL statement.
Keywords are recognized only in context, that is, only when they appear
as the first word of the input statement.

The user is provided complete control of the choice of keywords
by an SDDL directive which allows unlimited addition or deletion of
keywords. User control of keyword selection is one of the most important
features of SDDL because it allows the designer to command the capabilities
of the processor in the way which is best suited to communicating the
intent of the design.

1-3

T7=-24

A complete description of the SDDL semantics is given in Section Il
and summarized there in the SDDL Syntax Overview diagrams,

2. SDDL Structures

The basic forms of the language are the module and block structures,
and the Module Invocation statement. A design is stated in terms of
modules that represent problem abstractions which are complete aind
independent enough (relative to the level of the design) to be treated
as separate problem entities. Modules are the highest-level structure,.
They may not be nested. Descriptive names are given to the modules,
and their interrelationships are stated explicitly by the Module Invocation
statements. A Module Invocation statement is the equivalent of the
subroutine CALL statement in a programming language.

Blocks are the lower-level structures. They are used to build
representations of abstractions which should (relative to the specific
design) be a part of and appear with the higher-level abstraction
represented by the module. Thus blocks must be nested within modules
and may be nested within other blocks to any reasonable (i.e.,
understandable) depth. Examples of the use of blocks are the

representa’ions of Structured Programming concepts such as IF-THEN-
ELSE and LOOP-REPEAT.

Both kinds of structures may have up to four parts:

(1) Initiator (required)
(2} Terminator (optional)
(3} Escape (optional)

(4) Substructure (optional)

Structure parts are specified by statements which begin with a keyword
that has been defined as the part name. Table 1 displays the SDDL

default keywerds for both kinds of structures and their corresponding
structure parts.

The actions taken by the processor in response to keyword sta‘ements
are fully explained in Section II and summarized in Figure 1. These
actions are quite simple but very effective for communicating design
information. Indentation of statements within structures, and flow
lines to highlight structure escapes and module invocations provide
visual, two-dimensional information display which captures all of the
advantages offered by flowcharts without their attendant disadvantages
and constraints.

A simple illustration is presented following Figure 1.

17-24

Table 1-1. SDDL Control Structure Keyvwords

INITIATOR TERMINATOR ESCAPE SUBSTRUCTURE

MODULE PROGRAM ENDPROGRAM EXIT PROGRAM

PROCEDURE ENDPROCEDURE EXITPROCEDURE

IF ENDIF ELSE
ELSEIF

BLOCK SELECT ENDSELECT CASE

LooP ENDLOOP EXITLOOP

REPEAT CYCLE
CALL N/A N/A N/A
ALL

¢ DO

PROCESSOR | # LINENUMBER
CONTROL # ESECT

INDENT

DEFINE
#MARK
KWIDTH
#STRING

SEQUENCE

¥ TERMINATE

#TITLE
Y TEXT # END

Ceraen e e

77-24

STATEMENT TYPE ENCOUNTERED

DEFINITION NUMBER —¥»/ 2.1

o
&o QQ‘
3 AL
< X
WA WA
ORYALYAS
™ (YL
S SIS/ E
ACTION TAKEN “9 AR
AV AT LIRS
)) S
Statement entered in table of contents - -
Al nested, open structures are
closed with error messages ‘ -
New page started in the output file - -
indentation leve! decreased - | -
Statement written to output file - - |- | - || - | -
Indentation level increased - | -— -
Left arrow (escape level indicator)
added to the output file -
Right arrow (call indicator} added
10 the output file
Subsequent input iines are -

diverted to a holding bufter

The lines in the holding buffer are written

to the output file (boxed in by *'**} -
Subseqguent input lines are diverted

X L o
back for normat processing
Control parameters of the SDDL
processor are altered -

Figure 1-1,

SDDL Processor Actions

46

T7-24

In most of the following examples, the SDDL input statements
are shown with the resulting output produced by the processor. In
practice, the input source listing is rarely needed. Where the source
statements are shown, as in the example below, it should be understood
that the line numbering, including the colon, was added and is not
part of the input statement.

Example:

As input:

1 {PROGRAM EXAMPLE TO DEMONSTRATE THg BASIC SDOL STRUCTURES

2:(THE LINE ABOVE IS A MODULE INITIATOR STATEMENT WHICH gSTABLISHES
JI"EXAMPLE" AS THE NAME OF TH1S PROGRAM/MODULE)

43

S3IF THIS CONOITION IS TRUE (BLOCK INITIATCR "IF%)

§IACT ON THIS STATEMENT (PASSIVE STATEMENT)

7:ELSE (SUBSTRUCTURE STATEMENY FQR "IF")

8:ACT ON THE FOLLOWING STATEMENTS (ANOTHER PASSIVE STATEMENT)

9

10:L00P FOR INDEX =)} 70 SOMETHING (BLOCK INITIATOR "LOOP")

11 {PASSIVE STATEMENTS CAN BE PLACED ANYWHERE)

12:CALL SUBROUTINE (MOUVULE INVOCATIQN STATEMENT)

13:THE NAMg OF THE MODULE INVOKED IN THE PREVIQUS STATEMENT

14315 "SUBROUTINE"

153 1F THERE 1S NOTHING LEFT TO DO (NESTED BLOCK INITIATOR "IF")
LO6IEXITLOOP (ESCAPE STATEMENT "LgoP")

J7:ENDIF (TERMINATOR STATEMENT NESTED “I1fF™)

183ENDLOOP (TERMINATOR STATEMENT "LoOP")

19:

20:ENDIF (TERMINATOR STATEMENT "I1f"™)

21 JENDPROGRAM (MODULE TERMINATOR STATEMENT "PROGRAM")

22

23! PROCEDURE SUBROUTINE

24

252 NOTE: A MOOULE INITIATOR STATEMENT CAUSES THE START OF A NEW PAGE e
263

27:SELECY cASE BASED oN SoMt CRITERIQN (BLOCK INITIATOR "SELECT")
28

29:CASE 1 CHECK FOR SUBROUTINE ABORT (SUBSTRUCTURE STATEMENT FOR "SELECT")
30:1F THERE 15 NO MORE DATA TO BE READ (BLOCK INITIATOR “IF",
313EXITPROCEODURE (ESCAPE STATEMENT "PROCEDVRE")

32:ENDIF

33

34ICASE 2: CHECK FOR SUBRQUTINE ERROR (SUBSTRUCTURE STATEMENT FOR "SELECT")
353 EF AN ERROR OCCURS (BLOCK IMITIATOR "IF™)

36:PRINT AN ERROR MESSAGE (PASSIVE STATEMENT)

37ENDF

s

39:CASE 3: INyOKE ANOTHER SUBROUTINE (SUBSTRUCTURE STATEMENY FOR "SELECT")
40:00 ANOTHER SUSROUTINE (MODULE INVOCATION STATEMENT)

41¢NOTE: "DO" IS A SYNONYM FOR "CALL"™ (PASSIVE STATEMENT)

42

43IENOSELECT (TERMIKNATOR STATEMENT "SELECT™)

44ENOPROCELOURE (MODULE TEKMINATOR STATEMENT "PROCEDVRE")

T RPN

T7=-24
As output:
TASLE OF CONTENTS PAGE 1
PAGE LINE 0000004000000 03300040400000000000000040200000000000000030000%040,440
NUMBER NUMYER MOOULE NAME
i 1 PROGKAN EXAMPLE TO OEMONSTRATE THE BASIC SODL STRUCTURES

2 23 PROCEJVRE SUBROUTINE

3 MoDULE REFERENCE TREE

4 MODULE = CROSS REFERENCE LISTING

LINE PAGE)

| PROGRAM EXAMPLE TO DEMONSYRATE THp BaSI1C SOCL STRUCTURES

2 {THE LINE ABOVE 1S5 A MODULE INITIATOR STATEMENT WHICH gSTABLISHES

3 *EXAMPLE® AS THE NAME OF THIS PROGRAM/MODULE)

M

5 IF THIS CONDITION IS TRUE (BLOCK INITIATOR "IF%}

é ACT ON THIS STATEMENT (PASSIVg STATEMENT)

7 ELSE (SUBSTRUCTURE STATEMENT FOR "1F")

8 ACT ON THE FOLLOWING STATEMENTS (ANOTHER PASSIVE STATEMENT)

9

10 LOOP FOR INDEX » 1| TO SOMETHINg ({BLOCK INITIATOR "LOOP*)

1 {PASSIVE STATEMENTS CAN BRE PLACED ANYWHERE)

12 CallL SUBROUYINE (MODULE INVOCATION STATEMENT jesccccaescacnnsd{ 21}
13 THE NAME OF THE MOOULE INVOKED IN THE PREVIOUS STATEMENY

14 Is "SUBROUTINE®

1s 1F THERE IS NOTHING LEFT 70 DO (NESTED BLOCK INITIATOR “]1F*%)

16 Cmema=EXITLOOP (ESCAPE SYATEMgNT "LOOP")

17 ENDIF (TERMINATOR STATEMENT NESTED "1IF™)

8 ENDLOOP (TERMINATOR STATEMENT “LOOP"™)

19

ENDIF (TERMINATOR STATEMENT "IF")

2] ENDPROGRAM (MODULE TERMINATOR STATEMENT "PROGRAM"™)

77-24
LINE PAGE 2
23 PROCEDURE SUBROUTINE
24
25 NOTE: A MOODULE INITIATOR STATEMENT CAUSES THE START OF A NEW PAGE.
26

27 SELECT CASE BASED ON SOME CRITERIQN (BLOCK INITIATOR “SeLgCT™)
28
29 CASg 13 CHgCx FUR SUBRQUTINE ABORY (SUBSTRUCTURE STATEMENT FOR “SELECT®)

30 {F THERE 1S NO MQRE DATA TO BE READ (BLOCK INITIATOR "“Ifr")

3] <ewesveacofEXITPROCEDURC (ESCAPE STATEMENT "PROCEDURE")

gg ENDIF

34 CASE 2¢ CHECK FOR SUBRQUTINE ERROR (SUBSTRUCTURE STATEMENT FOR "SELECT")
35 {F AN ERROR OCCURS (BLOCK INITIATOR “1F")

s PRINT AN ERROR MESSAGE (PASSIVE STATEMENT)

7 ENDIF

38

39 CASE 3: INVOKE ANOTHER SUBROUTINE (SUBSTRUCTURE STATEMENT FOR "SELECT™)
40 00 ANOTHER SUBROUTINE (MODULE INVOCATION STATEMENT)mecacencasad()
4) NOTE: "“DO™ IS A SYNONYM FOR "cALL™ (PASSIVE STATEMENT)

42

43 ENDSELECT (TERMINATOR STATEMENT "SELECT™)
49 ENOPROCEDURE (MOOULE TERMINATOR STATEMENT "PROCEDURE")

soosetesesgese MODULE REFERENCE TREE oeeoeee PAGE 3
LN PAGE
1 1 EXAMPLE
2 2 o« SUBRQUTINE
3 » . » ANOTHER

MODULE
CROSS REFERENCE LISTING PAGE L]
IDEN‘[IF[EROOOOQQQ%“Q#QOOOOO¢000000000000000000000000000000#00000000000000000.000
ANOTHER
PAGE 2 PROCEDURE SUBROVTINE
LINES 40
EXAMPLE
PAGE } PROGRAM EXAMPLE
LINES 14 23
SUBROUTINE

PAGE § PROGRAM EXAMPLE
LINE3 12, M4

PAGE 2 PROCEDVRE SUBROUVTINE
LINES 23, 29, 34, 39, 40

¢ i v Ao e e oGS DY,

77-24

D. SDDL METHODOLOGY

The following discussion of techniques and styles is intended as
a guideline or list of suggestions for using the capabilities of the
SDDL language and processor to fullest advantage in striving for the
goal of an informative and communicative Software Design Document.

The reader is encouraged to examine these suggestions with a
critical eye. Accept what is useful, adapt to your own requirements
and taste, and invent new methods, but always keep in mind that the

primary purpose of the Software Design Document is to communicate
information to other people.

1. Uses of the Software Design Document

Throughout the development of the software design, the SDD always
represents the definitive word on the current status of the ongoing,
dynamic design development process. It is easily updated and readily
accessible, in a familiar, informative, readable form, to all members
of the development team. This makes the SDD an effective instrument
for reconciling misunderstandings and disagreements in the evolutionary
development of design specifications, engineering support concepts,
and the software design itself. Using the SDD to analyze the design
makes it possible to eliminate many errors which otherwise might not
be detected until coding is attempted.

As a project management aid, the SDD is very useful for monitoring
progress and for recording task responsibilities.

The SDD has been found to be very effective in its primary role
as the specification for coding the design. To date, there is no experience
with the use of the SDD for software maintenance, but since the SDD
is easily revised, and revisions are automatically cross referenced,
the outlook for this purpose is favorable.

2. Representation of Data Structures

A thorough knowledge of the content and organization of its input
and output data is an essential prerequisite to understanding a program.
For this reason, much attention was focused on developing data structure
representations that effectively display data organization and content.
SDDL techniques that facilitate achieving this goal include:

o Group the data into appropriate data description modules located
in the beginning pages of the SDD.

o Provide descriptive names for variables.
o Use the period (.) (it lies low on the printed line and does

not interfere with readability) to connect the words of a
descriptive phrase to form a variable name.

1-10

77-24

o Use the underscore to connect the words of a descriptive phase
to form a module name.

o0 Use the single or double quote mark to identify single word variable
names for cross referencing.

o Include information about the data (e.g., units, mode, dimension,
etc.) in the data structure module.

o Group all data which describe attributes of a design entity with
the entity they describe, and provide an entity name which can be
used as a qualifier with the attribute.

o If the program is to be implemented in a language that does
not permit the use of descriptive variable names, include the
name to be used in the program code in the data structure.

o Define ENTITY (or another suitable word) to be a block initiator
keyword to provide automatic indentation. Use the #TERMINATE
directive to terminate the block without printing a Termination
statement.

Example:

PROGRAM VEHICLE_COMPONENTS DATA STRUCTURE

ENTITY ENGINE:
PCT.PEDAL {PCTPED] PERCENT
'RPM' [ENGRPM] REV/MIN
'TORQUE' [TORQUE] FT*LB
MIN.TORQUE [MINTOR] FT®LB
MAX.TORQUE [MAXTOR] FT®LB
'HORSEPOWER' (VECTOR) [HPOWER] HP

ENDPROGRAM VEHICLE_COMPONENTS DATA STRUCTURE

PROGRAM DYNAMIC_SYSTEM_PARAMETERS DATA STRUCTURE

.

ENDPROGRAM

3. Representations of Control/Procedural Structures

The constructs of Structured Programming, such as modules (e.g.,
PROGRAM - RETURN - ENDPROGRAM), iterations (e.g., LOOP - CYCLE/EXITLOOP -
REPEAT), conditionals (e.g., IF - ELSE - ENDIF), and selections (e.g.,
SELECT = CASE - ENDSELECT) are used in a similar manner for software
design. The difference is that for software design, the structures
should convey human-oriented, natural language information to the
level of precision and completeness necessary to communicate the design,
but free of the syntax constraints and detailed information requirements
imposed by programming languages.

T7-24

Example: Module and block structures, high-level statements

PROGRAM MAIN ROUTINE
LOOF UNTIL THERE IS NO MORE DATA
READ THE DATA AND CHECK IT
IF THE DATA IS BAD OR INCOMPLETE
{emom= CYCLE TO THE NEXT CASE
ELSE
CALL DATA_PROCESSING ROUTINE---===--- > (9)
ENDIF
REPEAT
TERMINATE THE PROGRAM
ENDPROGRAM

—_ OO0 EWN =

- O

o] If the design must specify a list of conditions where all must be
tested and acted upon if true (in contrast to the SELECT-CASE-
ENDSELECT construct, which finds and executes only the first true
condition), a new structure is recommended in place of a sequence of
IF-ENDIF structures. Use the #DEFINE directive to establish
the following structure:

CHECK - block initiator
ENDCHECKLIST - block terminator
CONDITION - substructure

Example:

As input:

suapEFINE BLOCK CHECK, ENDCHECKLISTe, CONDITON
2!
3:PROGRAM FOR VACATION PREPARATION
4
§5ICHECK AND ACT ON ALL TRUE CONDITIoNS IN THE FOLLOWING LIST
'
7:CONDITIQN: CAR NEEDS To BE SERVICED
83TAKE CAR TO THE SERVICE STATION
9:GET GAS AND Ol
10 INFLATE TIRES
11
12:CONDITION: DELIVERIES HAVE TO Be CANCELLED
13:CANCEL NEWSPAPER
14:CANCEL MILK
153
16:CONDITION: TRIP HAS TO 8E PLANNED
173GET MAPS
18:MAKE HOTEL RESERVAT]ONS
193
20:ENDCHECKLIST
21 ENDPROGRAM

v T e e T

e e e

DN T s R Gk

12 CONDITIQN: DELIVERIES HAVE TO BE CANCELLED

gb—

ﬂ..:l,y Y pooed, ; w«-wnww,anw IR T T '«va

T77=-24

As output:

PROGRAM FOR VACATION PREPARATION

CONDITION: CAR NEEDS To BE SERVICED

TAKE CAR TO THE SERVICE STATION
GET GAS AND OIL
INFLATE TIRES

CANCEL NEWSPAPER
CANCEL MILK

16 CONDITION: TRIP HAS TO BE PLANNED

19

GET MAPS
MAKE HOTEL RESERVATIONS

20 ENDCHECKLIST
2] ELDPROGRAM

PAGE

CHECK AND ACT ON ALL TRUE CONDITIONS IN THE FOLLOWING LIST

o The following forms are recommended for use when the design has

progressed to the point where engineering calculations need to
be expressed:

Example 1: Equation not yet determined

CALCULATE VEHICLE.STATE: DISTANCE.TRAVELLED (TARGETTED)
% GIVEN: VEHICLE.STATE: DISTANCE.TRAVELLED (CURRENT)

VEHICLE.STATE.VELOCITY (CURRENT)
VEHICLE.STATE.ACCELERATION (TARGETTED)
TIME INCREMENT

Example 2: Equation included

COMPUTE

> < O

VEHICLE.STATE: DISTANCE.TRAVELLED (TARGETTED) =
D + VET + (A/2)%THE2

VEHICLE.STATE: DISTANCE.TRAVELLED (CURRENT)
VEHICLE.STATE: VELOCITY (CURRENT)
TIME.INCREMENT

VEHICLE.STATE: ACCELERATION (TARGETTED)

Indentation in the examples above may be imposed by indenting the input

statements or by defining COMPUTE to be a Block Initiator keyword.

1

T7=-24

y, Specification of Module Interfaces

Explicit specification of the data passed between modules and
accessed from a global store will eliminate many debugging problems
in the coding and integration stages.

o Use the words GIVEN and YIELD to specify parameters transmitted to
and returned from a module. Use the word USING to specify global
variables accessed.

o List *he GIVEN and YIELD parameters with Module Invocation

statements.
Example:
NOW CALCULATE_DRIVE_WHEEL_OUTPUT_REQUIRED > (38)
% GIVEN: VEHICLE.STATE:
b SCHEDULED .TIME
YIELD: VEHICLE.STATE: TIRE.RPM, ACCELERATION
. WHEEL FORCE REQUIRED
* WHEEL TORQUE REQUIRED

In this example, NOW is the Module Invocation keyword. Th: lines
specifying arguments passed to and from the module all begin with an
asterisk to emphasize their association with the Invocation statement.

o List USING, GIVEN, and YIELD parameters with Module Initiator
statements.

Example:

PROCEDURE TO CALCULATE_DRIVE_WHEEL_OUTPUT_REQUIRED
ARRRRRRR RS RN R SRR RRR RN RN RN RN RRRRRRNRARRRRNS

® USING; DRIVE.POWER.TRAIN: DATA

. CHASSIS: DATA

GIVEN; VEHICLE.STATE:

. SCHEDULED .TIME

® YIELD; VEHICLE.STATE: TIRE.RPM, ACCELERATION
. WHEEL FORCE REQUIRED

. WHEEL TORQUE REQUIRED

RRRARARNERRRRABARBARRARCRRERERARNERARARARARARGNRNRE

The parameters in this structure are set off by using the
#TEXT - #END directives to enclose them in a box formed by asterisks.
In addition to the GIVEN and YIELD arguments, the USING category lists
global parameters which are accessed by the module.

5. Inclusion of Management Information in the SDD
Project management information, just as program design, must

be kept up to date and accurate. The SDD is the ideal place to maintain

1=-14

‘L

T7-24

this information, and the language can be used effectively to present
the information. Listed below are several Module Initiator statements
which have been used effectively in the VEEP and SAMIS programs. These
examples are intended to suggest kinds of management information, as
indicated by their wording, which might be included in the SDD.

PROGRAM OBJECTIVES

PROGRAM REVISIONS MEMORANDA

PROGRAM MEETING CALENDAR & AGENDA
PROGRAM DOCUMENT READING CONVENTIONS
PROGRAM COMPLETION SCHEDULE

6. Additional Uses of the Cross Reference Capability

The SDD typically will contain muc¢h information, in addition
to the names of design parameters, for which it would be useful to
have a cross reference. Individual cross reference tables for each
type of information can be obtained by associating a different cross
reference title with each (see the #MARK directive). Some that have
proved to be useful appear below in a sample design, showing the form
of the #MARK directive which establishes the cross reference charac-
ter, and the way in which the data appear in the main body of the SDD.
The pound sign (#) has been used in the input to cause some information
to be printed at the right-hand margin of the SDD for increased

readability.

Example:
As input:

J:8MARK REVISIONS ® FOOTNOTES [FllLe NAMES §
2:8MARK UpDATE RESPONSIBILITY ?

3:PROGRAM TO PROCESS CUSTOMER OATA & CREF}]
4:READ NAMES FROM CUSTOMERSFILE & %

§:MATCH NAMES TO CREDIT DATA 8 ?HK

6:WRITE CREDIY INFO 710 CREDITSFILE = %2

7 SENDPROGRAM

o e it g WO

T77-24

As output:

TABLE OF CONTENTS PAGE 1
PAGE LINE 0¢¢0+¢¢000000¢¢00000000000o0¢¢00000000000000000000000.0
NUMBER NUMBER MOOULE NAME
1 3 PROGRAM TO PROCESS CUSTOMER DATA CREF§
2 REVISIONS = CROSS REFERENCE LISTING
3 FOOTNQTES = CR0OSS REFERENCE LISTING
4 FILE NAMES = CROSS REFERENCE LISTING
5 UPDATE RESPONSIBILITY = CROSS REFERENCE LISTING
LINE PAGE |
3 PROGRAM TQ PRQCESS CUSTOMER DATA CREF1J
4 READ NAMES FROM CUSTOMERSFILE 8l
5 MATCH NAMES TO CREDIT DATA 7HK
b WRITE CREDIT INFO 1o CREDITSFILE %
7 ENDPROGRAM
REVISIONS
CROSS REFERENCE LISTING PAGE 2

IOENYIF1ER’**‘OO"O***¢’*’40*‘*‘*’*"’*0**"*‘00“*0’"“’*"’*"‘#‘

%l
PAGE] PROGRAM TO pROCESS
LINES 4
%2
PAGE 1 PROGRAM TO PROCESS
LINES 6

77-24

FOOTNOTES
CROSS REFERENCE LISTING PAGE 3
IDENTIFlER‘OO’OO”OO**°*°*0¢"00"000‘00’0’0’*00”00“’00‘0‘0‘000¥0’
CREF)
PAGE | PROGRAM TO PRQCESS ;
LINES 2 i

FILE NAMES
CROSS REFERENCE LISTING PAGE 4
;DENT:r1ga#.oo..oo.otooo0¢¢¢¢0¢oooo¢¢o¢.¢¢¢¢¢o¢¢¢¢¢¢ooooo¢0000400000
CREDITSFILE
PAGE 1 PROGRAM TO PROCESS
LINES 6
CUSTOMERSFILE
PAGE | PROGRAM TO PROCESS
LINES 4

UPDATE RESPONSIBILITY
CROSS REFCRENCE LISTING PAGE 5
lDENTlFlER‘0”0*“00“*"’00*‘0*“‘“”“9““"""‘*““"”*"‘0‘

THK

PAGE { PROGRAM 10 PROCESS
LINES &

1-17

PR EINAPL A (7 TR TARTE GRSy A pen S

17-24

SECTION II

SDDL USER'S REFERENCE GUIDE

Input to the SDDL processor consists of a sequence of design state-
ments and processor contiol directives.

Statements and Directives degin and end with a line (or record) of
the input medium, unless line continuation is explic.tly indicated, as
described below. Continued lines are concatenated into a single statement
for processing.

A. CONTINUATION OF INPUT LINES

A continuation mark, the ampersand can be used to concatenate
several input lines/cards into a single SDDL input statement. The
following rules apply to its use:

(1)

(2)

(3)

(4)

If the last non-blank character (excluding card sequence numbers
-- see #SEQUENCE directive) of an input line is an ampersand,
the processor will concatenate the next line of input with

the current line to form a single statement.

The ampersand which caused the continuation is removed

from the newly formed line, but all other characters, including
other ampersands and blanks, are used as they were input

to form the new line.

The continuaticn mark may be used on as many subsequent
input lines as desired to form a single SDDL statement
or directive out of several input lines.

If the resulting input statement exceeds the allowable
output line space, it will be handled as described below.

B. CONTINUATION OF OUTPUT LINES

Occasionally a line of output may be long enough to extend beyond
the right-hand page margin. When this occurs, the processor handles
the line in the following way:

(1)

(2)

Beginning at the appropriate indentation level, as many
characters (including blanks) of the input line as space
permits are printed on the current line.

On the next line of the document, an ampersand is printed

one space to the right of the current indentation level,

and the remaining characters are printed immediately following
the ampersand. Step 2 is repeated as many times as necessary
to complete the line.

T7=-24

(3) If the indentation level is such that no characters can
be printed on the first line, then step 2 is repeated with
output beginning at the left margin instead of at the indentation
level.

Example:
As input:

PRIOR LINE

THIS IS AN EXAMPL&
E OF A LONG INPUT &
LINE & A LONG OUTP&
UT LINE

NEXT LINE

N WK -

As printed:

1 PRIOR LINE
THIS IS AN EXAMPLE OF A LONG INPUT LIN
& & A LONG OUTPUT LINE
6 NEXT LINE

C. SDDL SYNTAX DEFINITION LEVELS

The SDDL syntax definitions are subdivided into five levels. The
primitive definitions are presented in Level 0. Secondary definitions
based on the primitive definitions are in level 1. Level 2 contains
SDDL statement definitions. The SDDL control directives are defined
in level 3. Finally, an overview diagram of an SDDL program, based
on definitions in levels 2 and 3, is given in level 4. The definitions
in levels 1 through 4 are accompanied by flow diagrams which specify
the requirements and optiona of the syntax. To interpret the diagram,
trace the flow line from the term being defined to the end of the definition.
Boxes which are unavoidable are requirements, boxes which can be bypassed
are options, and boxes which can be returned to are repeatables. The
contents of a box may refer to another definition or a literal. To
differentiate between them, definitions appear in smaller type, with
the definition number in the lower right-hand corner, and literals,
in larger type, have no accompanying number.

1. Primitive Definitions (Level Q)

The following description and discussion of SDDL is based on the
short list of primitive definitions shown in Table 2. Note especially
that the definition of a letter includes the peund sign in addition
to the alphabet. Also note that initially no MARK characters are
defined. As will be explained later :. the discussion of the #MARK
directive, any punctuatlon may be converted to a MARK by user specification.

2=2

T7-24

Table 2-1. SDDL Primitive Definitions
Definition
Number Name Descripti:

0.1 character set The entire set of allowable characters
(including the blank).

0.2 letter The alphabet (A-Z) and the pound sign (#).

0.3 digit The digits (0-9).

0.4 punctuation The characters remaining after letter,
digit, and the blank have been deleted from
the entire character set.

0.5 mark Any punctuation which has been converted
by a control directive. (Initially, this
is the empty set.)

0.6 e.0.8 The end of an input statement or directive,

determined by the end-of-line/record
indicator (e.g., carriage return) of an
input line without a continuation mark.

2‘

Secondary Definitions (Level 1)

The definitions of identifier, number, and word shown below are
based on the SDDL primitive definitions shown in Tab.e 2.

Jo4 IDENTIFIER

| LETTER g - ~ -
MARK g LETTER Mn/
MARK / e’
DiGIT 0.3")

2-3

e < ey - o hm—

T7-24

1.2 NUMBER

(DiGIT 0.3 j >

Note that a number may not have a decimal point. This constraint
only affects SDDL control directives and has no impact on the design
statements which appear in the SDD.

1,3 WORD

IDENTIFIER 7, ag

NUMBER 1.2

PUNCTUATION 7, 4

As shown above, a word can be an identifier, a number, or punctuation;
in short, any token or object definable under the preceding definitions
of the language. As in natural languages, the space or blank is a
very important part of the syntax which is needed for delimiting or
separating words.

2=4

R e

o T T R T T TR T T

T7=-24

Example:
ABC123 X Y#Z?E 12 4w

Lexical analysis of the above line yields the following words:

ABC123 (identifier)

X (identifier)

Y#2Z (identifier)

? (punctuation)
E (identifier)

12 {number)

4 (number)

W (identifier)

If ? had previously been converted to a mark, the result would yield
the following words:

ABC123 (identifier)

X (identifier)

Y#Z7E (identifier)

12 (number)

4 (number)

W (identifier)
1.4 STATEMENT

G &

ie3

A statement, as shown in the diagram above, consists of a sequence
(including the null case) of words.

1«5 KEYWORD

The SDDL processor is keyword-driven. A keyword {s an indentifier
which has been predefined to be the name of a structure part (initiator,
terminator, escape, substructure), a Module Invocation word, or a
control directive. Keywords are recognized only in context, i.e.,
only when they appear as the first word, though not necessarily starting
in the first column, of the statement or directive.

The primary function (in the sense that it precedes and supports
everything else) of the processor is to reproduce the input statements

2=5

'
!

77-24

on the SDD output file in a manner which enhances the reader's capabililty
to understand the resulting document with the least effort. This is
accomplished by indentation of statements within structures, and
superimposition of flow lines to highlight structure escapes and module
invocations. The actions taken by the processor in response to specific
statement types are described below.

§,6 PASSIVE STATEMENT

A Passive statement is any statement which does not begin with
a keyword. Passive statements may be used to convey any design information
as desired but they do not have any special meaning to the processor
as do the Keyword statements.

Passive statements are processed as follows:

1) Since Passive statements must be imbedded within a module
structure, if one does not already exist, the processor
supplies a module, with an error message.

(2) The entire statement is scanned for the appearance of any
identifiers which have been designated for inclusion in
the cross reference tables. The means for designating
jdentifiers for inclusion in the cross reference tables
is explained under the discussion of the #MARK and the
#STRING directives.

(3) The input line number (i.e., the number corresponding to
the statement's sequential location in the input medium)
is written at the left margin.

(4) The entire statement including all blanks is copied to
the SDD output file beginning at the current point of
indentation.

(5) If the statement contains a pound sign, the portion
of the statement which follows will all be right shifted
so that the last non-blank character lines up at the right
margin. The pound sign itself is replaced with a space.
This feature has many important applications which are
examined under the discussion of the #MARK directive.

2=6

e g TR ORI RS T e e e

17-24

Example:
As input (input line=1) :

ADD 1 # COUNT CASES

As output:
LINE PAGE 1
PROGRAM STATEMENT SUPPLIED BY PROCESSOR

1 ADD 1 COUNT CASES

3. Keyword Statement Definitions (Level 2)
This section describes the Keyword statements which drive the

processor formatting actions. The actions are summarized in
Figure 1.

2,1 MODULE INITIATOR

MODULE :
INITIATOR [7| IDENTIFIER 7 E.0.5. A.¢
KEYWORD L
(TABLE 1) \ng T0 NORD {3
~+_FOR
L—rﬁ'uucru;mon o
Example:

PROGRAM TO READ THE PROGRAM INPUT

(1) The keyword PROGRAM is recognized as a Module Initiator.

(2) The optional noise word TO (FOR or punctuation are
alternative noise words) is ignored.

(3) The next identifier, READ, is established as the module
name and recorded for future cross referencing. The remaining

2=

(4)

(5)

(6)

(N

(8)

(9)

(10)

B P ek e = R SRR P T R PILE TS SR - o welfe en w o e B an 0 Rt BRCR AFR T VST TR AR TR T e T T T -

T7-24

words, including the second appearance of PROGRAM, are
all passive (i.e., they are handled as though they were
part of a Passive statement).

Since a module is the highest-level structure and may not

be nested within other structures, the processor terminates

any open structures (i.e., structures which have been initiated
but left unterminated) with appropriate error messages.

The entire Module Initiator statement is entered into the
SDD table of contents.

The module structure is entered into a push-down (last-
in, first-out) structure stack for later matching with subsequent
statements specifying other parts of the structure.

A new page of the SDD is started with appropriate heading.

The indentation point is set to level zero (just to the
right of the location of the input line number field).

The statement is written to the SDD output file in the
manner described above for Passive Statements.

The indentation is increased one level by moving the
indentation point the required number (default = 3) of spaces
to the right.

2.2 BLOCK INITIATOR

l BLOCK

INITIATOR £.0.5, X
e [) .
(TABLE 1) WORD

i3

Example:

LOOP UNTIL FILES A, B & C HAVE BEEN READ

(1)

The keyword LOOP is recognized as a Block Initiator keyword.

2-8

e

(2)

(3)

(4)

(5)

2:3 TLIZINATOR

17-24

Since blocks must be nested within modules, if an open
module does not already exist, the processor supplies a
module with an error message.

The block structure is placed on the structure stack, as
described above in step 6 of the Module Initiator statement.

The statement is written to the SDD output file, as described
above for Passive statements.

Indentation is increased one level (see step 10 for the
Module Initiator statement).

L___ TERMINATOR
‘ EIOISI

KEYWORD
(TABLE 1)

) 0.5

(”—\
é

Example:

ENDPROGRAM TO READ INPUT

(1)

(2)

(3)

(4)

(5)

(6)

The identifier ENDPROGRAM is recognized as a Terminator
keyword.

The structure stack is searched for a matching Structure
Initiator. 1If none is found, the statement is processed as a
Passive statement and is followed by an error message. No
further action is taken.

1f a matching structure is found, all intervening open
structures are terminated with error messages;

The structure to be terminated is removed from the top of the
structure stack;

Indentation is decreased one level (shifted left) to match
the indentation of the Structure Initiator statement.

The statement is written to the SDD output file in the
manner of a Passive statement.

2=9

SO PV VREDF JU R J,,; e e e T R R R IR P w-:-ln--u_wmm%!‘m 4‘-r‘--'«mr‘www'rv‘i!'*w*’l&‘-‘“"

77-24

2.4 SUBSTRUCTURE

L SUBSTRUCTURE

KEYWORD E.0.S, 0.5
(TABLE §)
WORD

1.3

Example:

ELSE
(1)
(2)

(3)

(%)

(5)
(6)

TRY ANOTHER ALTERNATIVE
The identifier ELSE is recognized as a Substructure keyword.

The structure stack is searched for a matching Structure
Initiator. If none is found, the statement is processed as a
Passive statement and followed with an error message. No
further action is taken.

If a matching structure is found, all intervening, open
structures are terminated with error messages.

Indentation is decreased one level (shifted left) to match
the indentation of the Structure Initiator statement.

The statement is written like a Passive statement.
Indentation is increased one level (shifted right), as

when the structure had just been initiated, in effect re-
initiating the structure.

2=10

i e g W

e 4 TS G L T = | doy

1

N

2.5 ESCAPE

T7-24

L_. ESCAPE
EIOISI

KEYHORD 0.6
(TABLE 1)
WORD

1.3

Example:

EXITLOOP 1F DELTA < EPSILON

(1)
(2)

(3)

(4)

2.6 MODULE INVOCATION

The identifier EXITLOOP is recognized as an Escape keyword.

The statement is written to the SDD in the manner described
for the Passive statement.

The structure stack is searched for a matching Structure
Initiator. 1f none is found, an error message is added
to the SDD output file.

If a matching structure is found, the escape statement
is completed by the addition of a flow line (left arrow)
extending from the current indentation level to the
indentation level of the Structure Initiator statement.

INVOCATION IDENTIFIER 1| E.0.5.
KEYWORD
(TABLE 1) PUNCTUATION " WORD s

2=11

77=-24

Example:

CALL : INITIALIZATION ROUTINE

(1)

(2)
(3)

(4)

(5)

(6)

The identifier CALL is recognized as a Module Invocation
keyword.

The optional punctuation, :, is ignored.

The identifier INITIALIZATION is established as the name
of the module to be invoked and recorded for module cross
referencing.

The statement is written to the SDD in the manner described
for a Passive statement.

The output line is augmented by a flow line (right arrow)
extending from the rightmost non-blank character of the
statement to within five columns of the right-hand margin.

The last five columns of the output line are filled in
with parentheses enclosing the page number of the module
referenced by the Module Invocation statement.

The processor actions for SDDL statements described above are
summarized in Figure 1. The following example illustrates the statements
as they might be combined in a simple design:

2=12

T T ve DTSR TR TR T

&
-
-
-
-

LAY g T e

T7-24

Example:

As input:

1 {PROGRAM TO SUMMARIZE DaATA

2:CALL INITIALIZE

3:L00P UNTIL aLL NUMBERS HAVE BEEN READ
4¢READ A VALUE

5:CALL ERRORCHECK

631F THE gRRORCHECK INDICATES AN gRROR
7:PRINT THE FOLLOWING MESSAGE

8: “SOMETHING’S WRQONG"

9:CYCLE BACK FOR ANOTYHER ITERATION
10:ELSE

11:SUM VALUES & SQUARED VALUES
12 INCREMENT COUNTER
133ENDIF
19 :REPEAT

15:01SPLAY MEAN AND STANDARD OgVIiavIQN
16 ENDPROGRAM

17SPROCEDURE 10 INITIALIZE

18 VAR ABLE INITIAL VALUVE
19¢ SUM 0.0 SREAL
20 SUM oF SQUARES 0.0 sSREAL
213 COUNT O SINTEGER
22 LOWER BOUND 0 SREAL
23: UPPER BOUND 100,0 sREAL

24:PROCEDURE FOR ERRORCHECK

25 INITIALIZE ERRORCHECK TO INDICATE AN ERROR
262 1F LOWER BOUND < VaLUE

27:1F VALUg < UPPER BOUND

28:RESET ERRORCHECK TO INDJCATE NO ERROR
29:EXITLOOP

30:ENDLOOP

2=13

PAGE
NUMBE

|
2
3

LINE
17
i8
19
20
21
22
23

17-24

As output:

TABLE OF

LINE 0..0¢¢.0o00000oooooooooooooooﬁotoo000000000000

R NUMBER MQOULE NAME

! PROGRAM TO SUMMARIZE DA
17 PROCEDURE TO INITIALIZE

CONTENTS

TA

24 PROCEOURE FOR ERRORCHECK

MODULE REFERENCE TREE
MODULE = CROSS REFERENCE

PROGRAM To SUMMARIZE DaATA
CALL INITIALIZE="cecorcncacane
LOOP UNTIL alLL NUMBERS HAVE BE
READ A yaLuUg
CALL ERRORCHECK...-..------
IF THE ERRORCHEgCK INDICATES
PRINT THE FOLLOWING MESS
"SOMETHING*S WRONG®
CemaeeCYCLE BACK FOR ANOTHER |
ELSE
SUM VALUES & sQUaRED VAL
INCREMENT COUNTER
ENDIF
REPEAT
DISPLAY MEAN AND STANDARD ODgv]
ENDPROGRAM

PROCEOURE 10 INITIALIZE
VAR1ABLE
SUM
SUM oF SQUARES
COUNY
LOWER BoOUND
UPPER BOUND

LISTING

PAGE i
0000000.0

PAGE |

-..-..--..-..-o.-----...,‘ 2)

EN READ

-....-------.--.--.--.-.>(3,

AN ERROR
AGE

TERATION

VES

ATlQoN

INITIAL VaALUE
0.0
0,0
0

0
100,0

ENOPROCEOURE « STMT SUPPLIED BY PROCESSOR

2=14

PAGE 2

REAL
REAL
INTEGER
REAL
REAL

o s b E ot + g

77=-24

LINE PAGE 3
24 PROCEDURE FOR ERRORCHECK
2% INITIALIZE ERRORCHECK 1O INDICATE AN ERROR
26 IF LOWER BQUND < VaLVE

27 i1F ValUg < UPPER BOUND
28 RgSEY ERRORCHECK 70 INDICATE NO ERROR
29 ExITLo0P
YY) ee® ERROR eoe INCORRECT MODULE ESCAPE WORD
30 ENDLOOP
Ty e9e ERROR oo INCORRECT MODULE TERMINATOR

ENDIF « STMT SUPPLIED BY PROCESSOR
ENDIF « STMT SUPPLIED BY PROCESSOR
ENDPROCEDURE « STMT SUPPLIED BY PROCESSOR

e0ecvcegsegooe MODULE REFERENCE TREE eotqee PAGE 4
LN PAGE
|] SUMMARI]ZE
2 2 o« INITIALIZE
3 3 .« ERRORCHECK

MODULE
CROSS REFERENCE LISTING PAGE S
IDENTIFlER*00000000000000000000000000000000000000ooooooooooooooooooo

ERRORCHECK
PAGE { PROGRAM TO SUMMARIZE
LINES S5, &
PAGE 3 PROCEDURE FOR ERRORCHECK
LINES 24, 25, 28
INITIALIZE
PAGE | PROGRAM TO SUMMARIZE
LINES 2
PAGE 2 PROCEDVURE TO INITIALIZE
LINES 17
PAGE . 3 PROCEDURE FOR ERRORCHECK
LINES 25
SUMMARIZE
PAGE 1 PROGRAM TO SUMMARIZE
LINES |

2=15

4, Control Directives (Level 3)

Control directives allow the user to set processor control
specifications (e.g., page width, indentation) and to cause some immediate
actions to be taken (e.g., page eject). Control directives are read,
interpreted, and acted upon by the processor. They are not written
to the SDD output file and hence are not seen in the final document.
Control specifications set by directives are put into effect as soon
as they are interpreted and remain in effect for all subsequent input,
or until overridden by another directive. Directives can be used to
set and reset processor control specificationa as often as desired.
The SDDL control directives are defined and deuscribed on the following
pages. The sequence of presentation is intended to avoid lookahead
caused by definitions based on terms defined on subsequent pages.

Control directive keywords all begin with the pound sign character.
They are preset (see Table 2) and must not be altered. The user must be
careful not to define a new meaning for a control directive keyword
(see #DEFINE directive) since it will cause the preset definition
to be overridden.

#3+1 MARK DIRECTIVE

17-24

E.0.5

#MARK 7

N

0.6

Selection of words or identifiers for cross referencing is
controlled by the #MARK and the #STRING directives. When using the
#MARK directive, the designer specifies a list of punctuation which
the processor ‘'l subsequently treat in the following manner:

(1)

N—{ IDENTIFIER 1 x")

r
X

A1, o sotuation appearing in the statement is converted
into a MARK (syntax definition 0.5), i.e., those characters
which are used to form identifiers. They can then be used
as connectors to build a single identifier out of separate
words.

2=-16

T7=-24

Example:

#MARK .
EVFRY .GOOD .BOY DOES FINE

(2) Every identifier which includes a MARK, such as in
EVERY .GOOD.BOY in the example above, is included in
a cross reference listing producec at the end of the
design document.

Titles for the cross reference listings may be supplied by placing
any string of characters (except punctuation) prior to the punctuation
to be converted. If no title is supplied prior to the first punctuation
in the directive, a blank title is assumed.

The SDDL processor provides individual cross reference listings
for each unique title found in the #MARK and/or #STRING directives.
ldentifiers containing MARKs which were specified with identical titles
are merged into a single cross reference listing. Titles are considered
to be identical if, after deleting leading and following blanks, they
are an exact, character-by-character match, including internal (between
word) blanks. Identifiers which contain marks associated with several
unique titles will appear in each appropriate cross reference. These
conventions are exemplified below, and an additional, more comprehensive
example is given following the #STRING directive.

Example:
#MARK ?! DATA ITEMS % REVISIONS $
#MARK ; DATA ITEMS .:

The MARKs specified in the above example are associated with the titles
as follows:

CROSS REFERENCE LISTING
?2 vt
DATA ITEMS
CROSS REFERENCE LISTING
f .
REVISIONS
CROSS REFERENCE LISTING
$

2=17

T7-24

3,2 STRING DIRECTIVE

This directive allows the user to specify one or more punctuation
marks to be used as string delimiters. The purpose of enclosing text
within string delimiters is to have it included in a cross reference
table at the end of the document. The following rules govern the use of
this feature.

(1) Several MARKs may be specified as string delimiters but no
distinction is made between left (opening) or right (closing)

delimiters
Example:
#STRING ()
1 SAMPLE STATEMENT (STRING ONE(
2) STRING TWO (NOT A STRING) STRING ABC)

In the above example, the following text segments are defined and
will be cross referenced:

“STRING ONE" “STRING TWO" “STRING ABC"

(2) Preceding and following blanks are excluded from the string,
- but interior blanks are indluded.

Example:
#STRING !
LINE 1 ' ABC D*
LINE 2 'ABC D '
LINE 3 'ABC D'

The strings in LINE 1 and LINE 2 are the same because they match
exactly after preceding and following blanks are stripped off.
The string in LINE 3 does not match the others because it

does not have the same number of spaces between ABC and D.

Each unique string, where uniqueness is defined by rules

1 and 2, becomes a single entry in the cross reference.

2-18

| #STRING 7 S E:0.5 0.6
N—| IDENTIFIER 1.1"')
N NMBER x.z")
N mmmm/.‘]-/

77-24

(3) If the closing delimiter is omitted, the string is terminated
by the end of the input statement.

Example:

#STRING '
LINE 1 'ABC' AND 'DEF G

Strings ABC and DEF G are recognized.

(4) If the text enclosed in string delimiters consists of a
single identifier, regardless of preceding or following
blanks, it is recognized as described above, but in addition,
the processor will thereafter recognize and cross reference
the named identifier whether it appears with or without

delimiters.
Example: !
#STRING "
LINE 1 “VEHICLE "
LINE 2 VEHICLE AND VEHICLE

In the above example, VEHICLE is recognized and the cross
reference will show that it was found once in LINE 1 and
twice in LINE 2.

(5) A title for the cross referencing of text strings may be
supplied by including any characters except punctuation
between the #STRING keyword and the first MARK to be
converted to a string delimiter.

The title (including tne null case) supplied with the #STRING
directive is compared with the titles supplied with the #MARK directives
for merging of the cross reference listings. When several #STRING
or #MARK directives with conflicting title specifications are used,
the rule followed is that the last usage overrides all prior usage.

2-19

T7=-24

Example:
As input:
138MARK ?¢ DOATA JTEMS % REVISIONS $

2:0MARK DATA ITEMS o

3:8STRING DATA JTEMS "

4:PROGRAM TO READ DATA AND "CHECK" 1T

§SREAD VEHICLES o MAXeRPM , SPOWER , "AND WHAT EVER ELSE THERE 1S "
631F ANY VALUES ARE UNKNOWN? OR UNTESTED?

7SCHECK THE DATA}S FoOR DOUBTFULSTUFF? S

8IENDIF
9sAN ADDITIONAL CHECK MAY BE NEEDED HERE
J10ENDPROGRAM
As output:
TABLE OF CONTENTS PAGE 1
PAGE LlNE 0..0000000000000%00000000000¢OQO00000000000000000000000
NUMBER NUMBER MODULE NAME
1 4 PROGRAM TO READ DATA AND YcHECK" IT
2 MODULE REFERENCE TREE
3 MODULE = CROSS REFERENCE LISTING
4 DATA ITEMS = CROSS REFERENCE LISTING
5 REVISIONS = CR0SS REFERENCE LISTING
6 CR0SS REFERENCE LISTING
LINE PAGE {
4 PROGRAM To READ DATA AND "CHECK" 1T
5 READ VEHICLES o+ MAXJRPM , SPOWER , "AND WHAT EVER ELSE THE

6RE IS "

6 IF ANY VALUES ARE UNKNQOWN? OR UNTESTED?

y CMECK THE OATA3;; FOR OOUBTFUL,STUFF? 8|
8 ENDIF

9 AN ADDIyIONAL CHECK MAY BE NEEDED HERE

10 ENOPROGRAM

2=20

S SRR FNUUNUTR S . - T R R T T e

T77-24
DATA ITEMS
CROSS REFERENCE LISTING PAGE 4
IDENTlFlER’000¢¢00000000000900000000000009000000000000000000000000o¢
SPOWER
PAGE | PROGRAM TO READ
LINES 5

AND WHAT EVER ELSE THERE IS
PAGE i1 PROGRAM TO READ
LINES §&
CHECK
PAGE | PROGRAM TO READ
LINES 4y 74 9
OOUBTFULeSTUFF?
PAGE 1 PROGRAM TO READ
LINES 7
MAX RPM
PAGE] PROGRAM TO READ
LINES S
VEHICLES
PAGE | PROGRAM TO READ
LINES 5

REVISIONS

CROSS REFERENCE LISTING PAGE S
JOENTIFIER® 4440400040000 0400000000000034444000000000000000040000000

PAGE { PROGRAM TO RgaD
LINES 7

CROSS REFERENCE LISTING PAGE 6
JOENTIFIER® 0444444000000 000 0000404400008 40400000040000040000040000¢
DATAL
PAGE ! PROGRAM TO READ
LINES 7
DOUBTFULSTUFF?
PAGE } PROGRAM TO READ
LINES 7
UNKNOWN?
PAGE { PROGRAM TO READ
LINES 6
UNTESTED?
PAGE | PROGRAM TO READ
LINES &

2-21

T7-24

The #DEFINE directive is used to specify new or to delete old SDDL
keywords. To select the desired action, one of the four words shown below
must follow the SDDL keyword, #DEFINE.

MODULE BLOCK CALL NULL

3,3 DEFINE DIRECTIVE (MODULE, BLOCK)

{
RDEF INE MODULE IDENTIFIER A |
BLOCK \mr:n 1.2J

£.0,5.

h

0.6

PUNCTUATION 0.4

IDENTIFIER

isl

The word MODULE or BLOCK is used to define a control structure. In
SDDL, a control structure has four parts:

(1) Initiator: Increases the indentation level for subsequent
lines.
(2) Terminator: Closes all nested structures left open anu

returns the indentation level to that of the
Initiator statement.

{(3) Escape: A left arrow is added to the statement to
indicate the program control flow. The arrow
extends from the indentation level of the
escape statement to the indentation level of
the Initiator stutement.

(4) Substructure: Closes all nested structures left open, returns
the indentation level to that of the Initiator

statement, prints the line, and increases the
indentation level.

when defining a module or block, names for the four parts must be
specified in the order shown above. Any punctuation may be used to
separate the part names, but care must be taken to avoid using a MARK
(i.e., punctuation which has been converted to a MARK by the #MARK
directive). Names for any of the parts except the initiator may be
omitted by using consecutive punctuation to show where a name has been
left out. Any text following the name of the substructure will be
ignored. Synonyms for part names, except for the initiator name, may be
established by additional #DEFINE directives.

2=22

;
i
!
t

17-24

Indentation specific to the named structure may be indicated
by including an unsigned integer between the word MODULE (BLOCK) and
the initiator name. If a zero is specified or the integer is omitted,
the current default indentation amount (see #INDENT) will be used.

Example (three equivalent directives):
#DEFINE MODULE 10 PROGRAM, END, STOP, ENTRYPOINT

#DEFINE MODULE 10 PROGRAM END, STOP ENTRYPOINT
#DEFINE MODULE 10 PROGRAM END STOP ENTRYPOINT WHATEVER

Lype indentation Jinitdator termipnator escape substructure

module 10 PROGRAM END STOP ENTRYPOINT

Example:

#DEFINE BLOCK BEGIN END

block default BEGIN END

Example:

4DEFINE BLOCK START, FINISH, LEAVE
#DEFINE BLOCK START, , SCRAM
#DEFINE BLOCK 2 START, , VAMOOSE

mmmmmmmwmmm

LEAVE
block 2 START FINISH SCRAM -——
VAMOOSE

Note that in this example, the last directive established the indentation

amount to be two columns, overriding the default indentation amount indicated

on the previous directives.

2-23

——

SR

PRFSPRR

ek P RSt bt W o ARG Y

JOPURSO—

T7-24

3.3 DEFINE DIRECTIVE (MODULE INVOCATION)

[DEF INEF{CALLF £.0.5. <

PUNCTUATION

0.4

IDENTIFIER

Iy

The word CALL is used with the #DEFINE directive to establish !
synonyms for the Module Invocation keyword (default keywords are CALL i
and DC), which indicates that a module is to be invoked at the point !
where the statement occurs. The identifiers to be defined as synonyms
are listed after the word CALL. Punctuation for separating the words
is opticnal.

Example:

#DEFINE CALL PERFORM EXECUTE, GOGOGO !
#DEFINE CALL DOITNOW

Example:

I
#MARK .
#DEFINE CALL DO.IT.NOW, PERFORM ;

i

The identifier DO.IT.NOW (also PERFORM) becomes a Module :
Invocation keyword because the period has been converted to a MARK i
by the prior #MARK directive. Where DO.IT.NOW appears in the context !
of a keyword (first word of the statement), it will not be included :
in the cross reference table. :

When a Module Invocation statement is encountered, the processor
places the statement in the output file with the appropriate indentation
and adds a right arrow from the rightmost character in the line to
the right margin. Matching parentheses are added to the right of the
arrow to provide a place for adding the page number of the called module. :
If the module that is referenced in the Module Invocation statement !
has been defined on a prior page, the page number is supplied in the ;
allocated space when the statement is encountered. Page reference
numbers which cannot be supplied immediately must be filled in on a
second pass over the output file. The user may exercise the P option
at execution time to suppress the second pass, which supplies the remaining
page reference numbers.

A - AR e

C e e s r—

2=24

T7-24

3+3 DEFINE DIRECTIVE (NULL)

1
[#DEF INEF—={NULL] E.0.5. 7

PUNCTUATION

0.4

IDENTIFIER i

The NULL action of this directive provides a means for returning
any previously defined keywords to the state of being undefined.
Punctuation may be used as a keyword separator, if desired. MARKs
which have been converted to letters by a previous #MARK or #STRING
directive may also be listed for redefinition as punctuation. MARKs
being redefined in this manner must have adjacent blanks or punctuation
to disassociate them from other text.

Example:
#DEFINE NULL PROGRAM, ENDPROGRAM PROCEDURE

The words PROGRAM, ENDPROGRAM, and PROCEDURE are not recognized
as keywords in the statements following this directive.

Example:

#MARK .$
#DEFINE NULL DO.IT.NOW $

The word DO.IT.NOW is no longer a keyword and $ reverts
to punctuation again. The periods in the keyword DO.IT.NOW are part
of tiie identifier (unlike the $ in the example), and therefore the status
of the period remains unchanged; i.e., it is still a MARK.

Example:

#MARK .
#DEFINE NULL . DO.IT.NOW

This example differs in that the status of the period is reconverted
to punctuation first and is treated as such in the remainder of the
statement. Therefore, DO, IT, and NOW are the words which become undefined.
If DO, IT, and NOW are already undefined, they are not affected.

2=25

T77-24

3.4 TERMINATE DIRECTIVE

[RTERMINATE}—

™ E.0.5,

0-6

)r ~
NUMBER 1/{<} WORD o’

This directive is a generalized terminator for block structures.
It may be used in place of a nuidber of specific terminators (specific
terminators must match their fespective initiators) to terminate the
n innermost, nested, open bloclt structures. If no integer is specified
in the directive, only one structure will be terminated. If n is greater

than the number of open block structures, they will all be terminated,
but the module structure will not be affected,.

Example:

As input:

1 IPROGRAM “TERMINATE® EXAMPLE

2:1F P INDENT 1 LEVEL

3:1LO00P Q JMDENT | LEVEL

4IINDENTATION IS 3 LEVELS DEEP

SIENDLOOP « SPECIFIC TERMINATOR

6:ENDIF = SPECIFIC TERMINATOR

7¢1F P INDENY | LEVEL

B8ILOOP Q@ INDENT | LEVEL

9:INDENTATION IS 3 LEVELS OEgP
IDSSTERMINATE 100
LISALL BLOCK STRUCTURES ARE TERMINATED = MODULE NOT AFFECTED
1201F P INDENT | LEVEL

13iL00P Q INDENT | LEVEL
142INDENTATION IS 3 LEVELS DEgP
ISISTERMINATE ONLY ONEg STRUCTURE TERMINATED
161F P INDENT | LEVEL
17 INDENTATION IS STILL 3 LEVELS DEEp

18 {ENDPROGRAM o« STRUCTURES LEFT OPEN ARE TERMINATED BY THE PRQCESSOR

2=26

77-24

As output:
LINE PAGE 1

1 PROGRAM "ygRMINATE"™ EXAMPLE

2 IF P INDENT | LEVEL

3 LOOP @ INDENT | LEVEL

] INDENTATION 15 3 LEVELS OEtEr

5 ENDLQOP &« SPECIFIC TERMINATOR

6 ENDIF = SPECIFIC TERMINATOR

7 1F P INDENT 1 LEVEL

8 LOOP Q INDENT | LEVEL

9 INDENTATION s 3 LEVELS Dgkrp

11 ALL BLOCK STRUCTURES ARE TERMINATED « MODULE NOT AFFECTED
12 IF P INDENT 1| LEVEL

13 LOOP @ INDENT | LEVEL

14 INDENTATION 1S 3 LEVELS DEetr

16 {F P INDENT | LEVEL
17 INDENTATION s STILL 3 LEVELS DEEP

ENDIF = STMT SUPPLIED BY PROCESSOR
ENDIF = STMT SUPPLIED BY PROCESSOR
18 ENDPROGRAM = STRUCTURES LEFT OPEN ARg TERMINATED BY THE PROCESS
&0R

2.5 TEXT DIRECTIVE

HTEXT] £,0,5.

OKE

1\

WORD

Examples:
#TEXT

#TEXT COMMENTARY BEGINS ON NEXT LINE

The #TEXT directive is used to signal the beginning of a sequence
of lines (not statements) of text intended as commentary to the SDD.
When this directive is encountered, the processor performs the fcllowing
actions:

(1) The words following the keyword are ignored.

(2) The processor begins reading input lines into a holding
buffer and continues until it encounters an input line
whose first non-blank character is the pound sign.

(3) The lines buffered in step 2 (this does not include the
line which terminated step 2) are not analyzed as statements
but simply saved unaltered.

2=27

T7=-24

(4) The buffered lines, enclosed in a box formed by asterisks,
are then written to the SDD output file at the current
level of indentation.

(5) The line which signaled the end of step 2 (the buffering
step) is then processed in the usual way. Thus, any control
directives or any statement which begins with a pound sign
may be used as a terminator and still be recognized for
regular processing. If no action other than termination

of the text statement is desired, the #END directive may
be used,

3.6 END DIRECTIVE

ND J £.0.5. ‘
WORD

This directive has no effect other than that of terminating line
buffering for #TEXT and #TITLE directives.

2.7 TITLE DIRECTIVE

#TITLE C‘ £:0.5. 0,5
WORD rv)

Example:
#TITLE SDDL DESIGN DOCUMENT

This directive is used to produce a title page in the SDD. The
#TITLE directive is similar to the #TEXT directive, but different in
that the #TEXT directive resembles a Block Initiator statement while
the #TITLE directive resembles a Module Initiator statement. The

processor performs the following actions in response to input of a
#TITLE directive.

(1) The keyword #TITLE is recognized.

(2) The initial pound sign is stripped off, and the remainder
of the directive is entered into the SDD Table of Contents.
Title line entries in the Table of Contents are preceded
by a blank line and are written two columns to the left

2~28

T7-24
of module entries in order to distinguish them as the
beginning of a document section.
(3) All structures left open are terminated with error messages.
(4) As in the case of a #TEXT directive, the processor reads
and buffers input lines until it encounters a line whose
first non-blank character is a pound sign. Termination
of the title text is the same as for the #TEXT directive.
(5) A new page is started in the SDD output file.
(6) A title page is formed by (a) enclosing the lines in a

box formed by asterisks, (b) centering each line within
the box, and (c¢) centering the entire box on the page.

3.8 LINENUMBER DIiRECTIVE

£:0:5.

>
o

[#LINENUMBER |—< 7 <
| — /ff %,)
N NUMBER Cr WORD *

This directive provides control of the starting point of the
input line numbering sequence which the prccessor produces in the left
margin of the SDD.

The input line numbers supplied “»y the SDDL processor correspond
exactly to the positional line numbers of the data element (card deck)
of the input ‘o the SDDL processor. This feature obviates the listing
of the raw input fur revising and augmenting the SDD. Where more than
one element (deck) is used as input to SDDL, it is desirable to reset
the line counter so that numbering can be made to match the subsequent
elements (card decks.)

If this instruction is issued without an accompanying integer, the
processor will begin numbering subsequent lines from 1; otherwise it will
begin numbering with the value specified by the integer. The syntax of
this directive allows noise to be used for commentary if desired.

Examples:

#LINENUMBER 1001 STARTS THE NEXT bLEMENT

#LINENUMBER

=29

77-24

3,9 INDENT DIRECTIVE

S

#INDENT \‘ f £.0.5. 7
NUMBER * (—{ WORD *

The SDDL #INDENT directive allows the user to override the default
value for the number of spaces to be skipped for automatic statement
indentation.

User-defined structures (see #DEFINE directive 3.3) which
do not have a specific indentation amount declared and SDDL initial
structure definitions always use the current default indentation value.
The initial value of the system defined default indentation amount
is three spaces.

Text following the integer (i.e., noise) may be used for commentary
if desired. If no integer is specified in the directive, the default
value of three spaces is assumed.

Examples:

$INDENT 5 SPACES UNLESS OTHERWISE SPECIFIED

$INDENT SET TO DEFAULT OF THREE SPACES

3,10 WIDTH DIRECTIVE

IDTH} f < 008 . fl
I '.

NUMBER /l (—1 WCRD -,

t L 1w

The #WIDIH directive provides user control of the width of the
output pages. The default page width is 80 characters =z 20 cm (8 in.).

An integer specifying the width, in characters/output line,
should be supplied. If the integer value is not in the range 60=-130,
an error message will be printed and the page width will not be altered.
If no integer is specified in the directive, the default value of 80
columns is assumed.

This directive may be used as many times as desired throughout
the program. kach use affects only the -utput which follows it.

2=30

T7-24

Example:

#WIDTH 130 COLUMNS FOR A TABLE

#WIDTH RESUME NORMAL PAGE WIDTH

3.40 EJECT DIRECTIVE

— 1

(st

HEJECT] \ B £.0:5.

NUMBER A]] (—« WORD . LJ

This directive provides immediate control of the start of a
new page in the SDD. This page control is over and above the automatic
Neéw page start caused by (1) a title, (2) the beginning of a new module,
or (3) page overflow. When a module becomes lengthy enough to cause
an overflow to a new page, it is often desirable to control the start
of the new page to prevent a group of lines from being split over a
page boundary.

The #EJECT directive, without an accompanying integer, causes a

new page to be started beginning with the next SDDL statement in the
input stream.

Examples:
#EJECT
#EJECT A PAGE NO MATTER WHAT

When an integer is included in this command, it causes a new page
to be started only when the remainder of the page cannot accommodate
the number of lines specified by the value of the integer. An integer
value greater than 50 gives rise to an error message and causes the
directive to be ignored. Ncise following the integer is ignored and
ay therefore be used for commentary.

Examples:

#EJECT 5

#EJECT 7 THE FOLLOWING 7 LINES MUST BE KEPT TOGETHER

T77-24

3.12 SEGUENCE DIRECTIVE

[#SEQUENCE} J (_

NUMBER

J E.lolbl 0.6
WORD

The #SEQUENCE directive is provided for card input to the SDDL
processor. When SDDL is used in a timesharing environment with file
management and editing capabilities, card sequencing is unnecessary.

In this case, the full 80 columns of the input line may be used entirely
for SUDL statements and directives and the #SEQUENCE directive can

be ignored, except to avoid its inadvertent use. The input line numbers
supplied in the left margin of the output file correspond exactly to

the line to edit the input file for corrections and updates and may

be reliably used for this purpose. This feature makes it unnecessary

to print out copies of the raw input file.

Where cards are used as the input medium, it may be desirable to
have card sequence numbers at the right-hand edge of the card, in which
case the #SEQUENCE directive must be used to differenticte between the
input text and the sequence numbers. As shown in the syntax diagram
abeve, the #SEQUENCE keyword may be followed by an optional integer.

This integer may be used to specify the number of rightmost columns to be
considered to contain sequence numbers. If no integer is supplied or a
value greater than 8 is specified, the default value of eight characters,
columns 73 through 80, is assumed. An integer value of zero has the
effect of disabling the card sequence capability. When the #SEQUENCE
capability is used, the input line (except for the sequence numbers) is
handled in the usual way, and the sequence numbers are printed in the
rightmost columns of the output page as determined by the #WIDTH directive
(default = 80 columns). Where an input line is continued over more than
one card, only the sequence number of the last card is printed.

Example:
#SEQUENCE 4
Columns 1 through 76 of the input deck are assumed to contain

SDDL statements ur uireotives, and columns 77 througn 80 are assumed to
contain sequence numbers.

2-32

17-24

4,0 SDDL PROGRAM

L :

TITLE GROUP i
MODULE 4.2
CONTROL

DIRECTIVE 4,6

4,§ TiTLE GROUP

L_. TITLE CONTROL

| DIRECTIVE 3.7 (DIRECTIVE 4.6
1 STATEMENT — T
i.4
Z | sureent 17,
4,2 MODULE
‘ MODULE STATEHENT HA'TCH ING
| INITIATOR 'n GROUP 4.3 TERMINATOR _
sTATEMENT . © STATEMENT / 2+

2-33

4.3 STATEMENT GROUP

|

77-24

4,4 TEXT GROUP

4,5 BLOCK

a8 T\
N—{ STATEMENT <1+
ESCAPE W
STATEMENT 2.5
[SOESTRICTIRE 7], /
STATEMENT 2.4
N— TEXT GROUP f 4-J
N~ BLOCK ; 5-/
__| CONTROL w,
DIRECTIVE 4.6
‘\ TEXT CONTROL
DIRECTIVE 5.5 L J lomsmva 1.5
STATEMENT
: 1.4 # STATEMENT (7,
BLOCK — THATCHING
L—— INITIATOR ;;&Einzm {, | TERMiNATOR
STATEMENT 2.2 ‘ - STATEMENT 2.3
TERMINATE
DIRECTIVE 3.4

4,5 CONTROL DIRECTIVE

\

T7-24

MARK
DiRECTIVE

L

3.1

STRING
DiRECTIVE

L

3.2

DEF INE
DIRECTIVE

3.3

END
DIRECTIVE

3.6

LiNENUMBER
DIRECTIVE

3.8

INDENT
DIRECTIVE

3.8

WiDTH
DIiRECTIVE

40

EJECT
DIRECTIVE

LT TR

!

f € € ¢ { { { { {

SEBUENCE
DIRECTIVE

il

2-35

T77-24

SECTION I1II

SAMPLE DESIGN

Two examples are presented to illustrate the capability and potential
of the SDDL processor. The design of the SDDL processor itself is
the subject of the first example. Only a smal) subset of the actual
SDDL design is shown in order to reduce the example size to expedient
proportions. Even this small, top-level portion of the SDDL processor
design, however, reveals information which has an important impact
on the processor.

The second example demonstrates some of the actions taken by
the processor in response to error situations. The subject material
is not intended to convey any meaningful design information.

Example 1. Top~level SDD for the SDDL processor:

- ————

As input:

1 $8MARK REVISIONS % PROGRAM PORTABILITY CONSIDERATIONS ?
t2MARK ROUTINES AND FUNCTYIONS . CATA ITEMS
3;8STRING DATA ITEMS *
4:8DEFINE BLOCK 2 LIST
¢SDEFINE BLOCK 2 MEMBER
4:#DEFINE BLOCK LCOP, , , BEGIN
7:8TITLE sDOL EXAMPLE
8:
9:SOF TwARE DESIGN AND DOCUMENTATION LANGUAGE
10¢
113
123 (AN [TLLUSTRATIQN oF THE APPLICATIgQN oF SODL USING THE)
§13:(S0DL PROCESSOR ITSELF AS THE 0BJECT OF THE EXAMPLE.)
14
153 8END
16 PROGRAM OBUECTIVES
17:8TEXT
18 THE QBJECTIVE OF SDDL 1S TO PROVIDE AN EFFECTIVE COMMUNICATIONS
19:MEDIUM 1O SUPPQRT TwE DESIGN AND DOCUMENTATION OF COMPLEX SOFTWARE

20:APPLICATIONSs THIS UBUECTIVE 1S MET B8Y PROVIDING:

214

22 (1) A DESIav AnD JOCUMENTATION LANSUAGE WwWITH FORMS ANO SYNTAX
23 THAT ARZ SIMpLE, JNRESTRICTIVE, AND COMHMUNICATIVE

24

25} (2) A PROCESSOR wrlCcH CAN CONVERT DgSIGn SPECIFICATIONS INTO AN
26 INTELLIGIBLE, INFORMATIVE, MACHINE REPRQDUCIBLE DOCUMENT
27

28 (3) METHUDOLOGY FOR EFFECTIVE USE OF THE LANGUAGE AND PROCESSOR
29

30:8END ,

J1;PROGRAM DATA_STRUCTURE aNu GLJISSARY

12

3-1

JILINPUTeTEXT.BUFFER

343

35:

k'

37 :TEXTeLENGTH

k] H

39:¢

40:LIST? TOKEN,DICTIONARY
41 IMEMBER ENTITY: ENTRY

T77-24

A GLOBAL CHARACTER ARRAY CONTAINING
A SINGLE INPUT STATEMENT FORMED BY
CONCATENATION OF CONTINUED INPUT LINES

THE LENGTH OF THE CURRENT INPUT LINE
(TRAILING BLANKS NOT INCLVDED)

LINKED LIST OF OICTIONARY ENTRIES
POINTER 7O A SINGLE DICTIONARY ENTRY

42 CHARACTER,COUNT NUMBER OF CHARACTERS IN THE ENTRY
43 TEXTPOINTER POINTER TO THE CHARACTER ARRAY

44 CONTAINING THE TEXT OF THE ENTRY
45 PROGRAM NAME IF ENTRY 1S A KEYWORD THIS IS THE
4 LOCATION OR IDENTIFICATION OF THE
47 ROUTINE FOR PROCESSING THE STMT

48 VALUE®O IF ENTRY 1S NOT A KEYWORD
493L157: REFERENCEJLIST FIRST=IN,FIRST=OUT LIST OF

508 REFERENCES TO THE ENTRY

S)¢MEMBER ENTITY: "REFERENCE"

S2:PAGE.NUMBER

SILINE.NUMBER

SYISTERMINATE 4

S5

S6:LIST: MpDULESSTACK PUSH DOWN STACK oF NQDES REPRESENTING
57¢ THE NESTED STRUCTURES OF THE DES{gGN
SB8IMEMBER ENTITY: NODE

S9:NODE.NaAME (IF,LO0P,PROGRAM,ETC)

602 INDENTATION,COLUMN

61 ;STERMINATE 2

62 ENDPROGRAM DATA_STRUCTURE

63:PROGRAM MAIN ROUTINE

64 :CALL INITIALIZATION ROUTINE

653L00P UNTIL aLL INPUT DATA HAS BEEN PROCESSED

66:CALL GETY._STATEMENT & %)

67:9YIELD TEXTSLENGTH

68

69:CALL TOKEN_FINDER (FINDS THE FIRST TOKEN IN THE STATEMENT)
70:eY1elLD VYOKENeTYPE

74

72:1F TOKENeTYPE IS "[DENTIFIER"

73:CALL ENTABLE TO FIND THE TOKEN IN THE TOKEN,DICTUONARY
743ENDIF

75

763 1F THE yOKEN WAS FOUND AND IT IS a KEYWORD

77:CALL KEYWORD,PROCESSOR

781ELSE THE STATEMENT DOES NOT BEGIN WITH A KEYWORD

79:1F THE MODULE.STACK 1S EMPTY

80:PUSH A PROGRAM MODULE ON THE MOOULE.STACK

81:ENDIF

82;CALL SQURCE_LISTER 7O SEND THE STATEMENT TO THE OUTPUT FlLE
83:ENDIF

84

85:FLUSH ANY "ERROR MESSAGES" TRIGGERED BY THE STATEMENT
86:REPEAT

3-2

T7-24

87:CALL WRAP_UP

88 LEXITPROGRAM

89 :ENDPROGRAM

90¢PROCEDURE: GET_STATEMENTY & %1

9130USING INPUTTEXT.BUFFER

92:¢YIELD TEXTJLENGTH

93

94READ AN INPUT RECORD

95:L00P UNTIL A NON=BLANK RECORD 1Is FOUND

963 1F THE MODULESTACK 1S NOT EMPTY (A MODULE EXISTS)

97¢PRINT THE INPUT RECQORO NUMBER AND A BLANK LINE TO THE *SOD*"
98 :ENDIF

99 tREAD ANQTHER INPUT RECORD

100 :REPEAT

101:COPY THE INPUT RECORD INTO THE INPUT.TEXT.BUFFER

102:SET TEXTSLENGTH = “"USABLE COLUMNS"({ 80 = CARD SEQUENCE COLs) = 277
103:L00P

104 SFIND THE LAST NON=BLANK CHARKACTER IN INPUTSTEXT.BUFFER
1053:SET TEXTSLENGTH ® COLUMN NUMBER OfF THE CHARACTER

1063 1F THE CHARACTER 1S NOT A CONTINUATION MARK

107 EXITPROCEDURE

108:ENDIF

109:SUBTRACT | FROM THE TEXT.LENGTH (8ACK UP OVER THE CONTINUATION,MARK)
110:1F THERE 1S NUMORE DATA (END OF FILE ENCOUNTERED)

111 EXITPROCEDURE

J12:ENDIF

113:1F THE SPACE CEFT 1In INPUT.TEXT.BUFFER < 80 CHARACTERS # ?27?
1143EXPAND INPUT,TEXT.BUFFER 8Y AT LEAST 80 CHARACTERS # 29?2
115:ENDIF

116:READ IN ANQTHER INPUT RECORD

117:COPY THg INPYT RECORD INTO INPUTe TEXTeBUFFER BEGINNING AT TEXTSLENGTH
1183ADD "USABLE COLUMNS" TO TEXTeLENGTH

119:RCPEAT

120ENDPROCEDURE

121 :PROCEDVRE FOR INITIALIZATION

122:READ IN EXECUTION TIME OPTION FLAGS FROM EXECUTION STATEMENT
123¢ OPTIgN.B BREAKPOINT

124 oPTIgN.C CROSS REFEKENCE

125 OPTIQONE "ERROR MESSAGES"

126 OPT1IoNeK KEYWORDS

1278 OPTloNM MOJULE CROSS RUFERENCE

128¢ OPTIoN,P PAGE REFERENCE NUMBERS

1293 QP TIoN,.R REFERENCE TREE

130 OPTloMeT TABLE OF CONTENTS

1313

13231F 0OPTIoNe 15 NOT SET BREAKPOINTING 1S REQUIRED

133:READ IN REMAINDER OF EXECUTION STATEMENT

1343 1F Ao NAME 15 SPECIFIED FUR THE §0p OUTPUT FILE

135:SET UP A QUSE RELATIONSHIP WITH SoD

136 ENDIF

127:CATALOG ANpD ASSIGN sLD AS THE oVUTPUT FILE

1383 1F THE CATALOG STEP FAILED

139:PRINT AN ERROIR MESSAGE

T7-24

140 TERMINATE THE PROCESSOR
141 LEXITPROCEDURE

I42:ENDIF
J43:BREAKPOINT THE OUTPUT 10 SOD

J44ENDF

14S53ESTABLISH THE FOLLOWING MACHINE DEPENDENT CONSTANTS

1967 CHARACTERS«PERWORD s 8 277
147: BUFFERWCOUNT B 14 (1496884 CHARS/LINE) s 7?2
1483 READGuNITY =g 8?72
149 WRITE,UNITY = 4 s ???
1508 OEFAULT.INDENT s 3

1513 RIGHT MARGIN = g0

1528
I1S3INITIALIZE INPUTTEXTeBUFFER TO Ar LEAST 80 CHARACTERS s 777?
IS43ESTABLISH TOKENJDICTIONARY DATA STRUCTURE

1563CALL KEYWORD.SET.UP TO ESTABLISH DEFAULT KEYWORDS

156 EXITPROCEDURE

157 ENDPROCEDURE

IS8 PROCEOURE FOR KEYWORD.SET_uUP

159:L00P USING THE FOLLOWING DATA PAIRS

160 ($ = POUND SIGN IN KEYWORDS BELOW)

161 KEYWORD PROCEDURE NAME

162! wecca.a Seetececrccnna

163: SMARK SET.DATA.CHAR 8 %]
164; SSTRING SET.STXING_CHAR s %)
1657 SBINDENT SETLIMNDENTATION LR ¥
166 SLINENUMBER SET.LINENUMBER s x|
167 STEXT BOX.TEYT s %
168 S$TITLg Box_tTEXT LER 3!
169: SgEND END.CONTROL s 5]
170: SDEFINE CsrINE_WORDS s %)
171 SgJECY EJECT_PAGE LR ¥
172: SWIDTH SET.PAGE_WIDTH s %)
1737 SSEQUENCE CARD_SEQUENCING T
1;4: STERMINATE BLIND.TERMINATQR LA 3
175¢

I763BEGIN ITERATION

177:FORCE THE KEYWORD INTO THE TOKEN.DICTIONARY

178STORE THE PROCEDURE NAME INTO PROGRAMsNAME OF THE gNTRY
179:ENDLOOP

180 :ENDPROCEDURE

3-4

T77=-24

As output:
0'o.000000.000Q.OQc000ou001'0000000000050000001000.00:.000.0
SOFTWARE DESIGUN AND DOCUMENTATION LANGUAGE

(AN ILLUSTRATION OF THE APPLICATION oF SDODL USING THE)

[}
L g
[)
»
.
.
e (SDpL PROCESSOR ITSELF AS THE 0BJECT OF THE EXAMPLE,)
.

.

.

]
*
®
[]
L]
L J
®
L]
[]
®

Q..Q..QQ..CQQC.Q“I00...‘0‘Q.0QQQC..QQI"C‘.‘Q“'QQQQQQC.Q

TABLE OF CONTENTS PAGE 1
PAGE LINE *0+#+¢¢0¢+#6000000000¢¢¢00+00¢00000000000000000000000§000000060¢000
NUMBER HNUMBER MOOULE NaAME
o 7 TITLE suDL EXAMPLE
i 16 PROGRAN OBUECTIVES
2 31 PROGRAN LATA_STRUCTURE AND GLOSSARY
3 63 PROGRAN MAIN ROUTINE
4 90 PROCEDURES GET_STATEMENT B
5 121 PROCEDURE FOR INITIALIZATION
6 158 PROCENURE FOR KEYWORD.SETGUP
7 MODVULE REFERENCE TKEE
8 MODULE = CROSS REFERENCE LISTING
9 DATA ITEMS = CROSS REFERENCE LISTING
12 REVISIONS = CROSS REFERENCE LISTING
13 PRQGRAM PORTABILITY CONSIDERATIONS = CROSS REFERENCE LISTING
14 ROUTINES AND FUNCT]UNS =~ CROSS REFERENCE LISTING

T77-24

LINE PAGE 1}
16 PROGRAM OBJECTIVES

.O‘C‘...Q“...0..0“0.‘.0.00..‘..‘Q.0......‘0..0....'..'.0..O..‘C...CQ.

17 L] .
18 . THg OBJECTIVE OF SDOL IS Yo PROVIDE AN EFFECTIVE CONMUNICATIONS o
19 e MgOIUM TO SUPPORY THg DESIGN aAND DOCUMENTATION OF COMPLEX SOFTWARE o
20 o APPLICATIONS. . THIS OBJVECTIVE 1S MET BY PROVIDINGS .
21 . .
.22 . (1) A DESIGN AND DOCUMENTATION LANGUAGE ITH FORMS AND SYNTAx ®
23 * THAT ARE SIMPLE, UNRESTRICTIVE, AND YomnuNICATIVE .
28 L] .
28 . t2) A PROCESSOR WHICH CAN CONVERT DESIGN SPECIFICATIONS INTO AN @
26 . INTELLIGIBLE, INFORMATIVE, MACHINE REPRODUCIBLE DOCUMENT o
27 L .
28 . (3) METHODOLOGY FOR EFFECTIVE USE OF THE LANGUAGE AND PROCESSOR ®
as ‘0 .
30 ® *

."....Q.........'Q...O..‘........QQ..“...Q..‘.C'..‘.........‘.'.'..‘.
ENDPROGRAM = STHT SUPPLIED BY PROCESSOR

LINE PAGE 2
3] PROGRAM DATA.STRUCTURE AND GLOSSARY
32
3 INPUTCTEXTJBUFFER A GLOBAL CHARACTER ARRAY CONTAINING
3y A SINGLE INPUT STATEMENTY FORNMED BY
;5 CONCATENATION OF CONTINUED INPUT LINES
6
3 TEXToLENGTH THE LENGTH OF THE CURRENT INPUT LINE
38 (TRAILING BLANKS NOT INCLUDED)
39
40 LIST: TOKEN,OICTIONARY LINKED LIST OF DICTIQNARY ENTRIES
4 MEMBER ENTITY: ENTRY POINTER TO A SINGLE DICTIONARY ENTRY
42 CHARACTER COUNT NUMBER OF CHARACTERS IN THE ENTRY
43 TEXTPOINTER POINTER TO THE CHARACTER ARRAY
44 CONTAINING THE TEXT OF THE ENTRY
45 PROGRAMs NAME IF ENTRY [S A KEYWORD THIS 15 THg
4o LOCATION OR IDENTIFICATION OF THE
47 ROUTINE FOR PROCESSING THE STHMY
4e VALUE=O IF ENTRY 1S NOT A KEYWQRD
49 List: REFERENCE,LIST FIRST=IN,FIRST=OUT L1ST OF
50 REFERENCES TO THE ENTRY
51 MEMBER ENTITY: "REFERENCE"
52 PAGE s NUMBER
53 LINE«NUMBER
11
56 LIST: MODULE«STACK PUSH DOWN STACK OF NODES REPRESENTING
57 THE NESTED STRUCTURES OF THE DESIGN
%8 MEMBER ENTITY: NOQDE
59 NODE+NAME { 1F,LO0P,PROGRAM,ETC)

INDENTATION,COLUNN

60
62 ENDPROGRAM DATA STRUCTURE

T7=-24

LINE PAGE 3
63 PROGRAM MAIN ROUTINE
&4 CALL lNlTlALIZATlON ROUTlNE----.-----.-------.--.-.-.-..--..-..-.-)(5’
45 LOOP UNtpIL alblL INPUpr DATA HAS BEEN PROCESSED
66 C‘LL GET_ST‘YEHENT P TSRy TRy PR Y P Y PYT T I T Y Y T Y Y P Y T ")‘ q’
67 oYIELD TEXTOLENGTH
48
49 CALL TOGEN_pINDER (pINDS THE pIRST TOKEN IN THE STATEMENT)eme=e)()
;0 SYIELD TOKEN,TYPE

1

72 IF TOKENSTYPE IS "IDENTIFIER"
7) CALL ENTABLE TO FIND THE TOKEN IN THE TOKENGODICTIONARY=mevend(}
74 ENDIF
7%
76 1F THE TOKEN WAS FOUND AND IT 1S A KEYWORD -
77 Call KEY“ORD_PROCESSOR-----.----------.---o---.-...-..o-.---)()
78 ELSE THE STATEMENT DOES NOT BEGIN WITH A KEYWORD
79 1F THE MOOULE.STACK 1S EMPTY
80 PUSH A PROGRAM MQODULE ON THE MODULE«STACK
81 ENDIF
82 CALL SOURCE_LISTER TO SEND THE STATEMENT YO THE QUTPUT FILE=>{)
83 ENDIF
8y
8s FLUSH ANY "ERROR MESSAGES" TRIGGERED BY THE STATEMENT
86 REPEAT

87 CALL NR‘P-UP.-.--.-.---.--.---..---..-...----.--.-.----..---....,.)‘)

88 <--EXXTPROGRAM
89 ENOPROGRAM

LINE PAGE 4
90 PROCEDURE: GET.STATEMENT sl
1 ¢USING [NPUT.TEXT,BUFFER
92 eY1ELD TEXT,LENGTH
93
94 READ AN INpPUT RECORD
s LOOP UNTIL A NON=BLANK RECORD 15 FOUND
9% IF THE MODULECSTACK I3 NCT EMPYY (A MODULE EXISTS)

97 PRINT THE INPUT RECORD NUMBER AND A BLANK LINE To THg *"SDD"

98 ENDIF

99 READ ANQTHER INPUT RECORD

100 REPEATY

101 COPY THg INPUT RCCORD INTO THE INPUT.TEXT.BUFFER

102 SET TEXTSLENGTH ® *y3ABLE COLUMNS"(80 = CARD SEQUENCE COLS) 227
103 LOOP

104 FIND THE LAST NON=BLANK CHARACTER IN INPUT.TEXT.BUFFER

105 SET TEXT.LENGTH = COLUHN NUMBER OF THE CHARACTER

106 IF THE CHARACTER IS NOT A CONTINUATIONJMARK

107 Cowoseae=fxX]TPROCEDUKE

108 ENDIF

109 SUBTRACT | FROM THE TEXT,LENGTH (BACK UP OVER THE CONTINUATION.MARK)
i10 IF THERE 1S NO MQRE DATA (tND oF FILE ENCOUNTERED)

1}) Keoosweeefx]TPROCEOURE

112 ENDIF

113 IF THE SPACE LEFT IN INPUT.TEXTeBUFFER < 80 CHARACTERS L 2]
114 EXPAND INPUT,TEXT.BUFFER RY AT LEAST g0 CHARACTERS ??
118 ENDIF

116 KREAD 1N ANOTHER INPUT RECORD

117 COPY THE IHPUT RECORD INTO INPUT.TEXTeBUFFER BEGINNING AT TEXVJLENGTH
118 A0D "USABLE COLUMNS® TO TEXT,LENGTH

119 REPEATY 3
120 ENDPROCEOURE %

77-24

LINE PAGE $
121 PROCEOURE FOR [NITIALIZATIQN
122 READ IN EXgCUTION vIME OPTION FLAGS FROM EXECUTION STATEMENT
123 OPTION.B = BREAKPOINT

124 OPTION,C = CROSS REFERENCE

125 OPTION,E ® "ERROR MESSAGES"

126 OPTIQN.K ® KEYWORDS

127 OPTIoN,m = MODULE CROSS REFERENCE

128 OPTION,P & PAGE REFERENCE NUMBERS

i29 OPTION.R = REFERENCE TREE

130 OPTION.T ® TABLE OF CONTENTS

13}

132 IF OPTI0N.8 IS NOT SETY BREAKI QINTING IS REQUIRED
133 READ IN REMAINDER OF EXECUYION STATEMENT

134 IF A NANE IS SPECIFIED FOR THE SDD OUTPUT FILE
138 SET UP A BUSE RELATIONSHIP wiTH $DD

13¢ ENDIF ,

137 CATALOG AND ASSIAN sSDD aS THE OQUTPUT FILE

138 IF THE CATALOG STEP FAJLED

139 PRINT AN ERROR MESSAGE

140 TERNINATE THE PROCESSOR

14] Coeweccn=ExITPROCEDURE

142 ENDIF

i) BREAKPOINT THE OUTPUT TO SDD

144 ENDIF
145 ESTABLISH THE FOLLOWING MACHINE ODgPENDENT CONSTANTS
 J

14, CHMARACTERS+PER«WORD 6 7?
1%y BUFFER«COUNT ® 14 (1494884 CHARS/LINE) k2
149 WRITE,UNIT s 4 27?
150 DEFAUL T+ INDENT L |

15} RIGHT ,MARGIN = g0

152

153 INITIALZE INPUTSTEXT«BUFFER TO At LEAST 80 CHARACTERS 77

154 ESTABLISH YOKENCDICTIONAKRY DATA STRUCTURE

155 CALL KEYWORD.SET.UP TO ESTABLISH DEFAULY KEYNORDS-----------------)(¢}
156 <==EXITPROCEDURE

157 ENDPROCEDURE

LINE PAGE ¢
188 PROCEDURE FOR KEYWORD_SET_UP

‘189 LOOP USING THE FOLLOWING DATA PalRS

160 (8 s POUND SIGN IN KEYRORDS BELOW)

16} Kgyword PROCEDURE NAME

162 LL LT L T Seocecvoacasscs

163 SHaARK SET_DATACHAR %)
164 SSYRING SET_STRING_CHAR 5)
168 SINDENT SET_INDENTATION sl
166 SLINENUMBER SET_LINENUMBER 1 1]
167 sTgxy GoX_ TEXY t 3}
168 SYITLE Sox_TEXTY 7]
169 STND END_CONTROL s
170 S0’ Ing OgFINE_wORDS ¥
171 SEJECTY EJECT.PAGE ¥
172 SwWioTNH SET_PAGE.WNIDTH s)
173 SSgQuence CARD.SEQUENCING 1 1]
174 STERNINATE OLINO.TERMINATOR 1 1
178

176 SEGIN ITERATION

177 FORCE THE KEYWORD INTO THE TOKEN.DICTIONARY

17 STORE THe PROCEDURE NAME INTO PROGRAMINAME OF THE ENTRY

179 ENDLOOP
180 ENOPROCEDURE

3-8

77-24

0000000008008 NODULE REFERENCE TREE +eeveee PAGE 7
LN PAGE
} I OBJVECTIVES
2 2 OATA_STRUCTURE
3 3 MAIN
q $, INITIALIZATION
’ ‘ [] [] KC"DRDQSET-UP
¢ 4 o GET.STATEMENT
? s , TOKEN_FINDER
. o o ENTABLE
v e o KEYWORD.PROCESSOR
10 e o SOURBE.LISTER
11 e o WRAP_UP
Mmopulg
CROSS REFERENCE LISYING PAGE L]

JOENTIFIER® 40000000000 0000400000000000004000000000040000000000000000404040004000

DATA.STRUCTURE
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 31, 62
ENTABLE
PAGE 3 PROGRAM MAIN
LINES 73
GET_STATENENTY
PAGE 3 PROGRAM MAIN
LINES o6
PAGE 4 PROCEDVRE: GET.STATEMENT
LINES 90
INITIALIZATION
PAGE 3 PROGRAM MAIN
LINES 64 .
PAGE 5 PROCEODVRE FOR INITIALIZATION
LINES 12)
KEYWORD_PROCESSOR
PAGE 3 PROGRAM MAIN
LINES 77
KEYWORD SET_UP
PACE S5 PROCEDVRE FOR INJTIALIZATION
LINES 155 .
PAGE & PROCEDVRE FOR KEYWORD_SET_Up
LINES 158
MAIN
PAGE 3 PROGRAM NMAIN
LINES &2
OBJECTIVES
PAGE { PROGRAM OBJVECTIVES
LINES 16
SQURCE_LISTER
PAGE 3 PROGRAM MAIN
LINES 82
TOKEN_FINDER
PAGE 3 PROGRAM MAIN
LINES o9
WRAP_UP
PAGE 3 PROGRAM MAIN
LINES @87

7724

DATA [TgNs
CROSS REFERENCE LISTING PAGE]
JOENTIFIERG 0040900000309 440002000000400030040000¢3000000000000000000000000800404¢
BUFFER,COUNT
PAGE 6 PROCEDURE FOR INITIALIZATION
«INES 147
CHARACTERS ,PER _WORD
PAGE § PROCEDURE FOR INITIALIZATION
C LINES 146
CHARACTER+COUNY
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 42
CONTINUATIONs MARK

PAGE 4 PROCEDURE! GETLSTATEMENY
LINES 106, 10V

DEFAULT« INDENT
PAGE 5 PROCEODURE FUR INITIALIZATION
LINES 150

ERROR MZISSAGES
PAGE 3 PROGRAM MAIN

LINES 85
PAGE 5 PROCEDVURE FUR INJTIALIZATION
LINES 125
IJCNTIFLER
PAGE 3 PROGRAM MAIN
LINES 72

INDENTATIONG,COLUMN
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 60
INPUTTEXT+BUFFER
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 33
PAGE 4 PROCEDURE: GETLSTATEMENTY
LINES 91, 101, 104, 113, 114, 117
PAGE 5§ PROCEDURE FOR INITIALIZATION
LINES 1853
LINEe«NUMBER
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 53
MODULCsSTACK
PAGE 2 PRUGRAM DATA_STRUCTURE
LINES &6
PAGE 3 PROGRAM MAIN
LINES 79, 80
PAGE 4 PROCEDURE: GET.STATEMENTY

LINES 96

NODE « NAME
PAGE 2 PROGRAM DATA_STRUCTURE
LINES §&9

OPTION.B

PAGE 5 PROCEOURE FOR INITIALIZATION
LINES 123, 132

OPTION,C
PAGE 5 PROCEOURE FOR INJTIALIZAT]ION
LINES 124

OPTIONE

3=10

T7=-24

DATA 1TgNS
CROSS REFERENCE LISTING PAGE 10
[D[NT 1 F];ROQOOQQOQQQOOMGO0000000000000000000000000Q#OOOOOOQOOOOOOOQQOQQOOOQQQOQO

PAGE S PROCEDURE FOR INITIALIZATION

LINES |25
OPTIONSK
PAGE 5§ PROCEDURE FOK INITIALIZAYION
LINES 126
OPTIONeM
PAGE S PROCEODVRE FOR INITIALIZATION
LINES 127
OPTION.P
PAGE § PROCEDURE FOR INITIALIZATION
LINES 128
OPTI1ON«R
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 129
OPTIONT
PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 130
PAGE«NUMBER
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 52
PROGRAMNAME
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 45
PAGE 6 PROCEDURE FOR KEYWORD_SET_Up
LINES 78
READWUNIT
PAGE 5 PROCEOVURE FOR INITIALIZATION
LINES 48
REFERENCE
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 51

PAGE 5 PROCEDURE FOR INITIALIZATION
LINES 124, 127, 128, ;29
REFERENCELIST
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 49
RIGHT«MARGIN
PAGE S PROCEDURE FOR INITIALIZATION
LINES 15}
SO0
PAGE 4 PROCEDURE! GET.STATEMENT
LINES 97
PAGE S PROCEODURE FQR INITIALIZATION
LLINES 134, 135, 137, 143
TEXTLLENGTH
PAGE 2 PROGRAM DATA_STRUCTURE
LINES 37
PAGE 3 PROGRAM MAIN
LINES &7
PAGE 4 PROCEDURE: GET_ STATEMENT
LINES 92, 102, 105, 109, 117, 1l8&
TEXT+POINTER
PAGE 2 PROGRAM DATA_STRUCTURE

3=11

7124

OATA 1TgmMs
CROSS REFERENCE LISTING PAGE 1
;ogurx;xga0000¢¢0¢§o00040+o‘0000¢0.¢
LINES 43
TOKEN+DICTIONARY
" PAGE 2 PROGRAM DATA_STRUCTURE
LINES 40
PAGE 3 PROGRAM MAIN
LINES 73
PAGE 5 PROCEDVURE FOR INpTvIALlZATION
LINES 154
PAGE & PROCEDVRE FOR KEYWORO_SET Up
LINES 177
TOKENCTYPE

PAGE 3 PROGRAM MAIN
LINES 70, 72
USABLE COLUMNS
PAGE 4 PROCEDURE: GET,STATEMENT
LINES 102, 118

WRITEZUNIT
PAGE S PROCEOURE FOR INITIALIZATION
LINES (49

REVIS1QNS
CROSS REFERENCE LISTING PAGE 12
L EN T I LB R 4 a0ttt bttt et P rtar b ettt h et 00000000000 04000044040 0000000
L3
PAGE 3 PROGRAM MAIN
LINES 64
PAGE 4 PROCEQURE: GET.STATEMENY
LINES 90

PAGE 6 PROCEDURE FOR KEYWORD_SET_Up
LINES 163, le4,y 165, 166, 167, l68, 169, 170, 171, 172, 173, 174

PROGRAM PORTABILITY CONSIDERATIONS
CROSS REFERENCE LISTING PAGE ;2
lDENT lrxEROO#O.Q**Q#QOOO’00000600000'000000000‘000‘000000000000000000000000000.0’0

?27?
PAGE 4 PROCEDUKE; GET.STATEMENT
LINES 102, 113, |14
PAGE g PROCEOURE FOR INITIALIZATION
LINES 146, 147, 148, 149, 153

3-12

T7-24

ROUTINES AND FUNCTIONS
CROSS REFERENCE LISTYING PAGE 14
JIDENTIFIERY G4 400200030004 40443003 440000000000 0300000000440 00004034000 00040044009

BLIND.TERMINATOR .
PAGE & PROCEDURE FOR KEYWORD.SET _Up
LINES 174
BOX_TEXT
PAGE 6 PROCEDURE FOR KEYWURD_SET _UP
LINES 167, 148
CARD_SEQUENCING .
PAGE & PROCEDURE FOR KEYWORD_SET_ VP
LINES 173
OEFINE_WORDS .
PAGE 6 PROCEDVRE FOR KEYWORD_SET_Up
LINES 170
EJECTLPAGE .
PAGE 6 PROCEDURE FOR KEYWORD_SET_Up
~ LINES 171
END_CONTROL .
PAGE & PROCEDYRE FOR KEYWORD_SET_Up
LINES 169
SET_DATA_CHAR)
PAGE & PROCEDURE FOR KEYWORD_SET_UP
LINES 162
SET_INDENTATION .
PAGE & PROCEDURE FOR KEYWORD_SET_VUp
LINES 165
SET_LINENUMBER .
PAGE 6 PROCEDURE FOR KEYWORD_SET_Up
LINES 166
SET_PAGE.WIDTH .
PAGE 6 PROCEDURE FOR KEYWORD_SET _Up
LINES 172
SET_STRING.CHAR .
PAGE ¢ PROCEDURE FOR KEYWORD_SET_Up
LINES 164

3-13

T7-24

Example 2. Illustration of SDDL responses to sample input errors:

As input (part 1):

L I#DEFINE NULL PROCEDURE, E.DPROCEDURE, EXITPROCEDURE &
2! SELECYs CASE ENDSELECT ENDIF

JINDEFINE MODULE FUNCTION END RETURN

4i8DEFINE BLOCK IF ALWAYS

SI®DEFINE BLOCK GIVEN, ENDOATA, YIELDING

6I®DEFINE BLOCK GIVEN,, uSING

7{PROCEDURE 7O ILLUSTRATE THE CONTINUATION CAPABILITIES FOR INPUT &
8:10F LONG LINES & FOR OUTPUT OF LONG LINES

9:L00P

10:L00P AGAIN

11:1F NOW 1S THE TIMg

12:00 1T AS BEST YOU (aN

JIIGIVEN INPUT ARGUMENTS

143 INPUT }

IS:INPYUT 2

16 USING CoMMON VARIABLES

17¢1TEM 2

1831TEN 3

L9IYIELDING RETURN ARGUMENTS
203 ANSWER
21ENDDATA FOR PROCEDURE INTERFACE
221SELECTY IS nNoT A KEYWORD ANYMORE
QAW INDENT 20 COLUMNS FROM NQA ON
24:1F ANSWER = AGAIN
25:CYCLE
26 ELSEIF ANSWER = STQOpP
273EXITPROCEDURE
28IEXITPROGRAN
29:RCTURN
30:ELSE
J1EXITLOQP
J2:ALWAYS

3IVIF A
343L00p 8B

IsiIF ¢
J6ILOOP D WRAPS AROUND THE LEFT MARGIN BECAUSE OF THE DEEP INDENTATION
J7:8INDENT = 4

38;INDENTATION AMOUNT 15 SET TC 4 BUT THE PROCESSOR WILL UNINDENT CORRECTLY
J9ENDLOOP

YOIAN JF STATEMENT WILL BE CLOSED BY THE PROCESSOR
43 sENDLOOP
42 NEXTy I STRUCTURES ARE TERMINATED BY THE TEARMINATION DIRECTAVE
43IBTERMINATE 3

442FINALLY ENDPROGRAM CLOSES THE REMAINING OPEN BLQCKS

45 IENDPROGRAM

45 8LINENUMBER

3-14

T7-24

As input (part 2):

JSFUNCTION FOR IT

2:GIVEN

3:FIRST INPUT

4:SECOND INPyT

SIUSING GLOBAL VARIABLES

63 A

7:8

8:YIELDING OR RETURNING CALCULATIQNS

9ANSWER |

10 ANSWER 2

113END DATA

12:L00P UNTIL DONE

13:1F TODAY Is TUESDAY

19:THIS MUST BE BELGIUNM

I1SISERIQUSLY, FOLKS #NQOTICE HOW THIS LINE IS SPLIY
1631F A LINE HAS A PQUND SIGN & THE PROCESSOR
17:LINES UP THE PART AFTER THE ® AGAINST THE RJGHT MARGIN
18 THE REMAINDER OF THE DOCUMENT wilL BE
19:WRAPPED UP BY THE END OF FILE MARK.

Execution step:

€SDDL#*SDDL . SDDL

€ADD SDDL®*SDDL .INPUT1
#LINENUMBER

€ADD SDDL®SDDL.INPUT2
@6FREE SDD.

€SYM SDD.,HOLD/HOLD,G9300A

3-15

€
PROGRAM =« STATEMENT SUPPLIED BY PROCESSOR

77-24

As output:

PAGE]

7 PROCEDURE 710 ILLUSTRATE THE CONTINVATION CAPABILITIES FOR INPUT OF LONG
GLINES & FQR OUTPUT OF LONG LINES

? Loop

10 LOOP AGAIN

11 1F NOW 1S THE TIMg

12 0o IT AS BgSY vOU CANcaseranransesnssacsvsacvannsascsaasaed(2)

13 GIVEN INPUT ARGUMENTS

14 INPUT

15 INPUT 2

16 USING COMMQN VARIABLES

17 1TEM 2

1€ ITEM 3

19 YIELDING RETURN ARGUMENTS

20 ANSWER

21 ENDDATA FQR PRQCEDURE INTERFACE

22 SELECT IS NOT A KEYWORD ANYMORE

24 IF ANSWER s AGAIN

25 Cam evtannnoncsassvasncaanlYCLE

26 ELSEIF ANSWER = STOP

27 EX1TPROCEDURE

28 <-.-...---'..-.GO--..-.QQ---.-.-Ex[TPRQGRAH

29 RETURN

sy ®ss ERROR #®e [NCORRECT MOOULE ESCAPE WORD

30 ELSE

N (P TentSugtenanacensnemcnn=EX | TLOOP

32 ALWAYS

3 1F A

34 LOoP 8

35 1F C

36 L00
&P O WRAPS ARQUND YHE LEFT MARGIN BpCAUSE OF THE DEEP INDENTATION

Ja
GINDENTATION AMOUNT 1s SET TO 4 BUT THE PROCESSOR WILL UNINDENT CORRECTLY

39 END
&éLOOP

40 AN

61F STATEMENT WILL BE CLOSED BY THE PROCESSOR

ENDIF = STMT SUPPLIED BY

4 ENDLOOP

42 NEXT, 3 STRUCTURES ARE TERMINATED BY THE TE
SIMINATION DIRECTIVE

44 FINALLY ENDPROGRAM CLOSES THE REMAINING QPEN BLOCKS

ENOLNOP = STMT SUPPLIED BY PROCESSOR

45 ENDPROGRAM

3-16

e i, wCPea

Pl
—
F4
™

ODOVD®NOWUVLWN -~

-

[y
—

LINE
12

14
15
16
17
18
19

17-24

PAGE 2
FUNCTION FoOR IT
GIVEN
FIRST INPUT
SECOND INPJT
USING GLOBAL VYaARlABLZS
A
B
YIELDING OR RETURNING CalCULATIONS
ANSWER
ANSWER 2
ENDGIVEN = STMT SUPPLIED 8Y PROCESSOR
END DATA
PAGE 3
PROGRAM = STATEMENT SUPPLIED BY PROCESSOR
LOOP UnTIL DONE
IF ToDAY IS TUESDAY
THIS MUST Bg BELGIUM
SERIQUSLY, FOLKS NOTICE HOW THIS LINE IS SPLIT

IF A LINE Has A PQUND SIGN
LINES UP TYTHE PART AFTER THE
THE REMAINDER OF THE DOCUMENT wILL B
WRAPPED UP BY THE END oF FILE MARK,
ENDIF = STMT SUPPLIED BY PROCESSOR
ENDIF « STMT SUPPLIED BY PROCESSOR
ENDLOOP = STMT SUPPLIED BY PROCESSOR
ENDPROGRAM = STMY SUPPLIED BY PROCESSOR

3=17

THE PROCESSOR
AGAINST THE RIGHT MARGIN

77-24

SECTION IV

USING THE SDDL PROCESSOR ON THE JPL U1108

since SDDL usage (except for system tests and experimental runs)

always involves large volumes of input and output, it is most practical i
to prepare the input in advance of the processing and to send the output i
to a printer for later, off-line perusal. In conformance with this

primary operating mode, the processor has been designed to automatically

nandle the necessary 1108 EXEC 8 file cataloging and output streanm

breakpointing. The procedure for using the processor is as follows.

After the SDDL input has been joaded into one or more elements
{ say, QUAL®FILE.IN1 and QUAL'FILE.INZ), it is processed and printed
by entering the following EXEC 8 commands:

QSDDL'SDDL.SDDL[,options] [SDD-output-filename.]
@ADD QUAL*FILE.IN
@ADD QUAL®FILE.IN2

@EOF
@FREE SDD.
6SIM SDD.,HOLD/HOLD,G93OOA
option Meaning
B Supresses catalog and Breakpoint operations. All output

goes directly to the terminal.

C Suppresses data element gross reference tables.

E Suppresses Error messages.

K Suppresses generation of default Keywords (e.g., PROGRAM,
iF, etc.).

M suppresses Module cross reference table.

P Suppresses second pass editing operation to supply missing

page references on Module Invocation statements.
R Suppresses module Reference tree.
T Suppresses Table of contents.

The first command invokes the SDDL processor. The usages of

all processor options shown above are consistent in that, when exercised,
they all cause a feature or action of the processor to be suppressed.

Thus if no options are exercised, the processor perforus all its functions.

The user also has the option to supply an output file name. If
none is given, the name SDD. is selected as the default name of the
output file. 1f the user does supply a name, an EXEC 8 @USE relationship
is set up equivalencing SDD. to the name supplied by the user. The

4=1

TT7=-24

user-supplied output file name must end with a period. 1If it is
incorrectly Specified, the processor will write an error message and
terminate without processing the input,

With the output file name established, the processor then performs
the equivalent of the following EXEC 8 operations:

€ASG,A SDD. or €ASG,UP SDD.
€BRKPT PRINT$/SDD

and begins processing the input stream.

The second-pass editing operation will be set up by the SDDL processor
and performed independently by a Text Editor program. This step is
automatic and, except for brief messages to report the state of system,
is transparent to the user.

To set up the second pass, the SDDL processor writes appropriate
editing commands to a Scratch file (SIMU1.) and then queues the file
(€ADD SIMU1.) for execution when the processor is finished.

When the second-pass editing is finished, the message PAGE REFERENCE
EDITING COMPLETED will appear on the terminal, and the output may be
sent to the printer with the appropriate €SyMm command.

Sample execution setup:

€SDDL #SDDL . SDDL

6ADD QUAL®FILE.IN

€FREE SDD.

éSYM SDD. ,HOLD/HOLD,G93004

The SDDL processor and several user's information elements are
contained in a read-only file named SDDL*SDDL. The following elements
are contained in this file:

SDDL*SDDL, SDDL Processor executable element

SDDL #SDDL . INFO User's information memo

SDDL#SDDL, XQT Sample execution element

SDDL#SDDL ., INPUT1 Sample SDDL input element (part 1)
SDDL#SDDL . INPUT?2 Sample SDDL input element (part 2)
SDDL#SDDL . USERS Mailing 1ist for SDDL information bulletins

4-2

T7=-24

BIBLIOGRAPHY

Baker, F. T., "Structured Programming in a Production Programming

Environment," IEEE Trans, on Software Epgr., Vol. SE-1, No. 2, pp.
241-252, June 1975.

Baker, F. T., and Mills, H. D., "Chief Programmer Teams," Datamation,
Vol. 19, No. 12, pp. 58-61, Dec. 1973.

Basili, V. R., SIMPL-X, A Language for Writing Structured Programs,
Nat. Tech. Info. Service Report AD755-703, U.S. Dept. of Commerce,
Springfield, VA, Jan. 1973.

Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,"
Datamation, Vol. 19, No. 5, May 1973.

Brinch Hansen, P., "The Purpose of Concurrent Pascal," Proceedings

of the 1975 Interpational Conference on Reliable Software, IEEE Catalog
No. 75 CHO940-7CSR, pp. 305-309. (Also published in SIGPLAN Notices,
June 1975, pp. 305-309.)

Brinch Hansen, P., Concurrent Pascal: A Programming Language for Operating
System Design, California Institute of Technology Information Science
Technical Report No. 10, Pasadena, CA, April 1974.

Brooks, F. P., "The Mythical Man-Month," Datamation, Vol. 20, No. 12,
pp. 45-52, Dec. 1974,

Caine, S. H., and Gordon, E. K., "PDL--A Tool for Software Design,"
i : , Caine, Farber, and Gordon,
Inc., Pasadena, CA, Sept. 18, 1974.

Constantine, L. L., Fundamentals of Program Pesign, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1976.

Dahl, 0. J., and Hoare, C. A, R., "Hierarchical Program Structures,”
in Structured Programming, Academic Press, New York, 1972.

Dijkstra, E. W., "Notes on Structured Programming," in Structured
Programming, Academic Press, New York, 1972 (particularly pp. 16=23).

Flynn, J., SFTRAN User's Guide, Comput. Memo. 914-337, Jet Propulsion
Laboratory, Pasadena, CA, July 1973 (JPL internal document) .

Hoare, C. A. R., "Notes on Data Structuring," in Structured Programming,

Academic Press, New York, 1972.

Katzan, H., Jr., Advanced Programming, D. Van Nostrand Reinhold Co.,
NJ, 1970, pp. 153=183.

Kernighan, B. W., and Plauger, P. J., The Elements of Programming Style,
McGraw=Hill Book Co. New York, 1974, pp. 36-39.

5=1

77=-24

Kleine, H., and Morris, K. V., "Modern Programming: A Definition,"
SIGPLAN Notices, Vol. 9, No. 9, Sept. 1974, pp. 14=17,

Liskov, B., and Zilles, S., "Programming with Abstract Data Types,"
S.InP_LAN_hLQnm March 1974, pp. 50-59.

Luppino, F. B., and Smith, K. L., "Programming Support Library Functional

Requirements," Vol. V of Structured Programming Series, RADC-TR-74-
300, U. S. Air Force, July 25, 1974.

Miller, E. F., Jr.,

A Compendium of Language Extensions to Support
Structured Programming, RN-42, General Research Corp., Santa Barbara,
CA, Jan. 1973.

Mills, H. D., "Top-lown Programming in Large Systems," in Debugging
, Edited by R. Rustin, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1971, pp. 43-45.

Mills, H. D., Mathematical Foundatjons of Structured Programming, IBM
Document FSC 72-6012, 1BM Federal Systems Division, Gaithersburg, MD,
Feb. 1972.

Myers, G. J., Composite Design: The Design of Modular Programs, Technical
Report TR00.2406, IEM, Poughkeepsie, N. Y., Jan. 29, 1973.

Robert, D. C., "File Organization Techniques," Advances in Computers,
Vol. 12, Academic Press, New York, 1972.

Shneiderman, B., "A HKeview of Design Techniques for Programs and Data,"

S.Qﬁm:e_hm;s.e_am_hmugngg Vol. 6, 1976, pp. 555-567.

Shneiderman, B., et al., "Experimental Investigations of the Utility

of Detailed Flowcharts 1n Programming," Communications of the ACM,
Vol. 20, No. 6, June 1977, pp. 373-381.

Tausworthe, R. C.,

standardized Development of Computer Software.
23:&_14_mggngg§ SP 43-29, Jet Propulsion Laboratory, Pasadena, CA,
July 1976.

H5=2 NASA—JPL—Comi. L A Caid

	0028A02.JPG
	0028A03.JPG
	0028A04.JPG
	0028A05.TIF
	0028A06.TIF
	0028A07.TIF
	0028A08.TIF
	0028A09.TIF
	0028A10.TIF
	0028A11.TIF
	0028A12.TIF
	0028A13.TIF
	0028A14.TIF
	0028B01.TIF
	0028B02.TIF
	0028B03.TIF
	0028B04.TIF
	0028B05.TIF
	0028B06.TIF
	0028B07.TIF
	0028B08.TIF
	0028B09.TIF
	0028B10.TIF
	0028B11.TIF
	0028B12.TIF
	0028B13.TIF
	0028B14.TIF
	0028C01.TIF
	0028C02.TIF
	0028C03.TIF
	0028C04.TIF
	0028C05.TIF
	0028C06.TIF
	0028C07.TIF
	0028C08.TIF
	0028C09.TIF
	0028C10.TIF
	0028C11.TIF
	0028C12.TIF
	0028C13.TIF
	0028C14.TIF
	0028D01.TIF
	0028D02.TIF
	0028D03.TIF
	0028D04.TIF
	0028D05.TIF
	0028D06.TIF
	0028D07.TIF
	0028D08.TIF
	0028D09.TIF
	0028D10.TIF
	0028D11.TIF
	0028D12.TIF
	0028D13.TIF
	0028D14.TIF
	0028E01.TIF
	0028E02.TIF
	0028E03.TIF
	0028E04.TIF
	0028E05.TIF
	0028E06.TIF
	0028E07.TIF
	0028E08.TIF
	0028E09.TIF
	0028E10.TIF
	0028E11.TIF
	0028E12.TIF
	0028E13.TIF
	0028E14.TIF
	0028F01.TIF
	0028F02.TIF
	0028F03.TIF
	0028F04.TIF
	0028F05.TIF
	0028F06.TIF
	0028F07.TIF
	0028F08.TIF
	0028F09.TIF
	0028F10.TIF
	0028F11.TIF

