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I. INTRODUCTION

The basic factors controlling the strength of materials are found

at the atomic scale of material structures. she availability of this type

of structural detail is essential to the interpretation of available

experimental data. It lies at the heart of our ability to predict and

modify the strength of materials to suit our technological needs.

Unfortunately, the direct experimental observation of the atomic scale

phenomena determining the strength of metals has proven impossible; other

approaches are needed in order to obtain the atomic scale picture. We

at Battelle have developed a comprehensive mathematical model by which the

collective behavior of a ver y large numher of atoms within a metal or alloy

can be accurately simulated (i) . In particular, the manner in which the

atomic interactions relate to dislocation motion and crack extension to

determine the strength of a metal can now be determined and dissected by

this method. Our cu-,:rent effort is in understanding the factors determin-

ing resistance to crack extension in iron metal subject to a stress, and

how the presence of hydrogen causes crack extension to proceed at

abnormally low stresses.
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IE. TECHNICAL PROGRESS

A. Overview of the Areas of Current Progress

'When this project started its main emphasis was on th? calcula-

tion of the interatomic forces. This is one of the basic ingredients in

the simulation of stress crack extension of metals in the presence of

hydrogen. However, in the process of exercising the crack simulation

model, even with empirical interatomic forces, it became clear that some-

thing was seriously wrong. The effort in the calculation of the inter--

atomic forces was consequently reduced, and attention was focused on

-identifying the source of the problem in the crack simulation model. The

material in this report thus reflects the spread of the effort to both

complementary aspects of the project. The material is presented in the

following order.

e Brief sketch of the problems encountered with Gehlen's

crack simulation model

e Identification of the source of error in the crack

simulation model

0 New improved formulation of the crack simulation

model

a Electronic structure calculation of small iron atom

clusters, their stability as a function of configuration,

and the effect of adding a hydrogen atom.

B. Sketch of the Problems

The basic crack simulation model with which we have been working

is that pioneered by P. C. Gehlen at the Battelle Columbus Laboratories.

In order to place the magnitude of the difficulties with the model in

perspective it is necessary to present first some background information.

The physical problem being studied is the resistance to crack extension

which arises from the lattice structure in metals. This resistance to

crack extension is shown in Figure 1 in the form of the energy barrier
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(at a fixed stress intensity) between any two adjacent e quilibrium crack

positions

If one obtains the LE and LE2 energy barriers (barriers to

crack extension and healing respectively) at various stress intensit=ies,

{	 K, one expects a behavior illustrated in Figure 2.
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The QEI and AE 2 curves cross at what is called the Griffith stress intenaity(2)

At this point the rate of continuum strain energy release equals the rate

of surface energy,"d, cxeation

— or	 K

where E is Young's modulus. Although from an elasticity—theory point of
view cracks become unstable for K> KG, these do not propagate readily

because of the t°latti.ce trappings' illustrated in Figure 1 as first pointed

out by Hsieh and Thomson (3)
Only for K = KC does all resistance to crack

extension dissappear as the barrier AE I goes to zero.

Contrary to what one expected, the application of the crack

simulation model to this problekt predicted that the barrier to crack

extension would not disappear. It led to results of the type shown in

Figure 3.

FIC—URE 3.

'This unphvsi.cal result was attributed to the use of a linear elastic field

in the description of the continuum region. The latter is the region within

'f

-------_ _- r_._...—• —•-	 ^ --- .... - _	 t	 is
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which the discrete crack core region is embedded. Subsequently t a consider-

able amount of effort was expended in replacing the linear elastic field

by a general non-linear field which was based on the use of Green's functions

to fold residual forces into modified equilibrium displacement fields^l^.

Unfortunately, when the corresponding energy barriers as a function of

stress intensity were calculated by this considerably more sophisticated

method, they made even less physical sense than those obtained previously.

Furthermore, disturbing convergence to different relative

minima were found depending on the procedure used to locate these

minima and convergence to the saddle points was plagued with difficulties.

The magnitude, persistence, and uncertain origin of these problems, in

spite of the constant and well reasoned efforts to overcome them, persuaded

P. C. Gehlen, the originator of the simulation model, that the approach

lacked validity. He was discouraged from further pursuing the som rce of

the difficulties.

C. Identification and Anal ysis of the Sources of Error

We have given Gehlen's procedures a detailed examination. This

effort has brought to light some fundamental assumptions in his model which

are found to be incorrect. The deficiencies in Gehlen's model, in

essence, fall into three categories although they are interrelated.

a Disregistry between the continuum and discrete region

crack fields

a Neglect of the contribution of the continuum strain

energy release

o Inconsistent definition of potential energy and

gradients thereof

We shall discuss each of these points next.

1. Disregistry Between the Continuum
and Discrete Reeion Crack Fields

We found that in the simple rigid boundary model, apart from

restricting the elastic crack field to be linear, the origin of the field

was always held fixed at an arbitrary position. Thus, even when the

discrete region would describe an advanced crack, e.g. saddle point or an

adjacent stable crack, the field describing the continuum would still be
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fined in its arbitrary original position. We refer to this as the

disreastxy effect arising from the incorrect relative alignment of the

fields in both discrete and continuum regions. this is depicted

schematically in Figure 4.
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PICTURE -4.

It ' was found that when the disregistry was minimized by advancing the

elastic fields together with the disc=!^te region, the relative stability

of two adjacent equilibrium cracks changed by amounts of the same

magnaEUde as those of the energy barriers we were looping for. Thus.,
the disregistry effect was found to be an important source of the errors
in the results shown in Figure 3. The introduction of the flexible

boundary model in principle solves this problem. It is designed to fully

relax the continuum region; i_e. to both introduce non-linear effects and

to minimize the disregistry effect. In practice the relaxation of this

elastic field w •:t, not direct, but entered only as a response to a separate
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full relaxation of the atoms in the discrete region. The latter region
was relaxed by the "kinetic ener quenching' method j . There remains

in practice the possibility that, as the kinetic energy is quenched in

the discrete region, the rate at which information about disequilibrium

is transferred to the continuum region becomes exceedingly small. This

would result in only a partly minimized disregistry effect. This

howevez, was probably only a minor error in the flexible boundary model..

The major reason why this improved model failed was an imcomplete account-

ing of the terms in the total energy of the system. This is discussed

in the next subsection.

Before going on it is worth noting aspects of the saddle point
calculations which were affected by the disregistry. In the rigid boundary

model, the same type of disregistry error was introduced as in searching

for equilibrium minimum positions. In the flexible boundary case, the

continuum atoms were left positioned at the maximum of the energy along a

straight line interpolating from their position in the two equilibrium

cracks on either side of the saddle point. Although the continuum was

not further relaxed in searching for the saddle point, this is probably

by itself only a minor effect. The major error in the saddle point

calculation arises from the calculation of forces on the atoms by a

formula which is inconsistent ..ith the definition of the potential energy
of the model_. This will be discussed in the third subsection.

2. Neglect of the Energy Exchange
With the Continuum

When the elastic field of the continuum region advances in

order to minimize the disregistry effect with the discrete region, then,

from elasticity theory, one can calculate the strain energy released from

the continuum which flows into the crack tip region as depected

schematically in Figure 5.

i
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This strain energy release ` is given by

E

where K is the stress intensity, E is Young's modulus, Ab is the advance of

the crack =iastic field, and "a" stanO.s for the thickness of the slices

in the model. This energy change of zhe continuum has to be combined with

the energy change of the discrete region. These two energy changes are

shown in Figure 6.
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The enemy change of the discrete region is typical of calculations where

the disregistry effect has been minimized by advancing the continuum together

i	 with the discrete region crack. At a repeat distance Ab one finds that

1	 this energy has increased (within the accuracy of the model) by the surface

energy created, i.e. 21adb , where "a" stands for the width of the main slice

in the model. The combined energy change is shown in Figure 7 for the

case when crack growth is favored.
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In Gehlen's rigid boundary model the disregistry effect originating from

not allowing the continuum field to advance resulted in an artifactually

zero continuum strain energy release. The combined consequence of these

restrictions is the underestimation of the basic driving force behind the

disappearance of the effective `nergy barrier to crack extension, as is

seen from Figure 7. This explains why the results of Gehlen's rigid

boundary calculations shown in Figure 3 predicted that the barrier to crack

extension would not disappear. In Gehlen's flexible boundary model the

disregistry effect was removed by allowing the field to readjust. The

calculation of the strain energy changes associated with these continuum

readjustments should provide the required driving force lacking previously.
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'	 In Gehlen's -rigid boundary model the disregistry effect originating from{
not allowing the continuum field to advance resulted in an artifactually

zero continuum strain energy release. The combined consequence of these

-restrictions is the underestimation of the basic driving force behind the	 i

disappearance of the effective energy barrier to crack extension, as is

!

	

	 seen from Figure 7. This explains why the results of Gehlen's rigid

boundary calculations shown in Figure 3 predicted that the barrier to crack
i

extension would not disappear, In Gehlen's flexible boundary model the

disregistry effect was removed by allowing the field to readjust. The
calculation of the strain energy changes associated with these continuum

-readjustments should provide the required driving force lacking previously.

i1
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We sound, however, that these continuum energy changes were unfortunately.

not included in Gehlen's calculations. The omission of Lhis major energy

contribution in both the crack calculations of m^nima and saddle points

is probably the principal reason for the unphysical nature of the results

obtained from the flexible boundary model.

3. Inconsisten t Definition of Energy and
Gradients of the Energy

The forces on each of the -atoms are the central ingredient in

the search and location of the equilibrium crack minima and saddle points.

The definition of the force on the k-th atom used in Gehlen's model is*

}Gl.l	
N 

^	 ^a ^	 N

This is also the definition which makes most physical sense. The potential

energy in Gehlen's model is defined in turn as

N ^tf b k.e a	
^ Q. ^, _ _

containing half of the interaction energy with the continuum. The objective

definition of the force on an atom is the negative gradient of the

potential energy. Thus, the definition of tha model potential energy fixes

the definition of the force. In this case we find

ZO	 EE {9

It is clear that this is not the definition of the force used by Gehlen.

It is not the natural definition since it weights the continuum atoms'

contributions differently than the discrete region atoms, _yet it is the

definition which is consistent with the properties of the model as

contained in the potential energy. Gehlen's definition of force would

be consistent with a potential energy of the form

2 0 k ass ^E

See Section F, page 22, for definitions of the terms used here.
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The use of Gehien's definition of force,! , in the relaxation techniques

	

{	 leads to the minima and saddle points of E 2) . If this were also the

potential energy used to calculate the associated energy differences, then

there would be no inconsistency error. In Gehlen's model, however, E(1)

was used in calculating the energy difference. It was found that the

	

i	 equilibrium configurations of E (1) and E (2) could differ significantly.

	

ii	 This is thus another major source of error in the simulation model. It
t,
F	 permeates all the applications and versions of the simulation model. In

ff 1	 a manner, the inconsistency problem arises because not all necessary
{

energy contributions of the model were built into the potential energy.

This is just another aspect of the neglect of the energy terms from which

	

f.^	 we obtain the continuum strain energy release.

	

{	 4. Acknowledgements
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Drs. P. C. Gehlen, G. T. Hahn, R. G. Hoagland, and A. J. Markworth of

the Battelle Columbus Laboratories Metal Science Section.

D. Improved Formulation of the Crack Simulation `iodel

Our analysis of Gehlen's Gimulation model shows that, apart from

the three previously described conceptual errors, the remaining aspects of
I

his model retain their validity. We have built upon Gehlen's approach in

formulating an -improved simulation model which incorporates the solution

to the conceptual errors in the previous model. The details of the new

approach are described in the Appendix to this report. The main points
'a

arei
o The total energy of the system has been formulated precisely

with emphasis on including the contribution from atoms in all

regions of the model. The result is

i

RE'c^	 o

The term E 1 is the energy of the discrete region atoms

defined as (T^t is a translation vector; see Appendix)
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The use of Gehlen's definition of force,	 , in the relaxation techniques

PJ

leads to the minima and saddle points of E^ 2) . If this were also the

potential energy used to calculate the associated energy differences, then

there would be no inconsistency error. In Gehlen's model, however, E(1)

was used in calculating the energy difference. it was found that the

equilibrium configurations of E (1) and E (2) could differ significantly.
This is thus another major source of error in the simulation model. It
permeates all the applications and versions of the simulation model. In

a manner, the inconsistency problem arises because riot all necessary

energy contributions of the model were built into the potential energy.

This is just another aspect of the neglect of the energy terms from which

we obtain the continuum strain energy release.

4. Acknowledgements
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D. Improved Formulation of the Crack Simulation Model

Our analysis of Gehlen's simulation model shows that, apart from

the three previously described conceptual errors, the remaining aspects of

his model retain their validity. We have built upon Gehlen's approach in

formulating an improved simulation model which incorporates the solution

to the conceptual errors in the previous model,. The details of the new

approach are described in the Appendix to this report. The main points

are

a The total energy of the system has been formulated precisely

with emphasis on including the contribution from atoms in all

regions of the model. The result is

kE ^	 a

The term El is the energy of the discrete region atoms

defined as (T is a translation vector; see Appendix)

_	
{	 -	 r	

-
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The second term is a work energy term giving the energy change

of continuum region atoms relative to a reference strained
b

state R. with energy ^4 . This energy is the source of the

continuum strain energy release, o`, A. ^^f ~ , discussed in

subsection	 The gradient of d in the work energy is

defined as

^ z =	 'Vk.0 	 ^ E ^ -^	 o ^^' ^^--	 - TA I

o The formulation of the complete energy of the system allows

us to unify the treatment of the discrete and continuum

regions in the search for equilibrium. The search for

equilibrium becomes a problem of finding the stationary

points of this total energy with respect to all the degrees

of freedom in the model. The problem of minimizing the

disregistry effect becomes simply part of t:aa process of

seeking for the lowest total potential energy.

Q The application of the "con .-ugate gradient" technique of

Fletcher and Reeves 
(5) 

is discussed as a natural approach in

light of the function minimization mold into which we have

now cast the simulation model.

o The previously used relaxation technicue of "kinetic energy

quenching" is extended to the direct relaxation of the

parameters of the elastic continuum field.

e The forces on the degrees of freedom of the model are

found directly from the gradients of the total potential

energy definition.

It is worth noting that in the essential aspects this improved

formulation brings Gehlen's basic approach closer to that of Sinclair(6).

One remaining difference lies in the now vivid perspective we have on the

singular role the present modifications of Gehlen's model have in iaaki.ng

this a valid approach.

a
0

_	 ...	 t
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B. Sloctronic Structure Calcu

Our goal is to obtain detailed Information  about the interaction

of a hydrogen atom with an environment-of dxoa atoms. This is the basic

ingredient to the crack simulation of hydrogen-enhanced stress cracking of

iron. Our approach is to carry out a series of cluster calculations with a

hydrogen atom placed variously within iron atom clusters. An example

configuration is that of hydrogen at an octahedral site in bee -iron as

sham in figure 8.

These calculations will give direct information about the electron density

redistribution in the presence of hydrogen. Moreover, from the calculated

f	 elements of the electronic energy surface, we expect to construct a rapidly

convergent many-body decomposition of the form

^► >	 ka ^^
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which contains the important geometry dependence of the total energy

surface. This is the direct ingredient to the crack simulation model.

The electronic structure calculations are being carried out in

collaboration with Dr. Richard Jaffe of the NASA Ames Research Center.

They employ a novel technique for folding the effects of core electrons

into the form of effective pttentials which makes the cluster calculations

tractable by the standard methods. (7) The latter techniques are implemented

4	 using the very efficient GAUSSIAN 70 code. Finally, the magnitude of

these calculations requires the special computational facilities available

at NASA Ames.

We started by first checking the use of the UHF Code in dealing

with the high spin cases posed by iron atom. The ground state, 5D, can be

represented in terms of real orbitals in a single determinant wavefunction

i

which contains four unpaired orbitals. The. energy for this wavefunetion,

and various excited states, was studied as a function of the contraction

in the primitive gaussian basis consisting of a 3s, 3p, and 5d functions.

The results are shown in Figure 9. These results show that there is little

loss in excitation energies in contracting the (335) set to [312]. This

alone seems, however, to be a stricter criterion. of the quality of a

contraction than is necessary in calculating the ground state atom-atom
interaction. We find, as shown in Figure 10, that the Fe-Fe potential

energy curve is essentially identical for a [311] set as for a [312] set.

Even the calculations in a minimal [1111.set yield a reasonable Fe-Fe

potential curve in this case.
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The lowest Fe2 electronic state was found to be a ^^ state. In

this state two iron I electrons remained singlet paired, and the remaining

ones all align in the same direction. This high spin electron configura-

tion is depicted schematically as

9168 spy	 Fe [44Z (1^) 3d b (1^ 1111 13 +	 Fe[4,JJ1k) i'(1V1 1 i1)

^	 T
J

`	 The doubly occupied ^ orbital was found to be a d xz orbital where that axis

coincides with the internuclear axis. On the basis of electron repulsion

arguments one would have predicted this orbital to be dry . The low spin

state was compared against the high spin state at R - 5.404 bohr. The

electron configuration is depicted schematically as

Low S4ia :	 F^,[4"0̂  1	 1 1,  1 111 ^- TsF q '(1^) 31,611',

The energy of this state was found to be 0.096 Hartree/atom more repulsive

than the high spin state at the same geometry.

Similar calculations were made for Fe  where all Fe atoms are in

a plane. The [311] contraction was used since it had been found satisfactory

in the Fe2 calculations. The results are shown in Figure 11. In contrast

to the Fe2 case, we find that in Fe4 the low spfn state rather than the

high spin state is the energetically lowest one. The intermediate spin

state lies energetically between these two limits. It is interesting to

note that as in the Fe 2 case, the Fe  energy as a function of a symmetric

stretch is purely repulsive. The introduction of correlation effects will

probably at least yield a flan der Waals minimum. The major effect in

decreasing the repulsive energy will probably arise just from changing

the geometry from planar to tetrahedral since the number of bonds between

Iron atoms then increases from 4 to 6.

The most interesting results Were obtained upon. introducing a

hydrogen atom into the four iron atom cluster. The results are shown in

Figure 1.2. The presence of the hydrogen atom stabilizes the iron cluster

despite -ren the repulsive iron-iron interactions. It is surprising that

such a large effect arises from just one additional atom. Moreover, the



t

[a

3.

I.

Fea UNF PoTwiip L, EM:Fr,`l Cure

5.0	 (, o

R (6Ar)



l' lI 3.0

u

u

Ll

F1G^r^E I^,.	
lz u

ti

ti	 ^eQt^
(eV	

?IFel vW Po-iENT IAA Ew:at,Y Co -ass
I	 ^E	 )

Fe.

^	 !	 i

l	 e

Ve

1

i	 1	 --^ Feq ^ ^' T '^
1

1	 i

`e4 T f T T + H Z

1
I	 '

I	 ^
o	 ^

t 

0. 0

+	 ^I T

I a `-
5.p l-o	 7.^



12 u
FIGun 11'.



21

1 	̂ I	 I	 I	 I	 I	 l	 F	 I

0

affect of the hydrogen seems to be a short range effect since the cluster.

energy does not change until the iron atoms are about 5.6 Bohr from the

hydrogen atom. We also note that the high spin iron cluster becomes the

lowest energy state when interacting with a hydrogen atom with spin

aligned in the same direction. The opposite combination of spin alignments

produces little change over the Fe  high spin cluster results. Insofar as

the electronic structure which underlies these results is concerned, we

find that there is a net charge transfer onto the hydrogen atom from the

iron atoms. This is shown in Figure 13 by indicating the net number of

valence electrons on each atom.

^{x,827	
Fe^`^)

Et•5^O)

H

Fe7.^A)

FIGURE 1 3,

We see that the hydrogen atom has a 0.56 increase in electron charge. The

process of charge transfer is actually found to be a combination of effects.

The Q,spin orbitals show the hydrogen atom donating 0.27 electron charges

into iron 4p orbitals, while the 
g 
spin orbitals show the hydrogen atom

accepting 0.83 electron changes from the iron 4s orbitals. Thus, charge

transfer is an important electronic factor in the bonding of hydrogen

to the iron atom cluster. Preliminary results indicate that, in contrast,

a helium atom produces almost no energetic change in the iron atom cluster.

This is quite reasonable given the stability of the helium atom with respect

to donating or accepting extra ele ctron charges.

4

s

3A
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Finally, we obtain also the energy surface. zor the motion of

hydrogen atom about a fixed configuration of four iron atoms. The

anergy contours are shown in Figure 14. The most stable position is at

the center of the cluster. The energy increases most rapidly in the

direction of the iron atom. it is interesting to compare this against

the results predicted by use of the pair potential superposition. We

show two different empirical Fe-H pair potentials in:Figure 15 together

with the Fe-Fe interaction for reference. In Figures 16 and 17 we show

the corresponding total energy contours resulting by use of these pair

potentials. The energy surface in Figure 16 most closely resembles the

present results of Figure 14. However, the predicted binding energy is

three times too large. The energy surface in Figure '17 predicts that

hydrogen will not be bound even at the center of the cluster. It is

least in accord with the present results.

F. Definition of Terms in Formulae of Subsection C.3,.

set of all atoms in the discrete region

set of all atoms is the continuum region

position vector of the k-th atom
N

	Vk.	
gradient operator in the 	 coordinates

	

IA(D)	 interaction potential between any pair of atoms, and
dpendent an Just the distance between them.,. .

_ .	
4
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Interatomic Distance, A

0.44

-0.4

> -0.8

;16.
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FIGURE 15
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M. DIRECTIONS FOR FUTURE WORK

Dislocation motion is among the most important accepted mechanisms

for the plastic deformation of metals in response to an applied stress.
Gehlen found that the simulation model predicted that an edge or screw dis-

location would not move even at abnormally high stresses. Our analysis of

Gehlen's simulation model finds errors which are few but which fundamentally
affect all results_ derived from its use. The improved formulation removes
these errors from the model. It is thus now possible to reexamine these
basic questions about dislocation motion with the improved model. With
little additional effort, it is also possible to examine the manner in

which an impurity atom, such as hydrogen, pLns a dislocation. Beyond

these questions, there are basic phenomena related to dislocation inter-

actions, such as dislocation pile-ups and annihilations, which can

readily be treated with this model.

The improved simulation model allows us also to resume on a firm

basis the study of the threshold for crack propagation.in  iron and of the
effect of hydrogen thereon. Although the errors in Gehlen's model had
been identified and verified in essence, the correction factors have
thus far been introduced only in an a posteriorimanner. The successful
solution of the dislocation and crack motion problems, will enable us to
consider for the first time the crack propagation problem in the presence

of a dislocation. The latter will introduce in our simulation the
competing mechanism of crack energy dissipation by plastic deformation

via dislocation motion.

Tllv:: electronic structure calculations should explore the effect of

additional .,hells of iron atoms, possibly with use of effective potentials
to fold away the effect of all A shell electrons on outer shell iron atoms.
In general, we need to develop and test rigorous systematic procedures
for folding the external cluster effects, including approximations
thereto, into the equations determining the electronic structure inside

the clusters. We also should explore the introduction of correlation
effects beyond the UHF approximation. One promising approach is the many-
body perturbation method as used by .Bartlett {a} . A separate but urgent
problem is to develop functionals for two and three body potentials which

1

r
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lead to reliable local massy-body decompositions of the total energy

surface. In this connection, it may be worthwhile to explore directly

many-body decompositions of the electronic energy gradient as an alternative

approach.
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A. Definitions of regions of the model

We start by defining the different regions in the model. For this

purpose we refer to Figure 1 first.

V

The immediate vicinity of the defect, e.g., the crack tip, is surrounded by

the cylindrical region shown above, and which is such that all points within

this region have coordinates that satisfy the relationships

L
^S X. +	 ^o

This region is to be called the discrete region, D. All atoms assigned to

this region are to have no restriction on their optimal position except for

those dictated by the interatomic forces.
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Next, we have the ring-like region surrounding D as shown in

Figure 2. All points within this region satisfy the conditions

)L	 X`	 I z < 00

0

FIGURE 2.



Next, we have the ring--like region surrounding D as shown in
'	 Figure 20 All points within this region satisfy the conditions

I

2
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This region is to be called the continuum region C. All atoms assigned to

this region have positions dictated by elasticity theory.

Finally, there are the two regions adjacent to C and D. All points

In these regions satisfy the.condition

I ^ I >/ 10

All atoms assigned to these regions have positions fixed by translational

symAtetsy. The translation vector is written as

T	
07

The atom positions are obtained by

Nn

The n 0 case gives the atoms in the main slice. The n 0 0 give each

the atoms in the adjacent slices. This is schematically illustrated in

Figure 3.	 0

i
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S. The confi uratioaal ener

For.the present discussion we will assume that the configurational

energy is given by the pair wise interactions of all the atoms, i.e.,

F 	 - ^ei

Furthermore, the configurational energy we shall be discussing is that of atoms

In one slice, e.g., the main slice (MS), rather than the energy of all the

atoms. In order for the configurational energy to be the same for each slice

we shall include in the energy per slice half of the interaction energy with

the adJ acent slices (AS).

f A5

Upon subdividing the atoms in each slice into atoms in the D and C regions

we obtain further

'—^'ti1.

kE a ^ E ^` •tin=^o 	
-'^	

^` k f i) i e $ n =^ 	
^	 ^ ,	 '_ •.

r 
^ ^' ^ '^^^^

R
	^Ch	

11^	
`^	 4	 j!

,V 

This energy expression contains terms where the relevant part is embedded

in a divergent series. These terms require separate analysis to follow

later.

The explicitly convergent terms correspond to the energy of the

discrete region and its interaction with the continuum. One can readily

show that
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using the relation

T  _ —7

Using this result one may write the explicitly convergent terms as

-s
E4	

a s^^^^^^ +	
^^ IRS OWL-- ni

M#c

^f^ ^t^	
h	 N i	

ysc6	 ^'f "-46	 J

art¢ J

The type of interaction appearing in the first summation is represented

schematically in Figure 4.

FIGURE 4.

Similarly, the second summation contains interactions shown schematically

in Figure 5.

r.

!	 FIGURE 5.

l	
}
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Note that the finite range of the pair potential allows one to

truncate the summation over adjacent slices to just the first pair of

adjacent slices. The summation over continuum atoms can also, for the
1	 g

same reason, be truncated to the finite number of continuum atoms which

are within the range of the pair potentials of the discrete region atoms.

We shall refer to Chia subset of the C region atoms, as the C* region atoms.

The divergent terms in the energy correspond to the energy of the

continuum region. These terms are

E	 ^ ^, =	 R ti^ l 	tik^ti ^^n
ki$ fed	 r•^

n^o

The type of interaction appearing in these sums is represented schematically

in Figure 6.

1.
^-^ter  	 _

1

FIGURE 6.

This energy is infinite in the stress -crack problem since it corresponds to

the total strain energy of the body, and this energy diverges as the size of

the body increases indefinitely. However, the change in the strain energy as

the elastic crack field is modified is finite.. Therefore, we consider the

energy of the continuum configuration, ' . 	relative to the emergy of a

reference strained continuum configuration, 	 L , , which. is itself also

infinite, but relative to which the energy change is finite

The change in E 2 is a path integral of the directional derivative along a

path joining the two configurations 	 and	 This integral gives the

j

 J.
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'	 a
work energy involved in moving the system from configuration ^' to con-

figuration

This path integral is independent of the choice of path. We

choose a conveniently simple path, namely, a straight line joining the two

sac-point configurations.

e

The locus of all points along this path is given by the vector

ry	 .	 S ti	 I

Along this path we have

ti

j1

Ott)	
^-^^ -	 ^	 ^ ^^ tz • ^ R ^ - ^ k

Using these results in the path integral we obtain

i

--	 ^	 1	 1	 E

I
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Thus, we have now resolved the change in the strain energy of the continuum

into the contribution from each of the atoms in the continuum region. The

summation over the continuum region atoms truncates to ,just those continuum

atoms which are within the range of the pair potentials of the discrete

region atoms; i.e., the atoms in the C* regions. The contribution of the 	 i

continuum atoms not in C* vanishes because for these atoms

and

C1^ E = a

from the equilibrium condition for all points in the continuum displaced

according to elasticity theory. _

In summary, the configurational energy per slake is now specified

precisely as

I

	

E	
^^	

r 
E ^ ^'k  X.i	 ^n^ ^l	 + E0

b

where	
a

r	 {f'	
: I	

^?	 Ii	 r	 f

	

L	

1.F.0	 ^	
^ NY 1	 ^a^	 ! ti^^— tii,^ tilt f r	 T.	 ^	 a

We shall not at present assume the equilibrium relation

Approximate formulae for the work energy terra may be derived by

use of the trapezoidal rule and Simpson's rule for the calculation of integrals.

Define

- - qk ^ 2,

AL



Then applying the trapezoidal rule one finds

S dk^^l^l d A	 —	 F (R) + F^ (F!)
a

AA

and applying Simpson's rule one finds

N0

C. Validity of the work qqqrgy formula.

In truncating the work energy in E2

IV	 A

i	 r

we have assumed that

	

E	 E

for all atoms in C which are not in C*. This is justified to the extent

that the atom positions are given by elasticity theory, and that elasticity

theory is valid in this region. We shall assume the latter since this can

always be made the case by enlarrlag the size of region D. Insofar as the

atom positions are concerned, it is basic to the model that the continuum

isconfiguration, t, 	 Sven. b elasticity then	 , the reference

	

g	 y	 ty	 ry. Moreover, 

continuum configuration,	 , can always be chosen to satisfy elasticity

theory. Thus, the integrand

r	 1	 1	 ,

vanishes for =0 and = 1	 It -is not apparent that it also vanishes

for the values of X occurring in between, 0A ( ^ 	 We shall show

f	
that In the case that the crack tip moves in a straight line joining the

€:	 =p and ^^ =	 limits, then, within the approximations of linear elasticity,

1	 IL

r.

^I
,	 t
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the intermediate configurations, 0<	 are in fact equilibrium con-

figurations.

We start by specifying the end points as equilibrium configurations

by writing

o — CPCt W ^( R — 
$

AV	 ev

R^ __ Rr^t	 +	 ,^ ^'^ Svc- 
N^ I

4C

Where	 are the perfect crystal positions of the atoms, ,t, is the posi-

Lion of the crack tip, and ' r stands for the displacement field given by

linear elasticity. All intermediate equilibrium configurations are obtained

from

note that

where

N N

Similarly, we also have

.	 ter..._	 ^



xx

where

	

At 	 t — t'

i'	 Therefore we can write both

C—.,- 11 ^ . Ato

	

Y N	 ti ti N N

and

4

	

R	 + X G, 
Rp^- t' }, pt' +

Next, we choose the crack tip to arrive along a line joining the endpoint

crack-tip positions

	

t	 t +	 (t , t'

'r^C	 t
Using this in the equations for ^ , and expanding `]"_^':4 N - fi ^	 about

Pt_ t9	 one finds

to ^

N N

	

n'	 .

	 t , L

	

rV 	 IV	 IVi

and
1

R = R + (7^ — r) ^(	 ^fir l {—	 ^` to
	 ^-ti

1

Neglecting all terms which are second and higher order changes in 	 as

is consistent with linear elasticity, and subtracting both equations, after

first dividing each by	 and	 respectively, we obtain

r

11

1
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or

IV 	 AJ

This shows that, within the assumptions of linear elasticity, the configurations

generated by passing a straight line between two equilibrium configurations

are themselves equilibrium configruations associated with a crack tip which

is also moving on a straight line.

D. A new approach to the search for the equilibrium configuration

One of the important lessons from our past work is that the continuum
elastic field, in which the discrete region is embedded, cannot be left posi-
tioned arbitrarily. The effect of variously positioning the elastic field,
followed in each case by a full relaxation of the discrete region, leads to

energy changes of the very same magnitude as the energy differences we are
interested in. It is clear that the position of the continuum field has to

be carefully adjusted in direct concert with the relaxations occurring in the

discrete region. The aim is to minimize the disregistry between the fields
in the two regions.

The configurational energy (potential energy) of the model, which

was discussed in section B, depends directly on the position of the con-
tinuum field through the positions of the atoms in this region. It is there-

fore possible to attain minimal disregist,ry simply as part of the process of

seeking for the lowest total potential ener in all variables, i.e., including

the position of the continuum field with the other degrees of freedom relative

to which the system is being relaxed. This approach affords a unified treatment

of the approach to equilibrium of the discrete and continuum regions. This

unity of approach extends to the introduction of non-linear effects in the

elastic field. In this more general case, the parameters adjusting the chair-

f

I

L
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aeter and admixture of non-linear elastic field terms are simply to be added

(in the list of variables to be relaxed) to the position of the overall field

and the positions of the atoms in the discrete region:.

In the pioneering ;simulation work of P. C. Gehlen` 	 the discrete

and continuum regions were cast in a mold which naturally pointed to separate

and distinct procedures for relaxing each region. Thus, the discrete region

was relaxed using the technique of "kinetic energy quenching' by Larsen (),

while the continuum was relaxed (in the flexible boundary version) by

generating, via Green's functions, the displacement fields which drove

all the current non-zero forces to zero. These two processes were used

sequentially until the system was found in equilibrium.

In the present approach, as also in the simulation work of Sinclair (3)

all distinct properties of each region are built in at the outset in the con-

figurational energy functional. Thereafter, the search for equilibrium be-

comes a problem of minimization of this functional with little remaining

distinction between the discrete and continuum regions. One approach which

seems practical for a function minimization involving as many independent

variables as found in the crack simulation (300 1000) is the method of

"conjugate gradients" of Fletcher and Reeves (4) . This method requires in

essence only the calculation of the gradients of the potential energy in

order to lead to a minimum. It involves a sequence of search direction

vectors (constructed from the gradient information) and one-dimensional

function minimizations in these directions. Define the gradient vector as

	̂ r

where E is the configurational energy functional defined in section B, and

the gradient vector has a component for each linearly independent variable

in E. The Fletcher and Reeves algorithm is

^^OR PAGEQUALITY
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This function -minimization method also has the advantage of requiring but

relatively minor modification to serve in finding saddle points. It then

becomes the method of Sinclair and Fletcher (5) . A closely related function

minimization algorithm is that of Fletcher and Powell
(6)

Although this

latter algorithm may be generally more stable and rapidly convergent there

is a price. It requires at each step the additional, construction and mani-

pulation of a full (symmetric positive dLfirite) matrix which at convergence

..	 becomes the inverse of the Hessian matrix. Moreover, one requires
additional storage spaces, where N is the number of independent variables.

This limits the application of the Fletcher and .Powell method to cases !or

which. N	 10

^
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A method which has been successfully used in the past to find

equilibrium configurations is the "kinetic energy a.uenchin_g" method of

Larsen
(2) . This method is based oti the integration of the classical

equations of motion as a convenient device to enable the atoms to probe

the configurational energy surface. This is coupled with periodic re-

movals of the accumulated kinetic energy until the system is at a potential

energy minimum. While the classical-equations-of-motions method is

straight forward when applied to the motion of the atoms in the discrete

region, such is not the case when, as in the present approach, we also

wish to relax by the same procedure the parameters of the continuum elastic

field. We show next that indeed it is possible to extend this method to

deal directly with the elastic field.

The kinetic energy of the system-is the kinetic energy of the

atoms in the discrete and continuum regions respectively

+
	

L .r	

• F r

G 8̂

We constrain all points of the continuum region to be displaced according

to an elastic field specified by a set of m parameters, w =	 ,.,,..r.^

i.e.,

IL
	 N

We define the mass tensor

f	 ^,^SIL1

The kinetic energy may now be written as

1.
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where the kinetic energy contribution from the continuum atoms is now

expressed in terms of the mass tensor and the time rate of change of the

parameters of the elastic field. Next we define the momentum associated

with each of the degrees of freedom.

".k
Ile R	

^,
i

h

	

wti	 I -^

	

N	 of h
N

Reexpressing the kinetic energy in terms of the momenta we find

K	 +-F,T^,
The hamil:tonian is

t

where E is the configurational or potential energy discussed in section B.

The equations of motion for the atoms in the discrete region are

r
N

V
V

ti

k

z^
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Those are just the standard classical equaticna of motion. In addition, we

also find the new result we are seeking, namely the equations of motion for

the elastic field parameters. These are:

.00*

where

?K

and

OL

This specifies all the ingredients necessary to extend the kinetic energy

quench method to the direct relaxation of the elastic field. It shows that

each parameter of the elastic field obeys equationd of motion similar to those

for the atoms in the discrete region. In. this sense these parameters behave
as pseudo-atoms with inertia given by the mass tensor Z and subject to
driving forces that arise partly from the potential energy, E, and partly

from the elastic field dependence of the mass tensor.

The present result shows that the "kinetic energy quench" procedure

may be applied to relax all regions of the model. it is a. viable alternative
to the use of the "conjugate gradients" approach of Fletcher and Reeves. In
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fact there are scattered results based on the previous simulation approach

Indicating that the rate of convergence of the "kinetic energy quench" pro-

cedure may, be considerably faster than obtained from the Fletcher and Reeves

approach. This probably is the case at least in the early stages of the

relaxation, and suggests the sequential use of these two techniques for

optimal convergence to equilibrium.

Although the present extension of the equations of motions method

Is primarily designed as an aid to find the equilibrium positions, it may

also contain the seeds for a bQua fide modelling of time dependent crack

processes.

E. The_.gradient . o:f the configurational energy.

The gradient of the energy turns out to be a sufficient and central

ingredient in the two principal methods for relaxing the system to its equi-

librium configurations (both to relative minimums and to saddle points). We

show here the relationship of the gradient of the energy to the gradients of

the individual pair potentials.

The components of the gradient of the energy vector are the partial

derivatives of the energy with. respect to all the linearly independent para-

meters in the energy. These are the positions of the atoms in the discrete

region

R ,	 I 
N K

and the parameters specifying the elastic field which we shall denote by

—
 t t: ^ 	) gym

Three of these parameters we shall always take as the coordinates of the

origin of the elastic field. Parameters beyond these correspond to non- -linear

elatic field teams.

I
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The gradient component in a discrete rron atom coordinate is

_
^

s U^ Q	 h	 R f1 t—N^
41-0 T7Le ,L(IR ' - ^.	 —	 I

R ~^ M 	 N4	 Nil:	 F

n#a

c,u (IR-- k^-TmI1	 ^E
'AMA

fo
The gradient component in an elastic field Qarameter is related by

the chain rule to gradients of the
i

energy in the atom coordinates

kit
The sum over discrete region atoms vanishes because of linear independence,

i.e.,

The second sum ranges gust over the atoms in C which interact with region D

atoms, C*, because for all others in C we have

V =

from the equilibrium.condition assumed for the continuum. T

ateE ^ 	 ¢t

t

where the gradients of the energy in a continuum region atom

cs ieya.--i:.„^..,.'s;.'--Kf:_...,.r
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A particular combination of the gradients which is required in the one-dimen-

sional searches of the "conjugate gradient" method is the directional deriva-

tive,	 This is

x

rn+
r

t

'

^^ d=^ al z

3

where the	 vector is an arbitrary vector, and	 '_ is the magnitude thereof.
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