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I. INTRODUCTION

The basic factors controlling the strength of materials are found
at the atomic scale of material structures. The availability of this type
of structural detail is essential to the interpretation of available
experimental data. It lies at the heart of our ability to predict and
modify the strength of materials to suit our technological needs.
Unfortunately, the direct experimental observation of the atomic scale
phenomena determining the strength of metals has proven impossible; other
approaches are needed in order to obtain the atomic gcale picture. We
at Battelle have developed a comprehensive mathematical model by which the
collective behavior of a verv large number of atoms within a metal or alloy
can be accurately simulatedcl). In particular, the wanner in which the
atomic interactions relate to dislocation motion and crack extension to
determine the strength of a metal can now be determined and dissected by
this method. Our cuirent effort is in understanding the factors determin-
ing resistance to crack extension in iron metal subject to a stress, and
how the presence of hydrogen causes crack extension to proceed at

abnormally low stresses.



TI, TECHNICAL PROGRESS

A, Overview of the Areas of Current Progress

When this project started its main emphasis was on th~ calcula-
tion of the interatomic forces, This is one of the basic ingredients in
the simulation of stress crack extension of wmetals in the presence of
hydrogen. However, in the process of exercising the crack simulation
model, even with empirical interatomic forces, it became clear that some-
thing was seriously wrong. The effort in the calculation of the inter-
atomic forces was comsequently reduced, and attention was focused on
identifying the source of the problem in the crack simulation model. The
material in this report thus reflects the spread of the effort to both
complementary aspects of the project. The material is presented in the

following order.

e Brief sketch of the problems encountered with Gehlen's
crack simulation model

e Identification of the source of error in the crack
simulation model

o New improved formulation of the crack simulation
model

¢ Electronic structure calculation of small iron atom
clusters, their stability as a function of configuration,

and the effect of adding a hydrogen atom.

B. Sketch of the Problems

The basic crack simulation model with which we have been working
is that pioneered by P. C. Gehlen at the Battelle Columbus Laboraturies.
In order to place the magnitude of the difficulties with the model in
perspective it is necessary to present first some background informatiom.
The physical problem being studied is the resistance to crack extension
which arises from the lattice structure in metals. This resistance Eto

crack extension is shown in Figure 1 in the form of the energy barrier



(at a fixed stregs intensity) between any two adjacent eguilibrium crack

positions
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If one obtains the A.El and AEZ energy barriers (barriers to

crack extension and healing respectively) at various stress intensivies,

K, one expects a behavior illustrated in Figure 2.
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The AEl and AEZ curves cross at what is called the Griffith stress intenaitycz}.

At this point the rate of continuum strain energy release equals the rate
of surface energy, ¥, creation

KL

= =21 For K=K,

E v

where E is Young's modulus. Although from an elasticity-theory point of
view cracks become unstable for K)K_,, these do not propagate readily
because of the "lattice trapping"” illustrated in Figure 1 as first pointed

(3

out by Hsieh and Thomson'”’. Only for K = K, does all resistance to crack

c
extension dissappear as the barrier AEl goes to zero.

Contrary to what one expescted, the gpplication of the erack
simulation model to this problem predicted that the barrier to crack

extension would not disappear. It led to results of the type shown in

Figure 3.
A
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This unphvsical result was attributed to the use of a linear elastic field

in the description of the continuum region. The latter is the region within



which the discrete crack core region is embedded. Subsequently, a consider-

able amount of effort was expended in replacing the linear elastic field

by a general non-linear field which was based on the use of Green's functions

to fold residual forces into modified equilibrium displacement fieldscl).

Unfortunately, when the corresponding energy barriers as a function of

stress intensity were calculated by this considerably more sophisticated

method, they made even less physical sense than those obtained previously.
Furthermore, disturbing convergence to different relative

minima were found depending on the procedure used to locate these

minima and convergence to the saddle points was plagued with difficulties.

The magnitude, persistence, and uncertain origin of these problems, in

spite of the constant and well reasoned efforts to overcome them, persuaded

P. C. Genlen, the originator of the simulation model, that the approach

lacked validity. He was discouraged from further pursuing the source of

the difficulties.

C. Identification and Analysis of the Sources of Error

We have given Gehlen's procedures a detailed examination. This
effort has brought to light some fundamental assumptions in his model which
are found to be incorrect. The deficiencies in Gehlen's model, in

essence, fall into three categories although they are interrelated.

o Disregistry between the continuum and discrete region
crack fields

o Neglect of the contribution of the continuum strain
energy release _

e Inconsistent definition of potential energy and

gradients thereof

We shall discuss each of these points next.

1. Disregistry Between the Continuum
and Discrete Region Crack Fields

We found that in the simple rigid boundary model, apart from

restricting the elastic crack field to be linear, the origin of the field
was always held fixed at an arbitrary position. Thus, even when the
discrete region would describe an advanced crack, e.g. saddle poiat or an

adjacent stable crack, tne fieid describing the continuum would still be



fixed in its arbitrary original position. We refer to thiz as the .
disregistry effect arising from the incorrect relative alignment of the
fields in both discrete and continuum regions. This is depicted

schematically in Figure 4.
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It was found that when the disregistry was minimized by advancing the
elastic fields together with the discrste region, the relative stability
of two adjacent equilibrium cracks changed by amounts of the same
magnicude as those of the energy barriers we were looking for. Thus,

the disregistry effect was found to he an important source of the errors
in the results shown in Figure 3. The introduction of the flexible
boundary model in principle solves this problem. It is designed to fully
relax the continuum region, i.s. to both introduce non-linear effects and
to minimize the disrtegistry effesct. In practice the relaxation of this

elastic field wus not direct, but entered only as a response to a separate



full relaxation of the atoms in the discrete region. The latter region

(4)

wag relaxed by the "kinetic energy guenching" method'*. There remains

in practice the possibility that, as the kinetic energy is quenchad in

the discrete region, the rate at which information about disequilibrium
Is transferred to the continuum region becomes exceedingly small. This
would result in only a partly minimized disregistry effect. This

however, was probably only a minor error io the flexible boundary model.
The major reason why this improved model failed was an imcomplete account-—
ing of the terms in the total energy of the system. This is discussed

in the next subsection.

Before going on it is worth noting aspects of the saddle point
calculations which were affected by the disregistry. In the rigid boundary
model, the same type of disregistry error was introduced as in searching
for equilibrium minimum positions. In the flexible bowmdary case, the
continuum atoms were left positioned at the maximum of the energy along a
straight line interpolating from their position in the two equilibrium
cracks on either side of the saddle point. Although the coatinuum was
not further relaxed in searching for the saddle point, this is probably
by itself only a minor effect. The major error in the saddie point
caleulation arises from the calculation of forces on the atoms by a
formula which is inconsistent with the definition of the potentizal enexgy

of the model. This will be discussed in the third subsection.

2. Neglect of the Energy Exchange
With the Continuum

When the elastic field of the continuum region advances in
order to minimize the disregistry effect with the discrete regiomn, then,

from elasticity theory, one can calculate the strain energy released from

the continuum which flows into the crack tip region as depected

schematicaliy in Figure 5.



Ficurg 5.

(2)

This strain energy release is given by

»

Km Ab
E

where K is the stress intensity, E is Young's modulus, Ab is the advance of
the crack 2iastic field, and "a" stands for the thickness of the slices
in the model. This energy change of rhe continuum has to be combined with

the energy change of the discrete region. These two energy changes are

shown in Figure 6.
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The energy change of the discrete region is typical of calculations where

the disregistry effect has been minimized by advancing the continuum together

with the discrete region crack. At a repeat distance Ab one finds that

this energy has increased (within the accuracy of the model) by the surface

energy created, i.e. 2%afb, where "a" stands for the width of the main slice

in the model. The combined energy change is shown in Figure 7 fnr the

case when crack growth is favored.
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In Gehlen's rigid boundary model the disregistry effect originating from

not allowing the continuum field to advance resulted in an artifactually

zero continuum strain energy release. The combined consequence of these
restrictions is the underestimation of the basic driving force behind the
disappearance of the effective energy barrier to crack extension, as is
seen from Figure 7. This explains why the results of Gehlen's rigid
boundary calculations shown in Figure 3 predicted that the barrier to crack
extension would not disappear. In Gehlen's flexible boundary model the
disregistry effect was removed by allowing the field to readjust. The
calculation of the strain energy changes associated with these continuum

readjustments should provide the required driving force lacking previously.
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In Gehlen's rigid boundary model the disregistry effect originating from

pot allowing the continuum field to advance resulted in an artifactually

zero continuum strain energy release. The combined consequence of these
restrictions is the underestimation of the basic driving force behind the
disappearance of the effective energy barrier to crack extension, as is
seen from Figure 7. This explains why the results of Gehlen's rigid
boundary calculations shown in Figure 3 predicted that the barrier to crack
extension would not disappear. In Gehlen's flexible boundary model the
disregistry effect was removed by allowing the field to readjust. The
calculation of the strain energy changes associated with these continuum

readjustments should provide the required driving force lacking previously.
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We found, however, that these continuum energy changes were unfortunately
not included in Gehlen's calculations. The omission of this major energy
contribution in both the crack calculations of m:nima and saddle points

is probably the principal reason for the unphysical nature of the results

obtained from the flexible boundary model.

3. Inconsistent Definition of Energy and
Gradients of the Energy

The forces on each of the ‘atoms are the central ingredient in
the search and location of the equilibrium crack minima and saddle points.

The definition of the force on the k-th atom used in Gehlen's model is*

-Eav’d('? bl -L %Al 20)

This is also the definition which makes most physical sense. The potential

energy in Gehlen's model is defined in turn as

&)} |
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containing half of the interaction energy with the continuum. The objective
definition of the force on an atom is the negative gradient of the
potential energy. Thus, the definition of th= model potential energy fixes

the definition of the force. In this case we find

(@) . i
3"!) B 2 Vi "‘H&’;\,_':if}
e e

It is clear that this is not the definition of the force used by Gehlen.

M
--yE” =

@S

It is not the natural definition since it weights the continuum atoms'
contributions differently than the discrete region atoms, yet it is the
definition which is consistent with the properties of the model as
contained in the potential energy. Gehlen's definition of force would

be consistent with a potential energy of the form

gl Y ullg-Rdl = B E ullte-k,l]

|
2 keo i ked Leh

*
See Section F, page 22, for definitions of the terms used here.
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The use of Gehlen's definition of force,hl(n, in the relaxation techniques
leads to the minima and saddle points of E 2). If this were also the
potential energy used to calculate the associated energy differences, then
there would be no inconsistency error. In Gehlen's model, however, E(l)
was used in calculating the energy difference. It was found that the

equilibrium configurations of E(l) and E(z)

could differ significantly.
This is thus another major source of error in the simulation model. It
permeates all the applications and versions of the simulation model. 1In
a manner, the inconsistency problem arises because not all necessary
energy contributions of the model were built into the potential energy.
This is just another aspect of the neglect of the energy terms from which

we obtain the continuum strain energy release.

4. Acknowledgements

The analysis and identification of the errors discussed in this
section are the result of extended discussions by the author with
Drs. P. C. Gehlen, G. T. Hahn, R. G. Hoagland, and A. J. Markworth of

the Battelle Columbus Laboratories Metal Science Section.

D. Improved Formulation of the Crack Simulation Model

Our analysis of Gehlen's simulation model shows that, apart from
the three previously described conceptual errors, the remaining aspects of
his model retain their validity. We have built upon Gehlen's approach in
formulating an improved simulation model which incorporates the solution
to the conceptual errors in the previous medel. The details of the new
approach are described in the Appendix to this report. The main points

are

e The total encrgy of the system has been formulated precisely
with emphasis on including the contribution from atoms in all
regions of the model. The result is

|
0 ¢ c 0 10 o
E=E + & I-&]. ) VEIC+AR-R]]dx + E
{ Re gt b A R ~ A 2
¢ 0

The term E, is the energy of the discrete region atoms

1
defined as (1}lis a translation vector; see Appendix)
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The use of Gehlen's definition of fcrce,hJ » in the relaxation kLechniques

leads to the minima and saddle peints of E 2). If this were also the

potential energy used to calculate the associated energy differences, then
there would be no inconsistency error. Imn Gehlen’s model, however, Ecl)
was used in calculating the energy difference. It was found that the

(1) 4pq 562

This is thus another major source of error in the simulation model. It

equilibrium configurations of E could differ significantly.
permeates all the applications and versions of the simulation model. In
a manner, the inconsistency problem arises because not all necessary
energy contributions of the model were built into the potential energy.
This is just another aspect of the neglect of the energy terms from which

we obtain the conptinuum strain energy release.
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the Battelle Columbus Laboratories Metal Science Section.

D. TImproved Formulation of the Crack Simulation Model

Our analysis of Gehlen's simulation model shows that, apart from
the three previously described conceptual errors, the remaining aspects of
his model retain their validity. We have built upon Gehlen's approach in
formulating an improved simulation model which incorporates the solution
to the conceptual errors in the previous model. The details of the new
. approach are described in the Appendix to this report. The main points

are

¢ The total encrgy of the system has been formulated precisely
with emphasis on including the contribution from atoms in all
regions of the model. The result is
|

0 E 0 n® Cl_ Q0

E =k + % [R-8) | LE[R+AR-K]]dN + E

1 Redt R ) »

©0

The term El is the energy of the discrete region atoms

defined as (1;_is a translation vector; see Appendix).
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The second term is a work energy term giving the energy change
of continuum region atoms relative to a reference strained
state ff with energy Eg . This energy i1s the source of the
continuum strain energy release, Kziﬁhfg , discussed in
subsection (.t . The gradient of Ei in the work energy is

defined as

-3
]
Wik, ~R, -
Nzl vkL‘iNR ~{ 1%!)]
NEL

Yk, = Eg [th“%k‘f&” +

¢ The formulation of the complete energv of the system allows
us to unify the treatment of the discrete and continuum
regions in the search for equilibrium. The search for
" equilibrium becomes a problem of finding the stationary
points of this total energy with respect to all the degrees
of freedom in the model, The problem of minimizing the
disregistry effect becomes simply part of rha process of
seeking for the lowest totzsl potential ensrgv.
¢ The application of the Yconjugate gradient" techanique of

(5)

Fletcher and Reeves is discussed as a natural approach in
light of the function mirimization mold into which we have
now cast the simulatlon model.

o The previously used relaxation technigue of '"kinetic energy
quenching" is extended to the direct relaxation of the
parameters of the elastic continuum field.

o The forces on the degrees of freedom of the model are
found directly from the gradients of the totsal poteniial
energy definition.

It is worth noting that in the essential aspects this improved
formulation brings Gehlen's basic approach closer to that of Sinclair(6).
Oné remaining difference lies in the now vivid perspective we have on the
singular role the preseat modifications of Gehleq's model have in making

this a valid approach.
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E. Electronic Structure Calculations of Clusters of Iron
~ Atoms and The Effect of Imserting Hydrogen

Our goal is to obtain detailed information about the interaction
of a hydrogen atom with an eavirooment of dron atoms. This is the basic
ingredient to the crack simulation of hydrogen-enhanced stress cracking of
iron. Our approach is to carry out a series of cluster calculations with a;'
hydrogen atom placed variously within iron atom clustérs. An example
configuration is that of hydrogen at an octahedral site in bcc iron as
shown in Figure 8.

Fiauee 8. . O: DiTiL Tow

These calculations will give direct information about the electron density
redistribution in the presence of hydrogen. Moreover, from the calculated
elements of the electronic energy surface, we expect to construct a rapidly

convergent many-body decompesition ef the form

. - (% — < ' . (E‘ ﬁ . .
E - % whig) o+ % S L) YR ET R hes B =
k

> k>fpm "
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which contains the important geometry dependence of the total energy
surface. This is the direct ingredient to the crack simulation model .

The electronic structure calculations are being carried out iﬁ:
collaboration with Dr. Richard Jaffe of the NASA Ameé Research Center.
They employ a novel technique for folding the effects of core electroans
into the form of effective pctentials which makes the cluster calculations

tractable by the standard methods.(7)

The latter techniques are implemented
using the very efficient GAUSSIAN 70 code. Finally, the magnitude of
these calculations requires the special computational facilities available
at NASA Ames,

We started by first checking the use of the UHF Code in dealing
with the high spin cases posed by iron atom. The ground state, 5D, can be

represented in terms of real orbitals in a single determinant wavefunction

1
R34 4 24 5 %, 1 o : 4 A e
( d X\'& R S 'ix5d "d'va'ﬁ ":'{'a : T 3'.'.f

. A
ot Hat™ LB 1
i f ) X ?

which contains four unpaired orbitals, Tﬁe_energy for this wavefunction,
and various excited states, was studied as a function of the contraction
in the primitive gaussian basis consisting ef a 3s, 3p, and 5d functions,
The results are shown in Figure 9, These results show that there is little
loss in excitation energies in contracting the (335) set teo [312]. This
alone seems, however, to be a stricter criterion of the quality of a
contraction than is necessary in calculating the ground state atom-atom
interaction. We find, as shown in Figure 10, that the Fe-Fe petential
energy curve is essentially identical for a [311l] set as for a [312] set.
Even the calculations in a minimal [111] set yield a reasonable Fe-Fe
potential curve in this case.
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The lowest Fe, electronic state was found to be a gdpstate. In
this state two iron d electrons remained singlet paired, and the remaining
ones all align in the same direction., This high spin electron configura-
tion 1s depicted schematically as

Hiew sow = Fe [44) 30 (v )] ¢+ re[ad(n)2d (11 11)]

? A
The doubly occupied { orbital was found to be a d_, orbital where that axis
coincides with the internuclear axis. On the basis of electron repulsion

arguments one would have predicted this orbital to be dxy' The low spin
state was compared against the high spin state at R = 5,404 bohr. The
electron configuration is depicted schematically as

low St ReL4glulzdt p 11an)] ¢ Fel 44 o)zt v vyl

The energy of this state was found to be 0.096 Hartree/atom more repulsive

than the high spin state at the same geometry.

Similar calculations were made for Fe, where all Fe atems are in
a plane. The [311] contraction was used since it had been found satisfactory
in the Fez calculations. The results are shown in Figure 1l. In contrast
to the Fez case, we find that in Fe4 the ;gg_ggég'state rather than the
high spin state i1s the energetically lowest one. The intermediate spin
state lies energetically between these two limits. It is interesting to
note that as in the Fe2 case, the Fe4 energy as a function of a symmetric
stretch is purely repulsive. The introduction of correlation effects will
probably at least yield a Van der Waals minimum. The major effect in
decreasing the repulsive energy will probably arise just from changing
the geometry from planar to tetrahedral since the number of bonds between
iron atoms then increases from 4 to 6.

The most interesting results were obtained upon introducing a
hydrogen atom into the four iron atom cluster. The results are shown in
Figure 12. The presence of the hydrogen atom stabilizes the iron cluster
despite . 7en the repulsive iron~iron interactions. It is surprising that

such a large effect arises from just one additional atem. Moreover, the
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effect of the hydrogen seems to be a short range effect since the cluster.
energy does not change until the iron atoms are about 5.6 bohr from the
hydrogen atom. We also note that the high spin iren cluster becomes the
lowest energy state when interacting with a hydrogen atom with spin
aligned in the same direction. The opposite combination of spin alignments
produces little change over the Fe4 high =pin cluster results. Insofar as
the electronic structure which underlies these results is concerned, we

find that there is a net charge transfer onto the hydrogen atom from the
iron atoms. This is shown in Figure 13 by indicating the net number of
valence electrons on each atom.

(189) L
S Fe oY
(1.5
~ (7.8 ' A%Y

Flsure 13

We see that the hydrogen atom has a 0.56 increase in electron charge. The
process of charge transfer is actually féund to be a combination of effects.
The ¢ spin orbitals show the hydrogen atom donating 0.27 electrnn charges
into iron 4p orbitals, while the ﬁ spin orbitals show the hydrogen atom
accepting 0.83 electron changes from the iron 4s orbitals., Thus, charge
transfer is an impertant electronic factor imn the bonding of hydregen

to the iron atom cluster. Preliminary results indicate that, in contrast,

a helium atom produces almost no energetic change in the iron atom cluster.
This is quite reasonable given the stability of the helium atom with respect

to donating or accepting extra electron charges.
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Finally, we obtain also the enétgy surface. .or the motion of
hydrogen atom about a fixed configuration of four iron atoms. The
enargy contours are shown in Figure 1l4. The most stable position is at
the center of the cluster. The energy increases most rapidly in the
direction of the iron atom, It is interesting to compare this against
the results predicted by use of the pair potential superposition. We
show two different empirical Fe-H pair potentials in.Figure 15 toge:he;
with the Fe-Fe interaction for reference. In Figures 16 and 17 we show
the corresponding total energy contours resulting by use of these pair
potentials. The energy surface in Figure 16 most closely resembles the
present results of Figure 14. However, the predicted binding energy is
three times too large. The energy surface in Figure 17 predicts that
hydrogen will not be bound even at the center of the eluster. It is
least in accord with the present results.

F. Definition of Terms in Formulae of Subsection C.3.

g set of all atoms in the discrete region
6 set of all atoms in the continuum region
%i : position vector of the k-th atom
ﬁh’ : gradient operator in the ?ﬁ coordinates
u(p) : interaction potential between any pair of atoms, and

dpendent on just the distance between them, I »
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ITI. DIRECTIONS FOR FUTURE WORK

Dislocation motion is among the most important accepted mechanisms
for the plastic deformation of metals in response to an applied stress.
Gehlen found that the simulation model predicted that an edge or screw dis-
location would not move even at abnormally high stresses. Our analysis of
Gehlen's simulation model finds errors which are few but which fundamentally
affect all results.derived from its use. The improved formulation removes
these errors from the model. It is thus now pessible te reexamine these
basic questions about dislocation motion with the improved model, With
little additieonal effort, it is also peossible to examine the manner in
which an impurity atom, such as hydregen,_gigg a dislocation. Beyond
these questions, there are basic phenomena related to dislecatien inter-
actions, such as dislocation pile-ups and annihilations, which ecan
readily be treated with this model.

The improved simulation model allews us also to resume on a firm
basis the study of the threshold for erack propagation in iron and of the
effect of hydrogen thereon, Altﬁough the errors in Gehlen's model had
been identified and verified in essence, the correctien factors have
thus far been intreduced only in an a osteriori manner. The successful
solution of the dislocation and crack motion problems, will enable us to
consider for the first time the crack propagation problem in the presence
of a dislocatien. The latter will intreduce in our simulation the
competing mechanism ef crack energy dissipation by plastic deformatien
via dislocation motion.

The electronic structure calculations should explore the effect of
additionzl shells of iron atoms, pessib1§ with use of effective potentials
to fold away the effect of g&l_d.sheli electrons on outer shell iron atoms.
In general, we need to develop and test rigorous systematic procedures
for folding the external cluster effects, including approximatiens
thereto, into the equations determining the electrenic structure inside
the clusters. We also should explore the introduction of correlatien
effects beyond the UHF approximation, One promising appreach is the many-
body perturbation method as used by.Bartlett(B). A separate but urgent
problem is to develop functienals for two and three body potentials which
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lead to reliable local many-body decompositions of the total energy
surface. In this connection, it may be worthwhile to explore directly
many~body decompositions of the electronic energy gradient as an alternative

approach.
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A. Definitions of regions of the model

We start by defining the different regions in the model, For this
purpose we refer to Figure 1 first.

The immediate vicinity of the defect, e.g., the crack tip, is surrounded by
the cylindrical region shown above, and which is such that all peints within
this region have coordinates that satisfy the relatioenships

04 x" + Y Lo,

-3°$. 3 £+,

This region is to be called the disecrete region, D. All atoms assigned to
this region are to have no restriction on their optimal pesitien except for
those dictated by the interatomic forces.



Next, we have the ring-like region surrounding D as shown in

Figure 2. All points within this region satisfy the conditions

% ") 2
A, XY (o

FIGURE 2.



Next, we have the rinmg-like region surrounding D as shown in

Figure 2. All points within this region satisfy the conditions

b, g, yb
AL X T Y (o

FIGURE 2.



This region is to be called the continuum region C. All atoms assigned to
this region have positions dictated by elasticity theory.

Finally, there are the two regions adjacent to C and D. All points

in these regions satisfy the.condition

51y 3,

All atoms assigned to these regions have positions fixed by translational
symmetry. The translation vector is written as )

Ty
3

To=1{0y 0, 10y | n=0, k1, k2,8

The atom positions are ebtained by
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The n = 0 case gives the atoms in the main slice. The n ¥ 0 give each
the atoms in the adjacent siices. This is schematically illustrated in
Figure 3. ?

-350 _ qz'bo —%o +5v | +130 | +3%0

Suce  ApaSuce  Mam Suce AbiSuick  ADT Suce
n=-2 n=-4 N=p N=+4t , Ti=+2Z

&



B. The configurational energy

For .the present discussion we will assume that the configurational
energy is given by the pair~-wise interactiens of all the atcms, i.e.,

ZZ w(lg- 8,1

Furthermore, the configurational energy we shall be discussing is that of ztoms
in one slice, e.g., the main slice (MS), rather than the energy of all the
atoms, In order for the configurational energy to be the same for each slice

we shall include in the energy per slice half of the interaction energy with
the adjacent slices (AS).
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Upon subdividing the atoms in each slice into atoms in the D and C regions
we obtain further
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This energy expression contains terms where the relevant part is embedded
in a divergent series, These terms require separate analysis to follow
later.

The explicitly convergent terms correspond to the energy of the
discrete region and its interaction with the continuum. One can readily
show that



using the relation

Using this result one may write the explicitly convergent terms as
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The type of interaction appearing in the first summation is represented
schematically in Figure 4.

FIGURE 4.

Similarly, the second summation contains interactions shown schematically

in Figure 5.
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Note that the finite range of the pair potential allows one to
truncate the summation over adjacent slices to just the first pair of .
adjacent slices. The summation over continuum atoms can also, for the
sanme reason, be truncated to the finite number of continuum atoms which
are within the range of the pair potentials of the discrete region atoms,
We shall refer to this subset of the C region atoms, as the C* region atoms,
The divergent terms in the energy correspond to the energy of the
continuum region. These terms are

By Yogeg lep - M "o
ngd

+Z % (| LR, - ‘W ¢ & ullt, 4oL 0)]

The type of interaction appearing in these sums is represented schematically

in Figure 6.
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This energy is infinite in the stress-crack problem since it corresponds to
the total strain energy of the body, and this energy diverges as the size of
the body increases indefinitely. However, the change in the strain energy as
the elastic crack field is modified is finite. Therefore, we consider the
energy of the coentinuum configuratian,'? - G y relative te the energy of a
reference strained continuum configuration, ~' £ . , which is itself alse
infinite, but relative to which the energy change is finite

' g' dE,

E,Red) = EIRed +

L

Q<.

The change in E, is a path integral of the directional derivative along a

2
path joining the two configurations * and 33 . This integral gives the
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work energy involved in moving the system from comnfiguration : to con-

figuration Z\, .
This path integral is independent of the choice of path. We

choose a conveniently simple path, namely, a straight line joining the two
end-point configurations.
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The locus of all points along this path is given by the vector
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Thus, we have now resolved the change in-the strain energy of the continuum
into the contribution from each of the atoms in the continuum region, The
summation over the continuum region atoms truncates to just those continuum
atoms which are within the range of the pair potentials of the discrece
region atoms; i.e., the atoms in the C* regions. The contribution of the
continuum atoms not in C* vanishes because for these atoms

%E, = %€

and

VeE =0

from the equilibrium condition for all points in the continuum displaced
according to elastieity theory.
In summary, the configuratienal energy per slice is now specified

precisely as

= | r? - -\\
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L ¥
We shall not at present assume the equilibrium relation T}§2=- 151.

Approximate formulae for the work energy term may be derived by
use of the trapezoidal rule and Simpson's rule for the calculation of integrals.
Define

Izk =" ‘a_EL



Then applying the trapezoidal rule one finds

|
SWEW = - [F®) 4 F ]
and applying Simpson's rule one finds
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C. Validity of the work energy formula

In truncating the work energy in E
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we have assumed that

= I "-.:-0
V;Eﬁ Y;:

for all atoms in C which are not in C*, This is justified te the extent
that the atom positions are given by elasticity theory, and that elasticity
theory is valid in this region. We shall assume the latter since this can
always be made the case by enlargiag the size of region D. Insofar as the
atom positions are concerned, it is basic to the model that the continuum

cenfiguratien,fJE % » 1s given by elasticity theory. Moreover, the reference

continuum configuration, ?; : ‘> , can always be chosen to satisfy elasticity

theory. Thus, the inteprand

%E () = V5,

R MR8

vanishes for A=0 and A=1 ., It is not apparent that it also vanishes
for the values of A occurring in between, 0 A { | . We shall show
that in the case that the crack tip moves in a straight line joining the

A=0 and \=1 limits, then, within the approximations of linear elasticity,
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the intermediate configurations, 0¢ )L < ! , are in fact equilibrium con-
figurations. '

We start by specifying the end points as equilibrium configurations
by writing

g - e w0y
gt - R"Pf. + Kg( R?C_ :_;‘l]

A4
where i are the perfect erystal positions of the atoms, E, is the posi-

tion of the crack tip, and }}” stands for the displacement field given by
linear elastieity. All intermediate equilibrium configurations are obtained

from
, afe R
R = & 4+ UKWie - <
o e Ao ~
note that
*
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wiR-5) = w2 ral
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Similarly, we also have
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where
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Therefore we can write both
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and
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Next, we choose the crack tip to arrive along a line joining the endpoint

crack-tip pesitions
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Using this in the equations for f; » and expanding Vgtii -t ) about
- ~d o~
(Rﬂ-t“] one finds
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and
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Neglecting all terms which are second and higher order changes in U , as
i5 consistent with linear elasticity, and subtracting both equations, after
first dividing each by \ and (-1} respectively, we obtain



or
R =8+ AR-%)

This shows that, within the assumptions of linear elasticity, the configurations
generated by passing a straight line between two equilibrium configurations

are themselves equilibrium configruations assoeciated with a erack tip which

is alse moving on a straight line.

D. A new approach to_the search for the equilibrium configuration

One of the important lessoens from our past work is that the continuum
elastic field, in which the discrete region is embedded, cannot be left posi-
tioned arbitrarily. The effect of variously pesitioning the elastiec field,
followed in each case by a full relaxatiom of the discrete region, leads to
energy changes of the very same magnitude as the emergy differences we are

interested in. It is clear that the position of the continuum field has to

be carefully adjusted in direct concert with the relaxations eccurring in the
discrete region, The aim is to minimize the disregistry between the fields
in the two regienms.

The configurational energy (potential energy) of the model, which
was discussed in section B, depends directly on the position of the con-
tinuum field through the positions of the atoms in this regien, It is there-

seeking for the lowest total poetential epergy in all variables, i.e., including

the position of the continuum field with the other degrees of freedom relative
to which the system is being relaxed. This approach affords a unified treatment
of the approach to equilibrium of the discrete and corntinuum regiens. This
unity of appreach extends to the introduction of non-linear effects in the

elastic field. In this more general case, the perameters adjusting the char-
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acter and admixture of non-linear elastic field terms are simply to be added
(in the list of variables to be relaxed) to the position of the overall field

and the positions of the atoms in the discrete region,

)

P
In the ploneering uimulation work of P. C, Gehien‘* , the discrete

and continuum regions were cast in a mold which naturally pointed to separate

and distinct procedures for relaxing each region. Thus, the discrete region
(2)

was relaxed using the technique of "kinetic energy quenching" by Larsen

wvhile the continuum was relaxed (in the flexible beundary versien) by
generating, via Green's functions, the displacement fields which drove
all the current non-~zero forces to zero. These twe processes were used
sequentially until the system was found in équilibrium.

In the present approach, as also in the simulation work of Sinclair(3),
all distinct properties of each region are built in at the outset in the con-
figurational energy functional, Thereafter, the search for equilibrium be-
comes a problem of minimization of this functienal with little remaining
distinction between the discrete and continuum regions. One appreach which
geems practical for a function minimization involving as many independent
variables as found in the crack simulation (%2? -~ 1000) is the method of

"conjugate gradiemts" of Fletcher and Reeves . This methed requires in

essence only the calculation of the gradients of the potemtial energy in
order to lead to a minimum. It involves a sequence of search direction
vectors {(constructed from the gradient information) and one-dimensional

function minimizations in these directions. Define the gradient vector as

hi

G =ve -{TE, V5, .. 7E]

where E is the configurational energy functional defined in section B, and
the gradient vector has a component for each linearly independent variable
in E. The Fletcher and Reeves algorithm is ORI
OF gg’oﬁ%‘;{‘“ IS
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This function minimization method alse has the advantage of requiring but
relatively minor modification te serve in finding saddle peints. It then
(5)

becomes the methed of Sineclair and Fletcher . A closely related function
minimization algorithm is that of Fletcher and Powell(e). Although this
lattér algorithm may be generally moere stable and rapidly convergent there
is a price. It requires at each step the additional. construction and mani-
pulation of a full (symmetric positive definite) matrix which at convergence
becomes the inverse of the Hessian matrix, Moreever, one requires NN
additional storage spaces, where N is the number of independent variables.
This limits the application of the Fletcher and Powell method to cases for

which N <410 .
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A method which has been successfully used in the past to find

equilibrium configurations is the "kinetic energy guenching" method of

Ll:sen(z). This method is based on the integration of the classical

equations of motion as a convenient device to enable the atoms to probe
the configurational energy surface. This i3 coupled with periodic re-
movals of the accumulated kinetic energy untll the system is at a potential
energy minimum. While the classical-equations-of-motions method is
straight forward when applied to the motion of the atoms in the discrete
region, such is not the case when, as in the present approach, we also
wish to relax by the same procedure the parameters of the continuum elastic
fleld. We show next that indeed it is possible to extend this method to
deal directly with the elastic field,

The kinetic energy of the system is the kinetic energy of the

atoms in the discrete and continuum regions respectively

ZDe

K=2

L
¥

i
3

r

Red RE
We constrain all points of the continuum region to be displaced according
to an elastic field specified by a set of m parameters, o =_z“ff,..,.iy}
i.e.,

We define the mass tensor

28 Ky :
I =5 ™ f’g“k p o=t I Ap o=l M
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The kinetic energy may now be written as
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where the kinetic energy contribution from the continuum atoms is now
expressed in terms of the mass tensor and the time rate of change of the
parameters of the elastic field., Next we define the momentum associated
with each of the degrees of freedon.

-Ek = ;a—K-'- = ., ih

]

%
L
Reexpressing the kinetic energy in terms of the momenta we find

IB'

-
A

K=L — 2.0 + <

heg +Me TROSE

O

ot~

2

>

The hamiltonian is

where E is the configurational eor potential energy disecussed in section B,

The equations of motion for the atoms in the discrete region are
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These are just the standard classical eqﬁaticns of motion. In addition, we
also find the new result we are seeking, namely the equations of motion for
the elastic field parameters. These are:

-
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This specifies all the ingredients necessary to extend the kinetic energy
quench method to the direct relaxation of the elastic field, It shows that
each parameter of the elastic field obeys equations of motion similar to those
for the atoms in the discrete region. In this sense these parameters behave
as pseudo~atoms with ipertia given by the mass tensor ;; , and subject to
driving forces that arise partly from the potential energy, E, and partly
from the elastic field dependence of the mass tensor.

The presen result shows that the "kinetic energy quench" procedure
may be applied to relax all regions of the model., It is a viable alternative

to the use of the "conjugate gradients" approach of Fletcher and Reeves., In
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fact there are scattered results based on the previous simulation approach
indicating that the rate of convergence of the "kinetic energy quench" pro-
celure may be considerably faster than obtained from the Fletcher and Reeves
approach. This probably is the case at least in the early stages of the
relaxation, and suggests the sequential use of these two techniques for
optimal convergence to equilibrium.

Although the present extensicn of the equations of motions methed
is primarily designed as an aid to find the equilibrium positions, it may
also contain the seeds for a bona fide modelling of time dependent crack

processes.

E. The gradient of the configurational energy.

The gradient of the energy turns out to be a sufficient and central
ingredient jn the two principal methods fer relaxing the system to its equi-
librium configurations (both to relative minimums and to saddle points). We
show here the relationship of the gradient of the energy to the gradients of
the individual pair potentials.

The components of the gradient of the energy vector are the partial
derivatives of the energy with respect to all the linearly independent para-
meters in the energy. These are the pesitions of the atoms in the discrete

reglion

bt
i
Lz

and the parameters specifying the elastic field which we shall denote by

to={t,¢ t

y Lttt ‘m)
Three of these parameters we shall always take as the coordinates eof the
origin of the elastic field. Parameters beyond these correspend to non-linear

elatic field terms.
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The gradient component in a discrete region atom coordinate 1is

' -4
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The gradient component in an elastic field parameter is related by

the chain rule to gradients ef the energy in the atom coordinates
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The sum over discrete region atoms vanishes because of linear independence,

i.e.,

‘a%h = 0 k: & , A= hl,,w

The second sum ranges just over the atoms in C which interact with regien D

atoms, C*, because for all others in € we have

from the equilibrium condition assumed for the continuum, Therefore, we find

1 - ) -l..
19 l}-.?ru).}

(3 = $ Ve 2%
Btd kEG‘ t ?jtd‘

where the gradients of the energy in a continuum region atom coordinates is
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A particular combination of the gradients which is required in the one-dimen-

sional searches of the "cenjugate gradient" method is the directional deriva-
tive, This is

{E S
Ie d-— = Z VRE' £R| T z ~ s t'{';
dfb Re 8 ~R d =i ,atd

where the ., vector 1s an arbitrary vecter, and | 1s the magnitude thereof.
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