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SUMMARY

The nonlinear discrete-vortex methud has been extended to treat the problem of
asymmetric flows past a wing with leading-edge separation, including steady and unsteady
flows. The problem is formulated in terms of a body-fixed frame of reference and the
noniinear discrete-vortex method is modified accordingly. Although the method is general,
only examples of flows past delta wings are presented due to the availability of experi-
mental data as well as approximate theories. Comparison of our results with the experi-
mental results of Harvey for a delta wing undergoing a steady rolling motion at zero
angle of attack demonstrates the superiority of the present method over existing appro-
ximate theories in obtaining highly accurate loads. Numerical results for yawed wings
at large angles of attack are also presented, In all cases, total-load coefficients,
pressure distributions and shapes of the free-vortex sheets are shown.



LIST OF SYMBOLS

AR aspect ratio

b(x) local half span

Cx rolling-moment coefficient

Cp pressure coefficient

ACp net pressure coefficient (Cpl - sz)

Cp root chord

Ac,, wingiet root chord, a characteristic length
e, unit vector in the direction of the freestream velocity
7,3,k unit vectors of wing-fixed frame of reference
) Tength of a vortex segment

n total number of vortex segments of the model
n, unit normal to the wing surface

ﬁh unit normal to the wake surface

T, position vector of a field point

s(r) wing surface

t dimensionless time

u, freestream velocity

w(r,t) wake surface

X,¥,2Z wing-fixed frame of reference

s angle of attack and rate of pitch

8,B angle of yaw and rate of yaw

YsY angle of roll and rate of roll

w angular velocity of wing
Q frequency of rolling velocity
) disturbance velocity potential

Subscripts

i source point

J field point

k time-step number
LE leading edge

TE trailing edge

T tangent



I. INTRODUCTION

In recent years, development of analytical and numerical methads for predicting
the aerodynamic characteristics of wings exhibiting Teading-edge and/or wing-tip
separation has received considerable attention. The literature contains several
analytical metheds which are based on simplifying assumptions. These include the assumption
that the flow is conical and the assumption that the axial gradients are much smaller
than the lateral gradients of the flow properties (slender-body theory). These assump-
tions represent inaccurate modelling of the full three-dimensional flow and violate the
trailing-edge Kutta condition. Methods of this type were presented by Brown and Michaell,
Mangler and Smith% and Smith3.

With the advent of high speed computers, new techniques which avoid these simplify-
ing assumptions were developed. The nonlinear, discrete-vortex technique is among
those successful techniques capable of calculating full three-dimensional flows. With
this technique, the exact governing equation and the carresponding boundary conditions
are satisfied and hence the solution of the inviscid problem is exact in that sense. It
is not restricted by the shape of the wing planform or the range of angle of attack as
long as vortex breakdown does not occur in the vicinity of the wing (stall phenomenon of
wings of Tow-aspect ratio). However, the separation line is assumed to be known a
priori along the sharp edges of the wing. Methods of this type were developed for
steady8§¥Tmetr1c flows by Belotserkavskii*, Rehbach®°%, Kandil?, Kandil, Mook and
Nayfeh .

Due to the accuracy and simplicity of the nonlinear discrete-vortex technique, it
was extended to treat unstead¥ syimetric flows by Belotserkovskii and Nisht'?, Attall,
Atta, Kandil, Mook and Nayfeh!**!3, The source of unsteadiness in the flow may be
general, e.g. a sudden translational acceleration of the wing'?, a gust wind which
changes the wing angle of attack!®*'", or an oscillatory pitching motion of the wing?®®.
The method is characterized by its capability of obtaining the transient as well as the
steady-state aerodynamic characteristics of the wing. The technique was also extended
by Kandil, Mook, and Nayfeh'® to treat steady asymmetric flows past a large aspect-ratic
rectangular wing. This case is a simulation of the problem of aerodynamic interference
which arises when a small aircraft penetrates the wake of a large aircraft. Although
the authors didn't account for the wing-tip separation of the trailing wing (due to its
jarge aspect ratio), they did account for the wing-tip separation of the leading wing.

In the present paper, this technique is applied to steady and unsteady asymmetric
flows past highly swept-back wings with sharp-edges. Delta wings are chosen as numeri-
cal examples due to the availability of experimental and theoretical results. Another
reason for this choice is that it represents a severe numerical test of the technique
owing to the presence of the vortical spiral cones which emanate from the leading edges
and extend over a large portion of the wing surface. Moreover, the free-vortex surfaces
are represented by a series of segmented vortex Tines which approach the bound-vortex
Jattice representing the wing surface during the development of the numerical solution.
Hence, strong singuiarities may arise due to the interaction of close vortex lines and
therefore safeguards must be imposed to eliminate such singularities.

The problem of steady asymmetric flows was treated earlier by Puliin’?, Hanin and
Mishne'®, Jones'®, and Cohen and Nimri®®. Specifically, the steady flow past a yawed
slender delta wing was considered in references 17 and 19 while the flow past a slender
delta wing rolling steadily was considered in references 18 and 20. These theories are
based primarily on the approximations of slender-body theory. The method of Brown and
Michael was extended for the rolling wing'®’?® while the method of Mangler and Smith and
the improved method of Smith were extended for the yawed wing!7»!®,



Therefore, with these approximations as well as the simplified approximate modell-
ing of the vortex sheets shed from the leading edges, one may expect substantial differ-
ences between the predicted and the experimental results. In fact, in all asymmetric
results of these theories substantial errors exist in predicting the suction peak of the
pressure near the leading edges. This was the case on the receding face of a rolling
delta wing at zero angle of attack as reported in references 18 and 20. For the case of
a yawed wing at high angle of attack, large errors were reported in predicting the
suction peak of the pressure on the windward side of the wing!?°!®., In the latter case
the errors were attributed to the substantial secondary separation which develops due to
the adverse pressure gradients on the windward side of the wing.

From our point of view, this is only one portion of the cause because as it is
well-known the problem of secondary separation is a viscous phenomenon and it cannot be
treated by an inviscid model. The other portion of the cause is in fact the modeiling
of the separated flow and the slender-body assumption . Moreover, on the leeward side
of the wing, the core of the primary vortex moves outhoard as the angle of yaw is in-
creased. Hence the suction peak on this side disappears and so does the adverse pres-
sure gradients. Thus, secondary separation diminishes and one can expect an inviscid
three-dimensional model to yield highly accurate results on the lTeeward side.

On the experimental side, Fink®! and Harvey®? considered steady flows over yawed
slender-delta wings. Later, Harvey®® considered flows over a steadily rolling delta
wing. Pressure distributions, local rolling-moment coefficients, local normal-force
coefficients, total-load coefficients and positions of the vortex cores were reported in
these experiments, These data are used by many investigators for checking the accuracy
of their theories. In the present paper, we also consider the same data to check our
results for steady asymmetric flows. We also compare our results with available approx-
imate theories. The method is alsoc extended to the problem of unsteady asymmetric flows
past a rolling wing.



IT. FORMULATION OF THE PROBLEM

We consider a thin delta wing in a uniform stream and let U; be the free stream

velocity and oxyz be a wing-fixed frame of reference. The wing edges 1ie in the xy-
plane, the x-axis bisects its apex angle and the xz~plane is its plane of symmetry.
Euler's angles o, B and vy are used to define the angle of attack, the angle of yaw and
the angle of roll of the wing, respectively, see Figure 1. To construct these angles in
this order, we start from a position where U_ is parallel to the x-axis and successively

allow for the positive rotations «,83,y about the y,z, and x axes, respectively. The
unit vector e_ in the direction of the freestream velocity is expressed in terms of

these angles and the base unit vectors o the fixed-frame of reference by
e, = coso cosBi + (sina siny ~ cosa sing cosy)J + (sina cosy + cosa sing siny)K (1)

Next, we assume that the wing is rotating with an angular velocity w which can be express-
ed in terms of Euler's angles and their rates »f change is

w = wi + myJ + wzk
= (& sinB + ¥v)T + (& cosB cosy + £ siny)i + (=& cosp siey + & cosy)K (2)
The fluid flow is assumed to be ideal. The assutmption that the wing edges are
sharp fixes the separation Tines along these edyws. Vorticity is shed from these edges
in the form of free surfaces of tangential discontinuivy (free-vortex sheets). Moreover,
the flow is assumed to be irrotational in the region R =xterior to the wing and its
free-vortex sheets. Accordingly, the flow in R is governed by Laplace's equation
V3¢ = 0 (3)

where ¢(¥,t} is the disturbance potential. On the boundary aR, ¢ satisfies the following
boundary conditions. The flow must be tangent to the wing surface; that is,

(e, + 9 ~wxr)+n =0 on ${r) = 0 (4)

where 55 = ¥S/|vS| is the unit normal to the wing surface S. The pressure is continuous

and no flow exists across the free-vortex shéets; these dynamic and kinematic conditions
yield

AC, = €y - €y = (Vo - ¥82) » [2(5 x T - €,) - Vo1 - V] - 2 5 (d2-d2) = O
on w(r,t) = 0 (5)
(e + V6 -wxr) - ﬁ& - T%WT'%% = () on w(r,t) = 0 (6)

where the subscripts 1 and 2 refer to the upper and Tower surfaces of the free-vortex
sheets, respectively, and n = Vw/|Vw| is the unit normal to the free-vortex sheets.

The Kutta condition must be satisfied along the edges of separation, that is the flow
leaves smoothly off the edges and the pressure is continuous across these edges. These
are expressed by

(e +V¢“EJ-XF)'ﬁb=O on S =0 {(7)
® h':,LE 5



and
8, = (Ve - V6a) ¢ [2(5 % T - E) - Vo1 - Vel - 25 (b1 - 9a) = O

on S| = 0 (8)
TE,LE

Far from the wing and its free-vortex sheets, the disturbance velocity vanishes; that is,
Vo + 0 (9)

The complexity of the problem stems from the boundary conditions (5) and (6). These
conditions are to be satisfied at the_free-vortex sheets w(r,t) which are unknowns of the
problem. In fact, both w(r,t) and ¢(r,t) are dependent upon each other and hence a
numerical ¢nlution is fruitful for this situation. In the next section, we discuss the
method of sulution of the steady problem and describe its extension to the unsteady
prehlem.



ITI. METHOD OF SOLUTION

1. Nonlinear Discrete-Vortex Method for the Steady Problem

The method of solution of the steady asymmetric flow is obtained by generaiizing
the approach of Kandil? and Kandil, Mook and Nayfeh® for the steady symmetric flow. For
the sake of completeness, we outline the basic approach and then describe the generaiization
to the current problem.

In the basic approach of the 1ifting problem, a lifting surface may be replaced hy
a bound-vortex sheet with unknown strength. The velocity potential of this sheet satis-
fies equation (3) in R and the boundary condition (9). Furthermore, this continuous
vortex sheet can be accurately approximated by a lattice of bound-vortex filaments with
unknown circulations (bound-vortex lattice) provided it is constructed within certain
ruies. This point will be undertaken Tater in detail in the next section.

Along the edges of separation no bound-vortex segments are placed; otherwise the
Kutta condition, egquation (8), will be partially violated. At these edges, the starting
vortex s shed and convected with the Tocal velocity and in a steady flow no more vor-
tices are shed thereafter. According to the theorem of spatial conservation of circu-
lation (Kelvin's theorem), the ends of the bound-vortex lattice lines closest to the
edges are connected to vortex 1ines which extend downstream to infinity where the start-
ing vortex is assumed to be. These vortex lines are called free-vortex lines and repre-
sent the free-vortex sheet w(r). So far, the model satisfies equations (3) and (9) and
partially satisfies the Kutta condition.

For steady symmetric flows, equations (4) - (8) immediately yield the corresponding
boundary conditions upon setting w = 0 and dropping the time- ~dependent terins while-
equation (1) yields the corresponding free stream velocity upon setting 8 = v = 0, With
the discrete method, the resulting equations are satisfied at certain points on the
known surface S(r) and the still unknown surface w(r}. This is achieved by successive
iterative cycles. In the first step of the cycle, we satisfy the fiow tangency condition
on S{r) with an assumed surface w(r) to find a circulation distribution T'. 1In the next
step, we satisfy the kinematic and dynamic boundary conditions on w(v) by using the r
distribution and find w(r). These cycles are repeated until the T' distribution or w(r)
do not change within certain prescribed tolerances. The Kutta condition is then satis-
fied automatically.

For steady asymmetric flows, equations (4) - (8) also yield the corresponding
boundary conditions upon dropping the time dependent terms. Now, to obtain a steady flow
it is_a necessary condition, although not sufficient, that the angular velocity of the
wing w be uniform. Moreover, the magnitude and direction of w as well as the orientation
of the wing with respect to e (as defined by a,B,v) must have values such that no time-

dependent disturbance is generated in the flow. For a thin flat wing withw =0 (& =
g =% =0), nontrivial, steady, asymmetric flows occur in three cases. First, vy = 0 and
the free stream velocity is given by

e = cosn cosB 1 - cosa sing J + sina K (10a)
This case represents the steady fiow past a yawed wing at an angle of attack. It was
considered in references 17, 19, and 22. Second, B = 0 and the free stream velocity is
given by

e = cosa 1 + sina siny J + sina cosy k (10b)



This case represents a steady flow past a wing at a banking angle and an angle of attack.
Third, @ = 0 and the free stream velocity is given by

€, = cosg 1 - sing cosy J + sind siny X (10c)
This case represents a steady flow past a yawed wing at a banking angle. Fourth, when

all the angles a,B, and y are different from zero and the free stream velocity is given
by cunation {1). A1l the cases considered above can be treated by the vortex lattice
method as reported in references 7-10.

whe . the angular ve1oc1ty @ is not equal to zero, there are still two cases where

the flow is steady. First, a =g =a = =20, w =yl and the free stream velocity is
given py
i o= (11a)

This case represents a steadily rolling wing about its x-axis at a, zero ang]e of attack.
If was considered in references 18, 20, and 23. Second, 8=y =n =0, w=1yi+ gk, tana
= B/v and the free stream velocity is given by

e = cosa 1+ sinak (11b)
This case represents a steadily rolling wing about the wind axis at an angle of attack.
We can easily see that the first case is a special case of the present one. This case was
considered in reference 20.

When applying the steady version of the discrete-vortex method to the Jast two
cases, one must use a wing-fixed frame of reference; otherwise, the flow would no longer
be steady.

2. Nonlinear Discrete-Vortex Method for the Unsteady-Flow Problem

The method of solution for unsteady asymmetric flows is obtained by generalizing the
approach of Atta!® and Atta, Kandil, Mook and Nayfeh!'"®!% for unsteady symmetric flows.
In these references, a space-fixed frame of reference was used, the wing was taken fo be
fixed in the flow, and the source of unsteadiness was introduced through the free stream
velocity. In the present paper, a wing-fixed frame of reference is used, the wing is
rotating at a nonuniform angular velocity W(t), and the free stream velocity is uniform.

In either case, the bound circulation around the wing contiruously changes and this
is accompanied by a continuous process of formation and shedding of vortexes from the
edges of separation to restore the smocthness of the flow at the edges (Kutta condition).
Within any infinitesimal time step, the change in the bound circulation around the wing
is met by the formation of an infinitesimal vortex strip emanaiing from an edge of
separation which has a strength of equal and opposite sense to the change of the bound
circulation. This shed vortex is convected downstream with the local particle velocity.
Hence a vortex sheet is continuously growing downstream as long as the unsteadiness of
the flow prevails.

Now if the continuous motion of the wing is discretized into a series of impulsive
changes occuring at discrete time steps, the continuously growing vortex sheet can be
replaced by a growing vortex lattice in the wake. This is the salient difference between
the unsteady and steady flow models. At each time step, we solve the problem using a
method similar to that of the steady flow. Here, the boundary conditions, equations
(4) - (8), must be satisfied at each time step. In the next section, we consider in
detail the impliementation of this method.



IV. IMPLEMENTATION OF THE METHOD

1. Construction of the Discrete-Vortex Model

In Figure 2, we show how the discrete-~vortex model is constructed for a delta wing.
Although the example discussed here is for a thin, flat, delta wing, the method is
general and is not restricted by the geometrical parameters cf the wing; e.g. camber,
aspect or thickness ratios or wing planform.

The first step is to divide the wing into rectangular and cropped-delta winglets as
shown by the dashed 1ines in Figure 2.a. A rectangular winglet is aerodynamically
represented by a spanwise bound-vortex segment of constant circulation Fi' This segment

is placed at the guarter-chord length of the winglet (the chord length of the rectangular
winglet is the characteristic length of the problem). In addition a control point is
placed at the three quarter-chord length. The choice of these positions is suggested by
thin airfoil theory®®. It can be shown that the bound-vortex sheet representing the two-
dimensional flow around a flat plate at an angle of attack can be replaced by a point
vortex of the same strength as that of the continuous vortex sheet under the following
conditions: a) the point vortex is placed at the quarter-chord length and b) the Tlow
tangency condition is enforced at only one point at the three-quarter-chord length.

On the other hand, a cropped-delta winglet is aerodynamically represented by a
bound-vortex segment of constant circulation. This vortex segment is directed along the
perpendicuiar from the midpoint of the winglet root chord to its Teading edge. With this
choice it can be seen that the vorticiiy of this vortex segment does not have a component
along the leading edge and hence the Kutta condition is approximately satisfied along
this edge.

Chordwise bound-vortex segments arise due to the differences in the strengths of the
neighboring spanwise, bound-vortex segments. In this way, a bound-vortex lattice which
replaces the continuous, bound-vortex sheet is constructed. The model is completed by
adding free-vortex 1lines, representing the continuous free-vortex sheets at the ends of
the bound-vortex lattice along the edges of separation - the leading and traiiing edges.
Each line is divided into a series of small, straight segments (near-wake region) and one
semi-infinite vortex line {far-wake region). The upstream end of each segment represents
a control point of the wake surface where the kinematic and dynamic boundary conditions
are satisfied. The initial positions and shapes of these Tines are prescribed. The
resulting model is shown in Figure 2b. This model has an unknown circulation distribu-
tion and a wake that can be deformed to satisiy the boundary conditions.

The model described above s used to solve the steady-flow problem by satisfying the
corresponding boundary conditions given in Section III.1. On the other hand, if the
problem under consideration is for an unsteady flow which starts from a steady flow
situation, then the solution of the steady-flow problem serves as an initial condition to
the unsteady problem. Furthermore, if the problem under consideration is for an unsteady
flow which arises from an impulsive motion of the wing, then the initial condition
corresponds also to the solution of the model given above, but with the wakes removed
from the model.

2. Calculation of the Velocity Field

To satisfy the boundary conditions on the wing and its wake and to calculate the
surface pressure distribution, one needs an accurate method to calculate the velocity at
any field point ¥, at any time step tk‘ If the field point is off the wing and its wake,

then the velocity is given by
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where n(t )

t) = Vo7, ty) + ey B(ty) x Ty (12)

. k
V¢(rj,tk) = z [Tt )/4mh, (rs.t))JLcosey; (¥, §oty) - cosBey (r vty ]e,(r ) (13)

is the induced velocity from all the vortex segments of the model. The parameters on the
right-hand side of equation (13) are those of Biot-Savart's law?*. The number of vortex
segments n(ty) is a function of the time step ty due to the growing vortex lattice in the
wake in the unsteady-flow probiem. To avoid extreme]y large induced velocities, an
"artificial viscosity" is introduced (as in ref. 25} in the form of an exponent1a1
multiplier which causes the induced velocity to approach zero as the vortex is approached.

When the field point is on the wing surface or on the wake surface, one has to
account for the induced tangential velocity due to the Tocal strength of the vortex
sheet. In Figure 2.c, we show the parameters involved in calculating the components of
the induced tangential velocity in the x and y directions at a point p for a quadrila~
teral vortex element in the xy-plane. With linear interpolation, it is easy to show that
these components are given by

——
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—

+

(172 21)[Tu{xy + &1 - x) + Ta(x - x1)]ey (14a)

+¥

(z = 0') =+ (1/2 R3)Tulyr *+ 22 - ¥) + Toly - v1)les (14b)
where the arguments z = 0" and z = 0 correspond to the upper surface and the lower
surface of the wing, respectively. Equations (14) must be added to equation (12) if one
is to calculate the pressure distribution on the upper and lower surfaces by using
Bernoulli's equation. Extension of equations (14} to a general, quadrilateral vortex
element is straightforward.

3. Implementation of the Boundary Conditions

a. Steady-Flow Problem

The boundary conditions on the wing surface S(r) and the wake surface w(¥) are
satisfied by an iterative process. To initiate the iterative process, one needs to
prescribe an initial geometry of the wake surface. It has been found from several
numerical tests that the number of iterative cycles required to achieve the soluticn can
be reduced by an appropriate choice of the initial geometry. This initial geometry
depends on the problem under consideration and thus it varies from one problem to the
other,

For instance, the number of iterative cycies for the steady, symmetric-flow problem
is reduced by about 20% when the free-vortex lines emanating from the leading edge zre
prescribed to be straight 1lines pitched at one half the wing angle of attack. In addi-
tion, those 1ines emanating from the trailing edge are straight Tines pitched at one
third the wing angle of attack. Here, the comparison is made with respect to the number
of iterative cycles required for the same problem when all the free-vortex lines are
prescribed to be also straight lines but are pitched at an angle equal to the wing angle
of attack.

In the case of a steadily, rolling wing at zero angle of attack, an appropriate
initial guess is found to be related to an angle 6(r) = + % tan '|wxF|/U . Here, we
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specify the free-vortex 1ines emanating from the edges of the advancing side to be
straight lines pitched at the angle + ¢ while those emanating from the edges of the
receding side to be straight 1ines pitched at the angle - 8.

Next, the flow-tangency condition and the spatial conservation of circulation are
applied at the control points and node points, resQectiveTy, of the bound-vortex Tattice.
Thus, we obtain a set of linear algebric equations'® which yields the circulation dis-
tribution Fi‘

With the circulation distribution known, the kinematic and dynamic boundary condi-
tions at the control peints of the free-vortex lines are satisfied. For steady flows,
these two conditions are combined into a simple condition in which we require that each
vortex segment in the wake be aligned with the local velocity at its upstream end (a
control point on the wake surface). This means that each vortex segment is a segment of
a streamline (kinematic condition). Moreover, it means that the force on each vortex
segment is zero according to Kutta-Jdoukowski theorem in the small (dynamic condition).
This process is carried out by calculating the downstream end of each vortex segment
according to

Fiq = Ty * U0/ 1T (15)

A BN

where rJ and rJ+] are the position vectors of the upstream and downstream ends, re-

spectively, % 5 is the segment length and Vk is the velocity at its upstream point
fequation (12) for steady flows].

The iteration scheme moves back and forth from the control points of the bound-
vortex lattice to the control points of the free-vortex lines until convergence is
achieved. We consider the iteration scheme converged when the variation in the circu-
lation distribution or the displacement of the downstream ends of the free-vortex segment
between two successive iteration cycies does not exceed a certain prescribed tolerance.
Once convergence is achieved, we calculate the pressure distribution and the total load
coefficients.

b. Unsteady-Flow Problem

Here, we consider the problem of unsteady flow which starts from a steady flow
situation. We recall from Section III.2 that the continuous motion of the wing is
discretized into a series of impulsive changes occuring at discrete time steps. At each
time step tk’ a set of starting vortices develops along the edges of separation and are

shed with the local velocities to restore the smoothness of flow at the edges (Kutta
condition}., In the same time, the starting vortices shed in the wake at earlier time
steps are convected downstream with the local velocities without changing their strengths.
This process satisfies the kinematic condition on the wake (a wake element moves along
the direction of the local velocity) and it also satisfies the dynamic condition on the
wake {a wake element satisfies Kelvin-Helmholtz theorem).

The position of any shed vortex ?5 at any time step ty is determined by

rilted = ol )+ (g - g V(s gy ) (16)

where tk 1 is the preceding time step and V is given by equation {12). The strength of

any newly shed vortex is related to the change in the bound circulation. Hence, with the
positions of the shed vortices known from equation (16) and with the strength of the
newly shed vortices given in terms of the change of the bound circulation, the Flow

11



tangency condition at the control peints of the wing ylelds the unknown circulation
d15tr1but1on To account for the error in equation (16) because of using the velocity

V'(— ko) at the preceding time step tk . rather than the current time step tk’ an

1terat10n procedure similar to that of the steady-flow problem is performed. In this
regard, an alternative equation was given by Summa?®.

In both the steady and unsteady flows, the only difference between the symmetric and
asymmetric problems is the longer computational time required for the latter problem as
compared to that of the former problem. In the former problem. we need only to use half
the wing to obtain the solution because of the symmetry of the flow. In the latter
problem, the whole wing must be used to obtain the solution.

4. Calculation of the Pressure Coefficients

The distribution of the pressure coefficient on the upper and Tower surfaces of the
wing 1is ca1cu1ated by using Bernoulli's equation in terms of a wing-fixed frame of
reference?’

—f N .- 3 — — — ’ (F‘:t )
Cp(rj,tk) = - [v(ra,tk)]2 + ZV(Fé,tk) . [m(tk) X ¥y - e} -2 2@~§%~—E~ (17)
where
___4 b
yi rs ; = v¢(r tk) + VTX( T k) A+ v ( rys tk) (18)

?ﬁ is the pesitior vector of the control point, the positive and negative superscripts

refer to the upper surface and lower surface of the wing, respectively, and V¢, V}x
and V}y are given by equations (13), (14a) and (14b), respectively. The pressure is

calculated at the control points of the bound-vortex lattice because these are the
points where the flow tangency condition is enforced.

In the steady-flow problem, the last term of the right-hand side of equation (17)
is zero and a1l the other terms are time independent. Hence, calculating the pressure on
the upper and lower surfaces is straightforward. But in the unsteady-flow problem, we
need to calculate this term if the pressure coefficient is required on each of the upper
and lower surfaces. To calculate the local rate of change of the disturbance velocity
potential, we need to know the velocity potential at this location at two successive time
steps by integrating the velocity from an undisturbed position. Because of the long
computational time involved, we only calculate the net pressure force on the wing in the
unsteady-flow problem. However, calculations of the pressure distribution on the upper
and lower surfaces are now under consideration because it is necessary for any boundary-
layer calculations.

The net pressure coefficient is given by

[mft ) X vy

= 2[r(rysty) - Tyt (M (g -t g)] (19)

£C (rj,tk) V. (¥5,t Vo (¥e,

D ox e k) ry e k) - e, - V¢(rj:tk)]

The total-load coefficients are obtained by integrating the net pressure coefficient on
the wing.
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V. NUMERICAL RESULTS

A computer code which accounts for the geceral formulation presented here is deve-
1oped. The code can be used to solve steady, unsteady, symmetric or asymmetric flow
problems. Typical resuits obtained with this code are presented in this section. The
required computation time and convergence studies are discussed in references 7-11 and
13-16.

1. Steadily Rolling Wing at Zero Angle of Attack

In Figures 3-5 we show typical solutions of the free-vortex lines of a delta wing
(AR = 0.7) at different rolling velocities 0.2, 0.4 and 0.6. In each figure, a three-
dimensional view and a plan view are given. The traces of the helical vortex cones are
indicated on the upper view which show that the cones are antisymmetric. The size of the
cone increases and it rolls-up more rapidly with increasing the rolling velocity. This
is in agreement with the experimental results®?.

Figure 9 shows the spanwise pressure distribution on the upper and lower surfaces at
the chardviste s#=Lion x/cr = 0.778, the present results are compared with the experi-

mental resuii 93 Harvey®” and the theoretical models of references 18 and 20. A re-
markable ayreement can be seen between the present results and the experimental ones.
The methods of references 18 and 20 chvicusly overestimate the suction pressure peak and
this is attributed to the simplified representation of the separated flow.

2. VYawed Wing at an Angle of Attack

In Fiqures 7-12 we chow the effect of the yaw angle on the free-vortex lines and
pressure distributions of a delta wing (AR = 0.7, o = 15°).

The plan views in Figures 7, 9 and 11 show that the size of vortex cone emanating
from the windward side of the wing increases while the s1ze of the cone from the leeward
side decreases. The former cone moves inboard while the latter cone moves outboard.

The corresponding effect on the spanwise pressure distribution at the chordwise
station x/cr = 0.395 and comparisons with the results of Pullin'? and the experimental

results of Harvey’? are given in Figures 8, 10 and 12. When the angle of yaw increases,
the suction pressure peak on the windward side increases while that on the leeward side
decreases. The present results are in a good agreement with the experimental ones.
Pullin's results overestimates the suction peak on the windward side of the wing and it
shows that the error increases with increasing the angle of yaw.

3. Unsteadily Rolling Wing at Zero Angie of Attack

In Figure 13 we show the free-vortex Tlines at three successive time steps for a
delta wing undergoing an unsteady rolling motion given by w, = 0.6 + 0.1 sin(wt/6). The

starting vortices shed from the edges of separationh and later convected downstream can be
seen in each view.

Figure 14 shows the spanwise pressure distribution 2t the chordwise state x/cr =
0.65 at different time steps. The variation of the rolling-moment coefficient CX with

the frequency of the sinusaidal variation of the rolling velocity @ is given in Figure
15. In the initial time steps, we notice that the rolling-moment coefficient decreases
as the frequency increases. Finally, the variation of the rolling-moment coefficient
with the rate of roll is shown in Fiqure 16.

13



VI. CONCLUDING REMARKS

We have presented & general, nonlinear, discrete-vortex method for the 1ifting
surfaces. The method is applied to delta wings undergoing different motions. The
results are compared with several results of other investigators and with the experi-
mental results of Harvey. They show that the present method provides accurate resuits
which could not be obtained by the existing approximate methods. Moreover, the present
method is not restricted by any geometrical parameter of the lifting survace. Moreover,
it is exact because it is free from any small-disturbance assumption or &ny corresponding
Tinearization.

14
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Fig. 1.

WING SURFACE S(7)=0

WAKE SURFACE W(F,t)=0

Hing-fixed frame of reference (xyz) and Euler's
Angles {n,B,v).
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Fig, 2. Construction of the discrete-vortex system.
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Fig. 3. lake shape of a steadily rolling delta wing,
W, = 0.2, o = 0° 8 x B bound lattice, AR = 0,7,
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Fig. 4. Wake shape of a sieadily rolling delta wing,
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Fig. 5. lake shape of a steadily rolling delta wing,
tw, = -N.6, o =0, 8 x 8 bound lattice, AR = 0.7.
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awed delta wing fn a steady fiow,
8 x 8 bound lattice, AR = 0.7,

Fig. 9. tlake shape of a y
a= 15°, g = 5°
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o = 15°, B = 10°, 8 x 8 bound lattice, AR = 0.7.

Wake shape of a yawed delta wing in a steady flow,

Fig. 11.
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Fig. 13. Make shape of an unsteadily roiting delta wing,

hy, = N.6 ~ 0.1 sin{wt/6), « = 07, & % & bound

lattice, AR = 0.7.
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