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MINIMUM TIME ACCELERATION OF AIRCRAFT TURBOFAN ENGINES BY USING AN
ALGORITHM BASED ON NONLINEAR PROGRAMMING
Fred Teren, Ph.D.
Stanford University, 1977

Minimum time accelerations of aircraft turbofan engines are presented,
The calculation of these accelerations is made by using a piecewise-linear
engine model, and a new algorithm based on nonlinear programming. Use of
this model and algorithm allows such trajectories to be readily calculated
on a digital computer with a minimal expenditure of computer time.

The new algorithm may be used for solution of optimal control problems
which are nonlinear in the state variables, and linear in the control vari-
ables. Specifically, the most general prnblem considered is to minimize a
performance index subject to satisfaction of the system.dfnamic equations, a
set of terminal constraints, and path inequality constraints. The perform-
ance index, system equations, and path constraints are all linear in the con-
trol variables.

It is shown that the optimal control for such problems is bang-bang,
except for possiblg singular arcs, which are not considered. The algorithm
requires that 2 nominal bang-bang solution be found which satisfies the sys-
tem dynamic equations and terminal constraints. Once such a feasible solu~
tion has been found, influence functions are generated which determine if the
necessary conditions for optimality have bewn satisfied, If not, additional
control switches are needed, Nonlinear optimization (gradient search) tech-
niques are then used to vary the control switching times in order to improve
the solution.

The algorithm is used to find minimum time acceleration histories for

the F100 engine, a two-spool turbofan engine which powers the F15 and Fl6




aircraft. A piecewise-linear engine model is used. The linearized model
used at a given time in the trajectory is determined by calculating a normal-
ized ""distance" from the current state to the state at each of several equi-
librium points; the model linearized about the "closest" equilibrium point
is then used. Minimum time solutions are obtained, and the resulting con-
trol histories are used as inputs to a nonlinear simulation of the Fl00 engine
to verify the accuracy of the piecewise linear solutiom.

In addition to the transient results, the linear models are also used
to find the control settings which minimize steady-state specific fuel con-
sumption,
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ABSTRACT

Minimum time accelerations of aircraft turbofan engines are pre-
sented. The calculation of these accelerations is made by using a
piecewise-linear engine model, and a new algorithm based on nonlinear
programming. Use of this model and algorithm allows such trajectories
to be readily calculated on a digital computer with a minimal expendi-
ture of computer time.

The new algorithm may be used for solution of optimal control prob-
lems which are nonlinear in the state variables, and linear in the ezon-
trol variables. Specifically, the most general groblem considered is to
minimize a performance index subject to satisfaction of the system
dynamic equations, a set of terminal constraints, and path inequality
constraints. The performance index, system equations, and path con-
straints are all linear in the control variables.

Tt is shown that the optimal control for such problems is bang-
bang, except for possible singular arcs, which are not considered. The
algorithm requires that a nominal bang-bang solution be found which
satisfies the system dynamic equations and terminal comstraints. Once
such a feasible solution has been found, influence functions are gener-
ated which determine if the necessary conditions for optimality have
heen satisfied. If not, additional control switches are needed. Non~
linear optimization (gradient search) tecliniques are then used to vary

the control switching times in order to improve the solution.
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The algorithm is used to find minimum time acceleration his-
tories for the Fl00 engine, a two-spool turbofan engine which powers
the F15 and F16 aircraft. A piecewise-linear engine model is used.
The linearized model used at a given time in the trajectory is deter-
mined by calculating a normalized "distance" from the current state
to the state at each of several equilibrium points; the model linear-
{zed about the "closest" equilibrium point is then used. Minimum time
solutions are obtained, and the resulting control histories are used
as inputs to a nonlinear simulation of the F100 engine to verify the
accuracy of the piecewise linear solution.

In addition to the transient results, the linear models are also

used to find the control settings which minimize steady-state specific

fuel consumption.
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CHAPTER I. INTRODUCTION
‘A, Motivation
Modern, high-performance turbojet and turbofan engines are gen-
erally equipped with one or more variable geometry features in order to
provide maximum propulsive efficiency over a range of engine power set-~
tings and flight conditions. For example, the J-85 engine (a one-spool

turbojet used in the F5 aircraft) has variable inlet guide vanes, and

" variable bleeds in three stages of its eight-stage compressor. The

TF30 engine (a two-spool turbofan, psed in the Flll and Fl4 aircraft)
has variable bleeds in the low and high compressors. The F100 engine
(a two-spool turbofan, used in the Fl5 and F16 aircraft) has variable
fan inlet guide vanes and variable compressor stator vanes. Each of
these engines also has a variable—areakexhaust nozzle and an after-
burner. Variable area turbines, although not yet in operational use,
have been tested on technology demonstrator engines,

Propulsive efficiency is probably the most important measure of an
aircraft engine's performance. However, another important measure is
the time required to accelerate from one thrust level to a higher
thrust’level. Engine acceleration is one of the funetions of the
engine control system, and may be accomplished via open-loop schedulirng
or closed-loop control. For’each of the three engines referred to
above, engine accelérations are accomplished by controlling fuel flow.,
The variable geometry features are kept on their steady-state schedules

during the acceleration.
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In this report, minimum-time acceleration histories are computed
for the F100 turbofan engine. Four control variables, i.e., fuel flow,
exhaust nozzle area, inlet guide vane position, and compressor stator
vane position, are utilized.

B. Related Work

In recent years, linear-quadratic regulator theory has been devel-
oped for the design of multi-input, multi-output control systems. An
account of the theory and application is given for example in refer-
ence 1. Use of the theory has been facilitated by computer programs
such as those described in references 2 and 3, which rapidly and effi-
ciently calculate the optimal feedback control gains, given the system
description and performance index. This theory has been applied re-
cently to the design of’control systems for aircraft gas turbine en-
gines. 1In addition to the design of regulators, the problem of mini-
mizing acceleration time has also been considered.

Michael and Farrar (refs. 4 and 5) apply linear quadratic regu-
lator theory to the design of controls for the F401 turbofan engine.
The nonlinear system equations are linearized about five different
equilibrium points, and linear system descriptions are obtained. The
resulting linear models have five state and five control variables.

At each equilibrium point, a quadratic performance index intended to
minimize acceleration time is formulated, and feedback control gains
are determined. A nonlinear feedback control law is developed by
curvefitting the resulting control gains as a function of compressor
speed.

Weinberg (ref. 6) applies linear-quadratic regulator theory to

the design of controls for the F100 engine. He shows that this engine

I LI AT PP




{iiﬁ.

3

can be adequately represented by three state variables - fan speed,

compressor speed, and augmentor pressure. Four control variables are

utilized, and linearized engine models are obtained at two equilibrium

points. The problem of minimizing acceleration time is considered, and

control system gains are derived by conducting small perturbation opti-

mizations at each of two equilibrium points, using a quadratic perform-

ance index. The control gains are switched at a fixed value of fan
speed, rather than varied in a continuous manner as in

references 4

and 5.

In reference 7, Sevich and Beattie consider the minimization of

acceleration time for a turbojet engine, using fuel flow and exhaust

nozzle area as control variables. They use a quadratic performance

index to approximate a minimum time solution, as in references 4 to 6.

However, they use a nonlinear engine model, rather than a series of

linear models. The result is an open-loop optimal trajectory. The

controls are assumed to be piecewise constant, and the performance

index is minimized by using a conjugate gradient search technique.
DeHoff et al., (ref. 8) use linear-quadratic theory to design con-

trols for the F100 engine. The control gains are generated using

linear models with five State variables and four control variables at

several equilibrium points. Principal emphasis is on the regulator

design. Although acceleration control is considered, there is no
specific attempt at minimizing acceleration time.
References 4 through 8 all make use of integral quadratic per-

formance indices, in which both state and control deviations from some

desired trajectory are penalized, The coefficients of the penalty

terms are adjusted in an attempt to minimize acceleration time, How-
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ever, none of these reports can claim their final histories produce
truly minimum-time accelerations.

Minimum-time trajectory optimization has been considered by many
investigators for many years. Athans and Falb (ref. 9) give a good
account of the literature dealing with time optimal systems in their
chapter 7. However, nearly all of their discussion is concerned with
problems having only a single control variable. Furthermore, the sys-
tems are assumed to be linear and time invariant, and the control
limits are not dependent on the state or time. It is shown that the
optimal control for such problems is bang-bang, i.e., the control al-
ways operates at either the upper or the lower limit.

Wolske (ref. 10) considered the problem of fuel-optimal control
of a dynamic system which is nonlinear in the state and linear in the
control. The controls are assumed to be bounded in magnitude, and the
resulting optimal control is bang-bang. The problem is solved by
linearizing about a nominal history, which is neither optimal nor fea-
sible (i.e., it does not satisfy the terminal constraints). The opti-
mality condition and terminal constraints are expressed as linear in-
equalities, and linear programming techniques are used to improve the
solution until a feasible optimum is attained.

C.. Contributions.

In this report, an algorithm is developed for solution of optimal
control problems which are noﬁlinear in the state variables, and linear
in the control variables., Specifically, the problem considered is to

minimize a performance index subject to satisfaction of the system

o,

qr

dynamic equations, a set of terminal constraints (the number of which

may be less than or equal to the number of states) and path inequality
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constraints. The performance index and system equations and path con-
straints are all lipear in the control variables.

It is shown that the optimal control is bang-bang,. except for
possible singular arcs which are not considered. The algorithm re-
quires that a nominal bang-bang solution be found that satisfies the
system dynamic equations and terminal constraints. Once such a feasi-
ble solution has been found, infiuence functions are generated which
determine if the necessary conditions for optimality have been satis-
fied. If not, additional control switches are added. Nonlinear opti-
mization (gradient search) techniques are then used to vary the con-

v
trol switching times in order to improve the solution. The nonlinear
optimization technique described in reference 11 is used to generate
the numerical results presented in this report.

The algorithm presented herein converts an optimal control problem
with path inequality constraints and terminal constraints into an uncon-
strained parameter optimization problem. This is accomplished in two
steps. First, the bang-bang nature of the optimal control is used to
express the possible optimal trajectories in terms of the switching
times between regions of different control strategy. At this point,
the original problem has been converted into a parameter optimization
problem with equality constraints (terminal constraints). Then, the
equality constraints are satisfied by using an equal number of the
switching times as iteration variables. This procedure results in an
unconstrained parameter optimization problem with a reduced number of

parameters, and is similar to the reduced gradient algorithm discussed

in reference 12.
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The algorithm is then used to find minimum time acceleration his-
tories for the F100 engine, a two-spool turbofan engine used to power
the F15 and F16 aircraft. A piecewise-linear engine model having three
states and four controls is used to obtain the minimum time solutions,
The linear models used in this report were obtained by linearization of
a nonlinear model at five equilibyium points, and were taken from ref-
erence 13. The linear model which applies at a given time in the tra-
jectory is determined by calculating a normalized "distance' from the
current state to the state at each of the equilibrium points: the
linear model associated with the closest equilibrium point is then
used. Linear state/control constraints which correspond to speed, tem-
perature, pressure, and mechanical control limits are considered. Mip-
imum time solutions are obtained, and the resulting control histories
are used as inputs to a nonlinear computer simulation of the F100
engine (ref. 14) to verify the accuracy of’the piecewise linear solu-
tion.

A suboptimal closed-loop control mode is also developed, which
gives performance which closely approximates the open loop results.

Use of the piecewise linear model allows optimal solutions to
be obtained with the expenditure of less than one percent of the com-
putér time which is required when a detailed, nonlinear model is used,

such as in reference 7. Furthermore, the solutions obtained in this

report are truly minimum time solutions to the plecewise linear prob-

lem, rather than approximations to minimum time solutions to the non~-
linear problem, as in references 4 to 7.

In addition to the transient results, the linear models and con-
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straint equations are used to find the control settings which minimize
steady-state specific fuel consumption.
D. Organization of the Report

The dynamic optimization problem is defined in chapter II, and
necessary conditions for an optimal solution are stated. The algo-
rithm is presented in chapter III. First, the initial feasible solu-
tion is defined and discussed. Next, it is shown how to calculate the
sensitivity functions (Lagrange multiplier functions) corresponding to
the feasible solution. Finally, improvement of the feasible solution
is discussed. Chapter IV derives the applicable equations for piece-
wise linear systems. In chapter V, a detailed comparison of exact and
piecewise linear solutions to a particular nonlinear problem is made,
One and two control variable problems are discussed. Chapter VI pre-
sents the results obtained for the minimization of acceleration time
for the F100 engine. Finally, conclusions are drawn and recommenda-

tions for future research are made in chapter VIL.
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CHAPTER II. A NONLINEAR OPTIMAL. CONTROL PROBLEM, LINEAR IN CONTROL

In this chapter, the optimal control of a dynamic system which is
nonlinear in the state and linear in the control is considered, First,
the problem is defined, including the performance criterion, system
equations, path constraints, and terminal constraints. Then, necessary
conditions for optimality are derived. The derivation of the optimal
control strategy is similar to that presented in textbooks on modern
optimal control, such as reference 15. This derivation is included
here because the nature of the resulting optimal control strategy moti-
vates the development of the new algorithm presented in chapter III.

A. Problem Statement

We consider a fairly general dynamic optimization problem, which
is subject to one important restriction - the performance index, system
equations and path constraints are all linear functions of the control
variables. As will be shown later, this leads to a bang-bang solution.
We wish to find the vector control history u(t) which minimizes the
scalar functional

te

J = glx(ep),t ] + [a(x,t) + br(x,t)uldt (2.1)
o
subject to the vector system differential equations

% = £(x,t) + g(x,)u (2.2)

and path inequality constraints

¢, (x,6) + dj (x,t)u < 0 1=1,2, .. .,4 (2.3)
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The initial state and time are assumed to be specified, i.e.,

x(to) = X
while the terminal state and time are subject to the p terminal con-

straints (p < n + 1)

b, [x(eg),tg) = O 1=1,2, « . p < @+1)  (2.4)

In the above, x is the (n x 1) state vector, and u is the (r x 1)
control vector. The functions ¢, a, and c, are scalar functions of
x and t, while b and di are vector functions of dimemsion (r X 1).
The vector function f and matrix function g have dimension (n x 1)
and (n % r), respectively. The terminal time tf may be either fixed
or free. In fact, if a=b =0 and ¢ = tg, the performance index in
(2.1) is simply J = tg.

The path constraints (2.3) serve to bound the allowable values of
the control. A path constraint is said to be active if c; + dfu = 0;
it is said to be inactive if s + diu < 0. If, for a particular path
constraint, < is constant and di has only one nonzero, constant
component, then that path constraint is simply a physical control limit.
On the other hand, if all components of di are equal to zero, the
control does not appear explicitly in the path constraint; such con-
straints are called state variable inequality constraints. In the main
bo&y of this report, it is assumed that there are no state variable in-

equality constraints. However, the theory and numberical algorithm are

extended to include state variable inequality constraints in appendix A.

If, for given values of x and t, the jth component of di(x,t)
is positive, then the 1th sonstraint serves as an upper bound for the

jth control variable. Similarly, if the jth component of di(x,t) is

e
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negative, the ith constraint is a lower bound for the jth control var-
iable, It will be assumed that sufficient constraints are imposed so
that each of the r control variables is bounded above and below for
all possible values of x and t. If this is the case, then nc con-
trol impulses are allowed.
B. Necessary Conditions for a Local Minimum
Using the techniques employed in reference 15, a Hamiltonian func-

tion is defined as

HA a(x,t) +b(x,t)u + A\T[£(x,t) + g(x,t)u]

q
+ by le, (x,) + d; (x,t)u] (2.5)
i=

where A and u are undetermined Lagrange multiplier vector functions
of time, having dimension (n x 1) and (q x 1), respectively.

In terms of H, necessary conditions for J to be a local minimum

are
+T _ 9H
A . (2.6a)
oH _
e - 0 (2.6b)
and
. T
My 20 if ¢y + diu =0
: (2.6¢)
p, =0  if c, +diu <0
i i i
The Lagrange multipliets must satisfy'the following terminal con-
ditions.
T _.T3 . 8¢ .
A (tf) =NV —a—;{—f"[X\tf)’tf] + 'Bxf [X(tf),tf] (2.7)
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where v is a (p x 1) undetermined parameter vector. If the terminal

time is not specified, another necessary condition which applies is

a¢[x(tf),t ] T aw[x(tf),tf]
- -V

Btf Stf

(2.8)

H(tf) = -

For the present problem, equations (2.6a, b, and c) may be written

explicitly as

o
|
+
P
=
(1}
+
N
o
e
o
o
n
o

(2.9b)
i=1
. - T
U, =0 if ¢, +d;u < 0
i i i
T (2.9¢)
> 1 . =
uy 20 if ey + diu 0

The optimal control must satisfy (2.9b and c) and constraints
(2.3). For given x and t, the functions b, ¢, d, g, and X are
all constant. Therefore, the determination of the optimal u (for
each x and t) is simply a linear programming problem, which can be
readily solved by using the Simplex method (ref. 16). Except for
singular arcs (to be discussed shortly), the optimal control is always

determined by r active constraints from (2.3). The optimization

problem is simply to find the r constraints which satisfy (2.9b and ¢)

and (2.3).
The r active constraints change from time to time along the tra-

jectory. When a change of constraints occurs, the control variables

jump discontinuously from one boundary to another. Such control is re-

-

R I T S T Lt

é
|
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ferred to as bang-bang control, and the points at which the jumps
occur are ca}led junction points.
C. Singular Arcs

The optimal control can usually be uniquely determined from (2.9b
and c¢) and (2.3). However, if H is constant along an active con-
straint boundary, i.e., if bT + ATg E ndg where n 1is a real vari-
able, then the control is not uniquely determined along that constraint
boundary. This situation is illustrated in sketch (a) for a two con-

trol variable problem.

uz A

Constraint
Constraint (:)
® .
Constraint
g 9,
s
7
-

< Direction of
increasing H

In the sketch, H is constant along constraint (:) and it is not clear
whether to use constraint,(:>ior constraint (:)(or neither) as the

other active constraint. Furthermore, if (bT + ATg) =0 (all compo-

-nents zero) the control is totally indeterminate.

It is sometimes possible to -find minimizing solutions for which

‘some or all of the controls u are not determinate from (2.9b and c)

and (2.3) for a finite time period; the corresponding trajectory seg=

ments are called singular arcs. On singular arcs, the control is de-

NI VLI r I | S T T
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termined from the requirement that the time derivatives of

(bT + ATg - ndz), as well as (bT + kTg - ndz) itself, must be identi-

cally zero. To determine the control u, successive time derivatives

of (bT + )\Tg - nd;.l:) are taken until the control appears explicitly.

It is difficult to determine general conditions for the existence

and minimality of singular arcs. Nevertheless, each individual problem

should be examined for the possibility of minimizing singular arcs, and

this practice will be followed in this report in the example problem to

be discussed later. However, in the algorithm to be described in chap-

ter ITI, it will be assumed that the minimizing solution is nonsingular.
D. Determination of Optimal Trajectory

We now assume that the problem is nonsingular, and the linear pro-

gramming problem is solved to yield the active constraints and the

optimal control. 1f we assume that the active constraints are con-

straints 1 through r and form these into a vector-matrix represen=

tation, i.e.,

c d'{ )
T
) d;
C = ° 5 DT =
T
CI‘ dr

u=-pTc (2.10)

where the superscript (-T) denotes the inverse of the transpose. Also,

equation (2.9b) can be rewritten using vector-matrix representation

for the active constraints as

N n
LI T
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bT 4+ ATg + uD’ =0
and this equation can be solved for u to yield

p=-D"L(b + gTh) (2.11)

Substitution of (2.10) and (2.11) into (2.2) and (2.9a) results in

a simpler version of (2.2) and (2.9a).

'\ % =f - gD lC (2.12)

T _ 8, T T, _ T3 . T
AT = oy (a-b’D C) A . (£ - gbh "0) (2.13)
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CHAPTER IIT. A NEW ALGORITHM

Necessary conditions for the optimal control of a dynamic system
which is nonlinear in the state and linear in the control were derived
in Chapter II. It was shown that except for singular arcs, the opti-
mal control (r variables) is always determined by r active con-
straint boundaries. In Chapter III, the nature of the optimal control
strategy derived in Chapter II is used as the basis for a new algorithm
for the solution of such optimization problems.

First, a feasible solution is obtained which satisfies all path
and terminal constraints, and for which the controls always lie along
r constraint boundaries. Thé Euler Lagrange equations are not uti-
lized in the determination of this feasible solution; it may or may
not be a local minimum. Then, it is shown that the Lagrange multiplier
time history can be easily and uniquely calculated from this feasible
solution. The necessary coﬁditions for a local minimum may be calcu-
lated as functigns of the Lagrange multipliers. If the initial fea-
sible solution does not satisfy the necessary conditions, the control
history is modified, and nonlinear optimization (gradient search) tech~-
niques are used to improve the solution.

| A, Modified Problem Statement
In chapter II it was shown that except for singular arcs, the

optimal control variables (r variables) are élways determined by an

equal number of active constraints at all points along an optimal tra-

15
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jectory. Tﬁe problem is to find which constraints are active, as a
function of time. It will be assumed that the optimal trajectory con-
sists of a number of segments. For each segment, the control variables
are determined by a set of r active constraints. The optimal control
problem stated in (2.1) to (2.4) is solved by finding the optimal
values of the switching times, i.e., the times at which the active
constraints switch from one set to another.

The modified optimal control problem can be stated as follows: It
is desired to find the values of the w switching times,

{ti, i=1, . « oy,W}

which minimize the scalar functional

e

3= slx(ty,t.l + la(x,t) + br(x,t)uldt
to
while satisfying the vector system differential equations
; = f(x,t) + g(x,t)u

and terminal constraints

‘pi[x(tf))t]:O i=l,...,p_<_(n+l)

During time interval
the control is given by

in accordance with (2.10).
The above modified problem is a parameter optimization problem

with equality constraints, which might be easier to solve than the

I N T
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original optimal control problem. However, it should be emphasized
that the number of segments in an optimal trajectory, and the active
constraint sets for each of the segments, are not known in advance.

The problem statement can be further modified into an uncon-
strained parameter optimization problem by using the reduced gradient
method, as presented in reference 12. To accomplish this, the switch-
ing time set is partitioned into two subsets, having p and (w - p)
members, respectively. The p members of the first subset are con-
‘sidered as dependent variables, in the following sense: Whenever some
of the switching times in the second subset are varied, the values of
the p terminal constraints will change from their converged values.
The values of the p switching times in the first subset are tﬁen
used as iteration variables in order to reconverge the terminal con-
straints to the desired final values. In this way, the problem is
converted into the following form: Find the values of the (w - p)

switching times

{ti,i=(p+l), . . .,w}

which minimize the scalar functional

i

T
J = ¢[x(tf),tf] + [a(x,t) + b (x,t)uldt
%o
while satisfying the vector éystem differential equations

; = f(x,t) + g(x,t)u

where, during time interval

T T e e
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the control is given by

The above unconstrained parameter optimization problem may be solved
by using any of a number of nonlinear optimization techniques avail-

able, such as those discussed in reference 12. The results presented

in this report were obtained by using the parameter optimization tech-

nique reported in reference 11.

B. Feasible Solution

In order for a trajectory to be a local minimum solution to (2.1),

equations (2.12) and (2.13) of Chapter II must be satisfied, and the

control must satisfy constraints (2.3) and optimality conditions (2.9b

and ¢). In addition, terminal constraints (2.4) and (2.7) must be
satisfied, and equation (2.8) must be satisfied if the terminal time
tf is free. 1In developing the algorithm for the solution of thisg
problem, it will be assumed initially that ¢t is free.

f

will show how to modify the algorithm for the case in which t

Later, we
£ is
specified.

We define a feasible solution as one which satisfies the system
differential equations (2.2) and the terminal constraints (2.4), and
where the control u(t) is consistent with the necessary conditions
for optimality - that is, the control is determined by r of the
path comstraints (2,3) at all points along the trajectory. It is not

necessary that the control be determined by the same r constraints

at all points along the trajectory - in fact, we will usually require

the control to be determined by several different constraint sets, as

Lt
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will be seen shortly. Such a trajectory may or may not be a local min-
imum solution for the performance index (2.1).

In order to obtain a feasible solution, there are p terminal
constraints (eqs. (2.4)) which must be satisfied. In general, there
must be p degrees of freedom available in order to satisfy the p
terminal constvaints. In order to provide these degrees of freedom,
it will be assumed that there are at least p segments in the trajec~
tory. For each segment, the control is determined by choosing the «r
constraints which are active. The set of active constraints may be
chosen arbitrarily for the first segment; for each succeeding segment,
one of the active constraints should be different than any which was
utilized in the preceding segments, The durations of p of the seg-
ments are variable, and provide the p degrees of freedom necessary
to satisfy the p terminal constraints.

The choice of the constraints to be active for the various tra-
jectory segments should be made carefully. There is mno guarantee that
a solution exists for arbitrary cheice of the active c¢onstraints, or
for any choice of active constraints, for that matter. Also, some of
the constraints assumed to be inactive in the initial feasible solution
may be violated. In this case, different active constraints must be
chosen.

The combination of p degrees of freedom and p terminal con-
straints is known as a multipoint boundary value problem, and must gen-
erally be solved iteratively. Two wiﬁely used classes of methods for
solution of such problems are Newton-Raphson methods and gradient

methods. Both of these methods are widely discussed in the literature
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(see, for example, refs. 12 and 17) and will not be discussed here.
However, both methods require initial guesses for the values of the P
degrees of freedom, and partial derivatives of the terminal constraints
with respect to the degrees of freedom. Equations for calculation of
the required partial derivatives are derived below.

Suppose, for example, that initial guesses are made for (p - 1)
of the junction times £, and for te. The choice of these times is
sufficient to determine a reference trajectory, and values of the p
terminal constraints wj’

If one of the ti is altered slightly, the state at ti is
changed by

dx(ty) = [k(£]) - k(cfl‘)]dti

The effect of changes in the t; on the terminal constraints may

therefore be obtained by integration of

d {3ax Y _ 3 -T., 9% A -
T (5?7) =3 (£ -8 0 5 i=1,2, ..., (p-1)
i 1
(3.1a)

from t = ti to t = tf, with initial conditions

BX ;a - _o + —
5;;-— X(ti) x(ti), t = ty (3.1b)
The awj/ati are then calculated from
Y, 9y, ox
—l-df (3.2a)
t, 9x_. ot,
i £
Also, we have
By, 9y,
5, - ax. <(tg) | (3.2b)

I T DRI T
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Fixed final time. - It was assumed in the above discussion that

the terminal time te is free. 1If tf is fixed, then the duration
of the final segment does not provide a degree of freedom. Therefore,
there must be at least (p + 1) segments for P terminal constraints,

and the durations of p of the segments provide the necessary degrees

of freedom.

C. Calculation of Lagrange Multipliers
We consider first the case in which the terminal time is free.
Suppose a feasible solution has been found. We will show that the
Lagrange multipliers X and 4 can be uniquely calcuiated, as a
function of time. Once the multipliers have been calculated, the

necessary conditions for optimality can be checked. If the necessary

conditions are not satisfied, an iterative improvement scheme is used

in order to find a local minimum solution.

Let the ith trajectory segment have initial time tj-1 and final

time t. The control for the ith segment was determined by a set of

r active constraints, and the control just prior to ti is denoted

by u(t;). Just after ¢t = ti’ the control is determined by different

active comstraints, and is given by u(t:) # u(t;). It is shown in

appendix B that the Hamiltonian must be continuous at ¢t = ti. There-

fore, we must have

E:T(ti) + )\Tg(ti;] [u(tb - u(t;ﬂ =0 i= l,'2, v o iy (p~1)

(3.3)

where the notation g(ti) is shorthand for

- g(t;) 4 g[x(ti),ti]

e "
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Equation (3.3) must be satisfied at each of the (p-- 1) junction
points which are varied in order to satisfy the terminal constraints.
Also, as shown in appendix B, the terminal X and H must be given

by (2.7) and (2.8).

8y (L)
AT(tf) =o' axff t gif
Bty g d0(Ep)
H(tg) = - 5t -V 3t

If we use (2.5) for H, and substitute for u and XA from (2.10) and

(2.7), respectively, the above equation is converted to

do(ty) )
vT %% (tf) + —EEEE—-+ a(tf) + bT(tf)D T(tf)C(tf) = Q (3.4)

Equations (3.3) and (3.4) give p equations which must be satisfied,

and there are p multipliers which may be varied. Thus, we have a

multipoint boundary value problem, similar to that which must be solved

iteratively to determine a feasible trajectory. However, in the pres-

ent case, iterative solution is not required. Instead we can solve

for the parameters v as follows:
First, we find (p + 1) backward solutions of the A equation
(2.13) for vi= (0, . . .,0), vi=(1,0, . . ., 0),

wI=¢,1,0,...,0, ..., v =¢(,0,...,0,1) vhere

These backward solutions are called

Oy, By, L., 2P (3.5)
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Then A(t) is given by

) = 2O+ aew (3.6)
where A(t) is defined as
aey & P L L aPm)] (3.7)
There are (p ~ 1) equations for the continuity of H:
+ - 4T 0
faceh) - weP1 e + g7 e + gfepacepvl =
i=1,2,..., (-1 (3.8)
and at tf, we must have
T
a(ty) - b (tf)D (tf)C(tf) + (tf) + (tf) =0 (3.%)
These equations may be put in matrix form as follows:
Define vectors r, and 9y and matrices Q and R by
T + -+ T X
A [ut) - u(e)]™ 8 (e A, i=1, ..., (p-1)
+ - T 0
212 ueh) - weD1 ey + gt e e
T (3.10)
qp = dt
T A d¢
rp A a(tf) +b (t )D (tf)C(tf) + It (tf)
T T
4 1
Q2 - R A - (3.11)
o
P P

Then v may be calculated from

T Y T Ty S ST T T T ST TS TP

R I I T
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v =-Q R (3.12)
Once the v are know~, (2.7) can be used to calculate AT(tf),
and A(t) can be obtained by integrating (2.13) backward in time, or

by using (3.6).

Fixed final time. - In the above development, it was assumed that

the terminal time te is free. 1In the event that te is fixed, the
equations for calculation of v are easily modified. In this case,
(3.4) is not applicable. Instead, there are p of equations (3.8),
instead of (p - 1), since there are (p + 1) segments for this case.
The p equations (3.8) are sufficient to calculate the p param-
eters, V.
D. Improvement of Feasible Solution

The Lagrange multipliers can be used to determine if the neces-
sary conditions for optimality are satisfied by the initial feasible
solufion. The optimal control is obtained as a function of time by
finding active constraints which result in satisfying (2.9b and c¢) and
(2.3), using x(t) and A(t) as determined from the feasible solution.
If uopt(t) as determined in this manner is identical to the control
time history ufe(t) utilized in the feasible solution, then the ini-
tial feasible solution satisfies the necessary conditions for an opti-
mal solution, and no further calculations neéd be made. On the other
hand, if uopt(t) differs from ufe(t) for aven a portion of the tra-
jectory, then the feasible solution is not a local minimum.

Suppose, for example, the control uopt(t) differs frqm ufe(t)

during trajectory segment k. Then the performance index (2.1) can be
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improved by splitting segment 'k into two parts, and using control

as follows.

u(t) = uopt(t)’ tk—l <t X<t
(3.13)

= < <

u(t) ufe(t), t St=t

where tsw should be chosen to be only slightly greater than tk—l’

so that the modified trajectory differs only slightly from the initial

feasible trajectory. Because of the modified control history, the new

trajectory will not satisfy the p terminal constraints (2.4). There-

fore, the original p junction times should be adjusted, while hold-
ing tSW fixed, so that the terminal constraints are satisfied.

to ¢t

During the time interval from te 1 sw? the control has

been changed (from that of the initial feasible trajectory) from

ufe(t) to u (t). Therefore, the state at tsw is changed (to

opt
first order) by

AXsw = g(tsw)[u (tsw) - ufe(tsw)](tsw - tk-l) (3.14)

opt
The effect of this change on the terminal conditions wj is deter=

mined from

Y,
AY, = —L Ax(t)) (3.15)
9x £
£
where Ax(tf) is obtained by integration of
d 3 -7 »
ac (ax) = P (f - gD "C) (Ax) | (3.16)
from t =t to t=t., with initial conditions given by (3.14).

The change in the wj must be canceled by appropriate changes

in the t;. Therefore, we must have

B
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A,

- =
by + 5, At, =0

which may be solved for Ati to give

awj -1
Ati = - S—t: ij (3.17)

Equation (3.17) is applied repeatedly in an iterative manner until the
terminal constraints are satisfied to sufficient accuracy so that fur-
ther iteration is not required.

Once a modified trajectory has been obtained and theterminal con-
straints satisfied, the Lagrange multiplier time history may be calcu-
lated for the modified trajectory in the same manner as it was calcu-
lated for the initial feasible trajectory. From the Lagrange multi-
pliers, the gradient of the performance index with respect to the
switching time, i.e., BJ/BtSW can be obtained. It is shown in
appendix B that

83‘] = H(e ) - H(t:w) = kT(tsw)g(tsw) [uleg,) - “(t:w)]

swW

+ bT(tSW)[u(t;W) - u(t:W)] (3.18)

The set of all such switching points tsw and corresponding
gradients, can be used in cdnjunction with a nonlinear search tech-
nique (see refs. 12 or 17 for a general discussion of nonlinear
search techniques, or ref. 11 for the particular search technique used
to obtain the results presented in this report) to search for the
values of tSW such that the gradient vector aJ/atsw, ié equal to,

or nearly equal to, zero.
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E. Merging of Switch Points

In this report, optimal solutions are found by searching for the
values of a number of control switching times which minimize a perform-
ance index and satisfy terminal constraints. These switching times
divide regions of different control action, in which different path in-
equality constraints are active. TIn addition to the number of such
control regions, the order in which these regions occur (timewise) must
be specified initially. However, during the course of the search for
an optimal solution, the switching times do not necessarily remain in
the originally specified order.

Suppose, for example, the set of switching times for the initial
feasible solution is given by {ti, i=1, . . ., w 2p} and
g <t <. .0 % t, < te The values of p of the switching times
are varied in order to satisfy the terminal comstraints, while the re-
maining (w - p) switching times are varied to minimize the performance
index. During the search for an optimal solution, there are three
possible situations which can arise which affect the order and/or num-
ber of switch points. These are: (1) tl becomes less than to;

(2) . becomes greater than tf; (3) e becomes greater than tk+l

where 1 =k < (w - 1),

Cases (1) and (2) may be handled in an identical manner. It is
tentatively assumed that segment 1 (or segment (w + 1)) is not required,
and the search is restarted with one less segment. Once this reduced-
segment search has converged, the necessary conditions for optimality
are checked, and the segment which had been eliminated is reinstituted

if necessary (along with other additional segments, as appropriate).
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The segment which was eliminated may have been one of the p segments
used to satisfy the terminal constraints. In this case, one of the
remaining segments which had been used to minimize the performance
index must be used instead to satisfy the terminal constraints.

The procedure followed if case (3) is encountered involves several
possibilities, and can result in a change of active constraints or a
loss of one or two switching times. It was stated earlier that at each
switching time, one of the active constraints changes. For definite-
ness, let the active constraint from segment k which is inactive in
segment (k + 1) be denoted by comstraint a, Also, let constraint b
denote the new active constraint for segment (k + 1).

Similarly, let cbnstraint ¢ denote the active constraint from
segment (k + 1) which is inactive in segment (k + 2), and let con-
straint d denote the new active constraint in segment (k + 2).
Clearly, a # b, c # d, a# c, and b # d, but b and ¢, and/or a
and d, may be the same. The several possibilities are as follows:

(3.1) b # ¢, a # d. For this case, if t and t

k k+1

equal and interchange, then the active constraints for segment (k + 1)

become

become a and d, instead of b and c¢. No segments are eliminated.

(3.2) b = ¢, a # d. TFor this case, if £y, and tk+l become
equal, segment (k + 1) and switching time tk+l are eliminated.
(3.3) b = ¢, a =d. For this case, if t, and t, .. become

equal, segments k and (k + 2) merge into one, and segments k and

(k + 1), and switching times t, and t, . are both eliminated.
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@ F. Insertion of New Switching Times
Suppose a local minimum solution has been found for a particular
set of switching times {ti, i=1, . . «, w 2 pl. As discussed earlier,
the next step is to determine if the necessary conditions for a local
minimum solution have been satisfied. If not, new switching times are

added, and a new search for a local minimum is undertaken. The new

switching times are added in the region in which the necessary condi-

tions are violated. Initially, the new switching times are inserted
at times exactly equal to existing switching times. In this way, new
segments having new active constraints are added, but with zero time

duration.

For example, suppose an initial feasible solution is found having |
w segments, and it is discovered that the necessary conditions for a i
local minimum are not satisfied during segment k. Then a new segment
and corresponding switching time are added during segment k., Initi-
ally, the new switching time is placed at to+l = te_1 8° that the
new segment starts at t, and has zero duration. A segment having
sero duration cannot alter the trajectory or performance index; there- i
fore, we have

J(tl, R T
i.e,, the performance index is continuous with respect to insertion
of new switching times.
G. -Convergence Issues

It is highly desirable that one be able to demonstrate in ad-

feme

1
vance that a particular search will always converge to a solution ]

e which satisfies the necessary conditions for a local minimum. There

T PSRRI R R
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are several properties which the algorithm must have in crder to
assure such convergence. First, the algorithm must be setup as a
descent algorithm. That is, each trial solution must have a smaller
performance index than the preceding solution. This descent property
is possessed by most available nonlinear optimization techniques, in-
cluding the one used herein (ref. 11). Additionally, both the algo-
rithm and the performance index rwust be continuous functions of their
arguments, in this case‘?he switching times.

It is clear that the performance index is a continuous function
of the switching times sc long as the switching times do not inter-
sect, and no switching points are deleted or inserted. It remains to
be shown that the performance index is continuous even when switching
times intersect, and/or switching times are added or deleted.

Wwhen switching times intersect, the algorithmic search is termi~
nated. As discussed previously, the intersection may result in the
deletion of zero, one or two switching points. 1In any case, the de-
leted switching times correspond to segments having zero duration at
the time of intersection. Since segments of zero duration do not
affect the trajectoXxy or performance index, it cén be concluded that
the performance index is continuous with respect to switching time
deletions. After the deletion of switching times, the search is re-
started with the appropriate number of switching times.

Switching times may also be added after a search is completed if
it is discovered that the necessary conditions for a local minimum
solution have not been satisfied. This possibility has been discussed

previously. It was shown that the performance index is continuous
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with respect to such switching time additions because the new switch-
ing times are added in such a manner as to create segments of zero
duration initially.

The one required property which unfortunately is not possessed
is continuity of the algorithm. Whenever switching times are added
or deleted, the number of arguments changes, and it can be shown that
the algorithm is discontinuous under such conditions, Because of this,
convergence to a solution which satisfies the necessary conditions for
a local minimum cannot be guaranteed. Nevertheless, such convergence
is assured if no switching time insertions or deletions are encoun-
tered. Furthermore, convergence to a solution which satisfies the
necessary conditions for a local minimum will be attained in most in-
Stances even if switching time insertions or deletions are encountered
during the search.

H. Summary of Algorithm Steps

It is useful to summarize the steps which are followed in the
determination of an optimal solution, using the algorithm presented
herein:

(1) An initial feasible solution must be found. The number of
segments - w 2 p is selected, and the r active constraints for each
segment are chosen. The p segments which are varied in order to
satisfy the p terminal const:aints are also chosen; The initial -
feasible solution is obtained by diterating o the p wvariable switch-
ing times until the p terminal constraints are satisfied to desired
aécuracy. (2) The Lagrange multipliers corresponding to the initial

feasible solution are calculated by using the procedure described in
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Chapter III, The necessary conditions for optimality are calculated

from functions of the Lagrange multipliers. (3) If the necessary con-

ditions for optimality are not satisfied, additional control segments
are added (if required) and the values of the (w - p) switching times

are used in conjunction with a parameter optimization (gradient search)

procedure to improve the initial feasible solution.
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CHAPTER IV. PIECEWISE-LINEAR MODELS

An important spebial case of the problem considered in chap-
ters II and IIT is when the performance index, system equations and
path constraints are all linear in both the state and the control.
This case occurs frequently in practice because linear approximations
to complex dynamic systems are readily available. Furthermore, solu-
tions to linear problems are easier and less costly to obtain because
the system and Euler-Lagrange equations may be represented by transi-
tion matrices,

If the actual system is only slightly nonlinear, a single linear
approximation to the nonlinear system may suffice over the full oper-
ating range, However, if greater accuracy is desired and/or the
actual system is very nonlinear, a series of linear models may be used,
each of which is obtained by linearizing about a different equilibrium
point. Linear equations are still used to describe the system at each
state point, but the coefficients in the linear model vary from point
to point. Such a model is called a piecewise limear model.

In this chapter, linear and piecewise linear models will be con-
sidered. Although the development of chapters II and III is fully
applicable to this'problem, significant results for the linear problem
will be repeated here because of the importance of this special case,
The one-piece linear model Wili be considered first; then, the piece-

wise linear model will be considered.

33
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A. Linear Model
The problam to be considered is to find the control wu(t) which
minimizes the functional
e
- T T
J = ¢[x(tf),tf] + (a™x + b u)dt (4.1)
o

subject to the system differential equations
x=TFx+ Gu+h (4.2)
and path inequality constraints
Tx +dute, 20 i=1,2,...,49 (4.3)
i i i

Here, the vectors a, b, s di’ and h, and the matrices F and G,
are all constant. The terminal constraints on the state are given by

(2.4). The Hamiltonian for the linear problem is

q
H = aTx + bTu + XT(Fx + Gu + h) + §£:>pi(ch + dzuxfeix4.4)
i=1
and the resulting Euler-Lagrange equations are
. q
AT = saf - aTr - Euic“i-‘ | (4.5)

The Lagrange multipliers must satisfy terminal conditions (2.7) and
(2.8). The optimal control is determined from
q e
b + 2T + _,“idg =0 (4.6)
i=1

where

S S TP
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>0 if c?x + d?u +e, =0
i i i

=0 if olx+du+e, <0
1 1 1

We assume, as in chapter II, that the solution is nonsingular
and the active constraints and optimal control have been determined
from (4.6) and (2.3). The active constraints are formed into matrices

as follows:

T T
‘1 4
C = DT =
cT dT
r T
and the optimal control is given by
u = —D—TCx 4.7
The multipliers 1y are given by
u= - + ¢t (4.8)

Substitution of (4.7) and (4.8) into (4.2) and (4.5) results in

x=(F -G T)x +h (4.9)

AT = —@t - v %) - AT - T (4.10)
Determination of the feasible trajectory and Lagrange multipliers
proceeds exactly as in chapter III. However, the sensitivity
vectors defined in (3.1) and (3.5) as well as solutions to the systém
equationé and Euler~Lagrange equations, may be represented by transi-

tion matrices because the equations are linear. For example, (3.1)

P

ST -

becomes
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d fox \_ ~T . [ 9x
Ft3 (a*cf)" (F -6 70 (5?:‘)
1 1

which has the general form

dp _ ) _
3 = M+ NP; P(0) = B, (4.11)

where P and M are (n X 1) vectors and N is an (n X n) matrix.

The solution of (4.11) is given by

t
P(t) = @(t)PO + o(t - 7)M dt (4.12)
0
or
P(t) = @(t)PO + N“l[cp(t) - IM

where

¢ = N
with initial condition

$(0) =1

Also, ¢(t) may be calculated from

o(t) = TA(t)T'l

At AL
A(t)=diag[}1,...,en:]

Ai is the i"" eigenvalue of N, and the ith column of T is the ith

where

eigenvectorrof N.
B. Piecewise-Linear Modeling
The deéirability of using linear equations to model a system is
obvious. Nevertheless, the actual system may be so nonlinear that a

linear system description is not sufficiently accurate over the full
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QZ) range of interest. In such cases, it is possible to increase model
accuracy while retaining the advantages of linear modeling by using a
piecewise-linear system model.
Suppose, for example, the nonlinear system is linearized about a
number of equilibrium points. In the neighborhood of each equilibrium

point, we have

L

X = Fj(x - xej) + Gj(u - uej) (4.13) e

where xej and uej are the equilibrium values of state and control
at the equilibrium point J. The system matrices Fj and Gj also i
i

| differ, in general, for each equilibrium point. The path constraints

may also be linearized about each equilibrium point to yield

T T . .
cij(x - hej) + dij(u - uej) + e 5 0 i=1,2,.. .4 (4.14)

The path constraint vectors cij and dij also differ for each equi-
librium point. |
With a piecewise linear model, the system is described by linear
equations at each state point, but the linear system coefficienté vary
from one point to another, A question that arises is which equilibrium
model applies best for a given state, x? It is natural to choose the
equilibrium point which is closest to x in some sense. Since the

various states do not necessarily have the same physical dimension, a

normalized distance function is used to determine which equilibrium

point is closest. TFor a given state x, the distance functions

. T ‘
Ij = (x - Xej) W(x - XEj) : (4.15)

are calculated for each equilibrium point j, and the equilibrium

point is chosen for which Ij is a minimum.
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Since the Ij are continuous functions of x, model switches

(say, from j to k) occur when Ij =1  or

G = x5 ) TG = %) = Ge = ) TG = ) g

Simplification of this expression resits in

o BRI LT

T T T T |
- = - ]
2(xek xej)Wx xekaek xeijej i
If we define ﬁ
i
Aol x - |
Sjk £ ajkx Bjk (4.16) |
where #
‘]
T A T T i
Cij = Z(Xek - Xej)W (4-17) »
and ﬁ
L
AT _ I
Bjk = xekaek xeijej

then, switches between equilibrium models j and k occur at
Sjk =0 (4.18)
Although (4.16) is linear in x, iterative solution is generally re-

quired to find the switching points, since x 1is not a linear func-

tion of time.

C. Necessary Conditions for Optimality
The problem to be solved is to minimize : f
~t
£ T T
3= 9lxty) e + (a%x + bTwyar
%o

subject to the system differential equations

i =F(x ~-x .,) +G,(u~u_,
00 = ) ¥ Gyu - u )
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and path inequality constraints

T T <
cij(x xej) + dij(u - uej) + eij 20

i=1,2,...,49

where the linear model index j 1is determined from

. T
m;n(x - Xej) Wlx - xej)

At switching points between models j and k, we have

T
ik T %K* T Bk

where ajk and Bjk are defined by (4.17). The Hamiltonian is

defined as

T T T
H=ax+bu+aA [Fj(x xej) + Gj(u uej)]

AL = gl o aTE, - uoer,
j z ; 1%

where the model index j is the same function of time as determined
by integration of the system equations. In additiom, it is shown in
reference 15 that the Lagrange multipliers are discontinuous at model

switching points, the jump in A being given by

+ -
A(ts) ='A(ts) + Eajk (4.19)

where - ts is the time at which the model subscript changes from j
to k. Furthermore, since the switching time is not specified a priori,

the Hamiltonian must be continuous at t = tye Therefore, we must have
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Q pluceh) + (e + eajk]Tic(t:) = blu(e)) + xT(t;)s{(:;)
(4.20)
which gives
WTED D) - w(eD] b () - uE)]
£ = T (4.21)
ujki(ts)

The equations (4.6) for determination of u, the equations .7

and (4.8) for u and WV, and the equations (4.9) and (4.10) for the

working forms of the system and Euler-Lagrange equations, all apply

to the piecewise-linear model, but with the appropriate model sub~

script j added.

D. 1Initial Feasible Trajectory

Calculation of the initial feasible trajectory proceeds in the

same manner as in chapter III, except that the model switches must be

made at the appropriate times. Also, the calculation of the partial

derivatives awj/ati in (3.2) must be modified. Suppose the junction

time ti is perturbed slightly and there is a model switching time
ts > ti. Since ts is determined by satisfying (4.18), the change in
t, causes tg to change. Therefore, the change in t. not only

affects the wj directly as in (3.2), but also indirectly through the

effect of a change in t  on ,wj.

Specifically, a change in t, causes x(ts) to change by

~ '8xs
dx(ts) =3 dt:i (4.22)
i
where Bxs/ati is obtained by integration of (3.1) from t, to tg-
T » The resulting change in the model switching function § 1is

e
i

I I T R e TS
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ox

s
EEI dti (4.23)

ds = aT dx(ts) = uT

This change in S must be canceled by a change in t- Therefore,

we have

T Bxs

dsS = a 3
i

T., - _
dti + o x(ts)dts =0

from which it follows that

T axs
Bt @ 3t
'5‘£T"= - ‘—T‘:—‘_—- (4.24)
i a x(t )
Therefore, a¢j/ati is given by
QT ax
2y, 9P, | 9x 9x ot,
wj - wj £ _ £ i (4.25)
ot, ox_ | ot, ot T,, = '
i £ i s \o x(ts)

E. Calculation of Lagrange Multipliers
The procedure for calculating the Lagrange multipliers correspond-
ing to the initial feasible solution differs from that employed in
chapter III, because of the jumps which occur in the multipliers at
model switching times, as given by (4.19) to (4.21). For simplicity,
we consider the case in which there is a single model switching point.

The procedure which will be derived can be extended to the case of mul-

tiple model switches. At a model switching point, we have

T, + T, =
A (ts) = A (ts) + Edjk (4.19)

As in chapter III, the value of H must be continuous at the p -1

variable junction poin;s, t = tl’ . o s, tp—l' In addition, for final
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P

time free, equation (3.4) must also be satisfied.
Except at ts’ the requirement for continuity of H is achieved

by satisfying (3.3). The requirement for continuity of H at t = t_

requires special consideration because of the change in the system equa-

tions, and can be expressed as

AH =b [u(t ) - u(t )1+ X (t )[x(t ) - x(t ]+ ea x(t ) (4.26)

In order to solve for € and the p values of v, we find
(p + 2) backward solucions of the i equation (2.13). The first
(p + 1) of these solutions are identical to (3.5); A(p+l)(t) is ob-
tained by integrating (2.13) backward, starting at t = t_, with ini-

tial conditions

(ptl) -
A (t) = =
By superposition, A(t) is given by

ey = 2Oy + ace)v + e ey 4.27)

The (p + 1) equations for the determination of ¢ and v are given by

fueh - w1t + g e ) + ey
+ gT(ti)A(p+l)(t)s] -0 i=1, « v .y (p-1) (4.28)
[a(eh - weD1 e + k() - &) T ey + ae v

L AT _
+ x(ts) uj e=0 (4.29)

, T
alt) - bT(EID (e )0 + §E (k) + [%(tf)] v=0
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The calculation of v and € proceeds exactly as in (3.10) to (3.12)
and will not be repeated here.
F. Improvement of Feasible Traijectory
Equations (3.14) to (3.17) used to reconverge the trajectory at

each iteration of the improvement phase must also be modified because

of the variable model switching times. Suppose there is a model switch-
Then, if tow ie modified, the effect

. . <
ing time such that tSw ts.

on the model switching function 8 is given by
T
AS = a Ax(ts) , (4.31)
where Ax(ts) is obtained by integration of (3.16) from toy tO° te»

with initial conditions given by (3.14). The change in S must be

canceled by a change in tg- The result is

T
- Ax(ts)

At = (4.32)

s T, , -
o x(ts)
The terminal conditions wj are altered due to the direct effect of

the change in tsw’ and indirectly due to the change in ts. The

total change in wj is given by

T
Y, ox. o Ax(t)
£ S
AP, = —+ |px(t.) - (4.33)
J ’axf £ 3ts OLT}.{(C;)

where Ax(tf) is obtained by integration of (3.16) from tsw to tg,
with initial conditions given by (3.14), and Bxflats is obtained by
integrating (3.la) subject to initial conditions (3.1b), for ti = t_.

The change in wj must be canceled by appropriate changes in

the ¢t As in (3.17), this results in

i
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T
o Ax(ts)

(4.34)

anc(c;)
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/&/ -

CHAPTER V. DEMONSTRATIVE EXAMPLE

The ideas developed in chapters II through IV are illustrated in
this chapter with the aid of numerical examples. First, a problem
will be solved in which the system equations are nonlinear in the
state and linear in the control. The possibility of minimizing singu-
lar arcs will be discussed. Next, the same problem will be solved by
using one- and two-piece linear approximations to the original system
equations. Solutions will be obtained for two different sets of
terminal state constraints, and both one and two control variable
problems will be solved.

A. Problem Statement
Consider the problem of finding wu(t) which transfers the system

X = —x2 + u

(5.1)

vy =4y +u
subject to the control limits !ul 2 2 from initial conditions
(xo,yo) = (1,1) to terminal conditions (xf,yf) = (0,0) in minimum

time,

We have in (2.1), (2.3), and (2.4)

¢ = tg, a=b=20

¢y = -2, dl = -1
(5.2)

¢y, = -2, d2 =1

by = Xgs by = Vg

“-
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The Hamiltonian (2.5) is
- 2 2
H = Xx( x~ 4+ u) + Ay(—&y + u) + ”1(" - u) +_p2(-2 +u) (5.3)

and the Euler Lsgrange equations are

A= 22 %
X X
\ (5.4)
A= 4
y y
The control is determined from
mln(Ax + xy)u (5.5)
u
which results in
u o= -2 sgn()\x + Xy) (5.6)
The terminal conditions on the Lagrange multipliers are
A(tf) =V
(5.7)
1(t.) = -1
I(tt)

B. Nonexistence of Singular Arc

IS

The optimal contrel is determined from (5.6) unless (Xx + ky) 0.

In this case, the control is determined by successively differentiating
(Xx + Xy) with respect to time until the control appears explicitly.

This procedure results in
d X .
— (A 4 A Y = 2xx+4a =10
dt X y X ¥
(5.8)
& o+ =20+ 20 u+16r =0
X y 0 X y

'dt2

Simultaneous solution of (Ax + Av) = 0 and (5.8) results in two possi-

bilities for a singular axc. First, we may have x = 2 and u = 4,

However, this is not pogsible, since we must have lu[ = 2. .The second
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0. 1In this case, we would have H =0

Hl

possibility is that Ax = ky
and since the system is autonomous, H = 0. However, this is incon-
sistent with H(tf) = -1 in (5.7). Therefore, there can be no singu-
lar arc for this problem.
C. TInitial Feasible Solution

Since there are two terminal constraints and the terminal time
is free, the initial feasible trajectory must have two segments. The
only possible control for these segments is u = +2. Therefore, we

assume tentatively that the optimal control history is given by

u = -2, 0%t S.tl

(5.9)

|A

t

u= 2, t, £t £

1
with tl and tf to be determined such that Xe =Yg = 0. The state
equations (5.1) can be integrated in closed form when (5.9) is used

as the control. The result is

1 - V2 tan V2 t1

x(t,) =
1 1+ QL-tan V2 tl
V2 (5.10)

-4t -4t
y(tl) = - %-(l -e l) +e ©

Tterative solution of (5.10) for tl and tf such that

x(tf) = y(cf) = 0 results in

= 0,56, £, = 0.69

1
D. GCalculation of Lagrange Multipliers
For this problem, we have 3¢/dx = 0 and 3y/3x = I. Therefore,

A(tf) = v. We must integrate (5.4) backward with three sets of initial

conditions - ‘A(O) (tf) = (g), x(l) (tf) = (é‘), )\’(2) (tf) = ((])_) in order to

I T O T PV L DU L R
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. (0) . .
find A(tl) and A (tl). Equations (5.4) may be integrated in

closed form as follows:

o alet) )
A () = A (e)e
2 () - 2A_(t.) = A_(£) [-4y(t) + 2] $ €2ty
A (L) = x £ vy £ v
x —xz(t) + 2

Equations (3.8) and (3.9) give

1.035 O vl
4 (1,1) =0
0 0.595 v,

(2,2) = -1

and

which can be expanded to give

1.035 vl 4+ 0.595 v, = 0

2
Vi + v, = -0,5
Solving for 21 and v, yields
v, = 0.676, v, = -1.176
Therefore, from (5.7) we have
Axﬁtf) = 0.676, Ay(tf) = -1.176 (5.11)

From this problem, the state equations and Euler—Lagrange equations

can be integrated in closed form. The result is
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4(t-tf)
Ay(t) = -1.176 e

-1 - ly(t) [-4y(t) + 2]

A (E) =
X -xz(t) + 2

> t; <t f.tf (5.12)
-0.252 + 1.414 tanh V2 (t - t.)

1
x(t) =

1~ 0.178 tanh vV2 (t - ty)

-4 (t~t, ) -4(t-tl)
y(t) = 0.5]1 - e - 0,340 e

J

4(t—tl) h
A (t) = -0.699 e
y
1 - A (£)[4y(t) + 2] i
A (E) = 12 : ;
x7(t) +2 5 0t st (5.13)
x(t) = L = 1.414 tan V2 ¢
1+ 0.707 tan V2 t
v(t) = =0.5(1 - e_4t) + e—4tJ

E. Optimality of Initial Feasible Solution
The initial feasible trajectory was obtained under the tentative
assumption that the optimal u(t) is given by (5.9). According to

(5.6), this control strategy is optimal only if

Ao+ A_ >0, 02t =2t
X Yy

(5.14)
A+ A <0,
x y

To determine if this iz the case, (Ax + ly) is calculated as a function

of time from (5.12) and (5.13). The result is plotted in figure 5.1,

and shows that for this problem, the necessary conditions for opti-
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———— NONLINEAR MODEL

. ’-—- === LINEAR APPROXIMATION

= ==— PIECEWISE LINEAR APPROXIMATION

- m—

I l l |

0 .2 4 6 .8 1.0

“TIME, sec

Figure 5.1, - Switching function as a function of time for
initial feasible trajectory.
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mality are satisfied by the initial feasible trajectory. Therefore,
no further improvement needs to be made. The optimal trajectory,
x(t) and y(t), is shown in figure 5.2.
F. Linear Approximation

The nonlinear system equations (5.1) may be approximated by
linear equations. Actually, since the ¥ equation is already linear,
only the % equation needs to be approximated. If we choose to
linearize the % equation about x = 0.5, the result is

-2x] (x - 0.5) + (u - 0.25)
1x=0.5

X

Iz

I

-x + u+ 0.25 (5.15)
For this linearized model, the Hamiltonian is

H = XX(—x + u + 0.25) + ly(-4y + u) + ul(—Z - u) + uz(—Z + 1) (5.16)

and the Euler-Lagrange equations are

XX =2

X (5.17)
A o= 4
y y

As previously, the initial feasible trajectory is ¢btained by assuming
(5.9) is the optimal control strategy. Solution of the resulting

boundary value problem for tl and te yields

= 0.68, t. = 0.827

£ £

The solution of equation (3.7) is given by

0.863 0
ACtl) =
0 0.555
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and squations (3.8) and (3.9) are evaluated to give

vl = 1.163, vy = -1.808
from which it follows that
Ax(tf) = 1.163, Xy(tf) = -1.808

Since the boundary conditions are known, the system and Euler-Lagrange
equations can be integrated to give x, ¥, Ax’ and ky as functions
of time. The switching function (Kx + Ay) is shown in figure 5.1, and
the optimal trajectory is shown in figure 5.2. As was the case when
the nonlinear equations were used, the initial feasible trajectory is
a local minimum in the present case also.
G. Piecewise=Linear Approximation

Comparison of the nonlinear and approximate linear results in
figures 5.1 and 5.2 shows that the linear approximation does not give
a very accurate representation of the nonlinear system for the present
problem, The approximation may be improved by using a piecewise
linear model, as described in chapter IV. kIf we choose x = 0,25 and
x = 0.75 as the equilibrium values about which linear models will be

derived, the resulting linear models are

v = }E —;'-.— =141d = .:_l.'_
X = 5 + u +‘16 (Ydlld near X 4)
: (5¢l8)
oo .3 9 . _ 3
X —’— 5 X + u + 3 (Yalld near X = 4)

Since the ¥ equation is linear, the weighting matrix W in (4.15)

1 0 |
’ o O : ‘

is chosen to be
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This choice of W results in a model switching function (see (4.16)
and (4.17)) of

S = x~%— (5.20)

X‘x=%xx, x £0.5

.« 3 > ,
Xo=2a,  x20.5 (5.21)
X = b

vy My

At the model switching point, there is a jump discontinuity in Ax:

Xx(t.:) = A () *e (5.22)

where ¢ is determined from (4.20)

- 3 9 1 1
. )\.x(ts)[— 5 (0.5) + 3 + 3 (0.5) - -1—6-']
\ 1 1

Which results in € =0 for this problem.

Based on the earlier solutions presented in figures 5.1 and 5.2,
it appears that the model switch will take place prior to the change
of control at & = tlc Therefore, we assume that tg <ty and look

for a feasc.ble solution with‘control given by (5.9). Solution of the

multipoint boundary value problem gives

t, = 0.197, t, = 0.597, tf = 0.733

The solution of eqﬁation (3.7) is

, 0.9%%4 0 \
A(tl) = : ;
0 -~ 0.580

I A ST
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and equations (3.8) and (3.9) are solved to give

A (Eg) = vy = 0.863, A (tg) = v, = -1.390

2

Again, the trajectory and Euler-Lagrange equations are solved as
a function of time, and the results are presénted in figures (5.1)
and (5.2). It can be seen that the two-piece linear model is a good
representation of the actual nonlinear system for the present problem.
H. Additional Control Variable
Consider the following problem, Find u(t) and v(t) which
trans fers the system given by

x=-x+u+yv+0.25
X
(5.23)

v = -4y +u+ vi
from initial conditions (xo, yO) = (1,1) to terminal conditions
(xf,yf) = (0,0) in minimum time. The controls are subject to the
constraints |
]ul 22 and 0 v =1

This problem is identical to the one-~piece linear approximation
of the original nonlinear example problem, except that there are now
two control variables, u and v. The coefficients Yy and Yy will
be left unspecified temporarily. |

Since there are two terminal constraints, the initial feasible

. trajectory must have two segments., The allowable control strategy for

either of the two segments is u =+2 or -2 and v =0 or 1, Sup-

pose wé choose for our control strategy
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Since we have chosen VvV = 0 for both segments, the initial feasible

trajectory and Lagrange multiplier time histories are identical to

those obtained earlier for the one-piece linear model, single control

problem. The switching function (AX + Xy) for control u is shown in

figure 5.1, and the trajectory is shown in figure 5.2.

For the present problem, we are interested not only in the opti-

fe(t). The switch-

mality of ufe(t), but also in the optimality of Vv

ing function for v(t) is given by (yxxx + yyky); for optimal v(t) we

must have

0 if (v A+ yyxy) >0

‘V:‘-
(5.25)
v = 1 if (Yxkx + yyly) < 0
The time histories of kx and xy are shown in figure 5.3, The ini-
and

tial feasible trajectory is a local minimum if the values of Yy

Yy are such that (yxxx + yyky) > 0 for the entire trajectoxys; for

instance, this is the case if Yy = 1 and Yy = 0.5. On the other

hand, if v, =1 and Y, = 0.8, the switching function (A, + 0.8 xy)

is shown as a function of time in figure 5.4, TFor this case, v = 0

is the optimal control up to about t = 0.75 sec, but the negative

value of the switching function for t > 0.75 sec indicates that tf

can be reduced if v is increased in this region.

In ordexr to improve the trajectory (decrease the performance

index, tf) a third control segment is added to the trajectory. The

third segment is made very short initially, 80 that the mew trajec-—
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Figure 5. 3. - Lagrange multiplier profiles for one-piece
approximate model.
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tory does not differ gubstantially from the initial feasible trajec-

tory. Specifically, the control is chosen to be

u=-2 and v =0, 02t E.tl

= = < .
u=+2 and v =0, tl zt "tsw

- = < M
u=+2 and v =1, tsw St tf

where tsw = 0.8 1is selected, and held fixed while tl and tf are

varied to reconverge on the end conditions Xp = Ve = 0. The converged

values of tl and tf are given by

tl = (.68, tf = 0.819
It can be seen that tf has been reduced from its value of 0,827 for

the initial feasible trajectory. At this point, the Lagrange multi-

plier time history must be calculated for the new three segment tra-
jectory, and the gradient-of the performance index with respect to

tsw calculated by using (3.18). A nonlinear search technique such as
presented in reference 11 is used to iteratively search for the value
of tSW for which tf is . a minimum° When this has been accomplished,

the switching functions (lx + Ay) and (Ax + 0.8 Ay) should be exam~

ined once again to determine if tf can be further reduced by includ-

ing additional control segments in the trajectory,

T T -y
e

e e




CHAPTER VI. APPLICATION TO TURBOFAN CONTROL

In this chapter, the algorithm described in chapters III and IV
is used to find optimal trajectories for an F100 aircraft turbofan
engine. Specifically, values of the control variables are found as a
function of time, which minimize the terminal error for a fixed-time
acceleration, while adhering to the engine constraints. This is equiv~
alent to minimizing acceleration time for a2 fixed terminal error. A
suboptimal, closed loop control m?de is also developed. Finally, the
problem of minimizing steady-state specific fuel consumption is con-
sidered.

A. Engine Description

The following description of the F100 engine is taken largely
from reference 18, fhe Pratt & Whitney F100 engine (fig. 6.1) is an
axial, mixed-flow, augmented; twin-spool, low-bypass-ratio turbofan.
A single inlet is used for both the fan airflow and engine core air-
flow. Airflow leaving the fan is separated into two streams: one
Stream passing through the engine core and the other stream passing
through the annular fan duct. A three-stage fan is connected by a
through~shaft to the two~stage, low-pressurxe turbine. A ten-stage
compressor is conmected by a hellow shaft tq the two-étage, high-
pressure turbine. The fan has variable, trailing-edge 1nlet guide
vanes, which are positioned by the engine control system as a function

of fan corrected speed to maintain fan stability at low speeds. The
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Figure 6.1. - Schematic representation of F100-PW-100 augmented turbofan engine.
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compressor has a variable inlet guide vane followed by two variable
stator vanes; the vanes are positioned as a function of Compressor cor-
rected speed. The engine core and fan duct streams combine in an aug-
mentor and are discharged through a Yariable convergent-divergent
nozzle.

The fuel control system meters fuel to the main combustor, as a
function of power lever angle (PLA), compressor speed, fan discharge
temperature and compressor discharge static pressure. Augmentor fuel
flow is metered as a function of PLA, fan discharge temperature, and
compressor discharge staric pressure. Exhaust nozzle area is con-
trolled so as to maintain a desired engine airflow during augmented
oprgiation,

B. Engine Models

Pratt & Whitney Aircraft (P&WA) has developed a detailed dynamic
simulation of the F100 engine using a digital computer (ref., 14).

The simulation includes overall performance maps of the engine compo-
nents, variable gas properties, and Reynolds number effects in order

to provide good steady-state accuracy over the range of power settings
and flight conditions. Factors such as fluid momentum, mass and energy
storage and rotor inertias are included to provide transient capability,
A detailed simulation of the engine's control system is also included.
In agddition to transient capability, the simulation also has the capa-
bility to solve iteratively for equilibrium operating point§ for spec-
ified flight conditions and power lever angle,

A drawback to the use of detailed dynamic simulations on a digi~-

tal computer is that they require large amounts of computer time to
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obtain transient solutions. A requirement of several minutes of digi-
tal computer time per second of real time is typical. Szuch and
Seldner (ref. 18) developed a hybrid computer simulation of the F100
engine which runs in real time. This simulation is useful for develop-
ment and checkout of engine control system hardware and software.
Some simplification is made in the hybrid model 'in order to allow the
real time capability. Nevertheless, steady-state and transient re-
sults presented in reference 18 compare favorably both with the de-
tailed P&WA digital simulation and with a limited amount of experi-
mental data.

Because of the virtual impossibility of using nonlinear feedback
control theory for realistic systems, control software is usually
developed using linear models. For turbofan control system design,
nonlinear dynamic simulations such as references 14 and 18 are linear-
ized about various equilibrium conditions, and linear models obtained.
This process produces equations of the form

¥ = F(x = xe) + G(u -~ ue) (6.1)

where X and u, are equilibrium values of state and control, re-
spectively. Other engine variables which are not modeled as states
are also of interest. Such variables will be called outputs, and

denoted by y. - The linearized output equations are given by
y =7, + C(x - xe) + D(u - ue) (6.2)

If the outputs have upper (or lower) bounds which must not be exceeded,

then combined state/control path inequality constraints of the form
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v, * C(x - xe) + D(u - ue) = Yoax 20
(6 93)

- - - ) - - <
Yin ~ Ye C(x xe) D(u ue) <o

are produced. Mechanical limits on the control variables also have
the general form of (6.3) with C = 0.
The engine simulations of references 14 and 18 contain 16 and

17 state variables, respectively. Therefore, the state vector x in
(6.1) has dimension 16 or 17, depending on which simulation is used
to obtain the linear model. It is preferable to conduct control sys-
tem studies by using lower-order models, if possible. Fortunately,
in the present case, most of the eigenvalues (natural frequencies) of
the system matrix F are considerably larger than the lowest eigen-

values. Therefore, quasi-steady approximation may be used to reduce

the order of the system. A quasi-steady approximation technique which

preserves the lower eigenvalues exactly, and also retains the desired

states, is presented in appendix C.

In a recent contractual effort under joint Air Force/NASA sponsor-

ship (ref. 8), Systems Control Inc. (SCI) used linear quadratic regu-
lator theory to design controls for the F100 engine, Linear models
having 16 states and reduced models having 5 states were provided to

SCI by P&WA for a number of equilibrium points at different flight

conditions and PLA's. Some of these linear models are given in refer-

ence 13.

Five of the five-state equilibrium models from the P&WA/SCI study,

equally spaced along the sea-level-static (SLS) operating line, are

nsed in the present report. The normalized linear model for
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PLA = 67 degrees is shown in table I.
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The 67 degree power lever set-—

ting is typical of subsonic cruise; PLA is 20 degrees at idle, and

83 degrees at maximum nonaugmented thrust (also referred to as inter-

mediate). The normalized equilibrium values of the states, controls,

and outputs are given in table II, along with the definitions of these

variables.

TABLE I. - FIVE-STATE LINEAR MODEL

[Sea level static,

-4.20 0.877
-0.353 -5.63
F = 19.2 -13.1
6.28 -21.9
71.0 456
-0.573 -0.0349
.976 -0.0212
G = 2.11 -7.50
32 -0.281
129 2.86
0.856 -0.666
2.09 0.0292
C = 0.0531 ~0.349
7.40 2,31
-4.90 23.7
0,216 -0,0135
.210 .0432
D = 498 -0.468E~2
1.65 «139
4,55 .327

-0.645
~0.335
~7.38
-3.02
39.2

~0.103
-0,0256
.702
-0.174
3.32

0.154
-0.0194
-0,0498
-1.38

.776

0.0294
L0799
-0,303E-2

-0,669
-0.0187

PLA = 67°]

1.22 0.892
-0.416 .813
~0.257 4.74

~30.2 3.22
-1.06 ~-147
-0.000639
-0.00591

.0138
.0351

0.109
-0.0335 0.222

0,196E-3 -0.00131

.527E-3 .0521
.0148 -0.0963
.874E-2 -3.62

-0.614E-4

-0.560E-~3
.392E-3

~0,438E-2

~0.107

In order to determine if the fifth-order models could be fur-

ther reduced, the eigenvalues and eigenvectors of the fifth~order

models were calculated. The results are presented in table III for

PLA = 67 degrees. The eigenvectors are the columns of the symmetry

transformation T as defined in appendix C. Tt can be seen that there

RTINS
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TABLE II. - EQUILIBRIUM VALUES OF PROBLEM VARIABLES

[Sea level static, PLA = 67°]

Fan speed, Nfan’ 100 rpm 94,39
Compressor speed, Ncomp’ 100 tpm 121.70
x, = Augmentor pressure, Pt7, 0.1 psi = 330
Fan turbine inlet temperature, FTIT, 10° R 187.1
Combustor pressure, PsB’ PSI 290 )
Combustor fuel flow, W, 100 lbm/hr 68.60 |
Exhaust nozzle area, A___, 0.01 ft2 298 %
0 = noz _ 4 |
€ Talet guide vane position, IGV, 0.l deg -164 i
S
High variable stator position, HVS, 0.0l deg 92.2 j
i

TABLE III. -~ EIGENVALUES AND EIGENVECTORS OF FIVE-STATE MODEL

[Eigenvalues = -3.42, ~4.42 # 2.91§, -30.8, -151 (sec 1]

~0.0823 0.317%03 -0.0463  0.0059

-0.118 0.0508%0.0117 .0152 .00574
T = -0.761 1.0¥+1.8j .0496 .0326
.0884  0.00625%0.1423 .997 .0281

Thrust, T, 100 1b 105.14
Adrflow, LA lbm/sec 203
Yo = Turbine inlet temperature, TIT, 100% = 86.42 f
Fan surge margin, SMFAN (0.001) | 254 é
Compressor surge margin, SMCOMP (0.001) 179
-0.626 ~0.58740.4703 .0392  -0.999 j)
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are three dominant eigenvalues, one real and a complex pair; the other
two eigenvalues are at least a factor of six larger. Also, it appears
from the T matrix that states four and five (FTIT and Ps3) are
closely related to the two larger eigenvalues. Therefore, quasi-steady
reduction was performed on the five state system, as described in
appendix C, to reduce it to a three state system, with state variables
Nfan’ Ncomp’ and Pt7. It should be noted that these are the same
three states used by Weinberg (ref. 6). The reduced three-state linear

system matrices are presented in table IV. There are seven outputs for

TABLE IV. - THREE-STATE LINEAR MODEL

[Sea-level static, PLA = 67°]

-3.37 3.13 ~0.493 [ Nean 94,38
F = -0.130 -2,87 -0.072 x, = | Neomp | = | 121.70
-21.3 1.93 -6.03 Pt7 330
1.59 -0.0354 -0,0848 -0.00155 )
G = 1.17 .0165 -0.00795 -oc00574‘>
5.74 -7.34 . 804 .0173
0.945 0.0511 219 T 105.14
2.05 L0249 + -0,0198 W, 203
,0769 -0.187 -0.0353 TIT 86.42
C = 7.37 2.00 ~1.42 Yo = | SMFAN =| 254
-6.54 12.3 -0.245 SMCOMP 179
351 ~0.465 ~0,0817 . FTIT 187.1
454 3.16 .282 \Ps3 290
0,361 ~-0.00523 0,0342 0.807E~4
.210 .0432 .0799  -0.561E-3
541 -0.00294  -0.00191 .436E-3
D = 1.59 .135 ~0.671 =0, 444E~-2
1.53 . .206 -0.0967 -0.110

1.16° -0.025 ~0.437E~3  0.119E-2
.838 .0335 L0215 .819E-3.
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the three state model, since the variables FTIT and Ps3 now have the
role of outputs, The eigensystems for the four other linear models
have the same qualitative features as observed in table IV, and the
same quasi-steady reduction was performad on these models also.
C. Model Accuracy

A nonlinear model can be approximated by a suitable number of
linear models at various equilibrium points. It is of interest to
determine how many equilibrium models need to be used for suitable
accuracy. One way to do this is to see how well the equilibrium con-
ditions for one model are predicted by ;djacent models.  For example,
if the equilibrium control from model 2 is used in model 1, the pre-
dicted equilibrium state for model 2, £e2’ is given by

0= F (X, = %q) + G uyy - uyy) (6.4)

which implies

. -1
Xgg = X1 = Fy Gy (Ugy = ugy) (6.5)
The error in predicted state is
Ak =X . =X = (x. —-%x,)+ F_lG (a . -u_,) (6.6)
’ e e2 el e2 1 "1 el e2 ¢

The error in predicted output can be. calculated by using U, and

X

o2 from (6.5) in (6.3). The result is

_ -1
g = Yoy + (D] = G F G (6.7)

Ve 1Fp 60 (o - ugy)

The error -in predicted output is
= o — -1 )
BY =Ygy = Fep = Weg = Yer) * Py = Gy G gy = vgp) (6:8)
The results obtained by using (6.4) and (6.8) with the five

linear models are presented in figure 6.2. The true values of the
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L problem variables (states and outputs) are presented as a function of
PLA. The values at the five PLA's are connected by straight lines;
however, the true variation between equilibrium data points is not .
necessarily linear, The predicted problem variables are also shown,

as predicted from adjacent equilibrium points both above and below

the predicted point,

T

It can be seen from figure 6.2 that prediction accuracy is gen-
erally very good, with several notable exceptions. First, for nearly
all of the variables, the idle model (PLA = 20 degrees) does not accu-
rately predict the equilibrium values at PLA = 36 degrees.‘ Also, the

model at PLA = 36 degrees does not predict the idle conditionms accu-

T T - T

rately. Both of these results may be explained by the fact that the
engine exhaust nozzle and low pressure turbine are unchoked at idle,
but become choked a few degrees above idle and remain choked as PLA
increases further. Engine dynamic characteristics differ substantially
between choked and unchoked conditions. Therefore, there is a large
discontinuity in the linear models at the point at which choking occurs,
With the exception of the idle prediction difficulty, all problem
variables are accurately predicted over the range of PLA, except for
the fan and compressor surge margins. The difficulty in predicting A;
surge margins is due to the fact that surge margin is proportional to
the difference between two pressures which are of similar magnitudes.

Hence, relatively small errors in the pressures give rise to large

errors in the surge margins.
' , e
Because of the fact that the engine exhaust nozzle is unchoked i

/ only in the near vicinity of idle, and furthermore is choked at all : o
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PLA's at nonzero flight Mach numbers, it was decided to eliminate the
idle model from all subsequent calculations. Therefore, the engine
will be modeled by using the three-state models (e.g., Table IV) at
four equilibrium points: PLA = 36, 52, 67, and 83 degrees.
D. Steady State Performance
Linear models can be used to find the control settings which
maximize steady-state performance. For example, suppose we wish to
maximize thrust for constant fuel flow - this is equivalent to minimiz-
ing specific fuel consumption. The minimization must be accomplished
while adhering to the engine constraints and control limits. The mini-
mization will be conducted at PLA = 67 degrees, a typical power setting
for subsonic cruise. Aﬁ this power setting, the only applicable engine
constraints are that fan and compressoi surge margins should be kept
above a safe level, say five percent. In additionm, the exhaust nozzle
area, inlet guide vanes, and compressor variable vanes must not exceed
their mechanical limits.

For given values of u, the equilibrium values of states and out-

puts are given by (6.5) and (6.7)

= -1
X = X, F ~G(u - ue)
6.9)

\
P — _“J‘ Ll
Yeg = Ve + (D - CF “G)(u ue)

If the performance “ndex and constraints are linear combinations of
states, outputs, and controls, a lintar programming problem results,
which can be solved by using the simplex method (ref. 16).

Results foi the maximization of thrust are presented in table V.

For all cases, fuel flow is held constant at 6860 1lbm/hr. For the

TR APy
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TABLE V., -~ STEADY-STATE PERFORMANCE

[Sea-level static, PLA = 67°, we = 6860 1lbm/hr]

AhDZ’ IGV, HVS Thrust, SMFAN SMCOMP
2 deg deg 1bf
ft
Nominal 2.98 -16.4 0.92 10 514 0.25 0.18
Optimum 2.8 5 -40 11 411 .07 .71
Scheduled geometry 2.8 -9.4 -6.1 10 790 .16 .28

£7°

nominal case, the exhaust nozzle area, inlet guide vanes and compressor
variable vanes are at thei: scheduled values; the thrust which results
is 10 514 1bf. In the optimum case, A _ , IGV, and HVS are free for
optimization, subject to their mechanical limits. The resulting
thrust is 11 411 1bf, which represents an increase of about 9 percent
over the nominal value. However, it is recognized that the linear
models are not necessarily valid over the full range of possible con-
trols. Furthermore, use of optimum values of IGV or HVS could
result in violation of flutter boundaries. Therefore, a third case is
considered in which the wvalues of IGV and HVS are allowed to devi-
ate by at most 7 degrees from the scheduled values at that power set-
ting. In this case, the thrust is 10 790 1bf, which still represents
an increase of more than 2.5 percent from the nominal value,

A possible explanation for the increased thrust achieved by using
off-schedule geometry is that the scheduled values of IGV and HVS
are based on optimized cumponent performance, rather than optimized

overall engine performance.

ST N T S R O T S L
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E. Transient Performance
We now consider the problem of minimizing the time required to
accelerate the F100 engine from one equilibrium thrust level to another
as rapidly as possible. 1In solving this problem, a piecewise-linear
model of the F100 engine will be used. Specifically, the engine model
is given by

x = Fi(x - xei) + Gi(u - uei) (6.10)

where the state vector X (three states) and control vector u (four
controls) are as defined in table IV. There are also other problem
variables of interest, called outputs, which are related to the states

and controls by
y=C(x-x) +D(u-u,)+y (6.11)
i el i ei el :

the index 1 refers to the equilibrium model number; there are four
equilibrium linear models at PLA = 36, 52, 67, and 83 degrees. The
67 degree model is presented in table IV. The linear model which
applies at a given time is selected by minimizing the quadratic func-
tion

o= (x - xei)TW(x - %) (6.12)

with respect to 1i; the model whose equilibrium state is "closest' to
the actual state at that time is chosen to represent the engine. The
function of W in (6.12) is to scale the states to comparable numeri-
cal values.

During an acceleration from a part-power condition to intermediate,
the engine is first represented by the PLA = 36 degrees model. As the

engine accelerates, the model switches successively to the 52, 67, and
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83 degree models. The W matrix used in comparing successive PLA

models k and (k + 1) in (6.12) is given by

1 0 0
(x, -~ x )2
ek e,k+l 1
- 1
W= 0 5 0 (6.13)
(Fox = %o k412
0 0 1

(x, - x )2

ek e ,k+1”3

It should be noted that the components of W defined by (6.13) are
.different for each successive switch. The normalizing factor for
each state has been chosen to be the difference in values of that
state from one equilibrium point to the next.

The trajectory must also satisfy path inequality constraints given

by

T T < .
e X + diu + e <0, i=1, .. ., 9 (6.14)

The coefficients c;o di’ and e, are different for each equilibrium
model. Some of the path inequality constraints correspond to engine
physical limits, others to control mechanical limits. . The following
constraints will be assumed for this problem.

(1) Turbine inlet temperature cannot exceed the equilibrium value
at intermediate thrust by more than 50 degrees: R.

(2) Fan and compressor speeds caﬁnot exceed the equilibrium,vélues
at intermediate thrust by more than 50 rpm.

(3) Fan and compressof surge margins must not be less than 5 per-

cent.

(4) Inlet guide wvanes, compressor vanes, exhaust nozzle area, and

TR L
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fuel flow rate must not exceed their limits.

Statement of the problem, - Before developing a precise mathe-

matical statement of the optimization problem to be solved, it is use-
ful to consider first the manner in which the resulting optimal contrcl
for minimum-time acceleration {which will be referred to as the transi-
tion control) might be implemented in an actual engine. The transition
control will be used during acceleration from one equilibrium power
setting to another; during near-steady conditions, the Bill-of-Material
(BOM)* control (which will be referred to as the regulator) will be
used,

In deciding when to transfer authority from the transition con-
troller to the regulator, it must be recognized that the equilibrium
conditions at a given PLA are not known precisely; they vary from
one engine to another and as a function of operating time for a given
engine. Therefore, control authority should be transferred from the
transition controller to the regulator when the state vector is in the
"vicinity" of the desired state vector rather than when desired values
of the states have been achieved precisely. The distance to the de~

sired state vector (terminal error) may be defined as

3 .\
$(x,) = E e (6.15)
£ X34 '

i=1

The switch from the transition controller to the regulator would occur

* ‘ .
The BOM control is the standard control system supplied with the

engine.

e
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at a fixed value of ¢, say 0.05 or 0.1

The problem to be solved is stated as follows. Find controls
u(t), 0 5 ¢t f_tf which minimize ¢(xf) while satisfying the system
equations (6,10) and path constraints (6.14). A sequence of solutions
to such problems for different acceleration times may be used to find
the minimum-time solution for a gi§en value of terminal error. Neces-
sary conditions for an optimal solution are given in chapter II, The
problem is solved by using the new algorithm described in chapters IIT
and IV.

Results. - The problem of minimizing the terminal error for an
acceleration from,near;idle (PLA = 24 degrees) to intermediate thrust
is considered. The engine's exhaust nozzle first becomes choked at
PLA = 24 degrees. The final time is specified to be te = 0.75 second.
The problem variables (states, outputs, and controls) for the optimal

trajectory are shown in figure 6.3. The state variables N

fan’

N 2

comp
and Pt7, are shown as functions of time in figure 6.3(a) to (c). It
can be seen that the statszs approach the desired final values smoothly
and with no overshoot. The value of the terminal error is ¢ = 0,012,
which results from errors in the states of ANfan = 15 rpm,

AN = 78 rpm, and APt

comp 7 = 0.43 psi,

The outputs are shown as functions of time in figures 6.3(d) to
(i). Because of the way in which the outputs are defined in equa-
tion (6,11) these variables are in general discontinuous. at model
switching points and points of discontinuous control.

The optimal control strétegy resﬁlts’in the high-pressure turbine

inlet temperature having its maximum value for the entire trajectory;
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this is shown in figure 6.3(d). Fan and compressor surge margins
remain well sbove acceptable minimums (figs. 6.3(e) and {(£)). Low
pressure turbine inlet temperature (fig. 6.3(g)) is very nearly con-
stant. Thrust (fig. 6.3(h)) increases smoothly and monotonically
with time.

The optimal control histories are shown as a function of time in
figures 6.3(k) to (n). Fuel flow jumps at € = 0 from its idle
value, then increases slowly to maintain constant turbine inlet tem-
perature. The optimal values of Anoz’ IGV, and HVS are piecewise
constant, as required by variational theory (chapter II). Each of
these variables has one switch during the trajectory.

Figure 6.3(o) shows the distance frdm.the current state vector
to the equilibrium state vector of the current model. The distance
is normalized in such a way that the distance between adjacent equi-
librium state vectors is unity. It can be seen that the instantaneous
distance is always less than unity; this is a good indication of the
validity of the piecewise-linear model throughout the entire trajectory.

Although the maximum nozzle ares is greater than 6 square feet,
nozzle area has been restricted to a range of 2.8 to 3.2 square feet
for the present study. This arbitrary upper limit has been imposed
because the linear modelskare not necessarily valid for the full
range of allowable control action. It is also recognized that model
accuracy may be degraded if IGV and HVS values are far from their
scheduled values from the BOM contreller. In fact,’available test
data for the IGV and HVS are limited to about %7 degrees of the sched-

uled values. Furthermore, large deviations in IGV and HVS might result
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in flutter boundaries being violated. For these reasons, two addi-
tional optimal trajectories were run for t. = 0.75 second. For one
of the trajectories, the HVS and IGV were required to have their
scheduled values; for the other, IGV and HVS were limited to #*7 degrees
from their scheduled values. In addition, optimal trajectories were
run for other values of tf.

Figure 6.4 shows the problem variables as a function of time for
the optimal trajectory in which the IGV and HVS were limited to %7 dé—
grees of the scheduled values. The acceleration time is 0.75 second.
For this case, the terminal ervor is 0.045, compared to a terminal
error of 0.012 which is achieved when the IGV and HVS are allowed full
variation within their mechanical limits.

It can be seen that the results for this case are qualitatively
very similar to those of figure 6.3. Turbine inlet temperature has
its maximum value for the entire trajectory, and the state variables
increase monotonically to their final values. IGV position
(fig. 6.4(m)) is 7 degrees less than the scheduled value up to about
0.56 second; after that time, IGV position is 7 degrees greater than
the scheduled value. It is interesting to note that HVS position

(fig. 6.4(n)) is 7 degrees less than the scheduled value for the
; entire trajectory.

Figure 6.5 presents terminal error as a function of acceleration
time, tes for accelerations from PLA = 24 degrees to intermediate. Re-
sults are presented for values of IGV and HVS which are fully opti~-
mized, scheduled and scheduled +7 degrees. The corresponding trajec-

tories have the same characteristics as shown in figures 6.3 and 6.4.
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In particular, turbine inlet temperature is kept at its maximum value
throughout each of the trajectories.

As discussed earlier, authority might be transferred from the
transition controller to the regulator at a fixed value of terminal
error. The time required to reach a given terminal error depends on
the control strategy used, For example, figure 6.5 shows that a time
of 0.80 second is required to reduce the terminal error to 0.05 4if
scheduled IGV and HVS are used. If IGV and HVS are controlled opti-
mally within scheduled *7 degree values, the time is reduced to 0.74
second; if fully optimized IGV and HVS are used, te is 0.65 second.

The time required to accelerate from other initial values of PLA
to intermediate is also of interest. Figure 6.6 presents the time
required to accelerate for a terminal error of 0.05 as a function of
PLA. Results are presented for scheduled and scheduled *7 degree
values of IGV and HVS.

F. Comparison of Nonlinear and Piecewise-Linear Responses

In figure 6.2, accuracy of the piecewise-linear model was investi-
gated in terms of the ability of the model to predict the values of
adjacent equilibrium values of states and outputs. This type of accu-
racy test is particularly relevant to the ability of the piecewise-
linear m&del to predict values of the control wvariables for optimal
steady-state performance. However, for transient performance predic-—
tion, a much better check on model accuracy is achieved by comparison
of the nonlinear and piecewise-linear model transient responses for
the same control variable time histories.

Figure 6.7 presents a comparison of nonlinear and piecewise-linear
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transient responses. The control variable histories are based on an
optimal acceleration from PLA = 24 degrees to intermediate thrust,
for a specified acceleration time of 0.8 second. For this case, the
values of IGV and HVS were constrained to be within +7 degrees of the
BOM scheduled values. The nonlinear responses were obtained by using
the P&WA digital dynamic nonlinear F100 engine simulation (ref. 14).
It can be seen that the nonlinear and piecewise-linear responses of
compressor speed and augmentor pressure are in good agreement. How-
ever, differences are observed in the fan speed responses. Also, there
are substantial and important differences in the high-pressure turbine
inlet temperature and fan and compressor surge margin responses. The
nonlinear results show that the maximum value of the high-pressure
turbine inlet temperature is violated by a large amount, and the com-
pressor surges at about 0.06 second. The fan does not surge, but the
fan surge margin does fall below the minimum value of 5 percent early
in the trajectory.

Additional comparisons of nonlinear and piecewise-linear results
are made in figures 6.8 and 6.9. In these two figures, the comparison
is based on an acceleration of 0.6 second from PLA = 36 degrees to
intermediate thrust. For figure 6.8, the IGV and HVS are limited to
scheduled values +7 degrees, while for figure 6.9, the IGV and HVS
take on scheduled values. The results are qualitatively similar to
those presented in figure 6.7, but the nonlinear and piecewise linear
results do not differ by as much as was observed in figure 6.7. For
example, there’is no compressor surge in figure 6.8, and neither fan

nor compressor surge margin limits are violated in figure 6.9.
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There are several possible explanations for the differences be-
tween nonlinear and piecewise~linear responses observed in figures 6.7
to 6.9. They are as follows:

(1) The individual linear models may not be good approximations
even for small perturbation inputs.

(2) The number of equilibrium linear models may be inadequate to
accurately Aescribe the system nonlinearities with respect to the
state variables.

(3) There may be substantial nonlinearities with respect to the
control variables, which are not included in the piecewise-linear
model.

(4) Model reduction from sixteenth to third order may have re-
sulted in modeling inaccuracies.

Ttems (1) and (4) may be checked by comparison of nonlinear and
three and sixteen variable linear transient responses for small-
perturbation control inputs. Such a comparison is made in figure 6.10.
The equilibrium state and three and sixteen variable linear models cor-
respond to PLA = 52 degrees, and the control input is a small step in
combustor fuel flow., Results are presented for fan speed, compressor
speed, augmentor pressure, turbine inlet temperature, and fan and com-
pressor surge margins. It can be seen that the linear and nonlinear
responses are in good agreement for states compressor speed and aug-
mentor pressure, but are mot in good agreement for fan speed.’ The
sixteen-state linear result is in better agreement with the nonlinear
result than is the three-state linear result, but neither of the linear

results can be considered to be in adequate agreement, Also, the
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linear and nonlinear results are in reasonably good agreement for tur-
bine inlet temperature, but the three and sixteen state linear models
do not give a good representation of fan or compressor surge margin,

The differences between nonlinear and linear predictions of fan
speed and fan and compressor surge margins observed in figure 6.10 are
qualitatively similar to those observed in figures 6.7 through 6.9,

It appears that a more accurate set of linear models, obtained from
small perturbation responses of the nonlinear simulationm, would result
in more accurate piecewise-linear results. Also, there are substantial
differences between the three and sixteen state linear results for sev-
eral of the variables. The three-state linear models were obtained by
modal reduction from five state linear models, which in turn were ob-
tained directly from the nonlinear simulation. Since the three-state
models were not obtained by modal reduction from the sixteen-state
linear models, no conclusions can be drawn here relative to errors
introduced by modal reduction.

Because of the inaccuracy of the linear models, it is not possible
to determine conclusively if nonlinearities with respect to states or
conitrols contributed substantially to the differences in the nonlinear
and piecewise-linear results observed in figures 6.7 to 6.9. Neverthe-
less, the relatively good agreement of turbine inlet temperature ob-
served in the small perturbation results (fig. 6.10) as compared to
the large turbine inlet temperature errors observed in figures 6.7 to
6.9 suggests strongly that there is a substantial nonlinearity, prob-
ably with respect to combustor fuel flow, which would have to be in-

cluded in the model to achieve accurate results.
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G. Comparison of Minimum Time and BOM Control Responses
Using the Nonlinear Simulation

It is of interest to compare the transient responses obtained by
using optimal minimum-time strategy with those obtained by using the
BOM control. Such comparisons are made in figures 6.11 and 6.12, for
accelerations from PLA = 24 degrees to intermediate thrust and from
PLA = 36 degrees to intermediate thrust, respectively. For both
figures, the minimum time controls were obtained by using the piecewise-
1inear model with the IGV and HVS constrained to be within *7 degrees
of the BOM scheduled values. However, the data presented in fig-
ures 6.11 and 6.12 were obtained by using the minimum-time and BOM
controls aﬁplied to the nonlinear F100 engine simulation.

The results show that the minimum-time control strategy produces a
more rapid acceleration to the vicinity of intermediate thrust. It
appears that the principal reason for the improved acceleration is the
much more rapid increase in fuel flow, which results in a rapid in-
crease in high-pressure turbine inlet temperature. Naturally, the com-
parison of performance is invalidated because of the violation of con-
straints which occurs. Nevertheless, it seems highly probable that
substantial improvement in acceleration time can be made without viola-
tion of engine constraints since the high-pressure turbine inlet tem-
perature (figs. 6.,11(d) and 6.12(d)) increases very slowly when the
BOM control is used. Some compromise between the optimal control
based on the piecewise-linear model and the BOM control would probably
yield improved accelerations without violating the turbine inlet tem-

perature limit.
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H. Suboptimal Control

It has been shown that a substantial decrease in engine accelera-
tion time can be achieved by using a minimum-time contrecl strategy.
However, the control strategy which has been developed is based on
open~loop control. It is desirable that a closed-loop control strat-
egy be developed which is capable of closely approximating the open-
loop time-optimal results. The purpose of this section is to devise
such a strategy.

The following strategy ié based on the piecewise-linear model.
Although further refinement of this model appears necessary, the gen-
eral form will likely remain intact, and the following will still apply.

It has been previously noted that the turbine inlet temperature
limit is an active constraint for the duration of each of the minimum
time trajectories presented. This fact forms the basis for a closed-
loop transition control law for fuel flow, Since turbine inlet tem-
perature is modeled as an output, it can be expressed as a linear com~

bination of state and control variables, i.e.,

TIT = ch + dTu (6.16)
For TIT = Tmax’ equation (6.16) may be solved for fuel flow (or any
other control variable for which the coefficient d is nonzero) to
yield:

- X T -
we = dl (Tmax - C'x dZAnoz - d3IGV - d4HVS> (6.17)

It still remains to find closed-loop control laws for Ahoz’ IGV, and

HVS., We will consider the case’for which IGV and HVS are limited to

scheduled values *7 degrees. Examination of a number of optimal tra-
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jectories including those shown in figures 6.3 and 6.4 reveals the
following facts:
8 Anoz always starts at the higher value of 3.2 feet squared,
then switches to the lower value of 2.8 feet squared. Furthermore,

the switch occurs at fairly constant values of Nco averaging about

mp
11 000 rpm.

(2) IGV always starts at the lower value (scheduled -7 degrees),
then switches to scheduled +7 degrees. This switch also occurs at
fairly constant values of Ncomp’ averaging about 12 000 rpm.

(3) HVS always has the scheduled -7 degrees value, never switching
to the larger value.

Based on these observations, the following suboptimal closed-loop

strategy is suggested.

A _ comp

3.2 ft?, N <11 000 rpm
noz

2 5 '
2.8 ft°, Noomp = L1 000 xpm

comp

Scheduled -7 deg, N <12 000 rpm
eV = (6.18)

Scheduled +7 deg, Ncomp > 12 000 rpm

HVS = Scheduled -7 deg

1 T
Wf = dl (?max - X dZAnoz - d3IGV - dAHVS)
The closed-loop control strategy shown in equation (6,18) was applied
to the piecewise-linear model, and accelerations were obtained for
various initial values of PLA to intermediate thrust, Results are

presented in figure 6.13 for an initial PLA of 24 degrees. Terminal
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Figure 6.13, - Terminal error versus acceleration time.

Part-power (PLA = 24 deg) to intermediate thrust ac-
celeration. IGV and HVS, scheduled +7 deg,
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error is presented as a function of acceleration time. Similar re-
sults for optimal open loop accelerations are repeated from figure 6.5
for comparison. It can be seen that the optimal and suboptimal results
are virtually indistinguishable.

It is also of interest to determine the acceleration time required
to reduce the terminal error to a fixed value, say 0.05. From fig-
ure 6.13, it can be seen that the required acceleration time for a
terminal error of 0.05 is 0.80 second for an initial PLA of 24 degrees,
for both the optimal and suboptimal results. Similar results were ob-
tained for other initial values of PLA, and the results are shown in
figure 6.14. As in figure 6.13, optimal and suboptimal results are

virtually indistinguishable.

"
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Figure 6.14, - Time required to accelerate to intermediate thrust with 2 fixed
terminal error of 0.05. IGV and HVS, scheduled 7 deg.




CHAPTER VII. CONCLUSIONS

Minimum time accelerations of aircraft turbecfan engines are pre-
sented. The calculation of these accelerations is made by using a
plecewise-linear engine model, and a new algorithm based on nonlinear
programming. Use of this model and algorithm allows such trajectories
to be readily calculated on a digital computer with a minimum expendi-
ture of computer time.

The new algorithm may be used for solution of optimal control
problems which are nonlinear in the state variables, and linear in
the control variables. It is shown that the optimal control for such
problems is bang-bang, exéept for possible singular arcs, which are
not considered. The algorithm requires that a nominal bang-bang solu-
tion be found that satisfies the system equations and terminal con-
straints. The Euler-Lagrange equations are not utilized in the deter-
mination of this feasible solution; it is generally not a local mini-
mum. Equations are derived for the determination of the Lagrange mul-~
tipliers (sensitivity functions) which correspond to the initial fea-
sible solution, These sensitivity functions are then utilized, along
with nonlinear optimization (gradient search) techniques, to improve
the feasible solution.

The new algorithm has several advantages over methods currently
in use for solution of suéh problems. First, the system dynamic equa-
tions are uncoupled from the Euler-Lagrange equations: the Euler-
Lagrange equations are not utilized in the determination of the initial
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feasible solution. Second, use of the new algorithm minimizes the
number of variables involved in the gradient searchﬁ With the new
algorithm, the search variables are the constraint switching times -
the times at which switches take place from one set of constraint
functions to another. Other methods currently in use generally dis-
cretize the trajectory into a large number of intervals, and search
for the optimal values of the controls for each interval.

The algorithm makes use of the fact that the optimal values ol
the control variables are determined by an equal number of active
constraints. This situation always exists (except for possible singu-

lar arcs) when the performance criterion, system equations and con-

straint equations are all linear in the control variables. However,
the control may also be fully determined by active constraints for
some problems for which the equations are nonlinear in the control var-

iables. It should be possible to extend the theory and algorithm pre- :

sented herein to include such problems; this is an area worthy of fur- ;3
ther resear'ch.
The algorithm presented herein is used to find minimum-time accel-

eration histories for the FLOO engine. A piecewise-linear engine

model is used, having three state variables and four control variables,
Minimum time solutions are obtained, and the resulting control his-

tories are used as inputs to a nonlinear simulation of the FL00 engine

S T VTS

to verify the accuracy of the piecewise~linear solutions.
Comparison of the nonlinear and piecewise-linear sclutions re-

vealed significant differences in a few of the engine responses, the

-

e

worst being a 35 percent error in the turbine inlet temperature, with
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several of the variables matching to within 5 percent, To determine
the source of these errors, the transient response to a small-
perturbation fuel flow step was calculated using the nonlinear and
three-and-sixteen-state linear models. It was discovered that there
were significant differences in several of the engine responses for
this case as well, notably fan speed and surge margins, for both the
three- and sixteen-state vafiable linear models.

Based on these results, it appears that the calculation of linear
models from a nonlinear simulation is a difficult task, and that there
may be significant nonlinearities in the control effectiveness param-
eters. The linear models used herein were obtained by P&WA by using
the effset—derivative method, There are at least three methods for
identificatioﬁ of low-order linear models for aircraft engines which
merit further study: (1) identification of high-order linear model
via offset derivative method, followed by modal reduction to low order
model; (2) least-squares identification of high-order model, followed
by modal reduction to low order model; (3) least-squares identifica-
tion of low order model.

Once accurate linear models are obtained, it is also of interest
to determine the effect of state and control variable nonlinearities
on the accuracy of the piecewise~linear results. . Further research
into the identification of simple nonlinear models may also be indi-
cated.

Results presented herein indicate that improved steady-state and
transient performance may be obtained by using optimal control strat-

egy.. - Such strategy sometimes calls for operation of the controls in
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a manner which has not been previously tested experimentally, even
though the nonlinear simulation contains equations for predicting the
effect of such control action. Further experimental testing is indi-
cated in order to systematically explore the steady-state and tran-
sient effects of off-scheduled control action, and to determine if
the predicted performance gains can be achieved.

In this report, it has been assumed that the control variables,
i.e., fuel flow, nozzle area, inlet gulde vane position, and compressor
variable vane position, could jump instantaneously from one value to
another. Actually, there are rate limits which apply to each of these
control variables. It is possible to calculate optimal trajectoriesb
for which the control rate limits, in addition to the other con-
straints, are adhered to. This can be done by elevating the control
variables to the role of state variables, and using the control vari-
able rates as the new control variables. Furthermore, the algorithm
presented herein can be used to solve this modified problem.

In addition to the open-loop optimal control strategy derived
herein, a suboptimal closed~loop control logic is also derived which
gives close approximation of the open loop perforﬁ@nce. However, con-
clusive evidence on its general applicability wauid require extensive
simulation and testing under many differeht flight'conditions, Fur-
thermore, implementation of the closed-loop control depends on being
able to accurately and rapidly sense all engine states, and model all
outputs. Further analytical research could help to identify types

and accuracy of sensors needed to accomplish the control objectives.,
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APPENDIX A
OPTIMIZATION WITH STATE VARIABLE INEQUALITY CONSTRAINTS

In chapter II, the optimal control of a dynamic system which is
nonlinear in the state variables and linear in the control variables
is considered, and necessary conditions for optimality are derived.
In chapter III, a new algorithm for solution of such problems is pre-
sented. In both chapters II and III, the path constraints are assumed
to be either control or combined state/control inequality constraints,
but not state variable inequality constraints. In this appendix, the
resﬁlts presented in chapters II and III are extended to apply to
problems with state variable inequality constraints. To illustrate
the use of the numerical technique, a state variable inequality con-
straint is added to one of the example problems from chapter V, and a
local minimum solution is obtained.

A path constraint in which the control does not appear explicitly,
i.e., ci(x,t) < 0, is called a state variable inequality constraint.
When a state variable inequality constraint is active for a finite
time period (i.e., ci(x,t) = 0), the control may be determined from
the requirement that all time derivatives of ci(x,t) must also be
identically zero during this time period. If s time derivatives of
ci(x,t) must be taken before the control appears explicitly, ci(x,t)
is called a state variable inequality constraint of ordér s. The sth
derivative of ci(x,t), i.e., dsci(x,t)/dts, then serves as the path
constraint from which a component of the control is determined. There
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are s additional equality constraints,

s-1
dci(x,t) ) d ci(x,t)

¢ (5,t) = === . . . = e 0

which must be satisfied at the initial point of the boundary segment
on which the control is active. These are sometimes called "tangency"
constraints.
1. Feasible Solution

In chapter III, a feasible solution having at least p segments
is obtained for a problem in which there are p terminal constraints.
If one of the active constraints for a given segment is a state vari-
able inequality constraint of order s, then there are s additional
point constraints which must be satisfied at the start of that segment.
In this event, there must be s additional trajectory segments, whose
durations provide the additional degrees of freedom necessary to
satisfy the s constraints.

2. Calculation of Lagrange Multipliers

It is shown in chapter III that once a feasible solution is ob-
tained, the Lagrange multipliers can be uniquely calculated. This is
also the case if one of the active constraints is a state variable in-
equality constraint. Suppose, for example, there is a state variable
inequality constraint of order s active in phase k. Then there are s
additional point constraints which must be satisfied at t = tk—l as
part of the determination of the feasible trajectory. There are aiso
s additional trajectory segments for tﬁis case.

It can be shown (e.g., ref. 13) that at such a point constraint,

there is a jump in A which is proportional to the gradient of the

I T I r R T T T I T T O L
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constraint. 1In this case, we have

)]

J

T, +  _ T, - 3| d

At ) = AT ) + g5 Bx[j ; c(tk_lé] (A1)
e dt

For simplicity, we will consider the case in which a single first
order state variable inequality constraint is active in segment k.
The results which will be derived can be extended to the case of mul-
tiple, higher order state variable inequality constraints. For a
first-order constraint, we have

T, +

G (t

3 (Fr-1) (42)

Because of the point constraint which must be satisifed at t = tk—l’
there are (p + 1) trajectory segments, and H must be continuous at
the p dinterior points, t = tl’ o o s, tp. In addition, for final
time free, equation (3.4) must also be satisfied.

Except at t = tk—l’ the requirement for continuity of H is

achieved by satisfying (3.3). However, the requirement for continuity

of H at t = tk—l must be given special consideration because of

the jump in X at t = tk—l“ The change in H at tk-l is given by

T

AH = AT(

e ) [F + guey_ 01 =T D IE + gu(ey )]

+ bT(tk_l)[u(t;_l) - ulty )]

G%gd>+e§]w+guqﬂn—A%Qﬂnf+w&;ﬁ]

+b7( D luley_ ) - ue )]

[%T(tk-l) + xT<t;_l>%}[u<t;;l> - u(ty )]

]

. 3¢ +
+ g ™ [£ + gu(tk_l)]

- e
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+
But for t =t

dc _ 9c + _

Therefore, we have

AH

[b+(tk_l) + AT(tlz_l) g(tk_l)][u(t;_l) - u(tlz_l)] at t =t .

(A3)
In order to solve for e and the p values of v, we find
(p + 2) backward solutions of the i equation (2.13). The first
(p + 1) of these solutions are identical to (3.5); A(p+l)(t) is ob-
tained by integrating (2.13) backward, starting at b 1s with initial

A (PHL) (o dc

conditions k—l) = ~ 3;-(tk_l). By superposition, A(t) is

given by

Ae) = 29 + v + ex® gy (a4)

The (p + 1) equations for the determination of € and v are given by

(e = w1 (e + 702 P (e + gTce pnce, v

+ g7 e n P ()1 = 0

i=1, ..., ((k-=~-2),%k,. . p‘ (A5)
ulty 1) = ute 1T ) + g7 e 2@, )
+E (g A v - g ) g Del=0 )

T
T ~T d L ldy ! -
a(tf) - b (tf)D (tf)C(tf) + E% (tf) + [EE' (tf)J v.=0 (A7)

The calculation of v and e proceeds exactly as in (3.10) to (3.12},‘

and ‘will not be repeated here,

LAl
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3. A Numerical Example
To illustrate the use of the equations which have been presented,
a numerical example which includes an active state variable inequality
constraint will be solved. Consider the problem of finding u(t)

which transfers the system

X =~x+u+ 0.25

(A8)
y=-4y +u
from initial conditions (xo, yo) = (1, 1) to terminal conditions
(xf, yf) = (0, 0) in minimum time. The system is subject to in-
equality constraints
|ul 2
(49)
vy+0.220

This problem is identical to the one~-piece linear approximation
studied in chapter V, but with the addition of a state variable in-
equality comstraint, y + 0.2 2 0.

When the state variable inequality constraint is active, i.e,,

y + 0.2 = 0, the control is determined from

y==4y +u=0
and since y = -0.2, we have u = -0.8 as the equivalent path con-
straint.

Inspection of the optimal solution in figure 5.2 shows that the
constraint y + 0.2 2 0 is violated. Therefore, we look for a fea-
sible solution in which the constraint y + 0.2 2 0 is active on one
of the segments., Specifically, we assume the'optimal control history

is given by
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us= -2, 02t= ty
u = -0.8, t, ftle, (ALO)
u =2, tzf.titf

and we seek values of £ ty, and te such that the terminal con-
straints X = ¥ = 0 and the intermediate constraint y(tl) = -0.2
are satisfied., Solution of the multipoint boundary value problem

5 = 1.002, te = 1.086.

The Lagrange multiplier time history which corresponds to this

results in t, = 0.402, t

trajectory may be calculated once the three parameters Vis Vg and

¢ are known. These parameters are determined by requiring that equa-
tion (A5) (for i = 2), (A6) (for k = 2), and (A7) be satisfied. The
resulting equations are given by

2,25 V1 + 2v2 = -1

0.919 vy + 06.715 v, = 0

]
o

0.615 vy + 0.143 v, - €

Simultaneous solution of these three equations results in

= 3,12, = -4,01, e = 1.35

21 v,
The final conditions on ) are therefore given by

Ax(tf) = 3.12, Ay(tf) = -4.01
Also,b}\y is discontinuous at £y:
A (D) = a(e]) + 1.35
vy 1 vy 1
The switching function (Ax + Ay) is presenﬁéd as a function of time

in figure Al. It confirms the fact that the initial feasible solu-

tion is a local minimum. The optimal trajectory is shown in figure A2.
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Figure A-1. - Switching function and control profile for optimization
problem with state variable inequality constraint.
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Figure A-2. - Optimal trajectory for problem with state variable in-
equality constraint.
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APPENDIX B
DERIVATION OF LAGRANGE MULTIPLTIER FUNCTIONS FOR FEASIBLE SOLUTION
Necessary conditions for the optimal control of a dynamic system

which is nonlinear in the state and linear in the control are derived

in chapter II. It is shown that except for singular arcs, the optimal

control (r wvariables) is always determined by r active constraint

boundaries. 1In chapter III, the nature of the optimal control strategy

is used as the basis for a new algorithm for the solution of such opti-

mization problems.

In chapter III, the first step is to obtain a feasible solution

which satisfies all path and terminal constraints. This is accom-

plished by dividing the trajectory into at least P segments (for a

problem with p terminal constraints) and requiring the control to

be determined by a set of r active constraints for each segment; p

of the junction times are varied in order to satisfy the terminal con-

straints., The Euler-Lagrange equations are not utilized in the deter-

mination of this feasible solution; it may or may not be a local mini-

mum.

Once such a feasible solution is obtained, it is useful to cal-

culate the Lagrange multiplier time histories, functions of which are

switching functions which predict the change in the performance index

obtainable from small changes in the control histories. In chap-

ter III, it is shown that these Lagrange multipliers can be easily
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and uniquely calculated. The calculation scheme makes use O

ferential equations for the multipliers,

The Lagrangé multiplie

Hamiltonian at junction points.

equations are derived in this appendix. Also,
tinuity of the Hamiltonian at junction points is proved here.
1f the initial feasible solution is not a loc

r TIT is to introduce

cedure followed in chapte

having control determined by T different active constraints.
switching times associated with these gegments are used in conj

with a gradient search technique to systematically improve

ance indeX. The gradient search technique requires partia
t to the free switchin

of the performance index with respec

these partial derivatives are derived in this appendix.
The problem statement which applies to the above

follows. 1t is desired to find the values of the P

which result in minimizing the performance index
t
£

J = ¢(xf,tf) + (a + bTu)dt

9

subject to the system dynamical equations

x=f +gu

and terminal constraints

In addition, the control must satisfy

~T t <t it 1=

Ci’ i-1 i

u-= —Di

f the dif-

and the continuity of the

T differential

additional segments,

g times;

problem is as

the requirement for con-

al minimum, the pro~

unction
the perform-

1 derivatives

junction times

(31)
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The system equations, terminal constraints, and control con-
straints may be adjoined to the performance index by using undeter-

mined Lagrange multipliers. This results in

\
* T &4 T
I = ¢(x, ,t.) + v (x,t) + [a+Dbu
£ f £27f &
‘ i-1
i=1

T . T -T
+ Ai(f + gu - %) + pi(u + Di Ci)]dt (B5)

Necessary conditions for a local minimum are that we can find Xi(t),
*
pi(t), and v such that the first variation of J vanishes with

*
respect to all allowable variations. The variation of J is given by

w
x (s d 5 T 9 ' i 5b T
ot = (20 4 VT ) g 4 (24 VTR Jae 4 da, %
ox ax £ ot ot f 9% 98X
£ £ £ £ ti
=1

oD, oG,
+}\'F<E-f-+-a-g-u P Qe 5x+(x?g+p?+bT su
i i ox i i ox i i

W . :
& i

- Az sghde + ) (a blu)dt (26)
=1 i-1 |

Integration of (B6) by parts gives

e T R
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W
PRI (T INRNC L' I S (- EPRNG i N I P i
5% ax ) %8 T \Gt ot £
£ £ £
’ i-l
i=1
-T
3D, aC, .
+ u+ X 3 L 38 ) _ p? 2 . +pF_1), AT {6
9x | 9x i\ 9x i i ox i
w t
+ (A?,: + p].'If +bD)su dt + > [(a + bluyde - xz 6}Jtl (87)
. i-1
. i=1

Since u is constrained by (B4), the &u are not free but are

given by
BD;T _p 3C;
5u=—~'§;{~Ci+Di-5£—5x (B8)

If (B4) and (B8) are substituted into (B7), and we choose ki(t) such

that
~T
. 8D 3C
T_ _ da sbT i
M=t o D C +bT == C, +b D, =
-T
3D 3C
T [3f dg .~T i -7 °¥i
- A (ax 5% %1 Ci T B g G T 8Dy sx‘> (89)
then (B7) simplifies to
. w
* _ (3¢ T 3y (3¢ T 3y
§J (Bx + v 3;) dxf + (EE—-+ T dtf +
, £ f .
, =1
t.
[(a + bluydt - AT 6x] * (BLO)
S ]

Note that (B9) can be written

e e
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T 3 -T
}\.—-—-;{"(a—bDiCi)-).

T
i 9 i

2 (£ - gD} C;) (B1L)
which is identical to (2.13).

The variations 6x which appear in (B10) apply for fixed time
tos and can be expressed in terms of the total variation dx and
variation of time dt.

§x = dx - % dt (B12)

Now if we use (Bl2) in (B10), and choose

T _ 3% T 3
) (tf) =gtV oa (B13)
£ £
and if te is free,
H{t ) A4+ bTu + AT(f + gu) = - 2 VT kA (B14)
£ atf Btf

then (B10) simplifies to

w—1 t

. .

3% = E ;[(a+bTu+,\?’fc)dt- AT d;J *
1 b

i=1
w=1 . w-1

- E M(tj) - x‘i‘?ﬂ(tiﬂ ax(t,) + E [bT(ti)u(t;) g (£ R(ED)
i=1 i=1

T -+ T - N
- b (ti)u(ti) - Ki+l(ti)x(ti€]dti (B15)
Note that (B13) and (BL4) are identical to (2.7) and (2.8). We can
also choose

(t;)

ApCe) = Mg

*,
so that the variation of J becomes
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w=-1

s1* = Ech(ti) [u(t;) - u(t‘i*)] + xi(ci) [}'{(t;) - )'((t:)]}dti
i=1
w-1
i=1

1f a particular t; is one of the free junction times, the coeffi-

cient of dti must vanish for a local minimum solution.

H(E]) = H(t-;) (B17)

for free junction times ti. On the other hand, if ti = tsw is one

of the fixed times, then we have

*

aJ _aJ _ - _ +

ot TRt B H(tsw) H(tsw) (B18)
swW swW




APPENDIX C
MODEL ORDER REDUCTION
Suppose we have a linear system

x = Fx + Gu

subject to linear inequality constraints
Cx +Du+EZO

Also, suppose there are n states, and n, of the eigenvalues of F
are much smaller than the remaining n, =n -ny. Then the dynamics
associated with the n, larger-eigenvalue modes are much faster than
the dynamics of the ny lower eigenvalue modes. Therefore, the
higher frequency modes will:nearly always be in equilibrium (or oscil-
lating at high frequency about equilibrium). In such a case, the cal-
culation of optimal trajectories can be made significantly easier if
the high frequency modes are assumed to be always in equilibrium. In
carrying out that approximation, it is also desirable that the low fre-
quency eigenvalues Be retained exactly. Furthermore, it is desirable
that ny of the original states be retained in the lower order approx-—
imate model.

Specifically, we seek a low frequency approximation of the system
in which the first n, states of the original system are retained, -
and the eigénvalues of the reduced order system are exactly equal to
the n, smaller eigenvalues of the original system. We proceed as

1

follows.
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We can find a transformation T which block-diagonalizes the

system:

x = Tm; T "x=m

(CL)

wheére the m are modal coordinates. Differentiating vhe above gives

A= T k = Am+ Zu

where g 2 T-l
titioned into low frequency modes m(l) and high

(2)

m'“’, the result is
L L@ @ W

The quasi-steady approximation is

ﬁx(Z) =0
which results in
@) . _, (@7 (@)
m = =A p) u

Now let x(l) have the same dimension as m

(C2)

G and A = T"LFT 1is block diagonal. If (C2) is par-

frequency modes

(€3)

(c4)
1

and denote the

states of most interest in the low frequency approximation. We have

x(l) = Tllm(l) + lem(z)

Differentiation results in

L R O A  CO PSS A GO

11 12 R S

11 11

B

11 11*

(L
nt v

T A(l)T'l[x(l) - lem(zﬂ + Tllz(l)

(1) -1 (1) SN -1, ,(2) T.(2)
T, AT + [Tllz + Ty AT T oA P ]u

(€5)

i
;
;
i
i
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Also, we have

GO NN GO €5

21™ 22
oAl L @ )
= TZlTll[‘x Tyom :} + T)om
. -1
) . -1_(1) -1 (2) (2)
x0T Ty TR+ (T Ty Ty = Thpdh £ (C6)

The inequality constraints become

Cx + Du+E = Clx(l) + sz(z) + Du + E

-1
L -1_(1) -1 (2) (2)
C,x + Cy| Ty Ty 1X + (T21T11T12 - Tpy)A I

+ Du + E

-1
-1\ (1) ( -1 ) (2) ~.(2)
(Cl + CzT21T11)x + [Cz Ty1T93 10 = Tpp)? LY +Dlu

<0 (c7)
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0.285
. 143
.703

2,27

1.27

1.46

2,05

0.988
-0.232
2435

0.0138
-0.0133
-4.,67

~0.753E-3
.0841
-0.135
1.73
28.0
~-0.398
1.14

-0.0175
+108E-2
.291E-2
0589

-0.0720
.0123

-0.862E-2
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(b) PLA = 36°

-0.462
-0.106
-7,91

-0,0350
-0.00478
«370

0.243
~-0.107
-0.0137
~-1.89
~-0.594
~0,00598

.137

0.0130
.0439
~-0,193E-2

~-0.199

-0.0328

-0.383E-2
.0136

77.2
X, = 109
226

-0.00211
~0,00139

.0135

)

52.2

152

70.8

y =1 225

152
182

0.117E-4
-0.327E-3
.102E-2
-0.541E~2
-0.118
«261E~2
-0.370E-2

99.1

u

e_

34.9
300
~-250
~914
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-2.27
F=1\ -0.498

G

22.8
2.00
1.30
7.41

1.00
2.70
-0.101

17.4

-5.98

-0.105
1.30

3.34
.256
.630

2.82

1.29

1.36
.962

2.23
-1.96
.936

-0.0366
.00653
-6.24

0,0466
.0937
-0.136
2.59
22.3
-0.321
2.21

~0.0147
.0163
.977E-4
L0244
-0.115
-0.0107
-0.268E-2
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(c) PLA =

-0.520
-0.0639
-6.11

-0.0434
-0.0103
.541

0.224
-0.0741
-0.0249
-1,86
-0.399
-0.0596

1.97

0.0240
.0665
-0.528E-2
-0.190E-2
-0.765E-2
-0,0102

.03C7

52°

87.6

X, = (116
276

-0.531E-3
-0.445E-2
-0.166E-2

78.7
180

78,9
y. = 221
150
170
237

0.675E-4
-0.550E-3
.591E-3
-0.634E-2
-0.0906
.162E-2
-0.138E-2

50.8

300

e |\ =250
~-259

I P TS S SUL TS T T




[

(

-3.37
-0.130
-21.3

1.59
1.17
5.74

0.945
2.09

.0769
7.37
-6.54
.351

. 454

0,361
.210
.541

1.59

1.53

1.16
. 838

3.13
-2.87
1.93

-0.0354
.0165
-7.34

0.0511
L0249
-0.187
2.00
12.3
-0.465
3.16

~0,00523
<0432

~0.294E=-2
.135
.206

-0.025
»0335
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(d) PLA =

-0.493
~0.072
-6.03

-0.0848
-0,795E-2
.804

0.219
-0.0198
-0.0353

~1.42

-0.245
-0.0817
.282

0.0342
.0799
~0.191E-2

-0.671

~0.0967

-0,437E-3
.0215

67°

94.4
X = 122
€ 330

0.155E-2 68.6
~0.574E-2 ~ 298
.0173 Ye = \ -164
92.2

105

203

86,1
y_ =] 254
179
187
290

0.807E-4
-0.561E-3
0.436E-3
~0.444E-2
=0.110
0.119E-2
.819E-3




Ak

R

¥

~4.83
( .208

17.3
1.65
1.08
3.24

0.885
1.49
. 309
10.8
=0.472
1.01
-1.06

0.263
-0.0287
.396
-0.777
| ~0.485
. 810
.846

2.43
-3.08
1.07

0.753E~2
.0175
-9.96

0.111
.209E-3
.0845
.355

1.01

-0.265

2.89

-0,0267
~-0.0106
-0,492E~2
-0.529
.0190
=0.0548
.0990
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(e) PLA = 83°

-0.354
-0.132
-6.35

-0,117
.0208
. 742

0.188
-0,129E~2
.0538

-1.50
.0930

-0.130

-0.457

0.0371
.0712
.353E-2

-0.486

-0.0108
.0156

-0,0137

o

0.553E-3
-0.814E~2
-0.318E-2

0.627E-3
.999E-4
. 792E=3
.328E-2

-0.,0659
.201E-2
.374E=-3

103
131
423

106
| 284
Ye = \-174

400

150
230
100
192
192
217
383

e

BRI
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APPENDIX E

COMPUTER PROGRAM LISTINGS

MAIN PROGRAM

IMPLICIT REAL*8 (A - H, O = Z)

COMMON/CA/C (8,3,5) /D (8,4,5) +E(8) ,¥I (3,5) , 0T (4,5) ,YI(8,5) ,XO(7),
1XD (3)

COMMON/CB/A (7,7,20) ,BX(7,20),T(20), VAL(80),JN (80), HIT(20) , JHIT (20)
COMMON /CO/ALFA(7,20) ,BETA (20) ,PARNS (3,4) ,TS(20) ,XST0(7,20),
1XLSTO (7,20) ,XLO(7) ,IT (3) ,I%(5) , NPHASE
COMMON/MTRANS/USLOPE(2) ,NN

COMMON/NNOUT/NOUT

COMMON/NS/NSTATE

COMMON/OUTCNT/NOUTLH

COMMON /TTRANS/PAR(20,20) ,PARIN(3,3) ,PARS(3,3) ,X(7) ,KFLAG,KHNAX,
1KOPT (20) ,KOUNT, NOPT (20) , NOPTS

DIMENSTION Z(5),ZL(10),Z0PT(5)

EXTERNAL PUNGRD

LOGICAL CONV,UNITL,LOCAL

NSTATE=7

IF (NOPTS.EQ.0)GO TO 11

DO 10 I=1,NOPTS

J=NOPT (I)

ZOPT (I} =TS (J)

CONTINUE

NOUTLM=-1

IPRINT==-1

CONTINUE ,

NLDIM=NOPTS* (NOPTS=1) /2

IF (NLDIM.EQ.O) NLDIM=1

KOUNT=0

NN=0

NOUT=0

N=NOPTS

po 1 I=1,20

1 KOPT(I)=I

CALL SETUP

2x=0.

Z0L=1.D=5

ZPSMCH=16.0%* (~-13)

ZTA=0.5

ZTEPNX=1.0

UNITL=.TRUE.

LOCAL=.FALSE.

IP(NOPTS.EQ.0)GG TO 3

CALL QNHDER(N,NLDIH,ZOPT,ZX,FUNGRD,ZL,Z,ZOL,ZPSHCH,ZTR,NFTOTL,
1NGTOTL,NITER,ZTEPHX,UNITL,LOCAL,IPRINT,CONV)
CALL OUTPT

GO TO 2

"3 T(1)=TS (1)

po 4 I=2,NPHASE

4 T(I)=TS(I)-TS (I-1)

CALL TRAJ
CALL LCALC
CALL OUTPT

2 CONTINUE

STOP
END

T A Y
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SUBROUTINE FUNGRD(N,Z0PT, IPLAG,ZF,Z)
IMPLICIT REAL*8 (A - H, 0 - 2)
REAL*8 IS
counou/CAVC(e,a,S),n(e,u,S),E(e),x1(3,5),01(4,5),11(8,5),x0(7),
1XD (3)
COHHCN/CB/A(7,7,20),BX(7,20),T(20),VAL(80),JN(BO),HIT(ZO),JHIT(ZO)
COHHON/CO/ALFA(?,ZO),BETA(ZO),PARHS(3,“),TS(ZO),!STO(?;ZO),
1XLSTO (7,20) ,XLO(7) ,IT(3) ,JN(5), NPHASE
COMMON/LTRANS/ZLAM (7) ,IS(7,7,20)
COMMON/NNOUT/NOUT
COMMON/NS/NSTATE
COHHON/TTRANS/PAR(ZO,ZO),PARIN(3,3),PARS(3,3),X(?),KFLIG,K!AX,
1KOPT(20) ,KOUNT, NOPT (20) , NOPTS
DIMENSION XER(7),TEMP(7),Y(7),Z(N),ZOPT (N)
DATA XER/7%0./
DO 11 I=1,NOPTS
J=NOPYT (I)
11 TS (J) =2Z0PT (I)
3 T(1)=TS(1)
DO 1 I=2,NPHASE
1 T(I)=TS(I)=-TS(I~1)
CALL TRAJ
T(1)=TS(1)
DO 5 I=2,NPHASE
5 T(I)=TS(I)=TS(I-1)
KRESET=0
7 IF{KRESET.EQ.1) KRESET=2
DO 14 I=1,NPHASE
IF(T(I).GE.0.0)G0O TO 14
CALL RESET(I)
KRESET=1
14 CONTINUE
IF(KRESET.EQ.1)G60 TO 7
IF (KRESET.EQ.2) CALL TRAJ
IF(IFLAG.EQ.2)GO TO 12
ZFP=0.0
DO 2 I=1,3 ;
2 ZF=ZF+ ((X{(I)=XD (X)) /XD (L)) **2/2.0
IF(IFLAG.EQ. 1) RETURN
12 CALL LCALC
JJ=1
KX=KOPT (1)
LX=NOPT (KX)
NX=KOPT (NOPTS)
LOPT=NOPT (MX)
DO 20 I=1,LOPT
IF(I.NE.LX)GO TO 20
DO 21 J=1,NSTATE
Y (J3)=BX(J,LX)=BX(J,LX+1)
DO 21 K=1,NSTATE
21 Y(J)=Y(J)-(A(J;K,LX+1)-A(J,K,LX))*XSTO(K,I)
C IX=I+1 ‘
IP(IX.GT.NPHASE)GO . TO 25
DO 22 J=IX,NPHASE

L b

-
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CALL}UPDATE(Y,T(J),A(1,1,J),XER,NST!TE,1)
IF(JHIT(J).EQ.O)GO TO
pDp=0.0
i pN=0.0
i po 23 K=1,NSTATE : ‘
DD=DD*ALFA(K,J)*BX(K,J)
DN=DN+ALFA(K,J)*Y(K) -
po 23 L=1,NSTATE
23 DD=DD&ALFA(K,J)*A(K,L,J)*XSTO(L,J)
PAR (J,X)=-DN/DD
po 24 K=1,NSTATE
Y(K)=Y(K)—(BX(K,J#\)-BX(K,J))‘PAR(J,I)
po 24 L=1,NSTATE
24 Y(K)=Y(K)-(R(K,L,J¢1)
22 CONTINUE °
2% J3=3J+1
KX=KOPT (JJ)
LX=NOPT (KX)
20 CONTINUE
Ja=1
KX=KOPT (1) 1
LX=NOPT (KX) ~
po 4 I=1,LCPT
IP (I.NE.LX)GO TO 4
2 (KX)=0.0
po 8 K=1,NSTATE '
z(KX)=Z(KX)-XLSTO(K,I)*(BX(K,L1¢1)-BX(K,Lx))
po 8 J=1,NSTATE
8 Z(KX)=Z(KX)-XLSTO(K,I)*(A(K,J,LX#1)—A(K,E,LX))*XSTO(J,I)
IX=T+1 o
IRON=1 ;
IF (IRON.EQ. 1) GO T0 26
IF(IX.GT.NPHASE)GO T0 26
po 28 J=IX,NPHASE -
IF(JHIT(J).EQ.O)GO T0 28
po 27 K=1,NSTATE :
z(KX)tz(xx)-XLSTO(K,J)*(ex(K,J+1)-ax(K,J))*EAR(J,I)
po 27 L=1,NSTATE '
Z(KX)=Z(KX)-XLSTO(K,J)*(A(K,L,J#1)_u(K,L,J))*!STO(L,J)'PAR(J,I)
27 CONTINUE
28 CONTINUE
26 TE?DSQRT(Z.*ZF)
HRITE(6,10)ZOPT(KX),TE,Z(KX),LX
33=33+1 :
KX=KOPT(JJ)
LX=NOPT (KX)
44 CONTINUE
10 pORMAT (1H ,3(620.9),12)
IF(NOUTuEQ.O)CALL 0UTPT
NOUT=1
RETURN
END

—A(K,L,J))'XSTO(L,J)‘PAR(J,I)

R S T




11

150

SUBROUTINE LCALC
IMPLICIT REAL*8 (A - H, O = Z)

REAL*8 ID,IS,ISIN
1congou/cn/C(8,3,5),D(a,u,S),3(8),x1(3,5),Ur(u,S),zI(a,S),x0(7),
XD (3)

COMMON/CB/A(7,7,20) ,BX(7,20),T(20),VAL(80),JN (80),HIT(20),JHIT (20)
COMMON/CO/ALFA (7,20) ,BETA(20) , PARNS (3,4) ,TS (20) ,X5TO (7, 20),
12LSTO (7,20) ,ZLO (7) ,IT (3) ,dM (5) , NPHASE
COMMON/CX/F (3,3,5) ,G(3,4,5) ,DD(4,4,20) ,ID(7,7)
COMMON /EPSS/EP5 (20) L
COMMON/LTR2NS/ZLAN (7) ,IS(7,7,20)
COMMON/NS/NSTATE

DINENSION GSP(7),GSM(7),TEMP(7),ZER(7),ISIN(7,7)
DATA ZER/7%0.0/

po 2 1=1,3

ZLAM(I)= (XSTO (I, NPHASE)-XD (I))/XD (I) **2

ZLSTO (I, NPHASE) =ZLAM (I)

DO 11 I=4,NSTATE

ZLAM(I)=0.0

ZLSTO (I, NPHASE) =ZLAM (I)

DO 3 I=1,NPHASE

IA=NPHASE=I+1

TX==T (IA)

CALL UPDATE (ZLAM,TX,A(1,1,IA),ZER,NSTATE,?2)
IF(IA.EQ.1)GO TO 3

DO 4 J=1,NSTATE

ZLSTO (J, IA=1)=ZLAM (J)

IF(JHIT (IA-1).EQ.0)GO TO 3

DO 5 J=1,NSTATE

GSP (J) =BX (J, IA)

GSM (J) =BX(J, IA=1)

DO 5 K=1,NSTATE

GSP (J) =GSP (J) +A (J,K,IA) *XSTO (K, IA=1)

GSM(J) =GSM (J) +A (J, K, IA-1)*XSTO (K,IA=1)

DOT=0,.0

DOTIN=0.0

DO 6 J=1,NSTATE

DOTIN=DOTIN+ALFA (J, IA=1) *GSM (J)
DOT=DOT+ZLAM (J) * (GSM (J) ~GSP (J) )

EPS (IA-1)=DOT/DOTIN

DO 8 J=1,NSTATE

ZLAM (J) =ZLAM (J) =EPS (IA-1)*ALPA (J, IA=1)

ZLSTO (J, TA-1) =ZLAN (J)

CONTINUE

PO 10 I=1,NSTATE

2L0 (I) =ZLAM(I)

RETURN

END
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SUBROUTINE OUTPT
IMPLICIT REAL*8 (A - H, O = 2)
REAL*8 ID,IS,KAPPA ;
connou/CA/C(e,3,5),D(a,u,S),E(S),x1(3,5),01(u,5),vx(a,s),x0(7),
XD (3) . .
COHHON/CB/A(7,7,20),BX(7,20),T(20),VAL(BO),JN(BO),HIT(20),JHIT(20)
COHHON/CO/ALFA(7,20),BETA(20),PARHS(3,“),TS(ZO),XSTO(?,ZO),
ZLSTO (7,20) ,ZLO (7) ,IT (3) ,IJM(5), NPHASE
conHON/CX/F(3,3,5),G(a,u,S),Dn(u,u,zo),xo(7,7)
COMMON/EPSS/EPS (20)

COMMON /LTRANS/ZLAM (7) ,IS (7,7,20)

COMMON/MTRANS/USLOPE(2) ,NN

COMMON/NS/NSTATE

COMMON/OUTCNT/NOUTLM

DIMENSION 5(5),X(7),our(8),xAppA(u),Tnup(7).zzn(7)

DATA ZER/7*0./

IF (NOUTLM.LT.0) RETURN

M=1

IM=J4 (1)

po 50 I=1,4

IF (IM.GT.0)GO TO 50

M=M+1

IN=JN (M)

CONTINUE

KK=1

WRITE(6,7) TS(20)

WRITE (6,13)

WRITE (6, 14)

WRITE {6.,20)

FORMAT (*1°,U4X,'TF= *,G11.4)
FORHAT('1',ux,'TIHE',7X,'THRUST',SX,'AIRFLOH',UX,'TIT‘,BX,'SHFAN',
16x,'SHCOH',6X,'FTIT',7X,'PT3',8X,'NFAN',?X,‘NCOHP',GX,'PTTH')
FORMAT (sx,-wr',gx,-auoz',7x,-1cv',ex,-avs',ax,'xnppa1-,sx.
1'KAPPA2',5X,'KAPPA3',SX,'KAPPAQ',5X,'H',10X.'D1',9X,'D2')
FORMAT (sx,-nav,gx,-na',9x,-D5',9x,'TzanERR-)

DT=0l 1

TIME=0.0

N=1

DO 41 I=1,NSTATE

ZLAM(I)=ZLO0 (I)

X(I)=X0 (1)

GO0 TO 16

IF (TIME+DT.LE.TS(N).2ND.KK.EQ.1)GO TO 1

Go TO (10,11,18,12) ,KK

TSTO=TIME+DT

DTSTO=DT

60 DT=TS (N)~TIME

1"

KK=2

G0 TOo 1

N=N+1

IF(N.GT.NPHASE) RETURN

IP (JHIT (N-1).EQ.0)GO TO 40
IFP(N.NE.IN+1)GO TO 51
n=M+1
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IMN=JN (M)

DO 53 J=1,NSTATE

ZLAM (J) =ZLAM (J) +EPS (N=1) *ALFA(J, N=1)
pDT=0.0

KK=3

GO TO 16

DT=TSTO-TIME

IF(TS(N) .LT.TSTO)GO TO 60

KK=4

GO TO 1

KK=1

DT=DTSTO

GO TO 8

CALL UPDATE(X,DT,A(%,1,8),BX(1,N),NSTATE,1)
TIME=TIME+DT

NST=NSTATE-4

po 3 1=1,7

OUT (I)=YTI(I,M)

po 34 J=1,4 _
OUT (I) =OUT (I)+D (I, J, M) * (X (J+NST) UL (J,H))
po 3 J=1,NST

OUT (I) =0UT (I) +C (I, J, M) *(X(J)-XI (J,N))
TX=DT

IF (DT.EQ.0.0.0R. TIME.EQ.0.0)G0 TO 17
CALL UPDATE (ZLAM,TX,A(1,1,N),ZER,NSTATE,2)
po 9 I=1,4

KAPPA (I)=0.0

Do 9 JI=1,4

JX=J+NST

KAPPA (I) =KAPPA (I)-DD(J,I,N) *ZLAM(JX)
H=0.

po 15 1=1,NSTATE

H=H+ZLAM (I) *BX (I,N)

po 15 J=1,NSTATE
H=H+ZLAM (I) *A (I,3J,N) *X (J)

po 37 1=1,5

S(1)=0.0

po 37 3J=1,NST
S(I)=S(I)+(X(J)=XIL(J,I))**2/ (XI(J,1) =XI(J,2))**2
po 52 I=1,5

S (I)=DSQRT (S (I) /3.0)

2P=0.0

po 2 I=1,NST

ZF=2F+ ({X(I)=XD(I)) /XD(I))**2/2.0

“TE=DSQRT (2. *ZF)

WRITE (6,19) TINE, (OUT (I) ,I=1,7), (X(I),I=1,3)

WRITE (6, 4) (X (I+3),I=1,4), (KAPPA(I),I=1,4) ,H,(S(T),
WRITE (6,6) (S{I) ,1=3,5),TE

FORMAT (3X,11(G11.4))

FORMAT Z3X,3 (G11.4) ,G11.5)

FORMAT (3HO ,G11.5,10(G11.4))

GO TO 8

END

I1=1,2)
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SUBROUTINE RESET (N)
IMPLICIT REAL*8 (A - H, O = 7)
couson/CB/A (7,7,20) ,BX (7,20) ,T(20), VAL (80) ,IN (80) , HIT (20) , JHIT (20)
COMMON/CO/ALFA(7,20) . BETA(20) ,PARNS (3,4) ,TS (20) , XST0 (7,20) ,

1XLSTO (7,20) ,XLO(7) , IT (3) ,IM(5) , NPHASE
COMMON/TTRANS/PAR(20,20) ,PARIN(3,3),PARS(},3) ,X(7) ,KPLAG,KNAX, i
1KOPT (20) ,KOUNT, NOPT (20) , NOPTS g
Do 12 J=1,4
M=4* (N=1) ¢+J |
IF(JIN (M) .NE.JIN(M-4))GO TO 10 |
JINT=JN (M+4) |
VALT=VAL (M+4)

) IF (JN (M) .NE.JN(M+4))GO TO 11

JINT=JN (N~-4)

VALT=VAL (M-4)

JN (M) =JNT

VAL (M) =VALT

po 7 1=1,7

ALFT=ALFA (I, N)

ALFA(I,N)=ALPA(I,N-1)

ALPA (I,N=1) =ALFT

BET=BETA (N)

BETA (N) =BETA (N=1)

BETA (N~1) =BET

HITT=HIT (N)

HIT (N) =HIT (N=1)

HIT (N=1)=HITT

JHITT=JHIT (N)

JHIT (N)=JHIT (N=~1)

JHIT (N-1)=JHITT

TT=TS (N)

TS (N) =TS (N-1)

TS (N=1) =TT

T(N)=TS(N) =TS (N=1)

T(N+1) =TS (N+1) =TS (N)

IF (N.GT.2) T (N=1)=TS (N-1) =TS (N=2)

IF (N.EQ.2) T (1)=T5(1)

Do 2 I=1,5

K=JM (1)

IF (K. EQ- N) M (I) =K~1

IF (KeEQ. N=1) M (I)=K+1

CONTINUE

DO 3 I=1,20

K=NOPT (I)

IF (K. EQ. N) NOPT (I)=K=1

IF (K. EQ.N=1) NOPT (I) =K+1

CONTINUE

DO 4 I=1,19

KX=KOPT (I)

KY=KOPT (I+1)

IF (NOPT (KY) . GE. NOPT (KX)) GO TO &4

KT=KOPT (I+1) ,

KOPT (I+1)=KOPT (I)

KOPT (I)=KT
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4 CONTINUE
CALL SETUP
WRITE (6,5) N, (I (1) ,I=1,5)
5 FORMAT (1H ,7 (I3))
RETURN
END

e
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SUBROUTINE SETUP

IMPLICIT REAL*8 (A - H, O = Z)
REAL*8 ID,LX,MX |
COHgON/CA/C"“',5),D(8,4,5),E(B),XI(3,5),UI(“,S),YI(B,S),X0(7),
1XD (3) :
COBHON/CB/A(7,7,20),BX(7,20),T(20),VAL(80),JN(BO),HIT(ZO),JHIT(ZO)
COHHON/CO/RLFA(7,20),BETA(ZO),PARHS(3,Q),TS(20),XSTO(7,20),
1ZLSTO(7,20),ZLO(7),IT(3),JH(S),NPHASE
COHHON/CX/F(3,3,5),G(3,“,5),DD(“,“{ZO),ID(7,7)
COMMON/MTRANS/USLOPE(2) ,NN
COHHON/NS/NSTATE

DIMENSION C1(4,Q),C2(“,“),CS(2,3),ﬂI(3,5).EI(“),EE(“),L!(“),HX(“)
po 100 1=1,7

po 100 J=1,20

ALFA(I,J)=0.0

po 27 1=1,2

po 27 J=1,3

cs(1,J)=0.0

cs(1,1)=23./6400.

CS (2,2)=34./4100.

po 41 k=1,20

DO 41 I=1,4

D0u1 J=1'“

DD(I,J,K)=0.0

NST=NSTATE-4

DO 40 I=1,NST
HI(I,1)=1.5*XI(I,1)-0.5*XI(I,2)

DO 40 J=2,5

WI{I,J)=XI(I,J)

M=1

IN=JM (1)

po 50 I=1,4

IF (IN,.GT.0)GO TO 50

M=M+1

IM=JM- (M)

CONTINUE

DO 1 K=1,NPHASE

IF(K.LE.IN)GO TO 2

M=M+1

In=JM (M)

po 3 1=1,4

EE(I)=0.0

po 3 J=1,4

c1(1,3)=0.0

c2(1,J3)=0.0

DD (I,J,K)=0.0

DO 4 I=1,4

LL=4* (K-1) +1

N=JN (LL) !

NT=0

IF (N.GT.B8)GO TO 5

DO .6 J=1,4

DD (I,J,K)=D(N,J,H4)

DO 6 L=1,NST
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C2(I,J)=C2(1,J)+C(N,L,N)*G(L,T,N)
DO 7 J=1,NST

Do 7 L=1,NST
C1(I,J)=C1(I,J)+C(N,L,N)*F(L,J, M)
DO 8 J=1,NST

EE(I) =EE(I)~=C1(I,J) *XI (J,N)

Do 9 J=1,4

EE (I) =EE (I) -C2 (I,J) *UL (J, M)

GO TO 10

IF(N.GT.12)G0 TO 11
DD(I,N=8,K)=1.0

GO TO 10

IP(N.GT.16)GO TO 12

DD (I,N-12,K)=1.0

EE(I)=-VAL(LL)

GO TO 10

IP(N.GT.20)GO TO 13
DD(I,N-16,K)=1.0

EE(I)=VAL(LL)

GO TO 10

IP(N.GT.22)GO TO 14

DD (I'N-18'K) =-1-0

Do 15 J=1,4

DO 15 L=1,NST

C2(1,J)=C2(1,J) +CS(N~20,L) *G(L,J, M)
DO 16 J=1,NST

DO 16 L=1,NST
C1(I,J)=C1(I,J)+CS(N=-20,L)*F(L,JT,N)
bo 17 J=1,NST

EE (I) =EE (I)=C1(I,J) *XI(J, M)

DO 18 J=1,4

EE(I) =EE(X)~C2(X,J) *UI (I, N)

GO TO 10

N=3

NT=1

GO0 TO 19

IF(NT.EQ.1) EE(I)=EE(I)~-VAL(LL)
CONTINUE

CALL DMINV(DD(Y,1,K),U4,DET,LX,NX)
po 20 I=1,NST

DO 21 J=1,NST

A{I,J,K)=F(I,J,M)

DO 20 J=1,4

JX=J+NST

A(I,JX;K)=G(I,J,m)

DO 22 I=1,4

IX=T+NST

BX(IX,K)=0.0

Do 22 J=1,4
BX(IX,K)=BX(IX,K)=-DD(I,J,K) *EE(J)
DO 23 I=1,NST ~

BX(X,K)=0.0

DO 24 J=1,NST
BX(I,K)=BX(I,K)=F(I,J,N)*XI(J, M)

T A

5
%
|
5
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po 23 J=1,4
BX(I,K)=BX({I,K)-G(I,J,H)*UI(J,N)
po 25 1=1,4

po 25 J=1,NST

IX=I+NST

A(IX,J,K)=0.0

DO 25 L=1,4
A(IX,J,K)=A(IX,J,K)-DD(IwL.K)‘C1(L,J)
Do 26 I=1,4

po 26 J=1,4

IX=I+NST

JX=J+NST

A(IX,JdX,K)=0.0

Do 26 L=1,4
A(IX,JX,K)=A(IX,JX,K)-DD(I,L,K)*C2(L,J)
CONTINUE

n=1

I8=J4 (1)

Do 28 I=1,4

IP(IN.GT.0)GO TO 28

M=M+1

In=Jn (M)

CONTINUE

po 29 I=1,NPHASE

IF (I.LE.IN)GO TO 31

M=M+1

IM=JM (M)

JH=JHIT (I)

IF (JH.EQ.0)GO TO 29
IFP(JH.GT.8) GO TO 30

BETA (I)=HIT (I)-YI(JH,N)

po 32 J=1,NST

ALFA(J,I)=C(JH,J,H)
BETA(I)=BETR(I)+C(JH,J,H)*XI(J,H)
DO 33 J=1,4

JX=NST+J

ALPA(JX,I)=D (JH,J, M)
BETA(I)=BETA(I)+D(JH,J,H)*UI(J,H)
GO TO 29

IF(JH.GT.12)GO TO 34

ALFA (JH=5,1)=1.0

BETA(I)=HIT(I)

IP (JH.LT.21)GO TO 29

IF (JH.GT.22) GO TO 35

BETA (I)=HIT (I)

IF{(JH.EQ.22)GO TO 101

BETA (I)=25.423,%4000./6400.~HIT(I)
GO TO 102
BETA(I)=30.+34,%9000./4100.-HIT ()
CONTINUE :

DO 36 J=1,NST
ALFA(J,I)=CS(JH=20,J)

ALPA (JH=-15,1)==1.0

GO TO 29
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35 IF(JH.EQ.23)GO TO 29
BETA (I)=0.0
DO 37 J=1,NST
ALFA(J,I)=0.0
DO 37 L=1,NST
BETA (I) =BETA (I) +ID (J,L) * (WI (J, M+1) #WI(L,N+1)-WI(J, N)
TEUI (L,M))/(WI(J,M+1)=WI (J,N))%*2
37 ALFA (J,I)=ALFA (J,I) +2.0% (WL (L,M+1)-WI(L,N)) *ID(J,L)/
1(WI(J,M)=WI(J,M+1))**2
29 CONTINUE
RETURN
END

.

U
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SUBROUTINE TRAJ

INPLICIT REAL*8 (A - H, O = 2)
REAL*8 ID

cOoMMON/CA/C(8,3,5),D(8,4,5) ,B{8),XI(3,5),0T(4,5),YI(8,5),X0(7),

1XD(3)

COMMON/CB/A(7,7,20) ,BX(7,20),T(20),VAL(80),JN (80),HIT(20),JHIT(20)
COMMON/CO/ALFA(7,20) ,BETA(20) ,PARMS (3,4) ,TS (20) ,XSTO (7,20),

1XLSTO(7,20) ,XLO(7) ,IT (3) ,IM (5) ,NPHASE

COMMON/CX/FP (3,3,5) .G(3,4,5) ,DD(4,4,20),ID(7,7)

COMMON/NS/NSTATE

COMMON/TTRANS/PAR(20,20) ,PARIN(3,3),PARS(5,3) ,X(7) ,KPLAG,KNAX,

1KOPT (20) , KOUNT, NOPT (20) , NOPTS

1)

104

81

82

90

105

83

80

51
100

DINENSION Y(7),W (7)

KPLAG=0

DO 2 I=1,NSTATE

X(I)=X0 (1)

KOUNT=KOUNT+1

KT=0

DO 4 M=1,NPHASE

CALL UPDATE(X,T (M) ,A(1,1,H),BX(1,M) ,NSTATE, 1)
DO 104 I=1,NSTATE
XSTO (I, M)=X(I)
IF(JHIT (M) .EQ.03GO TO 80

S=BETA (M)

DO 81 I=1,NSTALZ

S=S-ALFA (I,M)*X (I)

IF (DABS (S/BETA(M)).LE..0001)G0o TO 83
CALL VMULT(A(1,1,M),X,Y,NSTATE)
SD=0.0

DO 82 I=1,NSTATE
SD=SD=-ALFA (I,H) * (Y (I)+BX (I, ¥))
T(M)=T (4)~-5/SD

KT=KT+1

IF(KT.LE.10)GO TO 90

KPLAG=1

RETURN

DTN==S/SD

CALL UPDATE(X,DTM,A(1,1,M),BX(1,H),NSTATE, 1)
PO 105 I=1,NSTATE
XSTO (X, M)=X (1)

GO TO 88

IF (M.GT. 1) TS (M) =T (M) +T5 (M-1)
IF(M.BQ. 1) TS (1)=T(1)

T (M+1)=TS (M+1) =TS (M)

CONTINUE

TIF(IT(1) <EQ.0)GO TO 4
IF(K.BQ.0)G0 TO 50

DO 51 J=1,K

CALL VMOULT({PHI,PAR(1,J),%W,NSTATE)
po 51 1=1,3

PAR(I,J) =W (I)

po 100 I=1,3
PAR(I,M)=Y{I)+BX(I,M)

DO 102 K=1,4
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87

61
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IN=JM (K)
IF (M. NE.IN)GO TO 102

Do 85 1=1,3

L=IT(I)

IF(L.GT.IN)GO TO 85

SDS=0.0

KX=K=1

DO 86 J=1,3
SDS=SDS=ALFA (J,K)* (PAR(J,L) =PAR(J,L+1))
IF(KX.EQ.0)GO TO 86

DO 103 JJ=1,KX

JK=J4 (JJ)

IF (JK.LT.L.OR.JK.GE.10) GO TO 103
SNS=SDS=ALFA (J, K) *PARMS (I,JJ) *(PAR(J,JK) ~PAR (J, JK+1))
CONTINUE

CONTINUE

PARMS (I,K)==-5SDS/SD

CONTINUE

CONTINUE

CONTINUE

IF(IT(1).FQ.0)GO TO 106

po 61 J=1,3

K=IT(J)

DO 61 I=1,3
PARS(I,J)=PAR(I,K)=-PAR(I,K+1)

DO 61 M=1,4

IN=JM (M)

IF (IM.LT.K.OR.IM.GE.10)GO TO 61
PARS(I,J)=PARS (I,J) +PARMS(J,M)* (PAR(I,INM)-PAR(I,IN¢1))
CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE UPDATE(X,T,A,BX,NSTATE,L)
IMPLICIT REAL*8 (A - H, 0 = Z)
DINENSION X(NSTATE),BX(NSTATE).A(NSTATB,NSTAT!),85(10),81(10).

N=12

IP(L.EQ.2)GO TO 7

DO 6 I=1,NSTATE

BS (I) =BX (I)

XS (I) =X (I) |

po 2 K=1,N

DO 3 I=1,NSTATE . -

XT (I)=0.0 %
1
]

BT (I) =0.0

DO 3 J=1,NSTATE

BT (I) =BT (I) +A (I, J) *T/DFLOAT (N=K+2) *BS (J)

XT (I)=XT(I) +A (I,J) *T/DPLOAT (N=K+1) *XS (J)

DO 4 I=1,NSTATE

BS (I) =BT (I) +BX(I)

XS (I) =XT (I) +X(I)

CONTINUE ;
DO 5 I=1,NSTATE ;
X (I) =XS (I) +BS (I) *T ~

RETURN

pO 1 I=1,NSTATE

XS (I) =X (1)

DO 8 K=1,N

po 9 I=1,NSTATE

XT (I) =0.0

po 9 J=1,NSTATE

XT (I) =XT (I) =A (J,I) *T/DPLOAT (N=K+1) *XS (J)
po 10 I=1,NSTATE

XS (I) =XT (I) +X(I)

CONTINUE

po 11 I=1,NSTATE

X (I)=XS (I)

RETURN

END

R R
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SUBROUTINE VMULT (A,B,C,NSTATE)
IMPLICIT REAL*8 (A - H, O = 2)
DIMENSION A(NSTATE,NSTATE),B(NSTATE),C(NSTATB)
po0 1 I=1,NSTATE
c(I)=0.
po 1 J=1,NSTATE
1 C(I)=C(I)#A(I,J)*B(J)
RETURN
END




b

Ve

3.

REFERENCES

Bryson, A, E., Jr.: "Control Theery for Random Systems." Proceed-
dings of the Thirteenth International Congress of Theoretical and
Applied Mechanics, Moscow; August 1972.

Bryson, A. E.; and Hall, W. E.: '"Optimal Control and Filter Synthe-~
sis by Eigenvector Decomposition,'" SUDAAR MNo. 436, Stanford Uni-
versity; December 1971.

Geyser, L. C. and Lehtinen, B.: "Digital Program for Solving the
Linear Stochastic Optimal Control and Estimation Problem," NASA
TN D-7820; March 1975.

Michael; G. J.; and Farrar, F. A.: 'Development of Optimal Control
Modes for Advanced Technology Propulsion Systems," United Aircraft
Research Laboratories Report N911620-2, Maich 1974,

Michael, G. J.; and Farrar, F. A.: "An Analytical Method for the
Synthesis of Nonlinear Multivariable Feedback Control," United
Aircraft Research Laboratories Report M941338-2 (DDE Accession
Number AD 762797); June 1973.

Weinberg, M. S.: "A Aulti-Variable Control for the F100 Engine
Operating at Sea Level Static," ASD-TR-75-28; Nov. 1975.

Sevich, G. T.; and Beattie, E. C.: "Integrated Flight Propulsion
Control Design Techniques Starting with the Engine," 1974 SAE
National Air Transportation Meeting, April 30-May 2, 1974; Dallas,
Texas., SAE Paper #740481.

163




8.

9.

10.

11.

12.

13,

14,

15.

164

DeHoff, R. L. and Hall, W. E.: '"Multivariable Design Procedures
for the F100 Turbofan Engine," Final Report Contract No. F33615-
75-C-2053, Systems Control, Inc. (Vt), Palo Alto, Calif.,

January 1, 1977.

Athans, M, and Falb, P. L.: "Optimal Control: An Introduction te
the Theory and Its Applications," McGraw-Hill Book Company; 1966.

Wolske, G. D. and Flugge-Lotz, I.: "Minimum Fuel Attitude Control
of a Nonlinear Satellite System with Bounded Control by a Method
Based on Linear Programming,'" SUDAAR No. 374, Department of Aero-
nautics and Astronautics, Stanford University, Stanford, Calif,;
May 1969.

Gill, Murray snd Pitfield: "The Implementation of Two Revised
Quasi-Newton Algorithms for Unconstrained Optimization," National
Physical Laboratory, Division of Numerical Analysis and Computing,
Report No. DNAC 11, 1972,

Luenberger, David G.: "Introduction to Linear and Nonlinear Pro-~
gramming," Addison-Wesley Publishing ‘Company, 1973.

Miller, R. J. and Hackney, R. P.: '"Research on F100 Multivariable
Control," Pratt & Whitney Aircraft Group Report No. FR-7809;
August 1976,

Anon.: "F100-PW-100(3) Transient Engine Simulation Deck," ™xatt &
Whitney Aircraft, Government Products Division, FR-6014, Oct. 15,
1973,

Bryson, A, E., Jr.3 and Yu~Chi Ho: "Applied Optimal Control:
Optimization, Estimation and Control," Blaisdell Publishing

Company, 1969.

TV



S

165
16, Dantzig, G.: "Linear Programming and Extensions," Princeton,
University Press, 1963,
17. Polak, Elijah: "Computational Methods in Optimization," A Unified
Approach, New York, Academic Press, 1971.
18. Szuch, J. R.; and Seldner, K.: "Real Time Simulation of Fl00-PW-
100 Turbofan Engine Using the Hybrid Computer," NASA TM X-3261;

August 1975.

Y T

NI ORI




	0005A01
	0005A02
	0005A03
	0005A04
	0005A05
	0005A06
	0005A07
	0005A08
	0005A09
	0005A10
	0005A11
	0005A12
	0005A13
	0005B01
	0005B02
	0005B03
	0005B04
	0005B05
	0005B06
	0005B07
	0005B08
	0005B09
	0005B10
	0005B11
	0005B12
	0005B13
	0005B14
	0005C01
	0005C02
	0005C03
	0005C04
	0005C05
	0005C06
	0005C07
	0005C08
	0005C09
	0005C10
	0005C11
	0005C12
	0005C13
	0005C14
	0005D01
	0005D02
	0005D03
	0005D04
	0005D05
	0005D06
	0005D07
	0005D08
	0005D09
	0005D10
	0005D11
	0005D12
	0005D13
	0005D14
	0005E01
	0005E02
	0005E03
	0005E04
	0005E05
	0005E06
	0005E07
	0005E08
	0005E09
	0005E10
	0005E11
	0005E12
	0005E13
	0005E14
	0005F01
	0005F02
	0005F03
	0005F04
	0005F05
	0005F06
	0005F07
	0005F08
	0005F09
	0005F10
	0005F11
	0005F12
	0005F13
	0005F14
	0005G01
	0005G02
	0005G03
	0005G04
	0005G05
	0005G06
	0005G07
	0005G08
	0005G09
	0005G10
	0005G11
	0005G12
	0005G13
	0005G14
	0006A02
	0006A03
	0006A04
	0006A05
	0006A06
	0006A07
	0006A08
	0006A09
	0006A10
	0006A11
	0006A12
	0006A13
	0006A14
	0006B01
	0006B02
	0006B03
	0006B04
	0006B05
	0006B06
	0006B07
	0006B08
	0006B09
	0006B10
	0006B11
	0006B12
	0006B13
	0006B14
	0006C01
	0006C02
	0006C03
	0006C04
	0006C05
	0006C06
	0006C07
	0006C08
	0006C09
	0006C10
	0006C11
	0006C12
	0006C13
	0006C14
	0006D01
	0006D02
	0006D03
	0006D04
	0006D05
	0006D06
	0006D07
	0006D08
	0006D09
	0006D10
	0006D11
	0006D12
	0006D13
	0006D14
	0006E01
	0006E02
	0006E03
	0006E04
	0006E05
	0006E06
	0006E07
	0006E08
	0006E09
	0006E10
	0006E11
	0006E12
	0006E13
	0006E14
	0006F01
	0006F02
	0006F03
	0006F04
	0006F05
	0006F06
	0006F07
	0006F08
	0006F09
	0006F10
	0006F11
	0006F12
	0006F13
	0006F14
	0006G01
	0006G02

