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MINIMUM TIME ACCELERATION OF AIRCRAFT TURBOFAN ENGINES BY USING AN 

ALGORITHM BASED ON NONLINEAR PROG~U\MMING 

Fred Teren, Ph.D. 
Stanford University, 1977 

Minimum time accelerations of aircraft turbofan engines are presented. 

The calculation of these accelerations i3 made by using a piecewise-linear 

engine model, and a new algorithm based on nonlinear programming. Use of 

this model and algorithm allows such trajectories to be readily calculated 

on a digital computer with a minimal expenditure of computer time. 

The new algorithm may be used for solution of optimal control problems 

which are nonlinear in the state variables, and linear in the control vari-

abIes. Specifically, the most general prnblem considered is to minimize a 

performance index subject to satisfaction of the system dynamic equations, a 

set of terminal constraints, and path inequality constraints. The perform-

ance index, system equations, and path constraints are all linear in the con-

trol variables. 

It is shown that the optimal control for such problems is bang-bang, 

except for possible singular arcs, which are not considered. The algorithm 

requires that ~ nominal bang-bang solution be found which satisfies the sys-

tem dynamic equations and terminal constraints. Once such a feasible solu-

tion has been found, influence functions are generated which determine if the 

necessary conditions for optimality have b~'~·n satisfied. If not, additional 

control switches are needed. Nonlinear optimizatLm (gradient search) tech-

niques are then used to vary the control SNitching times in order to improve 

the solution. 

The algorithm is used to find minimum time acceleration histories for 

the FlOO engine, a two-spool turbofan engine which powers the F15 and F16 
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aircraft. A piecewise-linear engine model is used. The linearized model 

used at a given time in the trajectory is determined by calculating a normal-

ized "distance" from the current state to the state at each of several equi-

librium points; the model linearized about the "closest" equilibrium point 

is then used. Minimum time solutions are obtained, and the resulting con-

tro1 histories are used as inputs to a nonlinear simulation of the F100 engine 

to verify the accuracy of the piecewise linear solution. 

In addition to the transient results, the linear models are also used 

to find the control settings which minimize steady-state specific fuel con-

sumption. 
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ABSTRACT 

Minimum time accelerations of aircraft turbofan engines are pre-

sented. The calculation of these accelerations is made by using a 

piecewise-linear engine model, and a new algorithm based on nonlinear 

programming. Use of this model and algorithm allows such trajectories 

to be readily calculated on a digital computer with a minimal expendi-

ture of computer time. 

The new algorithm may be used for solution of optimal control prob-

lems which are nonlinear in the state variables, and linear in! the i'!on-

trol variables. Specifically, the mos t general problem considered is to 

minimize a performance index subject to satisfaction of the system 

dynamic equations, a set of terminal constraints, and path inequality 

constraints. The performance index, system equations, and path con-

straints are all linear in the control variables. 

It is shown that the optimal control for such problems is bang-

bang, except for possible singular arcs, which are not considered~ The 

algorithm requires that a nominal bang-bang solution be found which 

satisfies the system dynamic equations and te~tnal constraints. Once 

such a feasible solution has been found, influence functions are gener-

ated which determine if the necessary conditions for optimality have 

been satisfied. If not, additional control switches are needed. Non-

linear optimization (gradient search) techniques are then used to vary 

the control switching times in order to improve the solution. 
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The algorithm is used to find minimum time acceleration his-

tories for the FlOO engine, a two-spool turbofan engine which powers 

the F15 and F16 aircraft. A pie.cewise-linear engine model is used. 

The linearized model used at a given time in the trajectory is deter-

mined by calculating a normalized "distance" from the current state 

to the state at each of several equilibrium points; the model linear-

ized about the "closest" equilibrium point is then used. Minimum time 

solutione are obtained, and the resulting control histories are used 

as inputs to a nonlinear simulation of the FlOO engine to verify the 

accuracy of the piecewise linear solution. 

In addition to the transient results, the linear models are also 

used to find the control settings which minimize steady-state specific 

fuel consumption. 
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CHAPTER I. INTRODUCTION 

A. Motivation 

Modern, high-performance turbojet and turbofan engines are gen-
... I 

erally equipped with one or more variable geometry features in order to 

provide ruaximum propulsive efficiency over a range of engine power set-

tings and flight conditions. For example, the J-85 engine (a one-spool 

turbojet used in the F5 aircraft) has variable inlet guide vanes, and 

variable bleeds in three stages of its eight-stage compressQ~. The 

TF30 engine (a two-spool turbofan, used in the Flll and F14 aircraft) 

has variable bleeds in the low and high compressors. rhe FlOO engine 

(a two-spool turbofan, used in the F15 and F16 aircraft) has variable 

fan inlet guide vanes and variable compressor stator vanes. ~ach pf 

these engines also has a variable-area exhaust nozl!:le and an after-

burner. Variable area turbines, although not yet in operational ~e, 

have been tested on technology demonstrator engines. 

Propulsive efficiency is probably the most important mea~ure of an 

aircraft engine's performance. However, another important measure is 

the time required to accelerate from one thrust level to a higher 

thrust level. Engine acceleration is one of the functions o~ the 

engine control system, and may be accomplished via open-loop scqedulirtg 

or closed-loop control. For each of the three engines referred to 

above, engine accelerations are accomplished by controlling fuel flow. 

The variable geometry features are kept on their steady-state schedules 

during the acceleration. 
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In this report, minimum-time acceleration histories are computed 

for the F100 turbofan engine. Four control variables, i.e., fuel flow, 

exhaust nozzle area, inlet guide vane position, and compressor statox 

vane position, are utilized. 

B. Related Work 

In recent years, linear-quadratic regulator theory has been devel-

oped for the design of multi-input, multi-output control systems, An 

account of the theory and application is given for example in refer-

ence 1. Use of the theory has been facilitated by computer programs 

suCh as those described in references 2 and 3, which rapidly and effi-

ciently calculate the optimal feedback control gains, given the system 

description and performance index. This theory has been applied re-

cently to the design of control systems for aircraft gas turbine en-

gines. In addition to the design of regulators, the problem of mini-

mizing acceleration time has also been considered. 

Michael and Farrar (refs. 4 and 5) apply linear quadratic regu-

lator theory to the design of controls for the F40l turbofan engine. 

The nonlinear system equations are linearized about five different 

equilibrium points, and linear system descriptions are obtained. The 

resulting linear models have five state and five control variables. 

At each equilibrium point, a quadratic performance index intended t.o 

minimize acceleration time is formulated, and feedback control gains 

are determined. A nonlinear feedback control law is developed by 

curve fitting the resulting control gains as a function of compressor 

speed. 

Weinberg (ref. 6) applies linear-quadratic regulator theory to 

the design of controls for the FIOO engine. He shows that this engine 
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can be adequately represented by three state variables - fan speed, 

compressor speed, and augmentor pressure. Four control variables are 

utilized, and linearized engine models are ob tained at two eq1},ilibrium 

points. The problem of minimizing acceleration time is considered, and 

control system gains are derived by conducting small perturbation opti-

mizations at each of two equilibrium points, using a quadratic perform-

ance index 0 The control gains are switched at a fixed value of fan 

speed, rather than varied in a continuous manner as in references 4 
and 5. 

In reference 7, Sevich and Beattie consider the minimization of 

acceleration time for a turbojet engine, using fuel flow and exhaust 

nozzle area as control variables. They use a quadratic performance 

index to approximate a minimum time solution, as in referef!.ces 4 to 6. 

However, they use a nonlinear engine model, rather than a series of 

linear models. The result is an open-loop optimal trajectory. The 

controls are assumed to be piecewise constant, and the performance 

index is minimized by using a conjugate gradient search technique. 

DeHoff et al o (ref. 8) use linear-quadratic theory to design con-

troIs for the FIOO engine. The control gains are generated using 

linear models with five state variables and four control variables at 

several equilibrium points. Principal emphasis is on the regulator 

design. Although acceleration control is considered, there is no 

specific attempt at minimizing acceleration time. 

References 4 through 8 all make use of integral quadratic per-

formance indices, in which both state and control deviations from some 

desired trajectory are penalized. The coefficients of the penalty 

terms are adjusted in an attempt to minimize acceleration time. How-
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ever, none of these reports can claim their final histories produce 

truly minimum-time accelerations. 

Minimum-time trajectory optimization has been considered by many 

investigators for many years. Athans and Falb (ref. 9) give a good 

account of the literature dealing with time optimal systems in their 

chapter 7. However, nearly all of their discussion is concerned with 

problems having only a single control variable. Furthermore, the sys-

tems are assumed to be linear and time invariant, and the control 

limits are not dependent on the state or time. It is shown that the 

optimal control for: such problems is bang-bang, Le., the control al-

ways operates at either the upper or the lower limit. 

Wolske (ref. 10) considered the problem of fuel-optimal cQntrol 

of a dynamic system which is nonlinear in the state and linear in the 

control. The controls are assumed to be bounded in magnitude, and the 

resulting optimal control is bang-bang. The problem is solved by 

linearizing about a nominal history, which is neither optimal nor fea-

sible (i.e., it does not satisfy the terminal constraints). The opti-

mality condition and terminal constraints are expressed as linear in-

equalities, and linear programming techniques are used to improve the 

solution until a feasible optimum is attained. 

C. Contributions 

In this report, an algorithm is developed for solution of optimal 

control problems which are nonlinear in the state variables, and linear 

in the control variables. Specifically, the problem considered is to 

minimize a performance index subject to satisfaction of the system 

dynamic equations, a set of terminal constraints (the number of which 

may be less than or equal to the number of states) and path inequality 
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constraints. The performance index and system equations and path con-

straints are all linear in the control variables. 

It is shown that the optimal control is bang-bang"except for 

possible singular arcs which are not considered. The algorithm re-

quires that a nominal bang-bang solution be found that satisfies the 

system dynamic equations and terminal constraints. Once such a feasi-

ble solution has been found, influence functions are generated which _. 
determine if the necessary conditions for optimality have been satis-

fied. If not, additional control switches are added. Nonlinear opti-

mization (gradient search) techniques are then used to vary the con-· 

tro1 switching times in order to improve the solution. The nonlinear 

optimization technique described in reference 11 is used to generate 

the numerical results presented in this report. 

The algorithm presented herein converts an optimal control problem 

with path inequality constraints and terminal constraints into an uncon-

strained parameter optimization prob1emo This is accomplished in two 

steps. First, the bang-bang nature of the optimal control is used to 

express the possible optimal trajectories in terms of the switching 

times between regions of different control strategy. At this point, 

the original problem has been converted into a parameter optimization 

problem with equality constraints (terminal constraints). Then, the 

equality constraints are satisfied by using an equal number of the , 

switching times as iteration variables. This procedure results in an 

unconstrained parameter optimization problem with a reduced number of 

parameters, and is similar to the reduced gradient algorithm discussed 

in reference 12. 

~-

~~ o.~ ,_ ... ~~ •• 
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The algorithm is then used to find minimum time acceleration his-· 

tories for the FlOO engine, a two-spool turbofan engine used to power 

the F15 and F16 aircraft. A piecewise-linear engine model having three 

states and four controls is used to obtain the minimum time solutions. 

The linear models used in this report were obtained by linearization of 

a nonlinear model at five equilibrium points, and were taken from ref- ... 
erence 13. The linear model which applies at a given time in the tra-

jectory is determined by calculating a normalized "distance" from the 

current state to the state at each of the equilibrium points; the 

linear model associated with the closest equilibrium point is then 

used. Linear state/control constraints which correspond to speed, tem-

perature, pressure, and mechanical control limits are considered. Min-

imum time solutions are obtained, and the resulting control his-,tories 

are used as inputs to a nonlinear computer simulation of the FICO 

engine (ref. 14) to verify the accuracy of the piecewise linear solu-

tion. 

A suboptimal closed-loop control mode is also developed, which 

gives performance which closely approximates the open loop results. 

Use of the piecewise linear model allows optimal solutions to 

be obtained with the expenditure of less than one percent of the com-

puter time which is required when a detailed, nonlinear model is used, 

such as in reference 7. Furthermore, the solutions obtained in this 

report are truly minimum time solutions to the piecewise linear prob-

lem, rather than approximations to minimum time solutions to the non-

linear problem, as in references 4 to 7. 

In addition to the transient results, the linear models and con-
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straint equations are used to find the control settings which minimize 

steady-state specific fuel consumption. 

D. Organization of the Report 

The dynamic optimization problem is defined in chapter II, and 

necessary conditions for an optimal solution are stated. The algo-

rithm is presented in chapter III. First, the initial feasible solu-

tion is defined and discussed, Next, it is shown how to calculate the 

sensitivity functions (Lagrange multiplier functions) corresponding to 

the feasible solution. Finally, improvement of the feasible solution 

is discussed. Chapter IV derives the applicable equations for piece-

wise linear systems. In chapter V, a detailed comparison of exact and 

piecewise linear solutions to a particular nonlinear problem is made. 

One and two control variable problems are discussed. Chapter VI pre-

sents the results obtained for the minimization of acceleration time 

for the FlOO engine. Finally, conclusions are drawn and recommenda-

tions for future research are made in chapter VII. 
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CHAPTER II. A NONLINEAR OPTIMAL CONTROL PROBLEM, LINEAR IN CONTROL 

In this chapter, the optimal control of a dynamic system which is 

nonlinear in the state and linear in the control is considered. First, 

the problem is defined, including the performance criterion, system 

equations, path constraints, and terminal constraints. Then, necessary 

conditions for optimality are derived. The derivation of the optimal 

control strategy is similar to that presented in textbooks on modern 

optimal control, such as reference 15. This derivation is included 

here because the nature of the resulting optimal control strategy moti-

vates the development of the new algorithm presented in chapter III. 

A. Problem Statement 

We consider a fairly general dynamic optimization problem, which 

is subject to one important restriction - the performance index, system 

equations and path constraints are all linear functions of the control 

variables. As will be shown later, this leads to a bang-bang solution. 

We wisH to find the vector control history u(t) which minimizes the 

scalar functional 

(2.1) 

subject to the vector system differential equations 

x = f(x,t) + g(x,t)u (2.2) 

and path inequality constraints 

T c. (x,t) + d. (x,t)u ~ 0 
1. 1. 

i = 1,2, ... ,q (2.3) 

8 
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The initial state and time are assumed to be specified, i.e., 

while the terminal state and time are subject to the p terminal con-

straints (p ~ n + 1) 

i = 1,2, . . ., p ~ (n + 1) (2.4) 

In the above, x is the Cn x 1) state vector, and u is the Cr x 1) 

control vector. The functions ~, a, and c. 
~ 

are scalar functions of 

x and t, while band di are vector functio~s of dimension (r Xl). 

The ve.ctor function f and matrix function g have dimension (n x 1) 

and (n x r), respectively. The terminal time t f may be either fixed 

or free. In fact, if a = b = 0 and ~ = t f , the performance index in 

(2.1) is simply J = t f . 

The path constraints (2.3) serve to bound the allowable values of 

the con tro 1. A path constraint is said to be active if 
T 

c. + d.u 
1. 1. 

O' , 

it is said t~ be inactive if T c.+d.u<O. 
1. ~ 

If, for a particular path 

constraint, c. is constant and a. has only one nonzero, constant 
~ 1. 

component, then that path constraint is simply a physical control limit. 

On the other hand, if all components of d. 
~ 

are equal to zero, the 

control does not appear explicitly in the path constraint; such con-

straints are called state variable inequality constraints. In the main 

body of this report, it is assumed that there are no state variable in-

equality constraints. However, the theory and numberical algorithm are 

extended to include state variable inequality constraints in appendix A. 

If, for given values of x and t, the jth component of d.(x,t) 
:L 

is positive, then the ith constraint serves as an upper bound for the 

jth control variable. Similarly,:if the jth component of di(x,t) is 
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negative, the ith constraint is a lower bound for the jth control var-

iable. It will be assumed that sufficient constraints are imposed so 

that each ot the r control variables is bounded above and below for 

all possible values of x and t. If this is the case, then nc con-

trol impulses are allowed. 

B. Necessary Conditions for a Local ~tlnimum 

Using the techniques employed in reference 15, a Hamiltonian func-

tion is defined as 

H ~ a(x,t) + bT(x,t)u + AT[f(x,t) + g(x,t)u] 

(2.5) 

where A and ~ are undetermined Lagrange multiplier vector functions 

of time, having dimension (n x 1) and (q x 1), respectively. 

In terms of H, necessary conditions for J to be a local minimum 

are 

and 

~i ~o 

~i = 0 

·T A = aR 
ax 

aH 0 au = 

if c i + T 
d.u 
~ 

if 
T 

c. + d.u 
~ ~ 

(2.6a) 

(2.6b) 

= 0 
(2.6c) 

< 0 

The Lagrange multipliers must satisfy the following terminal con-

ditions. 

(2.7) 

'" I 

" I. 
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where v is a (p x 1) undetermined parameter vector. If the terminal 

time is not specified, another necessary condition which applies is 

a~[x(tf),tfl T a~[x(tf),tf] 
H (tf ) = ... ----ca:-':t--- - V 

f 
(2.8) 

For the present problem, equations (2.6a, b, and c) may be written 

explicitly as 

~ T = _ ~ _ ab T u _ 1 T ~ _ ,T ~ u 
A ~ ax A ~ A ~ 

q 

bT + ATg + B T 
lJ i di 

i=l 

0 if 
T 

lJ i = ~'i + d.u 
1 

lJ. .?. 0 if 
T c. + diU 1 1 

q 

B 
i=l 

= 0 

< 0 

= 0 

ac. 
1 

lJ i ax (2.9a) 

(2.9b) 

(2.9c) 

The optimal control must satisfy (2.9b and c) and constraints 

(2.3). For given x and t, the functions b, c, d, g, and A are 

all constant. Therefore, the determination of the optimal u (for 

each x and t) is simply a linear programming problem, which can be 

readily solved by using the Simplex method (ref, 16). Except for 

singular arcs (to be discussed shortly), the optimal control is always 

determined by r active constraints from (2.3). The optimization 

problem is simply to find the r constraints which satisfy (2.9b and c) 

&,d (2.3). 

The r active constraints change from time to time along the tra-

jectory. When a change of constraints occurs, the control variables 

jump discontinuously from one boundary to another. Such control is re-
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ferred to as bang-bang control, and the points at which the jumps 

occur are called junction points. 

C. Singular Arcs 

The optimal control can usually ~~ uniquely determined from (2.9b 

and c) and (2.3). However, if H is constant along an active con-

straint boundary, i.e., if T 
- ndi where is a real vari-n 

able, then the control is not uniquely determined along that constraint 

boundary. This situation is illustrated in sketch (a) for a two con-

tro1 variable problem. 

Constraint 

/' 

/' 

/' Direction of 
increasing H 

Constraint 

Itt the sketch, H is constant along constraint ~ and it is not clear 

whether to use constraint .(~y or constraint 0(or neither) as the 

other active constraint. Furthermore, if (b T + "Tg) = 0 (all compo-

nents zero) the control is totally indeterminate. 

It is sometimes possible to -find minimizing solutions for which 

some or all of the controls u are not determinate from (2.9b and c) 

and (2.3) for a finite time period; the corresponding trajectory seg-

ments are called singular arcs. On singular arcs, the control is de-
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termined from the requirement that the time derivatives of 

T T T T T T 
(b + A g ~ ndi), as well as (b + A g - ndi) itself, must be identi-

cally zero. To determine the control u, successive time derivatives 

of (b T + ATg - nd~) are taken until the control appears explicitly. 
~ 

It is difficult to determine general conditions for the existence 

and minimality of singular arcs. Nevertheless, each individual problem 

should be examined for the possibility of minimizing singular arcs, and 

this practice will be followed in this report in the example problem to 

be discussed later. However, in the algorithm to be described in chap-

ter III, it will be assumed that the minimizing solution is nonsingular. 

D. Determination of Optimal Trajectory 

We now assume that the problem is nonsingular, and the linear pro-

gramming problem is solved to yield the active constraints and the 

optimal control. If we assume that the active constraints are con-

straints 1 through r and form these into a vector-matrix rep res en-

tation, Le., 

c = 

then we can solve for the optimal control from 

where the superscript (-T) denotes the inverse of the transpose. Also, 

equation (2.9b) can be rewritten using vector-matrix representation 

for the active constraints as 

I, .. _,_-. I, 

~r .--~ 
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b T + AT g + ].l TnT = a 

and this equation can be solved for ].l to yield 

Substitution of (2.10) and (2.11) into (2.2) and (2.9a) results 

a simpler version of (2.2) and (2.9a). 

I x = f - gn-TC 

'T a T -T AT .i.- -T 
A = - - (a - b n C) (f - gn C) ax ax 

I 
,I, l t J 

J --,,-~':-:!.u...::.::._,-- ___ . I 

(2.11) 

in 

(2.12) 

(2.13) 

L 'll 
.I 

------ ------
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CHAPTER III. A NEW ALGORITHM 

Necessary conditions for the optimal control of a dynamic system 

which is nonlinear in the state and linear in the control were derived 

in Chapter II. It was shown that except for singular arcs, the opti-

mal control (r variables) is always determined by r active con-

straint boundaries. In Chapter III, the nature of the optimal control 

strategy derived in Chapter II is used as the basis for a new algorithm 

for the solution of such optimization problems. 

First, a feasible solution is obtained which satisfies all path 

and terminal constraints, and for which the controls always lie along 

r constraint boundaries. The Euler Lagrange equations are not uti-

lized in the determination of this feasible solution; it mayor may 

not be a local minimum. Then, it is shown that the Lagrange multiplier 

time history can be easily and uniquely calculated from this feasible 

solution. The necessary conditions for a local minimum may be calcu-

lated as functi?ns of the Lagrange multipliers. If the initial fea-

sible solution does not satisfy the necessary conditions, the control 

history is modified, and nonlinear optimization (gradient search) tech-

niques are used to improve the solution. 

A. Modified Problem Statement 

In chapter II it was shown that except for singular arcs, the 

optimal control variables (r variables) are always determined by an 

equal number of active constraints at all points along an optimal tra-

15 
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jectory. The problem is to find which constraints are active, as a 

fUnction of time. It will be assumed that the optimal trajectory con-

sists of a number of segments. For each segment, the control variables 

are determined by a set of r active constraints. The optimal control 

problem stated in (2.1) to (2.4) is solved by finding the optimal 

values of the switching times, i.e., the times at which the active 

constraints switCh from one set to another. 

The modified optimal control problem can be stated as follows: It 

is desired to find the values of the w switching times, 

{t
i

, i = 1, , . ., w} 

which minimize the scalar functional 

T [a(x,t) + b (x,t)u]dt 

while satisfying the vector system differential equations 

and terminal constraints 

During time interval 

the control is given by 

in accordance with (2.10). 

x = f(x,t) + g(x,t)u 

i =- 1, . . ., p .::s.. (n + 1) 

t. l.s..t~t. 
~- J.. 

-T 
u = D C - i i 

The above modified problem is a parameter optimization problem 

with equality constraints, which might be easier to solve than the 
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original optimal control problem. However, it should be emphasized 

that the number of segments in an optimal trajectory, and the active 

constraint sets for each of the segments, are not known in advance. 

The problem statement can be further modified into an uncon-

strain~d parameter optimization problem by using the reduced gradient 

method, as presented in reference 12. To accomplish this, the switch-

ing time set is partitioned into two subsets, having p and (w - p) 

members, respectively. The p members of the first subset are con-

~sidered as dependent variables, in the following sense: Whenever some 

of the switching times in the second subset are varied, the values of 

the p terminal constraints will change from their converged values. 

The values of the p sWitching times in the first subset are then 

used as iteration variables in order to reconverge the terminal con-

straints to the desired final values. In this way, the problem is 

converted into the following form: Find the values of the (w - p) 

switching times 

(ti' i = (p + 1), •.• , w) 

which minimize the scalar functional 

while satisfying the vector system differential equations 

x = f(x,t) + g(x,t)u 

where, during time interval 

t. 1.:s. t < t. 
1.- 1.. 
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-T u = -D. C. 
). ). 

The above unconstrained parameter optimization problem may be solved 

by using any of a number of nonlinear optimization techniques avail-

able, such as those discussed in reference 12. The results presented 

in this report were obtained by using the parameter optimization tech-

nique reported in reference lIe 

B. Feasible Solution 

T-l 

In order for a trajectory to be a local minimum solution to (2.1), 

equations (2.12) and (2.13) of Chapter II must be satisfied, and the 

control must satisfy constraints (2.3) and optimality conditions (2.9b 

and c). In addition, terminal constraints (2.4) and (2.7) must be 

satisfied, and equation (2.8) must be satisfied if the terminal time 

t f is free. In developing the algorithm for the solution of this 

problem, it will be assumed initially that t f is free. Later, we 

will show how to modify the algorithm for the case in which t
f is 

specified. 

We define a feasible solution as one which satisfies the system 

differential equations (2.2) and the terminal constraints (2.4), and 

where the control u(t) is consistent with the necessary conditions 

for optimality - that is, the control is determined by r of the 

path constraints (2.3) at all poin.ts along the trajectory. It is not 

necessary that the control be determined by the same r constraints 

at all points along the trajectory - in fact, we will usually require 

the control to be determined by several different constraint sets, as 

, -----t-, 
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will be seen sh.ortly. Such. a trajectory mayor may not be a local min-

imum solution for the performance index (2.1). 

In order to obtain a feasible solution, there are p terminal 

constraints (eqs< (2.4)) which must be satisfied. In general, there 

must be p degrees of freedom available in order to satisfy the p 

terminal constrd~nts. In order to provide these degrees of freedom, _. 
it will be assumed that there are at least p segments in the trajec-

tory. For each segment, the control is determined by ~hoosing the r 

constraints which are active. The set of active constraints may be 

chosen arbitrarily for the first segment; for each succeeding segment, 

one of the active constraints should be different than any which was 

uti1ized in the preceding segments. The durations of p of the seg-

ments are variable, and provide the p degrees of freedom necessary 

to satisfy the p terminal constraints. 

The choice of the constraints to be active for the various tra-

jectory segments should be made carefully. There is no guarantee that 

a solution exists for arbitrary choice of the active constraints, or 

for any choice of active constraints, for that matter. Also, some of 

the constraints assumed to be inactive in the initial feasible solution 

may be violated. In this case, different active constraints must be 

chosen. 

The combination of p degrees of freedom and p terminal con-

straints is'known as a multiRoint boundary value problem, and must gen-

erally be solved iteratively. Two widely used classes of methods for 

solution of such problems are Newton-Raphson methods and gradient 

methods. Both of these methods are widely discussed in the literature 
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(see, for example, refs. 12 and 17) and will not be discussed here. 

However, both methods require initial guesses for the values of the p 

degrees of freedom, and partial derivatives of the terminal constraints 

with respect to the degrees of freedom. Equations for calculation of 

the required partial derivatives are derived below. 

Suppose, for example, thp.t initial guesses are made for (p - 1) 

of the junction times t i , and for t f • The choice of these times is 

sufficient to determine a reference trajectory, and values of the p 

terminal constraints ~ .• 
J 

If one of the 

changed by 

t. 
~ 

is altered slightly, the state at 

dx(t 4 ) = [x(t~) - x(t~)]dt. 
.... 1. 1. 1. 

t. is 
1. 

The effect of changes in the t. on the terminal constraints may 
1. 

therefore be obtained by integration of 

i = 1, 2, . . ., (p - 1) 

from t t. to t 
1. 

t f , with initial conditions 

ax • (-) • ( +) 
~t = x t. - x t. , t = t. 
o • ~ 1. 1. 

1. 

The a~./at. are then calculated from 
J 1. 

Also, we have 

a~. a~. aXf ~=-:l_ 
at. aXf at. 

1. 1. 

(3.1a) 

(3.lb) 

(3.2a) 

(3.2b) 

-. 
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Fixed final time. - It was assumed in the above discussion that 

the terminal time t f is free. If t f is fixed, then the duration 

of the final segment does not provide a degree of freedom. Therefore, 

there must be at least (p + 1) segments for p terminal constraints, 

and the durations of p of the segments provide the necessary degrees 

of freedom. 

C. Calculation of Lagrange Multipliers 

We consider first the case in which the terminal time is free. 

Suppose a feasible solution has been found. We will show that the 

Lagrange multipliers A and ~ can be uniquely calculated, as a 

function of time. Once the multipliers have been calculated, the 

necessary conditions for optimality can be checked. If the necessary 

conditions are not satisfied, an iterative improvement scheme is used 

in order to find a local minimum solution. 

Let the ith trajectory segment have initial time ti-l and final 
. Th 1 f h .th d' d b f t1me t.. e contro or t e 1 segment was eterm1ne y a set 0 1 

r active constraints, and the control just prior to ti is denoted 

by u(t -:-) • 
1 

Just after t = t., the control is determined by different 1 

active constraints, and is given by + -u(t.) :f u(t.). 
1 1 

appendix B that the Hami.ltonian mus t be continuous at 

fore, we must have 

It is shown in 

t = t .• 
1 

There-

GT(ti ) + A Tg(ti~ [U(t;) - U(t~~ = 0 i = 1, 2, . . ., (p - 1) 

where the notation g(t.) is shorthand for 1 

g(t~) ~ g[x(t.),t.l 
.L 1 1 

(3.3) 
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Equation (3.3) must be satisfied at each of the (p - 1) junction 

points which are varied in order to satisfy the terminal constraints. 

Also, as shown in appendix B, the terminal A and H must be given 

by (2.7) and (2.8). 

= -

If we use (2.5) for H, and substitute for u and A from (2.10) and 

(2.7), respectively, the above equation is converted to 

(3.4) 

Equations (3.3) and (3.4) give p equations which must be satisfied, 

and there are p multipliers which may be varied. Thus, we have a 

multipoint boundary value problem, similar to that which must be solved 

iteratively to determine a feasible trajectory. However, in the pres-

ent case, iterative solution is not required. Instead we can solve 

for the parameters \! as follows: 

First, we find (p + 1) backward solutions of the A equation 

(2.13) for 
T (0, . • . ,0), \! = (1, 0, . . ., 0), 

T _ 
\! - (0, 1, 0, ., 0, 1) where • ., 0), . . ., 

These backward solutions are called 

A{O) (t), A (1) (t), ... , A (p) (t) (3.5) 

1 
" 
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Then A(t) is given by 

A(t) = ACO)(t) + A(t)v (3.6) 

where A(t) is defined as 

(3.7) 

There are (p - 1) equations for the continuity of H: _. 

i = 1, 2, ... , (p - 1) (3.8) 

and at t f , we must have 

o (3.9) 

These equations may be put in matrix form as follows: 

Define vectors r. and q. and matrices Q and R by 
1. 1. 

i = 1, . • ., (p - 1) 

T ~ + - T T (0) 
r1.' = [u (t .) - u (t. )] [b (t .) + g (t.) A .( t . ) ] 

1. 1. 1. 1. 1. 

(3.10) 

T r
1 

Q~ R~ (3.11) 

T r 
p 

Then v may be calculated from 

I ......... . . ... 1: .• 
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(3.12) 

Once the V are known} (2.7) can be used to calculate 

and >..(t) can be obtai.ned by integrating (2.13) backward in time, or 

by using (3.6). 

Fixed final time. - In the above development, it was assumed that 

the terminal time t f is free. In the event that t f is fixed, the 

equations for calculation of \) are easily modified. In this case, 

(3.4) is not app1icab1e~ Instead, there are p of equations (3.8), 

instead of (p - 1), since there are (p + 1) segments for this case, 

The p equations (3.8) are sufficient to calculate the p param-

eters, v. 

D. Improvement of Feasible Solution 

The Lagrange multipliers can be used to determine j,f the neces-

sary conditions for optimality are satisfied by the initial feasible 

solution. The optimal control is obtained as a function of time by 

finding active constraints which result in satisfying (2.9b and c) and 

(2.3), using x(t) and ACt) as determined from the feasible solution. 

If u (t) as determined in this manner is identical to the control opt 

time history ufe(t) utilized in the feasible solution, then the ini-

tial feasible solution satisfies the necessary conditions for an opti-

mal solution, and no further calculations need be made. On the other 

hand, if uopt(t) differs from ufe (t) for ,even a portion of the tra-

jectory, then the feasible solution is not a local minimum. 

Suppose, for example, the control u t(t) differs from ufe(t) op 

during trajectory segment k. Then the performance index (2.1) can be 

1"' 
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improved by splitting segment k into two parts, and using control 

as follows. 

u(t) = u t(t), op 

u(t) = ufe(t), 

t < t < t k-1 - - sw 
(3.13) 

where tsw should be chosen to be only slightly greater than t k _1 , 

so that the modified trajectory differs only slightly from the initial 

feasible trajectory. Because of'the modified control history, the new 

trajectory will not satisfy the p terminal constraints (2.4). There-

fore, the original p junction times should be adjusted, while ho1d-

ing t sw fixed, so that the terminal constraints are satisfied. 

During the time interval from t k_1 to t , the control has sw 

been changed (from that of the initial feasible trajectory) from 

ufe(t) to uopt(t). 

first order) by 

Therefore, the state at t is changed (to sw 

(3.14) 

The effect of this change on the terminal conditions 1jJ j is deter­

mined from 

(3.15) 

where flx(t
f
) is obtained by integration of 

(3.16) 

from t = t to t ~ t
f

, with initial conditions given by (3.14). 
sw 

The change in the 1jJj must be canceled by appropriate changes 

in the t .. Therefore, we must have 
:1, 

r~'-" 
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31/!. 
lll/!. J 0 + 3t. ~ti = 

J 
~ 

which may be solved for ~ti to give 

(3.17) 

Equation (3.17) is applied repeatedly in an iterative manner until the 

terminal constraints are satisfied to sufficient accuracy so that fur-

ther iteration is not required. 

Once a modified trajectory has been obtained and the '"terminal con-

straints satisfied, the Lagrange multiplier time history may be calcu-

lated for the modified trajectory in the same manner as it was calcu-

1ated for the initial feasible trajectory. From the Lagrange multi-

pliers, the gradient of the performance index with respect to the 

switching time, i.e.!. 3J/3tsw can be obtained. It is shown in 

appendix B that 

T - + 
~ (t ) g( t ) [u (t ) - u (t ) ] sw sw sw sw 

(3.18) 

The set of all such switching points t and corresponding sw 

gradients, can be used in conjunction with a nonlinear search tech-

nique (see refs. 12 or 17 for a general discussion of nonlinear 

search techniques, or ref .. 11 for the particular search technique used 

~ to obtain the results presented in this report) to search for the 

values of t such that the gradient vector 3J/at is equal to, sw sw 

or nearly equal to, zero. 
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E. Merging of Switch Points 

In this report, optimal sDlutions are found by sear.ching for the 

values of a number of control switching times which minimize a perform-

ance index and satisfy terminal constraints. These switching times 

divide regions of different control action, in which different path in-

equality constraints are active. In addition to the number of such 

control regions, the order in which these regions occur (timewise) must 

be specified initially. However, during the course of the search for 

an optimal solution, the switching times do not necessarily remain in 

the originally specified order. 

Suppose, for example, the set of switching times for the initial 

feasible solution is given by {t., i = 1, 
~ 

., w ~ p} and 

to < tl < • • • < tw < t f • The values of p of the switching times 

are varied in order to satisfy the terminal constraints, while the re-

maining (w - p) switching times are varied to minimize the performance 

index. During the search for an optimal solution, there are three 

possible situations Mlich can arise which affect the order and/or num-

ber of switch points. These are: (1) t1 becomes less than to; 

(2) t becones greater than t f ; (3) tk becomes greater than t k+1 w 

where 1 .s. k .s. (w - 1). 

Cases (1) and (2) may be handled in an identical manner. It is 

tentatively assumed that segment 1 (or segment (w + 1» is not required, 

and the searc,h is restarted with one less segment. Once this reduced-

segment search has converged, the necessary conditions for optimality 

are checked, and the segment which had been eliminated is reinstituted 

if necessary (along with other additional segments, as appropriate). 

1· 
" 

;.; , , 



i 

4\" 
i"~i 

l' --'---C-07T-"'--'-'-''''~ 

28 

The segment which was eliminated may have been one of the p segments 

used to satisfy the terminal constraints. In this case, one of the 

remaining segments which had been used to minimize the performance 

index must be used instead to satisfy the terminal constraints. 

The procedure followed if case (3) is encountered involves several 

possibilities, and can result in a change of active constraints or a 

loss of one or two switching times. It was stated earlier that at each 

switching time, one of the active constraints changes. For definite-

ness, let the active constraint from segment k which is inactive in 

segment (k + 1) be denoted by constraint a. Also, let constraint b 

denote the new active constraint for segment (k + 1). 

Similarly, let constraint c denote the active constraint from 

segment (k + 1) which is inactive in segment (k + 2), and let con-

straint d denote the new active constraint in segment (k + 2). 

Clearly, a :f b, c :f d, a :f c, and b:f d, but b and c, and/or a 

and d, may be the same. The several possibilities are as follows: 

(3.1) b :f c, a :f d. For this case, if tk and t k+1 become 

equal and interchange, then the active constraints for segment (k + 1) 

become a and d, instead of band c. No segments are elirr~nated. 

(3.2) b := c, a :f. d. For this case, if tk and t k+1 become 

equal, segment (k + 1) and switching time t k+l are eliminated. 

(3~3) b = c, a = d. For this case, if tk and t k+1 become 

equal, segments k and (k + 2) merge into one, and segments k and 

(k + 1), and switching times tk and t k+1 are both eliminated. 

/ 
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F. Insertion of New Switching Times 

Suppose a local minimum solution has been found for a particular 

set of switching times {t., i = 1, • 
~ 

. ., As discussed earlier, 

the next step is to determine if the necessary conditions for a local 

minimum solution have been satisfied. If not, new switching times are 

added, and a new search for a local minimum is undertaken. The new 

switching times are added in the region in which the necessary condi-

tions are violated. Initially, the new switching times are inserted 

at times exactly equal to existing switching times. In this way, new 

segments having new active constraints are added, but with zero time 

duration. 

For example, suppose an initial feasible solution is found having 

w segments, and it is discovered that the necessary conditions for a 

local minimum are not satisfied during segment k. Then a new segment 

and corresponding switching time are added during segment k. Initi-

ally, the new switching time is placed at tw+l = t k_l so that the 

new segment starts at t k_l and has zero duration. A segment having 

zero duration cannot alter the trajectory or performance index; there-

fore, we have 

t ) w 

i.e., the performance index is continuous with respect to insertion 

of new switching times. 

G. Convergence Issues 

It is highly desirable that one be able to demonstrate in ad-

vance that a particular search will always converge to a solution 

which satisfies the necessary conditions for a local minimum. There 
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are several properties which the algorithm must have in order to 

assure such convergence. First, the algorithm must be setup as a 

descent algorithm. That is, each trial solution must have a smaller 

performance index than the preceding solution. This descent property 

is possessed by most available nonlinear optimization techniques, in-

eluding the one used herein (ref. 11). Additionally, both the algo-

rithm and the performance index fa.ust be continuous functions of their 

arguments, in this case~he switching times. 

It is clear that the performance index is a continuous function 

of the switching times so long as the switching times do not inter-

sect, and no switching points are deleted or inserted. It remains to 

be shown that the performance index is continuous even when SWitching 

times intersect, and/or switching times are added or deleted. 

When switching times intersect, the algorithmic search is termi-

nated. As discussed previously, the intersection may result in the 

deletion of zero, one or two switching points. In any case, the de-

leted SWitching times correspond to segments having zero duration at 

the time of intersection. Since segments of zero duration do not 

affect the trajecto~y or performance index, it can be concluded that 

the performance index is continuous with respect to switching time 

deletions. After the deletion of switching times, the search is re-

started with the appropriate number of SWitching times. 

Switching times may also be added ;lfter a search is completed if 

it is discovered that the necessary conditions for a local minimum 

solution have not been satisfied. This possibility has been discussed 

I~ previously. It was shown that the performance index is continuous 
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with respect to such switching time additions because the new switch-

ing times are added in such a manner as to create segments of zero 

duration initially. 

The one required property which unfortunately is not possessed 

is continuity of th~ algorithm. Whenever switching times are added 

or deleted, the number of arguments changes, and it can be shown that 

the algorithm is discontinuous under such conditions. Because of this, 

convergence to a solution which satisfies the necessary conditions for 

a local minimum cannot be guaranteed. Nevertheless, such convergence 

is assured if no switching time insertions or deletions are encoun-

teredo Furthermore, convergence to a sOJ.ution which satisfies the 

necessary conditions for a local minimum will be attained in most in-

stances even if switching time insertions or deletions are encountered 

during the search. 

H. Summary of Algorithm Steps 

It is useful to summarize the steps which are followed in the 

determination of an optimal solution, using the algorithm presented 

herein: 

(1) An initial feasible solution must be found. The number of 

segments w ~ p is selected, ana the r active constraints for each 

segment are chosen. The p segments which are varied in order to 

I 
i 
I 
I satisfy the p terminal cOn31;" ta tuts are a1.,!:o c.hosen. The initial ? 

feasible solution is obtained by it~r.'ating em the p variable switch-

ing times until the p terminal constraints are satisfied to desired 

accuracy. (2.) The Lagrange multipliers corresponding to the initial 

feasible solution are calculated by using the procedure described in 

. __ .j r J . -:-':"""" ...... _ ....... " ___ 'Z ... ,W ... · __ & __ • ___ .Wjj·(~_,· --"""~ 
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Chapter III. The necessary conditions for optimality are calculated 

from functions of the Lagrange multipliers. (3) If the necessary con-

ditions for optimality are not satisfied, additional control segments 

are added (if required) and the values of the (w - p) switching times 

are used in conjunction with a parameter optimization (gradient search) 

procedure to improve the initial feasible solution. 
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CHAPTER IV. PIECEWISE-LINEAR MODELS 

An important special case of the problem considered in chap-

ters II and III is when the performance index, system equations and 

path constraints are all linear in both the state and the control. 

This case occurs frequently in practice because linear approximations 

to complex dynamic systems are readily available. Furthermore, solu-

tions to linear problems are easier and less costly to obtain because 

the system and Euler-Lagrange equations may be represented by transi-

tion matrices. 

If the actual system is only slightly nonlinear, a single linear 

approximation to the nonlinear system may suffice over the full oper-

ating range. However, if greater accuracy is desired and/or the 

actual system is very nonlinear, a series of linear models may be used, 

each of which is ob tained by linearizing about a different equilibrium 

point. Linear equations are still used to describe the system at each 

state point, but the coefficients in t~e linear model vary from point 

to point. Such a model is called a piecewise linear model. 

In this chapter, linear and piecewise linear models will be con-

sidered. Although the development of chapters II and III is fully 

applicable to this problem, significant results for the linear problem 

will be repeated here because of the importance of this special case. 

The one-piece linear model will be considered first; then, the piece-

wise linear model will be considered. 

33 
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A. Linear Model 

The problem to be considered is to find the control u(t) which 

minimizes the functional 

subject to the system differential equations 

X =: Fx + Gu + h 

and path inequality constraints 

Here, the vectors d., and 
J. 

i=1,2, ... ,q 

h, and the matrices 

(4.1) 

(4.2) 

(4.3) 

F and G, 

are all constant. The terminal constraints on the state are given by 

(2.4). The Hamiltonian for the linear problem is 

q 

+ ]1. (c.x + Lj T 
J. J. 

i=l 

and the resulting Euler-Lagrange equations are 

·T 
A (4.5) 

The Lagrange multipliers must satisfy terminal conditions (2.7) and 

(2.8). The optimal control is determined from 

where 

l 

q 

\\]1.d~;: 0 LJ J. J. 

i=l 

(4.6) 
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~i [> 0 

L=o 

if T T 
C.x + d.u + e. 0 
~ ~ ~ 

if 

We assume, as in chapter II, that the solution is nonsingular 

and the active constraints and optimal control have been determined 

from (4.6) and (2.3). The active constraints are formed into matrices 

as follows: 

c = 

and the optimal control is given by 

(4.7) 

The multipliers ~ are given by 

(4.8) 

Substitution of (4.7) and (4.8) into (4.2) and (4.5) results in 

x = (4.9) 

Determination of the feasible trajectory and Lagrange multipliers 

proceeds exactly as in chapter III. However, the sensitivity 

vectors defined in (3.1) and (3.5) as well as solutions to the system 

equations and Euler-Lagrange equations, may be represented by transi-

tion matrices because the equations are linear. For example, (3.1) 

becomes 

1 

I, 

"J-

I 
j 

i .. 
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p(o) = Po (4.11) 

where P and Mare (n x 1) vectors and N is an (n x n) matrix. 

TIle solution of (4.11) is given by 

or 

where 

p(t) " O(t)PO + ~t O(t _ ~)M dt 

o 

with initial condition 

~(o) = I 

(4.12) 

Also, ~(t) may be calculated from :1 

<p(t) = TA(t)T-l 

where 

ACt) = rAl t i\ntl 
diagL ,"" e J 
N, and the ith column of T is the ith Ai is the ith eigenvalue of 

eigenvector of N. 

B. Piecewise-Linear Modeling 

The desirability of using linear equations to model a system is 

obvious. Nevertheless, the actual system may be so nonlinear that a 

linear system description is not sufficiently accurate over the full 
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range of interest. In such cases, it is possible to increase model 

accuracy while retaining the advantages of linear modeling by using a 

piecewise-linear system model. 

Suppose, for example, the nonlinear system is linearized about a 

number of equilibrium points. In the neighborhood of each equilibrium 

point, we have 

. 
x (4.13) F.(x-x.) +G.(u -u.) 

J eJ J eJ 

where and are the equilibrium values of state and control 

at the equilibrium point j. The system matrices F
j 

and G. 
J 

also 

differ, in general, for each equilibrium point. The path constraints 

may also be linearized about each equilibrium point to yield 

T ( ) dT ( ) <; 0 
c.. x - x. + .. u - u. + eiJ

. -
~J eJ ~J eJ 

i = 1, 2, ..• , q (4.14) 

The path constraint vectors and d .. 
~J 

also differ for each equi-

librium point. 

With a piecewise linear model, the system is described by linear 

equations at each state point, but the linear system coefficients vary 

from one point to another. A question that arises is which equilibrium 

model applies best for a given state, x? It is natural to choose the 

equilibrium point which is closest to x in some sense. Since the 

various states do not necessarily have the same physical dimension, a 

normalized distance function is used to determine which equilibrium 

point is closest. For a given state x, the distance functions 

I. ;: ('X - x .) TW(x - x .) 
J eJ eJ 

(4.15) 

are calculated for each equilibrium point j, and the equilibrium 

point is chosen for which 1. 
J 

is a minimum. 
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I are continuous functions of x, model switches Since the I. 
J 

(say, from j to k) occur when or 

(x - x .) TW(x - x .) = ex - x k) TW(x - xek) 
eJ eJ e 

Simp1ifil.ation of this expression re'~j£;.ts in 

If we define 

(4.16) 

where 

(4.17) 

and 

then, switches between equilibrium models j and k occur at 

(4.18) 

Although (4.16) is linear in x, iterative solution is generally re-

quired to find the switching points, since x is not a linear func-

tion 0 f time. 

C. Necessary Conditions for Optimality 

The problem to be solved is to minimize 

j 't f T T 
+ (a x + b u)dt 

to 

subject to the system differential equations 

~I:: ~ = F. ex - x .) + G. (u - u .) 
",l", J eJ J eJ 

I-
f 

I 
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and path inequality constraints 

i - 1, 2, .•. , q 

where the linear model index j is determined from 

At switching points between models j and k, we have 

where ().jk 

defined as 

and are defined by (4.17). The Hamiltonian is 

q 

+ \\1l.[c7.(x U ~ ~J' 
i=l 

and the Euler-Lagrange equations are 

·T T 
A =-a 

q 

D ll . c7 . L.J ~ ~J 
i=l 

where the model index j is the same function of time as determined 

by integration of the system equations. In addition~ it is shown in 

reference 15 that the Lagrange multipliers are discontinuous at model 

switching points, the jump in A being given by 

(4.19) 

where t is the time at which the model subscript changes from j s 

to k. Furthermore, since the switching time is not specified a priori, 

the Hamiltonian must be continuous at t = ts. Therefore, we must have 

:. ~ 
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(4.20) 

which gives 

(4.21) 

The equations (4.6) for determination of u, the equations (4.7) 

and (4.8) for u and ~, and the equations (409) and (4.10) for the 

working forms of the system and Euler-Lagrange equations, all apply 

to the piecewise-linear model, but with the appropriate model sub-

script j added. 

Do Initial Feasible Trajectory 

Calculation of the initial feasible trajectory proceeds in the 

same manner as in chapter III, except that the model switches must be 

made at the appropriate times. Also, the calculation of the partial 

derivatives a~./at. in (3.2) must be modified. Suppose the junction 
J ~ 

time t. is perturbed slightly and there is a model switching time 
~ 

t > t.. Since t is determined by satisfying (4.18), the change in 
s ~ s 

causes t s 
to change. Therefore, the change in t. 

~ 
not only 

affects the directly as in (3.2), but also indirectly through the 

effect of a change in t s on ~ .• 
J 

Specifically, a change in ti causes x(t ) to change by 
s 

where ax lat. is obtained by integration of (3.1) from t~ 
s ~ 

... 

The resulting change in the model switching function S is 

to 

(4.22) 

t . 
s 

I 

-. 
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T dS = a dx(t) 
s 

This change in S mus t be canceled by a change in 

we have 

from which it follows that 

at s 
at, = -

1. 

Therefore, a~,/at, is given by 
J 1. 

To( -a x t ) 
s 

E. Calculation of Lagrange Multipliers 

(4.23) 

Therefore, 

(4.24) 

(4.25) 

The procedure for calculating the Lagrange multipliers correspond-

ing to the initial feasible solution differs from that employed in 

chapter III, because of the jumps which occur in the multipliers at 

model switching times, as given by (4.19) to (4.21). For simplicity, 

we consider the case in which there is a single model switching point. 

The procedure which will be derived can be extended to the case of mul-

tiple model switches. At a model switching point, we have 

T + T-A (t ) = A (t ) + Ea'k· s s J 
(4.19) 

As in chapter III, the value of H must be continuous at the (p - 1) 

variable junction poin,ts, t = t
l

, • . ., t l' p- In addition, for final 

I 
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time free, equation (3.4) must also be satisfied. 

Except at t s ' the requirement for continuity of H is achieved 

by satisfying (3.3). The requirement for continuity of H at t = t 
s 

requires special consideration because of the change in the system equa-

tions, and can be expressed as 

(4.26) 

In order to solve for 8 and the p values of v, we find 

(p + 2) backward soluciond of the A equation (2.13). The first 

(p + 1) of these solutions are identical to (3.5); )...(p+l)(t) is ob-

tained by integrating (2.13) backward, starting at 

tia1 conditions 

, (p+1) (t ) = 
(I. s -cx jk 

By superposition, ACt) is given by 

t = t , with ini­s 

(4.27) 

The (p + 1) equations for the determination of 8 and v are given by 

i ;:: 1, . . ., (p - 1) (4.28) 

(4.29) 

(4.30) 
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The calculation of v and £ proceeds exactly as in (3.10) to (3.12) 

and will not be repeated here. 

F. Improvement of Feasible Traj~ctory 

Equations (3.14) to (3.17) used to reconverge the trajectory at 

each iteration of the improvement phase must also be modified because 

of the variable model switching times. Suppose t;ere is a model switch-

ing time such that t < t • sw s Then, if t is modified, the effect sw 

on the model sWitching function S is given by 

(4.31) 

where ~X(t ) is obtained by integration of (3.16) from t to s sw 

with initial conditions given by (3.14). The change in S must be 

canceled by a change in t . 
s 

The result is 

lit == s 

T 
-CI, lIx(t) 

s 
T. -

CI, x(t ) 
s 

(4.32) 

The terminal conditions are altered due to the direct effect of 

the change in tsw' and indirectly due to the change in 

total change in $j is given by 

where ~x(tf) is obtained by integration of (3.16) from 

t . s 
The 

(4.33) 

t to sw 

with initial conditions given by (3.14), and dxf/ats is obtained by 

integrating (3.1a) subject to initial conditions (3.1b), for ti = ts. 

The change in $j must be canceled by appropriate changes in 

the tiD As in (3.17), this re.sults in 
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CHAPTER V. DEMONS TRATIVE EXAMPLE 

The ideas developed in chapters II through IV are illustrated in 

this chapter with the aid of numerical examples. First, a problem 

will be solved in which the system equations are nonlinear in the 

state and linear in the control. The possibility of minimizing singu-

lar arcs will be discussed. Next, the same problem will be solved by 

~sing one- and two-piece linear approximations to the original system 

equations. Solutions will be obtained for two different sets of 

terminal state constraints, and both one and two control variable 

problems will be solved. 

A. Problem Statement 

Consider the problem of finding u(t) which transfers the system 

x = _x2 + u 

y = -4y + u 

subject to the control limits lui ~ 2 from initial conditions 

time. 

We have in (2.1), (2.3), and (2.4) 

a = b = 0 

45 

d =-1 
1 

(5.1) 

(5.2) 
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The Hamiltonian (2.5) is 

and the Euler Lagrange equations are 

A ::: 2~, x 
x x 

(5.4) 
A. =- 4~, 

Y Y 

The control is determined from 

min(>-- + A )u 
u x y 

(5.5) 

which results in 

u ~ -2 sgn(A + A ) x y 
(5.6) 

The terminal conditions on t.he Lagrange multipliers are 

(5.7) 

B. Nonexistence of Singular Arc 

The optimal contr01 is determined from (5.6) unless (>' + A ) = o. x y 

In this c.ase~ the c.ontrol is determined by successively differentiating 

(A + A ) with respect to time until the control appears explicitly. x y 

This procedure resul ts in 

d 
- (.x + A, ) "" 2}, x + 4>.. 0 dt . x y x y 

2 
_d_ (A + A 'I _ 

dt2 x Y 

(5.8) 

2A x 2 + 2X u + l6A 
x x Y = 0 

Simultaneous solution of (A + • ) ~ 0 and (5.8) results in two possi-x y 

bilities for a singular s:t:c. First, we may have x = 2 and u = 4. 

However, this is not pOSSible, since we must have luI 2. 2. The second 
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Possibility is that A = A = 0 In this case, we would have H = 0 x - y - • 

and since the system is autonomous, H = O. However, this is incon-

sistent with H(tf ) = -1 in (5.7). Therefore, there can be no singu­

lar arc for this problem. 

C. Initial Feasible Solution 

Since there are two terminal constraints and the terminal time 

is free, the initial feasible trajectory must have two segments. The 

only possible control for these segments is u = ±2. Therefore, we 

assume tentatively that the optimal control history is given by 

u = -2, 0 2.t < t - 1 
(5.9) 

u = 2, tl 2. t ~ t f 

with tl and t f to be determined such that xf = y f = O. The state 

equations (5.1) can be integrated in clos~d form when (5.9) is used 

as the control. The result is 

1 - .fi tan 12 tl 

1 + 1:.. tan 12 tl 
12 

( 
-4t ) -4t 

yet ) = - ~ 1 - e 1 + e 1 
1 2 

Iterative solution of (5.10) for tl and t
f 

such that 

x(t
f
) = y(t f ) = 0 results in 

t
f 

= 0.69 

D. Calculation of Lagrange Multipliers 

(5.10) 

.For this problem, we have a~1 ax = 0 and awl ax = I. Therefore, 

A(t
f

) = v. We must integrate (5.4) backward with three sets of initial 

conditions - A (0) (t
f
) = (~), A (1) (t

f
) = (~), A (2) (t

f
) = (~) in order to 
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find A(t
1

) and ,,(0) (t
1
). Equations (504) may be integrated in 

closed form as follows: 

A (t) 
y 

-21. (t f ) - 21. (t f ) - " (t)[-4y(t) + 2] 
A (t) = x y Y 
x _x2(t) + 2 

Therefore, we obtain 

1.(0) (t ) 
1 

= ( 00)' 

Equations (3.8) and (3.9) give 

and 

(

1

0

.035 
4 (1,1) 

(2,2) c:) = -1 

which can be expanded to give 

1 0 035 vl + 0.595 v 2 = 0 

Solving for v
1 

and v 2 yields 

v
1 

= 0.676, V
2 

= -1.176 

Therefore, from (5.7) we have 

(5.11) 

From this problem, the state equations and Euler-Lagrange equations 

can be integrated in closed form. The result is 
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4(t-t
f ) 

A (t) = -1.176 e y 

-1 - A (t)[-4y(t) + 2] 
A (t) = ----'y'-:::: ____ _ 

X _x2(t) + 2 

x(t) == 
-0.252 + 1.414 tanh 12 (t - t

1
) 

1 - 0.178 tanh 12 (t - t
l

) 

·----r-- -
1 

y(t) - 0.5[; _ .-4(t-tl~ _ 0.340 .-4(t-t1) 

A (t) = -0.699 y 

1 - \: (t) [4y(t) 
A (t) = 

x 
x

2(t) + 2 

x(t.) =: 1 - 1.414 tan 

1 + 0.707 tan 

+ 2] 

fit 

fit 

-4t -4t yet) = -0.5(1 - e ) + e 

o ~ t ~ tl 

"1 
~ , 

(5.13) 

E. Optimality of Initial Feasible Solution 

The initial feasible trajectory was obtained under the tentative 

assumption that the optimal u(t) is given by (5.9). According to 

(5.6), this control strategy is optimal only if 

To determine if this i,g 

of time from (5.12) and 

and shows that for this 

A + A > 0, x y 

A +A <0, x y 

the case, (A + x A ) is calculated y 

(5.13) • The result is plotted in 

problem, the necessary conditions 

(5.14) 

as a function 

figure 5.1, 

for opti-
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-- NONLINEAR MODEL 
--- LINEAR APPROXIMATION 
--- PIECEWISE LINEAR APPROXIMATION 

-

-.6 

-. 8-------''------''------'-_---'----L..._--I o .2 .4 .6 
TIME. sec 

.8 1.0 

Figure 5.1. - SWitching function as a function of time for 
in itia I feasible trajectory. 
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, , J• ma1ity are satisfied by the initial feasible trajectory. Therefore, 

no further improvement needs to be made. The optimal trajectory, 

x(t) and yet), is shown in figure 5.2. 

F. Linear Approximation 

The nonlinear system equations (5.1) may be approximated by 

linear equations. Actua1ly~ since the 
. 
y equation is already linear, 

only the o 
X equation needs to be approximated. If we choose to 

linearize the x equation about x = 0.5, the result is 

x = -2xl (x - 0.5) + (u - 0.25) 
ix=0.5 

= -x + u + 0.25 (5.15) 

For this linearized model, the Hamiltonian is 

H .: AX(-X + u + 0.25) + )"/,-4y + u) + 111 (-2 - u) + 112(-2 + u) (5.16) 

and the Euler-Lagrange, equations are 

" A = A 
x x (5c17 ) 

\ = 4:\ 
Y Y 

As previously, the initial feasible trajecto'ry is obtained by assuming 

(5.9) is the optimal control strategy. Solution of the resulting 

boundary value problem for t1 and t f 
yields 

t1 = 0.68, t
f 

= 0.827 

The solution of equation (3.7) is given by 



>. 

~ .4 
IX> 
::5 
~ 
<t: 
> 
W 
t- .2 i5 
VI 

0 

-.2 

TIME. sec 

(b) STA TE VARIABLE y. 

Figure 5.2. - Initial feasible trajectory for example problem. 
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and equations (3.8) and (3.9) are evaluated to give 

V
l 

=: 1.163, 1'2 - -1. 808 

from 'which it follows that 

Since the boundary conditions are known, the system and Euler-Lagrange 

equations can be integrated to give x, y, Ax' and A 
Y 

as functions 

of time. The swit.ching function (>. + A ) is shown in figure 5.1, and 
x y 

the optimal trajectory is shown in figure 5.2. As was the case when 

the nonlinear equations were used,. the initial feasible traject.ory is 

a local minimum in the present case also. 

Go Piecewise=Linear Approximation 

Comparison of the nonlinear and a.pproximate linear results in 

figures 5.1 and 502 shows that t.he linear approximation does not give 

a very accurat.e representation of the nonlinear system for the present 

problemo The approximation may be improved by using a piecewise 

linear model,p as described in chapter IV. If we choose x "" 0 0 25 and 

x = 0.75 as the equilibrium values about:::. which linear models will be 

derived, the. resulting linear models are 

x 1 ( x---14) x = - 2" + u + 16 valid near 

X: = - ~ x + u + {6 (valid near x = ~) 
(5 0 18) 

Since the y equation is linear, the weighting matrix W in (4.15) 

is chosen to be 

(5.19) 
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This choice of W results in a model switching function (see 

and (4.17) ) of 

The Euler-Lagrange equations are 

x ~ 0.5 

" 3 A ;:; - A 
x 2 x' 

x':::0.5 

" ::: 41. y y 

At the model switching point, there is a jump discontinuity in 

where E is determined from (4.20) 

- [ 3 9 1 
A (t ) - -2 (0.5) + -::.-;:- + -2 (0.5) 

x s __ in 
E =: -- 'i' - 1 

- "2 (0.5) + 2 + 16 

Which results in E == 0 for this problem. 

"-r 
~ 

' J 

(4,,16) 

(5.21) 

A : 
x 

(5.22) 

Based on the earlier solutions presented in figures 501 and 5.2, 

it appears that the model switch will take place prior to the change 

of control at Therefore, we assume that ts < t1 and look 

for a fea~~b1e solution with control given by (5.9). Solution of the 

multipoint boundary value problem gives 

t ::: 0.197, 
s 

t1 ;: 0.597, 

The solution of equation (3.7) is 

t f = 0.733 
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and equations (308) and (3.9) are solved to give 

Again, the trajectory and Euler-Lagrange equations are solved as 

a function of time, and the results are presented in figures (5.1) 

and (5.2). It can be seen that the two-piece linear model is a good 

representation of the actual nonlinear system for the present problem. 

H. Additional Con.trol Variable 

Consider the following problem o Find u(t) and vet) which 

transfers the system given by 

.X = -x + u + y v + 0.25 
x 

y = -4y + u + y v y 

from initial conditions (xO' YO) = (1,1) to terminal conditions 

(xf'Yf) = (0,0) in minimum time. The c0ntrols are subject to the 

constraints 

luI':: .2, and 0':: v .:: 1 

(5.23) 

This problem is identical to the one-piece linear approximation 

of the original nonlinear example problem, except that there are now 

two control variables, u and v. The coefficients and will 

be left unspecified temporarilyo 

Since there are t.wo terminal constraints, the initial feasible 

trajectory must have two segments. The allowable control strategy for 

either of the two segments is u = +2 or -2 and v = ° or 1. Sup-

pose we choose for our control strategy 
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U = -2 and v ::: 0, 0 ~t ~ tl 
(5.24) 

= +2 and ::: 0, tl 
< < 

u v _ t - t f 

Since we have chosen v = 0 for both segments, the initial feasible 

trajectory and Lagrange multiplier time histories are identical to 

those obtained earlier for the one-?iece linear model, single control 

problem. 
The switching function (A + A ) for control u is shown in x y 

figure 5.1, and the trajectory is shown in figure 5.2. 

For the present problem, we are interested not only in the opti-

malityof ufe(t), but also in the optimality of vfe(t). The switch­

ing function for v(t) is given by (YxAx + YyAy); for optimal vet) we 

must have 

v= 0 if (YxAx + 1/"y) > 0 
(5.25) 

v= 1 if (YxAx + YyAy) < 0 

The time histories of AX and A are shown in figure 5.3. 
y 

The ini-

tial feasible trajectory is a local minimum if the values of 
and 

yy are such that (y A + Y A ) > 0 for the entire trajectory; for 
x x y Y 

and Y = 0.5. On the other 
instance, this is the case if y ::: 1 

x Y 

x Y 
hand, if y ::: 1 

x 
and Yy = 0.8, the switching function (A + 0.8 A ) 

is shown as a function of time in figure 5.4. For this case, v : 0 

is the optimal control up to about t::: 0.75 sec, but the negative 

value of the switching function for t > 0.75 sec indicates that t f 

can be reduced if v is increased in this region. 

In order to improve the trajectory (decrease the performance 

index, t
f
) a third control segment is' added to the trajectory. The 

third segment is made very short initially, so that the new trajec-
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-2~--------~--------~--------~------------~----~ o .2 .4 .6 .8 1.0 
TIME, sec 

Figure 5.3. - Lagrange mu Itiplier profiles for one-piece 
approximate model. 
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. 6 

.4 

.2 
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-.2 

_.4L--__ -1-__ --1------L----'------J 

.2 .4 .6 .8 1.0 o 
TIME, sec 

Figure 5.4. - switching function for control v, Ax + 
0.8 "kyo 
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tory does not differ E.',ubstantially from the initial feasible trajec-

tory. Specifically, the control is chosen to be 

u = -2 and v= 0, 0 2-.t < tl 

u = +2 and v= 0, tl ~t '::'t sw 

u = +2 and v= 1, t ~t :5.. t
f sw 

where t "" 0.8 is selected, and held sw fixed while tl and t f are 

varied to reconverge on the end conditions xf = y f = O. The converged 

values of tl and t f are given by 

tl = 0.68, t
f =0.8l9 

It can be seen that t
f has been reduced from its value of 0.827 for 

the initial feasible trajectory. At this point, the Lagrange multi-

plier time history must be calculated for the new three segment tra-

jectory, and the gradient-of the performance index with respect to 

t calculated by using (3.18). A nonlinear search technique such as sw 

presented in reference 11 is used to iteratively search for the value 

of t for which t f is a minimum. When this has been accomplished, sw 

the switching functions (A + A ) and (A + Ou8 A ) should be exam-x: y x y 
ined once again to determine if t f can be f~rther reduced by includ-

ing additional control segments in the trajectory~ 
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CHAPTER VIc APPLICATION TO TURBOFAN CONTROL 

In this chapter, the algorithm described in chapters III and IV 

is used to find optimal trajectories for an FlOO aircraft turbofan 

engine 0 Specifically, values of the control variables are found as a 

function of time$ which minimize the terminal error for a fixed-time 

acceleration, while adhering to the engine constraints. This is equiv-

alent to minimizing acceleration time fora fixed terminal error. A 

suboptimal, closed loop control ID?de is also developed. Finally, the 

problem of minimizing steady-state specific fuel consumption is con-

sidered. 

A. Engine Description 

The following description of the FlOO engine is taken largely 

from reference 18. The Pratt & Whitney FIOO engine (fig. 6.1) is an 

axial, mixed-flow, augmented, tWin-spool, low-bypass-ratio turbofan. 

A single inle.t is used for both the fan airflow and engine core air-

flow. Airflow leaving the fan is separated into two streams: one 

stream passing through the engine core and the other stream passing 

through the annular fan duct, A three-stage fan is connected by a 

through-shaft to the two-stage, low-pressut:e turbine. A ten-stage 

compressor is connected by a hollow shaft to the two-stage, high-

pressure turbine. The fan has variable, trailing-edge inlet guide 

vanes, which aTe positioned by the engine control system as a function 

of fan corrected speed to maintain fan stability at low speeds. The 
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Rgure 6.1. - Schematic representation of FlOo-PW-l00 augmented turbofan engine. 
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compressor has a variable inlet guide vane followed by two variable 

stator vanes; the vanes are positioned as a function of compressor cor-

reeted speed. The engine core and fan duct streams combine in an aug-

mentor and are discharged through a variable convergent-divergent 

nozzle. 

The fuel control system meters fuel to the main combustor, as a 

function of power lever angle (PLA) , compressor speed, fan discharge 

temperature and compressor discharge static pressure. Augmentor fuel 

fl,ow is metered as a function of PLA, fan discharge temperature, and 

compressor discharge static pressure. Exhaust nozzle area is con-

trolled so as to maintain a desired engine airflow during augmented 

B. Engine Models 

Pratt & Whitney Aircraft (P&WA) has developed a detailed dynamic 

simulation of the FIOO engine using a digital computer (ref. 14). 

The simulation includes overall performance maps of the engine compo-

nents, variable gas properties J and Reynolds number efflacts in order 

to provide good steady-state accuracy over the range of power settings 

and flight conditions. Factors such as fluid momentum, mass and energy 

storage and rotor inertias are included to provide transient capability. 

A detailed simulation of the engine's control system is also included. 

In addition to transient capability, the simulation als;o has the capa-

bil,ity to solve iteratively for equilibrium operating points for spec-

ified flight conditions and power lever angle. 

A drawback to the use of detailed dynamic simulations on a digi-

tal computer is that they require large amounts of computer time to 
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obtain transient solutions. A requirement of several minutes of digi-

tal computer time per second of real time is typical. Szuch and 

Se1dner (ref. 18) developed a hybrid computer simulation of the F100 

engine which runs in real time. This simulation is useful for deve1op-

ment and checkout of engine control system hardware and software. 

Some simplification is made in th~ hybrid model'in order to allow the 

real time capability. Nevertheless, steady-state and transient re-

su1ts presented in reference 18 compare favorably both with the de-

tailed P&WA digital simulation and with a limited amount of experi-

mental data. 

Because of the virtual impossibility of using nonlinear feedback 

control theory for realistic systems, control software is usually 

developed using linear models. For turbofan control system design, 

nonlinear dynamic simulations such as references 14 and 18 are 1inear-

ized about various equilibrium conditions, and linear models obtained. 

This process produces equations of the form 

x = F(x - x ) + G(u - u ) e e 
(6.1) 

where x 
e 

and u 
e 

are equilibrium values of state and control, re-

spectivelyo Other engine variables which are not modeled as states 

are also of interest. Such variables will be called outputs, and 

denoted by y. The linearized output equations are given by 

y = y + C(x - x ) + D(u - u ) e e e 
(6.2) 

If the outputs have upper (or lower) bounds which must not be exceeded, 

then combined state/control path inequality constraints of the form 

._, 

l., ~ 
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y.~ + C(x - x ) + D(u - u ) - y ~ 0 ... e e max 
(6.3) 

y - y - C(x - x ) - D(u - u ) ~ 0 min . e e e 

are produced. Mechanical limits on the control variables also have 

the general form of (6.3) with C = o. 

The engine simulations of references 14 and 18 contain 16 and 

17 state variables, respectively. Therefore, the state vector x in 

(6.1) has dimension 16 or 17, depending on which simulation is used 

to obtain the linear model. It is preferable to conduct control sys-

tem studies by using lower-order models, if possible. Fortunately, 

in the present case, most of the eigenvalues (natural frequencies) of 

the system matrix F are considerably larger than the lowest eigen-

values. Therefore, quasi-steady approximation may be used to reduce 

the order of the system. A quasi-steady approximation technique which 

preserves the lower eigenvalues exactly, and also retains the desired 

states, is presented in appendix C. 

In a recent contractual effort under joint Air Force/NASA sponsor-

ship (ref. 8)i Systems Control Inc. (SCI) used linear quadratic regu-

1ator theory to design controls for the F100 engine" Linear models 

having 16 states and reduced models having 5 states were provided to 

SCI by P&WA for a number of equilibrium points at different flight 

conditions and PLA's. Some of these linear models are given in refer-

ence 13. 

Five of the five-state equilibrium models from the P&WA/SCI study, 

equally spaced along the sea-level-static (SLS) operating line, are 

used in the present report. The normalized linear model for 
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PLA = 67 degrees is shown in table I. The 67 degree power lever set-

ting is typical of subsonic cruise; PLA is 20 degrees at idle, and 

83 degrees at maximum nonaugmented thrust (also referred to as inter-

mediate). The normalized equilibrium values of the states, controls, 

and outputs are given in table II, along with the definitions of these 

variables. 

2.09 
C = 0.0531 

( 

0.856 

D = 

7.40 
-4090 

( 

0.216 
.210 
.498 

1.65 
4.55 

TABLE I. - FIVE-STATE LINEAR MODEL 

[Sea level static, PLA = 67°] 

0.877 
-5.63 

-13.1 
-21. 9 
456 

-0.0349 
-0.0212 
-7.50 
-0.281 

2.86 

-0.666 
0.0292 

-0.349 
2031 

23.7 

-0.0135 
00432 

-0.468E-2 
.139 
.327 

-0.645 
-0.335 
-7.38 
-3.02 
39.2 

-0.103 
-0 0 0256 

.702 
-0.174 
3.32 

0.154 
-0.0194 
-0 0 0498 
-1.38 

.776 

0.0294 
.0799 

-0.303E-2 
-0 0 669 
-0.0187 

1. 22 
-0.416 
-0.257 

-30.2 
-1.06 

_0.000639) 
-0,00591 

.0138 

.0351 
0.109 

-0.0335 
0.196E-3 

.527E-3 

.0148 

.874E-2 

-0.6l4E-4) 
-0.560E-3 

.392E-3 
-0.438E-2 
-0.107 

0.892) .813 
4.74 
3.22 

-147 

0.222 ) -0.00131 
.0521 

-0.0963 
-3.62 

In order to determine if the fifth-order models could be fur-

ther reduced, the eigenvalues and eigenvectors of the fifth-order 

models were calculated. The results are presented in table III for 

PLA = 67 degrees. The eigenvectors are the columns of the symmetry 

transformation T as defined in appendix C. It can be seen that there 
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TABLE II. - EQUILIBRIUM VALUES OF PROBLEM VARIABLES 

[Sea level static, PLA = 67°] 

Fan speed, Nf ,100 rpm an 

Compressor speed, N ,100 rpm - comp 

Augmentor pressure, Pt7, 0.1 psi 

Fan turbine inlet temperature, FTIT, 10° R 

Combustor pressure, Ps3 ' PSI 

Combustor fuel flow, Wf , 100 1bm/hr 

Exhaust n.ozz1e area, A 0.01 ft2 noz' 

I~let guide vane position. IGV, 0.1 deg 

High variable stator position, HVS, 0.01 deg 

Thrust, T, 100 1b 

Airflow, w , Ibm/sec 
a 

Turbine inlet temperature~ TIT, 100% 

Fan surge margin, SMFAN (0.001) 

Compressor surge margin, SMCOMP (0.001) 

94.39 

121. 70 

330 

187.1 

290 

68.60 

298 

-164 

92.2 

TABLE III. - EIGENVALUES AND EIGENVECTORS OF FIVE-STATE MODEL 

[Eigenvalues = -3.42, 

-0.0823 

-0.118 

T = -0.761 

.0884 

-0.626 

-4.42 :f. 2.91j, -30.8, -151 

0.3l'7±Oj -0.0463 

0.0508±0.01l7j .0152 

1.0+1. 8j 

0.00625±0.142j 

I 
t 

-0.587+o.470j 

.0496 

.997 

.0392 

-1 (sec )] 

0.00594 

.00574 

.0326 

.0281 

-0.999 
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are three dominant eigenvalues, one real and a complex pair; the other 

two eigenvalues are at least a factor of six larger. Also, it appears 

from the T matrix that states four and five (FTIT and Ps3) are 

closely re1at.ed to the two larger eigenvalues. Therefore, quasi-steady 

reduction was performed on the five state system, as described in 

appendix C~ to reduce it to a three state system, with state variables _. 
Nfan , N ,and Pt7. It should be noted that these are the same comp 

three states used by Weinberg (ref. 6). The reduced three-state linear 

system matrices are presented in table IV. There are seven outputs for 

TA13LE IV. - THREE-STATE LINEAR MODEL 

[Sea-level static, PLA = 67°] 

( -3.37 3.13 -0.493) Cfon ) ( 94.38) F = -0.130 -2087 -0.072 x :; Ncomp = 121.70 
-2103 1.93 -6.03 e Pt7 330 

( 1.59 -0.0354 -0.0848 -0.00155 ) 
G = 1.17 .0165 -0.00795 -0.00574 

5.74 -7.34 .804 .0173 
I 
L.. 

0_945 0.0511 219 T 105.14 \ 

r 

2.09 .0249 . -0.0198 Wa 203 
00769 -0.187 -0.0353 TIT 86.42 

C - 7.37 2.00 -1.42 Ye = >= 254 

) I -6.54 12.3 -0.245 179 
0351 -0.465 -0.0817 187.1 
.454 3.16 .282 290 

0.361 -0.00523 0~0342 0.807E-4 -. 
.210 .0432 .0799 -0.561E-3 J 
.541 -0.00294 -0.00191 .436E-3 

D = 1.59 .135 -0 .. 671 -0.444E-2 
1..53 .206 -0.0967 -0.110 

[ 
1.16 . -0.025 -0 .~\37E-3 O.119E-2/ 

.838 .0335 .0215 .819E-3· 

t 
I 
l 
~c; 

~. 
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the three state model, since the variables FTIT and Ps3 now have the 

role of outputs. The eigensystems for the four other linear models 

have the same qualitative features as observed in table IV, and the 

same quasi-steady reduction was perforn:~d on these models also. 

c. Model Accuracy 

A nonlinear model can be approximated by a suitable number of 

linear models at various equilibrium points. It is of interest to 

determine how many equilibrium models need to be used for suitable 

accuracy. One way to do this is to see how well the equilibrium con-

ditions for one model are. predicted by adj acent models. For example, 

if the equilibrium control from model 2 is used in modell, the pre-

dieted equilibrium state for model 2, xe2~ is given by 

o = Fl (xe2 - xel) + Gl (ue2 - uel) 

which implies 

The error in predicted state is 

(6.4) 

(6.5) 

(6.6) 

The error in predicted output can be calculated by using ue2 and 

"-

xe2 from (6.5) in (6.3). The result is 

(6.7) 

The error in predicted output is 

The results obtained by using (6.4) and (6.8) with the five 

linear models are presented in figure 6.2. The true values of the 
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• PREDICTION FROM ABOVE 

12000 
0 PREDICTION mOM BELOW 

a>oo 
(a) FAN SPEED. 

16000 
0 

6000 
(b) COMPRESSOR SPEED. 

o~----~----~----~--~ 

(c) AUGMENTOR PRESSURE. 
2500 -

500 1 <6 
(d) FAN TURBINE INLETTEMPERATURE. 

soo 

OL-----~----~----~--~ 
20 

PLA 

(e) COMBUSTOR PRESSURE. 

Figure 6.2. - Steady-state prediction accuracy. 
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(f) THRUST. 

400 

o 

(g) AIRFLOW. 

100 

o~----~--~----~----~ 
(h) TURBINE INLET TEMPERATURE • 

. 4 

• 
o 

0 
(i) FAN SURGE MARGIN • 

. 4 

0 

• 
0 - I 
20 36 52 67 83 

PLA 

(j) COMPRESSOR SURGE MARGIN. 

Figure 6.2. - Concluded. 
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problem variables (states and outputs) are presented as a function of 

PLA. TIle values at the five PLA's are connected by straight lines; 

however, the true variation between equilibrium data points is not 

necessarily linear o The predicted problem variables are also shown, 

as predicted from adjacent equilibrium points both above and below 

the predicted pointo 

It can be seen from figure 6.2 that prediction accuracy is gen-

erally very good, with several notable exceptions. First, for nearly 

all of the variables, the idle model (PLA = 20 degrees) does not accu-

rately predict the equilibrium values at PLA = 36 degrees. Also, the 

model at PLA = 36 degrees does not predict the idle conditions accu-

rately. Both of these results may be explained by the fact tLat the 

engine exhaust nozzle and low pressure turbine are unchoked at idle, 

but become choked a few degrees above idle and remain choked asPLA 

increases further. Engine dynamic characteristics differ substantially 

between choked and unchoked conditions. Therefore~ there is a large 

discontinuity in the linear models at the point at which choking occurs. 

With the exception of the idle prediction difficulty, all problem 

variables are accurately predicted over the range of PLA, except for 

the fan and compressor surge margins. The difficulty in predicting 

surge margins is due to the fact that surge margin is proportional to 

the difference between two pressures which are of similar magnitudes. 

Hence, relatively small error.s in the pressures give rise to large 

errors in the surge margins. 

Because of the fact that the engine exhaust nozzle is unchoked 

only in the near vicinity of idle, and furthermore is choked at all 
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PLAts at nonzero flight Mach numbers, it was decided to eliminate the 

idle model from all subsequent calculations. Therefore, the engine 

will be modeled by using the three-state models (e.g., Table IV) at 

four equilibrium points: PLA = 36, 52, 67, and 83 degrees. 

D. Steady State Performance 

Linear models can be used to find the control settings which 

maximize steady-state performance. For example, suppose we wish to 

maximize thrust for constant fuel flow - this is equivalent to minimiz-

ing specific fuel consumption. The minimization must be accomplished 

while adhering to the engine constraints and control limits. The mini-

mization will be conducted at PLA = 67 degrees, a typical power setting 

for subsonic cruise. At this power setting, the only applicable engine 

constraints are that fan and compressor surge margins should be kept 

above a safe level, say five percent. In addition, the exhaust nozzle 

area, inlet guide vanes, and compressor variable vanes must not exceed 

their mechanical limits. 

Fo'r given values of u, the equilibrium values of states and out-

puts are given by (6.5) and (6.7) 

x 
S5 

-1 
F G(u - u ) 

e 

-' y = y + (D - CF J'G) (u - u ) 
ss e e 

(6.9) 

If the performance -Index and constraints are linear combinations of 

states, outputs, and control,:;, a linear programming problem results, 

which can, be solved by using the simplex method (ref. 16). 

Results for the maximization of thrust are presented in table V. 

For all cases, fuel flow is held constant at 6860 lbm/hr. For the 
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TABLE V. - STEADY-STATE PERFORMANCE 

[Sea-level static~ PLA = 67°, wf = 6860 1bm/hr] 

A IGV, HVS Thrust, SMFAN SMCOMP noz' deg deg lbf 
ft 2 

Nominal 2.98 -16.4 0.92 10 514 0.25 0.18 

Optimum 2.8 5 -40 11 411 .07 .71 

Scheduled geometry 2.8 -9.4 -6.1 10 790 .16 .28 
±7° 

nominal case, the exhaust nozzle area, inlet guide vanes and compressor 

variable vanes are at their schedu.1ed values; the thrust which results 

is 10 514 lbf o In the optimum case, A ,IGV, and aVs are free for noz 

optimization, subject to their mechanical limits. The resulting 

thrust is 11 411 1bf, which represen~s an increase of about 9 percent 

over the nominal value. However, it is recognized that the linear 

models are not necessarily valid over the full range of possible con-

tro1s. Furthermore, use of optimum values of IGV or HVS could 

result in violation of flutter boundaries. Therefore, a third case is 

c.onsidered in which the values of IGV and HVS are allowed to devi-

ate by at most 7 degrees from the scheduled values at that power set-

tinge In this case, the thrust is 10 790 1bf, which still represents 

an increase of more than 2.5 percent from the nominal value. 

A possible explanation for the increased thrust achieved by using 

off-schedule geometry is that the scheduled values of IGV and HVS 

are based on optimized component performance, rather. than optimized 

overall engine performance. 
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E. Transient Performance 

We now consider the problem of minimizing the time required to 

accelerate the F100 engine from one equilibrium thrust level to another 

as rapidly as possible. In solving this problem, a piecewise-linear 

model of the F100 engine will be used. Specifically, the engine model 

is given by 

x = F. (x - x .) + G. (u - u .) 
~ e~ ~ e~ 

(6.10) 

where the state vector x (three states) and control vector u (four 

controls) are as defined in table IV. There are also other problem 

variables of interest, called outputs, which are related to the states 

and controls by 

y= C.(x- x.) +D~(U-U.) +y. 
~ e~ ~ e~ e~ 

(6.11) 

the index i refers to the equilibrium model number; there are four 

equilibrium linear models at PLA = 36,52, 67, and 83 degrees. The 

67 degree model is presented in table IV. The linear model which 

applies at a given time is selected by minimizing the quadratic func-

tion 

~4 = (x - x .) TW(x - x .) 
... e~ e~ 

(6.12) 

with respect to i; the model whose equilibriuIn state is "closest" to 

the actual state at that time is chosen to represent the engine. The 

function of W in (6.12) is to scale the states to comparable numeri-

cal values" 

During an acceleration from a part-power condition to intermediate, 

the engine is first represented by the PLA = 36 degrees model. As the 

engine accelerates, the model switches successively to the 52, 67, and 
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83 degree models. The W matrix used in comparing successive PLA 

models k and (k + 1) in (6.12) is given by 

1 a a 
(x - x )i 

ek e,k+l 1 

W = a 1 a (6.13) 

a a 1 

It should be noted that the components of W defined by (6.13) are 

different for each successive switch. The normalizing factor for 

each state has been chosen to be the difference in values of that 

state from one equilibrium point to the next. 

The trajectory must also satisfy path inequality constraints given 

by 

c~x + d~u + e. ~ 0, 
]. ]. ]. 

i ='1, •• 0, q (6.14) 

The coefficients d., and 
]. 

are different for each equilibrium 

model. Some of the path inequality constraints correspond to engine 

physical limits, others to control mechanical limits. The following 

constraints will be assumed for this prob lem. 

(1) Turbine inlet temperature cannot exceed the equilibrium value 

at intermediate thrust by more than 50 degrees R. 

(2) Fan and compressor speeds cannot exceed the equilibrium values 

at intermediate thrust by more than 50 rpm. 

(3) Fan and compressor surge margins must not: be less than 5 per-

cent. 

(4) Inlet guide vanes, compressor vanes, exhaust nozzle area, and 
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fuel flow rate must not exceed their limits. 

Statement of the problem. - Before developing a precise mathe-

matical statement of the optimization problem to be solved, it is use-

ful to consider first the manner in which the resulting optimal control 

for minimum-time acceleration (which will be referred to as the transi-

tion control) might be implemented in an actual engine. The transition 

control will be used during acceleration from one equilibrium power 

setting to another; during near-steady c.onditions, the Bill-of-Material 

* (BOM) control (which will be referred to as the regulator) will be 

used. 

In deciding when to transfer authority from the transition con-

troller to the regulator, it must be recognized that the equilibrium 

conditions at a given PLA are not known precisely; they vary from 

one engine to another and as a function of operating time for a given 

engine. Therefore, control authority should be transferred from the 

transition controller to the regul<).tor when the state vector is in the 

"vicinity" of the desired state vector rather than when desired values 

of the states have been achieved precisely. The distance to the de-

sired state vector (terminal error) may be defined as 

(6.15) 

The switch from the transition controller to the regulator would occur 

* The BOM control is the standard control system supplied with the 

engine. 
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at a fixed value of ~,say 0.05 or 0.1 

The problem to be solved is stated as follows. Find controls 

u(t), 0 ~ t ~ t
f 

which minimize ~(xf) while satisfying the system 

equations (6.10) and path constraints (6 Q 14). A sequence of solutions 

to such problems for different acceleration times may be used to find 

the minimum-time solution for a given value of terminal error. Neces-

sary conditions for an optimal solution are given in chapter II. The 

problem is solved by using the new algorithm described in chapters III 

and IV. 

Results. - The problem of minimizing the terminal error for an 

acceleration from near-idle (PLA = 24 degrees) to intermediate thrust 

is considered. The engine's exhaust nozzle first becomes choked at 

PLA = 24 degrees. The final time is specified to be t f = 0.75 second. 

The problem variables (states, outputs, and controls) for the optimal 

trajectory are shown in figure 6.3. The state variables N N fan' (!omp , 

and Pt7, are shown as functions of time in figure 6.3(a) to (c). It 

can be seen that the stat2s approach the desired final values smoothly 

and with no overshoot. The value of the terminal error is 4> = 0.012, 

which results from errors in the states of ~Nf' = 15 ~~m, an 

~N camp 78 rpm, and 6Pt7 ~ 0.43 psi. 

The outputs are shown as functions of time in figures 6.3(d) to 

(j). Because of the way in which the outputs are defined in equa-

tion (6011) these variables are in general discontinuous at model 

switching points and points o£ discontinuous control. 

The optimal control strategy results in the high-pressure turbine 

inlet temperature l~aving its maximum value for the entire trajectory; 
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12000' 

2000 
(a) FAN SPEED. 

16000 

6000 
(b) COMPRESSOR SPEED. 

50 

oL-----~----~-----L----~ 

(c) AUGMENTOR PRESSURE. 

100 

oL-____ L-____ J-____ -L ____ ~ 

1.0 

o 

(d) TURBINE INLET TEMPERATURE. 

.2 .4 .6 .8 
TIME, sec 

(e) FAN SURGE MARGIN. 

Figure 6.3. - Acceleration from PLA. = 24 deg 
to intermediate thrust. Acceleration time, 
0.75 soc. 
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1 
I 

(f) COMPRESSOR SURGE MARGIN. , 

(g) FAN TURBINE INLEf TEMPERATURE. 

(h) THRUST. 

(i) AIRFLOW. 

TIME, sec 

(j) BURNER PRESSURE. 

Figure 6.3- Continued. 
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this is shown in figure 6.3(d). Fan and compressor surge margins 

remain well above acceptable minimums (figs. 6.3(e) and (f)), Low 

pressure turbine inlet temperature (fig. 6.3(g)) is very nearly con-

stant. Thrust (fig. 6.3(h)) increases smoothly al1d monotDnically 

with time. 

The optimal control histories are shown as a function of time in 

figures 6.3(k) to (n). Fuel flow jumps at t = 0 from ~ts idle 

value, then increases slowly to maintain constant turbine inlet tem-

perature. The optimal values of A • IGV, and HVS are piecewise noz 

constant, as required by variational theory (chapter II). Each of 

these variables has one switch during the trajectory. 

Figure 6.3(0) shows the distance from the current state vector 

to the equilibrium state vector of the c.'.:rrent modeL The distance 

is normalized in such a way that the distance between adjacent equi-

librium state vectors i.s unity. It can be seen that the instantaneous 

distance is always less than unity; this is a good indication of the 

validity of the piecewise-linear model throughout the entire trajectory. 

Although the maximum nozzle area. is greater than 6 square feet, 

nozzle area has been restricted to a range of 2.8 to 3.2 square feet 

for the present study. This arbitrary upper limit has been imposed 

because the linear models are not necessarily valid for the full 

~ange of allowable control action. It is also recognized that model 

accuracy may be degraded if IGV and RVS values are far. from their 

scheduled values from the BOM controller. In fact, available test 

data for the IGV and RVS are limited to about ±7 degrees of the sched-

uled values. Furthermore. large deviations in IGV and HVS mighT: resul t 
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20000 
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(k) FUEL FLOW. -'1 
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1 
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(I) NOZZLE AREA. 
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(m) FAN INLET GUIDE VANE POSITION. 
50 

(n) COMPRESSOR VARIABLE VANE POSITION. 
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(0) DISTANCE FROM EQUILIBRIUM POINT. 

Figure 6,3. - Concluded. 
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in flutter boundaries being violated. For these reasons, two addi-

tional optimal trajectories were run for t f = 0.75 second. For one 

of the trajectories, the HVS and IGV were required to have their 

scheduled values; for the other, IGV and HVS were limited to ±7 degrees 

from their scheduled values. In addition, optimal trajectories were 

run for other values of t f • 

Figure 6.4 shows the problem variables as a function of time for 

the optimal trajectory in which the IGV and HVS were limited to ±7 de-

grees of the scheduled values. The acceleration time is 0.75 second. 

For this case, the terminal error is 0.045, compared to a terminal 

error of 0.012 which is achieved when the IGV and HVS are allowed full 

variation within their mechanical limits. 

It can be seen that the results for this case are qualitatively 

very similar to those of figure 6.3. Turbine inlet temperature has 

its maximum value for the entire trajectory, and the state variables 

increase monotonically to their final values. IGV position 

(fig. 6.4(m)) is 7 degrees less than the scheduled value up to about 

0.56 second; after that time, IGV position is 7 degrees greater than 

the scheduled value. It is interesting to note that HVS position 

(fig. 6.4(n) is 7 degrees less than the scheduled value for the 

entire trajectory. 

Figure 6.5 presents terminal error as a function of acceleration 

time, t f
, for accelerations from PLA = 24 degrees to intermediate. Re­

sults are presented for values of IGV and HVS which are fully opti-

mized, scheduled and scheduled ±7 degrees. The corresponding trajec-

tories have the same characteristics ps shown in figures 6.3 and 6.4 • 
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(a) FAN SPEED. 

16000 

6000 
(b) COMPRESSOR SPEED. 
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OL-____ ~ ____ ~ ______ L_ ____ ~ 

(c) AUGMENTOR PRESSURE. 

100------------

50~ ____ ~ __ ~~ __ ~L_ __ ~ 

o .2 .4 .6 .8 
TIME, SEC 

(d) 1URBINE INLET TEMPERATURE. 

Figu re 6.4. - Acceleration from PLA = 24 deg to 
intermediate thrust. Acceleration time, 
0.75 sec. IGV and HVS scheduled ±7 deg. 
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0 
(e) FAN SURGE MARGIN. 

1 

-
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(f) COMPRESSOR SURGE MARGIN. 

(g) FAN TURBINE INLET TEMPERATURE. 

20000 

o~--~~--~~--~~--~ o .4 
TIME, SEC 

(h) THRUST. 

Figu re 6.4. - Continued. 
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Figure 6.4. - Continued. 



r ~·-r~··" 

,[ 

--
I 

/ 

86 

,SCHEDULE 

..1----.- ..... -- ---

-50 L..-__ L------iL------iL------I 

(m) INLET GUIDE VANE POSITION. 

SCHEDULE, 
~-­---

-50'-__ '-----'1----1-----' 
.6 .2 .4 .8 o 

TIME. SEC 

(n) COMPRESSOR VARIABLE VANE POSITION. 

Figure 6.4. - Concluded. 

. " 

" •••• < •• "~.;;W 



~' ~ : .... ¥~" 
r~ 

.12 

. 10 

0::: 
0 
0::: 
0::: 
L&.I • 
....J 

~ 
:E 
0::: 
I:! 

.04 

.02 

1---

87 

IGV AND HVS 

rSCHEDULED 
I ±7 DEG 

I ,SCHEDULED 
OPTlMUM..J / 

Figure 6.5. ~ Terminal error versus 
acceleration time. Part-power 
(PLA = 24 deg) to intermediate 
thrust acceleration. 

-.. . 

, 
r 
l,·-------·--!---.. - .... ~ 



I 
r 

L 
I! 

'i 

i 

Ii 

Ii 
L 

I ; , 

L 

88 

In particw . .9.r, turbine inlet tempera.ture is kept at its maximum value 

throughout each of the trajectorieso 

As discussed earlier, authority might be transferred from the 

transition controller to the regulator at a fixed value of terminal 

error. The time required to reach a given terminal error depends on 

the control strategy used o .For example, figure 6.5 shows that a time 

of 0.80 second is required to reduce the terminal error to 0.05 if 

scheduled IGV and HVS are used. If IGV and HVS are controlled opti-

tnally within scheduled ±7 degree values, the time is reduced to 0.74 

second; if fully optimized IGV and HVS are used, t f is 0.65 second. 

The time required to accelerate from other initial values of PLA 

to intermediate is also of interest. Figure 6.6 presents the time 

required to accelerate for a terminal error of 0.05 as a function of 

PLA. Results are presented for scheduled and scheduled ±7 degree 

values of IGV and HVS. 

F. Comparison of Nonlinear and Piecewise-Linear Responses 

In figure 6.2, accuracy of the piecewise-linear model was investi-

gated in terms of the ability of the model to predict the values of 

adjacent equilibrium values of states and outputs. This type of accu-

racy test is particularly relevant to the ability of the piecewise-

linear model to predict values of the control variables for optinml 

steady-state performance. However, for transient performance predic-

tion, a much better check on model accuracy is achieved by comparison 

of the nonlinear and piecewise-linear model transient responses for 

the same control variable time histories. 

Figure 6.7 presents a comparison of nonlinear and piecewise-linear 
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Figure 6.6. - Time r~uirt)(1 to accelerate to intermediate thrust 
with a fixed terminal error of 0.05. 
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(e) THRUST. 

(f) FAN SURGE MARGIN. 

(g) COMPRESSOR SURGE MARGIN. 

.4 
TIME, SEC 

(h) COMBUSTOR PRESSURE. 

Figure 6.7. - Continued. 
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transient responses. The control variable histories are based on an 

optimal acceleration from PLA = 24 degrees to intermediate thrust, 

for a specified acceleration time of 0.8 second. For this case, the 

values of IGV and HVS were constrained to be within ±7 degrees of the 

BOM scheduled values. The nonlinear responses were obtained by using 

the P&WA liigital dyn.amic nonlinear FlOO engine simulation (ref. 14). 

It can be seen that the nonlinear and piecewise-linear responses of 

compressor speed 2nd augmentor pressure are in good agreement. How-

ever, differences are observed in the fan speed responses. Also, there 

are substantial and important differences in the high-pressure turbine 

inlet temperature and fan and compressor surge margin responses. The 

nonlinear results show that the maximum value of the high-pressure 

turbine inlet temperature is violated by a large amount, and the com-

pres.30r surges at about 0.06 second. The fan does not surge, but the 

fan surge margin does fall below the minimum value of 5 percent early 

in the trajectory. 

Additional comparisons of nonlinear and piecewise-linear results 

are made in figures 6.8 and 6.9. In these two figures, the comparison 

is based on an acceleration of 0.6 second from PLA = 36 degrees to 

intermediate thrusto For figure 6.8, the IGV and HVS are limited to 

scheauled values ±7 degrees, while for figure 6.9, the IGV and HVS 

take on scheduled values. The results are qualitalively similar to 

those presented in figure 6.7, but the nonlinear and piecewise linear 

results do not differ by as much as was observed in figure 6.7. For 

example, there is no compressor surge in figure 6.8, and neither fan 

nor compressor surge margin limits are violated in figure 6.9. 
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Figure 6.8. - Comparison of non­
linear and piecewise linear' re­
sults. Acceleration from PLA = 
36 deg to intermediate thrust, 
acceleration time, 0.6 sec. IGV 
and HVS, schedu led ± 7 deg. 

""'f* r-'-t~ 

i 

.~ 

-. 



l 
I 

/ 

96 

o .2 
TIME. sec 

(hI COMBUSTOR PRESSURE. 

Figure 6.8. - Continu9:l. 

I 
I-
I 

i 

i 
-, " -,' ! ,.,-- ~-~.,~~-.- !.---



/ 

97 

3000 

1 :r--_ 
: - ....... 1 

t::o:: I 1 
t::: o 

-'j 

j 
1000 

(i) FAN TURBINE INLET 1 
TEMPERATURE. 

j 

300 
1 

1 
- . 

j 
u ...,.-
aJ 

1 

. '" ....... ...,. 1 

~~ " ....... j 
:e --- I 

I 
1 

100 1 

ij) AIRFLOW. 

20000 

.... 
.r:::. 

j'E 
:e 

01L-____ L-____ L-__ ~ 

(k) COMBUSTOR FUEL FLOW. 

4 

2~----~----~--~ 
o .2 .4 

TIME, sec 

(I) NOZZLE AREA. 

Figure 6.8. - Continued. 



98 

40 

(m) INLET GUIDE VANE POSITION. 
40 

TIME, sec 

(n) COMPRESSOR VARIABLE VANE 
POSITION. 

Figure 6.8. - Concluded. 
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Figure 6.9. - Comparison of non­
linear and piecewise-linear re­
su Its. Acceleration from PLA = 
36 deg to intermediate thrust. 
Acceleration time, 0.6 sec. IGV 
and HVS scheduled. 
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There are several possible explanations for the differences be-

tween nonlinear and piecewise-linear responses observed in figures 6.7 

to 6.9. They are as follows: 

(1) The individual linear models may not be good approximations 

even for small perturbation inputs. 

(2) The number 0 f equilibrium linear models may be inadequate to 

accurately describe the system non1inearities with respect to the 

state variables. 

(3) There may be substantial non1inearities with respect to the 

cuntro1 variables, which are not included in the piecewise-linear 

model. 

(4) Model reduction from sixteenth to third order may have re-

sulted in modeling inaccuracieso 

Items (1) and (4) may be checked by comparison of nonlinear and 

three and sixteen variable linear transient responses for sma11-

perturbation control inputs. Such a comparison is made in figure 6.10. 

The equilibrium state and three and sixteen variable linear models cor-

respond to PLA = 52 degrees, and the control input is a small step in 

combustor fuel flow. Results are presented for fan speed, compressor 

speed, augmentor pressure, turbine inlet temperature, and fan and com-

pressor surge margins. It can be seen that the linear and nonlinear 

responses are in good agreement for states compressor speed and aug-

mentor pressure, but are not in good agreement for fan speed. The 

sixteen-state linear result is in better agreement with the nonlinear 

result than is the three-state linear result,but neither of the linear 

results can be considered to be in adequate agreement. Also, the 
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linear and nonlinear results are in reasonably good agreement for tur-

bine inlet temperature, but the three and sixteen state linear models 

do not give a good representation of fan or compressor surge margin. 

The differences between nonlinear and linear predictions of fan 

speed and fan and compressor surge margins observed in figure 6.10 are 

qualitatively similar to those observed in figures 6.7 through 6.9. 

It appears that a more accurate set of linear models, obtained from 

small perturbation responses of the nonlinear simulation, would result 

in more accurate piecewise-linear results. Also, there are substantial 

differences between the three and sixteen state linear results for sev-

eral of the variables. The three-state linear models were obtained by 

modal reduction from five state linear models, which in turn were ob-

tained directly from the nonlinear simulation. Since the three-state 

models were not obtained by modal reduction from the sixteen-state 

linear models, no conclusions can be drawn here relative to errors 

introduced by modal reduction. 

Because of the inaccur~cy of the linear models, it is not possible 

to determine conclusively if nonlinearities with respect to states or 

controls contributed substantially to the differences in the nonlinear 

and piecewise-linear results observed in figures 6.7 to 6.9. Never the-

less, the relatively good agreement of turbine inlet temperature ob-

served in the small perturbation results (fig. 6.10) as compared to 

the large turbine inlet temperature errors observed in figures 6.7 to 

6.9 suggests strongly that there is a substantial nonlinearity, prob-

ably with respect to combustor fuel flow, which would have to be in-

eluded in the model to achieve accurate results. 
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-- THREE-STATE LINEAR 
--- SIXTEEN-STATE LINEAR 
--- NONLINEAR 

(a) FAN SPEED. 
100 

(b) COMPRESSOR SPEED . 
. 8 

(c) AUGMENTOR PRESSURE. 
8Ur 

--

TIME, sec 

(d) TURBINE INLET TEMPERATURE. 

Figu re 6.10. - Comparison of nonlinear and 
three-and-sixteen-state linear model 
responses to a three percent step in fuel 
flow. Equilibrium condition, PLA = 
52deg. 
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(e) FAN SURGE MARGIN. 

.4 .8 1. 2 1.6 
TIME, sec 

(f) COMPRESSOR SURGE MARGIN. 

Figure 6.10. - Concluded. 
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G. Comparison of Minimum Time and BOM Control Responses 

Using the Nonlinear Simulation 

It is of interest to compare the transient responses obtained by 

using optimal minimum-time strategy with those obtained by using the 

BOM control. Such comparisons are made in figures 6.11 and 6.12, for 

accelerations from PLA = 24 degrees to intermediate thrust and from 

PLA; 36 degrees to intermediate thrust, respectively. For both 

figures, the minimum time controls were obtained by using the piecewise-

linear rodel with the IGV and HVS constrained to be within ±7 degrees 

of the BOM scheduled values. However, the data presented in fig-

ures 6.11 and 6.12 were obtained by using the minimum-time and BOM 

controls applied to the nonlinear F100 engine simulation. 

The results show that the minimum-time control strategy produces a 

rore rapid acceleration to the vicinity of intermediate thrust. It 

appears that the principal reason for the improved acceleration is the 

much more rapid increase in fuel flow, which results in a rapid in-

crease in high-pressure turbine inlet temperature. Naturally, the com-

parison of performance is invalidated because of the violation of con-

straints which occurs. Nevertheless, it seems highly probable that 

substantial improvement in acceleration time can be made without viola-

tion of engine constraints since the high-pressure turbine inlet tem-

perature (figs" 6 oll(d) and 6.l2(d» increases very slowly when the 

BOM control is used. Some compromise between the optimal control 

based on the piecewise-linear rr.odel and the BOM control would probably 

yield improved accelerations without violating the turbine inlet tem-

perature limito 
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BOM CONTROL 
- - - MINIMUM TIME CONTROL 

rooo~ ____ ~ ____ ~ ____ ~ ____ ~ ____ -L ____ --J 

(a) FAN SPEED. 

16000 

50~ ____ ~ ____ ~ ____ ~ ____ ~ ____ -L ____ --J 

o 1.0 2.0 3.0 
TIME, SEC 

(d) TURBINE INLET TEMPERATURE. 

Figure 6.11. - Comparison of trajectories tor minimum time and BOM 
control. Acceleration from PLA = 24 deg to intermediate thrust. 
Nonlinear simulation. 
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Figure 6.11. - Continued. 
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Figure 6.11. - Concluded. 
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_. BOM CONTROL 

12000 - - - MINIMUM TIME CONTROL 

IDOO 
(a) FAN SPEED. 
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(cl AUGMENTOR eRESSURE. 

150 
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TIME. sec 

(d) TURBINE INLET TEMPERATURE. 

Figure 6.12. - Comparison of trajectories for minimum time and BOM 
control. Acceleration from PLA = 36 deg to intermediate thrust. 
nonlinear simulation. 

r 
·7 

/ 

_. 

1 

I 



r. r-

i~ 
I 
I 

I-

-I- r 
i I 

! 

• .c 
t- -

-r r ----....I~·· 

l 

113 

1 -

o '- ,..-
'(e) FAN SURGE MARGIN. 

1 

,/--
O~-----------L----------~------------~

 

(fl COMPRESSOR SURGE MARGIN. 

3000 

1000 '--_______ -'-________ ----.L ________ ----' 

20000 

o 

(9) FAN TURBINE INLET TEMPERATURE. 

1.0 

TIME. sec 

(h) THRUST. 

2.0 

Figure 6.12. - Continued . 

.. ~.-

3.0 

l1I 

{ r 

--------~~----It_N ____________ -_~~-ijn~~~~~~~._. __ --·--·.·-.·-~'~·-n~.I~I~ •• ___ ~LL.' 

,j 
H 
ij 
,~ j 



r. 
1 

- - I ,---

400 

~ ............ cQ.!!! 
3e -. ...... 

.e 

0 

500 

rt'Y-
VI'" c..Q.. 

0 

20000 

L.. 

-.E 
~-~ 

0 

4 

~-z-
<: ---

2 
0 

( 

'~'-'-J-
.. 

114 

(i) AIRFLOW. 

(j) COMBUSTOR PRESSURE. 

(k) COMBUSTOR FUEL FLOW. 
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Figu re 6.12. - Continued. 
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H. Suboptimal Control 

It has been shown that a substantial decrease in engine accelera-

tion time can be achieved by using a minimum-time control strategy. 

However, the control strategy which has been developed is based on 

open-loop control. It is desirable that a closed-loop control strat-

egy be developed which is capable of closely approximating the open-

loop time-optimal results. The purpose of this section is to devise 

such a strategy. 

The following strategy is based on the piecewise-linear model. 

Although further refinement of this model appears necessary, the gen-

eral form will likely remain intact, and the following will still apply. 

It has been previously noted that the turbine inlet temperature 

limit is an active constraint for the duration of each of the minimum 

time trajectories presented. This fact forms the basis for a closed-

loop transition control law for fuel flow. Since turbine inlet tem-

perature is modeled as an output, it can te expressed as a linear com-

bination of state and control variables, i.e., 

(6.16) 

For TIT = T , equation (6.16) may be solved for fuel flow (or any max 

other control variable for which the coefficient d is nonzero) to 

yield: 

w = ~ (T - CTx - d A - d3IGV - d4HVS) f d
l 

max 2 noz (6.17) 

It still remains to find closed-loop control laws for A ,IGV, and noz 

HVS. We will consider the case for which IGV and HVS are limited to 

scheduled values ±7 degrees. Examination of a number of optimal tra-
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jectories including those shown in figures 6.3 and 6.4 reveals the 

following facts: 

(1) A always starts at the higher value of 3.2 feet squared, noz 

then switches to the lower value of 2 0 8 feet squared. Furthermore, 

the switch occurs at fairly constant values of N averaging about comp' 

11 000 rpm. -. 
(2) IGValways starts at the lower value (scheduled -7 degrees), 

then switches to scheduled +7 degrees. This switch also occurs at 

fairly constant values of N , averaging about 12 000 rpm. comp 

(3) HVS always has the scheduled -7 degrees value, never switching 

to the larger valueo 

Based on these observations, the following suboptimal closed-loop 

strategy is suggested. 

C"2 ft2, N ~ 11 000 rpm 
A 

comp 
noz 2.8 ft2 , N .::. 11 000 comp rpm 

(SChedUled -7 deg, N ~ 12 000 rpm 
IGV = comp 

(6.18) 
Scheduled +7 deg, N .2:. 12 000 rpm comp 

HVS = Scheduled -7 deg 

1 

The closed-loop control strategy shown in equation (6.18) was applied I 
1 

I 

to the piecewise-linear model, and accelerations were obtained for 

various initial values of PLA to intermediate thrust. Results are 

presented in figure 6.13 for an initial PLA of 24 degrees. Terminal 

1 
.• 1 
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Figure 6.13. - Terminal error versus acceleration time. 
Part-power (P LA = 24 deg) to intermediate thrust ac­
celeration. I GV and HVS. schoou led ± 7 deg. 
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error is presented as a function of acceleration time. Similar re-

suIts for optimal open loop accelerations are repeated from figure 6.5 

for comparison. It can be seen that the optimal and suboptimal results 

are virtually indistinguishable. 

It is also of interest to determine the acceleration time required 

to reduce the terminal error to a fixed value, say 0,05. From fig-

ure 6.13, it can be seen that the required acceleration time for a 

terminal error of 0.05 is 0.80 second for an initial PLA of 24 degrees, 

for both the optimal and suboptimal results. Similar results were ob-
1 
j 

tained for other initial values of PLA, and the results are shown in 
l 

J 

figure 6.140 As in figure 6.13, optimal and suboptimal results are I 
i 

virtually indistinguishable. j 
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-- OPTIMAL 
- - - SUBOPTIMAL 

20 60 40 
INITIAL POWER LEVER ANGLE. PLA. deg 

Figure 6.14. - Time requ ired to accelerate to intermediate thrust with a fixed 
terminal error of 0.05. I GV and HVS. schoou led ±7 deg. 
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CHAPTER VII. CONCLUSIONS 

Minimum time accelerations of aircraft turbofan engines are pr.e-

sented. The calculation of these accelerations is made by using a 

piecewise-linear engine model, and a new algorithm based on nonlinear -. 
programming. Use of this model and algorithm allows such trajectories 

to be readily calculated on a digital computer with a minimum expendi-

ture of computer time. 

The new algorithm may be used for solution of optimal control 

problems uhich are nonlinear in the state variables, and linear in 

the control variables 0 It is shown that the optimal control for such 

problems is bang-bang, except for possible singular arcs, which are 

not considered. The algorithm requires that a nominal bang-bang solu-

tion be found that satisfies the system equations and terminal con-

straints. The Euler-Lagrange equations are not utilized in the deter-

ruination of this feasible solution; it is generally not a local mini-

mumn Equations arg derived for the determination of the Lagrange mul-

tipliers (sensitivity functions) which correspond to the initial fea-

sible solution. These sensitivity functions are then utilized, along 

with nonlinear optimization (gradient search) techniques, to improve 

the feasible solution. 

The new algorithm has several advantages over methods currently 

in use for solution of such problems. First, the system dynamic equa-

tions are uncoupled from the Euler-Lagrange equations: the Euler-

Lagrange equations arQ not utilized in the determination of the initial 

121 
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feasible solution. Second. use of the new algorithm minimizes the 

number of variables involved in the gradient search. With the new 

algorithm, the search variables are the constraint switching times -

the times at which switches take place from one set of constraint 

functions to another. Other methods currently in use generally dis-

cretize the trajectory into a large number of intervals, and search 

for the optimal values of the controls for each interval. 

The algorithm makes use of the fact that the optimal values 01 

the control variables are determined by an equal number of active 

constraints. This situation always exists (except for possible singu-

lar arcs) when the performance criterion, system equations and con-

straint equations are all linear in the control variables. However, 

the control may also be fully determined by active constraints for 

some problems for which the equations are nonlinear in the control var-

iables. It should be possible to extend the theory and algorithm pre-

sented herein to include such problems; this is an area worthy of fur-

ther resea':ch. 

The algorithm presented herein is used to find minimum-time accel-

eration histories for the FIOO engine. A piecewise-linear engine 

model is used, having three state variables and four control variables. 

Minimum time solutions are obtained, and the reSUlting control his-

tories are used as inputs to a nonlinear simulation of the FIOO engine 

to verify the accuracy of the piecewise~linear solutions. 

Comparison of the nonlinear and piecewise-linear solutions re-

vealed significant differences in a few of the engine responses, the 

worst being a 35 percent error in the turbine inlet temperature, with 
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several of the variables matching to within 5 percent. To determine 

the source of these errors, the transient response to a small-

perturbation fuel flow step was calculated using the nonlinear and 

three-and-sixteen-state linear models. It was discovered that there 

were significant differences in several of the engine responses for 

this case as well, notably fan speed and surge margins, for both the 

three- and sixteen-state variable linear mo~els. 

Based on these results, it appears that the calculation of linear 

models from a nonlinear simulation is a difficult task, and that there 

may be significant nonlinearities in the control effectiveness param-

eters. The li~ear models used herein were obtained by P&WA by using 

the offset-derivative method. There are at least three methods for 

identification of low-order linear models for aircraft engines which 

trerit further study: (1) identi.Eication of high-order linear model 

via offset derivative me.thod, followed by modal reduction to low order 

model; (2) least-squares identification of high-order model, followed 

by modal reduction to low order model; (3) least-squares identifica-

tion of low order model. 

Once accurate linear models are obtained, it is also of interest 

to determine the effect of state and control variable nonlinearities 

on the accuracy of the piecewise-linear results. Further research 

into the identification of simple nonlinear models may also be indi-

cated" 

RE~sults presented herein indicate that improved steady-state and 

transient performance may be obtained by using optimal control strat-

egy. Such strategy sometimes calls for operation of the controls in 
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a manner which has not been previously tested experimentally, even 

though the nonlinear simulation contains equations for predicting the 

effect of such control action. Further experimental testing is indi-

cated in order to systematically explore the steady-state and tran-

sient effects of off-scheduled control action, and to determine if 

the predicted performance gains can be achieved. 

In this report, it has been assumed that the control variables, 

i.e., fuel flow, nozzle area, inlet guide vane position, and compressor 

variable vane position, could jump instantaneously from one value to 

another. Actually, there are rate limits which apply to each of these 

control variables. It is possible to calculate optimal trajectories 

for which the control rate limits, in addition to the other con-

straints, are adhered to. This can be done by elevating the control 

variables to the role of state var.iables, and using the control vari-

able rates as the new control variables. Furthermore, the algorithm 

presented herein can be used to solve this modified problem. 

In addition to the open-loop optimal control strategy derived 

herein, a suboptimal closed-loop control logic is also derived which 

gives close approximation of the open loop perform~ce. However, con-

clusive evidence on its general applicability would require extensive 

Flimulation and testing under many different flight conditions. Fur-

thermore, implementation of the closed-loop control depends on being 

able to accurately and rapidly sense all engine states, and model all 

outputs. Further analytical research could help to identify types 

and accuracy of sensors needed to accomplish the control objectives. 

t 
I r ~ ____ .... 

I f 
I ...... __ ~_~ .•. 

I 

I 
j 

I 
. ~._ ---'-_ . _. AI 



'.~I .. t 

l 

APPENDIX A 

OPTIMIZATION WITH STATE VARIABLE INEQUALITY CONSTRAINTS 

In chapter II, the optimal control of a dynamic system which is 

nonlinear in the state variables and linear in the control variables 

is considered, and necessary conditions for optimality are derived. 

In chapter 111$ a new algorithm for solution of such problems is pre-

sented. In both chapters II and III, the path constraints are assumed 

to be either control or combined state/control inequality constraints, 

but not state variable inequality constraints. In this appendix, the 

results presented in chapte.rs II and III are extended to apply to 

problems with state variable inequality constraints. To illustrate 

the use of the numerical technique, a state variable inequality con-

straint is added to one of the example problems from chapter V, and a 

local minimum solution is obtainedo 

A path cons train t in which the control does not appear explicitly, 

i.e., c.(x,t) ~ 0, is called a state variable inequality constraint. 
1. 

When a state variable inequality constraint is active for a finite 

time period (i.e., c.(x,t) = 0), the control may be determined from 
1. 

the requirement that all time derivatives of c.(x,t) must also be 
1. 

identically zero during this time period. If s time derivative.s of 

c.(x,t) must be taken before the control appears explicitly, c.(x,t) 
1. 1. 

is called a state variable inequality constraint of order s. The sth 

derivative of c.(x,t), i.e., dSc.(x,t)/dtS , then serves as the path 
1. 1. 

constraint from which a component of the control is determined. There 
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are s additional equality constraints~ 

dc. (x,t) 
~ 

c i (x, t) = ---:-d-t--

s-l 
d ci(x,t) 

dts - 1 
= 0 

which must be satisfied at the initial point of the boundary segment 

on which the control is active. These are sorretimes called "tangency" 

constraints 0 

1. Feasible Solution 

In chapter III~ a feasible solution having at least p segments 

is obtained for a problem in which there are p terminal constraints. 

If one of the active constraints for a given segment is a state vari-

able inequality constraint of order s, then there are s additional 

point constraints >"hich must be satisfied at the start of that segment. 

In this event, there must be s additional trajectory segments, whose 

durations provide the additional degrees of freedom necessary to 

satisfy the s constraints. 

20 Calculation of Lagrange Multipliers 

It is shown in chapter III that once a feasible solution is ob-

tained, the Lagrange multipliers can be uniquely calculated. This is 

also the case if one of the active constraints is a state variable in-

equality constraint. Suppose, for example, there is a state variable 

inequality constraint of order s active in phase k. Then there are s 

additional ?oint constraints which must be satisfied at t = t k _l as 

part of the determination of the feasible trajectory. There are also 

s additional trajectory segments for this case. 

It can be shown (e.g., reL 13) that at such a point constraint, 

there is a jump in A which is proportional to the gradient of the 
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constraint. In this case, we have 

(Al) 

For simplicity, we will consider the case in which a single first 

order state variable inequality constraint is active in segment k. 

The results which will be derived can be extended to the case of mul-

tiple, higher order state variable inequality constraints. For a 

first-order constraint~ we have 

Because of the point constraint which must be satisifed at t = 1k-l' 

there are (p + 1) trajectory segments, and H must be continuous at 

the p interior points, t = t l , •• 0, tp' In addition, for final 

time free, equation (3.4) must also be satisfied. 

Except at t = t k_l , the requirement for continuity of H is 

achieved by satisfying (3.3). However, the requirement for continuity 

of H at t = t k_l must be given special consideration because of 

the jump in A at t = tk_lO The change in H at t k_l is given by 

T + + T - -
~H = A (tk_l)[f + gu(tk_l )] - A (tk_l)[f + gu(tk _l )] 

T + -+ b (tk_l)[u(tk_l ) - u(tk_l )] 

- [;T(t~_l) + 0 ;~:J [f + gu(t~_l)J - AT(tk_1)[f + gu(tk_1)] 

T + -+ b (tk_l)[u(tk_l ) - u(tk_l )] 

~ GT(tk _1) + AT(t~_l)~ [U«_l) - u(t~_l) J 

dC + + € ax [f + gu(tk_l )] 
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dc ac + 0 
dt = ax [£ + gu(tk_1)] = 

at t = t k_1 

(A3) 

In order to solve for E and the p values of v, we find . 
(p + 2) backward solutions of the A equation (2.13). The first 

(p + 1) of these solutions are identical to (3.5); A(p+l)(t) is ob-

tained by integrating (2.13) backward, starting at t
k

_
l

, with initial 

(p+l) _ dC 
conditions A (tk_1) - - dX (tk_l ). By superposition, A(t) is 

given by 

A(t) = A (0) (t) + A(t)v + EA (p+l) (t) (A4) 

The (p + 1) equations for the determination of E and v are given by 

i = 1, • • ., (k - 2), k, • • ., p (AS) 

The calculation of, v and E proceeds exactly as in (3.10) to (3.12), 

and will not be repeated here. 
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3. A Numerical Example 

To illustrate the USe of the equations which have been presented, 

a numerical example which includes an active state variable inequality 

constraint will be solved. Consider the problem of finding u(t) 

which transfers the system 

x = -x + u + 0.25 

y -4y + u 

from initial conditions (xO' YO) (1, 1) to terminal conditions 

(x
f

' Yf) = (0, 0) in minimum time. The system is sUbject to in­

equality constraints 

lui':: 2 

y+O.2~0 

This problem is identical to the one-piece linear approximation 

(A8) 

(A9) 

studied in chapter V, but with the addition of a state variable in-

equality constraint, y + 0.2 ~ O. 

When the state variable inequality constraint is active, i.e., 

y + 0.2 = 0, the control is determined from 

y = -4y + u = 0 

and since y = -0.2, we have u = -0.8 as the equivalent path con-

straint. 

Inspection of the optimru. solution in figure 5.2 shows that the 

constraint y + 0.2 ~ 0 is violated. Therefore, we look for a fea-

sible solution in which the constraint y + 0.2 ~ 0 is active on one 

of the segments. Specifically, we assume the optimal control history 

is given by 
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u = -2, 

u = -0.8, (AlO) 

u = 2, 

and we seek values of t 1 , t 2 , and t f such that the terminal con-

straints x = y = 0 f f 
and the intermediate constraint y(t1) = -0.2 

are satisfied. Solution of the multipoint boundary value problem 

results in t1 = 0.402, t2 = 1.002, t
f 

= 1.086. 

The Lagrange multiplier time history which corresponds to this 

trajectory may be calculated once the three parameters v
1

, v
2

, and 

e are known. These parameters are determined by requiring that equa-

tion (AS) (for i = 2), (A6) (for k = 2), and (A7) be satisfied. The 

resulting equations are given by 

0.919 v1 + 0.715 v 2 = 0 

0.615 v1 + 0.143 v2 - e = 0 

Simultaneous solution of these three equations results in 

v
1 

= 3.12, v
2 

= -4.01, E = 1. 35 

The final conditions on A are therefore given by 

is discontinuous at t1 : 

Ay(t~) = Ay(t~) + 1.35 

The switching function (A + A ) is presented as a function of time x y 

in figure Al. It confirms the fact that the initial feasible solu-

tion is a local minimum. The optimal trajectory is shown in figure AZ. 
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Figure A-I. - switching function and control profile for optimization 
problem with state variable inequality constraint. 
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1.0 
STATE 

VARIABLE 

x 
.8 --- y 

\ 
\ 

.6 \ 
\ 
\ 

.4 \ 
\ 
\ 

.2 \ 
\ 
\ 

0 \ 
\ 
\ 

\ 
-.2 '---------

-.4 '----.l---.l:------L ___ .L.I __ .L.I ------JJ 
o .2 .4 .6 .8 1.0 1.2 

TIME. sec 

Figure A-2. - Optimal trajectory for problem with state variable in­
equality constraint. 
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APPENDIX B 

DERIVATION OF LAGRANGE MULTIPLIER FUNCTIONS FOR FEASIBLE SOLUTION 

Necessary conditions for the optimal control of a dynamic system 

which is nonlinear in the state and linear in the control are derived 

in chapter II. It is shown that except for singular arcs, the optimal 

control (r variables) is always determined by r active constraint 

boundaJ'i~s. In chapter III, the nature of the optimal control strategy 

is used as the basis for a new algorithm for the solution of such opti,-

mization problems. 

In chapter III, the first step is to obtain a feasible solution 

which satisfies all path and terminal constraints. This is accom-

plished by dividing the trajectory into at least p segments (for a 

problem with p terminal constraints) and requiring the control to 

be determined by a set of r active constraints for each segment; p 

of the junction times are varied in order to satisfy the terminal con-

straints. The Euler-Lagrange equations are not utilized in the deter-

mination of this feasible solution; it mayor may not be a local mini-

mum. 

Once such a feasible solution is obtained, it is useful to cal-

culate the Lagrange multiplier time histories, functions of which are 
, switching functions which predict the change in the performance index l obtainable from small changes in the control histories. In chap-I 

I 
ter III, it is shown that these Lagrange multipliers can be easily 

133 , 
1~ 

" 

~._! "~"".. -;;t;.; ...... I." •• "'.~·:O."".' .. i6liiI"" ... - ... " .... ---""J'i1i,-_<~ .... Oiii;WiiOlimSiiioJ ""'.·_ ....... _I--..... __ ..... r tiI ... , ... ·_or-__ .""'_ ... il."" .. i ... ![; ........... ,._-=~~~~ 

l 

1 

I 
I 

1 
I 

1 



'I 

!i 
II 

I 
I 

J 

r -I I 
f r 

l34 

and uniquely calculated. The calculation scheme makes use of the dif-

ferential equations for the multipliers, and the continuity of the 

Hamiltonian at junction points. The Lagrange multiplier differential 

equations are derived in this appendix. Also, the requirement for con-

tinuity of the Hamiltonian at junction points is proved here. 

If the initial feasible solution is not a local minimum, the pro-

cedure followed in chapter III is to introduce additional segments, 

having control determined by r different active constraints. The 

switching times associated with these segments are used in conjunction 

with a gradient search technique to systematically improve the perform-

ance index. The gradient search technique requires partial derivatives 

of the performance index with respect to the free switching times; 

these partial derivatives are derived in this appendix. 

The problem statement which applies to the above problem is as 

follows. It is desired to find the values of the p junction times 

which result in minimizing the performance index 

(Bl) 

subject to the system dynamical equations 

x=f+gu 
(B2) 

and terminal constraints 

i=l, 2,. ", p (B3) 

In addition, the control must satisfy 

i=l, 2, ... ,w;:'p (B4) 
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The system equations, terminal constraints, and control con-

straints may be adjoined to the performance index by using undeter-

mined Lagrange multipliers. This results in 

i=l 

T 
[a + b u 

+ A~(f + gu - x) + p~(u + D~TC.)]dt CBS) 
~ ~ ~ ~ 

Necessary conditions for a local minimum are that we can find Ai(t) , 

Pi(t) , and v such that the first variation of * J vanishes with 

* respect to all allowable variations. The variation of J is given by 

* oj 

T. n T J 
w 

- \ ox dt + ~ (a + b u) dt 

Integration of (B6) by parts gives 

t. 
~ 

t. I 
~-

kaa+ ab
T 

u 'll!x ax 

CB6) 
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* (a<l> T aljJ) (a <I> T aljJ ) oj = ax + \) ax oXf + at
f 

+ \) at
f 

dtf + 

[[faa + ab
T 

u + A~ (lE. + 3. u) _ \J ax ax 1 ax ax ( 
-T ) U T ani -T aCi "T 

p. -,,- C. + n. -,,- + A. ox 
1 oX 1 1 oX 1 

T T T BW 

~ T T Jt i + 0 .. + p. + b )au dt + (a + b u) dt - A. ox 
1· 1 1 t. 1 

i=l 1-

(B7) 

Since u is constrained by (B4), the OU are not free but are 

given by 

(aD~T T ac_) 
ou = - _1_ C. + D~ _i ox (BS) 

ax 1 1 ax 

If (B4) and (BB) are substituted into (B7), and we choose A.(t) such 
1 

that 

then (B7) simplifies to 

Note that (B9) can be written 

T T t. 
[(a + b u) dt - A. ox] 1 

1 t. 1 1-

(B9) 

(BIO) 

r-l 
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-'1 

I 



r , 

\ 

137 

(Bll) 

which is identical to (2.13). 

The variations ox which appear in (B1D) apply for fixed time 

ti' an.d can be expressed in terms of the total variation dx and 

variation of time dto 

oX :::. ax - x dt 

Now if we use (B12) in (B1D) , and choose 

then (B1D) simplifies to 

A:: d)tt~.· 
~ ':J ~-l 

(B12) 

(B13) 

(B14) 

w-l 

BG T - T -+ b (t.)u(t.) + A.(t.)X(t.) 
~ ~ ~ ~ ~ 

i=l 

Note that (B13) and (Bl4) are identical to (2.7) and (2.8). We can 

also choose 

so that the variation of * J becomes 

\. 
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w-l 

oJ* = B(bT(ti)[U(t~) 
i=l 

w-l 

= B [R(t~) 
i=l 

138 

l 
i 

(B16) 

If a particular t. is one of the free junction times, the coeffi-
1. 

cient of dt. must vanish for a local minimum solution. 
1. 

for free junction times t .. 
1. 

- + R(t.) = R(t.) 
1. 1. 

On the other hand, if 

of the fixed times, then we have 

t. 
1. 

t sw 

(Bl7) 

is one 

(B18) 

r ---
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APPENDIX C 

MODEL ORDER REDUCTION 

Suppose we have a linear system 

x = Fx + Gu 

subject to linear inequality constraints 

Cx + Du + E ::.. 0 

Also, suppose there are n states, and nl of the eigenvalues of F 

are much smaller than the remaining n2 = n - nl • Then the dynamics 

associated with the larger-eigenvalue modes are much faster than 

the dynamics of the nl lower eigenvalue modes. Therefore, the 

higher frequency modes will nearly always be in equilibrium (or oscil-

lating at high frequency about equilibrium). In such a case, the cal-

culation of optimal trajectories can be made significantly easier if 

the high frequency modes are assumed to be always in equilibrium. In 

carrying out that approximation, it is also desirable that the low fre-

quency eigenvalues be retained exactly. Furthermore, it is desirable 

that nl of the original states be retained in the lower order approx­

imate model. 

Specifically, we seek a low frequency approximation of the system 

in which the first nl states of the original system are retained, 

and the eigenvalues of the reduced order system are exactly equal to 

the n
l 

follows. 

smaller eigenvalues of the original system. 
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We can find a transformation T which b1ock-diagona1izes the 

system: 

x = Tm; 
-1 

T x = m (C1) 

where the m are modal coordinates. Differentiating Lohe above gives 

. -1. m = T x = I\.m + Eu (C2) 

where E ~ T-1G and I\. = T-1FT is block diagonal. If (C2) is par­

titioned into low frequency modes m (1) and high frequency modes 

m(2), the result is 

. (1) m = 1\.(1) m (1) + E (1) u 
(C3) 

• (2) 
m = 1\.(2)m(2) + E(2)u 

The quasi-steady approximation is 

• (2) 
0 m -

which results in 

(C4) 

Now let x(l) have the same dimension as m(l) and denote the 

states of most interest in the low frequency approximation. We have 

x (1) = T m(1) 
11 + T (2) 

12m 

Differentiation results in 

0(1) _ T . (1) 
x - 11m 

+ T .(2) 
12m = 

T 1\.(1) (1) 
11 m + T L:(l)u 

11 

T 1\.(1)T-1r (1) _ T (2~ + T E(l) 
11 11 LX 12

m J 11 

• U) 
x = T A(1)T-1x(1) + [T E(l) + TI\. T-1T 1\.(2)-lE(2)lu 

11 11 11 11 1 11 12 J 
(C5) 

.. 

i 
- i 
- i 

,4 
___________________________________________ -______ J 
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+ T 
(2) 

22m 

(2) - T T-1 (1) + (T T-IT _ T )A(2)-lE(2) 
x ~ 21 llx 21 11 12 22 u 

The inequality constraints become 

(e6) 

+ Du + E 

• (C
l 

+ C2T2l T~i}/l) + G2 (T2l T~iT12 - T22)A (2) -\(2) + ~u 
S. 0 (en 

-r 
j' 

I 
! .. 

I 
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APPENDlX D 

THREE-STATE LINEAR MODELS. SEA-LEVEL-STATIC .... 
(a) PLA = 20° 

( -2.09 2.09 -0.537) ( 38.79) F = .0944 -0.251 -0.163 x = 91.92 ll.6 -0.457 -18.9 e 
161 

( 7.27 0.054 -0.478E-2 . -0.00398) 
( 11.3) G = .756 -0.0105 .363E-3 -0.00109 300 7.38 -1.87 .0584 -0.00378 u = 

-250 
I 

e I 

-3050 
I 

I ., 

I ,". 

0.239 -0.416E-2 0.336 11.26 I 1.77 .0839 -0.108 73.3 'I .0521 -0.587 .0245 54.1 I C = -2.01 3.51 -3.55 Y = 102 

I -16.1 37.9 -5.24 e 
83.8 

• 825E-2 -1.60 .384 120 I 

.0233 2.06 . 189E-2 73.2 I 
I 0.314 -0.270E-2 0.150E-2 

-0. 787E-4) ) 
.445 .515E-2 .0114 -0.131E-3 I .436 -0.0130 -0.508E-3 .237E-2 D = 12.3 .150 -0.376 -0.476E-2 

I 
222 1.98 -0,0285 -0.491 
-0.621 -0.0155 -0.199E-2 .686E-2 ) I 6.09 .0382 .108E-2 -0.463E-2 ! 

!I 

II 

II 

~ , 
! 
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- (b) PLA = 36° 

( -2.23 0.988 -0.462) ( 77.2) 
, 

F == -0.316 -0.232 -0.106 x = 109 
24.5 0435 -7 091 e 226 

(2.78 0.0138 -0.0350 -0.00211 ) ( 34.9) G = .743 -0.0133 -0.00478 -0.00139 300 
6.18 -4.67 .370 .0135 u = e -250 

-914 -1 
0.905 -0.753E-3 0.243 52.2 
3.10 .0841 -0.107 152 

-0.102 -0.135 -0.0137 70.8 
c == 4.39 1. 73 -1.89 Y == 225 

-5.63 28.0 -0.594 e 99.1 
-0.177 -0.398 -0~00598 152 
L05 1.14 .137 182 

0.285 -0.0175 0.0130 0.117E-4 
o 11~3 .108E-2 .0439 -0.327E-3 
.703 • 291E-2 -0.193E-2 .102E-2 

D == 2.27 .0589 -0.199 -0.541E-2 
1. 27 -0.0720 -0.0328 -0.118 
1.46 .0123 -0.383E-2 • 261E-2 
2005 -0. 862E-2 .0136 -0.370E-2 
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F = 

G = 

C = 

D = 

( -2.27 
-0.498 
22.8 

(2.00 
1.30 
7.41 

1.00 
2.70 

-0.101 
17.4 
-5.98 
-0.105 

1.30 

3.34 
.256 
.630 

2.82 
1.29 
1.36 

.962 

i 

! " 

I 
.-- -

2.23 
-1.96 

.936 

-0.0366 
.00653 

-6.24 

0.0466 
.0937 

-0.136 
2.59 

22.3 
-0.321 

2.21 

-0.0147 
.0163 
• 977E-4 
.0244 

-0.115 
-0.0107 
-0.268E-2 

·"r - r ·-t 
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(c) PLA = 52° 

-0.520 ~ 
-0.0639 
-6.11 

-0.0434 
-0.0103 

.541 

-1.86 
-0.399 
-0.0596 

1.97 

0.0240 
.0665 

-0.S28E-2 
-0.190E-2 
-0.76SE-2 
-0.0102 

.03C7 

I. 
" 

( 87.6) 
x = 116 

e 276 

-0.531E-3 ) 
-0.44SE-2 
-0.166E-2 

78.7 
180 

78.9 
Y = 221 

e 150 
170 
237 

0.675E-4 
-0.550E-3 

.S91E-3 
-0.634E-2 
-0.0906 

.162E-2 
-0.138E-2 

J 

I 

u e 

-'---r--'---'" '-l 
/ 

I 
1 

( 50.8) 300 
= -250 

I -259 
-.j 

I 
j 
1 
1 
j 
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i 

I 
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F ;::; 

G ;::; 

C ;::; 

D ;::; 

- -- ---. -

l 

( -3037 
-0.130 

-21.3 

( 1.59 
1.17 
5.74 

0.945 
2.09 

.0769 
7.37 

-6.54 
.351 
.454 

0,361 
.210 
.541 

1.59 
1.53 
1.16 

.838 

3.13 
-2.87 

1.93 

-0.0354 
.0165 

-7.34 

0.0511 
.0249 

-0.187 
2.00 

12.3 
-0.465 
3.16 

-0.00523 
00432 

-0.294E-2 
.135 
.206 

-0.025 
.0335 

1 
. '. .'-
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(d) PLA ;::; 6r 

-0 0493) ( 9404) -0.072 x ;::; 122 
-6.03 e 330 

-0.0848 Oo155E-Z) ( 68 06) -0.795E-2 -0.574E-2 298 
.804 .0173 u ;::; 

-164 e -. 
92.2 

0.219 105 
-0.0198 203 
-0.0353 86.1\ 
-1.42 Y ;::; 254 
-0.245 

e 179 
-0.0817 187 

.282 290 

0.0342 0.807E-4 
.0799 -0.561E-3 

-0.191E-2 0.436E-3 
-0.671 -0.444E-2 
-0.0967 -0.110 
-0.437E-3 0.119E-2 

.0215 .819E-3 

, 
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F = 

G = 

C = 

D = 

C
40S3 

.208 
17.3 

( 1.65 
1.08 
3.24 

0.885 
1.49 

.309 
10.8 
-0.472 
1.01 

-1.06 

0.263 
-0.0287 

.396 
-0.777 
-0.485 

.810 

.846 

I 

2.43 
-3.08 
1.07 

0.753E-2 
.0175 

-9.96 

0.111 
.209E-3 
.0845 
.355 

1.01 
-0.265 

2.89 

-0.0267 
-0.0106 
-0.492E-2 
-0.529 

.0190 
-0.0548 

.0990 

~ .. -'--~-r- ~ .. -~ --- .. ---T- .. ~'-~r' 
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r~---

! 
146 

(e) PLA = 83° 

-0 0354) e03

) 
-0.132 x = 131 
-6.35 e 423 

-0.117 00553E-3) C06

) 

.0208 -0. 814E-2 284 

.742 -0.318E-2 u = -174 e .... 
400 

0.188 150 
-0.129E-2 230 

.0538 100 
-1.50 Y = 192 

.0930 e 192 
-0.130 217 
-0.457 383 

0.0371 0.627E-3 
.0712 .999E-4 
. 353E-2 .792E-3 

-0.486 • 328E-2 
-0.0108 -0.0659 

.0156 .201E-2 
-0.0137 .374E-3 

..... ~ 
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APPENDIX E 

COMPUTER PROGRAM LISTINGS 

MAIN PROGRAM 
I~PLICIT REAL*S (A - H, 0 - Z) 
CO~ ~ON/CA/C (S, 3,5) , D (8,4,5) , E (8) , XI (3,5) ,UI (Q , 5) , II (8,5) • I 0 (7) , 

lID (3) 
CO!!ON/CB/A(7,7,20) ,BX(7,20).T(20),VAL(80),JN(80),HIT(20),JHIT(20) 
COMMON/CO/ALFA(7,20),BETA(20) ,PARMS(3,4),TS(20) ,ISTO(7,20), 

1XLSTO (7,20). XLO (7) , IT (3) ,J!! (5), NPHASE 
COMMON/MTRANS/USLOPE(2) ,NN 
COMMON/NNOUT/NOUT 
COMMON/NS/NSTATE 
COM~ON/OUTCNT/NOUTLM 
COM~ON/TTR1NS/PAR(20,20) ,PARIN(3,3),PARS(3.3).X(7) ,KPL1G,KM1I, 

1KOPT(20),KOUNT,NOPT(20),NOPTS 
DIMENSION Z(5) ,U(10) ,ZOPT(5) 
EXTERNU FUNGRD 
LOGICAL CONV,UNITL,LOCAL 
NSTATE=7 
IF(NOPTS.EQ.O)GO TO 11 
DC? 10 I=1,NOPTS 
J=NOPT (I) 

10 ZOPT (Ij =TS (J) 
11 CONTTNUE 

NOUTLM=-1 
IPRINT=-1 

12 CONTINUE 
NLDIM=NOPTS*(NOPTS-1)/2 
IF(NLDIM.EQ.O)NLDIM=1 
KOUNT=:O 
NN-=O 
NOUT=O 
N=NOPTS 
DO 1 1=1,20 

1 KOPT(I)=I 
CALL SETUP 
ZX=O. 
ZOL=1. D-5 
ZPSMCH=16.0.*(-13) 
ZTA=0.5 
ZTEPMX=1.0 
UNITL=. TRUE. 
LOCA.L-=. FALSE. 
IF(NOPTS.EQ.O)GO TO 3 
CALL QNMDER(N,NLDIM,ZOPT,ZX,FUNGRD,ZL,Z,ZOL,ZPS!!CH,ZTA,NFTOTL, 

1NGTOTL,NITER,ZTEPMX,UNITL,LOCAL,IPRINT,CONV) 
CA~L OUTPT 
GO TO 2 

3 T(1)=TS(1) 
DO 4 I=2,NPHASE 

4 T(I)=TS(I)-TS(I-1) 
CALL TRAJ 
CALL LCALC 
CALL OUTPT 

2 CONTINUE 
STOP 
END 

-'J 

I 
1 

1 
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SUBROUTINE PUNGRD(N,ZOPT,IPLAG,ZP,Z) 
I~PLICIT REAL.8 ~ - 0, 0 - Z) . 
R11!AL.S IS 
CO rI rlON/CA/C (S,3,S) ,0(8,4,5) .E(S) ,XI(3,5) ,Ul(4,5) ,!I(8,S) ,10(1), 

110(3) . 
COrlM.ON/CB/A (7,1,20) , BI (7,20) ,T (20) , VAL (80) , IN (80) , HIT (20) , JOlT (20) 
COrl!ON/CO/ALPA(7,20) ,BETA(20) ,PARftS(3,4) ,TS(20) ,ISTO(1',20), 

1ILSTO(1,20) ,ILO(1) ,IT(3) ,J.rt(5),NPHASE 
CO!MON/LTRANS/ZLAM(7),IS(1,1,20) 
COMMON/NNQUT/NOUT 
COMftON/NS/NSTATE 
COftMON/TTRANS/PAR(20,20) ,PARIN(3,3) ,PARS(3,3) ,1(7,) ,KFLAG,K!UI, 

1KOPT(20).KOUNT,NOPT(20).NOPTS 
DlrlENSION XER(7),TEMP(1),Y(1),Z(N),ZOPT(N) 
DATA IER/1.0./ 
DO 11 I=1,NOPTS 
J=NOP't (1) 

11 TS (J) =ZOPT (I) 
3 T(1)=TS(1) 

DO 1 I=2,NPlfASE 
1 T(I)=TS(I)-TS(I-1) 

CALL TRAJ 
T(1)=TS(1) 
DO 5 I=2,NPHASE 

5 T(I)=TS(I)-TS(I-1) 
KRESET=O 

7 IP(KRESET.EQ.1)KRESET=2 
DO 14 I=1,NPHASE 
IP(T(I).GE.O.O)GO TO 14 
CALL RESET(I) 
KRESET=1 

14 CONTINUE 
IP(KRESET.EQ.1)GO TO 7 
IP(KRESET.EQ.2)C1LL TRAJ 
IP(IFLAG.EQ.2)GO TO 12 
ZF-=O.O 
DO 2 1= 1,3 

2 ZP=ZP+«X(I)-XD(I»/XD(I»*.2/2.0 
IP(IFLAG.EQ.1)RETURN 

12 CALL LCnC 
JJ=1 
KX=KOPT (1) 
LX=NOPT (KX) 
rlX=KOPT (NOPTS) 
LOPT=NOPT (MX) 
DO 20 I=1,LOPT 
IP(I.NE.LX)GO TO 20 
DO 21 J=1,NSTATE 
Y(J)=BX(J,LX,-BX(J,LX+1) 
DO 21 K=1,NSTATE 

21 Y(J)=Y(J)-(A(J,K,LX+1)-A(J,K,LI».ISTO(K,I) 
IX=I+1 
IF(IX.GT.NPHASE)GO TO 25 
DO 22 J=IX,NPHASE 
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CALL UPDATE(y,T(3),A(1,1,J) ,XER,NS',UTE,1) 
IF(JHIT(J).EQ.O)GO TO 22 
DD=O.O -
DN=O.O 
DO 23 K= 1, NSTUB 
DD=DD+AL~!(K,J)*BX(K,J) 
DN=DN+ALFA(K,J)·Y(K} 
DO 23 L=1,NSTATE 

23 DD=DD+ALFA(K,J).A(K,L,J).XSTO(L,J) 
PAR (J,I)=-DN/DD 
DO 24 K=1,NSTATB 
'f (K) ::: Y (K) - (B X (K, J+ 1) - BX (K, J) ) .PAR (J , I) 
DO 24 L=1,NSTATE 24 Y(K)=Y(K)_(A(K,L,J+1)_A(K,L,J».XSTO(L,J).PAR(J,I) 

22 CONTINUE 
25 JJ=JJ+1 

KX=KOPT (JJ) 
LX=NOPT (KX) 

20 CONTINUE 
JJ=1 
KX=KOPT (1) 
LX=NOPT (KX) 
DO 4 ;1=- 1 , LC?T 
IF(I.NE.LX)GO TO " 
Z (KX) =O~O 
DO 8 K=1, NSTATE Z(KX)=Z(KX)_XLSTO(K,I).(BX(K,LX+1)-BX(K,LX» 

DO 8 3=1, NSTATE 8 Z(KX)=Z(KX)_XLSTO(K,I).(A(K,J,LX+1)-A(K,J,LX».XSTO(J,I} 

IX=I+1 
IRON=1 
IF(IRON.EQ.1)GO TO 26 
IF(IX.GT.NPHASE)GO TO 26 
DO 28 J=IX,NPHASE 
IF(JHIT(J).EQ.O)GO TO 28 
DO 27 K=1, NSTATE Z(KX)=Z(KX)_XLSTO(K,J).(BX(K,J+1)-aX(K,J».PAR(J,I) 

DO 27 L=1,NSTATE . Z (KI) =Z (Kl) -ltLSTO (K,J). (A (K, L, J+ 1 )-10 (K, L,J) ) *ISTO (L,J) .p1R (J, I) 

27 CONTINUE 
28 CONTINUE 
26 TE=DSQRT(2.· ZF ) 

WRITE(6,10)ZOPT(KX) ,TE,Z(KX) ,LX 
JJ=JJ+1 
KX=KOPT (JJ) 
LX=NOPT (KX) 

" CONTINUE 
10 FORMAT (1B ,3(G20.9},I2) 

IF(NOUT.EQ.O)CALL OUTPT 
MOUT=1 
RETURN 
EMD 
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SUBROUTINE LCALC 
I~PLICIT REAL*8 (A - H, 0 - I, 
REAL*S ID,IS,lS1N 

r T 
--~-~f 

~~ 
{ 

COM~ON/CA/C (8,3,5) , D (8,4,5) , E (8' , XI (3,5) , UI (4,5) , Y 1(8,5) ,10 (7) , 
1 XD (3) 

./ .. 

CO"~ON/CB/A(7,7,20),BX(7,20) ,T(20),VAL(80),JN(80),HIT(20),JHIT(20) 
CO~MON/CO/ALFA(7,20) ,BETA(20),PARMS(3,4),TS(20),ISTO(7,20" 

1 ZLSTO (7,20) , ZLO (7) , IT (3) ,JM (5) , NPHASE 
CO~KON/CX/F(3,3,5) ,G(3,4,5) ,DD(4,4,20) ,ID(7,7) 
COMMON/EPSS/EPS(20) 
COMMON/LTHNS/ZLAM (7) , IS (7,7,20) 
CO~"ON/NS/NSTATE 
DIMENSION GSP(7),GSM(7) ,TEMP(7} ,ZER(7"ISIN(7,7) 
DATA ZER/7*O.O/ 
DO 2 1= 1,3 
ZLAM(l)= (XSTO(I,NPHASE)-XD(I»/XD(I) **2 

2 ZLSTO(I,NPHASE)=ZLAM(I) 
DO 11 I=4,NSTATE 
ZLAM (I) =0. 0 

11 ZLSTQ (I, MPH ASE) = ZLA M (1) 
DO 3 1=1, NPHASE 
IA=NPHASE- 1+ 1 
TX=-T (IA) 
CALL UPDATE(ZLAM,TX,A(1,1,IA) ,ZER,NSTATE,2) 
IF(IA.EQ.1)GO TO 3 
DO 4 J=1,NSTATE 

4 ZLSTO(J,IA-1)=ZLAM(J) 
IF(JHIT(IA-1).EQ.0)GO TO 3 
DO 5 J=1,NSTATE 
GSP (J) =BX (J, IA) 
GSM(J)=BX(J,IA-1) 
DO 5 K=1,NSTATE 
GSP(J)=GSP(J)+A(J,K,IA)*XSTO(K,IA-1) 

5 GSM(J)=GSM(J)+A(J,K,IA-1)*XSTO(K,IA-1) 
POT=O.O 
DOTIN=O.O 
DO 6 J=1,NSTATE 
DOTIN=DOTIN+ALfA(J,IA-1)*GSM(J) 

6 DOT=DOT+ZLAM(J,*(GSM(J)-GSP(J), 
EPS(IA-1)=DOT/DOTIN 

8 
3 

10 

DO 8 J=1,NSTATE 
ZLAM(J)=ZLAM(J)-EPS(IA-1)*ALPA(J,IA-1) 
ZLSTO(J,IA-1)=ZLAM(J) 
CONTINUE 
DO 10 I=1,NSTATE 
ZLO (I) =ZLAM (1) 
RETURN 
END 
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SUBROUTINE OUTPT 
IMPLICIT REAL*8 (A - H, 0 - Z) 
REAL*8 ID,IS,KAPPA 

~ 

151 

COMMON/CAlC (8,3,5) , D (8,4,5) , E(S) , XI (3,5) , UI (4,5) , II (8,5) ,10 (7) , 

1 XD (3) 

J 

COMMON/CB/A (7, 7,20) , BX (7 ,20) , T (20) , VAL (80) , IN (80) , HIT (20) .JHIT (20) 

COMMON/CO/ALFA(7,20),BETA(20),PARKS(3,4) ,TS(20) ,ISTO(7.20), 

1ZLSTO(7,20) ,UO(7) ,IT(3) ,JM(5),NPHASE 
COIHtoN/CX/F(3,3,5) ,G(3,4,5) ,DD(4,4,20) ,10(7,7) 
COKMON/EPSS/EPS(20) 
COMMON/LTRANS/ZLAM(7),IS(7,7,20) 
COKMON/KTRANS/USLOPE(2) ,NN 
COKKON/NS/NSTATE 
COMKON/OUTCNT/NOUTLK 
DIMENSION S(5) ,Xn) ,OUT(8),KAPPA(4) ,TEMP(7) ,ZER(7) 

DATA ZER/7*0./ 
IF (NOUTLM. LT.O) RETURN 
M=1 
IM=JM (1) 
00 50 1=1,4 
IF(IM.GT.O)GO TO 50 
PI: M + 1 

IK=JM (M) 
50 CONTINUE 

KK=1 
WRITE (6, 7) TS (20) 
WRITE (6,13) 
WRUE(6,14) 
WRITE (6,20) 

7 FORMAT('1',4X,'TF= ',G1'.4) 
13 FO RMAT (' 1 ' ,4 X, 'TIME' , 7X, 'TH RUST' , 5X, , AIRFLOW' , 4X,' TIT" , SI, '5MFAM' • 

16X,'SKCOM',6X,'FTIT',7X,'PT3',81,'NFAN',7X,'NCOPlP',6X,'PT7P1') 

1U FORMAT (5X,'WF',9X,'ANOZ',71,'IGV',8X,'HVS',SX,'KAPPA1',5X, 

1'KAPPA2',5X,'KAPPA3',5X,'KAPPA4',5X,'H',10X,'D1',91,'02') 

20 FORMAT (5X,·03·.9X,·D4·,9X,·05·,9X,·TERPlERR·) 

DT=0.1 
TIM E=O. 0 
N=1 
00 41 I=1,NSTATE 
ZLAM (I) =ZLO (1) 

41 X(I)=XO(I) 
GO TO 16 

8 IF(TIME+DT.LE.TS(N).1MO.KK.EQ.1)GO TO 1 
GO TO (10,11,18.12) ,t<K 

10 TSTO=TIME+DT 
OTSTO=DT 

60 DT=TS(N)-TIKE 
KK=2 
GO TO 1 

11 H=N+1 
IF(N.GT.NPHASE)RETURN 
IP(JHIT(H-1).EQ.0)GO TO 40 
IF(N.NE.IK+1)GO TO 51 
"="+1 
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I~=JI'I (1'1) 
51 DO 53 J=1,NSTATE 
53 ZLAM (J) :ZLA1'I (J) +EPS (N-1) *ALFA (J, N-1) 
40 DT=O.O 

KK=3 
GO TO 16 

18 DT=TSTO-TIME 
IF(TS(N) .LT.TSTO)GO TO 60 
KK=4· 
GO TO 1 

12 KK=1 
DT=DTSTO 
GO TO 8 

1 CALL UPDATE(X,DT,A(1,1,N"BX(1,N) ,NSTATE,1) 
TIME=TIME+DT 

16 NST=NSTATE-4 
DO 3 1=1,7 
OUT (I) =YI (I, M) 
DO 34 J=1,!4 

34 OUT(I,=OUT(I)+D(I,J,I'I,*(X(J+NST,-UI(J,M» 
DO 3 J=1,NST 

3 OUT(I)=OUT(I)+C(I,J,I'I,*(X(J,-XI(J,I'I» 
TX=DT 
I¥(DT.EQ.O.O.OR.TII'IE.EQ.O.O)GO TO 17 
CALL UPDATE(ZLAI'I,TX,A(1,1,N) ,ZER,NSTATE,2) 

17 DO 9 1=1,4 
KAPPA (1)=0.0 
DO 9 J=1,4 
JX=J+NST 

9 KAPPA(I)=KAPPA(I)-DD(J,I,N)*ZLAI'I(JX) 
B=O. 
DO 15 1=1,NSTATE 
H=H+ZLAM(I)*BX(I,N) 
DO 15 J=1,~STATE 

15 H=H+ZLAI'I(I)*A(I,J,N)*X(J) 
DO 37 1=1,5 
S (1,:0.0 
DO 37 J=1,NST 

37 S(I)=S(I)+(X(J)-XI{J,I»**2/(XI(J,1)-XI(J,2» •• 2 
DO 52 1= 1,5 

52 S(I)=DSQRT(S(I)/3.0) 
Z¥=O.O 
DO 2I=1,NST 

2 ZF=ZF+ «X (I) -XD (I» /XD (I» **2/2.0 
TE=DSQRT(2.*ZF) 
W.RITE (6,19)TIKE, (OUT (I) ,1=1,7), (X(I) ,1=1,3) 
WRiTE (6,~) (X (I+3), 1=1,4) , (KAPPA (I) ,1=1,4) ,H, (S (1) ,1=1,2) 
WRITE (6,6) (S{I) ,1=3,5) ,TE 

4 FORI'IAT(3X,11(G11.4» 
6 FORMAT{3X,3(G11.4),G11.5) 

19 FO R 1'1 AT (3 H 0 , G 11. 5, 1 0 ( G 11 • 4) ) 
GO TO 8 
END 
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SUBROUTINE RESET(N) 
I~PLICIT REAL*S (A - H. 0 - Z) 
COM~ON/CB/A(",,20),BX(,,20).T(20),'lL(SO),JN(SO),HIT(20),JHIT(20) 
COMMON/CO/ALFA(1,20)~BETA(20) ,PAR~S(3,4),TS(20),XSTO(7,20), 

1XLSTO(7,20),XLO(1),IT(3) ,J~(5),NPHASE 
COMMON/TTRANS/PAR(20,20) ,PARIN(3,3).P1BS(3,3) ,1(1) ,KPL1G.Kftll. 

1KOPT(20) ,KOUNT,NOPT(20),NOPTS 
DO 12 J=1, 4 
"=4*(N-1)+J 
IF(JN(",.NE.JN("-4»GO TO 10 
JNT=JN ("+4) 
VALT=VAL (" +4) 

10 IF(JN(").NE.JN(M+4»GO TO 11 
JNT=JN (I!-4) 
VALT=VAL (M-4) 

11 IN(M)=JNT 
12 VAL (M) =VALT 

DO 1 1=1,1 
ALFT=ALFA (I, N) 
ALFA(I,N)=ALFA(I,N-1) 

1 ALFA(1,N-1)=ALFT 
BET=BETA .(N) 
BETA(N)=BETA (N-1) 
BETA (N-1) =BET 
HITT=HIT (N) 
HIT(N)=HIT(N-1) 
HIT(N-1)=HITT 
JHITT=JHIT(N) 
JHIT(N)=JHIT(N-1) 
JHIT(N-1)=JHITT 
TT=TS (N) 
TS (N) =TS (N-1) 
TS (N-1) =TT 
T(N)=TS(N)-TS(N-1) 
T(N+1)=TS(N+1)-TS(N) 
1F(N.GT.2)T(N-1)=TS(N-1)-TS(N-2) 
IF(N.EQ.2)T(1)=TS(1) 
DO 2 1=1,5 
K=J" (1) 
IF (K. EQ., N) JI! (1) =K-1 
IF(K.EQ.N-1)JI!(I)=K+1 

2 CONTINUE 
DO 3 1=1,20 
K=NOPT (I) 
IF(K.EQ.N) NOPT(I)=K-1 
IF(K.EQ.N-1) NOPT(I)=K+l 

3 CONTINUE 
DO 4 1=1,19 
KX=KOPT (I) 
KY=KOPT (1+1) 
IF(NOPT(KY).GE.NOPT(KX»GO TO 4 
KT=KOPT (I+1) 
kOPT(I+1)=KOPT(I) 
KOPT(I)=KT 



l 
L,w". 

4 CONTINUE 
CALL SETUP 
WRITE(6,5)N,(JM(I) ,1=1,5) 

5 FORMAT(1H ,7 (13» 
RETURN 
END 

154 
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SUBROUTINE SETUP 
I~PLICIT REAL*S (1 - H, 0 - Z) 
REAL*S ID,iLX.I1X 
COMMON/CA/C,' .. ·,S) ,0.(8,4,5) ,E(8) ,XI(3,5) ,UI (4,5) ,YI(8,5) ,10(1), 

1 XD (3) 
CO~MON/CB/A (1,7,20) , BX (7 ,20) , T (20) , VAL (80) , IN (80) , HIT (20) ,JHIT (20) 
COMI10N/CO/ALFA(7,20),BETA(20) ,P1RMS(3,4) ,TS(20) ,ISTO(7,20), 

1 ZLSTO (7,20) , ZLO (7) , IT (3) ,JM (5), NPHAS E 
COMMON/CX/F(3,3,5) ,G(3,4,S) ,DD(4,4,20) ,10(7,1) 
C0I1MON/MTRANS/USLOPE(2) ,NN 
COMMON/NS/NSTATE 
DIMENSION C1(4,4),C2(4,4) ,CS(2,3) ,WI(3,S) ,EI(4) ,EE(4),LI(4) ,"1(4) 
DO 100 1=1,7 
DO 100 J=1, 20 

100 ALFA(I,J)=O.O 
DO 27 1=1,2 
DO 27 J=1,3 

27 CS(I,J)=O.O 
CS(1,1)=23./6400. 
CS(2,2)=34./4100. 
DO 41 K=1,20 
DO 41 1=1,4 
DO 41 J=1,4 

41 DD(1,J,K)=O.O 
NST=NSTATE-4 
DO 40 I=1,NST 
W1(I,1)=1.5*XI(I,1)-0.S*XI(I,2) 
DO 40 .1=2,5 

40 WI(I,J)=XI(I,J) 
M=1 
UI=JM (1) 
DO 50 1= 1,4 
IF(IM.GT.O)GO TO 50 
M=I1+1 
IM=JI1(I1) 

50 CONTINUE 
DO 1 K=1,NPHASE 
IF(K.LE.IM)GO TO 2 
M=M+1 
IM=J!'! (M) 

2 DO 3 1=1,4 
EE (1) =0.0 
DO 3 J=1,4 
C1(I,J)=O.0 
C2(I,J)=0.0 

3DD(1,J,K)=O.0 
DO 4 1=1,4 
LL=4* (K-1) +I 
N=JN (LL) 
NT=O 
IF(N.GT.8)GO TO S 

19 DO 6 .1=1,4 
DO (I,J,K)=D (N,J,M) 
DO 6 L=1,NST 
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6 C2(I,J)=C2(I,J)+C(M,L,!!)*G(L,J,!!) 
DO 7 J=1,NST 
DO 7 L=1,NST 

7 C1 (I,J)=C1 (I,J)+C(N,L,!!)*P(L,J,!!) 
DO 8 J=1,NST 

8 BE (1) =EE (1) -cl (I ,J) -XI (J,!!) 
DO 9 J=1,4 

9 EE (I) =EB (I) -c2 (I ,J) -UI (J, ") 
GO TO 10 

5 IP(H.GT.12)GO TO 11 
DD(I,N-8,K)=1.0 
GO TO 10 

11 IP(N.GT.16)GO TO 12 
DD(I,N-12,K)=1.0 
EE (1) =-VAL (LL) 
GO TO 10 

12 IP(M.GT.20)GO TO 13 
DD(I,N-16,K)=1.0 
BE (1) =VAL (LL) 
GO TO 10 

13 IP(N.GT.22)GO TO 14 
DD(I,N-18,K)=-1.0 
DO 15 J=1,4 
DO 15 L=1,NST 

15 C2(I,J)=C2(I,J) +CS(N-20,L)*G(L,J,") 
DO 16 J=1, MST 
DO 16 L=1,NST 

16 C1 (I,J)=C1 (I,J)+CS(N-20,L)*P(L,J,f'I) 
DO 17 J=1,NST 

17 EE (I) =EE (I) -C1 (I,J) *XI (J, ") 
DO 18 J=1, 4 

18 EE (I) =EE (I) -C2 (I ,J) -UI (J, ") 
GO TO 10 

14 N=3 
NT=1 
GO TO 19 

10 IF (NT. EQ. 1) EE (1) =EE (1) -VAL (LL) 
4 CONTINUE 

CALL D!!INV(DD(1,1,K),4,DET,LX,"X) 
DO 20 I=1,NST 
DO 21 J=1,NST 

21 A(I,J,K)=F(I,J,f'I) 
DO 20 J=1,4 
JI=J+NST 

20 l(I,JX,K)=G(I,J,f'I, 
DO 22 1=1,4 
IX=I+NST 
B I (IX, K) =0.0 
DO 22 J= 1,4 

22 BX(IX,K)=BX(IX,K)-DD(I,J,K) *EE(J) 
DO 23 1=1, MST 
BX(!,K)=O.O 
DO 24 J=1,NST 

24 BX(I,K)=BX(I,K)-F(I,J,")*XI(J,f'I) 
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DO 23 J=1,4 
23 BX(I,K)=BI(1,K)-G(1,J,~)·U1(J,~) 

DO 25 1=1,4 
DO 25 J=1,NST 
IX=I+MST 
A(IX,J,K)=O.O 
DO 25 L=1,4 

25 A(II,J,K)=A(IX,J,K)-DD(I~L,K).C1(L,J) 
DO 26 1=1,4 
DO 26 J=1,4 
IX=I+MST 
JX=J+NST 
A(IX,.JX,K)=O.O 
DO 26 L= 1,4 

26 A(IX,JI,K)=A(IX.JI,K)-DD(I,L,K).C2(L,J) 
1 CONTINUE 

f!=1 
I~~Jf!(1) 
DO 28 1=1,4 
IP(1ft.GT.O)GO TO 28 
"=f!+1 
Ift=Jft (~) 

28 CONTINUE 
DO 29 1= 1, NPHASE 
IF (I. LE. 1ft) GO TO 31 
11=~+1 
111=JM (11) 

31 JH=JHIT(I) 
IF(JH.EQ.O)GO TO 29 
IF(JH.GT.8)GO TO 30 
BETA(1)=HIT(I)-YI(JH,M) 
DO 32 J=1,NST 
ALFA(J,I)=C(JH,J,M) 

32 BETA(I)=BETA(I)+C(JH,J,M).XI(J,M) 
DO 33 J=1,4 
JX=NST+J 
ALFA(JX,I)=D(JH,J,ft) 

33 BETA(I)=BETA(1)+D(JH,J,M,.UI(J,ft) 
GO TO 29 

30 IF(JH.GT.12)GO TO 34 
ALFA(JH-5,I)=1.0 
BETA (I) =HIT (I) 

34 IF(JH.LT.21)GO TO 29 
1F(JB.GT.22)GO TO 35 
BETA (I)=H1T (I) 
IF(JH.EQ.22)GO TO 101 
BETA(I)=25.+23 •• 4000./6400.-HIT(I) 
GO TO 102 

101 BETA(I)=30.+34 •• 9000./4100.-H1T(I) 
102 CONTINUE 

PO 36 J=1,NST 
36 ALFA(J,I)=CS(JH-20,J) 

ALFA(JH-15,I)=-1.0 
GO TO 29 
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35 IF(JH.EQ.23)GO TO 29 
BETA(I)=O.O 
DO 'J7 J=1,NST 
ALFA(J,I)=O.O 
DO, 37 L=1,NST 
BETA(I)=BETA(I)+ID(J,L)*(WI(J,M+1)*WI(L,~+')-WICJ,~) 

1*., I (L, M) ) I (WI (J, M+ 1) - WI (J,") ) ** 2 
37 ALFA(J,I)=ALFA(J,I)+2.0*(WI(L,M+1)-WI(L,"»*ID(J,L)/ 

1 (WI(J,M)-WI(J,M+1»**2 
29 CONTINUE 

RETURN 
END 

T-l 
j 

, 
_·1 

I 
1 
i 

J 

1 

1 

1 



Ii 
! 

i. 

; I 

! ; 

159 

SUBROUTINE TRAJ 
r~PLICrT REAL-8 (A - H, 0 - Z) 
BEAL*8 ID 

'--~-f 

iii 

i 

COKMON/C A/C (8,3,5) ,0 (8,4,5) , E, 8) , XI (J, 5) , or (4,5) , Y I (8,5) ,10 (1) , 
110 (3) 

COKKON/CB/1(7,1,20),BX(1,20),T(20),VAL180) ,IN(80),HIT(20),JHI~(20) 
COKPION/CO/ALPA(1,20),BETA(20),PAB~S(J,4),TS(20) ,ISTO(1,20), 

1XLSTO(1,20),ILO(7),IT(J),JK(5),NPH1SE 
COKKON/CI/P(J,3,5) ,G(3,4,S) ,00(4,4,20) ,10(1,7) 
COKKON/NS/NSTATE 
COKMON/TTR1NS/PAR(20,20) ,PARIN(3,3),PARS(3,3) ,1(1) ,KPL1G,K"AX, 

1KOPT(20) ,KOUNT,NOPT(20),NOPTS 
OHIENSION Y (7) , W (7) 
KPLAG=O 

1 DO 2 I=1,NSTATE 
2 X (1) =10 (I) 

KOUNT=KOUNT+ 1 
KT=O 
DO 4 K=1,NPHASE 

84 CALL UPDATE(X,T(PI),A(1,1~A),BX(1,P1),NSTATE,1) 
DO 104 I=1,NSTATE 

104 XSTO (I, M) =X (I) 
88 IP(JHIT(P1).EQ.D1GO TO 80 

S=BETA. (M) 
DO 81 I=1,NSTAtB 

81 S=5-ALFA. (I, M) *X (I) 
If(DABS(S/BETA(M».LE •• 0001)GO TO 83 
CALL YMULT(A(',1,M) ,X,Y,NSTATE) 
SD=O.O 
DO 82 I=1,NSTATE 

82 SD=SD-ALFA. (I,M) * (Y (I) +BX (I, M» 
T (!'t)=T (PI) -S/SD 
KT=KT+1 
IP(KT.LE.10)GO TO 90 
KFLAG=1 
RETURN 

90 DT!'t=-S/SD 
CALL UPDATE(X,DTM,A(1,1,K),BX(1,M),N5TATE,1) 
DO 105 I=1,NSTATE 

105 XSTO(I,M}=X(I) 
GO TO 88 

83 IF(K.G'I.1)TS{l'!)=T(!!)+TS(M-1) 
IF (M. EQ.1) TS (1) =T( 1) 
T(M+1)=TS(M+1)-TS(l'!) 

80 CONTINUE 
IF (IT (1) • EQ. 0) GO TO 4 
IF(K.EQ.O)GO TO 50 
DO 51 J=1,K 
CALL VMULT(PHI,PAR(1,J) ,W,NSTATE) 
DO 51 1=1,3 

51 PAR(I,J)=W(I) 
50 DO 100 1=1,3 

100 PAR(I,M)=Y(I)+BX{I,M) 
DO 102 K=1,4 
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IN=JM (K) 
IF(~.NE.IN)GO TO 102 
DO 85 1=1,3 
L=IT(I) 
IF (L. GT. IN) GO TO 85 
SDS=O.O 
KX=K-1 
DO 86 J=1, 3 

160 

SDS=SDS-ALFA(J,K)*(PAR(J,L)-PAR(J,L+1» 
IF(KX.EQ.O)GO TO 86 
DO 103 JJ=1,KX 
JK=JM (JJ) 
IF(JK.LT.L.OR.JK.GE.1D) GO TO 103 
SnS=SDS-ALFA(J,K)*PARMSCI,JJ)*(PARCJ,JK)-PAR(J,JK+l» 

103 CONTINUE 
86 CONTINUE 

PARMS(I,K)=-SDS/SD 
85 CONTINUE 

102 CONTINUE 
4 CONTINUE 

IF(IT(l) .EQ.O)GO TO 106 
87 DO 61 J=1,3 

K=IT(J) 
DO 61 1=1,3 
PARS(I,J)=PAR(I,K)-PAR(I,K+l) 
DO 61 M=1,4 
HI=J!'I (M) 
IFCIM.LT.K.OR.IM.GE.10)GO TO 61 
PARS(I,J)=PARS(I,J)+PARMS(J,f'I)*CPARCI,IM,-PAR(I,IM+1» 

61 CONTINUE 
106 CONTINUE 

RETURN 
END 

t 
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SUBROITTINE UPDATE(I,T,A,BI,MSTAT!,L) 
I!PLICIT REAL*S (A - H, 0 - Z) 
DUENSIOM IC (NSTATE) ,BI ("S'UT!) , A (NSTATE, MSTAT!) ,BS (10, ,B'I'(10) , 

115 (10) ,XT (10) 
H=12 
IP(L.EQ.2)GO TO 7 
PO 6 I=1,NSTATE 
BS (1) =BI (I) 

6 IS (I) =X (I) 
DO 2 K=1, N 
DO 3 I=1,NSTATE 
IT (1) =0. 0 
BT (I) =0.0 
DO 3 J=1,NSTATE 
BT(I)=BT(I)+A(I,~*T/DFLOAT(N-K+2)*BS(J) 

3 IT (I) =XT (I) +A (I, J) *T/DFLOAT (14-K+1) *XS (J) 
DO 4 I=1,NSTATE 
BS(I)=BT(I)+BI(I) 

4 IS (I) =XT (1) +X (1) 
2 CONTINUE 

DO 5 I=1,NSTATE 
5 X(I)=X5(I)+BS(I)*T 

RETURN 
7 DO 1 I=1,NSTATE 
1 15(1)=X(1) 

DO 8 K=1, N 
DO 9 1=1, NSTATE 
XT (I) =0.0 
DO 9 J=1,NSTATE 

9 XT(I)=XT(I)-A(J,I)*T/DFLOAT(N-K+1)*XS(J) 
DO 10 I=1,NSTATE 

10 XS(I)=IT(I)+X(I) 
8 CONTINUE 

DO 11 I=1,NSTATE 
11 X(I)=IS(I) 

RETURN 
END 
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SUBROUTINE VMULT(A,B,C,NSTATE) 
IMPLICIT REAL*8 (A - H, 0 - Z) 
DIMENSION A(NSTATE,NSTATE),B(NSTATE),C(NSTATE) 
DO 1 1=1, NSTATE 
C (1)=0. 
DO 1 J=1,NSTATE 

1 C(I)=C(I)+A(I,J)*B(J) 
RETURN 
END 
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