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INTRODUCTION AND SUMMARY

Recent developments in two different technological areas raise the pos-
sibility that the two seemingly unrelated areas could have a mutually beneficial
interaction. The two technologies under discussion are: (1) the development
of ion thruster engines for spacecraft propulsion and maneuvering, and (2) the
development of material processing operations for space environments, he
possible association of these two technologies becomes evident when it is
appreciated that ion thruster engines can readily serve as ion beam sources.
Ion beam technology is growing at a rapid rate on earth and is finding a num-
ber of commercial applications. The present study, therefore, addressed
itself to the identification of potential space processing applications of thruster
ion beam (TIB) technology. The criterion for a potential space processing
application was necessarily that the space environment offered some advantage —
either economic or unique capability — over that afforded by the earth environ-
ment. Two aspects of the effects of space environments on TIB in general
were considered: possible advantages of space vacuum environments and pos-
sible gravity effects on TIB materials operations such as thin film growth, ion

milling, and surface texturing.

A consideration of the various factors involved in ion beam generation
and processing leads to the conclusion that the almost limitless pumping capacity
of space will allow easy maintenance of large pressure differentials and hence
optimal conditions for ion beam generation and UHV conditions for thin film
deposition. Limitless pumping capacity will further allow large-scale utiliza-
tion of ion beams for operations such as microelectronic component fabrication.

Such possibilities will result in product quality improvement at lower cost,
In another part of the study, experiments on both TIB sputter deposition

and vapor deposition at one atmosphere and at 1 torr (133 P a) were conducted.

The results indicate that a direct gravity effect may be involved in thin film
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deposition processes even at high vacuums. A direct gravity effect of thin
film deposition and other crystal growth processes would have far reaching
implication both for product improvement and utilization of space environ-
ments for processing. Further studics of the gravity effect observed in this
study are indicated to elucidate the mechanism and to characterize fully all

possible effects.

The prescnt report also reviews some specific candidate ion beam space

processing operations,

It might be mentioned that although the present study had as its chief
motivation the identification of space processing application for an ion thruster
engine, the range of applications of ion beam technology was not limited to the
capabilities of any specific apparatus. Thus, applications such as ion implanta-
tion are mentioned even though the ion energies required for this task are some-
what higher than produced by a typical TIB generator. It is felt that at this early
stage the full range of ion beam technology should be scanned. Possibly a par-
ticular application may prove to have enough economic or utilitarian potential
to justify a special, high energy TIB design, Also, the state of the art of TIB
design will undoubtedly change rapidly as the scientific community becomes

more aware of the potential of ion beam processing.
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THRUSTER ION BEAM GENERATORS AND GROUND APPLICATIONS

The essentials of a thruster engine are shown in Fig. 1. With a few

minor modifications, the engine design is readily adapted for ion beam
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Fig.1 - Essentials of a Thruster Engine (Ref, 1)

applications., For example, Figs, 2a and 2b show some recent adaptations,
Further descriptions of ion beam generators of the thruster type are given
in Refs. 2 through 5. Reviews of conventional ion beam gencrators are given
in Refs. 6 and 7, Among the advantages of thruster gencrators are large
beam diameters, precise control of becam size, uniform ion energy, uni-

directional ion flow, easc of control, and the contaminant-free, high vacuum

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER




Mognats Permaohi
r ¥ R vt
H Fermagbla
1= m ‘ r R
L S0 . g

N T RN [RSMEANRCL A u\"-c{ Sl SN ) Sl N
- O A S ot (R S gty
|2 Tl =5
e -Magnet -}!k
, : Sk
Cothode ] LJ{?
b pot kit vode) p bt 4N
(== —-—__t ;ro'*é”f._'-i: - .= L’-“ e
H ‘Newu "“"":':_’_,/”‘P !
| 4 i..__|~..t [ S S |
:m 0O + 2z 3 &4
im
a, Cross Section of 2,5 cm Ion Source b. Cross Section of 10 cm lon Source

Fig. 2 - Recent lon Beam Generators Based on the Ion Thruster Principle
(Ref, 2)

environment in which the thruster operates (Ref, 3). Some typical character-

istics for generators of the thruster type are:

Pressurc in Plasma Generator Cavity '~10.3 torr
o Pressure in Sputter Chamber ~10'4- 10'5 torr
Ion Beam Diameters 2.5cmup to 30 cm
Ion Beam Curren{ Densities 1 -2 rnA/cm2
Ion Beam Energieé : 0.5 - 10 keV
Gas Flows (Usually Argon) ~1.5 cm3/min
Acceleration Voltage 0-10kV

It is also possible to design a TIB to eject heavy ions such as mercury (Refs.
1,8 and 9).

- In applications in which materials are processed the ion beam is caused
to impinge either on the material itself (cleaning and implantation operations)
or on a target material causing a transfer of momentum betwecn the ion beam

particles and some of the target particles. The target particles are "blasted"
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off the surface, or more commonly sputtered. The sputtered target material
is then deposited on a substrate (deposition operation), Figure 3 shows the

arrangement for a sputter deposition,

TI1B Generator

Ion Beam

[
{
" Substrate
|

Target —/ /

Sputtered Atoms

Fig. 3 - Schematic of an lon Beam Sputter Deposition

The list of actual and potential applications for ion beam technology on
the ground is impressive and is expanding rapidly. The following list is indica-

tive.

e lon Implantation in Semiconductors
e lon Milling, Etching, and Cleaning

e Deposition of Thin Films of Semiconductors
and Metals

® Micro-Circuit Fabrication
Catalyst Preparations

e Surface and Particle Collision Studies

Refercnces 6 and 9 through 19 present good reviews of application in the

various areas.
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SPACE ENVIRONMENT EFFECTS

A review, with an eye as to possible space advantages of the ion beam

applications cited in the preceding section, identified the following common

area of benefit: the almost infinite pumping capacity ¢of space environments

definitely promises enormous advantages ior ion beam technology., Also

ot

some exploratory experimental studies of both gputter thin film deposition

and vapor deposition indicate that gravity may have a direct role in both

-
i processes even at very low pressures, These aspects of the study are pre-
) sented in the following two subsections.

Advantages of Space Vacuums

In almost all cases of sputter deposition, or vapor deposition for that
matter, the quality of thin films obtained depends very sensitively on the de-
gree of gaseous contaminants present during deposition, For example, in the
case of germanium thin film deposition, oxygen even at a partial pressure of
T 5 x 10'9 torr was found to increase epitaxial deposition and amorphous-

“- polycrystalline transition temperatures (Ref, 20). This result was explained

- on the basis of oxide formation, The great sensitivity of silicon thin film

. deposition to oxygen and carbon impurities is well known (Refs. 2] and 22).
Gaseous contaminants can also influence the quality of metal films (Ref. 23).
For example, it has been shown that either 3-Ta or bcc Ta may be formed by
sputtering at a residual gas pressure of 2 x 10—6 torr and a total argon pres-
sure of 20 x 10-3 torr; but ag the residual gas pressure is increased to 5 x 10-5
torr, only bcc Ta is obtained (Ref. 24). Figure 4 shows the results of onc study
(Ref. 25) on the effects of pressure on tungsten film resistivity. The high re-
sistivity values were attributed to incorporation of residual gases during tiie

growth process.
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Fig. 4 - Effect of Deposition Rate and Argon Pressure on the Resistivity
of Sputtered Tnngsten Films (Ref. 25)

The rate of impurity adsorption is also of concern witi. regard to a
sputtering target. Such adsorption can lead to decrease of sputtering, yield
and recontamination of surfaces deliberately cleaned. It is stated that the
ratio of the ion current density (uA/cmZ) to the background pressure (torr)
should be greater than l08 to avoid formation of surface layers (Ref. 26),

Obviously, the lower the background pressure the better.

The impingement rates (n, number per c:mZ per sec) of atoms at various

pressure levels can readily be calculated from the following formula (Ref, 27)

n = 3.51 x 10"‘2 P/\,MT

where P is the residual gas pressure in torr, M is the molecular weight, and

T is the absolute temperature. The maximum impurity content, K, due to
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; residual gases in a sputter deposited film is given by the following formula
- (Refs. 27 and 28);

7 5.82 x 10"% a MP

p dD/dt \[1\71"’1"'

where
a = sticking probability of the residual gas on the fresh
film surface

M = molecular weight of thin film material
— M' = molecular weight of gas
g_g T = absolute temperature of gas

p = film density
Y dD/dt = deposition r-te
” P - gas pressure, torr
i Table 1 gives K values for various levels of oxygen pressure and various
7 rates of Mo depositioa (a = 1).
- Table 1
‘ K VALUES FOR VARIOUS MOLYBDENUM DEPFOSITION

RATES AND OXYGEN PRESSURES (REF. 28).

iy p of Oxygen Deposition Rate
- (torr) (&/s)
.- 1 10 100
1.6.10°7 1072 107% 107°
] 161077 107t 1072 1073
I 1.6.10"> 10 1 107}
“ Thus, even at an oxygen pressure of about 10'7 torr a molybdenum layer de-
- posited at a rate of 10 A/s can contain 1% oxygen. For many films this level
1 of impurity is much too high,

Two factors are common to any type of sputtering system: both the back-
ground pressure and the throughput of sputtering gas must he maintained at

some predetermined levels. The preceding formula for K indicates that
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control of impurity level can thus be controlled in a film deposition by one of
three meins: reducing a (bias sputtering), increasing thie deposition rate, or
reducing the partial pressure, P.l,of the impurity, The partial pressure of an
impurity is related, of course, to the purity of the sputtering gas., Further,
the partial pressure of impurity is related not only to the total pressure but
also to the rate of system leakage. The pariial pressure of a contaminant is
therefore related to the throughput of sputtering gas. The formula relating

these quantities is given by the following (Refs. 29 and 30):

LP/(Q+ L)

P.
i

where L is the related leak rate and Q the throughput of sputtering gas in
torr liters/sec. Leaks may arise from a number of different sources —

actual leaks in the apparatus, desorption from apparatus walls, '"backstream-
ing," and diffusion of gas through the walls of the apparatus (Ref, 31). Of these
different sources of leaks, desorption and '""backstreaminyg' appear to be the
most serious (Refs. 31, 32 and 33). Th~ preceding formula relating impurity
partial pressure to leak rate and throughput rate indicates that it is advan-
tageous to make the throughput as jarge »5 possible and the leak rate as small

as possible. The throughput rate is related, of course, to the pumping speed.

The optimum pumping speed required to maintain a total pressure of
argon of 10-2 torr and a throughput of 1 torr liter/sec is a few hundred liters
per second (Ref.28). Based on this criterion sputter-ion pump’ng in earth
atmosphere is judged as too cumbersome and expensive; standard sorption
pumps are inadequate because of small sorptive capacity; reproducible vacuum
conditions are hard to achieve with cryopumping; diffusion pumps involve com-
plications due to oil vapor backstreaming; and turbomolecular pumping, the
recommended pumping method, is somewhat expensive and also can involve
complications due to water, hydrogen, and helium backstreaming (Ref. 28).
Backstrcaming problems with t‘urbomolecular pumps was the topic of lively

discussions in the recent literature (Ref, 34).
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The preceding discussion of puniping speeds relates to conventional
type sputtering systerns. In the ion beam method, the ion beam is generated
at about 10-3 torr and the beam is then directed into the work chamber which
is at a pressure of about 10-5 torr. Under such conditions, it is expected that
the requirements on pumping speed will be sven more severe, especially with
icn beams of wide area and high current density, For example, it is stated
that present commercial ion beams with current densities of about 1 s‘fo/cm2
(total currents about 15 to 50 mA) will typically have gas flows of 1.5 cm3/m'm
(Ref, 35), This gas flow corresponds to a throughput of 1.9 x 10'2 torr /sec
and would require a pump with pumping speed of 1900 £/sec to maintain a pres-
sure of 10-5 torr., If leak rates were taken into account the pumping rate would
have to be higher still. In one instance in which an apparatus was so designed
that an ion current density of 50 mA/cm2 (total current 350 mA per about 7 cmZ
outlet area) was obtained, a pumping speed of 2000 {/sec was insufficient to
maintain an order of magnitude pressure difference betwee 1 the source and the
background. The pressure in the source had to be dropped t> 5 x 10-4 torr
(Ref, 36). Because of lack of practical, nexpensive systems that can pump at
more than about 2000 £/sec, ion beam is generally limited at present to deposi-
tions in the range of about 10-5 torr or higher (Ref. 37). The advantage of higher
pumping speeds, i.e., highe~ throughputs, would be that greater beam areas and
higher beam current densities could be obtained (because of reduced charge-
exchange and background scattering effects (Ref. 2)) and film deposition or

sputtering could occur at even lower pressures (less contamination).

In view of the problems of obtaining adequate pumping speeds with various
pumps, the advantages of utilizing the natural vacuum of space becomes intriguing,
The pressures at various altitudes are gererally as follows: 60 km — less than 1
torr, above 600 km — less than 10-8 torr, and above 1200 km — less than 10‘lG
torr (Ref. 38). In outer space pressures of 10.13 torr and less prevail, Al-
though the statcment is often mude that the pumping speed of the space vacuum
is essentially infinite (Ref. 39), a more accurate statement is that the near-
vacuum environment of space affords a readily usable pumping capability of,
for all practical purposes, ultimate efficiency. Only the "induced" atmosphere

of the spacecraft and its associated hardware and instrumentation would detract

10
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from the usability of the space environment as a vacuum source. This induced
atmosphere may originate from a number of sources, such as drifting gas, out-
gassing of spaccecraft materials (paints, sealants, adhesives, etc.), dumping of
waste products and firing of attitude control motors. Thesec various considera-
tions have recently been analyzed for the purpose of assessing the feasibility

of a molecular shield for the Space Shuttle Orbiter (Refs. 40 through 43). The

concept of the molecular shield is shown in Figs.5 and 6.

The analyses indicate that pressures of about lO'14 torr can be easily
achieved behind the molecular shield. Given a proper orientation of an ion
beam apparatus behind the molecular shield, it should be possible to attain
an almost infinite pumping speed. Further advantages of the high vacuum be-
hind a molecular shield are that larger systems could be handled than on earth.
Costly hold-up times for degassing and baking operations could be avoided.
Also not to be ignored are the initial vacuum system cost, cost of coolants,
and cost of required power input, which apparently can run from about 0.2 to
22 kW depending on the particular pumps (Ref.44). The latter factors of cost
and convenience will probably become of more and more importance as the
trend toward sputter utilization and automated systems continues to grow
(Ref. 45).

Gravity Effects

A number of experiments on thin film deposition were conducted in the
ccurse of the present study. The results of these experiments indicate that
. cavity may be a significant variable that has been hitherto overlooked.

The evidence indicating possible gravity effects in high vacuum thin film de-

position are reviewed in the following paragraphs,

The ion bearn facility at NASA-Lewis was utilized to deposit simultanecusly

a number of thin films of copper and sapphire at a background pressure of 10~

torr. The physical arrangement employed is shown in the sketches of Fig. 7.

11
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Fig.5 - The Molecular Shield Shown Deployed from the Space Shuttle
by an Extendable Boom. The length of the bvom will be deter-
mined by the magnitude of the density around the Shuttle (Ref, 42)
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Fig. 6 - Schematic Representation of the Molecular Shield Geometry
in the Drifting Gas, Illustrating Typical Molecular Trajectories;
(1a) and (1b) free stream molecules, flux of (1a)-type molecules
is much greater thar flux of (1b)-type molecules; (2) desorbed
molecules from the shield; (3) desorbed molecules from the
vrperiment; and (4) molecules scattered from the orbiter (Ref.
40)
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Fig. 7 - Experimental Arrangemen’ . r Sputter Deposition of Copper
or Sapphire
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The ion beam consisted of argon ions and atoms. Figure 8 shows the
differences in the structures of the thin films deposited in the noted positions.
It is difficult at present to make much of the noted differences. A number of
further experiments are needed in which variables such as ion beam engine
stability, exact sample location, and impurity levels are rigoriously controlled.
Evaporative depositions which are more easily controlled, however, do indicate

a gravity effect, as described in the following discussion.

The works of Sherman, Mao, and Hutchinson (Ref. 46), Chopra (Ref, 47),
Lane and Anderson (Ref. 48) showed relatively slight differences in thin film
structures as the result of method of deposition (sputter or evaporation).
Thesec differences were attributed to different surface mobilities because of
the different initial kinetic energies and different electrostatic charge environ-
ments, Thus, it is probably safe to assume that a gravity effect observed in
a vacuum evaporation deposition would also apply to a similar sputter deposi-
tion. In a series of evaporative-deposition laboratory tests numbering about
fifty and utilizing model organic materials, differences as the result of the
position of the substrate with respect to gravity were also noted. The two
exper:mental arrangements employed are shown in Figs. 9 and 10. The
organic = aterials utilized in the evaporative tests included camphor, biphenyl,
and acetamide., Glass, sapphire substrates, and plastic substrates were also
utilized and were cleaned by a variety of techniques prior to crystal deposi-
tions, The temperatures were moderate (~-10 C to 25 C for substrates, and
~47 C to 90 C for sources) and were not monitored at the substrate surfaces,
The temperatures, however, were at the same values for any given top/bottom
run couple., Differences in crystalline deposits depending on whether the sub-
strate was on the top or the bottom relative to the source were noted in all
but two or three cases, In general more numerous, smaller crystals were ob-
served on bottom substrates than on top substrates. The crystalline forms
observed on top substrates were larger and tended to be more dendritic than
those on bottom substrates. Dendritic type crystals of biphenyl and camphor
would at times be quite curled. Curled dendrites when they occurred were
more prevalent on top substrates than on bottom substrates. In the case of
acetamide at about 1 torr the differences are quite dramatic: the top substrate

shows a few large needles extending out from the substrate surface, while the

14
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Cooled Pedestal

* Gravity Glass or Sapphire
- Vector /_Substrates

* L 1

“ Organic Material

%; Heated Pedestal

Fig.9 - Apparatus Used at 1 atm Pressure in Upright Position (Further
tests were conducted with the apparatus inverted. A nylon net
or fiberglass web over the organic source material prevented
the material from falling out.)
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Fig. 10 - Apparatuses Used at Vacuum Levels of About 1 torr
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bottom substrate shows many small needles, also extending out from the sur-

face, as shown in Fig. 11,

ey

Acetamide Deposit Acetamide Deposit
on Top Substrate on Bottom Substrate

Fig. 11 - Crystalline Deposits Obtained in Low Pressure Evaporative-
Deposition Tests

In the evaporative-deposition tests variables such as substrate cleaning
procedures, size of source opening in the lov pressure tests, and possible
differences between substrate coolers were checked and found not to be the
cause of the observed effects, Also in the case of the low pressure apparatus
a series of tests were performed in which the heater power was reduced in
order to reduce the evaporation temperature., Longer deposition times were
utilized in these reduced temperature runs. Definite differences between top
and bottom deposition were still noted, although the differences were less
markea than in the higher heating rate cases. It might be added that two
different experimenters conducted the various tests and did not compare notes

on the structures observed until most of the work was completed.

The evidence indicates that gravity can affect crystal growth even at

low pressures. More extensive tests on both ion-beam sputter deposition
18
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and high-vacuum evaporative deposition of metal and semiconductor materials

arc required to absolutely substantiate, however, this startling conclusion,

Discussion: A consideration of possible causes of the observed behavior
other than direct gravity effects elicited two — gravity -driven convection or
directional effects related to mean free paths, Neither of these possible
causes, however, can be supported for the following reasons. In order for
convection to have been the cause of the observed results it would have been
necessary that vigorous convection was present at 10-6 and ] torr as well as
at 760 torr (1 atm)., The vigor of gravity-driven convection, however, de-
creases rapidly with decreasing pressure, The thermal and solutal Grashof
numbers, which are the ratios of the buoyancy forces generated by therrnally or
solutally induced density differences to the viscous forces and hence may be
viewed as indicative of convective vigor, are related to pressure by the follow-

ing relationships:

3
Grp = B4 8L (/P )% = Grd (p/P)°  (Ref.49)
T Vo o] (o]

: 3
Mg -M,Jed” as,

Gr = P/P (Derivation given in
8 ve ©  Appendix A)
Po o PP
where
g = gravity acceleration
d = a characteristic distance across which the temperature
or concentration difference is composed
v, = kinematic viscosity at a reference pressure
o ° reference pressure (1l atm usually)
AT = temperature difference across characteristic distance
‘\‘SA = concentration difference of component A across char-
acteristic difference, concentration here given is in
weight fraction units
P, = density at a reference pressure
MA’ MB = molecular weights of solution components A and B

19
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The formula relating the thermal Grashof numbers to pressure shows that the
Grashof numbcers, and hence the vigor of natural convective flows, decrease
rapidly with decreasing pressure and becomes quite small at pressures ot

® or 1077 torr (m'4
At atmospheric pressures the Grashof numbers will typically be on the order
of 102 to 105 (weak to vigorous convection), At one torr these numbers would

be reduced to 10'4 -16 -13 6

1 torr (133 Pascals) and very small at 1C~ or 10-5 Pascals),

to 10" ! and to 107!% and 107!° at 10" ° torr. The huge
differences in Grashof numbers at the three different pressures used in the
present study makes it very unlikely that gravity-driven thermal convection
could have been the cause of the observed results, This conclusion finds
support in an experimental study of convection in tall, thin layers of air uni-
formly heated at one wall and cooled at another (Ref.50). The thickness of
the interlayer was varied 5,10,15,20 and 25 mm. The temperature drops be-
tween the heated and cooled walls was also varied, i.e,, AT = 20,40, and 60 K.

It was found that convection becomes negligible below 10 torr.

From the formula for the solutal Grashof number, it can be surmised
that pressure will not reduce convection vigor nearly as much in the case of
solutal convection for a given concentration difference as it does in the case
of thermal convection for a given temperature difference. At 10'6 torr, how-
ever, any concentration difference is bound to be very small. There are about
3.5 x 1010 particles per cubic centimeter corresponding tc 2 .oncentration of
about 5.9 x 10™ !} moles per cubic centimenter or 5.9 x 10"% mciar at a pressure
of 10'6 torr. A concentration difference of 50% would still be only 3.0 x 10'8
molar. It appears, therefore, that neither solutal convectio:s nor thermal con-

vection could be a cause of the observed effect.

The possibility that directional effects related to mean free paths could
have been a factor also does not seem likely. The mean free paths at 1 atm
and at 1 torr are 2x 10™> cm and 5 x 107> cm. The distances between the
evaporation source and the substrates in the 1 atm and the 1 torr cases were
about 1 and 2 cm. Also, in the sputtering experiment directional effects could
not have been a factor because both the top and bottom substrates were equi-

distant from the target.
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One possible explanation of the observed results might be that small
crystals arce nucleated in the vapor phasce just above the substrate. Depending
on the direction of gravity then, they may cither fall onto or away from the
substratc, This view finds some support in a couple of literature reports,

A nucleation mechanism in the gaseous phase was postulated as the cause of
rough surfaces obtained in the growth of silicon epitaxial layers (Ref. 51). In
a recent study of frost deposition some secondary growth of small particles
between the primary growing crystal stalks is shown (Ref. 52), The strongest
bit of support for this explanation is the paper by Horodecki et al, (Ref,53)

in which a gravitational difference was found in the chemical vapor transport
growth of ZnS crystals, The difference was attiihuted to the settling of heavier
crystallites in the gravitutional field, The formation of secondary crystallites
in high vacuum depositions would necessitate some sort of a loose adsorption
layer of adatoms. The prospect is intriguing but further speculation is un-
warranted. Further investigations of both high vacuum sputtering and vapor
deposition are needed to more fully establish and characterize the gravity
cffect.
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SPACE APPLICATIONS OF IGN BEAM TEC!INOLOGY

High Quality Thin Films and Unique Catalysts

The previously mentioned fact that many semiconductor and metal thin
film processes are extremely sensitive to small amounts of impurity atoms
is a major consideration in contemplating potential space processes. In par-
ticular, the poussibility that large scale processing of silicon thin films by a
TIB process in vacuums of 10-6 torr or better offers the promise of a means
by which cheaper solar cells can be produced. It would also not be surprising
that oxygen or other impurities play a raajor roile in the ion beam sputter deposi-
tion of unique films such as diamond (Ref, 54), superconductors (Refs,. 55,56, and
57) and amorphous bubble domain films (Ref. 58), The more precise control of
impurity level afforded by the larger pumping capacities available in space en-

vironments would facilitate better quality films at lower cost.

Two arear of catalyst production appear to have some promise: Form-
atior. of very small particles and subsequent deposition on an inert substrate
either by a means such as ionized particle beam method (Ref. 59) or the more
conventional sputter deposition. The second area that appears promising is
that of co-deposition of metal atoms with vapors of organic or inorgaaic com-
pounds at low temperatures (Ref.60), The present mecthod used to produce
such compourds is a vapor deposition process, It appears that an ion beam
deposition would offer a moie economical procedure. The advantage of space
for such processes would be the unlimited vacuum und possibly lack of a direct

gravity cffect on particle size and morphology would result in unique structures.

Complex Fabrication Operatic s

The most compelling promise of ion and electron beam processing in

space is that of economics and product improvement realized from being able
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to completely automate Jarge-scale production operations because of the large
pumping capacity available in space. For c¢xample, a futurce spacce fabrication

utilizing TIB might consist of the following:

a. Sputter deposition of semiconductor thin film

b. "Writing' a circuit on the thin film by means of a focused ion
beam (Refs, 6 and 13)

c. Sputter depositing passivating layers of SiO, (Ref. 61).

The following quote, although written as a prediction of the probable
direction of microelectronic fabrication processes on earth, is probably just
as accurate as a prediction of the direction microelectronic fabrication in

space will take,

"Elcctron beam pattern fabrication combined with the comple-
mentary ion beam proccesses offers some unique features; some very
useful devices just cannot be made in any other way! The potential
yield improvement by all-vacuum processing, using electron and ion
beams, together with automated electron beam testing, presents goals
worth working toward, Beams are presently not widely used or {fully
developed, and involve relatively sophisticated processes using gen-
erally unfamiliar and expen: ve equipment. Nevertheless, in the
writer's opinion, they form the next major process technology for
niicroelectronics. In some cases beam processes may replace con-
temporary fabrication processes; more often they will be applied in
ways that take best advantage of their unique features."

— G. R, Brewer (Ref. 11)

Construction of Large Structures in Space

A number of concepts are currently under study for construction and
utilization of large space structures. Among such potential large space
structures arc large arrays for converting solar energy into microwave
encrgy which would then be beamed to earth; platforms for large space tele-
scopes; platforms for earth observations; experimental stations, and space
colonies, It is already generally predicted that it will be more economical to
perform as much as possible of the construction in space rather than on earth,
Also, it will prcohably be more economical eventually to obtain the required

matcerials from the moon rather than from the earth. These eventuilities

23

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER




M
ul

4

»

i

will require processing techniques uniquely suited to the space environment.
TIB appears ideally suited to perform a multitude of tasks associated with
construction of large space structures. Some of these predicted uses are

presented in the following sabsections,

Cold or Warm Welding: The suggestion was made by Bernard Sater of

NASA-Lcwis of utilizing the ion beam in space for the purpose of cleaning the
surfaces of pieces preparatory to cold welding. The possibility of ion beamn
cold welding is intriguing because it appears to hold many advantages ‘or con-

struction of large space structures in the vacuum, and weightlessness environ-

ment of space,

On earth processes such as diffusion, cold, and explosive welding are
fairly sophisticated techniques utilized to limited extents. These methods
require careful surface and edge preparation and fit-up and large specific
pressures (Ref. 62). Electron beam welding which is also a relatively sophis-
ticated technique, on the other hand, is winning widespread acceptance for
carth applications, Electron beam welding in space, however, appears to
have several disadvantages. For example in a space test of electron beam
welding of aluminum alloy AM-6, the space welded samples were more porous
than the carth welded samples (Ref, 62). Porosity problems which are fre-
quently cncountered on earth (Refs. 64 through 66) therefore, will robably
be intensified in space. Electron beum welding, in common with other con-
ventional methods of welding, necessitates severe heating and melting in the
areas of the welds, Severe stresses, therefore, may be generated, resulting
in weakened structural capabilities. Still another factor to be considered are
the power requirements for electron beam welding, especially if wide welds
are required. A weld width of 0.127 cm might require a total power of 25 kW
(Ref. 64).  Also not to be ignored is the fact that high energy electron becams
can generate appreciable x-rays (Ref. 67). Astronaut exposure would there-

fore present shielding problems.

Relatively little research has been conducted on cold welding methods,

References 68 through 77 present some reviews of the recent work and
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experience with cold welding. Very little research also has been thus far
conducted on ion beam cold or warm welding. (The term warm welding was
coined for contact welds made at temperatures of about 0.1 to 0.51 Tm where
Tm is the melting temperature, degrees K (Ref. 78). A number of papers,
however, have considered the mechanisms of cohesion and adhesion (cohesion
— a joining of pieces of the same material; adhesion - a joining of pieces of
dissimilar materials) and the effects of surface conditions (Ref.79 through 82).
The two main ideas incorporated in various theories of cohesion/adhesion
bonding mechanisms are those of contaminating film presence and energy
barriers due to causes such as misorientation of =rystals at the surface or
recrystallization processes (Ref.68). It is doubtful that the effects of film
presence on dislocation movement, and hence on subsequent plastic flow and
bonding, are completely understood. It does appear, however, that the follow-
ing can be cited as prerequisites for a good cold or warm weld; clean surfaces
(free of oxides or other contaminants), a certain degree of surface roughness,
sufficiently ductile materials (high stacking fault energy), and a certain degree
of thermal activation with some materials. .2 the case of very hard solids,
however, it is claimed that surface roughness can greatly reduce the adhesion
between solids (Ref.80). It might be mentioned that in the two studies that
dealt specifically with ion plasma cleaning of the surfaces prior to surface
contact (Refs. 78 and 83) successful welds were produced with a number of

materials.

From the viewpoint of ion beam cleaning of surfaces and subsequent

welding in space, the following advantages are postulated.

e Easy, fast cleaning of surfaces of large extent

e The ultra high vacuum of space, especially if molecular shields
are prouvided, wonld ensure very clean surfaces for relatively
long periods of time

e Relatively low energy requirements
e Control over the surface rcughness

e Control over degree of thermial activation.

Becausc of the cited advantages it is foreseen that jeining large structares
in space would be facilitated by the technique. Joining materials such as
composites, metal-ceramic or metal-semiconductor materials should also
be better accomnlished by ion beam than with other existing techniques.
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Another aspect of ion beam technology with regard to cold welding is that of
sputter deposition of an intermediate film that would make possible the joining
of two very dissimilar materials, References 70 and 84 list some composites

that have been successfully joined by cold or diffusion welding.

Strenghtening Construction Glass: It is predicted that because glass

will be one of the materials most readily obtained from the moon, glass will
be utilized to a great extent in space as a construction material. One of the
problems with glass as a construction material to date has been its iow toler-
ance for tensile stress. Recent work, however, indicates that this tolerance
can be increased by putting the surface into compression because glass can
withstand almost infinite compressive stress. One means of doing this is by
the replacement of glass alkali ions by larger alkali ions present in a chem-
ical bath (Refs. 85 and 86). It would seem that ion beam sputtered films or
implantation could be used to accomplish the same task more rapidly and
economically. Apparently the National Bureau of Standards has accomplished

some work along these lines (Ref. 87).

Coating, Texturing, and Milling Operations: A number of coating opera-

tions will of necessity be conducted in various constructions, i.e,, reflective,
protective, and decorative coatings., Wide area ion beam sputtering should be
well adapted to such tasks, The formation of unique surface textures by means
of sputter etching, i.e., "cone' formation (Ref. 88) could find application in space
for absorptive solar collector parels. The only question in this regard is the
advantages ion beam might offer tver other techniques. It would seem

that lesser energy expenditures and greater control over coating thicknesses
would be the advantages of ion beam depositions. Also, the possibility of com-
bining evaporation and ion beam sputtering could lead to further advantages,
i.c., ion plating as shown in Fig.12. In the area of milling operations in space,

of course, ion beam appears to have no competitors.

Very High Energy Heavy Ion Beam Applications

In this subsection some applications of very high energy ion beams are

reviewed, Although TIB technology has not been involved in generating very
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Fig, 12 - Illustration of Vacuum "lon Plating'" Technique Using a Vaporization
Source for Fast Deposition and an Ion Beam Source to Supply Energy
and Momentum to the Film Atoms for Improved Film Prouperties
(Note that the use of high vacuum conditions improves the film
properties (Ref, 89).

high c¢nergy ions beams (~160 MeV - 10 GeV), the topic is brought up here
becausc it is related to TIB. It would seem that the generation of very high
energy ion beams would also benefit from space environments because of the
"free' vacuum and high pumping capacity conditions. Producing very high
energy, heavy ion beams on earth is a very costly business (Ref, 90). Such
beams are primarily of interest for fundamental studies and possibly for
fusion power (Ref. 91). Some further novel applications, however, have been
suggested (Ref. 9): modeling of radiation damage in reactor materials, pro-
duction of filters of ultrasmall size and quality (such filters would have many
unique uses, i.e., drinking water free of bacteria under field conditions, filtra-
tion of aerosols, etc.), material surface studies, radiotherapy to very limited
portions of the human body with minimal damage to surrounding tissue, "ionic"

surgery, and production of artificial isotopes.
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CONCLUSIONS AND RECOMMENDA TIONS
- Conclusions
E Space environments afford almost limitless pumping capacities. A
limitless pumping capacity will allow easy maintenance of high pressure
l differentials and thus will allow optimal conditions for operation of numerous

ion beams simultaneously or for ion beams of large area. The easy mainte-

nance of a large pressure differential will further allow thin film deposition

it &
“ W

under conditions of ultra-high vacuum. Such advantages recommend large-

scale utilization of ion beams for operations such as microelectronic compo-

nent fabrication, which would result in product quality improvement at lower

,[ cost.

Experimental studies of both ion beam sputter and vapor deposition of
} thin films indicate a direct gravity effect on the crystallization processes
) even at high vacuum. This direct gravity effect could have enormous, far
1 reaching implications both for product improvement and utilization of space
2

enviroments for processing,

i Further space processing applications of ion beams include: welding;
strengthening of construction glass; and coating, texturing, and milling opera-
tions. Possibly higher energy TIB will eventually be designed. Space process-
ing applications of higher energy beams might include production of filters of

ultrasmall size and quality and production of artificial isotopes.

Recommendations

An analysis of the economics of producing a particular thin film (silicon

for example) by means of ion-beam-sputter and by vapor deposition under

ultrahigh vacuum conditions both on earth and in space is recommended.
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Also recommended, to conclusively establish the direct gravity effect
and its mcechanism, are further experimental studies, Particularly needed
arc further ultrahigh vacuum depositions employing both ion beam sputter
and vapor techniques. A varicty of metal and semiconductor materials should

be investigated.

ADDENDUM

After the present report was completed, some further electron micro-
scope transmission micrographs pictures of copper films deposited by ion
beam sputter deposition were received. These pictures were of thin films
deposited in the 2 and 4 positions as shown in Fig.7b. The pictures received
were very similar to those shown in Fig. 8 indicating that the experiment needs
to be repeated with more rigorous controls on ion beam stability, impurity

levels, and sample placement.
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Appendix

The derivation of the pressure dependency of the solutal volumetric

expansion coetficient is unclear in the literature. The following derivation

was obtained in the present study.
PV = (nA +nB) RT

where n, and nB are moles of A and B, and

P - (SA-!-SB) RT

where SA and SB are concentrations (moles/unit volume). Furthermore,

P = MASL+MBS

B
M
_ p_. __A
P = (SA+MB MB SA)RT

M
- P __A
0 = aS, + 31— - 7i— 05

B Mg A

-ap = MgaS, -M aS, = (Mg -M,)aS,
1 (29_) . Mp - M)
p \os, P
p.T

This result was first given by Gebhart and Pera (Ref. 92).
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Following Ref. 49 it is easy to show that

3
(Mp-M Jegd”as
Gr, » —B A A.p/p - G2 p/P
o s (o]
Py Vo
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