General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
SPACE PROCESSING APPLICATIONS OF ION BEAM TECHNOLOGY

FINAL REPORT
15 August 1977

Contract NAS3-20095

by P. G. Grodzka

Lockheed Missiles & Space Company, Inc.
Huntsville Research & Engineering Center
4800 Bradford Drive, Huntsville, AL 35807

Prepared for

NASA
LEWIS-RESEARCH CENTER
21000 BROOKPARK ROAD
CLEVELAND, OH 44135
FOREWORD

This document is the final report for Contract NAS3-20095 and was prepared for the National Aeronautics and Space Administration, Lewis Research Center, by personnel of Lockheed Missiles & Space Company, Huntsville Research & Engineering Center, Huntsville, Alabama. Benard Sater of NASA-Lewis was the contract monitor for the last part of the study and Robert Vetrone, also of NASA-Lewis, for the first part of the study.

ACKNOWLEDGMENTS

The author is grateful to the following NASA-Lewis personnel: Bernard Sater for conducting the ion beam sputter deposition of copper on sapphire, Robert Vetrone for conducting the ion beam sputter deposition of silicon on sapphire, and Bruno Buzekc for the fine electron microscope transmission micrographs of the silicon and copper depositions. Dr. Owen C. Hofer of Lockheed-Huntsville is also to be commended for his help in conducting the low pressure vapor deposition studies.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>ii</td>
</tr>
<tr>
<td>INTRODUCTION AND SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>THRUSTER ION BEAM GENERATORS AND GROUND APPLICATIONS</td>
<td>3</td>
</tr>
<tr>
<td>SPACE ENVIRONMENT EFFECTS</td>
<td>6</td>
</tr>
<tr>
<td>Advantages of Space Vacuum</td>
<td>6</td>
</tr>
<tr>
<td>Gravity Effects</td>
<td>11</td>
</tr>
<tr>
<td>SPACE APPLICATIONS OF ION BEAM TECHNOLOGY</td>
<td>22</td>
</tr>
<tr>
<td>High Quality Thin Films and Unique Catalysts</td>
<td>22</td>
</tr>
<tr>
<td>Complex Fabrication Operations</td>
<td>22</td>
</tr>
<tr>
<td>Construction of Large Structures in Space</td>
<td>23</td>
</tr>
<tr>
<td>Very High Energy Heavy Ion Beam Applications</td>
<td>26</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>28</td>
</tr>
<tr>
<td>Conclusions</td>
<td>28</td>
</tr>
<tr>
<td>Recommendations</td>
<td>28</td>
</tr>
<tr>
<td>ADDENDUM</td>
<td>29</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>30</td>
</tr>
<tr>
<td>Appendix: Derivation of a Solutal Grashof Number</td>
<td></td>
</tr>
</tbody>
</table>

LOCKHEED • HUNTSVILLE RESEARCH & ENGINEERING CENTER
INTRODUCTION AND SUMMARY

Recent developments in two different technological areas raise the possibility that the two seemingly unrelated areas could have a mutually beneficial interaction. The two technologies under discussion are: (1) the development of ion thruster engines for spacecraft propulsion and maneuvering, and (2) the development of material processing operations for space environments. The possible association of these two technologies becomes evident when it is appreciated that ion thruster engines can readily serve as ion beam sources. Ion beam technology is growing at a rapid rate on earth and is finding a number of commercial applications. The present study, therefore, addressed itself to the identification of potential space processing applications of thruster ion beam (TIB) technology. The criterion for a potential space processing application was necessarily that the space environment offered some advantage — either economic or unique capability — over that afforded by the earth environment. Two aspects of the effects of space environments on TIB in general were considered: possible advantages of space vacuum environments and possible gravity effects on TIB materials operations such as thin film growth, ion milling, and surface texturing.

A consideration of the various factors involved in ion beam generation and processing leads to the conclusion that the almost limitless pumping capacity of space will allow easy maintenance of large pressure differentials and hence optimal conditions for ion beam generation and UHV conditions for thin film deposition. Limitless pumping capacity will further allow large-scale utilization of ion beams for operations such as microelectronic component fabrication. Such possibilities will result in product quality improvement at lower cost.

In another part of the study, experiments on both TIB sputter deposition and vapor deposition at one atmosphere and at 1 torr (133 Pa) were conducted. The results indicate that a direct gravity effect may be involved in thin film
deposition processes even at high vacuums. A direct gravity effect of thin film deposition and other crystal growth processes would have far reaching implication both for product improvement and utilization of space environments for processing. Further studies of the gravity effect observed in this study are indicated to elucidate the mechanism and to characterize fully all possible effects.

The present report also reviews some specific candidate ion beam space processing operations.

It might be mentioned that although the present study had as its chief motivation the identification of space processing application for an ion thruster engine, the range of applications of ion beam technology was not limited to the capabilities of any specific apparatus. Thus, applications such as ion implantation are mentioned even though the ion energies required for this task are somewhat higher than produced by a typical TIB generator. It is felt that at this early stage the full range of ion beam technology should be scanned. Possibly a particular application may prove to have enough economic or utilitarian potential to justify a special, high energy TIB design. Also, the state of the art of TIB design will undoubtedly change rapidly as the scientific community becomes more aware of the potential of ion beam processing.
THRUSTER ION BEAM GENERATORS AND GROUND APPLICATIONS

The essentials of a thruster engine are shown in Fig. 1. With a few minor modifications, the engine design is readily adapted for ion beam applications. For example, Figs. 2a and 2b show some recent adaptations. Further descriptions of ion beam generators of the thruster type are given in Refs. 2 through 5. Reviews of conventional ion beam generators are given in Refs. 6 and 7. Among the advantages of thruster generators are large beam diameters, precise control of beam size, uniform ion energy, unidirectional ion flow, ease of control, and the contaminant-free, high vacuum
environment in which the thruster operates (Ref. 3). Some typical characteristics for generators of the thruster type are:

- **Pressure in Plasma Generator Cavity**: $\sim 10^{-3}$ torr
- **Pressure in Sputter Chamber**: $\sim 10^{-4} - 10^{-5}$ torr
- **Ion Beam Diameters**: 2.5 cm up to 30 cm
- **Ion Beam Current Densities**: 1 - 2 mA/cm²
- **Ion Beam Energies**: 0.5 - 10 keV
- **Gas Flows (Usually Argon)**: ~ 1.5 cm³/min
- **Acceleration Voltage**: 0 - 10 kV

It is also possible to design a TIB to eject heavy ions such as mercury (Refs. 1, 8 and 9).

In applications in which materials are processed the ion beam is caused to impinge either on the material itself (cleaning and implantation operations) or on a target material causing a transfer of momentum between the ion beam particles and some of the target particles. The target particles are "blasted"
off the surface, or more commonly sputtered. The sputtered target material is then deposited on a substrate (deposition operation). Figure 3 shows the arrangement for a sputter deposition.

![Schematic of an Ion Beam Sputter Deposition](image)

Fig. 3 - Schematic of an Ion Beam Sputter Deposition

The list of actual and potential applications for ion beam technology on the ground is impressive and is expanding rapidly. The following list is indicative.

- Ion Implantation in Semiconductors
- Ion Milling, Etching, and Cleaning
- Deposition of Thin Films of Semiconductors and Metals
- Micro-Circuit Fabrication
- Catalyst Preparations
- Surface and Particle Collision Studies

References 6 and 9 through 19 present good reviews of application in the various areas.
SPACE ENVIRONMENT EFFECTS

A review, with an eye as to possible space advantages of the ion beam applications cited in the preceding section, identified the following common area of benefit: the almost infinite pumping capacity of space environments definitely promises enormous advantages for ion beam technology. Also some exploratory experimental studies of both sputter thin film deposition and vapor deposition indicate that gravity may have a direct role in both processes even at very low pressures. These aspects of the study are presented in the following two subsections.

Advantages of Space Vacuums

In almost all cases of sputter deposition, or vapor deposition for that matter, the quality of thin films obtained depends very sensitively on the degree of gaseous contaminants present during deposition. For example, in the case of germanium thin film deposition, oxygen even at a partial pressure of 5×10^{-9} torr was found to increase epitaxial deposition and amorphous-polycrystalline transition temperatures (Ref. 20). This result was explained on the basis of oxide formation. The great sensitivity of silicon thin film deposition to oxygen and carbon impurities is well known (Refs. 21 and 22). Gaseous contaminants can also influence the quality of metal films (Ref. 23). For example, it has been shown that either β-Ta or bcc Ta may be formed by sputtering at a residual gas pressure of 2×10^{-6} torr and a total argon pressure of 20×10^{-3} torr; but as the residual gas pressure is increased to 5×10^{-5} torr, only bcc Ta is obtained (Ref. 24). Figure 4 shows the results of one study (Ref. 25) on the effects of pressure on tungsten film resistivity. The high resistivity values were attributed to incorporation of residual gases during the growth process.
Fig. 4 - Effect of Deposition Rate and Argon Pressure on the Resistivity of Sputtered Tungsten Films (Ref. 25)

The rate of impurity adsorption is also of concern with regard to a sputtering target. Such adsorption can lead to decrease of sputtering, yield and recontamination of surfaces deliberately cleaned. It is stated that the ratio of the ion current density ($\mu A/cm^2$) to the background pressure (torr) should be greater than 10^8 to avoid formation of surface layers (Ref. 26). Obviously, the lower the background pressure the better.

The impingement rates (n, number per cm2 per sec) of atoms at various pressure levels can readily be calculated from the following formula (Ref. 27)

$$n = 3.51 \times 10^{22} \frac{P}{\sqrt{MT}}$$

where P is the residual gas pressure in torr, M is the molecular weight, and T is the absolute temperature. The maximum impurity content, K, due to
residual gases in a sputter deposited film is given by the following formula (Refs. 27 and 28):

\[K = \frac{5.82 \times 10^{-2} \alpha MP}{\rho \frac{dD}{dt} \sqrt{M'T}} \]

where

\[\alpha = \text{sticking probability of the residual gas on the fresh film surface} \]
\[M = \text{molecular weight of thin film material} \]
\[M' = \text{molecular weight of gas} \]
\[T = \text{absolute temperature of gas} \]
\[\rho = \text{film density} \]
\[\frac{dD}{dt} = \text{deposition rate} \]
\[P = \text{gas pressure, torr} \]

Table 1 gives K values for various levels of oxygen pressure and various rates of Mo deposition (\(\alpha = 1 \)).

<table>
<thead>
<tr>
<th>p of Oxygen (torr)</th>
<th>Deposition Rate (Å/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.6 \times 10^{-9}</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>1.6 \times 10^{-7}</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>1.6 \times 10^{-5}</td>
<td>10</td>
</tr>
</tbody>
</table>

Thus, even at an oxygen pressure of about 10^{-7} torr a molybdenum layer deposited at a rate of 10 Å/s can contain 1% oxygen. For many films this level of impurity is much too high.

Two factors are common to any type of sputtering system: both the background pressure and the throughput of sputtering gas must be maintained at some predetermined levels. The preceding formula for K indicates that
control of impurity level can thus be controlled in a film deposition by one of three means: reducing \(\alpha \) (bias sputtering), increasing the deposition rate, or reducing the partial pressure, \(P_i \), of the impurity. The partial pressure of an impurity is related, of course, to the purity of the sputtering gas. Further, the partial pressure of impurity is related not only to the total pressure but also to the rate of system leakage. The partial pressure of a contaminant is therefore related to the throughput of sputtering gas. The formula relating these quantities is given by the following (Refs. 29 and 30):

\[
P_i = LP/(Q + L)
\]

where \(L \) is the related leak rate and \(Q \) the throughput of sputtering gas in torr liters/sec. Leaks may arise from a number of different sources — actual leaks in the apparatus, desorption from apparatus walls, "backstreaming," and diffusion of gas through the walls of the apparatus (Ref. 31). Of these different sources of leaks, desorption and "backstreaming" appear to be the most serious (Refs. 31, 32 and 33). The preceding formula relating impurity partial pressure to leak rate and throughput rate indicates that it is advantageous to make the throughput as large as possible and the leak rate as small as possible. The throughput rate is related, of course, to the pumping speed.

The optimum pumping speed required to maintain a total pressure of argon of \(10^{-2} \) torr and a throughput of 1 torr liter/sec is a few hundred liters per second (Ref. 28). Based on this criterion sputter-ion pumping in earth atmosphere is judged as too cumbersome and expensive; standard sorption pumps are inadequate because of small sorptive capacity; reproducible vacuum conditions are hard to achieve with cryopumping; diffusion pumps involve complications due to oil vapor backstreaming; and turbomolecular pumping, the recommended pumping method, is somewhat expensive and also can involve complications due to water, hydrogen, and helium backstreaming (Ref. 28). Backstreaming problems with turbomolecular pumps was the topic of lively discussions in the recent literature (Ref. 34).
The preceding discussion of pumping speeds relates to conventional
type sputtering systems. In the ion beam method, the ion beam is generated
at about 10^{-3} torr and the beam is then directed into the work chamber which
is at a pressure of about 10^{-5} torr. Under such conditions, it is expected that
the requirements on pumping speed will be even more severe, especially with
ion beams of wide area and high current density. For example, it is stated
that present commercial ion beams with current densities of about 1 mA/cm^{2}
(total currents about 15 to 50 mA) will typically have gas flows of 1.5 cm^{3}/min
(Ref. 35). This gas flow corresponds to a throughput of 1.9 \times 10^{-2} torr l/sec
and would require a pump with pumping speed of 1900 l/sec to maintain a pres-
sure of 10^{-5} torr. If leak rates were taken into account the pumping rate would
have to be higher still. In one instance in which an apparatus was so designed
that an ion current density of 50 mA/cm^{2} (total current 350 mA per about 7 cm^{2}
outlet area) was obtained, a pumping speed of 2000 l/sec was insufficient to
maintain an order of magnitude pressure difference between the source and the
background. The pressure in the source had to be dropped to 5 \times 10^{-4} torr
(Ref. 36). Because of lack of practical, inexpensive systems that can pump at
more than about 2000 l/sec, ion beam is generally limited at present to deposi-
tions in the range of about 10^{-5} torr or higher (Ref. 37). The advantage of higher
pumping speeds, i.e., higher throughputs, would be that greater beam areas and
higher beam current densities could be obtained (because of reduced charge-
exchange and background scattering effects (Ref. 2)) and film deposition or
sputtering could occur at even lower pressures (less contamination).

In view of the problems of obtaining adequate pumping speeds with various
pumps, the advantages of utilizing the natural vacuum of space becomes intriguing.
The pressures at various altitudes are generally as follows: 60 km — less than 1
torr, above 600 km — less than 10^{-8} torr, and above 1200 km — less than 10^{-10}
torr (Ref. 38). In outer space pressures of 10^{-13} torr and less prevail. Al-
though the statement is often made that the pumping speed of the space vacuum
is essentially infinite (Ref. 39), a more accurate statement is that the near-
vacuum environment of space affords a readily usable pumping capability of,
for all practical purposes, ultimate efficiency. Only the "induced" atmosphere
of the spacecraft and its associated hardware and instrumentation would detract
from the usability of the space environment as a vacuum source. This induced atmosphere may originate from a number of sources, such as drifting gas, outgassing of spacecraft materials (paints, sealants, adhesives, etc.), dumping of waste products and firing of attitude control motors. These various considerations have recently been analyzed for the purpose of assessing the feasibility of a molecular shield for the Space Shuttle Orbiter (Refs. 40 through 43). The concept of the molecular shield is shown in Figs. 5 and 6.

The analyses indicate that pressures of about 10^{-14} torr can be easily achieved behind the molecular shield. Given a proper orientation of an ion beam apparatus behind the molecular shield, it should be possible to attain an almost infinite pumping speed. Further advantages of the high vacuum behind a molecular shield are that larger systems could be handled than on earth. Costly hold-up times for degassing and baking operations could be avoided. Also not to be ignored are the initial vacuum system cost, cost of coolants, and cost of required power input, which apparently can run from about 0.2 to 22 kW depending on the particular pumps (Ref. 44). The latter factors of cost and convenience will probably become of more and more importance as the trend toward sputter utilization and automated systems continues to grow (Ref. 45).

Gravity Effects

A number of experiments on thin film deposition were conducted in the course of the present study. The results of these experiments indicate that gravity may be a significant variable that has been hitherto overlooked. The evidence indicating possible gravity effects in high vacuum thin film deposition are reviewed in the following paragraphs.

The ion beam facility at NASA-Lewis was utilized to deposit simultaneously a number of thin films of copper and sapphire at a background pressure of 10^{-6} torr. The physical arrangement employed is shown in the sketches of Fig. 7.
Fig. 5 - The Molecular Shield Shown Deployed from the Space Shuttle by an Extendable Boom. The length of the boom will be determined by the magnitude of the density around the Shuttle (Ref. 42).}

Fig. 6 - Schematic Representation of the Molecular Shield Geometry in the Drifting Gas, Illustrating Typical Molecular Trajectories; (1a) and (1b) free stream molecules, flux of (1a)-type molecules is much greater than flux of (1b)-type molecules; (2) desorbed molecules from the shield; (3) desorbed molecules from the experiment; and (4) molecules scattered from the orbiter (Ref. 40).
Fig. 7 - Experimental Arrangement for Sputter Deposition of Copper or Sapphire
The ion beam consisted of argon ions and atoms. Figure 8 shows the differences in the structures of the thin films deposited in the noted positions. It is difficult at present to make much of the noted differences. A number of further experiments are needed in which variables such as ion beam engine stability, exact sample location, and impurity levels are rigorously controlled. Evaporative depositions which are more easily controlled, however, do indicate a gravity effect, as described in the following discussion.

The works of Sherman, Mao, and Hutchinson (Ref. 46), Chopra (Ref. 47), Lane and Anderson (Ref. 48) showed relatively slight differences in thin film structures as the result of method of deposition (sputter or evaporation). These differences were attributed to different surface mobilities because of the different initial kinetic energies and different electrostatic charge environments. Thus, it is probably safe to assume that a gravity effect observed in a vacuum evaporation deposition would also apply to a similar sputter deposition. In a series of evaporative-deposition laboratory tests numbering about fifty and utilizing model organic materials, differences as the result of the position of the substrate with respect to gravity were also noted. The two experimental arrangements employed are shown in Figs. 9 and 10. The organic materials utilized in the evaporative tests included camphor, biphenyl, and acetamide. Glass, sapphire substrates, and plastic substrates were also utilized and were cleaned by a variety of techniques prior to crystal depositions. The temperatures were moderate (~ -10 C to 25 C for substrates, and ~47 C to 90 C for sources) and were not monitored at the substrate surfaces. The temperatures, however, were at the same values for any given top/bottom run couple. Differences in crystalline deposits depending on whether the substrate was on the top or the bottom relative to the source were noted in all but two or three cases. In general more numerous, smaller crystals were observed on bottom substrates than on top substrates. The crystalline forms observed on top substrates were larger and tended to be more dendritic than those on bottom substrates. Dendritic type crystals of biphenyl and camphor would at times be quite curled. Curled dendrites when they occurred were more prevalent on top substrates than on bottom substrates. In the case of acetamide at about 1 torr the differences are quite dramatic: the top substrate shows a few large needles extending out from the substrate surface, while the
Fig. 8 - Electron Transmission Micrographs of Copper on Sapphire Deposits
Fig. 9 - Apparatus Used at 1 atm Pressure in Upright Position (Further tests were conducted with the apparatus inverted. A nylon net or fiberglass web over the organic source material prevented the material from falling out.)
Thermoelectrically Cooled Microfoil Heater

Gravity Vector

(Top Substrate)

Substrates (Glass or Sapphire)

(Bottom Substrate)

Material to be Vaporized

(Widest Diameter of Bottle ~ 19 mm, Height ~ 34 mm)

a. Side View

13 mm

Small Opening (~ 2 mm x 2 mm) in Aluminum Foil Covering Mouth of Bottle

b. Head-On Views of Heated Container Openings

Fig. 10 - Apparatuses Used at Vacuum Levels of About 1 torr
bottom substrate shows many small needles, also extending out from the surface, as shown in Fig. 11.

![Acetamide Deposit on Top Substrate](image1)

![Acetamide Deposit on Bottom Substrate](image2)

Fig. 11 - Crystalline Deposits Obtained in Low Pressure Evaporative-Deposition Tests

In the evaporative-deposition tests variables such as substrate cleaning procedures, size of source opening in the low pressure tests, and possible differences between substrate coolers were checked and found not to be the cause of the observed effects. Also in the case of the low pressure apparatus a series of tests were performed in which the heater power was reduced in order to reduce the evaporation temperature. Longer deposition times were utilized in these reduced temperature runs. Definite differences between top and bottom deposition were still noted, although the differences were less marked than in the higher heating rate cases. It might be added that two different experimenters conducted the various tests and did not compare notes on the structures observed until most of the work was completed.

The evidence indicates that gravity can affect crystal growth even at low pressures. More extensive tests on both ion-beam sputter deposition
and high-vacuum evaporative deposition of metal and semiconductor materials are required to absolutely substantiate, however, this startling conclusion.

Discussion: A consideration of possible causes of the observed behavior other than direct gravity effects elicited two — gravity-driven convection or directional effects related to mean free paths. Neither of these possible causes, however, can be supported for the following reasons. In order for convection to have been the cause of the observed results it would have been necessary that vigorous convection was present at 10^{-6} and 1 torr as well as at 760 torr (1 atm). The vigor of gravity-driven convection, however, decreases rapidly with decreasing pressure. The thermal and solutal Grashof numbers, which are the ratios of the buoyancy forces generated by thermally or solutally induced density differences to the viscous forces and hence may be viewed as indicative of convective vigor, are related to pressure by the following relationships:

\[
\frac{Gr_T}{\nu_0^2} = \frac{\Delta T}{P/P_0} (P/P_0)^2 = Gr^0_T (P/P_0)^2 \quad \text{(Ref. 49)}
\]

\[
Gr_s = \frac{\left[\frac{M_B - M_A}{\rho_0} \right] g d^3 \Delta S_A}{\beta_0 \nu_0^2} \quad \frac{P/P_0}{\rho_0} \quad \text{(Derivation given in Appendix A)}
\]

where

- \(g \) = gravity acceleration
- \(d \) = a characteristic distance across which the temperature or concentration difference is composed
- \(\nu_0 \) = kinematic viscosity at a reference pressure
- \(P_0 \) = reference pressure (1 atm usually)
- \(\Delta T \) = temperature difference across characteristic distance
- \(\Delta S_A \) = concentration difference of component A across characteristic difference, concentration here given is in weight fraction units
- \(\rho_0 \) = density at a reference pressure
- \(M_A, M_B \) = molecular weights of solution components A and B
The formula relating the thermal Grashof numbers to pressure shows that the
Grashof numbers, and hence the vigor of natural convective flows, decrease
rapidly with decreasing pressure and becomes quite small at pressures of
1 torr (133 Pascals) and very small at 10^{-6} or 10^{-7} torr (10^{-4} or 10^{-3} Pascals).
At atmospheric pressures the Grashof numbers will typically be on the order
of 10^2 to 10^5 (weak to vigorous convection). At one torr these numbers would
be reduced to 10^{-4} to 10^{-1} and to 10^{-16} and 10^{-13} at 10^{-6} torr. The huge
differences in Grashof numbers at the three different pressures used in the
present study makes it very unlikely that gravity-driven thermal convection
could have been the cause of the observed results. This conclusion finds
support in an experimental study of convection in tall, thin layers of air uni-
formly heated at one wall and cooled at another (Ref. 50). The thickness of
the interlayer was varied 5, 10, 15, 20 and 25 mm. The temperature drops be-
tween the heated and cooled walls was also varied, i.e., $\Delta T = 20, 40$, and 60 K.
It was found that convection becomes negligible below 10 torr.

From the formula for the solutal Grashof number, it can be surmised
that pressure will not reduce convection vigor nearly as much in the case of
solutal convection for a given concentration difference as it does in the case
of thermal convection for a given temperature difference. At 10^{-6} torr, how-
ever, any concentration difference is bound to be very small. There are about
3.5×10^{10} particles per cubic centimeter corresponding to a concentration of
about 5.9×10^{-11} moles per cubic centimeter or 5.9×10^{-8} molar at a pressure
of 10^{-6} torr. A concentration difference of 50% would still be only 3.0×10^{-8}
molar. It appears, therefore, that neither solutal convection nor thermal con-
vection could be a cause of the observed effect.

The possibility that directional effects related to mean free paths could
have been a factor also does not seem likely. The mean free paths at 1 atm
and at 1 torr are 2×10^{-5} cm and 5×10^{-3} cm. The distances between the
evaporation source and the substrates in the 1 atm and the 1 torr cases were
about 1 and 2 cm. Also, in the sputtering experiment directional effects could
not have been a factor because both the top and bottom substrates were equi-
distant from the target.
One possible explanation of the observed results might be that small crystals are nucleated in the vapor phase just above the substrate. Depending on the direction of gravity then, they may either fall onto or away from the substrate. This view finds some support in a couple of literature reports. A nucleation mechanism in the gaseous phase was postulated as the cause of rough surfaces obtained in the growth of silicon epitaxial layers (Ref. 51). In a recent study of frost deposition some secondary growth of small particles between the primary growing crystal stalks is shown (Ref. 52). The strongest bit of support for this explanation is the paper by Horodecki et al. (Ref. 53) in which a gravitational difference was found in the chemical vapor transport growth of ZnS crystals. The difference was attributed to the settling of heavier crystallites in the gravitational field. The formation of secondary crystallites in high vacuum depositions would necessitate some sort of a loose adsorption layer of adatoms. The prospect is intriguing but further speculation is unwarranted. Further investigations of both high vacuum sputtering and vapor deposition are needed to more fully establish and characterize the gravity effect.
SPACE APPLICATIONS OF ION BEAM TECHNOLOGY

High Quality Thin Films and Unique Catalysts

The previously mentioned fact that many semiconductor and metal thin film processes are extremely sensitive to small amounts of impurity atoms is a major consideration in contemplating potential space processes. In particular, the possibility that large scale processing of silicon thin films by a TIB process in vacuums of 10^{-6} torr or better offers the promise of a means by which cheaper solar cells can be produced. It would also not be surprising that oxygen or other impurities play a major role in the ion beam sputter deposition of unique films such as diamond (Ref. 54), superconductors (Refs. 55, 56, and 57) and amorphous bubble domain films (Ref. 58). The more precise control of impurity level afforded by the larger pumping capacities available in space environments would facilitate better quality films at lower cost.

Two areas of catalyst production appear to have some promise: Formation of very small particles and subsequent deposition on an inert substrate either by a means such as ionized particle beam method (Ref. 59) or the more conventional sputter deposition. The second area that appears promising is that of co-deposition of metal atoms with vapors of organic or inorganic compounds at low temperatures (Ref. 60). The present method used to produce such compounds is a vapor deposition process. It appears that an ion beam deposition would offer a more economical procedure. The advantage of space for such processes would be the unlimited vacuum and possibly lack of a direct gravity effect on particle size and morphology would result in unique structures.

Complex Fabrication Operations

The most compelling promise of ion and electron beam processing in space is that of economics and product improvement realized from being able
to completely automate large-scale production operations because of the large
pumping capacity available in space. For example, a future space fabrication
utilizing TIB might consist of the following:

a. Sputter deposition of semiconductor thin film
b. "Writing" a circuit on the thin film by means of a focused ion
 beam (Refs. 6 and 13)
c. Sputter depositing passivating layers of SiO$_2$ (Ref. 61).

The following quote, although written as a prediction of the probable
direction of microelectronic fabrication processes on earth, is probably just
as accurate as a prediction of the direction microelectronic fabrication in
space will take.

"Electron beam pattern fabrication combined with the comple-
mentary ion beam processes offers some unique features; some very
useful devices just cannot be made in any other way! The potential
yield improvement by all-vacuum processing, using electron and ion
beams, together with automated electron beam testing, presents goals
worth working toward. Beams are presently not widely used or fully
developed, and involve relatively sophisticated processes using gen-
erally unfamiliar and expensive equipment. Nevertheless, in the
writer's opinion, they form the next major process technology for
microelectronics. In some cases beam processes may replace con-
temporary fabrication processes; more often they will be applied in
ways that take best advantage of their unique features."

- G. R. Brewer (Ref. 11)

Construction of Large Structures in Space

A number of concepts are currently under study for construction and
utilization of large space structures. Among such potential large space
structures are large arrays for converting solar energy into microwave
energy which would then be beamed to earth; platforms for large space tele-
scopes; platforms for earth observations; experimental stations, and space
colonies. It is already generally predicted that it will be more economical to
perform as much as possible of the construction in space rather than on earth.
Also, it will probably be more economical eventually to obtain the required
materials from the moon rather than from the earth. These eventuallities
will require processing techniques uniquely suited to the space environment. TIB appears ideally suited to perform a multitude of tasks associated with construction of large space structures. Some of these predicted uses are presented in the following subsections.

Cold or Warm Welding: The suggestion was made by Bernard Sater of NASA-Lewis of utilizing the ion beam in space for the purpose of cleaning the surfaces of pieces preparatory to cold welding. The possibility of ion beam cold welding is intriguing because it appears to hold many advantages for construction of large space structures in the vacuum, and weightlessness environment of space.

On earth processes such as diffusion, cold, and explosive welding are fairly sophisticated techniques utilized to limited extents. These methods require careful surface and edge preparation and fit-up and large specific pressures (Ref. 62). Electron beam welding which is also a relatively sophisticated technique, on the other hand, is winning widespread acceptance for earth applications. Electron beam welding in space, however, appears to have several disadvantages. For example in a space test of electron beam welding of aluminum alloy AM-6, the space welded samples were more porous than the earth welded samples (Ref. 62). Porosity problems which are frequently encountered on earth (Refs. 64 through 66) therefore, will probably be intensified in space. Electron beam welding, in common with other conventional methods of welding, necessitates severe heating and melting in the areas of the welds. Severe stresses, therefore, may be generated, resulting in weakened structural capabilities. Still another factor to be considered are the power requirements for electron beam welding, especially if wide welds are required. A weld width of 0.127 cm might require a total power of 25 kW (Ref. 64). Also not to be ignored is the fact that high energy electron beams can generate appreciable x-rays (Ref. 67). Astronaut exposure would therefore present shielding problems.

Relatively little research has been conducted on cold welding methods. References 68 through 77 present some reviews of the recent work and
experience with cold welding. Very little research also has been thus far conducted on ion beam cold or warm welding. (The term warm welding was coined for contact welds made at temperatures of about 0.1 to 0.51 T_m, where T_m is the melting temperature, degrees K (Ref. 78). A number of papers, however, have considered the mechanisms of cohesion and adhesion (cohesion — a joining of pieces of the same material; adhesion — a joining of pieces of dissimilar materials) and the effects of surface conditions (Ref. 79 through 82). The two main ideas incorporated in various theories of cohesion/adhesion bonding mechanisms are those of contaminating film presence and energy barriers due to causes such as misorientation of crystals at the surface or recrystallization processes (Ref. 68). It is doubtful that the effects of film presence on dislocation movement, and hence on subsequent plastic flow and bonding, are completely understood. It does appear, however, that the following can be cited as prerequisites for a good cold or warm weld; clean surfaces (free of oxides or other contaminants), a certain degree of surface roughness, sufficiently ductile materials (high stacking fault energy), and a certain degree of thermal activation with some materials. In the case of very hard solids, however, it is claimed that surface roughness can greatly reduce the adhesion between solids (Ref. 80). It might be mentioned that in the two studies that dealt specifically with ion plasma cleaning of the surfaces prior to surface contact (Refs. 78 and 83) successful welds were produced with a number of materials.

From the viewpoint of ion beam cleaning of surfaces and subsequent welding in space, the following advantages are postulated.

- Easy, fast cleaning of surfaces of large extent
- The ultra high vacuum of space, especially if molecular shields are provided, would ensure very clean surfaces for relatively long periods of time
- Relatively low energy requirements
- Control over the surface roughness
- Control over degree of thermal activation.

Because of the cited advantages it is foreseen that joining large structures in space would be facilitated by the technique. Joining materials such as composites, metal-ceramic or metal-semiconductor materials should also be better accomplished by ion beam than with other existing techniques.
Another aspect of ion beam technology with regard to cold welding is that of sputter deposition of an intermediate film that would make possible the joining of two very dissimilar materials. References 70 and 84 list some composites that have been successfully joined by cold or diffusion welding.

Strengthening Construction Glass: It is predicted that because glass will be one of the materials most readily obtained from the moon, glass will be utilized to a great extent in space as a construction material. One of the problems with glass as a construction material to date has been its low tolerance for tensile stress. Recent work, however, indicates that this tolerance can be increased by putting the surface into compression because glass can withstand almost infinite compressive stress. One means of doing this is by the replacement of glass alkali ions by larger alkali ions present in a chemical bath (Refs. 85 and 86). It would seem that ion beam sputtered films or implantation could be used to accomplish the same task more rapidly and economically. Apparently the National Bureau of Standards has accomplished some work along these lines (Ref. 87).

Coating, Texturing, and Milling Operations: A number of coating operations will of necessity be conducted in various constructions, i.e., reflective, protective, and decorative coatings. Wide area ion beam sputtering should be well adapted to such tasks. The formation of unique surface textures by means of sputter etching, i.e., "cone" formation (Ref. 88) could find application in space for absorptive solar collector panels. The only question in this regard is the advantages ion beam might offer over other techniques. It would seem that lesser energy expenditures and greater control over coating thicknesses would be the advantages of ion beam depositions. Also, the possibility of combining evaporation and ion beam sputtering could lead to further advantages, i.e., ion plating as shown in Fig. 12. In the area of milling operations in space, of course, ion beam appears to have no competitors.

Very High Energy Heavy Ion Beam Applications

In this subsection some applications of very high energy ion beams are reviewed. Although TIB technology has not been involved in generating very
Fig. 12 - Illustration of Vacuum "Ion Plating" Technique Using a Vaporization Source for Fast Deposition and an Ion Beam Source to Supply Energy and Momentum to the Film Atoms for Improved Film Properties (Note that the use of high vacuum conditions improves the film properties (Ref. 89).

high energy ions beams (~160 MeV - 10 GeV), the topic is brought up here because it is related to TIB. It would seem that the generation of very high energy ion beams would also benefit from space environments because of the "free" vacuum and high pumping capacity conditions. Producing very high energy, heavy ion beams on earth is a very costly business (Ref. 90). Such beams are primarily of interest for fundamental studies and possibly for fusion power (Ref. 91). Some further novel applications, however, have been suggested (Ref. 9): modeling of radiation damage in reactor materials, production of filters of ultrasmall size and quality (such filters would have many unique uses, i.e., drinking water free of bacteria under field conditions, filtration of aerosols, etc.), material surface studies, radiotherapy to very limited portions of the human body with minimal damage to surrounding tissue, "ionic" surgery, and production of artificial isotopes.
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Space environments afford almost limitless pumping capacities. A limitless pumping capacity will allow easy maintenance of high pressure differentials and thus will allow optimal conditions for operation of numerous ion beams simultaneously or for ion beams of large area. The easy maintenance of a large pressure differential will further allow thin film deposition under conditions of ultra-high vacuum. Such advantages recommend large-scale utilization of ion beams for operations such as microelectronic component fabrication, which would result in product quality improvement at lower cost.

Experimental studies of both ion beam sputter and vapor deposition of thin films indicate a direct gravity effect on the crystallization processes even at high vacuum. This direct gravity effect could have enormous, far reaching implications both for product improvement and utilization of space environments for processing.

Further space processing applications of ion beams include: welding; strengthening of construction glass; and coating, texturing, and milling operations. Possibly higher energy TIB will eventually be designed. Space processing applications of higher energy beams might include production of filters of ultrasmall size and quality and production of artificial isotopes.

Recommendations

An analysis of the economics of producing a particular thin film (silicon for example) by means of ion-beam-sputter and by vapor deposition under ultrahigh vacuum conditions both on earth and in space is recommended.
Also recommended, to conclusively establish the direct gravity effect and its mechanism, are further experimental studies. Particularly needed are further ultrahigh vacuum depositions employing both ion beam sputter and vapor techniques. A variety of metal and semiconductor materials should be investigated.

ADDENDUM

After the present report was completed, some further electron microscope transmission micrographs pictures of copper films deposited by ion beam sputter deposition were received. These pictures were of thin films deposited in the 2 and 4 positions as shown in Fig. 7b. The pictures received were very similar to those shown in Fig. 8 indicating that the experiment needs to be repeated with more rigorous controls on ion beam stability, impurity levels, and sample placement.
REFERENCES

36. Cf. Ref. 5.

44. 'Vacuum Pumps,' Industrial Research, August 1976, pp. 55-60.

91. 'Prove Ion Beam Fusion in 10 Years?,' Industrial Research, July 1976, p. 13.

Appendix

DERIVATION OF A SOLUTAL GRASHOF NUMBER
Appendix

The derivation of the pressure dependency of the solutal volumetric expansion coefficient is unclear in the literature. The following derivation was obtained in the present study.

\[PV = (n_A + n_B) \, RT \]

where \(n_A \) and \(n_B \) are moles of A and B, and

\[P = (S_A + S_B) \, RT \]

where \(S_A \) and \(S_B \) are concentrations (moles/unit volume). Furthermore,

\[\rho = MA \, S_B + MB \, S_B \]

\[P = (S_A + \frac{\rho}{MB} - \frac{MA}{MB} \, S_A) \, RT \]

\[0 = \alpha S_A + \alpha \rho \frac{MA}{MB} - \frac{MA}{MB} \alpha S_A \]

\[- \alpha \rho = MB \, \alpha S_A - MA \, \alpha S_A = (MB - MA) \, \alpha S_A \]

\[- \frac{1}{\rho} \left(\frac{\alpha \rho}{\alpha S_A} \right)_{P, T} = \frac{(MB - MA)}{\rho} \]

This result was first given by Gebhart and Pera (Ref. 92).
Following Ref. 49 it is easy to show that

\[\text{Gr}_s = \frac{[M_B - M_A] g d^3 \Delta S_A}{\rho_o \nu_o^2} \cdot \frac{P}{P_o} = \text{Gr}_s^0 \frac{P}{P_o} \]