Objective

Study feasibility of actively controlling spacecraft potential by charged particle emission

Approach

Conduct experiments using:

- ATS-5 electron emitter
- ATS-6 plasma emitter
- UCSD particle instruments

Analyze particle data to obtain:

- Spacecraft potentials with and without particle emission in various environments
- Differences in the effectiveness of electron and plasma emission

Figure 2. Objective of investigation
Figure 1. Schedule for Spacecraft Charging Investigation

- DEFINE ENVIRONMENT
- DEVELOP GROUND SIMULATION TECHNIQUES & FACILITIES
- DEVELOP SPACECRAFT ANALYTICAL MODEL
- DEVELOP MATERIALS
- EVALUATE ACTIVE CONTROL TECHNIQUES
- FLIGHT DATA
 - ATS-5 AND 6 ADDITIONAL DATA
 - SCATHA
- ADDITIONAL FLIGHT EXPERIMENT
- DESIGN CRITERIA AND TEST REQUIREMENTS

△ REPORT

CONTINUOUS INPUTS FROM ALL OF ABOVE

MISSION

FY 76
FY 77
FY 78
FY 79
FY 76
76T
FY 77
FY 78
FY 79
FY 76
FY 77
FY 78
FY 79
Figure 3. ATS-5: Detectors and Ion Engines

- UCSD Plasma Viewing Cone
- Magnetometer (Boom in Z-axis)
- Solar Pressure Balance Ring
- Solar Panels
- Thermal Control
- Experiment Equipment Bay
- Ion Engine Experiment (Second Ion Engine on Opposite Side Not Shown)
- UCSD Auroral Particles Experiment
- Solar Panel
- UCSD Plasma Viewing Cone

Length = 72.5 in.
Diameter = 57.6 in.
Figure 4. ATS-6: Detectors and Ion Engines
Figure 5. ATS-5: Thruster

- VAPORIZER HEATER (350°C)
- SPLIT SEGMENTED ELECTRODES
- ACCELERATE & VECTOR CESIUM ION BEAM
- - 2000 VOLTS POTENTIAL
- ELECTRONS INJECTED INTO CESIUM ION BEAM
- NEUTRALIZER HEATER (1750°C)
- HIGH VELOCITY NEUTRAL CESIUM PLASMA
- DECELERATING ELECTRODE GROUND POTENTIAL
- POROUS TUNGSTEN BUTTON CESIUM IONS ARE GENERATED AT SURFACE + 3000 VOLTS POTENTIAL
- POROUS NICKEL WICK (FEEDS LIQUID CESIUM)
- ZERO-G CESIUM FEED SYSTEM & RESERVOIR
- IONIZER HEATER (1100°C)
- CESIUM VAPOR FEED TUBE
- BI METAL THERMAL VALVE
FIGURE 6. ATS-6: THRUSTER
Figure 7. ATS-5 and ATS-6: Comparison of Passive Spacecraft Potentials
Figure 8. ATS-5: Potential During Eclipse/Neutralizer Operation 9/20/74
Figure 9. ATS-5: Effect of Electron Emitter on Spacecraft Potentials
Spectrogram 1. ATS-6: Eclipse with Injection of Hot Plasma; 10/2/75
Spectrogram 2. ATS-5: Neutralized Operation in Eclipse; 9/20/74
Spectrogram 3. ATS-6: Ion Engine Operation; 7/18/74
Spectrogram 5. ATS-6: Neutralizer Operation in Daylight; 8/20/76
Spectrogram 6. ATS-6: Neutralizer Operation in Daylight; 11/14/76
Spectrogram 7. ATS-6: Neutralizer Operation in Eclipse; 10/14/76
Spectrogram 8. ATS-6: Neutralizer Operation in Eclipse; 9/3/76