General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



(NASA-CR-155161) THEORY OF

ULTRASONIC N77-33266

DIFFRACTION BY DAMAGE DEVELOPED IN THIN
LAMINATED COMEOSITES Semiannual Status

Report, 1 Apr. - 30 Sep. 1977
Polytechnic Inst. and State Univ.)

|
COLLEGE

ENGINEERING

(Vvirginia Unclas

111 p HC G3/24 50215

.
-
| | ¥
VIRG!NIA
POLYTECHNIC
INSTITUTE
STATE
UNIVERSITY,

4




B
(
|
October 1977

.J THEORY OF ULTRASONIC DIFFRACTION

BY DAMAGE DEVELOPED IN THIN
i | LAMINATED COMPOSITES
§ | D. T. HAYFORD
; E. G. HENNEKE
. ENGINEERING SCIENCE AND

MECHANICS DEPARTMENT

SEMI-ANNUAL STATUS REPORT
- NASA GRANT NSG-1254
1 April, 1977 - 30 September 1977

p PREPARED FOR:

L , MATERIALS APPLICATION BRANCH

. : MANUFACTURING TECHNOLOGY SECTION
i NASA LANGLEY RESEARCH CENTER
g HAMPTON, VA. 23665




ACKNOWLEDGMENTS

This work is sponsored by the National Aeronautics and Space
Administration, Langley Research Center under grant NSG-1254. The
authors express their appreciation to Mr. Edward L. Hoffman of NASA

Langley and Drs. W. W. Stinchcomb and K. L. Reifsnider of VPI & SU.



ABSTRACT

This report provides a general theory of the diffraction of
ultrasonic waves. The theory is then used to find the apparent
attenuation which would result if certain damage states (transverse
cracks and delaminations) are introduced into a graphite/epoxy
laminate through which the ultrasonic wave passes.

Some experimental data for two different laminates ([0, 90, *45]s
and [0, +45, 90]s) is presented which shows changes in the apparent
attenuation of about 1 dB. These changes generally occur at loads
which correspond to the range predicted for the formation of the
above mentioned damage. Though no exact correlation between
theoretical and experimenfalyresu]ts is given, the predicted changes
in the attenuation for several simple and common damage states are
well within the range of experimental values. |

It is hoped that the technique described herein can be further
devé]oped and used to detect the formation and growth of damage in
composite specimens in regions not readily visible by conventionaly

techniques.
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1. INTRODUCTION

In a real sense, the macroscopic behavior of a material is deter-
mined by interactions which occur on a microscopic or sub-microscopic
Tevel. This is especially true of the failure of a material wherein
small Tocal failures gradually intertwine until they produce an effect
which is catastrophic for the material, and, quite possibly, to the
strucfure containing that material.

An understanding of the failure of composite laminates, then,
must be preceded by an understanding of these microscopic failures;
in general, the major types of microscopit damage are transverse cracks
and delaminations. Usually, though, only the outermost edge of a
specimen can be observed visually, and the need to "observe" the damage
interior to a specimen, both during and after the formation of that
damage, calls for new methods and techniques in the field of non-
destructive testing and engineering,

~ Several techniques, both new and old, are nnder investigation
at Virginia Polytechnic Instituté and State University. Among these are
vibrothermography, acoustic emissions, acoustic emission signature
analysis, ultrasonic attenuation measurements, and replications. This
report investigates the possibility of one more type of ultrasonic
testing, where the formation of damage in a composite specimen - serves
as a rudimentary diffrattion grating which causes a changeuin thé
apparent attenuation of the specimen.

Tne'under1ying purpose here, then, is to serve‘as a basis for

future investigations. This text merely purports to show that such
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= attenuation changes could be caused by the formation of damage, not
;' that they are caused by such formation. That proof, and the possible
B application of thg method herein described to measuring microscopic
i» failure in compogites, will require considerable additional time and
o effort,




2. LAMINATE PLATE THEORY
The analysis of laminated composite plates under in-plane loads is
well documented, and will be only briefly »resented here. Readers are
referred to [1] for more details.
The simplified theory assumes that each lamina is under a state of
two-dimensional stress, and that all displacements are small (Kirchoff-

Love hypotheses). The in-plane displacements are given by

u(xy) = w(xy) - z Y]

(1)

VO(x,y) - z ———ﬂ"wg;’

v(Xx,y)

where u and v are the x and y displacements at a pdint in the
Taminate; u® and v® are the x and y displacements of the mid-
plane of the laminate; z is the vertical distance from the midplane to
the point; and w is the vertical displacement of the midplane. The
coordinate system is shown in Fig. 1. The x-y-z system is the global
coordinate system, and is- the same for all layers in the laminate. The

1-2-3 system is known as the material coordinate system, and varies
from layer to layer. The angle between the 1-axis and x-axis is often
used to refer to a particu]ar laminas; thus, a,1amina whose angular
orientation is 45° is often called a 45°A1ayer. Material’propertiesfare
usually expressed in the local (material) system, and then transformed
to the g]oba]ysystem when necessary. |

Differentiation of Egn. (1) to find the in-plane strains yields:

X 9X ax?

~ continued
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Orientations of Local and Global Coordinate Systems

for a Composite Lamina
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The stresses are related to strains by the transformed reduced stiffness

matrix, to give

Oy %y Uy Y ey
oy ¢ = | Tp Qp e €y (3)
Txy Q]G Q26 Qé6 ny

Thus, the stresses are given by

(0] € K
X X X
k—4 ) 0 -
Oy Q Ey z &y (4)
0
“xy Yy LK
where
eg auo/ax |
e; = LoV sy ()
0 0 0 : :
ny U /3y + v /ax |
~are called the midplane strains, and
/KX ‘ 'azw/axz
o, b= Ldwat (6)
) - 7772 . . v
“xy '?3 w/axay

- are called the midplane curvatures.




As in classical plate theory, the stresses and 2z tihes’the
stresses are integrated over the thickness of the plate to obtain the
force and moment resultants. Since u°, v°, ‘and w are ﬁndependent
of z, these integrations reduce to the integrations of the stiffness
matrix across the thickness. The force and moment resultants, in |

terms of the strains and curvatures are

0
Ny M A A ex Bz Big Kx)
— ' 0 3
Ny T TR P Py & { ~ Byo  Bog ,Kyj
0
Nyy Mo M6 Pes | Ty B26 Bse_~("xy
(7)
0 ; ' 1.
;Mx By Bz Big | (= I PR TR I
) o 0 o
IMy = B2 By By ey 0 102 Do Dag | 4Ky
4 .
Myy Bis B2 PBes Yy D16 D2s  Des ) \*xy
(8)
H
where 3
B 2. =
(A'ij’ Bij’ D'ij) = [ (]s 2y 2 ) Q1J dz (9)
H
7

when H s the 1amjnate thickness. If the laminate is symmetric about

kthe midplane, it can be shown that the B matrix is identically zero,

reducing Eqns. (7) and (8) to

N by ‘e

"
oy ey :
- : 0 \
Ny = [A] €y (]0)}
N ) B |
i g ny

Xy




and

Mx x

= - 11
M, [p] Ky (11)
Mxy' ny

Once the midplane strains and curvatures are determined in terms
of the applied loads, from either Eqns. (7) and (8), or Eqns. (10) and
(11), they are substituted into Eqn. (4) to determine the stresses in

each Tayer, For the case of a symmetric laminate, the stresses in

the mth Tayer when no external moments are applied, are
%x ' Ny
-1 _
= 1
o (@, (A1 N, (12)
Txy ’m ny

where [Q]m is used to denote the transformed reduced stiffness matrix

_th

of the m layer.,

2.1 Curing Stresses

Because the composite laminate is used at temperatures much lower
than the temperature at which it was cured, residual internal stresses
~ result from the differént expansions and contractions of each 1aye?.

These mustya]so be included in the stress analysis of the composite.

This becomes especially important when considering damage~deve10pmentfinf

composites, as will be discussed later.  Though what follows can be
generalized to apply to any laminate, it is developed here only for

symmetric laminates. .




Since the laminate is symmetric, there will be no bending; hence,
the strain in each layer will be the same. This strain is composed of
two parts; the free thermal strain, and the strain imposed by the

constraints of the other layers. Thus
(% = ey, + 1M, (13)
k k
where {so} are the three midplane strains, {eT} the three thermal

k L]
h

strains in the kt layer, and {em}k , the three mechanical strains.

Because the mechanical strains arise from the constraints of the other

layers, they determine the stresses in each layer, thus
o}, = [Q1, [(% - {1}, ] | (14)
k k k

The thermal strains have the form of

N a
X X

el L= o, » AT L (15)
y y

YT l o
Xy ’k Xy’k

where AT 1is the temperature difference causing the thermal strains,
and the o's are the coeffiéients-of thermal expansion of the kth
layer. -

If there is no net force acting on the laminate, the intégra] of
the stresses across the laminate thickness must be zero. Again, noting '

: that (1 s independeht of the z direction, this integral becomes




[Q‘]k dz {e%} - [, (o}, 8T dz = 0 (16)

N ——— N[
M| ——— N

Calling the last integral of Eqn. (16) {N}T, Egn. (16) is solved

for {e°} to give
(% = AT )T (17)

Equation (14) is then used to solve for the curing stresses in éach

layer.

2.2 The Pipes-Pagano Interlaminar Normal

- Stress Approximation

Laminate theory assumes that the entire plate is under a state
of two-dimensional stress, and this is essentially true in regions
away from the free edges a distance approximately equal to the thickness
of the laminate. In these boundary regions, however, significant
interlaminar normal stresses (cz) exist.‘ Pipes and Pagano [2] have
proposed an approximate solution for the normal stress in the boundary
region. No details are given here, but the interested reader is invited
to refer to their papér. The greatest importance of their apbroximation
is the relative magnitude of the norma1 stress andrfts sign (tensile or
cdmpressive) through the thickness of the laminate. This will be

discussed in more detail later.

..».A..l,N»«fv,—-::;—:::f;t:‘:f»r-:‘:t:‘. B s R e T o e R e SR AT g R : I [




3. DAMAGE DEVELOPMENT IN COMPOSITE MATERIALS

The subject of damage development in composites has received much
attention, but the phenomenological process remains unexplained for the
most part. The discussion presented here is largely conjecture, although
supported by some experimental observations.

Two different composite laminates ére discussed here. The first,
hereafter called type I, has a [00, i45°, 900]S stacking sequence. The
second, hereafter called type II, has a [0°, 90°, t45°]s stacking
sequence. Average lamina properties of the AS-3501 graphite epoxy used
in constructing the specimens are presented in Table I.

The tWo most frequently observed types of damage in composites are
transverse cracks and delaminations. Transverse cracks are those which
exist parallel to the fiber (1) direction, caused mainly by stresses
in the 2 direction (02). Delaminations are separations between laminae
caused by interlaminar normal stresses (03). Delaminations are génera]]y
~confined to a region close to the free edges of a specimen, while
transverse cracks are thought to extend across the width of the specimen.
Though seemingly unrelated, both types of damage occur because of the
relatively low strength of the epoxy used to hold the graphite fibers
together.

A computer program was written to calculate the curing stresses
kfor a symmetric laminate, as well as to predict the average laminate
properties and the app]ied‘resu1tant (Nx) necessary for the failure of at
least one lamina. The failure criterion‘used.wasva Tsai-Hill criterion

[1] which states that féi]ure occurs Wheh the fo1low1n§ condition is

10 -

o i



met:

+ =5 = (18)

The values used for X, Y, and S are also presented in Table I. The
curing, mechanical, and total stresses at first-ply failure are

presented in Table II. Note that the stresses and average laminate
properties listed are for both types of laminates, since laminate theory
cannot distinguish between their in-plane behavior. Table III presents
the results of the Pipes-Pagano approximation of the maximum interlaminar
normal stress existing between laminae. Note that these stresses are

different for the twq laminates. The applied load resultant, Nx’ is

875 1bs/in for both tables.

For both laminates, the 90° plies fail first; and failure occurs

when Oy is approximately equal to Y. The curing stress (c;)

these laminae is 4.77 ksi, and if NX is 875 1b/in, the total stress

for

(02) in the 90° layers is 8.2 ksi, resulting in a predicted total
failure of the 90° plies by tfansverSe cracking, Experimentally,
cracké have been observed to begin at about 900-]000 1bs/in; however,
the entire ply does not fail at once, but continues to develop cracks

at loads up to about 2000 1bs/in, Thfs gradual failure can be explained

 in part by a spatial variation of the value of Y, since the 8.2 ksi

used is only an average value. A better explanation, though, is
contained in a paper by Pagano [4], where he reports that the absorption
of around 0.3 % moisture, by weight, by the composite will almost

completely relax the therma] stresses. If these stresses are relaxed,
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TABLE I
SUMMARY OF PROPERTIES* FOR AS-3501

Elastic
Stiffness Tensile Compressive
Properties ' B Value Value
E, 20.2 x 108 psi 17 x 10% psi
E, 1.4 x 10° psi 1.6 x 108 psi
V1o 0.28 0.28
61, 0.65 x 10% psi 0.65 x 10° psi

Strength properties

X 235,000 psi
Y 8,200 psi
N 17,900 psi

Other properties

Thermal expansion coefficients
ay (fiber direction) = -0.2 x 108 in/in/%F
o (transverse direction) = 13 x 1076 in/in/oF
Fiber volume fraction 0.62
Ply thickness 0.0052 + 0.0004 in
Void content 2 %
Density 0.057 Tb/in®

Stress-free temperature 278°F

*Data supplied by Hercules, Inc."

180,000 psi
25,000 psi
17,900 psi
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TABLE I1

THERMAL, MECHANICAL, AND TOTAL STRESSES, AND AVERAGE
LAMINATE PROPERTIES AT FIRST PLY FAILURE IN TYPE I AND II LAMINATES

Layer Stress Thermal Mech. Total
Orientation Direction = Stress{ksi) = Stress{ksi) = Stress(ksi)
0° o -4.77 53.9 49.12
o 4.77 - 0.07 4.70
T, 0 0 | 0
90° | o -4.77 -15.17 -19.94
oy 4.77 3.42 8.19
T19 0 0 0
45° o -4.77 19.36 14.59
02' 4.77 1.67 6.44
2 0 - 2.90 - 2.90
-45° o -4.77 19.36 14.59
o, 4.77 1.67 . 6.44
Ty, 0 2.90 2.90
E = 8.11 x 108 psi
XX :
.. 6 .
= 8.1
Eyy 11 x 10 p§1
Vyy = 0-299
- 6 .
ny’ = 3.12 x 107 psi
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THERMAL, MECHANICAL, AND TOTAL INTERLAMINAR NORMAL
STRESS AT FIRST PLY FAILURE IN TYPE I AND II LAMINATES
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TABLE IIT

Thermal Mech. Total
Interface Stress(ksi) Stress (ksi) Stress(ksi)
Type I Laminate:
0® / 450 0.48 -.01 0.47
459 / -45° 1.44 0.74 2.18
-45° /  g9g° 2.40 3.02 5.42
90° / 90° 2.88 4.55 7.43
Type II Laminate:
0° 7/ o0° 0.48 -.01 0.47
90° / 45° 0.96 -1.55 -0.59
45° /  -48° 0.96 -3.84 -2.88
-45° /  -45° 0.96 4.6 -3.65
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the applied load neéessary to cause failure of the 90° layers increases
to approximately 2000 1bs/in.

Another observation not explained by laminate theory, or the
application of a failure criterion to the stresses predicted by
laminate theory, is the almost regular spacing of the transverse cracks.
Reifsnider [3] has addressed this problem by assuming that, in the
region of the transverse cracks, the surrounding layers take up the
load previously carried by the cracked lamina, and attempts to find at
what distance away from the crack the stress in the failed layer
recovers its original value. He then aséumes that another crack will
form at this distance, and thus predicts the crack spacing. For a
type I laminate, he predicts a spacing of 0.029" in the 90° layers,
with observed spacings of 0.024" - 0.059".‘ For a type II laminate,
he predicts a spacing in the 90° plies of 0.014", with observed spacings
ranging from 0.009" to 0.017". The observed spacings depend upon both
the maximum load and the total number of cycles that the specimen
undergoes, and decreases with both increasing load and increasing
nuﬁber of cycles.

One last observation worth noting is that the 90° 1aminae in the
typé I material act, essentially, as one layer of twice the thickness.
Hence, the transverse cracks in type I laminates wbu1d have a much
'Wider opening than those in type II laminates, where the 90° 1aminae
are independent. |

Once the 90° laminae begin to fail, laminate theory is no 1onger:
applicab]e,’and attempts to pfedict the failure of the 45° Taminae

are somewhat dubious. Experimentally, the 45° plies adjoining the 90°
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plies begin to develop transverse cracks shortly after their development

in the 90° layers, and the damage progresses throughout the interior
of the Taminate.

The existence of the second type of damage is predicted by the
Pipes-Pagano o, approximation. Due to the stacking sequence, very
high tensile stresses are present between the 1ayers of the type I
lTaminate, while the stresses are predominantly compressive in the type
IT laminates. This is evidenced by extensive delaminations along the
edges of type I specimens. Occasionally, the type II specimens
delaminate near the end tabs, but this appears to be a grip related
phenomenon. Little work has been done to date to determine the depth
of the delamination as a function of load or number of fatigue cycles,
but it appears to extend at least a quarter of an inch into the width,
at or near specimen fracture, of a 1" wide sbecimen.
| As specimens of either material are Toaded in simple tension, the
stress-strain curve becomes bilinear at Toads of approximately 2000

1bs/in. This knee, though not evident in all specimens, is probably

related to the amount of transverse cracking in the various layers. The

predicted change in EXX with complete fa{fure of the 90° layers is

about 4 %, while if all the interior 1ayers fail, the change is about

22 %. The actual values found range from about 6 % to 18 %, indicating

that the knee is some combination of failure in the 90° plies as well
as in the 45°’p11es. The knee in type II Taminates is generally more

gradual than in type I, for unexplained reasons.

M



4. WAVES IN SOLIDS

Wave propagation in all materials is governed by the eguation of
motion:

o"ij,j = pl]_i . (]9)

If the material in question is linear elastic, homogeneous, and
isotropic, the stresses can be replaced with spatial derivatives of the
displacements, u,, and the Lame constants, A and u, *o obtain

= pﬁ

(A + 3) u,

3,31 T Mg (20

i
Generally, a wave is considered to have a sinusoidal time variation,
and complex notation is used. It must be remembered, in what follows,
that the actual wave is mathematically described by the real part (real
part convention) of the complex wave function. Thus us is represented
by a time varying portion, e_th, multiplied by a spatially varying
portion, E}. The time portion of Egn. (20) is then eliminated, and
the remaining partial differential equation is solved by appropriate
means. '
Three of the most common1y discussed waves which can propagate
in a solid are the longitudinal piane and spherical waves, and a
transverse plane wave. A mathematical description of any plane wave is

uj = Ajei(K"zXz - wt) (21)

 where "z‘ are the components of the unit vector normal to the wave
: Front;l w s the angular frequency of the wave; and k 1is the wave

~number. Numerically, k is equal to the ratio of the angular

17

S W i MR I l



18

frequency to the appropriate wave speed, while the longitudinal and

transverse wave speeds, VL and VT respectively, are given by

: 1/2
+
v =t
(22)
VT = (501/2

If Eqn. (20) is solved in spherical coordinates, with u, being
the only non-zero displacement and all quantities being independent of
angular orientation, then a longitudinal spherical wave can be found

which propagates with displacements given by

= (g A
u. = Ak (kr + zrz) e

r k

i(kr - Wt) (23)

where r is the distance to a field point from the source of the
spherical wave, and k 1is the longitudinal wave number. For both
kinds of 1ongifudina1 waves, the particle displacements are always
parallel to the wave front normal, while for transverse waves, the
displacements are perpendicular to the wave front normal.

Equations (21) and (23) are mathematical deécriptions of waves in
ideal materials, but all real materials absorb some of thé energy
carried’by the wave as it travels through the medium. This absorption
procéss is called attenuation, and is usually described mathematically

by allowing the wave number to become comp1ex; i.e.,
k =k +da ‘ ‘ o (24‘

with k being the usual wave number and o the amp1itude_attenuatiqn

coefficient. Eans. (21) and (23) then become
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- wt)

-an x_ i{kn_ x
S'A (25)

u,. = A,e X*?te
J

| =4
1

= pke 0" eilkr - wt) (%F'+ k; ) (26)

r
The attenuation coefficient is 2 function of many things, among which
are: the material serving as a sound medium, the frequency w, and the
damage or material discontinuities existant in the material. Hence,
it is generally possible to obtain a measure of the amount of damage
introduced into a material by external forces by measuring the change
in attenuation.

This coefficient is usually measured by a technique called the
pulse-echo method. An ultrasonic transducer is fastened to one surface
of a block of material by some bonding agent, usually a thin grease
such as glycerin. The transducer is electrically coupled to a pulse
generator-receiver which emits high energy bursts, or pulses, of very
high freQUency (2 - 50 MHz) and short duration (2 - 5 psec). These
electrical pulses are converted to mechanical vibrations (sound) of the
same frequency by the transducer. The sound pulses then'trave1 through

‘the material and reflect off ofitheroppdsite surface, returning to the
transducer and causing it to vibrate.r A portion of the mechanical
ehergy of the transducer is converted back into e1ectrica1 enefgy
whiéh passes to the receiver and is disp]ayed upon a CRT as an echo.
The reflections continue until they eventually die out, resulting in

a series of echoes on the CRT. An examination of the maximum
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amplitude in each echo will yield the attenuation coefficient;
Suppose that the block being tested is of length L. Then the
distance traveled by each echo is 2nL, where n is the number of the
echo. Suppose also that the wave travelling in the material can be
adequately described by Eqn. (25). The maximum amplitude of the nth

echo is then given by

_ -2nob
u, = Aoe (27)

with AO being the initial amplitude of the sound wave. If the ratio

of U to u is taken, with n being greater than m, one obtains

o

mo_ eZa(n-m)L . (28)
u

n
Hence, thg attenuation coefficient is found to be

u

- 1 m
o= m In U; (29)

W1th'units of nepers/cm.

The length of the specimen is important because the pulse must
- be shorter than the time required for an echo to return. If not, the
returnjng echoes interfere with the original puTse, as well as with
each other, making the determination of the maximym.amplitude‘either
~ incorrect or impossible. As discusséd‘by Truell [5]; other‘factOrs
can also affect the accuracy of attenuation measuremeﬁts. Foremost
among these are losses which occurkbecause of the coupling agent,

~ Tosses resulting from non-parallelness of the two reflecting surfaces
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of the specimen, and losses associated with the diffraction of the
sound wave as it leaves the circular transducer. Some, or most, of
these errors can be accounted for, as will be discussed later.

Units other than nepers/cm. are often dsed to describe attenuation.
Two of the most common are decibels per inch (dB/in) and decibels per

echo (dB/echo). They are defined as

.u
.20 m .
¢~ 2C(n-m ]°910 u, (30)
and
.20 Un ,
“ = T-my 1%%0 T, (31)

Unless otherwise specified, units of dB/echo will be used in what
follows.

It is unfortunate that moét composite specimens are not very
thick; the usual eight-ply laminate has a time between echoes of about
1 usec, while the minimum pulse width achievable with presently
existing equipment at VPI & SU is between 1-1/2 to 2 usec. For this
reason, a fused silica delay block is used to obtain a larger time
separation betweeﬂ‘echoes.

Several reports ([6], [7]) have been made concerning the use of
}v buffer blocks in making attenuation measurements. Papadakis' techniqUe
ts], though very useful on thin specimens, places‘sévéré restfictions. |
on equipment performance which the presently used-syStém'iS'not éb]e'
to meet; one in particular is the requirement of a very fast-rising

pulse. Reference [7] relaxes these requirements, but in order to do 50,
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places a lower 1imit on the number of plies in the laminate at about
fifteen. Both techniques placed the buffer block between the specimen
and transducer, and kept track of the multiple refiections which occur
at the buffer block-specimen interface. After thoroughly exploring the
above techniques, they were discarded as being useless for composite
specimens of eight plies or less, at the present time.

Another technique which also has been tried at Virginia Tech
consists of reversing the locations of the specimen and buffer block.
A picture of the transducer and buffer block mounted on a specimen
is shown in Fig. 2. The c-clamp is used to hold the three objects
together as the specimen is being loaded in tension o fatigue.
Figure 3 is a photograph of a typical oscilloscope trace using this
arrangement. Note that the echo train consists of several large
echoes (major echoés) evenly spaced, with a series of smaller echoes
(minor echoes) trailing each major echo. These minor echoes return _
o) c]oée]y to the major echoes as to be individually indistinguishabie;
hence, only the major echoes can be used to obfain any useful information.
Figure 4 is a schematic diagram which shows the paths taken by the
first two major echoes. The paths taken by the minor echoes have been
omitfed for clarity. These major echoes correspond to the portion
of the wave which passes Comp]etely through the specimen and ihfo thé | /:
buffer block, after which it simp]y reflects back and forth in the ,
buffer b]ock,‘releasing a portion of its energy into the specimen at
each reflection at the buffer b]oék-specimen interface. It is this last

portion of the wave which reaches the transducer and is shown on the

e
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CRT as a major echo.

To obtain a good estimate of the relative amplitudes of the first
two major echoes, assume that a plane wave is emitted from the trans-
ducer. Let oy and oy be the amplitude attenuation coefficients of
the specimen and buffer block, respectively, in units of decibels
per round trip in either. As shown by Hayford [7], the maximum
amplitude of a wave reflected from a bond between two materials is a
reflection coefficient, R, times the maximum amp1ftude of the wave
incident upon the interface. The transmitted portion is treated
similarly, with its magnitude being equal to a transmission coefficient,
T, times the incident amplitude. Since,»in general, the side of the
interface from which the wave is incident is important, both R and
T will be given two subscripts. The first denotes the incident
material. " The second denotes the material on the other side of the
interface; thus, R]3 denotes the reflection coefficient of‘the wave
incident upon the 1-3 interface, from material 1. A schematic
representation of the necessary reflection and transmission coefficients

is shown in Fig. 5. From [7]

42223 (32)
_— . i 2
31 ~1p8 _ . \.1BE
(z] + 22)(22 + 23)e + (z2 23)(21 22)e
i L -8 . igs S
I (z3 22)(21 + zz)e‘ + (z2 + 23)(22 z])e (33)
31 _=1BL | 184

(z3 + zz)(z] + 22)e + (z2 - 23)(21 - 22)e

with 8 béing the wave number in the bonding agént, and 2 the bond

thickness. The acoustic impedance, z, of a material is given by the -
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product of the wave speed and density. The transmission and reflection

coefficients T]3 and R]3 can be obtained by interchanging Zy and

z
3
are complex, indicating the possibility of a phase shift other than

in Eqns. (32) and (33), respectively. Note that the coefficients

zero or pi, which is the case for an interface between only two
materials.

An analysis of the schematic representation of Fig. 4 is now
given. In what follows, the word "amplitude" shall refer to the
maximum amp]itﬁde of an echo. Assume that the amplitude of the wave
just after leaving the transducer is given by Ao' This wave travels

through the specimen until it reaches the interface, at which point
-0+ /40
it has an amplitude of A010 1 . The portion that is transmitted

is the only part of interest, and just on the other side of the
~-a. /40

interface, its amplitude is AOT 10 1 . The wave travels through

13
the delay block until it strikes the lower end, where it completely

reflects. When it again reaches the interface, the amplitude is
-a]/40-a3/20 '

AT,,10 Now this wave breaks into two parts. One portion

013

is transmitted across the bond and travels through the specimen to the
-04/40
transducer, introducing a T3] and another 10 ! . Thus A], the

amplitude of the first major echo, is given by

-OL] /20'&3/20

Ay = A ITy3T5110 (34)

Continuing in the above manner and following the above-mentioned

- portion which reflects at the interface, it isjfound.thét AZ’ the

amplitude of the second major echo, is given by
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-a]/ZO-a3/10

Ay = AolT TRy 110 (35)
If Eqn. (31) is now used to find the lass in dB/echo, one obtains
o = ag - 20 log |Ry] (36)

Thus, as is seen in the above analysis, the only information which
appears to be contained in the major echoes is the attenuation of the
quartz buffer and the magnitude of the reflection coefficient, R31'
Tests of this nature have been conducted on specimens undergoing
quasi-static tension, and signifjcant changes, which are either
positiVe or negative, have been observed at load resultants ranging
from 1000 to 2000 1bs/in, as shown in Figs. 6 through 10, for both
type I and type II specimens. It is interesting tc note that these
changes are not monctonic and can be either gradual or very sudden.
Note also that the above 1oad ranges span the values at which the
’900 layers are predicted to fail, and at which delaminations are
observed to form. Obviously, these rises have nothing to do with
changes in A3 since no loads are app1ied to the quartz delay block.
It appears, then, from Eqn. (36), that the change in attenuation must
occur because of changes in the bond (mqre specifically, the bond
thickness), since there is no other quantity which could change during
loadihg in this equation. That possibility will now be investigéted.

From Egn. (33), the magnitude of R3] is
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2 2 2 22, .2 4. 2272
-22,2,2, * cOs"BL(2Z7 + 23)z; + sin“Ba(z, + 2323)
IRos| = 17223 172305 2 * 2923 (37)
31 2z zzz + coszsz(z2 + 22)22 + sinzez(z4 + zzzz)
1°2°3 1 3'"2 2 1%3
while the values of 215 2y, and Zg are
zy = 4000 g/cmz-sec
z, = 2400 g/cmz—sec (38)
2y = 13000 g/cmz-sec

Figure 11 shows a plot of both |R,;| and the bond Toss term,

-20 1og [Ry |, as a function of ge. Note that. lR31| has a maximum
at g2 equal to =/2, resuiting in a?minihum in the bond loss. This
minimum is calculated to be 1.9 dB. Returning to Eqn. (36), a minimum
value of ‘o is actually a function of two varfab]es, -&3 and R3].
However,,qued silica is used as a buffér material precisely becadse
of its very low intrinsic attenuation. Hence, it is reasonable to
assume that the minimum value of «o occursrat the minimum value Qf

-20 log |R At this point, B2 equals /2. Recalling the

311‘
definition of the wave number, it is found that

2nfe _

,Vb

(39)

V]

where f is the frequency of minimum attenuation, and vy is the
velocity of sound in the bond. For glycerin, this latter value is

approximately 2500 m/sec.  Hence, the bond thickness, in inches, is

: given by
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y =’gﬂ%QQ (40)

A specimen was loaded in tension to 2100 1bs., and!va1ues of‘the
frequency at minimum attenuation were recorded at approxfoately 200 1b.
increments. At zero load, this frequency was ZS;QEMHz,;and at 2000 1bs.,
it was 24.4 MHz, corresponding to an initial bood thickuess of .00096
in. and increasing to .00101 in., a change of .00005 in. If the
frequency is reduced to the normal testing frequency of 5 MHz, the bond
losses would then become 4.7 dB and 4.6 dB, respect1ve1y, 1nd1cat1ng
a decrease in attenuation of 0.1 dB over the range of the test. Of
course, these values are only approximate for other tests, but they
are reasonable estimates based upon the above assumptions. The important
thing, however, is not the actual values, but the tendency of the bond
to become thicker as the specimen thickness decreases when loaded. The
bond thickness is always close to ;001 in., and at this thickness,
the ettenuation due to bond losses will always decrease with increasing /
foad. Thus, it is hardly Tikely that bond }osses can account for the
1arge'(1kto 2 dB) iocreeses found in the tests run.

While»makiﬁg attenuation measurements with high accuracy,

vexperimenta]ists often make what could be called second-order corrections.

These second»order 1osses, usually less than one dec1be11 are generai:J
of a 1esser magn1tude than primary 1osses, such as the bond loss
descr1bed above. Among these second-order Losses are those which occur
in the transducer, and those due to the d1ffract1on exhibited by any

f1n1te sized wave source, such as a transducer The former, since
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it is not affected by loads which occur in the specimen, will be
ignored, and a correction term will be added to Egn. (36) to express

the diffraction losses, Thus
o = ay - 20 Tog [RB]] * o (41)

where ap is the, as yet unspecified, diffraction loss.

In the study of optical diffraction, three main types of
diffraction effects are discussed. They are diffraction by single-
and multiple-s1it gratings, and diffraction by sharp edges. Sound
waves will behave similarly, and it is readily apparent that both
transverse crécks and delaminations in a specimen could serve to act
as these types of diffraction gratings for ultrasonic waves of appropri-
ate wavelengths. Thus, a short presentation of the theory of diffraction

is in order, and is presented in the next section.




5. ULTRASONIC DIFFRACTION THEORY

In order to find a mathematical description of a sound wave after
it has passed through some aperture, one need only apply the equations
‘of elasticity, together with appropriate boundary conditions, and
solve. Unfortunately, the mathematics involved has not seen fit to
cooperate with the theoretician, necessitating the use of simpler
cquations. The theory of 1ight diffraction has been well explored
(see, for example, [8], [9]), and the equations derived for the scalar
diffraction of 1ight can be easily adapted to the diffraction of
ultrasonic waves in certain media; notably, compressib]e; inviscid

fluids. The term scalar diffraction is used for those cases where the
vectorial aspect of 1ight waves is insignificant. l

The use of a fluid medium to study diffraction effects in solids
haswbeen justified by’several researchers. Truell [5] and Papadakis
[10] have both done considerable research on difffaction effect§ in
“velocity and attenuation measurements in solids using a fluid medium
for their theoretical calculations. Both showed excellent agreement
between theory and experiment. Papadakis also modified the wave
number, Kk, to account for the anisotropy of crystalline solids
while still assuming a fluid medium, and achieved good agreement
between theory and experiment.

Wave motion in fluids is similar, in some respects, to that in
solids, and is also governed by the equation ofkmotion, Eqn. (19).
But Egn. (20) is simplified because, for inviscid f]uids, the Lame

constant u is zero. Thus Egn. (20) becomes

39 -
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Auj,ji = pui (42)
By taking one more derivative with respect to the spatial coordinate

xj, one obtains

Auj,jii = pui,i (43)

The dilatation A 1is defined as Us 5o Hence

Av2a =,px (44)

If the dilatation is assumed to have a sinusoidal time variation, one

obtains Helmholtz's time-independent wave equation
(v% + k%)a = 0 (45)

with k being the usual wave number, and the velocity of sound being

A 1/2
v = Y (46)
Lambda is usually replaced by B, the bulk modulus, in fluids. For
solids, B is giVen by
- 2 o
B=2a+ 3 H (47)

while for fluids, B and A are the same, since u is zero,
The normal Hooke's Law for solids is modified s1ightly for fluids.
Instead of‘re]ating strain to stress, the dilatation is related to

the hydroStgtic pressure, p, by the bulk modu]us, to give
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and if B is independent of position, Eqn. (45) becomes
(v2 + kz)p =0 (49)

To make the transition from solids to fluids complete, it is
necessary to define attenuation in terms of a decrease in the dilatation,
rather than in the displacement. The attenuation coefficient o is

then

o = In -l (50)

in units of nepers/cm., where A and A, are the maximum dilatations

at distances X and X5 respectively. Since the dilatation is

proportional to the pressure, Eqn. (50) is also written

n — (51)

The other definitions of attenuation, Eqns. (30) and (31) are adjusted
accordingly.

Kirchoff's diffraction integral ([7], [8]) was derived for scalar
light waves, but can easi]y be adapted to sound waves in fluids. There
are several methods for approaching this problem; the following is
based upon the presentation of Sommerfeld [8].

Assume that some monochromatic soﬁnd»disturbance, henceforth

denoted by v, exists in a region of space V. By Gfeen‘s theorem

2 2 [ Uy :
[whv-vtuar - [y e (5
v : S '

“as long as u and v are suitably continuous functions. S 1is the
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2u
an

and the gradient of u, with " being the outward normal to S.

surface surrounding V, and is given by the dot product of n

A1l derivatives up to the second must exist for both u and v
everywhere inside and on S.
Since v is a wave variable, such as pressure or dilatation,

it must satisfy Helmholtz's equation
vy = -kTv (53)

Suppose that wu s also from the class of functions which Satisfy
Helmholtz's equation. Then the left-hand side of Egn. (52) is

identically zero, and one obtains

f@g_;-v‘gg)ds:o (54)
S
Let u 'be the function
ke

u = g;f—- (55)
where r is the distance from some point Q inside of S to any
other point in or on S;"Sinée u has a singularity at the point Q,
a vo1ume’5urrognding Q must be excluded from V. This is done by
 ené1os1ng QA with a small sphere of radius e, whose surface is
denoted by S;. The entire volume, along with the various surfaces
‘and normals, is shown in Fig. 12. For this choice of  u, Eqn; (54)

becomes

~ Wy E 45 =0 - (56)
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Figuré 12

Region of Integration for Green's Theorem
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or
S S
On S', %ﬁ' = - %;-, and since r=¢ on S', Egn. (57) becomes
[ gt he- [ e G- s o
S ' S

Because S' is a sphere, dS can be written as

ds = e2dg (59)

where © is the solid angle describing the sphere, Equation (58) then

bacomes
&q
ikr. . ikr ke i
e v 3 e B ike'jov . ike
f (5—gm - Vi v = f [ee ™ (55 - Tkv) + ve lda (60)
S 0

Since the left-hand side of Egn. (60) is independent of e, the limit
can be taken as ¢ approaches zero. Noting fhat‘ v - approaches vQ
(the value of v at point Q) as e approaches Zero; Egn. (60)
reduces to

oIk ikr
(

r :
v 3 e ;
o Tl A , (61)

41rvQ = (
S
where S 1is any surface which completely encloses the point Q.

Suppose, now, that v represents some monochromatic wave striking

a rigid plane barrier with an aperture. For instance, the radiation
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of a transducer can be thought of as a plane wave, radiating through
some aperture whose shape is the same as the shape of the transducer.
Let the plane of the aperture be one portion of S, and let the portion
of a large sphere below the aperture, centered at Q, be the remainder
of S. As shown by Sommerfeld [9], the integral of Eqn. (61) over
this large sphere tends toward zero as the radius of the sphere increases
withqut bound. However, that same result can be arguéd without
resorting to the complex mathematics involved, as shown by Born [8].
His approach was as follows.

A strictly monochromatic wave would have no beginning or ending

in time, but a departure can be made from strict monochromaticity as
long as the value of vQ is examined a long time after the beginning
of the wave. Because the wave must travel from the aperture with a
speed no greater than the velocity of sound in the fluid, there exists
some length R, measured from point Q, beyond which the wave has
not traveled. Let the radius of the large sphere be R1, where R]
-is greater than R. Then all along that part of the sphere which makes
up the lower portion of S, both v and'.%%- are zero. Hence, the
integral of Eqn. (61) is zero all along this boundary; Let the
remainder of S‘ be broken into two parts, with o dencting the

aperture, ard o' the rigid barrier. Then Egn. (61) becomes

| ke o ikr
= e _3v._ 2 e
41TvQ f ( v an - Von v )dS .(62).
oto' " ’
At the barrier, it is reasonab]e.to‘a55umévthat'bOth v and_‘%%

are zero; thus
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v=20
on o' (63)
AV _
T 0
and at the aperture
v = v'
on o (64)
v _ 3

where v' denotes the value that the incident wave would have if the
barrier were not present. Because of the boﬁndary conditions expressed
by Eqn. (63) the integral over o' 1is zero, and the value of v at Q

becomes

=—)dS (65)

Actually, as shown by Sommerfeld [9], the boundary conditions
contained in Egqns. (63) and (64) are mathematieal]y inconsistent, since
Ean. (63) imp]iés that v 1is zero everywhere. ‘These boundary conditions
(Egns. (63) and (64)) are, however, physically reasonable, even though
they are only approximately correct. They are more accurate for high
frequencies than low frequencies, and can be used to obtain reasonable
estimates of vQ when the freqqency is sufficiently high.k

Sommerfeld has modified the auxi]ﬁary'functidn used in deriving
‘ Kirchqff's diffraction integral in order to eliminate the mathematical
inConsistency, bUt his‘modification is jtself no further justjfication
of the a$sumed boundary conditions{ That 1s,ythé inéonéiétenéy'is

removed, but the'bdundary conditions are still only approximate1§ true,

~
By
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because the pressure on the downstream side of the baffle is very close
to, but not exactly, zero.
To do this, Sommerfeld replaces the auxiliary function u with

the Green's function, G, which has the following properties:

(v +k%)a =0 dnv .
G=0 on ¢ and o' (66)

G-»u as r-20
Using the first and last conditions, Eqn. (62) becomes

4WQ=J (6 2 .y Mg O (e7)

gta'

as before, and the second condition reduces the above equation to

tvg=- | viges (68)

gto!

Thus, the boundary condition on ~%%- is not needed, and the mathematical

“inconsistency is avoided. If v is again assumed to vanish on o',

then vQ is

=-%—Jv96ds (69)

g

VQ,

The function G is easy to formulate if the aperture lies 1in
a plane. Shown in Fig. 13 are the aberture, the point Q, a‘pgint, P
in the aperture, and a p01nt R wh1ch is the image of Q The point

0 is the origin of the &, s and ¢ coord1nate system which

’ descr1bes the aperture (c 0). " The coordinates of Q are (x, y, 2z),

T R ST T e Y e O """‘“"r
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49

and of R, (x, ¥, -z). The function G 1is then defined as

ikr] ikrz
6=2—-% v (70)
" 2
where
2= (e-x2+ (n -9+ (o -2)? (71)
and
2= (g - 08+ (n-yP+ (g4 2)? (72)
For the surface I thus
r the surfa 9 In 2’ u
96 _ 3G 3" a6 a"2 (73)
an ary ¢ ar, 3¢
Substituting, one obtains
: ikr
6Zze (k-1 | (74)
R o
with rp=r=r when :; = 0.
Hence, vQ is given by
, - ikr
I O AP |
= - & [ v tik - s (75)

. r
0' .

. Since v is any_arbitrary function which satisfies Helmholtz's
equation, v can be replaced by the pressure of an infinite plane

wave. If this pressure is

~ (76)
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Egn. (75) becomes

zZA . 1
-5 (ik - ?JdS (77)

r2

ei(krv- wt)
pg= - B [
g

with £ =0 on o. Equation (77) is the pressure at any point down-

stream of any aperture upon which plane waves are incident, and will be

used to describe the diffraction effects of transverse cracks and

- delaminations upon the sound field produced by the transducer.

Of course, another (or the same) transducer must be used to sense
the ultrasonic wave downstream, and the voltage output of this
transducer is proportional to the integral of the pressure exerted
over its area, g Using the real part convention, the pressure at

any point at a distance z; from the sending transducer is given by

Pn = Cz coswt [ (COSKE 4 SIOKMy 4 - Czosinwt | (So5Kr _ sinkry 4o
Q ! kr® * ] ket
0 -

(78)
The constant of proportionality C 1is irrelevant since if will be

eliminated when a ratio is taken later. Equation (78) is rewritten as,

~

pq = Ajcoswt - Assinwt | , (79)

in a manner similar to that of Papadakis [10], where A]‘ is Z times

the first integra], and A2 is Z1 times the second. Thus, the

proportional response of the receiving transducer is
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py = coswt [ A]do - sinwt f Azdo (80)
oR oR
Equation (80) is rewritten as
py = Hycoswt - stinwt ~ (81)

where H] and H2 are the first and second integra]s, respectively.
Recalling that the attenuation is obtained from'the maximum of Py
Eqn. (81) is differentiated with respect to time, and set equal to

zero, obtaining

Hysinwt + H,coswt = 0 ' (82)
or
"HZ
tan wt_ = - o— (83)
m 1

where t_ is the time at which p, is an extremum. From this

-+ H

. 2
sin wt_ = (84)
" )
an 2 ,
and
..i.H] :
cos wt_ = (85)

Substituting Egns. (84) and (85) back into Egn. (81), the maximum

response of the receiving tranéducer is found to be

, .
p, max = (H% + Hg)l’2 (86)

Thé ambi guous sign resuits from the osci]1atory nature»of’sinusoida1s.‘

If the procedure is repeated for some other Va1ue:of - Zs ~$éy,’izy
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then the attenuation due to diffraction is

(py max)
ap = 20 log W (87)

where the plus sign has been used in Eqn. (86).
The actual integrations cannot be evé]uated in closed form, hence
a numerical technique was used. This is discussed next, before

proceeding to the theoretical and experimental results.




6. NUMERICAL INTEGRATIONS |

The difficulty with finding solutions to pkob]ems in terms of inte-
grals, such as was done for the diffraction problem, is that these inte-
grals must eventually be evaluated. This can be done in closed
form only for very specific cases, and, in general, some other technique
must be used which will yield a good approximation of the desired |
integral. It is a general rule that the better the approximation, the
more complicated is the approximating formula, and vice versa, but a
keasonab]e compromise between accuracy and simplicity exists in a
technique known as Gaussian quadratures. A very good reference on the
use of quadrature formulae is dea] [11], and an extension to surface
and volume integrals is briefly sketched in Zienkiewicz [12].

Gaussian quadratures can only be used to evaluate integrals with

limits of -1 and 1. The approximation for such an integral is
1

J f(x)dx
-1
where f(x) s the function to be integrated; f(ai) is that function

R

N
| .z]f(ai)Hi, (88)
1:

evaluated at x = a3 and Hi‘ is the appropriate weighting function
for a particu]ar value of aj. N s the degree of the quadrature
formula, and can be any integer larger than two. The Hi's and ai's
are suitany chosen so that Egn. (88) is exaét when f(x) is any |
polynomial of degree 2N-1 or less. For eXamp]e,vif N were four,
Eqn. (88)'wou1d be exact for polynomials of degree seven or less.
Values for a, and Hi are tabulated in references [11] andv[12]~

N =2 to 16.

53
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Most integrals do not have limits of -1 and 1, but a suitable
change of variables can transform the integral to one that does. As

an example, consider the integral
*2
= f £(x)dx (89)
X

The 1linear transformation

- Xy =X Xyt X
x = (F—tin + 21 (90)

will suffice, because as x varies from X1 to Xy M varies from
-1 to 1. Then dx 1is given by

X = X
dx = (F—L)dn (91)

and Egn. (89) is transformed to

1 :xz "xi‘ :
= | PO (e ~ (92)
-1
where
X, = X Xy T Xq
In accordénce with Eqn. (88), I is then approximated by
X = x N - o
= fol ) Hy Flay) (94)

i=]
The change from one-dimensional integration to two-dimensional
(surface) integration is only slightly more complicated, as long as

the surface Of,integrationfis completely contained within a plane.



55

Consider, first, integrations in polar coordinates. The function to be

integrated is f(r, 6) and the limits on r and 6 are r and
r,, and 6. and 6,, vrespectively. Thus
2 1 2 r 6
2 2
1= f [ f(r, 8)rdrde | (95)
ry 6

A change of variables s again necessary, and is performed by

rytor
1

e
= (.2 1 2
r (F=—In+ —
| (96)
B, .~ 0 8, - 6
- (.2 1 1 2
8 = ( ] )Y + 2
I is then given by
1T 1 o ‘
BN ¢ rytr, r,-r, 8,-8
t= [ R it s A Yy
=1 = (97)
Now, let Iy (y), a function of vy, be given by
-
r,.-.r rytr, r,-r
Lo(y) = | Flne VD + (F—21(ETD)dn (98)
1 ; 2 2 2
=1
Then I is given by
] % - & ,
1= 5 (D (99)
-1 ‘
and an application of Egn. (71) yields
"
6, - 6 Y
2 | ,
L= 7 )iz] H1.I1(a1.) | (100)

where ‘NY is used to represent the order of the approximation (number

of terms) in 'y, or 6. But 11(ai),is given by Eqn. (98) when y = a;.

Hence
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ry - T n r, - r rytor
. (2 1 2 1 1 2

I(a;) = (55— j__2_1 Flags &) [(-=5—ay + —5—=H;  (101)

whence I becomes
N, N
(6, = 89){ry = ry) v r, - r ry v
2 1V 2 1 2 1 1 2
I = 7o) Fla;, a;)H.H.[( Ja, + ]
4 i=1 j=1 i 2 2
(102)

The relationship between the terms in Egn. (97) and Eqn. (102) is
obvious, upon inspection, and once Eqn. (97) is written, Eqn. (102)
can be deduced immediately, without need of the intervening steps.

As a final example, consider the integration of the function

f(x, y) over the region defined by

91(X) <Yy f.gz(x) when X] S X <X (103)

The desired integral is
| X5 9p(x)
I= f [ f(x, y)dxdy (104)
X1 9q(x)

The variables x and y are transformed by

Xn =X o Xs X :
X = (_2;?__lgn 4 (thif'jﬂf (105)
and
G,(n) - G (n) G,(n) + G,(n)
y =2 A AN

where
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Xy o= X Xy t X
_ 2 ] 2 1.
G.'(r]) = g-‘[< 2 )n + ? ]

From Kreyszig [13]

= (X 3y _ 3x 3y
dxdy [an oy " oy an]dndv

or
Xo = Xy Gy(n) - G (n)
dxdy = (F—1) (2L 1y

and Egn. (104) becomes

1 1 L
A%y = Xq)
I = L L F(ns v) —2g—L [6,(n) - G(n)Tdndy

whereupon I 1is approximated by

N N
I .
I=— izl jzl Flags a;)16,(a5) - Gya )M H,

Equation (111), then, is an approximation appropriate for any

(107)

(108)

(109)

(110)

(111)

surQace integral in the x - y plane. The actual formulas used in

finding the diffraction losses are given in the appendix, as well as

the computer programs used to evaluate them. The results of the

numerical computations are discussed next.
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7. NUMERICAL RESULTS

To simplify the calculations required to find the diffraction
losses due to damage development in composites, certain assumptions
must be made. These assumptions are not justified by any physical
arguments, but, in as much as this text is meant to be of an exploratory
rather than of a definitive nature, they are acceptable as a first
approach to solution. The specimen is assumed to be infinitesimaily
thin, and serves only to cover the transducer in damaged areas
(Tocations of cracks or delaminations). Replacing the fused silica
delay block with an inviscid fluid has already been discussed, but,

inherent in this substitution is the assumption of no attenuation in

‘the quartz, which is only approximately correct. Also impiied in

Egqn. (77) is that the wave is monochromatic, which is, of course,
not true in pulse-echo work. The next approximation applies only to
the diffraction effects calculated for transverse cracks, and is

obtained as folTows;
1

For high frequency waves, Kk is much Targer than = except
for small r, and Eqn. (77) can be simplified to
: . i(kr - wt)
p = - S J e S (112)

.r
g

Another simplification is afforded if 2z is assumed large enough so
that the ratio- %— is approximate1y one for the values of r which

occur in the integrand. Then Egn. (112) becomes

58 -
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Ak <)
_ ikA e1(
g = - oK f s (113)

¢

which is essentially the formula used by Papadakis [10].

Since this report is concerned mainly with pulse-echo measurements,
the sending transducer is assumed to be.the same as the receiving
transducer, though it is displaced in the z-direction by increments
of 2nL to account for the distance traveled by each echo. But
more importantly, the receiving transducer is covered by exactly'the
same cracks, in exactly the same location, as the sending transducer.

Let the area of the transducer be denoted by AT’ and that of
the cracks by AC. To differentiate between the sending and receiving:
tkanstcer, a sﬁperscript of S or R will be used with the appropri-
ate area. Then the response of the receiving transducer will be |

~proportional to (real part convention)

= ]
i)

[ f Mdcsch (114)
(AR-ARy (AS-AD) |

which can be expanded into the form

It is a fa1r1y s1mp1e matter to show that the second and thlrd

1ntegralsrarerexactly;equal, The last 1ntegra1 is assumed to be sma]]
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enough to neglect, and Eqn. (115) is rewritten
i(kr - wt) i(kr - wt)
I [ e doRch -2 J I e chdoS
r r
R .S R .S
AT AT AT AC , (116)

Equation (116) was used, instead of the more exact formulation Qf
Egn. (115), to greatly reduce the amount of computing time required.
The first integral of Eqn. (116) is of special interest because it is

used to find the diffraction losses from the transducer alone,
7.1 Accuracy of the Integration Techniques

The pressure at any point along the axis of the sending transducer
can be obtained in closed form by integrating Eqn. (77). If z is
the distance from the transducer to the point'on the axis, and if D

~is given by

D= (R + 2%)}/2 (117)
where R is the radius of the transducer, then the pressure at any

point Qk (0, 0, z) is

2

pg = [1 + i-z-'- 2 Z cosk (D - 172 msy

Because the integration of Eqn. (77) to obtain Eqn. (118) is the
same type of integration used later to calculate the attenuation due
to diffraction, this was considered to be an ideal means of;checking
the accuracy of the Gaussian quadrative formulae. This check was

" performed in both rectangular and polar coordinates, since,they were
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to be used in the later calculations. Three values of k ({16m, 20n
and 24r) were used because they correspond to the range of frequencies
used in the laboratory (4.8, 6, and 7.2 MHz, respectively). Table IV
presents the results of the numerical integrations in both coordinate
;ystems, as well as the exact answers. The results for all three
values of k were very similar, and only the results for k = 20r

are presented. Note that the polar coordinate formula is very
accurate for.a11 but the smallest values of z. The rectangular
formula is less so, but is suffiéient]y accurate for the values of =z

required (z greater than 1.0 cm).
7.2 Diffraction by Transverse Cracks

Because it is necessary to evaluate the diffraction integral
numnerically, rather than in closed form, it is poésible tokfind the
diffraction losses for only a finite number of cases out of the infinite
combinations of crack location, length, shape, width, and operating
frequency which can exist. It was decided, then, to choose a maximum
of four crack spacings, three crack widths, and threé frequencies for
a total of thirty-six possible combinations, while the cracks were
assumed fofbe rectangular in shape, and to extend completely across
- the width of the specimen. The cracks were also assted to be evenly
spaced across the width of the transducer so that symmetry could be.
uséd to reduce the amount of camputation time required. ‘The,crack
spacings used were 0.075 cm, 0.U98 cm, 0.141 cm, and 0.254 cm. The
radius of the transducer used was .635’cm, and for this size tfansducer,

the‘above spacings correspond to 16, 12, 8, and 4 cracks; respectively,
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TABLE IV

COMPARISON OF THE EXACT FORMULATION AND GAUSSIAN APPROXIMATION
OF THE PRESSURE ALONG THE AXIS OF THE TRANSDUCER (k = 20w)

oo O O O O o o

(c;.) gr‘zggure ' 'Regggﬁgﬂ?grmmximati°331ar
1.000 0.000 0.000

.001 1.001 0.116 0.770
.01 1.000 1.152 0.985
.02 0.982 2.248 0.982
.05 0.948 4.781 0.948
10 1.142 5.553 1.142
.20 1.192 0.718 1.192
50 0.55 0.540 0.554
0.80 1.123 1.124 1.123
1.0  0.870 0.869 0.870
1.5 1.514 1514 1.514
2.0 0.109 0.109 0.109
5.0 1.898 1.898 1.898
7.5 1.491 B LY 1491
0.0 0 1 Lis 1.182
25.0 0.501 0.501 0.501
50.0 © 0.253 0.253 0.253

75;0 0.169 0.169 0.169
100.0 0.127 0 0.127

127




across the total width of the transducer. As was mentioned eariier,
the frequencies used were 4.8, 6, and 7.2 MHz, énd the cracks were
assumed to be 0.008, 0.016, or 0.024 cm, wide. Of the possible
thirty-six cases, twenty-three were actually used; specifically,

they were:

1) 4.8 MHz (k = 16m)
~a) 8 cracks, all three widths
b) 16 cracks, all three widths
2) 6.0 Miz (k = 20r)
~a) 4 cracks, 0.016 and 0.024 cm wide
b) 8 cracks, all three widths
c) 12 cracks, all three widths
d) 16 cracks, all three widths
3) 7.2 Mz (k = 24m)
a) 8 cracks, all three widths

b) 16 cracks, all three widths

The diffraction curves for the above cases are presented in

Figs. 14 through 21. The horizontal scale is the distance z traveled

by the wave, divided by the length of the delay block, 2.55 cm. The
first echo, then, is at z/L = 2, and the second at z/L = 4,
Included in each figure is the diffraction loss curve for the trans-
ducer alone. The following procedure is then used to find the

fattenUatibn'change'that would occur for the given damage state.

" The original diffraction loss is found by taking the difference ‘

: vin-the heights of,the'trahsducer loss curve between z/L =2 .and -

|
i
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z/L = 4. For example, in Fig. 14, where k = 16w, this difference
is 0.21 dB. After 8 cracks, 0.016 cm wide, have completely formed,
the 1ass, again found by taking the difference on the appropriate

curve, is 0.86 dB. Thus, there is a net change of 0.65 dB. The

- results for all twenty-three cases are presented in Table V.

Several facts are of note. Firstly, by examining the column
for the transducer losses, one can see that an increase in operating
frequency is not always accompanied by a decrease in the initial
attenuafion, as is commonly believed. Secondly, an increase in the
number of cracks present does not necessarily mean an increase in the
diffraction losses, as is evidenced by the listings under 6.0 and
7.2 MHz, although the above is true at 4.8 MHz. And thirdly,
the net change can be nzgative; 1;e., the apparent attenuation of
the specimen may decrease as more damage is ihtroduced.

Even though insufficient cases have been examined to properly
generalize the above results, Fig. 22 is presented as a graph of the
expected attenuation change versus crack spacing with frequency and
crack width as parameters. No strict conclusions should be drawn
from this graph until more data has been obtained. It is shown here
merely as an aid to visualization of the results in Table V.

From these results, it is readily apparent t-at frequency plays
a major role in the amount of changeywhich can be expected. By
simply varying the frequency from 4.8 to 7.2 MHz, the diffraction
Toss for one case would change from 1.74 dB to' -0.14 dB, a net
difference of a]host 2 dB (Recall, though, that the bond 1oss4term

can also vary quite a bit with frequency, overwhelming more minor
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TABLE V

Crack Loss from Loss from Net

Freq. No. of Width Transducer Cracks Loss
(MHz) ~_Cracks (cm)” (dB) (dB) (dB)
4.8 8 .008 0.21 0.86 0.65
.016 1.39 1.18

.024 1.93 1.72

16 .008 0.93 0.72

.016 1.51 1.30

.024 1.95 1.74

6.0 4 .016 0.20 0.91 0.71
.024 1.25 1.05

8 .008 0.54 0.34

.016 0.81 - 0.61
.024 1.04 0.84

12 .008 0.46 0.26
.016 0.63 0.43
.024 0.73 0.53

16 .008 0.40 0.20

.016 ~ 0.49 0.29

.024 -0.49 0.29

7.2 8 .008 0.59 0.71 0.12
.016 0.79 0.20

.024 0.83 0.24

16 .008 0.59 0.0

.016 0.54 -0.05

.024 0.45 -0.14
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changes in the diffraction loss). Obviously, the frequency at which
these tests are conducted in the future should be strictly controlled

and accurately measured.
7.3 Diffraction by Delaminations

To calculate the diffraction effects of delaminations, it was
assumed that a transducer with a diameter of 0.5 in. was centered
on a specimen 1 in wide. The boundaries of the delaminations
were assumed to be straight lines, parallel to the edges of the
specimen, which have progressed to equal depths on either side of
the specimen. Of course, until the delaminations ére a quarter of an
inch deep, they will have no effect on the transducer, and the apparent
attenuation due to diffraction is the same as for the transducer
itself. If the dé1aminations are a half of an inch deep, they
completely cover the specimen, and no sound will pass through.
The diffraction loss curves for varibus depths of delaminations
are shown in Fig. 23 for k = 20m. The expected losses for the
1 inch Tong delay block were §a1cu1ated as detailed above, and are
presented in Fig. 24. Note that the expected losses are fairly
insignificant until the delaminations pehetrate to about 0.29 in.,
but that they rise fairly quickly after that point, reaching 2.8 dB
when the depth is 0.4 in. The predicted loss is around one-half of
a decibel when the depth of penetration is only 0.31 in., again
attesting tQ the speed with which the attenuation rises once the
de]aminétions penetrate beyond the ckitica] depth of 0.29 in.

~ The fact that delaminations have not generally been found to
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penetrate more than a quarter of an inch into the width is not a
serious problem, since the transducer is usually not well centered
on the specimen. A displacement of a tenth of an inch from the
center is not unusual (in fact, it is quite likely) and would result

in extensive coverage of one side of the transducer.




8. CONCLUSIONS AND SUMMARY

From this study, it is apparent that the existence of transverse
cracks or delaminations can indeed account for the changes in
attenuation which occur as specimens are loaded in quasi-static
tension, and thus, these changes could serve as an indicator of
damage formation and growth in the specimens in regions not readily
accessible to visual observation. Moreover, the predicted changes
are well within th¢ range of values found experimentally, and also
show both increasing and decreasing trends evidenced by experiments.
Both the amount and the direction of the change are closely related
to the frequenby'used in the test. In the future, the frequency
should be closely controlled.

It is the as yet unproven contention of the author that the
very sudden rises in attenuation are caused by damage formation,
such as a transverse crack appearing, while the more slow and
gradual changes are due to such phenomeﬁa'as the already existing
cracks opening wider under load; and that both the rapidity and the

amount of such changes can give some details as to damage formation

- and growth.

Because of the general nature of this work, 1little emphasis was

placed on obtaining exact correlations for specific specimens.

Studies of this type are certainly in order,‘as are also investigations

of errors, such as improperly functioning transducers, which can
mask or distort the experimental data.

With the improvements which are sure to arise from additional
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investigations, the method described here-in appears to be of some
aid to investigatcrs studying the formation and growth of damage in

thin composite laminates.
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A. APPENDIX

The integral equations described earlier, along with their

approximation formulae are listed below.

A.1 The Pressure Along the Axis of the Transducer

The maximum pressure at some point lying on the axis of the

sending transducer is

Pq * (Hf * H%)”2 (19)
In radial coordinates, H1 and H2 are given by
R
Hy = 2k [ (cos%r + s12kr)pdp (120)
kr r
0
and
R -
Hy = 2k f (cozkr } s1n|§r)pdp (121)
0 r kr

The approximations for the above are

2 16 - .

kR ~ . .coskr | sinkr-

Hy = 252 7 h, (1 +a,) [£25- + 208 (122)
and
22016 , . ‘ —

kR" coskr - sinkr »
H, = Z P oh, (1+a,) [ - ] (123)
2 4 j=1 1 i r2 kr3 |

where a. and h, are the Gaussian quadrature constants. The

numerical value of r 1is
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2
r = %—-(1 + a2 ) v 2271/ (124)

In rectangular coordinates, H] and H2 are approximated by

2 16 16

kR 2,1/2 rcoskr , sinkr
Hy = 2 77 h,h.(1-a$ [ + ] (125)
1 2r 45 j=1 1 i kpo r_2
and
2 16 16
kR 2 1/2 Coskr sinkr
H, = 2 I I hyho(1-a3) [ - 2] (126)
2 2m i=1 j=1 iJ k
where
e B2 L2t 2 (127)
5 %77 i’d3 T2

A.2 The Pressure on the Receiving Transducer with No Damage

Using the approximation detailed in Section 7, the average

pressure on the receiving transducer is

= (H3 + H5)/? (128)
where
2r R R ;
Hy = 2n f f~ f 99§5ﬁ- odondnde | (129)
000
and
. 2rm R R o :
H2~= 2n [ f[ i1—:—'(—-‘:"pdpndndG : (130)
0.0 0
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where

2.2 2]1/2

r = [{ncose - p)2 + nsin"e + 2 (131)

The approximation formulae ars

42 16 2 16 16
Hy= 8T 7 T L I (+a)(l+a)h h b SSKL (139

and
42 16 2 16 16 .
R'n . v sinkr
H, = Yy 7 Y (O+a)(+a)h, h h =—= (133)
2 16 .24 521 =1 nel i m- i mon r
where
r= {BE [(1 +a ) cose, - (1 +a )]2 + EE (1 +a )2 sinze + 22}
4 - m jn i 4 m jn '
(134)
and
=T : -
8in = 7 [(23 - 1) + 2] (135)

A.3 Response of the Receiving Transducer in the

Presence of Transverse Cracks

As discussed in Section 7, ‘Hy and H, were modified by
i ]

Subtracting the integrals denoted by H] and H2 below. Otherwise:

Eqn. (128) still app]ies in finding the average pressure on the
> .

recéiving transducer. H] and -H2 are

pbseun sty j . A5 e | S SRER———— T e
s | o Do st o M D bt i Bt ] LT LT e e
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2r R
H]' . 2f f f 9-"%“1 odpdodo® | (135)
A0 0
2n R
Hy = 2 f f f STKE  dododo” (136)
A.D D |

C
The integration over the area of the cracks was done with a 16-point
guadrature formula in the y direction and a 4-point formula in the
X direction. Let X; denote the centerline of a crack, and w

the width of a crack. The height of the crack is Yy and 1is

given by

- (pl 2\1/2
y1"(R -xi

: 1 ¥
The approximations for H] and H2 are

2 NC 16 4 16 16 2
! R"w coskr
R D D) I 2 hghyhoho (1 +a )y, =5
1 8 i=1. j=1 2=1 m=z1 n=1 s=1 m=1or

(138)
' 2 NC 16 4 16 2 .

TR™w ; sinkr
Hy=—2% 7 7 ¥ 7 Z Zhhhh(wa)y.-————
28 421 321 451 1Rl n=l1 = m. o mErr

(139)
where NC s the number of cracks. To formulate r, let
R ¥~3 (1 +a) cose (140)
] 2 m sn ;
R, =R (1+a ) sine_. | | (141)
22 m sn :

and
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= - W
R3 = R] Xi > a2 (142)
Then
r= [Rg + (R2 - aj yi)2 + z2]]/2 (143)
and
- - :
0y =g l2s-1) +al (144)

A.4 Response of the Receiving Transducer in

the Presence of Delaminations

The response of the receiving transducer is also governed by

Eqn. (128). The formula for H] and Hz in rectangular coordinates

are
R }Rz_nz)l/z R (R2)1/2
Hy = 25 f 1. (STOKE , COSKE) dndydxdy
R, (RZ_n2)1/2 R, _(R2_X2)1/2 r kr
(145)
and

Ry ?Rz_nz)l/z R, ?Rz_xz)l/z

yo =2k f (coskr _ s1n§r) dndydxdy

2 2n 2
‘R] _(RZ_n2)1/2 ‘R1 _(RZ_XZ)]/Z r kr
(146)
where R] is the perpendicular distance from the center of the
transducer to the inside edge of the delamination, and
\ 2]1/2 : (147)

N | r‘=[(x‘”)z*'(y--y)2+z
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The approximations for H1 and H, are

2
2R% 16 16 16 16
_ M s1nkr coskr
Hy=—— I I I [ h hoh h D D ( 3)
321 321 221 el J m J K
and
ZR% 16 16 16 16
_ 1 coskr  sinkr
H2 alha= Z Z X Z h_i h. h2 hm Di D. ( 5 - 3 )
i=1 j=1 ¢=1 m=1 J J r kr
where
52 2.1/2
Di = (R™ - R] a1)
and
I Y a2 1/2
r = [R] (aj ai) + (Dj a, Di ak) + z ]

A.5 List of Symbols used in the Programs

(148)

(149)

(150)

(151)

The following 1list defines the relationship between the symbo1s

in the computer programs and the nomenclature in Eqns. (119) through

(151)
A (I) P, (16-point Gaussian quadrature)
H (1) : hi (16-point Gaussian quadrature)
Z (1) T z
BETA : ok
R : R
H1 , : H.I

I | “

—_—

R
'r'
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H2 : H
X (I) - : x
Y (I) DYy

ABAR (I) : "a, (4-point Gaussian quadrature)
HBAR (I) : hi (4-point Gaussian quadrature)
H11 A

1

. |

H22 : H2
P Tp
RHO rr

A.6 Computer Programs

The following is a listing of the computer programs used in

computing the appropriate values of attenuation.

i )




THIS PROGRAM CALCULATES THE PRESSURE ALDNG THE aX1S (F THE
TRANSDUCER M X-Y CUOORDINATES,

INPUT DATA: .

H{U) - H(L1l6) (GAUSSIAN QUADRATURE) Fld,15

Ao OAOOOO

ALUY - A(Ll6)  (GAUSSTIAN QUADRATURE) Fl5.15

BETA (WAVE NUM4BER/PI) Fld.15

R {RADIUS OF THE TRANSDUCER) F18.15

NZ (SIZE QF THE ARRAY Z) 12

LL1) — IZ{NZ) : FL3.15
C NOTE: ALL DIMENSIONS ARE IN CM,

[N

IMPLICIT REAL*3. (A-H,0-2)
DIMAENSION A(16) ,HI156)42(50)
PI=4.D0*DATAN(1.DQ)
READ(5,539) HyA4BETA,R
READ(5,510) NZ
READ(54500){(Z(1)y1=14NZ)
BETA=BETA%*pPI]

500 FORMAT(F18.15)

510 FORMAT(12)
WRITE(6,600) BETA

000 FORMAT('1',5X,'8BETA = *,F12.6////77)
DO 20 I=1,NZ
H1=0.D0
H2=0.D0
DO 10 J=1,16
B=DSQART(1.D0-A(J)*x2)*H(J)
RI=R*R*A(J)*%2

06



10

610

v0 10 K=1,1s

RHG=DSART (KL= (L DO-A(K)%=2) +ReR3A(K)E¥242 (1) =%, )
R2=RHO*RHO

R3=RHU%R2

C=0CUSIRETARRHD)
S=DSIN{BETARIHI)
HI=H14+B¥H (K) *(C/BETA/R3+S/R2)
H2=H2 +3%H{ K ) *(C/32~S/B8ETA/R3)
H1=H1%*Z (1)%R%R/2.D0/PI*BcTA
H2=H2*Z (1) #R%K/2.D0/PI*B:TA
P=DSQRT (H1¥=2+H2%%2 )

D=DSQRT(R*XR+Z (T} x%2)

PL=DSQRT{LDO+Z(1)%%x2/D/:=2D0%Z (1) /D*DCUS{BETL*(D-Z(1))})
FORMAT(5Xy5{F10.657X))

WRITE(S646105) Z(1)sHLyHZ+P,P1

STae

END

L6



THIS PROGRAM CALCULATES THE PRESSURE ALUNG TH: AXIS
CTRANSDUCER IN RADIAL COOROINATES. INPUT DATA IS THE
AS IN THE PREVIUUS PROGRAM.

IMPLICIT RCAL*¥3 {A-H,0-1)
DIMENSIGN Allé)4HI{16),2(5D)
PI=4.00*DATAN(1.D0)
READI[5,500) HyAyBETA,R
READ(5,510) NZ

BETA=BETA%*P ]

READ(5,500)(Z(1),1I=1,NZ)

FORMAT(F18.15)

FORMAT(12)

D05 1I=1416

A(II=A(11+1.D0

WRITE(6,600)

FORMAT( 1Y)

WRITE(6,620) BETA
FORMAT(5X"BETA = ", F12.6///7/7)
DD 20 I=1yN2Z :
H1=0.D0

H2=0.D0

DO 10 J=1,16
RHO=DSQRT{Z (1) *%2+A(J )**2*R*%R/4.D0)
R2=RHO*RHO

R3=R2*%RHO

C=DCOS(BETA*RHO)
S=DSIN(BETA*RHO)
Hl=H14+A(J)*{S/R2+C/BETA/R3)*H{J)

NF THE
SAME -

26
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20

H2=H2+8{J)*(C/22-S/32TA/R3) *d{ J)
HI=HLI=BETA®R/2.03¥Z(1)*R/2.03
H2=H2*BETA®R/2.D0*Z2{{)*R/2.D0

P=DSQART (HLx*2+¢H2%%2)

D=DSURTUAIRXRAZ{ L yx%x2)
P1=DSQRT(L.DO#Z2(1)x%x2/0/-2.DOZ{ 1) #DCOSIBETARD-2( 1))}/
FORMAT (S5X ¢5{F10.6,7X))

WRITE(O646130) Z(I)sHLyH2,P.P1

STOP '

ZND

€6



OO

THIS PROGRAM CALCULATES THE APPARENT ATTENUATICY AT
VARIOUS DISTANCES, WITH CRACKS PRESENT.
SUBROQUTINS SUB1 MUST BE USED IN COMJUNCTION WITH THIS

OO COACOOOO00O00ON0O

PROGRAM,
INPUT DATA:
HU{1) - H(16) [GAUSSIAN.QUADRATURE) Fld.15
Al1) — A(16) (GAUSSIAN QUADRATURE) F13.15
R (RADIUS OF THE TRANSDUCER) F18.15
W (ANGULAR FREQUENCY) F1B8.15
V (VELOCITY OF 30UND) F18.15
WID (WINDTH OF THE CRACKS) F18.15
NC (HALF THE NUMBER OF CRACKS) 12
HBAR(1) — HBAR(4) (GAUSSIAN QUAD.) FL8.15
ABAR(L) — ABAR(4) (GAUSSIAN QUAD.) Fl8.15
NZ (SIZE UF THE ARRAY Z) 12
(1) - Z(NZ) | F18.15

C  NOTE: ALL DIMENSIONS ARE IM CM.

IMPLICIT REAL*3 (A-H,0-1)
COMMON R,HlyHZ,BETA,H(16),A(lb)yP,S(Z,lb),C(Zylé),P[
COMMON 52(2416) +C2(2,16)
DIMENSION X(SO)oY(SO)'Z(lOO)'PLKIOO)vPZ(lOO)cH“AR(4),a8AQ(4)
~ READ(5,500) HsyAyRyW,V,4WID
520 FORMAT(F18.15)
READ(5,510) NC
510 FORMAT(I2)
READ(5,500) HBAR,ABAR
PI=4.D0%DATAN(L.DO)

b6
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BETA=W/V
DELX=R/(NC+.5)
X{1)=DzLX/2.D0
X{1+NC)=—X{1)
Y{1)=DSQRT(R#R=-X({1)*%x2)
Y{1+NCi=Y (1)

DO 5 [=24¢NC
X(I)=X({I-1)+DELX
Y(I)=DSQRT(R*R-X{I})*x%2)
X(I+NC)==X(1)
Y(I+#NCY=Y(I)

NC2=2%NC

WRITE(6461)

FORMAT('1® 3 TL4y 20 9T24,4*S",T43,%HL? 4TT73,'H2'/)
READ{5,510) NZ
- READ(5,500M{Z{1),1=1yN2Z)

DO b6 K=1,2
T2=P1/4.00
T1=P[/4.00%(2%K-1)
T3=T1/2.00
T4=T2/2.00

DO 6 N=1l,16
TNI=Ti1#AIN)*T2
TN=T3+A(N}*T4
S2(KsN)=DSTN{TNL)
C2{KyNI=DCOS{TNL)
S(KyNI=DSIN(TN)
C(KeyNI=DCOSUTN)
DO 30 L=1,NZ

CALL SuBL(Z(L))
PLIL)=P

H11=0.00

66



H22=3.D0
D3 20 K=1,2

DO 29 N=1l,16

DD.20 M=1,16
R1=R/2.00% (1 DU+AIMI)*C{K i)
R2=R/2.00% (L0 +A(M))%RS(K,4N)
S=H(H)*HIN) *{1.D0+A(M))

N0 25 Il=ly4 ‘
K3=R1-X{I)-WID/2.DO*ABAR{I1)}

L Bl=SxY (1) *HBAR(IL)

20

62
30

63

64

D3 25 I=1,.1C2

D225 J=1+16
RHO=DSQRT{R3I%=x24+Z (L) **x2+{ R2-Y (I )*A(J) i*¥2)
Cl=DCOS(BETA*RHG)/RHO
S1=DSIN{BETA*RHO) /RHO
HI11=H1l+H(J)*Bi*(1
H22=H22+H({J)*B1*S1
CONTINUE
Hl=H1-PI*R*R*W[D/8.DI*HLL
H2=HZ2—PT*Rxk*xWID/8.,D0*H22
WRITE(6+621HL,H2

FORMAT(T30+D23.16,T634023.16/)

P2IL)=DSQRT(HL**2+H2%%2)

WRITE(6,63)

FORMATETL® 3 T14,"2Z%,T25,* ALPHA 19,745, ALPHA 2%,T70,'PL*,T50,%P2'/)
Al=P I *R*R ' ,
PB=AL/BETA%2.D0%P1

PA=AL%2.DO*PI/BETA

DO 40 I=1+NZ

AL1=20,D0%DLOGLO(PB/PL(I))
AL2=20.D0#0L0OGLO(PA/P2(1))
FORMAT(TL10y F8.549T25,F12.8sT45,F12.8,T65,F12.8,785,F12.8)

96



49

70

10

WRITE(O6,64) Z(I),yALL,ALZ,PYLTI),P2(])

WRITE(H5,70) NC2,WID 7

FORMAT(//7/TL54 *THERE ARE ',13,' CRACKSy'yFB.6y' Tnde WIDF,
STAaP

=ND

SUBROUTINE SUB1(Z)

IMPLICIT REAL*Y(A-H,1-2)

COMMON RyHL,HZ2,8ETA,H{16),AL16)4P9yS(2416),C(2,16),P1
COMMON S2(241614+C2(24106)

D0 5 I=1ly16

AfIVI=A(I)+1.D0

H1=0.00

H2=0.D0

L2=7%%2

S1=2%2.D0%PI/BETA/R%*2

DB 29 K=l,y2

20

61

. .30

20 20 M=1,16

DO 20 N=ly16

RHO1=A(M)*C2{K,N)
RHO2=(A(M)*S2(KyNI*R/2.DJ)*%2+72
B=A(M)*H{M)*H(N)

DO 20 I=1,16 -
RHO=DSQRT{R¥*%27/4,00%(RHOL1-A( 1) ) *¥*2+RH02)
HI=HLI+A(I ) =H{ [} *B*DCOS(BETA¥RHO)/RHO
H2=H2+A{T ) *H{ 1)} *B*XDSIN(BETA*RHC)}/RHD B
H1=H1*R**4%xP[*P] /16.D0

H2=H2%¥R**4%*P[%P1 /16,00

P=DSQRT {H1%%2+H2%%2 )

WRITE{6,51) Z,514H1,H2

FORMAT{TIOyFB.5,T20,F8.5,T30+023.16,T60,D23.16)

DO 30 1=1,16 :
ALI)=AlI)-1.D0 .

)

L6
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 RETURN
END
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OO COOCOOONCOON

C

502
510

699

THIS PROGRAM CALCULATES ThE ATTENUATION IN THE PRESENCT
OF DELAMINATIONS. |
INPUT DATA:

H{1) - H{L5) (GAUSSIAN QUAD.) Fl6e.1l5
A{1l) - A(l6) (GAUSSIAN QUAD.) F18.15
BETA (WAVE NUMBER/PI) F18.15
R (RADIUS OF THE TRANSDUCEFR) F18.15
Rl (DISTANCE FRUOM CENTER UF TRANSDUCER

TO THE EOGE OF THE DELAMINATION) F18.15
NZ (THE SIZE OF THE ARRAY 7) 12
Z0L) = L(NZ) ' €13.15

NOTE: “ALL DIMENSTONS ARE IN CM.

IMPLICIT RgAL*8 (A—-H,0-2)

DIMENSION A(16)yH(16),0016)52{25)

PI1=4.,D0%DATAN{(1.D0Q) T
READ(54500)H,AyBETA,RyR1

READ(54510)INZ -

READI(S5,500){Z{1),I=1,NZ) R _
FORMAT(F18.15) : e -
FORMAT(12) «

BETA=BETA*P]

DO 5 1I=1,156

DUIY=DSQRT{R*R-R1I=R1*A{I)*%x2)

WRITE(649600) BETAsRL,yR

FORMAT('1',5X,"BETA = "3F12.6//5Xs*R1l = " ,F12.695X4'R = "4F12.6//)

DO 20 M=1,NZ
H1=0.00

66
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20

H2=0.D0

Z1=2{M)

D0 1) I=ly16

B=H{ I)*D{ 1)

DO 10 K=1,16

E=B*H(K)*D(K) \
RR=RI*RI*[A{K)-A{TI))x*x2+71%21
DO 10 J=1,16 :
F=ExH(J)

DO 10 L=1,16

RHO=DSQRT(RR+ (DIKI®A(LI=-D(1 I*A{JY)*%2)
R2=RHO*RHO :
R3=R2*RHO

C=0COS{BETA=RHI)
S=DSIN{BETA*RHO)

Hl=HL14+F%H(L) *{S/R2+C/BETa/R3)
H2=H2+F%H(L)*(C/R2-S/BETA/R3)
H1=H13*R 1%R1%Z1%RETA/2.D0/P1
H2=H2#%R1%xR1*Z1%*BETA/2.D0/P1
P=DSQRT(H1¥%2+4H2%¥%2)
ALPHA=20.D0%*DLOGLO(PI*R*K /P)
FORMAT(S5X,5(F12.6,7X))
WRITE(64610) 21 ,HL,H24P4ALPHA
5TOP

END

0oL



