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1.0 SUMMARY
 

The primary objective of this contract was to evaluate several facets 
of the solid polymer electrolyte fuel cell which showed promise of improving the 
characteristics of the technology. The major target areas were: 

o Reduced Fuel Cell Costs 
o 	 Reduced Fuel Cell Weight
 
° Improved Fuel Cell Efficiency
 

o Increased Systems Compatibility 

The secondary objective was to incofporate demonstrated advances 
into a full scale hardware design and to fabricate a single cell unit to this design. 

A substantial degree of success was demonstrated in each of primary 
target areas as follows: 

O Reduced Costs 

O Thinner membrane 
° " New low cost membrane 
0° Commercially available wetproofing 
o Elimination of gold 
o Elimination of fuel side screens 
o Non-platinized membrane 
o Bipolar current collection 

0 Reduced Weight 

0 Thinner membrane 
° Elimination of fuel side screens 
o Bipolar current collection 

" Improved Efficiency 

o Higher pressures 
O Bipolar current collection 
o Thinner membrane 

o Increase System Compatibility 

o Operation on contaminated reactants 

° Higher temperature waste heat 
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The significance of the program evaluations is summarized on Table I 
and Figure 1. 

The secondary objective was satisfied with the completion of the design 
and the fabrication and checkout of full scale fuel cell stack NT-1 (see Figure 2). 

2
 

DIRECT ENERGY CONVERSION PROGRAMS
 



GENERAL 0 ELECTRIC 

Table I 

Solid Polymer Electrolyte 
Fuel Cell Technology Evaluations 

DEMONSTRATED ADVANCES 

Tolerance to Contaminated Reactants 

(up to 80% N2 - 25% CO 2 - 0.3% CO Demonstrated)
 
0 Thinner Low Resistance Electrolyte
 

($25/Ft2 vs $35/Ft2 and 2% increase efficiency at 200 ASF) 
(2.7 cents/cm 2 vs 3.8 cents/cm2 and 2% increase efficiency at.21 amps/cm2) 

Elimination of Anode Distribution Screens 

($25/Ft2 ) 
(2.7 cents/cm2 ) 

O Low 	Cost Cathode Wetproofing 

($2/Ft2 vs $35/Ft2 ) 
(0.2 cents/cm2 vs 3.8 cents/cm2 )
 

" Low Cost Cathode Screen (BiPolar)
 

($5/Ft2 vs. $100/Ft 2 ) 
(0.5 cents/cm2 vs 10. 8 cents/cm2 )
 
Simplified Membrane Processing
 

($10/Ft2 vs $20/Ft2 ) 
(1. 0 	cents/cm2 vs 2. 1 cents/cm2 ) 

PROMISING AREAS FOR ADVANCEMENT 
0 Low 	Cost Electrolyte 

- ($10/Ft2 vs $35/Ft2 )
 
.(1;-cents./cmi -vs. 3..& cents icm2)
 

o 	 High Temperature Operation (300'F) (149°C)
 
(Decreased Radiator Size and Cost)
 

POTENTIAL AREAS FOR ADVANCEMENT 
O High Acid Content Electrolyte 

(2% Efficiency Increase Goal) 

O Weight Reduction in Catalyst Noble Metal 

($50/Ft2 Reduction Goal)
 
- (5.4 cents/cm 2 Reduction Goal)
 

O High Porosity Wetproofing
 

(:0 Efficiency Increase Goal)
 

O Reduced Cost Separator Materials 

($20/Ft2 Reduction Goal) 
(2.1 cents/cm2 Reduction Goal) 
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Figure 2. Fuel Cell Assembly NT-1 
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2.0 TECHNICAL BACKGROUND 

2.1 General Background 

The SPE fuel cell technology was first developed into a viable product 
in 1960. Over the past 15 years, improvements in both the SPE and the electrode tech­
nologies resulted in an increased field of applications to include electrolysis systems, 
oxygen concentrators and regenerative fuel cells. All four electrochemical devices 
utilize the same basic SPE and electrode components. Thus, the experience gained 
from one application can be used in the further improvement of the other devices. 

The heart of these devices is the SPE which is approximately a 10 rail 
thick plastic film fabricated from ion exchange material. This currently utilized 
material has a structure as follows: 

CF
I3 

CF 2 -CF - CF--I
 

This is essentially a sulfonated analog of Teflon with physical proper­
ties very similar to Teflon. 

The use of the SPE as the sole electrolyte in an electrochemical system 
offers the following advantages: 

Minimum weight 

.Immobile and invariant during life 

Minimum volume 

Ease of handling during assembly 

Capability of handling high pressure differentials 
across the membrane 

No tendency to react with CO 2 to form carbonates 
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2.1.1 Solid Polymer Electrolyte Technology 

The Nafion 0 SPE described above is a product of duPont and has 
been utilized extensively by GE/DECP in electrochemical applications since 1968. This 
membrane is extremely stable, both physically and chemically, while exhibiting excellent 
physical and electrochemical properties. These properties are listed below: 

Property Value 

Tensile > 2500 psi ( > 17,235 kN/m 2 ) 

Elongation > 120% 

Burst Strength, unsupported >100 psig ( > 689 kN/m 2 gauge) 

Water Content 25-40 Weight % 

Resistivity 4 15 ohm-cm 

Life in Electrochemical > 34, 000 hours demonstrated to date 
System (hours) in fuel cells 

Thermal Stability > 300OF ( ; 1490C) 

The Nafion 0 SPE is the latest in a series of GE/DECP membrane 
systems that included phenol-formaldehyde sulfonic, polystyrene sulfonic, and trifluoro­
styrene sulfonic acids. The Nafion f SPE was the only membrane that offered the 
excellent combination of physical and chemical stability required in the electrochemical 
environments. 

The first Nafion®SPE's tended to degrade slowly in an electrochemical 
environment as evidenced by a slow generation of HF and C02 from the operating device. 
However, this problem has been rigorously researched by both duPont and GE/DECP 
and has culminated in a stack (four cells) of 0.38 ft 2 (354 cm 2 ) (AFC 6) fuel cells that 
has been operating over 34, 000 hours with no detectable degradation products (HF). 
The performance characteristic over its life to date is shown in Figure 3. It is operating 
at 70 psia (483 kN/m 2 ) oxygen-side pressure and for the last 31, 000 hours has been run 
at 1807 with current densities up to 260 ASF .28 amps/cm 2 

2.1.2 Electrode Technology 

The GE/DECP electrode structures are thin catalyst layers pressed onto 
the SPE surface. The catalyst/SPE electrode also contains a thin (3-4 mil) (. 0762-. 1016 ml 
current collector screen, and in order to prevent water masking of the fuel cell oxygen 
electrode where product water is formed, a wetproofing film is placed on top of the 
catalyst/current collector. The performance of these electrode structures has been 
invariant for over 34, 000 hours with no evidence of performance decay. 
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Major Fuel Cell Programs 

The Gemini spacecraft program marked the first operational use of an 
SPE unit. The General Electric solid polymer electrolyte fuel cells used on that pro­
gram successfully completed all seven spacecraft missions, accumulating a total of 
850 hours. (5000 stack-hours) of flight operation with an excellent record of performance 
and reliability. The spacecraft system included two 1-KW modules, each containing 
three 32-cell stacks. 

A total of 250 stacks of the production configuration were built during 
the Gemini program. Most of these were used for reliability, endurance, and over­
stress testing and accumulated more than 80, 000 stack-hours of operating experience 
in addition to flight operation. 

A second-generation model of this fuel cell design successfully operated 
in orbit continuously for over 40 days (planned mission of 30 days) on Biosatellite 
Spacecraft 501 and stopped functioning only when the reactants were depleted. 

The so-called "back-to-back" cell design concept where cathodes of 
adjacent cells faced each other, was initially developed for Air Force satellites. This 
concept was continued under NASA's sponsorship. 

In this NASA Space Shuttle Technology Development Program, General 
Electric fabricated and evaluated flightweight fuel cell hardware. Noteworthy is the 
fact that a 3-cell assembly completed over 6500hours of life testing, a 38-cell stack 
-accumulated 5000 hours, and a 32-cell stack withancillary components in a prototype 
flight configuration achieved 2000 hours of operation. 

The technology developed during the Space Shuttle technology has recently 
been r6p-ckaae-ds -a3KW fuLel 6elY for th6 Navy's High Altitud6 Super-Pressurized 
Powered Aerostat (HASPA). 

Recently under sponsorship of NASA's Lewis Research Center, initial 
-development of a new SPE concept was started. The major feature of this concept was 
the removal of product water via a dynamic recycling oxygen system as opposed to the 
traditional wick and separator approach used since the Gemini Program. The advantages 
of this concept are in the areas of weight, cost and efficiency. 

Figures 4 thru 6 display the various products described above. Figure 7 
is a graphical presentation of the past fifteen years of progress in the SPE fuel cell 
technology.
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SPACE SHUTTLE FUEL CELL PROTOTYPE 

05000 HOURS LIFE TEST - 2.5 KW STACK 

62000 HOURS LIFE TEST - 2.5 KW MODULE 

GEMINI FUEL CELL 

OFIRST FUEL CELL SYSTEM IN SPACE 

SEVEN SUCCESSFUL MANNED SPACE FLIGHTS 

BIOSATELLITE FUEL CELL 

*OPERATED 40 DAYS IN SPACE 

*FIRST APPLICATION OF FLUOROCARBON SPE 

Figure 4. 

ORIGINAL PAGE IS 
OF POOR QUALIT
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Fuel Cell Module FS-2 (3KW) 

A Modified Version of the solid Polymer Electrolyte Fuel Cell developed 

by General Electric Company for NASA/JSC ispresently being utilized by 
the U.S.Navy as part of their High Altitude Powered Balloon Program. The 
Fuel Cell provides power for propulsion and housekeeping for one week 
missions. 

Figure 5. 

pAGSOFGU 
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Complete Fuel Cell Power System, Including Cryogenic Tasks, in the Process 
of Assembly for U. S. Navy Balloon Program. 

The Fuel Cell Performance Remains at Specification Levels Following 1000 Hours Operation and 2 Years 

Storage. 

Figure 6. 

ORIGINAL PAGE IS 
OF POOR QUALM 
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3.0 TECHNOLOGY ACTMTIES 

The major tasks of this program were twofold. The first task was to 
evaluate several promising aspects of the solid polymer electrolyte fuel cell in laboratory­
sized hardware. The second major task was to incorporate demonstrated advances into 
a full scale design and to fabricate and check out this design in a single cell stack. 

3.1 Subscale Laboratory Evaluations 

This major task was subdivided into twelve subtasks as follows: 

1) Anode Catalyst Performance 
2) SPE Membrane Performance 
3) Cathode Catalyst Performance 
4) Wetproofing Performance 
5) Catalyst Loading Reductions 
6) Baseline Performance Characteristics 
7) Medium Pressure Range Operation 
8) Non-Platinized Membrane Evaluation 
9) Catalyst Mix Optimization 
10) Cathode Wetproofing 
11) Electrode Manufacturing Techniques 
12) Extended Endurance Testing 

n •order to determine the performance of a standard cell, a baseline 
configuration was established utilizing the 1974 current state-of-the-art. This 1974 
baseline consisted of: 

O Solid- Polymer Electrolyte 

o duPont's Nafion 
o 10 mil (.2540 mm) thick 
o 35-40% H 20 
o 1200 equivalent weight 
O Platiniz&d 

O Anode Electrode 

o 4 grams/ft2 (4.3 mg/cm 2 ) 

12.50%T-30
° 87.5%Pt black 

14 
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Cathode Electrode 

O 4 grams/ft 2 	(4.3 mg/cm2 ) 
o 12.5% T-30 
o 87.5% Pt black 
o 1/4 inch (6.35 mram) stand pipe 
o 3 mil (. 0762 mm) gold screen 

o Current Collection 

o BiPolar 
o Multiple gold screen anode gap 
0 Open cathode gap 

The baseline configuration was sized to fit the laboratory 3 x 3 inch 
hardware shown on Figure 8. The baseline cell performance was determined when 
operating on oxygen/hydrogen, air/hydrogen, and oxygen/contaminated hydrogen. These 
performance results are displayed on Figure 9. The performance displayed on 
Figure 9 wiI be utilized throughout this report to be compared with the performances 
of the new configuration variations. 

Anode Catalyst 	Performance 

The purpose of this subtask was to evaluate the solid polymer electrolyte 
fuel cell performance capabilities utilizing fuel contaminated with significant amounts 
of C02 and CO. Three fuel mixtures were selected for evaluation as they represented 
typical effluents from chemical fuel processing plants. The volumetric proportions of 
these mixtures were: 

Mixture #1 	 25% C02
 
0.3% CH4
 
10 PPM CO
 
Balance H2
 

Mixture #2 	 25% C02 
0. 1%CH4 
0.3% CO 
Balance H2 

Mixture #3 	 25% C02
 
42% N2
 
Balance H2
 

The major problem anticipated was the catalyst poisoning effect by the 
relatively small amounts of carbon monoxide in mixtures #1 and #2. 

15 
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The approach taken to minimize the poisoning effect of the CO was to 
incorporate various anode catalystalloys which were reported to have higher tolerance 
to CO contaminated fuel than pure platinum black. The literature search identified four 
metals which had promise of performing well on contaminated fuel containing CO when 
these metals were alloyed with platinum black. These were Ix, Rh, Ru and various 
oxide levels of tungsten. 

A total of nine cells were fabricated to the baseline (1974) configuration 
except for variations in the anode materials. The total metal loading of the anode, however, 
was maintained at the baseline weight. Table II displays a brief description of each 
cell configuration and a numerical comparison of 02/H2 and air/H2 performance with 
the 1974 baseline cell. 

The first four cells tested utilized various amounts of either Ir, Rh or Ru 
mixed with the anode platinum. The resultant performances were below anticipated, 
especially on the fuel containing 0.3% CO. Figure 10 displays cell NT-1-4 which 
was the best of the first four cells. Note that although the contaminated fuel (0.3% CO) 
performance was considerably better than baseline, a major loss from pure H2 perfor­
mance was observed. 

The last five cells fabricated in this subtask all contained a small amount 
of tungsten oxide in the dnode. The best performer of these cells was NT-i-9 which 
contained 15% W0 2 and 21% Ru alloyed with the anode platinum. The performance of 
NT-1-9 on 02/H2 and air/H2 reactants is shown on Figure 11. This figure shows 
performance slightly above baseline with these reactants. When operated on contaminated 
hydrogen performance was considerably improved over the baseline as displayed on 
Figure 12. This figure shows a high level of performance utilizing a fuel containing 
10 PPM CO. Stability under these conditions was demonstrated by the five days of 
invariant performance. The increased amount of CO to the 0.3% level resulted in a small 
shift downward in performance but still much improved over baseline performance. A 
slow degradation of performance (i.e., 0.00035 V/hour @1650F and 100 ASF) was noted 
with continued operation on the 0.3% CO contamination in the fuel. Complete recovery 
to initial performance was noted, however, when a change over to pure hydrogen was 
completed. 

Cell NT-1-9 was also operated on a very dilute fuel (i. e., 33% H2 ­
25% C02 - 42% N2 ) with resultant performance shown on Figure 13. The excellent 
performance demonstrated at the 1. 75 times stoichiometric flow indicated the inherent 
capability of the cell to operate on very low partial pressures of hydrogen. 
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TABLE II 

Cell Configurations and Performance Comparison 

Performance Variance from 1974 Baseline Fuel Cell 
Fuel Cell Number 0 2 /H 2 

NASA 100 ASF 
Technology -Subtask-Cell Deviation from at 120 0F 

NT - X - X - Baseline Fuel Cell VDC(0.775) 

NT-i-I 	 Anode catalyst 50% -0.143 
Pt-50% Ru mixed 

with 15% T-42 

NT-i-1-A 	 Same as above ex- -0.130 
cept with Vexar 
compression 
screens in cathode 
gPap
 

NT-1-2 Anode catalyst 50% 0.000 

Pt-50% Rh mixed 

with 15% T-42 

NT-1-3 	 Anode catalyst 50% ­

Pt-50%Tr mixed 
with 15% T-42 

NT-1-4 Anode catalyst 75% -0. 017 
Pt-25% Ru mixed 
with 15% T-42 

NT-i-5 Anode catalyst 85% -0.025 

Pt-15% W0 2 mixed 
with 15% T-42 

NT-1-6 Anode catalyst 85% -0. 040 
..... ........ Pt-15% W02.5 mixed 

Swith 15% T-42 I 
NT-1-7 	 Anode catalyst -0.023 

64% Pt-21% Ru­
15% W02 mixed 
with 15% T--42 

NT-1-8 	 Anode catalyst -0.055 
64% Pt-21% Ru­
15% W0 2 . 5 mixed 
with 15% T-42 

NT-1-9 	 Anode catalyst -0. 023 
64% Pt-21% Ru­
15% Wa 2 mixed 
with 15% T-42 

0 2 /H 2 Air/H 2 
200 ASF 100 ASF 
at 120F at 165 F 

VDC (0.680) VDC(0. 730) 

-

Air/H 2 
200 ASF 
at 1657 

VDC (0.625) 

-0.210 

+0. 005 

-

+0. 004 

-0.018 

-0.038 

-0. 027 

I 

-0.675 

+0.035 +0.012 +0. 021 
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Figure 10. 
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SPE Membrane Performance3.1.2 

The purpose of this subtask was to demonstrate lower cost and/or
 
higher fuel cell performance through the use of alternate membrane electrolytes.
 

The approaches taken in this subtask were threefold. First, a membrane 
having all the physical and chemical characteristics of the baseline electrolyte, except
 

it had only one-half the thickness (5 mils) (. 1270 mm), was selected for investigation.
 

The thicker 10 mil (.2540 mm) material was selected for use many years ago when basic
 

polymer imperfections could have lead to failure. With today's high quality materials,
 

this extra thickness is not required. The advantage of the 5 nail material is its higher
 

potential performanceby means of its lower internal impedance. The thinner material
 

also offers some cost advantages.
 

The second app;oach taken n this subtask was to utilize a chemistry 
variation of the duPont Nafion U polymer utilized in the baseline cell. This variation 
had a greatly increased acid content as measured by the increase of the ion exchange 
capacity. As is the base with all currently utilized solid polymer electrolytes utilized 
at DECP, this material had its acid chains chemically linked or fixed to the polymer, 
thus preventing dilution or loss of the electrolyte. The advantage of the higher acid content 
polymer is the still higher electrical performance from further reductions in internal 
impedance. 

The third and final approach taken in this subtask was to perform initial 
evaluations onanew solid polymer electrolyte. This polymer is manufactured by Radiation 
Applications Industries Research Corporation (RAI). The fabrication is conducted by 
graftingoc -trifluorostyrene to FEP. The advantage of this new polymer is its 

-.potential.for a.large reduction in raw material cost. 

kl-total of se-en-cells -were fabricated to the, 19)7_ baseline configuration 
except for variation in the electrolyte materials. Table III displays a brief description 
of each cell configuration and a numerical comparison of 02 /H 2 and air/H2 performance 
with the 1974 baseline. 

Two cells containing the 5 ail Nafion @ polymer with the baseline 
acid content were fabricated and test evaluated. Figure 14 displays the performance 
of cell NT-2-5 as compared to the 1974 baseline performance. Note that the abscissa 
scale has been changed from previous plots to display the high current density capabilities 
of this thinner electrolyte. Although no performance improvement was noted at lower
 
current densities, significant higher current density performance increases were es­
tablished.
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TABLE I 
Cell Configurations and Performance Comparisons 

Performance Variance from 1974Baseline Fuel Cell 

Fuel Cell Number 02 /H2 0 2 /H 2 Air/H 2 Air/H 2 
NASA

Tehnolomy -Subtask-Oell Deviation from 
j00 ASF 200 ASF 

at 120°Fa 10F 
100 ASF 
at 1650F 

200 ASF 
at 165OF 

NT - X - X Baseline Fuel Cell VDC (0.775) VDC (0.680) VDC(0.730) VDC (0.0625§1 

NT-2-1 5 mil Nafion -0. 005 +0. 035 
with 24% H20 

NT-2-2 High IEC 4 ail - -

Nafion (a with 
52% H20 

NT-2-3 	 High IEC 6 mil AI -0.095 -0.090 
membrane at 33% 
H2 0 

NT-2-4 	 High E E m il -

Nafion &R with 
30% H20
 

NT-2-5 -	 5 mil Nafion® -01035 +0.009 

NT-2-6 '"High IEC 6 mil -0.001 - -0.031 -0.293 
PUl membrane 
@ 33% H20
 
350°F/750 psi 
cathode attachment 
305°F/250 psi 
2nd cathode attach­
ment 

NT-2-7 Cell NT-2-6 -0. 010 -0.029 -0.220 -.­

..-.. .... vith LNP replaced 
... .... ..... ...--with Chem plast at 

305*F/250 psi 
-

, " r 

Two cells containing the high acid content - high IEC Nafion were 
fabricated. Neither cell was 'capable of operation as cross leakage was identified before 
activation. One of the disadvantages of the high IEC material is its reduced physical 
strength. After the second attempt, it became obvious that the present DECP assembly 
techniques and/or design configurations were not suitable for the high IEC polymer. 

The RAI polymer electrolyte was evaluated in three cell assemblies. 
Figure 15 displays cell NT-2-6 which was the best performer of the three. This cell 
showed performance equivalent to the 1974 baseline at lower current densities, but not 
quite as good at high current densities. 
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Figure 15. 

27 

DIRECT ENERGY CONVERSION PROGRAMS 



3.1.3 

GENERAL* ELECTRIC
 

Cathode Catalyst Performance 

The purpose of this subtask was to demonstrate improved cathode per­

formance through the use of alloy catalysts. 

The approach taken was to conduct a literature search and to incorporate 

potential candidate alloys in the laboratory 3 x 3 hardware for evaluation. One of the 

four cells fabricated contained a gold/platinum alloy prepared by the NASA/Lewis Research 

Center. This alloy was previously found to significantly improve cathode performance 
when utilized with 	an alkaline fuel cell. 

Table IV displays a brief description of the configurations of the four­

cell along with a numerical comparison of 02 /H 2 and air/H2 performance with the 1974 

baseline cell. TABLE IV 

Cell Confiourations and Performance Comparisons 

Performance Variance from 1974 Baseline Fuel Cell 
Fuel Cell Number 02/H 2 02/H2 Air/H2 Air/H2 

NASA - 100 ASF 200 ASF 100 AS? 200 ASF 
Technology -Subtask-Cell Deviation from at 120'F at 120*F at 165'F at 165°F 

NT - X - X Baseline Fuel Cell VDC (0.775) VDC (0.680) VDC (0. 730) VDC (0. 625 

NT-3-1" 5%Ir in cathode 
catalyst with 

-0;026 -0.005 -0.135 -

12.5% T-4­

NT'3-2 . 5% Ru in cathode -0. 020 -0. 004 -0. 115 0.152 
catalyst with 
12.5% T-42 

- - -NT-3-3-- . .. 90%Au -in cathode -0.302 
catalyst with 12.5% 
T-42 

NT-3-4 	 NASA Lewis -0. 400 
preparation 90% Au 
in cathode cats! stT- stwith 12.50 

The best performer of the four cells was NT-3-2 which contained 5% 

Ru in the cathode catalyst. Figure 16 displays this performance. This performance was 

found to be slightly below the 1974 baseline configuration. The two cells fabricated 

with the gold/platinum alloy cathode catalyst were found to perform well below the base­

line performance. Figure 17 shows the performance of cell NT-3-3 which contained 

a GE/DECP prepared gold/platinum alloy and Figure 18 exhibits the performance of 

cell NT-3-4 containing the NASA-Lewis prepared gold/platinum alloy. 
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3.1.4 Wetproofing Performance 

The original purpose of this subtask was to investigate conductive wet­
proofing to reduce the I loss in the cathode electrode. The purpose was expanded
 
as the program continued to include the investigation of alternate wetproofing films and
 
alternate assembly techniques.
 

A total of eight cells were fabricated and evaluated as part of this sub­
task. Table V gives a brief configuration description of each of these cells along with 
the numerical comparison of 02 /H 2 and air/H2 performance with the 1974 baseline 
cell. 

The first attempt to reduce the cathode IR loss was to eliminate the wet­
proofing film altogether such that current pickup from the cathode could be accomplished 
at any point on the electrode. To compensate for the removed wetproofing film, the 
teflon content within the catalyst was increased from 12.5% to 20%. Operation of this 
cell NT-4-1 was found to be unstable. 

Cell NT-4-3 utilized a gold imnregnated wetproofing such that it
 
became highly conductive. Unfortunately, overall cell performance reduced in this
 
configuration as can be seen on Figure 19.
 

The repeatability of cell performance from cell to cell while operating 
on air as the source of oxidant became of some concern as the program continued. This 
concern included an observed variability in the porosity of the GE/DECP prepared 
wetproofing film. Cells NT-4-4 thru NT-4-7 were fabricated and test evaluated to 
improve-this -observed-variability. These configurations included the use of a highly 
uniform .commercial substitute for the DECP prepared wetproofing and they also 
contained variations in the cell assembly techniques. Fuel cell NT-4-8 was fabricated 

,utilizing-whatwas- considered to be the best combination -of characteristics from the 
evaluation of NT-4-4 thru NT-4-7. 

Figure 20- displays the performance of cell NT-4-8 with its significantly 
improved performance over thi 'bb9lin&'hardware. In order to determine tle stability 
of this configuration with operating time an endurance test was performed. Figure 21 
shows that in actuality performance tended to increase for the first 800 hours and then 
became quite stable. 
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TABLE V
 

Cell Configurations and Performance Comparison 

Performance Variance from 1974 Baseline Fuel Cell 
Fuel Cell Number 


NASA 

Technology -Subtask-Cell 

NT X X 


NT-4-1 


NT-4-2 

NT-4-3 


NT-4-4 

NT-4-5 

NT-4-6 

NT-4-7 

NT-4-8 

Deviation from 
Baseline Fuel Cell 

20% T-30 mixed 
into cathode 
catalyst 
no wetoroofing 

Chemplast 
wetproofing cathode 
assembled at 500 vsi 

Gold plating in 
LNP 

Chemplast 
wetproofing single 
cathode @ 
3050F/250_si 

Cell NT-4-2 
Chemplast replaced 
with 300 psi 
Chemplast cathode 

Baseline with 
wetproofing refine­
ments 

Baseline with 
wetproofing refine­
ments using double 
press single 
cathode 

Baseline with 
wetproofing refine­
ments using 
Chemplast wet­
proofing film 

0 2 /H 2 02/H 2 
100 ASF 
at 1200 F 

VDC (0. 775) 

200 ASF 
at 120F 
VDC (0.680) 

-0. 054 -0. 034 

-0.063 -0.070 

-0. 042 -0. 030 

-0.037 -0. 025 

-0.015 -0.005 

-0. 088 -0.148 

+0.035 +0. 050 

Air/H2 Air/H 2
 
100 ASF 200 ASF
 
at 165F at 165F 
VDC (0. 730) VDC (0.625) 

-0. 370 

-0.035 -0. 060 

-0.095 ­

-0.115 

I 

+0.010 +0. 030 

-0.169 

+0.020 +0. 015 
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3.1.5 Catalyst Loading 

The purpose of this subtask was to demonstrate reductions in the 
amount of noble metal required in the catalyst systems. 

The approaches taken were threefold. The firstapproach was to simply 
apply less catalyst to the solid polymer electrolyte utilizing the standard electrode 
manufacturing techniques. The second approach was to apply less catalyst per the first 
approach and then to add a second layer of low cost conductive material onto the platinum. 
The third approach was to utilize a low cost extender material with the reduced amount 
of platinum distributed throughout the blend. 

A total of eight cells were fabricated and test evaluated as part of this 
subtask. Table VI displays the brief configuration description of each of the cells 
along with the numerical comparison of performance with the 1974 baseline. 

Performance plots of each cell except NT-5-3 are displayed on Figures 22 
thru 28. Cell NT-5-3 was not evaluated as cathode detachment occurred with 
normal handling. Apparently the reduced -amount of- catalyst-material prohibited proper 
cathode attachment. As can be detected by examination of Figures 22 thru 28, 
-none of the catalystloading reduction attempts were effective as performance of each 
cell was significantly below the baseline cell. 

3. 1. 6 Baseline Performance (1975) Characteristics 

The purpose of this subtask was to incorporate several of the demon­
strated advances into a single cell and establish a new baseline performance against 
which future modifications could be compared. These advances included: 

... - The-SPE -membrane thickness was reduced from 
10 mils to 5 mils (.2540 to .1270 mm). 
The Chemplast wetproofing at a normal 7 mil (..1778 mam) 

thickness was utilized instead of the 7t mil LNP. 

O The cathode current collection screen material was 

changed from 3 mnil (. 0762 mm) gold to 3 mil niobium. 

o The anode catalyst consisted of 64% Pt - 21% Ru 

15% Wa 2 mixed with 15% T-42. As opposed to the 
pure platinum-teflon mix. 
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TABLE VI 

Cell Configurations and Performance Comparisons 

Fuel Cell Number 
NASA 

Technology-Subtask-Cell 
NT X - X 

'NT-5-1 

NT-5-2 

NT-5-3 

NT-5-4 

NT-5-5 

NT-5-6 
...... 

NT-5-7 

NT-5-8 

Deviation from 

Baseline Fuel Cell 


I mg/cm2 -anode 

catalyst loading
 

1 mg/cm2 anode 

catalyst loading
 
with 3 mg/cm

2 

graphite 

I mg/cm 2 cathode 

catalyst loading
 

-1mg/cm 2 cathode 

catalyst loading
 
with 3 mg/cm

2 

graphite 

8 mg/cm 2 total 
anode metal loading. 
0.43 mg/cm
 
platinum and re­
mainder W0 2 . 5
 

4mg/cm2 total 
anode.metal loading. 
0.2 mg/cm
 
platinum and re­
mainder boron
 
carbide
 

16 mg/cm2 total 
anode metal loading. 
0. 8 mg/cm platinum 
and remainder W0 2 

Same as NT-5-7 " 
except T-7 utilized 

,in anode 

Performance Variance from 1974 Baseline Fuel Cell 
O2 /H 2 02 /H 2 Air/H 2 Air/H 2 

100 ASF 200 ASF 100 ASF 200 ASF 
at 1200F at 120°F at 165°F at 1650F 
VDC (0. 775) VDC (0. 680) VDC (0. 730) VDC (0. 625) 

-0.063 -0.105 

-0.070 -0. 095 

--

-0.160 ­

-0.220 -0.420 ­

-0.775 ­

-0.104 -0.175 ­

-0.100 -0. 170 ­
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Figure 22. 
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Figure 23. 
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Figure 24. 
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Figure 25. 
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Figure 26. 
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Figure 27. 
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The fuel side gat distribution and current collection 

configuration ;as changed from the multiple layers of 
3 mil gold screen to a single embossed 3 mil layer of 
niobium foil. 

The major impact of the above design modification was in the area of 
cost reduction. The secondary impact was the tolerance to contaminated fuel. 

The two cells fabricated in this subtask are described in Table VII, 
along with the numerical comparison to the 1974 baseline performance. The performance 
of cells, shown on Figures 29 and 30, was superior to the 1974 baseline on 02/H? 
and air/H2 . However, when operation of cell NT-6-1 was attempted on fuel containing 
25% C02 an unstable performance condition existed. Because this appeared to be a 
fuel distribution problem, cell NT-6-2 was assembled with the 1974 baseline anode 
gap configuration with one extra distribution screen. This resultant configuration 
resulted in very stable contaminated fuel performance (see Figure 31). 

TABLE VIE 

Cell Configurations and Performance Comparison 

Performance Variance from 1974 Baseline Fuel Cell 

Fuel Cell Number 
NASA 

Technology-Subtask-Cel] Deviation from 

O2 /Hz 
100 AST 
at 120F 

02/H 2 
200 ASF 
at 120°F 

Air/H2 
100 ASF 
at 1650 F ' 

Air/H 2 
200 ASF 
at 165F 

NT - N - X Baseline Fuel Cell VDC (0. 775) VTO (0. 680) VDC (0. 730) VDC (0 626) 

NT-6-1 5 mil Nafion R, .000 +.015 -. 009 +.015 

niobium cathode 
screen, anode 
catalyst '64% PT 
21% RU - 15% W0 2 

mixed with 15% T-42. 
Chemplast cathode, 
niobium fuel distri­
bution plate. 

NT-6-2 Same as NT-S-I + .010 + . 030 + . 006 + . 001 
except gold screen 
distribution plate 
with one extra gold 
screen. 
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Figure 29. 
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Figure 30. 
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3.1. 7 Medium Pressure Range Operation 

The purpose of this subtask was to evaluate the 1975 baseline configura­
tion at higher temperature and pressure conditions. 

The approach taken was to fabricate a cell to the 1975 baseline except to 
utilize the 1974 anode gap configuration and a 10 rail thick solid polymer electrolyte. 
Table VIT displays the configuration and numerical performance of the cell. 

TABLE VIEI 

Cell Configurations and Performance Comparison 

Performance Variance from 1974 Baseline Fuel Cell
 
Fuel Cell Number 0 2 /H2 02/H2 Air/H2 Air/H 2
 

NASA 100 ASF 200 ASF j100 ASF 200 ASF
 
Technology-Subtask-Cel. Deviation from at 120'F at 120OF at 1650F at 165 0F
 

NT -X - X Baseline Fuel Cell VDC (0. 775) VDC (0. 680) VDC (0.730)1 VDC (0.625)
 

NT-7-	 Same as NT-6-2 - .029 - .015
 
except 10 mil
 
Nafion R
 

The low pressure performance of cell NT-7-1 is shown on Figure 32. 
Figure 33 displays the influence of reactant pressure on the performance output of 
cell NT-7-1. Note the location of the 1973 Space Shuttle technology performance at 
some 0. 06 volt lower at 200 ASF than the 1975 configuration. 

- Figure 34 exhibits the effect of operation with contaminated fuel, 
including-carbon monoxide; while at 165F.- Note; that the-performance on this contami­
nated fuel is approximately the same as 1973 performance with pure reactants. 

The effect of temperature on cell NT-7-1 can be observed on Figure 35 
when compared with Figure 34. Increasing the cell operational temperature from 
165°F to 220'F has only a slight positive effect on performance on pure reactants. However, 
performance on contaminated fuel containing carbon monoxide is greatly improved 
(i. e., considerably above 1973 performance on pure reactants). Figure 35 
also shows that a majority of the performance difference between pure and contaminated 
reactants at 2200 F is resultant from the inert masking effect (i. e., 25% CO2 ). 

3.1.8 Non-Platinized Membrane 

The purpose of this subtask was to determine the necessity of membrane 
platinization when operating with air as the oxidant source. 
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During the NASA/JSC technology program of the early seventies, it 
was shown that the slow degradation of the unplatinized polymer was a function of the 
partial pressures of the reactants. Since the partial pressures are significantly reduced 
when operating at near ambient pressure hydrogen and air, it was believed that the 
polymer platinization was not necessary. 

A single cell was fabricated utilizing the unplatinized polymer. Table IX 
displays the cell configuration summary and the numerical comparison of performance 
with the 1974 baseline when operated on air and hydrogen. 

Table IX 

Cell Configuration and 	Performance 

Performance Variance from 1974 Baseline Fuel Cell
 
Fuel Cell Number 02/H2 92/H12 Air/H 2 Air/H2
 

NASA 100 ASF 200 ASF 1100 ASF 200 ASF
 
Technology-Subtask-Cel Deviation from at 120F at 120F 1at 165TF at 1650 F
 

NT - X - X aseline Fuel Cell VDC (0. 775) VDC (0. 680) VDC (0.730) I'C (0. 625)
 

NT-8-I 	 Same as NT-6-1 N/A N/A_ - .010 + .018 
except unplatinized 
membrane. 

Activation of cell NT-8-1 was performed by the hydrogen:side vacuum 
technique as opposed to electrolysis to preclude the presence of pure oxygen on the 
cathode side. The cell was then operated for 1500 hours on hydrogen/air at 15 psia 
(103 kN/m 2 ) and 16 psia (110.kN/m 2 ), respectively, and at -165!F j(ff4C). Performance 
was normal and stable throughout the test. A product water analysis was performed " 
twice per week to identify the existence of HF which would indicate the degree of any-polymer 
degradation. None of the analyses showed any detectable HF (1 PPM is considered the 
lower level of detection). 

Catalyst Mix Optimization 

The purpose of this subtask was to investigate variations i the tungsten 
oxide to platinum proportions in the anode catalyst relative to operation on fuel contaminated 
with CO9 and CO. 

In the anode catalyst performance subtask, tungsten oxide was found to 
significantly reduce the poisoning effect of carbon monoxide. The amount of tungsten 
oxide utilized in that subtask was arbitrarily selected at the 15% by weight level. The 
approach taken in this subtask was to fabricate and evaluate cells with a lower and 
higher proportion of tungsten oxide. 

A total of three cells were evaluated in this subtask. Table 
displays the brief cell description and the numerical comparison to the 1974 baseline 
performance on 0 2 /H 2 . 
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Table X 

Cell Configuration and Performance 

Performance Variance from 1974 Baseline Fuel Cell 
Fuel Cell Number 

NASA 
02/H2 

100 ASF 
02/H 2 

200 ASF 
Air/H2 

100 ASP 
Air/H 2 
200 ASF 

Technology -Subtask-Cel Deviation from at 120 0 F at 120SF at 1650 F at 165*F 
NT - X - Baseline Fuel Cell VDC (0.775) VDC (0.680) VDC (0.730) VDC (0.625) 

NT-9-1 Same as NT-6-2 - .025 - .002 
except 7%W0 2 
in anode. 

NT-9-2 Same as NT-6-2 -. 039 -. 035 
except -30%W0 2 
in anode. 

NT-9-3 Same as NT-6-3 -. 073 -. 105 
except 60% Wa 2 
in anode.-

Figure 36 exhibits the resultant performance on each cell on contaminated 
fuel. The figure shows the performance of the various cells a few hours after changeover 
to the contaminated fuel. At that point, the lower amount of tungsten oxide would appear 
to be closer-to optimum. However, upon continued operation of the cells, a more rapid 
performance degradation was noted in the cell containing the least amount of tangste­
oxide. (i. e., 0.0007 V/hour loss with 7% W0 2 vs. - 0. 00035 V/hour loss with 
15% W0 2 ) 

3. 1. 10 Cathode Wetproofinr 

The purpose of this subtask was to investigate thinner wetproofing 
material that could potentially result n improved performance. 

Chemplast porous film was evaluated as a suitable replacement for the 
GE/DECP fabricated film during the wetproofing performance subtask. The film thickness 
utilized in that previously discussed subtask was approximately 7 mils (. 1778 mm) (same 
thickness as the GE/DECP film). The Chemplast material is produced in thinner sheet stock 
than that previously utilized and thus considered a potential product improvement by reduc­
tion of diffusion losses thru the wetproofing. 

The approach taken was to fabricate and evaluate a cell utilizing a 
2 mil (. 0508 ram) wetproofing thickness. Table XI shows the cell NT-10-1 configuration 
description and comparison performance to the 1974 baseline. 
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TABLE XI 

Cell Configurations 	and Performance 

Performance Variance from 1974 Baseline Fuel Cell 
Fuel Cell Number 

NASA 
02/H2 

100 ASP 
02/H2 

200 ASF 
Air/H 2 

100 ASP 
Air/i 2 

200 ASP 
Technology-Subtask-Cel] Deviation from at 120'F at 120'F at 1650 F at 165°F 

NT - X - X Baseline Fuel Cell VDC (0.775) VDC (0. 680) VDC (0.730) VDC (0.625) 

-10-1 Same as NT-6-1 -. 025 -. 020 -. 030 - .105 
except 2 mil 
Chemplast 4 Pt 
anode. 

Figure 37 displays 	initial cell performance and 140th hour performance. 
Although initial performance on both 0 2 /H 2 and air/H2 was below normal, a steady 
improvement of the 0 92/ 2 performance with time was noted. No improvement with 
time was observed for the air/H2 operation. 

3.1.11 Electrode Manufactarinz Technicues 

The purpose of this subtask was to identify and evaluate "non-szandard" 
electrode configurations so as to reduce the quantity of noble metal required in the 
electrodes. 

The approach taken for this subtask was to, conduct a series of design/ 
technology reviews. 

The catalyst mix utilized on the anode of cell NT-5-6 contained 
4 mg/cm2 metal loading of which .2 mg/cm 2 was platinum with the balance being boron 
carbide. Work performed in 1964 during the General Electric direct hydrocarbon fuel 
cell program showed that platinum-depbsited on boron carbide gave excellent performance 
when operated as an anode in a liquid acid fuel cell. Performance at a platinum loading 
of .16 mg/cm 2 on boron carbide was comparable to pure platinum catalyst at 45 mg/cm2 . 

During the latter part of this program phase, a plan was devised from 

the design/technology reviews by which the success shown on the liquid acid cell could 
be transferred to the solid polymer electrolyte technology. This plan calls for a repeat 
fabrication and evaluation of the aforementioned electrode configuration in the liquid 
acid cell. Upon success of this activity, a transfer of the techniques to the solid 
polymer electrolyte technology will be performed. 
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Figure 37. 
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3.1.12 Extended Endurance Testing 

The purpose of this subtask was to identify the long term effects of 
operating on a fuel contaminated with carbon monoxide among other contaminants. 

The approach taken was to utilize cell NT-i-9 fabricated and evaluated 
under the anode catalyst performance subtask, for continued endurance testing. 
Figure 38 displays the first long term run on contaminated fuel from the 306th hour to 
the 570th hour. During the course of that run a slow rate of voltage decay was noted. 
At the end of the run a switchover to pure hydrogen was accomplished and a complete 
recovery to initial 0 2 /H2 performance levels was observed. 

To assess the effect of operational temperature on the special anode 
catalyst tolerance to the carbon monoxide poisoning, the cell temperature was reduced 
to 1300F (540C). Figure 39 displays the resultant performance on the contaminated fuel. As 
can be observed on the figure, a large decay in voltage indicated the rather large influence­
the temperature plays in the ability to operate on fuel contaminated with carbon monoxide. 
A switch back to pure hydrogen resulted in complete recovery to initial 0 2 /H 2 perfor­
mance levels. 

Figure 40 displays the final long-term contaminated fuel run which 
was followed once again by complete recovery to initial 02 /H2 levels when switchover 
was conducted. 

Figure 41 is a time plot which shows the degradation trends during 
each of the three runs. 

3.2 Development Cell Fabrication' 

The purpose of the second major task was to design and fabricate a 
full-scale cell capable of operating on pure or contaminated fuel and pure oxygen or 
air. The design of this hardware was to incorporate a maximum of demonstrated 
advancements out of the subscale laboratory evaluations. 

3.2.1 Development Cell Design 

The desired characteristics of the cell were established based on the 
laboratory evaluation results, readily available material sizes, and previous assembly 
experience. These characteristics are displayed on Table XII. 

In order to finalize the configuration of the various flow passages such that 
desired AP's could be maintained, a series of bench tests were performed. A flow test 
fixture was fabricated which could simulate the flow and differential pressures desired. 
Figure 42 exhibits the bench test set-up. 
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Figure 38. 
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Table XII 

Development Cell Design 

Cell Characteristics at Desig-n Point 

Active Area 

Current Density 

Heat Rejection 

02 Consumption 

0 2 /Air Inlet Pressure 

Air Flow @2. 5 x Stoich 

02 /Air AP 

H2 Consumption 

Fuel Inlet Pressure 

Fuel Flow (75% H2 ) @ 
1.25 x Stoich 

Fuel AP 

Coolant Inlet Tempetature 

Coolant Inlet-Pressure 

Coolant Flow 

Coolant AP 

0.7 Ft2 (650 cm 2 ) 

250 ASF (2.7 amps/cm2 

526 Btu/Hr 

655 cc's/Min 

35" (88.8 cm) H2) 

8 Liter/Min 

10"1 (25.4 cm) @ 
4 x Stoich 

1310 cc/Min 

15" (38 cm) H20 

2190 ec/Min 

10" (25.4 cm) H20 (Max) 
@ 1. 5 x Stoich 

160F (71?C). 

25" (63 cm) H20­

400 cc/Min 

20!' (51 cm) H20 
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H20 
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Inlet 
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~~~Plate 1 
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.... 

Gasketed Test Sample 
(1" Wide) 

Figure 42. Flow Test Set-Up 
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A total of eleven configurations were evaluated either on water or gas.
 
Table XIII displays the flow test results for each of the configurations.
 

Configuration #1 was selected for the coolant passage and configuration 
#9 for the fuel passage. Flow characteristics were the primary criterion for configura­
tion selection although ease of fabrication and costs had minor impacts. The cathode 
passage was selected to be a so-called "open gap" and as such the flow would be controlled 
by inlet and outlet restrictors. 

There was concern regarding the fuel-side configuration.- The concern 
was that increased resistance would exist between the electrolyte and the fuel side 
separator plate because of the small point contacts. A sample of the selected fuel side 
configuration was fabricated for use with the -3 x 3 laboratory hardware. .Laboratory 
size cell NT-2-1, which was operating with a standard 1974 baseline gold screen assembly 
for fuel flow, was discharged, disassembled and the new embossed niobium fuel plate 
configuration installed. Figure 43 displays the resultant performance as compared 
to the baseline fuel side. configuration. The performance comparison showed the 
configurations to be within 0. 01 volt at all load points. 

The major features incorporated into the design from the subscale
 
laboratory activities included:
 

SBi-polar current collection 
O Niobium cathode screen 

Alloy anode catalyst (Pt-2! Ru - 15 W0 2 ) 

Other demonstrated advances- were not-considered7 sufficiently proven 
- by the design decision date such that incorporation was not attempted. -These advances
 

included:
 

o Reduced thickness electrolyte 
o Low cost Chemplast wetproofing 
o Simplified membrane processing 

Engineering design sketches of the cell and stack were presented to
 
NASA/JSC personnel during a design review on December 17, 1974.
 

3.2.2 Development Cell Fabrication 

Fabrication of the hardware to the engineering design sketches was 
accomplished without difficulty with one exception. The cathode side separator plate 
was to be die drawn from a 3 mil (. 0762 mm) thick niobium sheet. The maximum draw 
desired was fabricated into a small sample.die. Test fabrications with unnnealed 3 mil 
niobium sheet stock produced the desired quality draw. A full scale die was then fabricated 
and full width niobium sheet stock ordered. The sheet stock was ordered fully annealed 
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TABLE XIII 

NASA Technology Fuel Cell Flow Test Configurations 

Inlet A Bottom H20 Gas 
Press. Press. Plate Press. Flow Flow 

Configur ation ,"H20 1,2 "H2 _ c_/m cc/mmll 

1. Nettlon Screen 0. 023" 35 21 35 75 -

Polyethelene 11 mesh/in. 

E----,Flow Direction 
Between - 3 mil Nb Foil 

29 
23 
19 

18 
13 
10 

35 
35 
35 

70 
58 
51 

-
-
-

2. Same as i. 
Except Q Flow --­> 

.23 

38 
20 

13 
21 
11 

35 
35 
35 

61 
91 
54 

-
-
-

3. 3 mil Nb Foil 20 11 35 57 -

with impression from 24 12 35 67 -

10 mil 2O Ti Screen 38 21 35 120' 
Pressed at 160 Ton 25 13 35 70 -

Average Ht. 0.012" 42 19 35 136 -

S-- Flow 5 2.5 35 - 545) 
10 5.0 35 1200 02 

15 8.0 35 1715 

4. Same as 3. 
Except with 11 mil 5 3 35 400"' 

Membrane Covering Flow 10 6.5 " 35 923- 02 
Area of AP Measurement 15 9.5 35 - 1500 

5. Same as 3. 25 16 - 35 54 -

Except 0---Flow 40 25 35 98 -

6. Same as 3. 
Except 80 Ton Press 
Average Ht. 0.008" 

27 
41 

13 
19 

35 
35 

60 
100 

-
-

7. Same as 3. 

Except 20 mil 2 d Ti 26 14 35 53 -

Screen at 160 Ton 
Average Ht. 0.016" C- Flow 

42 20 -35 86 -

8. Same as 5.Except 20 milDeep 4 3 35 - 240 

Channel Along One Side at 
Screen Impression - Flow Area 

10 
15 

7 
10 

35 
35 

-

-

625 N2 
1000i 

of AlP Measurement Covered 
with 11 mil Membrane 
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TABLE x= (Continued)
 

NASA Technology Fuel Cell Flow Test Configurations
 

Inlet A Bottom H 2 0 Gas 
Press, Press. Plate Press. Flow Flow 

Configuration 120 g_29 H20 cc/min cc/min 

9. 	 Same as 5. Except 5.2 4.5 35 - 220 
Flow Area of 6,P Measurement 10 9 35 - 440 NZ 
Covered with ii milMembrane 15 13 35 - 650/ 

10. 	 Same as 4. Except 35 31 35 -21 
80 Ton Press 53 52 35 31 -

Average Ht. 0. 008" 	 88 82 35 24 
Impossible to remove air bubbles in flow path. 

11. 	 Same as 10. Except 25 25 35 0 
Upside Down Installation 100 100 35 0 
Pertaining to Screen No water flow possible. 
Impression 
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so as to provide further assurance that the draw could be successfully accomplished. 
Test draws utilizing the unannealed stock, only two-thirds the required width, on the 
full size die, produced acceptable parts. When the fully annealed material was attempted 

- an uncracked part was unable to be formed in up to ten trials. The purchase and trial 
of full width unannealed niobium sheet stock resulted in no improvement. In order to 
keep the schedule and maintain the intent of the design, the acceptable deep draw ribs 
were cut from the narrower material and welded to the unformed full width sheet stock. 

The fabrication of the hardware continued without further incident.
 
Figures 44 thru 46 display the various stages of the cell assembly.
 

The completed cell assembly and a second half cell (containing oxidant 
and coolant chambers only) were assembled into fuel cell stack NT-01 -(see Figure -2); -

Leakage, flow and electrical -shorting checks were found normal on the completed stack. 
The 1000 Hz impedance of the cell in the stack hardware was found to be slightly higher 
than expected (0. 005 ohm vs. < 0. 008 ohm). It is probable that one or both of-the...... 
following conditions contributed to this observation: 

The anode electrode, not containing an integral current. 

collector screen, will undoubtedly make. better-electrical 
contact with the embossed anode current collector plate 
under the normal operational temperature aid differential 
pressure conditions. 

The compression of the stack at the central contact areas 
(along the cathode ribs) may be slightly less than desired.-
This situation may be correctable by either the addition 
of central area shimming (. 005! to .010?) (. 1270 to .-2540 inm) 
or by thermal expansion of the components during normal operation. 

It is planned that the stack be operated before any shimming is performed. 
The operation of the stack will add to the insight as to the cause of the slightly high 
impedance and allow determination as to whether shimming is required. 
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Figure 44. Anode/Cathode Collector Plate Assembly (Cathode Side) 
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Figure 46. End Plate NT-13 (with Cell Assembly) 
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CONCLUSIONS 

The conclusions reached during this PHASE I/IA technology program can 
be summarized by categorizing the various areas of investigation into one of the 
following groups: 

* 	 Demonstrated advances - items which resulted in an 
improvement without any detectable detrimental effects. 

* 	 Promising areas - items which showed some limited 
success with the promise of further advances. - ­

* 	 Potential areas - items which were unsuccessfully 
demonstrated but are still considered candidates for­
further advances. 

o 	 Low probability areas - items which were unsuccessfully 
demonstrated and which are considered unlikely to be 
advanced in the near term. 

4.1 Demonstrated Advances 

4.1.1 Fuel Cell Operation on Contaminated Fuel 

Operation of the fuel cell on low purity fuel (33%) was demonstrated with 
the performance showing only a slight reduction that can be associated with the low 
partial pressure of the fuel. 

With the special anode-alloy catalyst, carbon monoxide in the 10 ppm 
range in the fuel has no initial nor detectable long term impact on the fuel cell output. 

Substantial improvement in cell performance on fuel containing in the 
range of 0. 3% carbon monoxide was observed in fuel cells containing the special 
anode catalyst. Although at this level of CO there is a slight performance decay with 
time it is completely recoverable with a short term operation on pure hydrogen. 

4. 1. 2 Thinner Low Resistance Electrolyte 

The successful demonstration of the thinner electrolyte of the same 
chemistry as the baseline has a two fold advantage. First the material itself is less 
costly (i. e.c 25% reduction) and second the fuel cell efficiency is increased due to 
its 	lower internal resistance. This results in approximately a 2% increase in initial 

(2.1 amps per cm 2 ).efficiency at 200 per ft 2 
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4. 1.3 Elimination of Anode Distribution Screens 

Although the replacement of the anode distribution screen assembly with 
the embossed niobium plate was not successfully demonstrated with a combination of 
highly dilute fuel and the thinner electrolyte, it was successfully demonstrated in all 
other attempted combinations. (i. e. thin electrolyte and pure reactants - standard 
electrolyte and contaminated as well as pure reactants) addition to the minor-In 

w)ight reduction (C'0. 05 lb/ft2 ) ( 24 mg/cm2 ), a cost reduction of approximately 
$25/ft 2 (2. 7 cents/cm2 ) is estimated for a modest production run. 

4. 1.4 Low Cost Cathode Wetoroofin -

The demonstration of the commercially available Chemplast material as 
a suitable replacement for the GE/DECP produced-wet proofing material has as its 
major advantage a greatly reduced cost. Again for a modest production run a cost 
savings of approximately $33/ft2 (3. 5 cents/cm2 ) is estimated. 

4. 1.5 Low Cost Cathode 

The bipolar current collector 'technique, which was recently revitalized ­

during the NASA Lewis Research Center Advanced Fuel Cell Developnient Program,' 
was continued during this program. This technique allowed the changing of the 
cathode screen from gold to niobium with an insignificant reduction in performance 
of the ;uel cell. This improvement reduces the cost of the hardware by approximately 
$95/116 (10,2 cents/cm2) regardless of the production run size. 

4.1.6 Simplified Polymer Processing 

The elimination of the polymer platinizing process was demonstrated thru 
1500 hours of 165 0F (74 0F) operation on 16 psia (110 kN/m 2 ) air and H2 by not indicating 
degradation elements in the product water. For a modest product run a cost reduction 
of approximately $10/ft 2 (1. 0 cents/cm 2 ) will result. 

Promising Areas 

4. 2. 1 Low Cost Electrolyte 

The grafted RAI Polymer, even though that technology is in its infancy, 
resulted in performance levels only slightly below the baseline configuration. It is 
expected that with additional devblopment this technology can be a highly reliable 
high performance fuel cell candidate material. 

The one major advantage of this material is its greatly reduced production 
cost potential. This is presently estimated to be about one quarter the cost of the 
present standard electrolyte. 
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4.2.2 High Temperature Operation 

High temperature operation was analyzed to have many system advantages. 
These advantages range from reduced heat rejection systems to a useful byproduct 
steam. A baseline cell has operated 800 hours at 3000F (149°0) without cell materials 
degradation. This was accomplished as part of the IR and D program. Framing and 
gasket materials presently in use do however degrade in this temperature range. 
High temperature framing and gasket materials are presently under development in 
the IR and D program. 

4.3 Potential Areas for Advancement 

4. 3. 1 High Acid Content Electrolyte 

Although the attempts to fabricate and operate a high acid content 
electrolyte were unsuccessfuly, this approach appears worthy of additional investi­
gation due to the substantial performance improvement that is inherent in this 
concept. (i. e. estimated 2% efficiency increase @ 200 amps for ft 2) .21 amps for cm 2 ). 

4.3.2 Weight Reduction in Catalyst Noble Metal-

Significant reductions in the amount of platinum in the fuel cell catalysts 
were not successfully demonstrated without a substantial reduction in output 
performance. Limited previous experience .nd the literature strongly supports the 
contention that considerable-moreplatinum is presently used than is needed for the 
electrochemical reactions. It is estimated that as much as $50/ft2 (5.4 cents/cm2 

reduction in costs could be realized with a successful demonstration-of the-platinum.reducti( 

4.3.3 High Porosity Wet Proofing 

Although the attempt at operating a cell with a thin high porosity 
wet pro6fing was unsuccessful it still appears like a configuration with a potential 
for improving cell performance. The increased porosity should result in an increase 
of oxygen partial pressure at the catalyst/electrolyte interface. This is especially 
true when operating the cathode with a contaminated oxidant. As much as a 1% 
efficiency increase could be achieved with this material. 

4.3.4 Reduced Cost Separator Materials 

The effort during this program was directed toward separator geometric 
configuration as opposed to modification of the materials themselves. Here again, 
limited past experience and the literature strongly suggests great strides can be 
made in this area. A cost reduction of $20/ft2 (2. 1 cents/cm 2 ) would not be unrealistic 
with the successful demonstration of carbon or carbon filled separators. 
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4.4 Low Probability Areas 

4.4.1 Improved Cathode Catalyst 

No performance improvement was indicated in any of the configurations 
attempted in this program. In addition, the literature suggests a very low probability 
thatan improved acid fuel cell cathode catalyst would be identified and/or developed 
in the near term future. It would appear that research efforts would be more 
profitably spent in other areas at this time. 

4.4.2 Conductive Wet Proofing 

Although a conductive wetproofing was successfully fabricated, the. 
additional cost of labor and materials combined- with- a lower overall cell performance - ­

indicated that any advantages of this configuration were out weighed by the disadvantages. 
As in the case of the cathode catalyst investigation, this activity appears to be a - . 
long way from paying any dividend and thus should be at least temporarily 
discontinued. 
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5. 0 RECOMMENDATIONS 

The recommendations for the near term technology advancement ac­
tivities include continued laboratory testing of new concepts and new configurations and 
a test evaluation of full scale stack NT-i. Figure 47 displays the schedule 
for the recommended NASA/JSC Technology Program - Phase II. Details of the 
recommended program are as follows: 

5.1 laboratory Evaluations 

The subtasks herein will all be directed toward one or more of the 
following objectives without sacrificing demonstration life: 

° Reduced fuel cell cost. 

o Reduced fuel cell weight. 

o Increased fuel cell efficiency. 

o Improved interfaces (heat rejection) 

5.1.1 Increased Operating Temperature 

Increased operating temperature will increase fuel cell efficiency, reduce 
capital costs and reduce the heat rejection equipment required. 

The projections made from cell tests at 3007 (1490C)-condiiffd inm-19-68 

and the resistance data of the lowest resistance 5 mil (. 1270 nmnaembrane-extrapolated­
to3000F0 give performance of .84 volt at 300 ASF(. 32 amps/cm2 ) or 252 watts per 

square foot (. 27 watts/cm2 ). The peak power point occurs beyond 1500 ASF(-. 61 amps/cm2 ) 
This Rdnd of power density is important in achieving low capital cost, but equally important 
low fuel consumption as well, The particular cell tested was shutdown after 800 hours 
for what is believed to be a gasket failure. It was run without humidification of the hydrogen 

and showed typical distress in the hydrogen inlet area resulting from dry fuel gas. There. 

did not seem to be any degradation in the cell active area except at the inlet during the 

800 hour run. 
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Two avenues of approach are open for running the SPE at high temperature. 
Because of the high vapor pressure over the electrolyte, the cell must be run at a 
pressure somewhat above the vapor pressure of steam at the corresponding cell 
temperature. This may be accomplished by running with oxygen at pressure or by 
compressed air. Running with compressed air involves a compressor, combustor, 
expander combination which might well be powered. by the purge gas from the hydrogen 
compartment of the cell. 

In this subtask the high pressure - high temperature evaluations 

performed on a 10 mil (. 2540 mm) thick electrolyte cell during the Phase IA technology 
effort will be continued. These evaluations will include operation of the cell onhigh 
pressure air as well as pure oxygen as the oxidant and a wider vatiation in the contami­
nation levels in the fuel gas. Operation of the cell in the 300'F (149*C) and above 

temperature range will be evaluated. 

One or more additional cells will be fabricated and evaluated at the 
higher temperatures and pressures utilizing 02 and Air as the oxident and H2 and various 
contaminated fuels as the fuel supply. 

Following the parametric testing of the above cells, one will be selected 
for endurance testing. This testing will then be conducted thru the end of the Phase IL 

5.1.2 Catalyst Loading Reductions 

At the high power-densities-to be achieved-from high temperature operating, 
current loadings of 4 grams per square-foot (4. 3 mg/cm2 ) do not appreciably effect ­

the cost of fuel cells. However, platinum is in limited supply and at these loadings, if 
a sizeable amount of power is ever generatedby fuel cells, there would be a major effect 

on the free world's supply. 

In this subtask a repeat of the test performed in 1964 which resulted in a 
catalyst loading of 0.16 mg/cm2 and normal performance will be accomplished. Once 
that performance has been reproduced, a step-by-step transfer of the technology from 
the liquid electrolyte to the solid polymer electrolyte will be performed. 

5.1.3 Materials Evaluations 

It is the purpose of this subtask to evaluate materials that can potentially
 
reduce the overall cost or increase performance of the fuel cell.
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As mentioned in Paragraph 3. 1. 10, the use of thin Chemplast wetproofing 
resulted in good 0 2 /H 2 performance and poor Air/H 2 performance. This result was 
not expected and requires additional effort to obtain an understanding of the mechanisms 
occurring. Testing will be performed with various degrees of cathode side reactant 
prehunaidification. It is considered possible that the initial testing on air was 
performed at a non-optimum reactant humidity. 

In Paragraph 3.1.2, the attempt to operate a high IEC polymer is
 
described. 
 In this attempt, the cell developed leakages before operation was possible.

Under this subtask another high IEC cell will be fabricated and evaluated. In order to
 
obtain additional polymer support, the anode configuration will be modified to either
 
a finer mesh current collection screen or a porous metal plate.
 

In the earlier phase of the technology program, a second source of polymer 
was evauated. (Described in Paragraph 3.1.2.)- This second source of polymer is 
manufactured by Radiation Applications Industries Research Corporation (lAI) and it 
is fabricated by grafting a 50 -trifluorostyrene to F . This RAI material was 
found to be equivalent to the standard duPont Nafion UP at low current densities, but
 
not at good at increased current densities. Continued development by AlI has indicated
 
that improvements in the material have evolved. 
 As part of this subtask a cell from a
 
new batch of BAI-polymer will be fabricated and evaluated.
 

The current baseline cell design uses niobium sheet metal and a cathode 
screen. In equivalent thickness niobium. costs , times as much as titanium. 
Titanium is used on the General Electiic/DECP oxygen concentrator project, both on 
the anode and cathode without problems, but has shown to be subject to long term 
embrittlement in a hydrogen environment. A-possible alterftte for the anode is Zirconium,
which from early results- appears satisfactory as a-material for the anode, but costs 
twice as much as titanium. In 1968 DEOP did some preliminary work with graphite for 
current collectors. It is likely that an' impregnated carbon structure could be used for 
all cell hardware including current collection screens. The effort in this subtask will 
consist of evaluation of those materials giving-a cost per square foot equivalent to 
.0015 inch (.03I 

­

mm) titanium or better for cell structure and current collection hardware. 
In ddftion, the fuel distribution problem in conjunction with 5rail (. 1270 mm) polymer and 
contaminated fuel (mentioned in Paragraph 3. 1. 6) will be considered in any material 
configuration modification. Samples will be evaluated in the 3" x 3r? hardware. 
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5.2 	 Stack NF-1 Test Evaluation 

The purpose of this task is to conduct a thorough performance analysis 
on the single cell stack fabricated during Phase 1. The objective of the Phase 1 activity 
was to design and fabricate a scaled up low cost, low weight cell configuration with 
capability of operation with air or oxygen as the source of oxidant and hydrogen or 
contaminated hydrogen as the fuel. This cell assembly has an active area of 0.7 Ft 2 

(650 cm 2 ). 
The following 	subtasks will be performed to accomplish the evaluation: 

5.2.1 	 Facility Preparation 

Facility preparation will be performed and will include: 

o 	 Oxidant and fuel prehumidification controls. 

o 	 Pressure, temperature and flow controls for oxidant, 

fuel and coolant. 

o 	 Variable load bank. 

o Continuous 	recording of temperatures. 

o Continuous 	recording of voltage and current. 

° 	 Controls for steady state automatic operation with 

safety shutdowns. 

5.2.2 	 Facility Checkout 

The facility will undergo a complete checkout prior to installation of the 
0.7 	Ft2 (650 cm 2 ) cell assembly. These checks. will include: 

o 	 Reactant humidification operation.
 

" Subsystem leakage checks.
 

o 	 Flow and pressure control checks. 

" Electrical subsystem operation and checkout. 

Following the facility checkout, the fuel cell unit will be installed in the
 
facility. Flow, leakage and electrical checks of the facility/unit integration will
 
be performed.
 

83 

DIRECT ENERGY CONVERSION PROGRAMS 



GENERALQ ELECTRIC
 

5.2.3 Test Evaluation 

Once the checkouts are complete, a series of parametric tests will be 
performed. These tests will be performed with pure oxygen and air as the oxidant 
and pure hydrogen and simulated reformate as the fuel. Operational test temperatures 
will be 1200F (490 C) and 1650F (74 6C). Flow rates of air will be 2.5 and 4.0 times 
stoiohiometric flow, whereas contaminated fuel flow will be 1. 25 and 1. 50 times 
stoichiometric flow. 

An endurance test will be performed following the parametric tests. It ­

is planned to operate on air as the oxidant and contaminated fuel. Once per.week a ­

complete polarization will be performed and a minimum-of one load change per-working 
day will be made. A complete test log will be maintained throughout the test program. 
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