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Abstract. On the basis of field and particle observations,
 

it is suggested that a bright auroral display is a part of a
 

magnetosphere-ionosphere current system which is fed by a
 

charge-separation process in the outer magnetosphere (or the
 

solar wind). The upward magnetic-field-aligned current is
 

flowing out of the display, carried mainly by downflowing
 

electrons from the hot-particle populations in the outer mag­

netosphere (the ambient cold electrons being depleted at
 

high altitudes). As a result of the magnetic mirroring of
 

these downflowing current carriers, a large potential drop
 

is set up along the magnetic field, increasing both the number
 

flux and the kinetic energy of precipitating electrons. It
 

is found that this simple basic model, when combined with
 

wave-particle interactions, may be able to explain a highly
 

diversified selection of auroral particle observations. It
 

may thus be possible to explain both "inverted-V" events and
 

auroral rays in terms of a static parallel electric field,
 

and the electric field may be compatible with a strongly
 

variable pitch-angle distribution of the precipitating electrons,
 

including distributions peaked at 900 as well as 00. This
 

model may also provide a simple explanation of the simultaneous
 

precipitation of electrons and collimated positive ions.
 



1. Introduction
 

One of the most puzzling problems in magnetospheric
 

physics today is how to understand the complex processes
 

that cause energization and precipitation of the auroral
 

particles. A great variety of ideas have been presented
 

in the literature to explain different observed phenomena,
 

but so far very little has been achieved in getting a
 

unified picture. For an illustration of the complexity
 

of auroral particle observations, see, for example,
 

O'Brien and Reasoner (1971).
 

The 	purpose of this paper is to emphasize the potential
 

central role of magnetic mirroring in the complex auroral
 

phenomena and to suggest that a proper consideration of
 

the magnetic mirroring may greatly simplify the present
 

picture. The reader who only wants a brief orientation
 

may read Sections 2, 15 and 16.
 

For reference purposes we need a rough division of current
 

ideas about auroral particle acceleration. The main ideas
 

may be grouped into the following three basic categories:
 

(a) 	The precipitating particles have already attained
 

their final energy when leaving the equatorial region
 

of the magnetosphere. It is frequently assumed that
 

the auroral particles get their final energy by, for
 

instance, betatron and Fermi acceleration during their
 

drift motion into and filling of the plasma sheet
 

reservoir with energetic particles. In order for a
 

sufficient flux of the energized particles to reach
 

down to the atmosphere, despite the strong mirroring
 

effect of the geomagnetic field, a final pitch-angle
 

scattering mechanism (by means of wave-particle inter­

actions) may be needed. See, for instance, Kennel
 

and Petschek (1966). Some measurements of the near­

earth plasma sheet seem to indicate a sufficient
 

energy flux of particles with appropriate energies
 



for producing even the most intense auroral precipi­

tation (Frank, 1971; Vasyliunas, 1970). For a very
 

brief review of this kind of large scale energization,
 

see Heikkila (1974).
 

(b) 	The precipitating particles in general, or at least
 

some of them, gain additional energy at the expense
 

of a trapped particle component through which they
 
pass 	on their way down. Alternatively, this energy
 

transfer may be from one precipitating component to
 

the other. According to this view the energy yielding
 

particles having an unstable velocity distribution
 

produce plasma waves, the energy of which is absorbed
 

by the precipitating particles in an ordered manner.
 

A crucial point is then to have the precipitating
 
particles increase preferentially -their downward
 

field-aligned velocity. For examples of these kinds
 

of ideas see Gary et al (1968), Laval and Pellat
 

(1970), Perkins (1968) and Swift (1970).
 

(c) 	The precipitating particles fall through an electro­

static potential gradient along the magnetic field
 

lines. This requires, of course, a drastic reduction
 

of the parallel current-carrying capability of the
 

magnetosphenic and ionospheric plasmas relative to
 

what 	has been normally assumed (cf. Alfven, 1968).
 
This 	can occur in several different ways, see e.g.
 

Block and Falthammar (1976). For instance, the be­

haviour of laboratory plasmas has led people to think
 

in terms of current-driven plasma instabilities, pro­

ducing double layers (e.g. Block, 1972; Swift,1975)
 

or anomalous resistivity (e.g. Kindel and Kennel,
 

1971; Swift, 1965), as the means by which field­

aligned'currents are obstructed in auroral regions.
 

Alternatively, the magnetic mirroring may play the
 

key role in this respect, as demonstrated by Knight
 

(1973) and Lemaire and Soherer (1974). The magnetic
 
mirroring may, in principle, support a parallel elec­
trio field even in the absence of a field-aligned
 

current, as discussed originally by Alfven and Falt­

hammar (1963) and Persson (1963,1966). See also Whipple
 

(1976).
 



2. Essential Features of a New Model
 

The model outlined in the present paper basically belongs
 

to category (c), but important features of it are taken
 

from (a) and (b). The basic line of thought is the
 

following:
 

From curl B 0 it is seen that an electrostatic potential
 

gradient along the geomagnetic field lines will be asso­

ciated with an increased peak amplitude of E, at high
 

altitudes. In order for the high-altitude El to stay at
 

reasonable values the region with a parallel potential
 

drop of several kV must have a fairly wide spatial extent
 

transverse to the magnetic field, in accordance with the
 

observed latitudinal thickness of "inverted-V" events,
 

which is typically 100-300 km. This means that thin auroral
 

precipitation structures like auroral rays must be due to
 

a local reduction of the parallel "resistivity", rather
 

than due to a current-induced local increase of the resi­

stivity. This problem may be solved in terms of the
 

following model. The upward field-aligned portion of a
 

magnetosphere-ionosphere current system will be associated
 

with a depletion of ambient cold electrons at high altitudes
 

and, hence, the upward current will be carried by down­

flowing hot and dilute magnetospheric electrons. As the
 

parallel motion of these electrons is strongly hampered
 

by the magnetic mirroring a large fraction of the total
 

voltage produced by the magnetospheric "dynamo" will be
 

projected along the magnetic field, increasing both the
 

flux density and the kinetic energy of the downflowing
 

hot electrons. The effective "resistivity" may then be
 

locally reduced either by a local increase of source
 

electrons or by a local transfer of electron gyroenergy
 

into electromagnetic wave-energy, for instance. In this
 

manner very thin substructures of increased precipitation
 

may occur energized by the parallel electric field, that
 

is in reality by the magnetospherie "dynamo".
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This paper emphasizes the merits of this model in
 

explaining a large variety of observed phenomena, but
 

it does not discuss the detailed physical conditions
 

for the formation of thin precipitation structures.
 

3. Some Observational Indications of a Large (AV)1
 

The observation traditionally considered as indicative
 

of field-aligned potential gradients is that of a "nearly
 

monoenergetic" peak in the energy spectrum of precipi­

tating electrons (Albert and Lindstrom, 1970; Arnoldy
 

et al,1974; Choy et al, 1971; O'Brien and Reasoner, 1971;
 

Westerlund, 1969).
 

The frequently observed collimation (along B) of auroral
 

electron distributions is often interpreted in terms of
 

a field-aligned acceleration at low altitudes which may
 

be due to a (AV) (Ackerson and Frank, 1972; Arnoldy
1I 
et al, 1974; Bosqued et al, 1974; Hoffman and Evans, 1968; 

O'Brien and Reasoner, 1971; Whalen and MoDiarmid, 1972). 

Detailed measurements of pitch-angle versus energy have 

also led to an interpretation in terms of field-aligned 

potential gradients (Arnoldy et al, 1974), or even more 

specifically in terms of double layers (Albert and Lind­

strom, 1970). 

The large amount of satellite data on "inverted-V" preci­

pitation structures (e g, Frank and Ackerson, 1971) and
 

associated irregularities in the convection electric field
 

(e.g. Cauffman and Gurnett, 1972) observed in the poleward
 

part of the auroral ovals also seem to point in a direction
 

of potential gradients along the magnetic field. These
 

observations will be more extensively discussed in the
 

Section "Comparison with Observations". A direct evidence
 

for a large (AV),, above an auroral form has been found
 

recently from the drift motion of a barium plasma jet­

injected along the magnetic field lines (Wescott et al,
 

1976). While the barium plasma beyond 1 RE experienced
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flux tube splitting and rapid dispersion the plasma at
 

lower altitudes remained unaffected.
 

4. Magnetic-Field Aligned Currents 

Among the different theories of auroral particle accele­

ration, those involving parallel electric fields seem to 

be particularly encouraged by the existence of magnetic­

field aligned currents. This can be seen by the following 

arguments.
 

According to the viewpoints (a) and (b) listed in the
 

Introduction, the auroras are in fact produced by a mag­

netospheric electron gun. The negative charge carried
 

by the electron beam need not give rise to a net field­

aligned current, however, because the negative charge
 

thus deposited deep within the ionosphere will enable
 

ionospheric electrons in the topside region to escape
 

outwards along the beam (together with backscattered and
 

secondary electrons). Actually, this is what we should
 

expect according to the kinetic model discussed by Lemaire
 

and Scherer (1973a and 1974). In this way a net field­

aligned current may not appear until the precipitation
 

flux density exceeds the flux density of freely escaping
 

ionospheric electrons, which is quite high, maybe as high
 

as 10'/cm2 s (or more) at ionospheric altitudes (cf Lemaire
 

and Scherer, 1973a and 1974). In the absence of precipi­

tated negative charges the outflowing ionospheric electrons
 

are tied to the much slower positive ionospheric ions (ambi­

polar diffusion).
 

The situation is quite different when we consider the view­

point (c). A potential gradient along magnetic field lines
 

in a direction to accelerate precipitating electrons is an
 

efficient barrier to the upward escaping thermal electrons
 

from the ionosphere (actually a potential barrier of only
 

a few volts will do, cf Lemaire and Scherer, 1973a and 1974)
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as well as a barrier to backsoattered and secondary elec­

trons. Consequently, if the flux of precipitating protons
 

is negligible as compared with the electron flux (as is
 

normally the case, of e.g. Frank and Ackerson, 1971),
 

the net ill has to be in the upward direction and at
 

least as large as the current density carried by the
 

precipitating electrons (not including the downflowing
 

electrons that have been reflected by the potential barrier).
 

On the other hand, if the net ill is found to be at least
 

as large as the precipitation current density, the most
 

immediate interpretation is that the ionosphere, at the
 

point of deposit of negative charge, stays at a positive
 

potential of at least a few volts relative to the adjacent
 

magnetosphere. This potential distribution is easy to
 

understand if the precipitating electrons are passive
 

carriers of current. However, as discussed in Section 8
 

the energetic precipitating electrons do not readily act
 

as passive current carriers, unless they are forced to by
 

an e(AV)ll which is at least of the same order of magnitude
 

as the kinetic energy of the electrons. The reason for
 

this is the magnetic mirroring in the geomagnetic field.
 

A (AV),, of this magnitude will evidently appreciably in­

crease the energy of the electrons at the same time.
 

The permanent existence of east-west extended field-aligned
 

current sheets in all local time sectors of the auroral
 

ovals is fairly well established (Armstrong and Zmuda, 1970;
 

Zmuda et al , 1970; Zmuda and Armstrong, 1974). It is in­

teresting that an upward ill (downgoing electrons) measured
 

by means of its distortion of the geomagnetic field is very
 

often seen directly associated with precipitating electrons
 

and auroral arcs and that the current density is seemingly
 

at least as high as defined by the precipitation flux
 

density (Armstrong et al, 1975; Arnoldy et al, 1974;
 

Berko et al, 1975; Choy et al, 1971; Cloutier et al 1973;
 

Park and Cloutier, 1971).
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S. Some Crucial Properties of a Large (AV),,
 

When discussing magnetospheric electric fields in the light
 

of the behaviour of laboratory plasmas, we have to con­

sider the entirely different boundary conditions in the
 

magnetosphere. For an illustration of this, see Figure 1.
 

The left part of the figure, a, is a rough sketch of the
 

familiar electric field generated at a resistant section
 

of an otherwise good conductor, when a current is flowing.
 

The medium outside of the conductor is assumed to be a
 

vacuum. The conductor in Fig la may be an unmagnetized
 

plasma column contained wihtin a glass tube, and the
 
"resistant" section may be a potential double layer (cf
 

Block, 1975). The plasma confinement may as well be due
 

to an external axial magnetic field.
 

Consider now Fig lb. This is a sketch of the formal mag­

netospheric analogue of Fig la. For simplicity the total
 

magnetic field (geomagnetic field and superposed field due
 

to the current) is assumed to be vertical and homogeneous,
 

B F Bz A current is flowing upward along B, carried by
 

downflowing electrons and having a density i This current
 

is obstructed by a region of reduced parallel "conductivity"
 

o . The word "conductivity" here simply means the quan­

tity iZ/Ez
 

In the magnetospheric case there is obviously no vacuum
 

outside of the current path. Hence, the fan-shaped equi­

potentials in Fig la transform into magnetic-field-aligned
 

equipotentials as indicated in Fig lb. Suppose that the
 

wavy contour in Fig lb indicates the smallest possible box
 

containing the region with Ez 1 0. Evidently, Ex is not
 

confined to the immediate vicinity of the box as in Fig la
 

but penetrates infinitely far out along B.
 

Further assume
 

curl B = 0 (1) 



If we take the line integral of Z around any closed
 

contour and apply Stoke's theorem to Eq. (1) we get
 

0
tE'd = (2a) 

With reference to Fig.lb this can be written as
 

I
E (z2)maxEX( (2b)
- max 

Hence, if we know the extreme values of the transverse
 

electric field E± at high altitudes, we also know the
 

highest possible values of (AV[x)1 1 /Ax, where (AV),, is
 

the potential drop along B. That is, the larger (AV),,
 

is, the larger is Ax.
 

This result can easily be generalized to a case with a
 

dipolar total magnetic field where Ell is arbitrarily
 

distributed along a magnetic field line. If we integrate
 

the longitudinal component of (1) along a magnetic field
 

line from the equatorial plane down to the ionosphere,
 

utilizing orthogonal dipolar coordinates (of e.g.Cummings
 

et a , 1968), we get after some algebra:
 
El  
(TV R- f(O) E,(20 

KLtia ia R2 . Etep

3-a
 

The symbol El is used here for the southward component of 

the transverse electric field. The index "ia" denotes an 

ionospheric altitude and "ep" the equatorial plane. R is 

the respective radial distance from the centre of the 

earth. AV V - V. and s is the southward horizontal 

(A.B) length-coordinate at the ionospheric altitude. The
 

symbol 8 is the magnetic co-latitude of the ionospheric
 

intersection of the field line, and
 

2

f () = (1+ (l/4)t 0)i/2 (2 sih0cos0 + Ci/)tansi28)-1 

that is, f(0) = 0.7 with O= 200.
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As a consequence of Equations (2a) - (2c) we may face an 

unattainable compromise when trying to apply a particular 
model of a current-driven plasma instability to the magne­

tospheric problem. This is because on one hand the in­
stability may require a high value of iz, while on the 

other hand (2a) - (2c) require the para.lel eieatria field I 
to be spread out, and the capability of the ionosphere to 

carry horizontal currents is limited:
 

il=a CE4 + nX 3) +- aE x (f1 + n )B 3 

The symbols a p and 0H denote the Pedersen and Hall conduc­

tivities, respectively, and vn denotes the neutral gas
 

velocity (ef Bostr6m, 1964).
 

If we integrate (3) with respect to altitude, we get the
 

total current per meter that can be fed into the ionosphere
 

by means of a field-aligned sheet-current density III. 
Roughly speaking, we may equate for instance EpE± to 2Ax ij ' 
where Zp is the height integrated ap, and Ax is defined by 
Fig lb. The largest possible value of Zp is probably about
 

40 mho (Bostrmm, 1964). According to satellite measurements
 
(Cauffman and Gurnett, 1972) E1 at 500 - 2500 km alt is at
 

most 150 - 200 mV/m, which would thus imply Ij1 = E E±! 8 A/m.
 

However, this is probably far too much, because E, tends to
 
be reduced where Zp (and IH ) is large (Aggson, 1969; Potter,
 
1970; Wescott et al, 1969). A more realistic maximum value
 

of II is rather an order of magnitude lower, in accordance
 

with the magnetic measurements made by Zmuda et al, 1970. 

These authors infer the values 0.02 - 0.7 A/n for I The 

highest values of i11 ever reported are about 2 x 1 Aim 2 

(Whalen and MeDiarmid, 1972). Using this value for i11 and
 

0.7 A/m for 11 we get 2Ax a3 km. That is, with 
V(zI) - V(z2) = 5 kV in Eqo (2b) we have !Ex(z2) - Ex(zl) 3 V/m. 

Hence, we may, for instance, conclude that any instability 

that does require ill of at least 10- 4 A/m2 to be operating 

in the topside ionosphere is highly unlikely to be the actual 

cause of a (AV),, of several kV.
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From Eq.(2b), for instance, we further conclude that the
 

common ray structure in visible auroras cannot be directly
 
related to the spatial (transverse to B) distribution of
 

(AV)II. In fact, the ray structure might indicate Ax< 50 m
 

in Fig,lb (of Chamberlain, 1961). With a typical electron
 

kinetic energy of 5 keV the right-hand member of Eq.(2b)
 

is thus l0G V/ni. That is, neglecting EX(Z1 ) we have
 

Ex(Z2 ) > 100 V!m. In a dipolar magnetic field this would
 
correspond to E, > 40 V/m at an altitude of 1 Re above the
 

ionosphere and Ex > 1.5 V/m in the equatorial plane at a
 
distance of 10 Re from the earth (of Eq.(2c)). These
 

values of El are at least a factor of 100 to 300 larger
 

than the largest El-field observed so far (of Cauffman and
 

Gurnett, 1972; Jeffries et al, 1975; Wescott et al, 1976).
 

Even if'E4'fields of this magnitude do occur they do not
 

automatically imply that (AV)f is confined within a very thin
 
flux tube, however. The confinement of (AV),, also requires that
 

these strongly concentrated E.-fields are supported by the
 
magnetospheric dynamo (of. Section 14), which appears rather
 

unlikely. The small spatial scale of these E.-fields is ob­
viously much smaller than the gyroradius of a 5 keV proton,
 

for instance.?Hence, if the auroral electrons do indeed fall
 
through a large electrostatic potential gradient the auroral
 
ray most likely represents asubstructure within a much wider
 

region of non-zero E It should be noted that even though
 

Equation (1) may not be strictly fulfilled, a region of
 
large (AV)11, which is confined within a thin magnetic flux
 

tube, in general has to be associated with large values of E L
.
 

In summary, the magnetospheric case may require a large
 
(AV) I to be maintained at current densities that are too 

low to generate a current-driven instability. The mechanism 
responsible for (AV),, may, however, allow local enhancements 

of the precipitation within the region of non-zero Eji. As 

will be discussed below the magnetic mirroring may seem to 

provide a basic solution of these problems.
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6. A Simple Illustration
 

The simple model presented below will serve as a further
 

illustration of the previous section. As our ' priori
 

information about E,, we will assume a simplified hori­

zontal distribution that is basically similar to the E1 ­

distribution seen at auroral latitudes by a polar orbiting
 

satellite at around 500 - 2500 km altitude, of for instance
 

Cauffman and Gurnett (1972).
 

Fig 2 refers to the local evening side of the northern
 

auroral zone. The z-axis points vertically upward, the
 

x- and y-axis point geomagnetically northward and westward,
 

respectively. Again the total magnetic field B is assumed
 

to have straight and vertical field lines.
 

Suppose that we know the convection at altitude zb in the
 

upper ionosphere to be magnetically eastward and westward,
 

that is parallel to the y-axis, with El equal to the step
 

function Ex(X,' b) in Fig 2. What will Ex then look like at
 

other altitudes? Suppose that a I! iz/Ez is constant
 

above a certain altitude zb - h well above the E- and F­

layers, and that - - t,,
throughout the lower part of the
 

ionosphere. The last assumption enables us to get the
 

height-integrated form of Eq. (3) by simply writing Zp and
 

EH instead of ap and a1H, provided that
 

vn Z0 (4)
 

The Pedersen and Hall conductivities are assumed to be
 

horizontally homogeneous.
 

Further assume that
 

a 0 (5)
 

We now solve Eq.(l) with ExCXzb) and Eq.(3) - (5) as
 

boundary conditions, recalling that
 

div 1 = n (6) 

OFtGIhA PAGE IsOF pO-3t[~~ 
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As the Pedersen current in this geometry has a divergence
 

around x = 0 we get a field-aligned current flowing upward
 

at the field reversal. Due to the finite all the step
 

in Ex(XZb) is completely smoothed out in Ex(XZb - h)
 

giving a finite iz. In flying through the field reversal
 

at altitude z + h we would see an E± profile according
 

to Ex(XZb + h) and at even higher altitudes the "spikes"
 

on each side of the reversal would be even larger.
 

We see from Fig 2 that, although the field-reversal is
 

infinitely sharp at z., we get a certain finite characte­

ristic thickness of the associated field-aligned current
 

sheet equal to 2A, where
 

A = (7) 

That is, to get A = 0 we must have a = everywhere. This 

is due to the fact that E1 has a finite amplitude at zb (as 

well as all other altitudes). 

It is important to notice, that as all decreases (increasing
 

A) the potential drop along the magnetic field is reached
 

at the expense of the transverse potential drop at low alti­

tudes, provided of course that E1 (zb) does not increase.
 

In Fig.2 (AV),, between zb - h and zb evidently has a maximum
 

of A " E at x = 0.
 

We further notice that the parallel electric field E7' as
 

well as the current density iz, has an "inverted-V" profile.
 

This is of great interest, as this electric field having
 

an upward direction on the evening side of the earth, at
 

a "regular" field reversal, would be able to accelerate
 

auroral electrons downwards, producing the typical "inverted-V"
 

shape of mean energy versus latitude that is seen at the
 

field reversal at local evening (Gurnetr and Frank, 1973).
 

This is further discussed in Section 14.
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7. A Self-Consistent Model of a Static E
 

Figure 3 is a refinement of Fig.2 in that the field-aligned
 
"resistivity", that is, the quantity Ez/iz, is increased
 

only within the field-aligned current sheet. In Fig.3
 

zb is 1500 km and h = 500 km. The assumed boundary value
 

Ex(XZb)is not a step function here but a smooth profile,
 

of the curve labeled z = 1500 km. The altitude-averaged
 

parallel field Ezs defined-by
 

EX) = (V(xszb - h) - V(xzb))/h
 

has been introduced here, as well as the altitude averaged
 
"anomalous resistivity" 11 that is
 

(the field-aligned current is assumed divergence free above
 

the E- and F-layers). Below zb - h = 1000 km 11 is assumed
 

small (normal) in accordance with most theoretical models
 

(e.g. Block, 1972; Kindel and Kennel, 1971).
 

The function 0W0 defined by the bottom curve in Fig S
 

is simply an .priori assumption about the quantity Ez/i z
 

(the peak value 102 ohm - m is chosen to give a reasonable
 

current density). This assumption together with Eq (3) ­

- (5) with 1 = 10 mho has been used to solve Eq (1) and 

(6) for E (x), iz0W and Ex (x,z). The resulting distribu­

tion of i (x), the top curve of Fig,3, then also defines
 

a better assumption
This enables
11 as a function of iz .
 
about 01, , which can be used to recalculate i., and so on.
 

By this iterative process it is possible to get the desired
 

relation between p11 an iz .
 

The dashed Ex-profiles in Fig. 3 show what Et would look
 

like at z = 2000 km and 2500 km in case -l had The same
 

average value throughout this upper altitude region.
 

ORIIA PGl 
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This again illustrates the fact that the amplitude of E,
 

has to be an increasing function of altitude near the
 

reversal due to the presence of a strong Ell. Of course,
 

this will only be true up to a certain altitude, because
 
CAV)ii is finite. Above this altitude we expect E to
 

() H toi 

be small ( in general) and the amplitude of E, to be
 

decreasing with increasing altitude, due to the diverging
 

magnetic field lines.
 

Despite the obvious difference between the rwo models,
 

the quantity A according to (7) again gives a good measure
 

of the latitudinal width of the B-profile in Fig. 3 with
 
-
the peak value 102 ohm , m inserted for aH 1. Also, the
 

maximum potential drop between z = 1000 km and z = 1500 km
 

is again at least of the same order of magnitude as A • E.
 

In Fig.3 Zp is still horizontally homogeneous, but an
 

assumed profile p(x) can be introduced in the model to
 

give a modified iz and Ez, which then helps make a better
 

assumption about Ep x). Provided that the energy of the
 
=
electrons before acceleration by (AV),, h * Ez is specified. 

In this way the model can be made self-consistent. The 

main effect of a locally enhanced Z (x) at the base of a 

field-aligned-current sheet, when all is small and El is 

given at a certain high altitude, is just a corresponding 

local reduction of E, at low altitudes, as has been shown 

in a previous paper (Lennartsson, 1973a; cf also Section 

14). The local increase of E will also have a feed-back 
p


effect on the magnetospheric "dynamo", which this simple
 

model cannot account for, however. Neither can this model
 

in an adequate manner account for the auroral electrojet,
 

which requires a three-dimensional geometry.
 

It may be noted that if we try to extend this simple model
 

to very high altitudes (utilizing (2c), for instance) we
 

can no longer neglect the (unknown) transverse current
 

that is feeding the current loop (the "dynamo current").
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8. "Anomalous Resistivity" and the Magnetic Mirroring
 

Suppose for a moment that we can neglect the mirroring
 

effect of the geomagnetic field where E1 is large.
 

Consider Fig.lb. It is quite obvious that an electron 

that has gained the energy e (V1 - V2 ) by falling 

from z 2 to z at the same time has made its maximum 

possible contribution to a short-circuiting current. That 

is, a freely falling electron in this case represents an 

extremely high conductivity per particle. In order for 

the potential jump V1 - V2 to be maintained, the number 

flux of these electrons thus has to be limited in one 

way or another. It is commonly assumed that the iono­

spheric and magnetospheric plasmas are dense enough to 

short-circuit any Ell in the classical sense, but due to 

the high relative drift velocity between electrons and 

ions, some plasma instability is generated that may strongly 

limit the number flux of electrons, in analogy with the 

behaviour of laboratory plasmas. The main different modes 

of plasma instabilities that are considered in this respect
 

are turbulent wave-particle interactions (e.g.Kindel and
 

Kennel, 1971; Swift, 1965) and electrostatic potential
 

double layers (e~g. Block, 1972 and 1975; Kan, 1975; Swift,
 

1975). However, as discussed in Section 5 the magnetospheric
 

plasma may not provide the appropriate boundary conditions
 

for this kind of instability. The problems seem to be par­

ticularly severe with respect to turbulent "resistivity".
 

In this case the electrons falling from z2 to z! in Fig.lb
 

may possibly be a minority group of either "runaway" elec­

trons or hot magnetospheric electrons passing by unaffected
 

by the wave field, but the theory does require a certain
 

minimum drift velocity of the thermal electrons. That is,
 

with an assumed plasma density the theory does require
 

a minimum parallel current density being carried by thermal
 

electrons ill (thermal).
 

ORIGINAL PAGE IS
 
OF POOR QUALIY
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Consequently, a certain minimum fraction of the electro­

static energy (provided by an external "dynamo") being
 

released per unit area per second, i j (VI - V2 ), has
 

to be converted into random motion, that is into heat
 
-


(Block, 1975). With at least i (thermal) - 10 5 A/m 2
 

(Kindel and Kennel, 1971) V1 - V2 = 5 kd! 22 - kmm10 

(see Fig. lb) and a density of thermal electrons and ions 

of 109/m 3, we get a heating rate of 30 eV per second per 

thermal particle, to be compared with the original thermal
 

energy of less than 1 eV per particle (of Block, 1976).
 

A certain fraction of this energy may possibly be radiated
 

away by plasma waves, but there is anyway no theory dis­

proving that the auroral plasma'temperature would get
 

drastically increased, as far as the author knows (in the
 

theory by Buneman, 1959, this heating is a desired effect;
 

of also Biskamp and Chodura, 1973). We notice here that
 

as the temperature is increased the maintaining of the
 

plasma drift instabilities demand a higher iI, which
 

means that we immediately get into conflict with Section 5,
 

even if the initial conditions are favourable.
 

The theory of double layers, on the other hand, does not
 

suffer from this heating dilemma, according to Block (1972,
 

1975), because the particle motion is basically laminar
 

at a double layer. The theory of double layers will not
 

be discussed in the present paper, however. The reader
 

is referred to the papers by Block (1972, 1975) as well
 

as the papers by Swift (1975) and Kan (1975) on oblique
 

double layers (electrostatic shocks).
 

Apart from the heating problem there is also a problem of 

plasma depletion connected with any theory that requires 

a strong (upward) i 1 to be carried by a cold background 

plasma of ionospheric origin. Suppose for instance that the 

density n of cold electrons at an altitude of 3000 kms is 

104cm3 (of Lemaire and Scherer, 1973b) and that n decreases 

proportionally to B upwards, giving n - 0.1 - 1/cm 3 at the 
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equatorial point of the magnetic field line. This may
 

well give an overestimation of the cold-plasma content
 

in a typical flux tube, as mass spectrometer data
 

(Chappell, 1972) frequently show a total ion density of
 

only 0.1/cm 3 in the plasma sheet. An upward field-aligned
 

current with iii - 10- 5 A/m2 at topside altitudes, carried
 

by downward-moving electrons, would deplete all available
 

cold electrons above 3000 kms altitude within about 2 - 5
 

minutes (provided that the current sheet does not have
 

a persistent horizontal motion relative to the plasma).
 

Within a few more minutes even the topside ionosphere
 
-4 


would suffer a strong depletion. If ii, as high as 10 A/m2
 

is required by the Theory, the depletion problem gets
 

extremely critical. We cannot really expect -the cold
 

plasma to be supplied from adjacent flux tubes by con­

vection, as the convection is generally found to be along
 

auroral arcs (e.g. Armstrong et al, 1975; Gurnett and
 

Frank, 1973; Wescott et al, 1969). At ill as high as
 
- 5
10 - 10- 4 A/m 2 we can also neglect the contribution from
 

upward-moving protons, even though these can, in principle,
 

be continously supplied by the topside ionosphere. This
 

proton current cannot be stronger than allowed by the
 

escape flux (10 - I0 A/m 2 , ef Lemaire and Scherer, 

1973a and 1974), that is, it is "1temperature-limited".
 

The "spacecharge-limited"proton current is even many orders
 

of magnitude weaker (Block, 1967). Consequently, the only
 

available carriers of a persistently intense upward ill
 

are the hot electrons from the outer magnetosphere.
 

Now take into account the magnetic mirroring effect within
 

the acceleration region. The previous statement about
 

the high "conductivity" of "freely falling" electrons does
 

not hold true anymore because the magnetic mirror tends to
 

obstruct the parallel current by deviating the parallel
 

motion of the electron into transverse motion (without
 

changing the particle energy). Apparently, this may even
 

constitute the only necessary mechanism for obstructing
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i and maintaining a large total potential drop along the
 

geomagnetic field lines, provided that the density of the
 

charge carriers is not too large. In view of the fact
 

that an upward current (downgoing electrons) may have to
 

be carried mainly by electrons from the dilute and hot
 

plasma in the outer magnetosphere, this mechanism seems
 

to have been somewhat overlooked over the years.
 

Consider the simplified case with an isotropic and mono­

energetic source distribution of electrons in the outer
 

magnetosphere, at point 1. In this case the electron
 

flux density at ionospheric altitudes, at point 2, is
 

proportional to sin 2amax' where amax is the maximum pitch
 

angle at point I of electrons capable of reaching point 2.
 

If the potential difference between points 1 and 2 is
 

(AV)l1 > 0, the constancy of the magnetic moment gives
 

1 2
sin ==max e ) 

2 

where B1 and B2 are the magnetic field strengths at points
 

1 and 2, respectively, and t e/2)v 2 is the electron kinetic
 

energy at point 1. Hence, the field-aligned current density
 

at ionospheric altitudes due to precipitation is given by
 

i n1 v1 i meV1 2) (8) 

2
 

where nI1 and vI are the density and velocity of downgoing
 

electrons at point 1. Eq.(8) is valid for e(AV)11 <
 

S(me/2)v 2B2/B For larger (AV) ,, the current becomes
 

saturated. If the electrons at point 1 have a Maxwellian
 

distribution, for instance, Eq.(8) takes on a different
 

algebraic form (Knight, 1973), but (8) is still a good
 

approximation, with v1 denoting an average value. As a
 
-
numeric example, with 2n! = 0.1 cmi and (me/2)vI = 500 eV,
 

a current density i112 of 10-6A/m2 requires (AV),, m keV.
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- It may be noted that the (AV),, required to drive a 

certain high i1 1 2 will increase with increasing energy 

(at constant density) of the source plasma, as long as 

nIev, < i 1 2 ' 

Knight (1973) and Lemaire and Scherer (1973a, 1974) have
 

used more sophisticated models to calculate the relation
 

between i and (AV) in a collision-free magnetospheric
 

plasma under steady state conditions. These authors find,
 

by assuming reasonable ionosphere-plasmasheet parameters,
 

that an upward ill of the order of 10- 5 A/m 2, for instance,
 

may readily require a total (AV) of 1 - 10 kV, as a result
i 
of the magnetic mirroring of plasmasheet electrons (see for
 

instance Fig.3, p.745, in the paper by Knight). Knight
 

has neglected the ionospheric ion contribution to i 1
 

while this is included by Lemaire and Scherer, but the
 
- .
difference is obviously insignificant when ill l0 5 A/m 2
 

Unfortunately, the model by Knight provides only the total
 

voltage (AV)ll (as does Eq. (8)) while E l remains undeter­

mined. The model by Lemaire and Scherer does provide E
 

numerically but the case of a strong upward E is not
 

explicitly shown.
 

It should be noted that these models rely upon the outer
 

magnetosphere providing a steady supply of isotropic electrons.
 

The need for a high (AV),, will evidently be larger if the
 

magnetospheric particle source is depleted of electrons
 

with small pitch angles. A second important point that
 

has to be considered is that the outflux of positive ions
 
from the ionosphere may become strongly reduced by space­

charge effects when the cold electrons are depleted at high
 

altitudes (of Block, 1967).
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9. 	The Transverse Spatial Distribution of E and the
 

Ray Structure of Auroras
 

In view of Sections 5 - 7 it may seem difficult to recon­
cile auroral fine structures like visible auroral rays
 

(and very thin current sheets) with a particle acceleration
 

due to a large (AV),i. This is particularly true of current­

driven instabilities as we then would expect the cross­

sectional dimensions of a current sheet or current beam to 
directly map the transverse dimensions of the (AV) 1 ­
region, of Fig.lb. This may thus strongly favour the 

magnetic-mirroring as the actual current obstructing mecha­

nism, according to the following arguments.
 

As seen above the magnetic mirror may support a large
 

(AV)ii even at a small current density. Eq.(8) assumes
 
an isotropic distribution of source electrons at point 1,
 

however. If the source electrons all have large pitch
 

angles (AN) may be high even with no net ill beingcarried
 
by the hot electrons (of Alfv4n and Fdlthammar, 1963, pp
 

162 - 167; Persson, 1963 and 196,6). Given the potential
 
difference (AV),, along a certain field line the parallel
 

current density ilI may thus vary over a wide range with
 

different density and pitch-angle distribution of the source
 

electrons. We therefore suggest the following basic model.
 

By the magnetic mirroring of incoming electrons the hot
 

plasma at high altitudes remains at a large negative poten­

tial relative to the cold plasma at the ionospheric end
 
of the flux tube (see Section 14 for the driving "dynamo").
 

The resulting parallel electric field is distributed within
 

a high-altitude region that may have large dimensions trans­

verse, as well as parallel, to the magnetic field, and net
 
field-aligned currents may be flowing preferably in thin
 

field-aligned subregions.
 

This model is compatible with the requirements in Section 5,
 

and it permits thin auroral rays to be energized by a (AV)1i.
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What remains is a mechanism for producing thin precipita­

tion structures. It is conceivable that such a mechanism
 

may be associated with the supplying of electrons at high
 

altitudes, but the above model also offers the possibility
 

of transforming a uniform source distribution of electrons
 

into a non-uniform distribution of precipitating electrons.
 

That is, a local increase of the precipit'ation may, in
 

principle, be accomplished by a local reduction of the
 

magnetic mirroring effect on electrons. Hence, with the
 

above model it may be possible to reduce the problem of
 

auroral ray formation to the problem of finding a wave­

particle interaction by which electrons can lose gyroenergy
 

in a spatially selective manner. This problem will not be
 

further analyzed here, however, but it may be kept in mind
 

that there are, in fact, a number of plasma wave modes
 

already known that resonate with the gyromotion of electrons
 

(see e.g.Helliwell, 1967; Kennel and Petschek, 1966; Perkins,
 

1968; Stix, 1962). It should be noted that this kind of
 

wave-particle interaction does not necessarily have to occur
 

within the Eii-field-regiong-to produce a ray structure in
 

the precipitation but may.well occur at lower altitudes where
 

Bi n 0, if the magnetic mirror ratio is still large below.
 

10. The Parallel Spatial Distribution of Ei
 

The distribution along the magnetic field of E1 in a
 

magnetic mirror configuration is a problem that has been
 

treated in certain aspects by, among others, Persson (1966).
 

He finds, for example, that in a stationary state with no
 

field-aligned currents and with "almost isotropic" distri­

butions (isotropic except for a loss cone) for both electrons
 

and ions the parallel electric field is given by
 

E Ccgrad -B (9a)
 

This particular form of Ell will be used in Sections 11 and
 

13 for quantitative calculations. The results obtained
 

there are qualitatively true with a rath6r wide range
 

of E1(- fields, however. Although (9a) was derived by
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Persscon in a case with no net iijit can be seen to
 

be compatible with a large ij1 as well, at least in
 

a restricted sense. In fact, (9a) is the unique solu­

tion of Eq.(8) under the following conditions.
 

Suppose Eq. (8) is valid at any point 2 along the magnetic
 

field line below point I (B2 > B1). This implies that
 

the electrons are monoenergetic with an isotropic pitch­

angle distribution on the interval D 0o, 9003 at every point
 

below point 1. Then if s is the length-coordinate along
 

the field line, Eq.(8) is differentiable with respect to
 

s at point 2. Since i 1 (s)OcB (s) the derivative of
 

(8) gives
 

ElI=KdB (9b)ds
 

with K= pcrit/e, crit being the magnetic moment of the 

electrons that maintain a pitch angle 900. 

Hence, (9b) is the electric field that barely maintains a 

saturated current at every pont, given an isotropic and 

monoenergetic source distribution of electrons at point 1 

with energy equal to ptcritBl. If the electrons at point 1 

have a distribution of energies the electric field (9b) 

provides an asymptotically saturated current as B(s)/B 1 + cc 

The actual distribution of Ell is subject to quasi-neutra­

lity of the plasma as well as to the magnetic mirroring
 

of the charge carriers, however. In the problem considered
 

by Persson Eq.(9b) is consistent-with quasi-neutrality,
 

but only trapped particles are present ( e> e kc). In the
 

auroral ease the distribution of Et is necessarily influ­

enced by the ionospheric particles. Consider Fig..4. Suppose
 

the high-altitude region I is deay of cold electrons
 

and El is defined by (9a) in this region. Suppose further
 

that the cold plasma still remains in the low-altitude region
 

3, where the plasma density n3 is much larger than the plasma
 

density nI in region 1, n3 >> n In region 3 the electric
 

field (9a) cannot be valid and we assume Ell = 0 throughout
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this region. The intermediate region 2 is a transition
 

region with some priori unknown distribution of E11 t 0.
 

In going from the low-altitude region 3 into the E i -field
 

at higher altitudes the cold protons (or other positive ions)
 

p3., rapidly decrease in density and soon become comparable
 

in density with the hot protons p,. In region 1 the two
 

proton populations p, and p3 together may thus (chiefly)
 

match the negative charge due to the hot electrons eI.
 

At lower altitudes in region 3 the hot electrons e1 are a
 

minority group and the protons p3 are matched by cold elec­

trons there. In the intermediate region 2 El 't 0, however,
 

and no cold electrons can exist where _EI to. The only negative
 

particles that can conceivably match the protons p. through­

out region 2 are the backscattered and energetic secondary
 

electrons e3 from below. Hence, the transition region 2
 

either has a quasi-neutral plasma, with a density gradient
 

defined by the energy distribution of the backscattered and
 

secondary electrons or it has an unbalanced positive charge
 

in the lower section. The former case allows a smooth density
 

gradient while the latter case obviously requires a steep
 

density gradient, defined by some characteristic Debye length,
 

and a locally strong El1 . The latter case also requires a
 

region of unbalanced negative charge above the positive
 

charge. This negative charge may be partly due to the elec­

trons e3 and partly due to energetic electrons e2 that have
 

become trapped between region 1 and the magnetic mirror 

below during the initial growth of (AV) 1. Both the gradual
 

transition and the "double layer" are conceivable, but the
 

"double layer" may seem the most likely since it does not
 

require any particular velocity distribution of the electrons
 

(Block, private communication). It should be noted that such
 

a "double layer" is not a result of a strong current, but is
 

a result of the magnetic mirroring of the current carriers.
 

From these considerations it is obvious that the parallel
 

electric field cannot be entirely determined by the local
 

magnetic field gradient at every point along the flux tube.
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Below some altitude, which may vary with time, the electric
 

field will be "screened out" by the cold plasma still
 

remaining there. This also means that there has to be a
 

transition region where E is determined by local plasma
 

parameters, as well as by the magnetic mirror ratio below
 

the transition region. At least if this mirror ratio is
 

large the partial potential difference (CV) across the
 

transition region may be a consioerable fraction of the
 

total potential difference (AV)-1 , cf. Fig 4. At higher
 

altitudes the Ell-field may or may not be able to adjust
 

to the local magnetic-field grarientdepending on the ac­

tual particle population. However, even if ElI does not
 

have a smooth distribttion like (Sa). for instance, it still
 

has to extend to high enough altitudes to ensure a suffi­

cient precipitation flux of source electrons, according
 

to Eq. (8). This problem wit be discussed further in a
 

forthcoming paper.
 

11. The Collimation of Electron Bursts
 

Suppose El is given by (9b) with K being a positive constant
 

along a certain field line. The equation of motion along
 

the field line for an electron is then
 

dvl dB1
 
me dt =(e - )s
 

where u = me v1 2 /2B is the magnetic moment. In going from 

point 1 where B = B to point 2 where B = B2 > B1 an electron 

increases its total kinetic energy according to 

e (v22 eV - V ) = eK - B(1)
 
2 N 2 V1 e( 2 1 (B1 SQ1
2 


As long as V is constant we then have 

2 2
 
V12 -v 1 (12a)
-l 


2 2e
-v 
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That is, if B2 >> B1 (v, 2 V11 ) 
22 

sin2 a- v-2 <2(12b)2 ~ 
v 2 

K(1b 

Hence, given an electron with V < eK its pitch angle remains 

smaller than or equal zo a constant determined by the mag­

netic moment of the electron. Such an electron increases 

its parallel velocity along the path,, according to (10), 

and the increase is faster the smaller p is. The associated 

velocity despersion due to different a at given energy is 

quite large. Suppose for instance that (9b) is valid down 

to an altitude of h = 0.5 earth radii above the earth on a 

magnetic field line with L = 10 and (AV),, = ikeV. If 

electrons with 10eV energy start at L = 10 in the equatorial 

plane, an observer at altitude h will find a time delay of 

about 4 see between the arrival of electrons with a = 0 

and a = 45 An observer in the lower ionosphere will find 

this time delay to be only 1 see, if (V) 1 1 = 0 below h, 

but this is more than one order of magnitude larger than 

would be expected if the electrons started from altitude h 

with 1 keV energy. A sudden increase of the number of elec­

trons with V < e at high altitude is then expected to show 

up as a burst of electrons with small pitch angles at lower 

altitudes, in agreement with auroral particle observations 

(e.g,Arnoldy et al, 1974; O'Brien and Reasoner, 1971).
 

An increase of the number of electrons with p < e does not
 

have to involve an actual particle injection, it may as well
 

be accomplished by a transfer of electrons in velocity space
 

from large to small magnetic moments. That is, a gyroreso­

nant wave-particle interaction may be a solution in this
 

case, too. A transfer of electron gyroenergy into electro­

magnetic wave energy may also, in principle, produce a
 

collimated beam of electrons by itself, without involving
 

velocity dispersion. If the interaction occurs within the
 

electric field (9b) the field serves to preserve the colli­

mation, according to Eq (12b).
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These considerations are based on the exact relation (9b),
 

but they are essentially applicable to any upward E
 l
 
that is distributed along the magnetic field withfE
 

pAB over finite intervals A&s,
 

12. Comments on the Electron Energy Spectrum
 

Consider Eq.(11). If the initial energy at point 1 is small
 

compared to e(V2 - V1 ), only a small'total amount of kinetic
 

(gyro) energy has to be removed by wave-particle interactions
 

at point 1 to create a large enhancement of the elctron
 

energy flux at point 2. On the other hand, any electron
 

that is being mirrored at a point close to point 2, between
 

points 1 and 2, can lose all its gyroenergy and arrive at
 
point 2 virtually without any energy. In other words, as
 

long as we do not specify in detail the process of wave­

particle interactions, there is a wide range of possible
 
precipitation spectra associated with any given total poten­

tial drop (AV)1 1 .
 

Obviously, there may also be certain wave-particle inter­

actions connected mainly with the parallel motion of the
 

electrons (of Stix, 1962). Since the precipitating elec­

trons will be streaming through a population of upflowing
 

positive ions from the ionosphere there may be favourable
 

conditions for the two-stream instability, for instance.
 

The different kinds of possible wave-particle interactions
 

thus seem likely to generate a component of the precipita­

ting electrons having a degraded energy, as compared with
 

the "free-fall" component. More generally, wave-particle
 

interactions may cause the electrons to diffuse in velocity
 

space, preferably towards smaller velocities, although some
 
precipitating electrons may gain energy in this way (of
 

Perkins, 1968). As the backscattered and numerous secondary
 

electrons will be reflected downwards by (AV),, (Evans, 1974)
 

the total energy spectrum of precipitating electrons at low
 
altitudes may thus, in principle, look fairly smooth even
 

with a large (AV),, present, which may also be the case with
 

a fluctuating (A ) ,.
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The extent of energy degradation of the primary electrons
 

will probably be a function of the spatial structure of
 
the precipitation, as indicated by straightforward calcu­

lations (of for instance Hess et al, 1971). That is, a
 
widely extended structure is seemingly particularly suscep­

tible to instabilities in velocity space because it allows
 
unstable traveling waves to grow for extended periods of
 

time. By the same token a spatially strongly limited
 

plasma may thus be more stable against this kind of wave
 
growth. In fact, both artificial generation of thin "auro­

ral" electron beams (Hess et al, 1971) and theoretical
 

investigations (Jones and Kellogg, 1973) do indicate that
 

a thin structure of precipitating electrons is very stable
 
to energy degradation by wave-particle interaction. This
 

finding has an important implication with respect to the
 

present auroral model. Suppose the number of electrons with 

P < eK is increased in a narrow spatial region at high alti­
tudes, by gyroresonant wave-particle interaction, for instance.
 

When continuing downwards these electrons will form a thin
 
structure of increased number density (consider Eq.(ll) and
 

nvii - B) that may thus Lecome stable against further energy
 
degradation, leading to a bright auroral form and a pronounced
 
"monoenergetic" peak in the energy spectrum (of O'Brien and
 

Reasoner, 1971; Westerlund, 1939). That is, in principle
 

the "monoenergetic" peak in the electron energy spectrum
 

may have a spatial (horizontal) fine-structure within the
 

horizontal region covered by a large (AV)III
 

13. A Generalized "Loss Cone" for the Electrons
 

Since an electron with a large magnetic moment will mirror,
 

there may often be a tendency towards negative charge-accu­

mulation on a closed field line with upward currents. This
 
may tend to quench the magnetospheric dynamo current (of next
 

Section) leading to a "loss cone" distribution of electrons.
 

This "loss cone" will be larger for electrons having a smaller
 
total energy than for the more energetic electrons. Suppose
 

Eli is given by (9b) above a certain altitude, called the
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altitude of penetration of E H,,where B = Bpen' and
 

Eli = 0 below. Then, given a point on a closed magnetic
 

field line, where the magnetic field strength is B < Bpen'
 

the half-angle ale of the local loss cone is defined by
 

a B + eKsin2 B B 
(13)ie BF e 2 B Bmax 

where Bmax is the magnetic field strength at the altitude
 

of the low ionosphere. For Bpen < B < Bmax the constant K
 

is zero. No electrons with meV212 < eKB(Bpen- B)/(Bmax- B)
 

will remain on the field line. Eq.(13) follows from Eq.(ll)
 

and the constancy of p.
 

The corresponding equation for the proton "loss cone" is
 
analogous to (13) with the plus sign changed to a minus sign.
 

This is then applicable to protons with mpv2 /2 > eK(Bpen-B).
 

Protons with lower energies will have no "loss cone".
 

If the low-altitude region where B > B has an upward 
-- pen 

Ell * 0 with a large (6V)l[ associated with it the change 

of Eq.(13) may be approximated by a reduction of Bmaxi 

Bmax * B pen' In the case of the protons Bmax will effec­

tively increase. 

If the electric field is increased, that is if K is increased
 

to KC > K, electrons will start precipitating again with
 

pitch angles given by
 

K< sin2
 
-<s < 1 (14)
 

at the altitude of the low ionosphere. The half-angle of
 

the apparent "loss cone" at ionospheric altitudes will thus
 

rapidly decrease from 900 to the lower limit determined by
 

(14) and then slowly increase again. Provided that the
 

electric field has a negligible growth time, the time scale
 

of the initial decrease of this "loss cone" will be roughly
 

defined by the time it takes an electron with a low initial
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energy to fall from an altitude of one earth radius above 

the altitude of penetration of E1 P that is typically of 

the order of a second or less. The time scale of the sub­

sequent increase of the "loss cone", on the other hand, 

will be determined by the travel time from the outer magneto­

sphere of the lowest-energy electrons, which may be several 

tens of seconds (with initial energies of the order of 100 eV 

or less). 

Under certain conditions the increase of Eji will lead to
 

a transiently field-aligned precipitation flux which has
 

a hardening energy spectrum towards smaller pitch angles,
 

as observed at low altitudes. Consider, for instance, the
 

case K' >> K (K may be zero). Suppose the average electron
 

energy at any altitude is much smaller than e& Bpen prior
 

to the increase of EI. After the electric field is "turned
 

on", a given electron from the precipitating population will
 

reach the low ionosphere at a smaller pitch angle and a
 

higher energy, if it is initially at a higher altitude, as
 

seen from Eq. (Ii) and the constancy of 1. Furthermore, as
 

a consequence of the velocity dispersion an electron from
 

a higher altitude (higher final energy) will reach the low
 

ionosphere with a certain pitch angle at the same time as an
 

electron from a lower altitude (lower final energy) with a
 

larger pitch angle. This apparent relation between energy
 

and pitch angle will thus gradually disappear as electrons
 

from larger and larger distances appear at 90° pitch angle.
 

Since a larger (AV)ii will cause a larger number of electrons
 

to precipitate, the velocity dispersion will also be associ­

ated with a field-aligned number flux at low altitudes. It
 

should be kept in mind that the effect of velocity dispersion
 

may be very strong with an electric field that is distributed
 

over a large distance (c Section 11). Also in the case of
 

gradually increasing (AV),, the velocity dispersion will have
 

similar effects, as discussed in Section 15. These results
 

are basically true with any E1 that is both distributed
 

along the magnetic field line and compatible with preserved
 

magnetic moments of the electrons.
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14. The Magnetospheric Dynamo
 

The current configuration of Fig. 2 and 3 may be part of
 

current loops like those sketched in Fig.5. The view of
 

Fig.5 is in the direction towards the sun. We may think
 

of Fig.2 and 3 as pictures of a small region around point D.
 

In this particular case Pedersen currents are flowing in
 

towards the upward current sheet both from the north and
 

the south side. The poleward downward current may flow
 

either from A' to D' or from W down the dotted line (that
 

is, close to A-D), or probably both ways. This symmetric
 

situation may not at all be the typical case in reality,
 

where we may even have multiple field-aligned current
 

sheets (e.g. Aubry et a.1 1972).
 

A magnetospheric dynamo driving a current down to the iono­

sphere and back up basically is a continuously progressing
 

charge separation in the outer magnetosphere, driven by
 

e.g. inertia forces on the charged particles. The dashed
 

current loop in Fig.S, for example, may be accomplished by
 

the ionospheric drag (in a hydromagnetic sense) on the solar
 

wind flow via open (merged) magnetic field lines. This case
 

is a "voltage-generator", where the charge separation between
 

A and A is produced, basically, by solar wind protons dis­

placing their gyrocenters in a direction opposite to (and
 

the electrons in the same direction as) E, when entering
 

a region of reduced E4 (reduced E x B-drift), of e.g.Alfven
 

(1975). That is, kinetic energy associated with E x B-drif­

ting solar wind protons (and electrons) is converted into
 

electrostatic energy. If the solid current loop in Fig.5
 

is on closed magnetic field lines the driving charge separa­

tion between A and B may, for instance, be due to gradient-


B drift of energetic particles across inhomogeneities in
 

their density and temperature distributions, as in the model
 

by Jaggi and Wolf (1973). This case is more like a "current­

generator", although far from strictly. Indirectly, the
 

solar wind is the driving agent in this case, too, as the
 

solar wind flow is what causes the internal magnetospheric
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convection (sunward). This convection carries the charged
 

particles into the earth's magnetic field, leading to
 

betatron and Fermi acceleration of the particles (of e.g-


Alfven and Falthamnar, 1963).
 

Consider, for instance, the current loop ABCDA in Fig 5.
 

Suppose the dynamo current A-B is due to a differential
 

drift of hot electrons and protons (or other positive ions)
 

across the magnetic field lines. This drift tends to accu­

mulate electrons at A and protons at B. Then the positive
 

space charge at B will enable the ionospheric electrons
 

at point C to escape at a higher rate than allowed by the
 

normal polar wind flux of both ions and electrons. Since
 

the flux density of freely escaping ionospheric electrons
 

is as high as 1010 - 1011/cm2s, corresponding to
 
5 ­ill - 10- - 10 4 A/m 2 (of Lemaire and Scherer, 1973), it 

is reasonable to believe that the current B-C typically 

flows without a significant potential drop. That is, point 

C will remain at nearly the same potential as point B. A 

Pedersen current from C to D in the ionosphere will thus 

charge point D positive with respect to point A. The 

negative space charge at A, on the other hand, does not 

release a corresponding increase in the outflux of positive 

ions from point D. The upward positive-ion flux from the 

ionosphere will be either "temperature limited" by the na­

tural thermal outflux of topside ions, giving a contribution 
- 7 ­to ill of only 10 - 1 6 A/m2 (cf Lemaire and Scherer, 

1974) or "spaceoharge limited", giving an even smaller con­

tribution (of Block, 1967). The potential difference (AV),, 

between A and D will thus easily grow to a level where a 

large fraction of the hot electrons arriving at A are forced 

through the magnetic mirror and precipitate at D with in­

creased energy. Given the initial (average) kinetic energy 

Ke of the electrons at A, the magnetic mirror may support ae
 

(AV),, which is as large as (Ke/e) x (BD/BA), where BD and
 

BA are the magnetic field strengths at D and A, respectively
 

(see Section 8). This is valid provided most of the eleQtrons
 

from A preserve their magnetic moments during transit to D,
 

of course.
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By these arguments we emphasize the magnetic mirroring
 

effect as the presumable basic cause of a large (AV) v.
 
That is, the primary effect of the mirroring is to ob­

struct a discharge along the magnetic field line. However,
 

the actual distribution of Ell is subject to the quasi­

neutrality of the plasma and this may well imposel the for­

mation of spacecharge layers where E' becomns much stronger
 

than the local nirrQr forces (of. Section 10).
 

It My be noted that the acceleration conditions along
 

A-D,may also be influenced by changes in the magnetic energy
 

stored in the current loop. This will not be discussed in
 

this paper, however.
 

15. Comparison with Observations
 

The convection electric field in the altitude range 500 ­

2500 km has been extensively explored by polar orbiting
 

satellites (Cauffman and Gurnett, 1972; Frank and Gurnett,
 

1971; Gurnett and Frank, 1973; Gurnett and Akasofu, 1974;
 

Heppner, 1972 and 1973). It is found thaT the convection
 

is generally antisunward over the polar caps down to the
 

poleward edge of the auroral ovals (at 700 - 800 magnetic
 

lat) and sunward between this region and the plasmasphere
 

(except for stagnation lines near noon and midnight). The
 

transition between antisunward and sunward convection is
 

generally observed as a fairly sharp reversal of E1, and
 

adjacent to the main reversal the E,-field is often strongly
 

fluctuating (as seen by the moving spacecraft)with pronounced
 

peaks. It has further been established (Ackerson and Frank,
 

1972; Burch et a!, 1976; Frank and Ackerson, 1971; Gurnett
 

and Frank, 1973) that on the evening side this field reversal
 

is frequently associated with bands of intense "inverted-V"
 

events, that is field-aligned sheets (probably east-west
 

oriented) of precipitating electrons characterized by an
 

"inverted-V" profile of mean energy versus latitude, as seen
 

by a satellite crossing the sheet. From Sections 8 and 7
 

we would expect such an "inverted-V" event associated with
 

the field-reversal on the evening side, where the associated
 

ill is upward, in contrast with the morning side (of Fig.5).
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The basic results of Sections 6 and 7 only require a
 

pronounced horizontal gradient in E1 , that is, "inverted-V"
 

events may as well be associated with the irregularities
 

in E, adjacent to the main reversal, in accordance with
 

the observations. The real situation, however, may be
 

strongly complicated by horizontal gradients in Ep (and EH)
 

in particular when the precipitation structure is moving.
 

A further complication is introduced by the (generally)
 

unknown neutral gas velocity, which may also slightly dis­

place the "inverted-V" structure relative to the observed
 

inhomogeneity in E4 (of Lennartsson, 1973a). That is, we
 

might expect some anbiguity when interpreting the observa­

tions. As long as Pedersen currents are the major source
 

of the upward ill and the gradient in E is mainly respon­

sible for ill the E2 -gradient has to be in a certain direc­

tion, of course. That is, more El-field lines have to point
 

toward the upward current sheet than away from it. The
 

occasional observation of "inverted-V" events in the field­

reversal region in the morning sector we thus interpret
 

as due to the presence of a grad1 E, with the "right" sign
 

close to the main reversal. This seems to be in full agree­

ment with data from the Ion Drift Meter (Hanson et al, 1973)
 

on Atmosphere Explorer C, according to Burch (private commu­

nication).
 

We note from the simple models in Sections 6 and 7 that the
 

"inverted-V" shape is the simplest possible latitudinal
 

distribution of (AV) we may expect at an upward field­

aligned current sheet, when the parallel "conductivity" is
 

finite.
 

The "inverzed-V" events in general are fairly thick sheets
 

of precipitation, typically 100 - 250 km (Burch et al, 1976)
 

which obviously is in full agreement with Section 5
 

(of Eq. C2b)). It is even observed that in the direction
 

from early to late local evening the inverted-V" precipi­

tation bands grow more energetic and wider (e.g. Gurnett and
 

Frank, 1973), which is in qualitative agreement with Eqs (2b-c)
 



- 34 ­

under the assumption that EI at large distances from the
 

earth (the "dynamo field") stays fairly constant; of also
 

Eq,(7) and the two subsequent paragraphs in Section 6; note
 

that a decreased "all" may, for instance, be due to an
 

increased temperature of the hot source plasma, according
 

to Eq,(8).
 

Often very pronounced peaks with opposite signs in E, are
 

observed at each border of an "ihverted-V" event. According
 

to Burch (private communication) the ion drift data from
 

Atmosphere Explorer C (Hanson et al, 1973) show such pro­

nounced peaks to be in the "right" sense in all eases
 

examined, that is with EI pointing toward the center of
 

the "inverted-V" event. Besides, Burch found one pair of
 

opposite E1 peaks where EI pointed outwards, and this single
 

case was seen to be associated with a three orders of magni­

tude dropout in the electron precipitation flux between
 

the E±-peaks as compared with the surrounding flux. Even
 

if the satellite is observing the uppermost E, curve in
 

Fig.3, for instance, a large fraction of the observed E±
 

is evidently due to the low-altitude field needed to carry
 

the Pedersen currents towards the upward current sheet. That
 

is, we do not expect the integral of E, along the satellite
 

trajectory to be a true measure of the (AV),,, below the
 

satellite. The "asymptotic" E,-field on both sides of the
 

reversal in Fig. 2 and 3 in reality may well go to zero
 

within a short distance from the reversal, associated with
 

the downward ill-sheets (upflowing ionospheric electrons)
 

as sketched in Fig.6. This means that the satellite may
 

at times observe two apparent "spikes" in E, even if it is
 

actually observing only the low-altitude El.
 

Observations indicate that EA is reduced within auroral arcs
 
due to the enhanced Ep and ZH (e.g. Aggson, 1969; Potter,
 

1970; Wescott et al, 1969). This is in full formal agreement
 

with a large (AV) 1 , as shown in an earlier paper (Lennarts­

son, 1973a), and may be qualitatively understood as the low
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altitude E, adjusting to gradients in Z to avoid a too­p
 
high i11 ; that is, to avoid a too high (AV) ,/Ax according
 

to Eq (2b). This is, of course, provided that EI at high
 

altitudes (the "dynamo field") is not allowed to increase.
 

This is also illustrated in Fig.6, where the low-altitude
 

EI is very weak within the upward current sheet (precipi­

tating electrons).
 

As mentioned in Section 4 observations often indicate that
 

ill as inferred from magnetic measurements, is equal to or
 

even larger than the current density inferred from the de­

tected precipitation (see references at the end of Section
 

4). We found (Section 4) that this is seemingly the same
 

as keeping the ionosphere at a higher potential than the
 

adjacent magnetosphere. Obviously, this is easily under­

stood in terms of a large (AV),, in a direction to accele­

rate electrons downwards (along A-D in Fig.5).
 

The above comments apply in principle to any large (AV)11.
 

Now consider some observations that may favour a combined
 

model of magnetic mirroring and plasma waves.
 

We recall that the "inverted-V" structures are often fairly
 

wide in latitude and, hence, often associated with average
 
-
iii- 10 A/M2 (or less) at ionospheric altitudes (see
 

references at the beginning of this section). This evidently
 

places a severe restriction on a current-driven instability
 

being the cause of (AV),,. On the other hand, the interpre­

tation in terms of magnetic mirroring is, in principle, not
 

affected at all, as (AV)ii in this case will be determined
 

by the overall supply of electrons with small magnetic moments
 

provided the outflux of ionospheric ions is not too large,
 

and, in principle, (AV),, may be large even with ngjill at
 

all flowing (Alfv'n and Falthammar, 1963; Persson, 1963;
 

cf Section 13). With this model we then allow very sharp
 

auroral arcs to be associated with intensified substruc­

tures of ii, within wider regions of weak (upward) i
 

(ef Armstrong et al, 1975; Hallinan and Davis, 1970).
 

the intensification of ill being due, for instance to
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local reduction of the "magnetic resistance",, that is,
 

due to local transfering of electrons from the mirroring
 

population to the precipitating population b-means,:of
 

gyroresonant wave-particle interaction.
 

According to Sharber and Heikkila (1972) no systematic 

variation with altitude of the auroral particle energies 

has been observed from a few hundred kms altitude to a 

few thousand kms. This is well bompatible, within the 

accuracy of comparing observations of different events, with 

a widely distributed Ell. The most straightforward in­

terpretation is, however, that E1i does not Aormally 

penetrate to these altitudes. 

We note that E1 according to (9a), for instance, allows
 

us to apply, in a qualitative manner, the model by Evans
 

(1974), where he gives an explanation of the low-energy
 

"continuum" spectrum of auroral electrons in terms of secon­

dary and backscattered electrons from the ionosphere being
 

reflected downwards by a (AV),i. In Evans' model all primary
 

electrons have energies equal to or larger than e(AV)l
 

(they have all fallen through the same potential (AV),,-)
 

giving rise to a pronounced high-energy peak in the energy
 

spectrum. According to the present model (see in particular
 

Section 12) we may expect some of the electrons with lower
 

energies,to be primary electrons that have been degraded
 

in energy by wave-particle interactions. As the intensity
 

and spectral shape of the backscattered and secondary
 

electrons with lower energies are rather insesitive to the
 

energy of the primaries (the intensity may even tend to
 

increase with decreasing energy of the primaries, cf Evans,
 

1974) we might expect essentially the same low-energy "con­

tinuum" if the primary high-energy peak is "smoothed out"
 

by wave-particle interactions. Even outside the magnetic
 

flux tubes with a high (AV) 11 there will be a residual
 

precipitation, and if the magnetic field lines are closed
 

we might then find a somewhat similar low-energy "continuum"
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of electrons arriving from the conjugate ionosphere. In
 

this manner it may be possible to reconcile the presence
 

of a high (AV),, with the frequent observations of a fairly
 

stable low-energy "continuum" even when the high-energy
 

peak is strongly fluctuating (O'Brien and Reasoner, 1971;
 

Reasoner and Chappell, 1973; Westerlund, 1969).
 

A (AV),, supported by magnetic mirroring will have a selec­

tive effect on a given source distribution of electrons
 

incident at high altitudes. The electrons with lower initial
 

energies have on the average smaller magnetic moments and
 

will thus get more completely precipitated. As (AV)11
 

growslarger, more high-energy electrons will be precipitated,
 

while the precipitation of the electrons with lower energies
 

will become successively saturated. An observer going towards
 

the center of an "inverted-V" event (cf Fig.3) will thus see
 

a progressively larger high-energy tail above the (increasing)
 

energy defined by e(AV)1j. This tendency may be further
 

strengthened by wave-particle interactions causing the preci­

pitating electrons to diffuse in velocity space (of Section
 

12). Recent measurements (Burch et al, 1975) do show a
 

similar behaviour of the electron energy spectrum at low
 

altitudes.
 

As pointed out in Section 1, the common collimation of
 

electron bursts to small pirch angles (Hoffman and Evans,
 

1968; O'Brien and Reasoner, 1971; Whalen and MeDiarmid, 1972)
 

may be understood in terms of a distributed E1 -field in combi­

nation with gyroresonant waves acting as triggers of bursts
 

(rays).
 

Arnoldy et al, (1974) found field-aligned fluxes (bursts)
 

of electrons to have distinctly lower peak energies than
 

the accompanying isotropic and "monoenergetic" component.
 

In at least one case even the field-aligned flux appeared
 

to be "monoenergeti", although with a lower energy than
 

the isotropic flux. It may be possible to explain these
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observations simply in terms of several electrons popu­

lations with different energies falling through a certain
 

(AV) ,, at least if all limitations of the instruments are
 
taken into account. However, we note that these observations
 

fit into a model where bursts and rays are triggered by a
 

transfer of electron gyroenergy into wave energy. Such an
 

energy transfer leads to a reduced total energy of the
 

collimated electrons as compared with an undisturbed iso­

tropic component. A "monoenergetic" beam of collimated
 

electrons is conceivable as a result of electrons losing
 

most of their energy, at least their gyroenergy, at a
 

relatively well-defined altitude above the observer. At
 

the same time, some electrons may lose energy by wave-particle
 

interactions without getting effectively collimated (cf Sec­
tion 12); that is, we may not expect to find a very simple
 

general relation among observed energies and pitch angles,
 

particularly not if velocity dispersion is likely to be
 

important (of Whalen and McDiarmid, 1972; of also Section 13).
 

Venkatarangan et al, (1975) have studied the electron pitch­

angle distribution within "inverted-V" structures by means
 

of a spinning satellite (the low-altitude polar orbiting
 
satellite Isis 2). They have frequently found the fluxes
 

in all energy channels to peak at 90 pitch angle, while
 

the lower energy flux has shown a secondary peak at small
 

pitch angles. The fact than only the lower energy electrons
 
show an increased flux at small pitch angles we may again
 

(in principle) ascribe to a wave-triggered collimation,
 

which is basically associated with a certain loss of particle
 

energy. An apparent peak flux at 90 at all energies, as
 
seen by the spinning spacecraft (with spin period -20 see)
 

looking in only one radial direction at a time, may possibly
 

be a temporal or spatial variation in the flux. Alternatively,
 

the observations may be due to "loss cone" distributions on
 
closed field lines, as described in Section 13, with some
 

electrons being scattered into the "collimation-cone" (small
 

magnetic moments) somewhere along the field-line, associated
 

with energy loss.
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Several authors (Dunokel et al, 1970; Gurnett, 1974; Kurth
 

et al, 1975) have observed very intense bursts of electro­

magnetic "kilometric" radiation propagating away from the
 

earth during the ocourence of discrete auroral forms. By
 

direction-finding technique (Gurnett; 1974; Kurth et al,
 

1975) the radiation source has been found to be located in
 

the auroral zones, in particular in the local evening sector,
 

at altitudes of about 1-2 R above the earth: The radiation
e 
spectrum has a peak intensity in the range 100- 300 kHz, and
 

the total instantaneous power of the radiation from the
 

earth has been estimated to be as large as !% of the maximum
 

power dissapted by auroral particle precipitation (Gurnett,
 

1974). In view of the estimated altitude of the source the
 

typical frequencies of this radiation are obviously compa­

tible with a wave generation at the local electron gyro­

frequency, in particular if we consider the effect of Doppler
 

shifts. If auroral ray formation is indeed associated with a
 

transformation of gyroenergy into wave energy this is obviously
 

a kind of radiation we would expect.
 

Rosenberg et al, (1971) have observed a one-to-one correlation
 

'between bursts of VLF emissions and slightly time-delayed
 

short bursts of x-rays (due to bursts of precipitating ener­

getic electrons) at Siple station, Antarctica L = 4.1).
 

From, among other things, the frequencies of the VLF emissions
 

(center frequency 2.5 kHz) Rosenberg et al interpret these
 

emissions as due to cyclotron resonance between the waves
 

and energetic electrons at the equator, by which the wave
 

energy is created at the expense of the electron gyroenergy.
 

This is the same kind of wave-particle interaction as sugge­

sted in Section 9. However, the electron densities of main
 

interest in the model may be smaller than the equatorial
 

density in this case (-10/cm3 ).
 

Sharber and Heikkila (1972) have observed, using a spinning
 

satellite (the polar orbiting satellite Isis 1), that the
 

electron flux in the poleward part of the nighttime auroral
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ovals is frequently field-aligned with a hardening of the
 

energy spectrum at small pitch angles ("A" structures).
 

When the range of the pitch angle scan is sufficiently
 

wide, a more or less empty "loss cone" may show up ("top­

less A" structures). They reject parallel electric fields
 

as being involved and interpret their observations in terms
 

of Fermi acceleration on closed field lines. As their ob­

servations seem to be directly related to "inverted-V"
 

events, their interpretation is evidently incompatible with
 

the above model. We are thus forced to suggest a different
 

interpretation, although this may be somewhat ambiguous.
 

We first notice that a hardening of the electron energy
 

spectrum with decreasing pitch angles to a certain extent
 

can be attributed to the "loss cone" being larger for low
 

energies than for high (of Fig..7, p 3406, in the paper by
 

Sharber and Heikkila). Such an energy dependent "loss cone"
 

is suggested by Eq (13). (Isis I has an apogee of 3522 km
 

alt). A sudden increase of E will, transiently (for some
-iItl 
tens of seconds), lead to a narrowed empty cone, as
 

suggested by Eq (14). In particular, if the increase in 

Ell is relatively very strong, that is, like the case K' >> K 

in Section ia QC may be zero), we may well expect the velo­

city dispersion to initially (within the first few seconds) 

cause an apparent electron energy spectrum where the peak
 

energy is increasing towards smaller pitch angles. At the
 

same time, the electron number flux will evidently be gene­

rally field-aligned (ef Eq.(l1) and (12b)).
 

However, it may be argued that the spin period of Isis 1
 

(20.4 see) is somewhat too long to really permit the latter
 

explanation of the increasing energy towards small pitch
 

angles and the field-aligned number flux. We may thus be
 

forced to assume that the spinning spacecraft is also moving
 

through a spatial ("inverted-V") strueure at the same time,
 

or that the spacecraft is measuring a mainly temporal change
 

in the elotron energy and flux.
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We further notice that even a gradually increasing (AV)
 

which is distributed along the magnetic field line, may
 

cause the most energetic electrons to have the apparently
 

smallest pitch angles at low altitude. This is because
 

the most energetic electrons will be the most recently
 

accelerated at any time during the increase of (AV),i.
 

This mechanism, basically due to different starting times
 

at a given location, is an alternative to the mechanism
 

in Section 11, which is due to different initial particle
 

locations after a given sudden increase of (AV),,. During
 

the increase of (AV),, the velocity dispersion will also
 

cause a field-aligned number flux. The time scales involved
 

in the low altitude precipitation event will be determined
 

both by the growth rate of (AV) 11 and the actual instantaneous
 

distribution of Ell along the magnetic field line.
 

Effects that may be due To a temporal or spatial variation
 

of (AV),, are, of course, possible on both open and closed
 

magnetic field lines, but the presence of a "loss cone" may
 

seem to imply closed field lines.
 

The simultaneous observations of electron and (weak) proton
 

precipitation, with even higher proton energies than electron
 

energies, have often been used as an argument against any
 

significant (AV,), (O'Brien, 1970; Sharber and Heikkila,
 

1972). For the case of the protons and electrons originating
 

from different regions along a magnetic field-line, Block
 

(1972) has shown this to be surmountable in terms of certain
 

distributions of Eli. We do not want to restrict the above
 

model to this case, however, but rather allow protons and
 

electrons to originate from the same regions. The protons
 

that are observed precipitating along with the electrons
 

thus have been decelerated by (AV),, on their way down.
 

The measured proton distribution does not, however, have
 

a simple bearing on the "typical" energy distributions of
 

protons in the source regions, as long as we do not know
 

whether or not the charge-separation process (the "dynamo")
 

in the outer magnetosphere is associated with energy disper­

sion. At times a large fraction of the precipitating protons
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may also be previously accelerated ionospheric protons as
 

discussed further down. With an auroral proton energy
 

typically at least as high as the electron energy (of
 

Sharber and Heikkila, 1972) we expect the proton number
 

flux to be about 1/40 times the electron number flux, or
 
larger , in the absence of a (AV),,. This may be compared
 

with, for instance, Figures 1 and 2 (p. 3400 - 3401) in the
 

paper by Sharber and Heikkila (1972), where the peak number
 

flux of electrons is apparently at least three orders of
 

magnitude larger than the simultaneous proton number flux.
 

This evidently means that the number density of the preci­

pitating protons is much smaller than the number density of
 
the precipitating electrons (the proton energy seems to be
 

somewhat reduced, too). A simple interpretation of this is
 

that only the protons from the high-energy tail of the
 

source distribution are able to reach lower altitudes, due
 

to the presence of a large (AV),, in a direction to accele­

rate the electrons and retard the protons. The local quasi­

neutrality may, of course, be maintained by upward flowing
 

ionospheric ions. At the altitude of this particular obser­

vation (around 3000 km) upward accelerating ionospheric 

(topside) ions may have an energy of a few keV or less, 

depending upon the actual penetration depth of Ej . However, 

in this particular case the spacecraft (Isis 1) was evidently 

looking in the upward direction only. The upflowing iono­

spheric ions will not readily be observed unless the observer 

is looking very close to the downward field-aligned direction 

(of the discussion below). 

According to Burch et al (1976) the data from Atmosphere
 

Explorer C typically show the ratio of electron to proton
 

energy fluxes to be strongly increased within inverted-V"
 

precipitation structures, as compared with the flux ratios
 

outside. This is, of course, what we (generally) would
 
expect if the electrons are being accelerated by a (AV)
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The present model leads, however, to another interesting
 
consequence regarding proton precipitation or, more generally,
 

precipitation of positive ions. The parallel electric field
 

will evidently accelerate positive ions upward from the top­

side ionosphere (while suppressing the ionospheric electrons).
 
These ions will, in principle, get an extremely field-aligned
 

velocity distribution both as a result of the diverging
 

magnetic field lines and as a result of Ell. If the magnetic
 

field line is closed, these energized ions may be able to
 

precipitate in The conjugate ionosphere together with elec­

trons, provided (AV),, is smaller along the downward path.
 
Since these ions may drift a considerable distance transverse
 

to the magnetic field during transit, for instance due to
 

E x B - drift, they may be able to precipitate in either
 

hemisphere if (AV),, has a horizontal gradient in the drift
 
direction. A trapped population of these ions will precipi­

tate whenever (AV),, is reduced. That is, we may well
 

expect energetic protons, as well as heavier ions (of Shelley
 

et al,1972), of ionospheric origin to precipitate now and
 

Then together with energetic electrons. The energy of these
 
ions may occasionally be higher than the average electron
 

energy, for instance when (AV),, is rapidly decreasing in
 

time.
 

An interesting property of these ions is that they tend to
 

have a field-aligned distribution also when precipitating
 
at ionospheric altitudes. In fact, provided the magnetic
 

moment is preserved, these ions will not be isotropic unless
 

their energy is Ko x amax/Bpen, where Ko is the initial
 

energy of the ions (< 1 eV) before acceleration and B and
max
 
Bpen are the magnetic field strengths at the low altitude
 

of observation and at the lowest altitude of penetration of
 

Ell, respectively (Bpen < Bmax). As a consequence, an ob­

server at low altitudes will, on the average, find the field­

alignment to be more pronounced the higher the energy is of
 

these precipitating ions. In this manner the present model
 

may be able to give a very simple alternative explanation
 

of the fairly 'frequent satellite observations (ESRO/A and
 

E3RD/B) of field-aligned fluxes of positive ions in the
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keV-range along with energetic (and typically isotropic)
 

electron precipitation (Hultqvist, 1971), as far as these
 

observations can be related to closed magneTic field lines.
 

The field-alignment of these ions may, to some extent, be
 

reduced by wave-particle interactions, of course (of Sec­

tion 12).
 

In the outer magnetosphere these energized ionospheric ions
 

will presumably have a generally field-aligned distribution,
 

even in the presence of a slight pitch-angle scattering,
 

with energies of the same order as the "typical" energy of
 

aurora! electrons or lower((AV)l < typical electron energies)
 

Furthermore, an E according to (9b); or more generally, any
 

upward Ei that is distributed along B, being basically com­

patible with preserved magnetic moments of the protons,
 

will suppress the development of the loss cone of lower­

energy protons of magnetospheric origin, on closed magnetic
 

field lines (cf Section 13). This may explain the "source­

cone" distributions of positive ions at energies less than
 

10 keV frequently found by the geosynchronous satellite
 

ATS-8 (DeForest, private communication; Mcllwain 1975).
 

According to DeForest (private communication) and McIlwain
 

(1975) even the electrons sometimes show strongly field­

aligned distributions at the geosynchronous orbit (ATS-6),
 

although much less often than the positive ions. These
 

field-aligned electron fluxes seem to be quite intense but
 

rather fluctuating in amplitude (on a time scale of a quarter
 

6f a second, according to DeForest). The energy spectrum
 

of these electrons is typically flat or slightly rising
 

up to a break point somewhere between 0.1 and 10 keV,
 

beyond which it rapidly decreases. It might be tempting
 

to associate these electron "beams" with a downward current
 

(upward moving electrons) like B-C in Fig.5. This would
 

then require some kind of obstruction of the escape flux
 

of ionospheric electrons (of Knight, 1973; Lemaire and
 

Scherer, 1973a). One possible obstruction is a double layer
 

(cf Block, 1972, 1975), another is strongly reduced plasma
 

density at high altitudes, in which case the electron flux
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may become spacecharge-limited (of Block, 1967). The
 

latter case, for instance, may occur if the cold plasma
 

at high altitudes has been previously depleted by a strong
 

upward current (of Section 8). However, it may not be
 

necessary to associate the electron "beam" with a downward
 

current. Consider, for instance, un upward electric field
 

according to Eq.(b). If this electric field is "turned
 

off" it will enable energized electrons from lower alti­

tudes to escape outwards, after mirroring, while trans­

forming their gyromotion into directional (field-aligned)
 

motion. Hence, if the total (AV),, is strongly fluctuating
 

it may thus cause a Fluctuating beam of fild-aligned ener­

getic electrons to appear in the outer magnetosphere. Such
 

a fluctuating (AV),, is conceivable under certain conditions,
 

since a current loop like ABeD in Fig. 5 is basically a
 

"resonant circuit", the "inductance" being due to the en­

circled magnetic field and the "capacitance" being due to
 

the charged-particle convection through the loop (of Lennarts­

son, 1973b).
 
/ 

When the positive ions from the ionosphere reach the parallel
 

electric field and become accelerated they also become re­

duced in density as compared with the density distribution
 

during normal escape (for a review of the theory of escape
 

flux, see e.g.the paper by Lemaire and Scherer, 1973b).
 

Such a density reduction of the positive ions is also re­

quired to preserve quasi-neutrality, since the cold electrons
 

will be depleted by the parallel electric field and replaced
 

by a dilute population of precipitating, backscattered and
 

(energetic) secondary electrons, of the brief discussion in
 

Section 10. Without a detailed study of the quasi-neutrality
 

we are very limited in predicting the plasma distributions
 

above auroral forms, however. As a very general consequence
 

of the present model we would, nevertheless, expect to find
 

anomalously low plasma densities at high altitudes above
 

auroral forms. This qualitative prediction may seem to be
 

compatible with electron density measurements made by the
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topside-sounding satellite Alcuette II (Hagg, 1967).
 
Ionograms recorded at high latitudes (L > 6) and high
 
altitudes (1500 - 3000 km) often showed a beat-frequency
 
modulation from which Hagg deduced accurate densities as
 

- 3
low as 8 cm in many cases,
 

It is worth noting in this context that also the downward
 
field-aligned portion of a current loop, like ABCD in Fig. 5, 
may be associated with a plasma depletion, although in this
 
case the depletion will occur at low altitudes. If the
 
horizontal current C-D is a Pedersen current it is associated
 
with a transport of positive ions away from point C (of
 
Bostrbm, 1964). 
 Since the current B-C will be associated
 
with an outflux of electrons form point C the plasma density
 
at point C may thus become appreciably reduced. This mecha­

nism may seem to have potential applications -to certain
 
observations of density irregularities in the high-latitude
 

ionosphere but it will not be further discussed here. For a
 

theoretical discussion of plasma depletion by field-aligned
 
currents, see Block and Falthammar (1968).
 

16. Summary and Concluding Remarks
 

The existence of field-aligned currents associated with
 
auroral precipitation (Section 4) suggests a process of 
charge separation (a "dynamo") in the distributions of "hot" 
particles in the outer magnetosphere and the magnetosphere­

solar wind transition region (Section 14), leading to current 
loops like ABCD in Fig 5, for instance. The downward current 
B-C may generally be carried by escaping ionospheric electrons, 
charging point C positive to essentially the same potential 
as point B. A Pedersen current C-D will charge point D 
positive relative to point A. However, the upward current
 

D-A will generally have to be carried by down-flowing "hot"
 
magnetospheric electrons (Section 8), which do not readily
 
flow because of the magnetic mirroring (Section 8). This may
 
lead to a large (AV),, along A-D, entirely due to adiabatict
 
particle motion, that will increase the number flux of preci­
pitating electrons as well as the kinetic energy (Sections
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10). At the same time, this (AV),, will energize
 

outflowing positive ionospheric ions (Section 15). A
 

region of high (AV)lj generally has to be rather wide in
 

latitude, as well as longitude, (Section 5), which requires
 

an additional mechanism for producing auroral fine structures.
 

For this reason, we suggest as one plausible mechanism,
 

a wave-particle interaction by which the downflowing elec­

trons can lose gyroenergy. Any such interaction that is
 

spatially localized will automatically lead to a locally
 

intensified precipitation, like an auroral ray (Section 9).
 

If this interaction occurs at high altitudes, within the
 

Ell-field, it may also cause strongly collimated bursts of
 

precipitation (Section 11). An alternative mechanism would
 

have to involve a corresponding spatial fine structure in
 

the electron source at high altitude.
 

In this model the parallel electric field, that is in reality
 

the "dynamo", provides the increased energy flux in auroral
 

displays, whereas the spatial structure of individual auroral
 

forms may be due to a modulating effect of certain kinds of
 

plasma instabilities. These plasma instabilities may not
 

provide "anomalous resistivity", however. On the contrary,
 

these instabilities may just as well tend to limit the
 

growth of (AV),, by their thermalizing effect on the other­

wise-adiabatic particle motion.
 

The asso'iation of a net field-aligned current with preci­

pitating electrons also suggests that the convection electric
 

field E, is (generally) transverse to auroral arcs (of obser­

vations made by Gurnett and Frank, 1973, and Wescott et al
 

1969) with steep gradients within the precipitation structure
 

(Sections 6 and 7), particularly at altitudes of several
 

thousand kms (of Fig.3 and Eq.(Sa)). The resulting E1 x B­

drift pattern is likely to lead to different kinds of shear
 

flow instabilities, similar to the Kelvin-Helmholtz insta­

bility, that may generate folds and vortex-forms (of Haeren­

del, 1974; Hallinan and Davis, 1970). The frequent alignment
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of thin auroral forms along the El x B-drift direction
 

(of e.g. Hallinan and Davis, 1970) hence might indicate
 

that the auroral ray formation is closely related to such
 

shear flow instabilities.
 

It may be noted that the parallel electric field in this
 

model is due to a magnetic confinement of a negatively
 

charged, hot and collision-free plasma. A transfer of
 

electron gyroenergy into wave-energy obviougly tends to
 

weaken the confinement; and if this energy transfer becomes
 

too strong, the parallel potential gradient will break down.
 

Hence, from this model, in contrast with certain other models
 

of parallel electric fields, we might expect only a small
 

fraction of the total auroral particle energy to be trans­

formed into electromagnetic wave-energy during the accele­

ration process. According to observations, the auroral
 

precipitation is indeed associated with electromagnetic
 

radiation of many different wavelengths, but the radiated
 

power is seemingly small compared to the power carried by
 

the precipitating particles. The most intense radiation
 

discovered so far is the kilometric radiation, which still
 

represents only approximately 1 percent of the total power
 

dissipated by the auroral electrons (Gurnett, 197u).
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Figure Captions 

Figure 1.<a) The schematic electric field lines and equipotentials 

created at a resistant portion of an otherwise good con­

ductor when a current is flowing. The surrounding medium 

is vacuum. 

(b) The formal analogue when the esistor is a subregion of 

low conductivity within a magnetized plasma. 

Figure 2. The electric field and 6urrent distributions at different 

altitudes associated with a given distribution of E1 = Ex 

at altitude Zb where zb is assumed to be in the topside 

ionosphere or low magnetosphere. The magnetic field is 

vertical and downward (antiparallel -to the z-axis). 

Figure 3. The analogue of Figure 2 when E, at zb = 1500 km has a smooth 

distribution and the parallel resistivity (averaged over 

altitude) above zb - h = 1000 km is defined by the bottom 

curve. 

Figure 4. The various plasma regions expected when a large (AV),, is 

being supported by magnetic mirroring of the charge carriers 

ej, which are hot electrons. The high-altitude region I 

is devoid of cold particles and El l 0 there, whereas the 

low-altitude region 3 has mainly cold particles and E 1 = 0. 

Region 2 is a transition region where strong spacecharge 

effects are likely to occur. The E -1fieldaccelerates the 

electrons el, and precipitates some of them, while retarding 

hot protons Pl. At the same time E accelerates ionospheric 

protons p3 and reflects backsoattered and secondary electrons 

e3. The electrons e2 are trapped by the Eii-field and the 

magnetic mirror below. 

Figure 5. A possible configuration of a magnetosphere-ionosphere current 

system (projected onto the dawn-dusk plane). The current 

paths B-C, D-A and A-D' as well as the dotted path are 

parallel to the magnetic field, while the remaining current 

paths are in the transverse direction. The dashed current 

path A-W-A' is within the solar wind. 



Figure 6 A sketch of a case where the downward currents flow imme­

diately outside of the upward current sheet (precipitating
 

electrons). Only the upward current is assumed associated
 

with a small a1 I"The low-altitude Ex is "shorted out"
 

within the precipitation structure, as a result of the
 

enhanced ionization.
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On the basis of field and particle observa ions, it is
 

suggested that a bright auroral display is a part of a
 

magnetosphere-ionosphere current system which is fed by
 

a charge-separation process in the outer magnetosphere
 

(or the soiar wind). The upward magnetic-field-aligned
 

current is flowing out of the display, carried mainly
 

by downflowing electrons from the hot-particle populations
 

in the outer magnetosphere (the ambient cold electrons
 

being depleted at high altitudes). As a result of the
 

magnetic mirroring of these downflowing current carriers,
 

a large potential drop is set up along the magnetic field,
 

increasing both the number flux and the kinetic energy
 

of precipitating electrons. It is found that this simple
 

basic model, when combined with wave-particle interactions,
 

may be able to explain a highly diversified selection of
 

auroral particle observations. It may thus be possible
 

tQ explain both "inverted-V" events and auroral rayi'in
 

terms of a static parallel electric field, and the electric
 

field may be compatible with a strongly variable pitch­

angle distribution of the precipitating electrons including
 

distributions peaked at 900 as well as 0° . This model
 

may also provide a simple explanation of the simultaneous
 

precipitation of electrons and collimated positive ions.
 

Key words auroras, magnetosphere, electric fields, Birkeland
 

currents, magnetic mirroring, anomalous resistivity, double
 


