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Abstract

This report attempts to provide a step-by-step approach to the subject of finite fields.
Rigorous proofs and highly theoretical materials are avoided. The simple concepts of
groups, rings, and fields are discussed and developed more or less heuristically. Examples
are used liberally to illustrate the meaning of definitions and theories. App:ications
include discrete Fourier transforms and Reed-Solomon coding.
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Review of Finite Fields

The ultimate objective of these notes is to show how the
finite field can be used to decode Reed-Solomon codes. Before
developing these techniques, let us consider some of the struc-
tures and properties of finite fields.

1	 Group
A set of elements with a binary operation "-- is called a

group, G, if for any arbitrary elements a, b, and c • , which

belong to G, the following four postulates are satisfied:

P t : a • b E G (closure law)

P2: u • ( b • c• ) = (a • b ) • c (associative law)

P3: There exists an identity element e in G such that

a - e = e - a = a for all a E G (identity element

P4: For a E G, there always exists an inverse element a - t

in G such that aa - t = e (inverse element )

1.1	 A Commutative Group

A group is called a commutative group if the operation also
satisfies the fifth postulate:

Ps : a • b = b • a (commutative law

1.2	 Order of a Group

The order of a group is defined as the number of elements
in the group. If the order is infinite, the group is an infinir^
group. Otherwise, the group is a finis .? cup.

1.3	 t::si-trpie: An infinite Group

Let G = {±O,±I,±2,...} and let the operation be the
arithmetic addition. It is straightforward to verify that G
forms an additive infinite commutative group in which 0 is the
identity element, and the inverse of a is -a.

1.4	 Example: A Finite Group

Let G = {- 1,I } and let the operation be multiplication.
Then, it is straightforward to verity that G is a multiplicative
commutative group of order '_, so called because the operation
is multiplication. (- I) i = I (- I ). and there are only two
elements.

1.5	 Subgroup

A nonempty subset // of a group G is called a subgroup of

G, if H itself forms a group under the same operation as in G.

1.6	 Example: A Subgroup

In Section 1.3, we verified that G = {±0,±1,±2,• • I is a
group under addition. Let // be the nonempty subset consist-
ing of all multiples of 5, i.e., // = {±0,±5,±10,. • ). It is
obvious that // is a subset of G, and H itself furnms a group

under addition. Hence. // is a subgroup of G.

2	 Ring
A nonemmpty set R with two binary operations is called a

ring if in R there are two defined operations, addition (+) and

multiplication (•), such that any arbitrary elements a, b, and c

in R satisfy the following postulates:

P i : a + b E R (closed under addition)

1

k	 J	 I	 l



PZ : a + b = b +a (commutative iaw for addition) 	 Similarly, one can add q or any multiple of'q to the result,
e.g., 1 - S _ -4 = -4 + 6	 -1 (mod 6). By so doing, the
operations addition and multitrlication are warranted to he

P ; :	 (a + b) + c• = a + (b + c) (associative law for addition) 	 "closed."

Pa : For every a E R, there exists an element 0 such that
a + 0 = 0 + a = a (identity element for addition)

PS : There exists an element a such that a + (-a) = 0
(inverse for addition)

If a = b (mod p), c = d (mod p), and m is any integer, then,

( I ) m • a=nr • b (mod p)

(2) a±c=b±d(nuodp)

P6: a • b E R (closed under multiplication) 	 (3) ale = b/d (mod p)

P7: a • (b • c) = (a • b) • c (associative law for multiptica-	 But n • a = n • h (mod p) need not imply a = b (mud p)
Lion)	 unless n and p are relatively prirre, for  may not divide a - b

if p divides n. For example, 3 • 4 = 3 • 9 (mod 15) but 4 ^t 9
(mod 15); however, 3 • 4 = 3 • 9 (mod 5) does imply 4 = 9

Pri : a (h + c• ) = a • h + a • c and (b + c• ) • a = b • a + c••a	 (mod 5) for (3,5) = 1 .
(the two distributive laws)

	

2.1	 Commutative Ring

Note that postulates P t to PS require that R be a commuta-
tive group under addition. If R fwther satisfies the following:

P9 : a • b = b • a (commutative law for multiplication)

it is called a commutative ring. It the commutative ring con-
tains an identity or unity element for multiplication such that
a • e = a • e = a, then the ring is called a commutative ring with

unit y (or identity ) element.

	

2.2	 Example: A Commutative Ring With a
Unity Element

Consider the set R = {0,1,2,3,4,5 ) (i.e., the elements of R
are the integers modulo 6) and the operations addition and
multiplication defined by a + h (mod 6) and a • b (mod 6),
respectively. It is simple to show that the elements of R satisfy
postulates 1 to 9 and that R is a commutative ring with unity
element. The modulo arithmetic (see notes below) ensures that
the results of the operations remain within the group, i.e., it
ensures that the set is closed under addition and multiplication
(P t and Pn).

Notes on Modulo Arithmetic

In "modulo q arithmetic," one can subtract q or a multiple
of' q from the result wihtout changing the result, e.g., for
q=6, 5 • 5 = 25=25-4 . 6= 1 (mod 6).

3	 Field

A field is a commutative ring R with unity element in
which every nonzero element has a multiplicative inverse. In
other words, a commutative ring with unity element is called a
field if the nonzero elements of R form a commutative group
under multiplication.

3.1	 order of a Field
The order of a field is defined as the number of elements in

the field. It the order is infinit the field is an infinite field.
Otherwise, the field is a finite field.

3.2	 Example: A Field
Let F be the set of integers modulo 7, i.e., F=

(0,1 2,3,45,6). Let the addition and multiplication operations
be defined as a +b = c (mod 7) and a • b = c (mod 7),
respectively. It is easy to show that F is a commutative ring
with unity element I. Also, every nonzero element has an
inverse element, as evidenced by

I	 1 = 1 (mod 7)

_' • 4 = I (mod 7)

3 . 5 = I Imod 7)

4 • 2 = 1 (mod 7)

2
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5.3=1(mod7)

6 . 6 = 1 (mod 7)

The nonzero elements (1 2,3,4,5,6) form a multiplicative
group.

3.3	 Corollary

Let / be a set of integers and let p be a prime; then the set

of im gees modulo p (i.e., 0,1 ,2,- - -1) - I ) forms a finite or

Galois field of order p, denoted by Gh'(p). Using G/, '(p) as a
starting point, one can construct extension fields with p"
elements (see Section 5.1 ). One of the fundamental theorems
of field theory states that GF(p) and GF(p"), when,) is prime
and n is an integer, are the only possible finite fields (see Ref.
I , page 50).

example, 2 does not have an inverse element, as evidenced by
multiplying 2 by all elements in R:

2 0=0 (mod 6)

. 1 =_ 2 (mod 6)

2 • 2 = 4 (mod 6)

2 . 3 e0 (mud 6)

2 4=_2 (mod 6)

2 • 5 =4 (mod 6)

?+	 3.5	 Examples: Finite Rings and Fields
3.4	 Counter Example: To Shore That the Set	

From Sections 2.2 and 3.2, one may generalize that the set
of Integers Modulo 6 Is Not a Field of integers modulo any integer forms a finite ring. A set of

The ring R = (0,1 ,2,3,4,5) is not a finite field because some 	 integers modulo a prime number forms a finite field (see also

of the nonzero elements in R do not have inverses. For	 Section 3.3).



4	 Summary of Relationships Between Different Albegraic Structures

Algebraic Structure (Ref 1)	 Properties	 Rcrrtarks

	Semigroup^	 One operation, say, "+ closed;
associative

L 	 IMonuid	 Also with identity element for

ah- tl

Group Also with inverse for "+"

( ommutative ur
Also commutative for  "+"

Abelian Group

IF

Ring With two operations "+"and "•";
a commutative group under

Also closed and associative under
and ' •" are distributive

('ommutative
Also commutative for "•"

Ring

('OnlmutatiVO

Ring With
Unity Hement

Every nonzero element has multi-
plicative inverse, i.e., a- 1 exists

Held and that as -1 = I, where 1 is the
- identity (or unity) element for

multiplication

Iinite Field
The number of elements in the field

or

Galuis Field
is finite

Gh'(pm) = extension field
GF(p)	 = ground field.

Extension where p is prime and rn is an
1 • ield integer.	 It can be shown that

GF(pm ) are the only possible
finite fields (see Ref. 	 I)

-	 _	
_ AG 

4

1

Therefore, a ring is a C0111Mutativ ,_ group
under "+"; a semigroup under "•"; and
"+" and "-" possess the distributive
property"

Therefore, a commutative ring with unity
element is a commutative group under

; a monoid under "-

I'herefure, a field is a commutative group
under addition and its nonzero elements
form a multiplicative group
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5	 Ground Field and Extension Field
In Section 3.5, it was concluded that the set of integers

modulo a prime numher is a finite field, GF'(p). GF(p) is
referred to as the ground field and GF(p") as the extension
field of Gh'(p), where n is an integer and p is a prime.

5.1	 Construction of the Extension Field GF(p"),
Given the Ground Field GF(p)

L.et , n (x) be a monic irreducible polynomial (see notes
below) of degree n over GF(p), i.e.,

p(x) = 1'n +an -1 Y n -I +a;,_2 rn-2 +... +ao r0

where

an- I' as-2' ... a  E GF(p)

A root, say. a, of p (x) exists and call found in the exten-
sion field (F(p ). It can be shown that all elements in Gf'(p')
given by (see note below)

{an-lan-'+an-Zan-2+ an- 
3 

an 3 +...+ao00

an-1•an-z ... aoEGF(9)

satisfy the definition of a field. In general, it p is a prime and n is
ail 	 there always exists a Galois field of order p" ( Ref. 2).

Thus, according to ( I ), the elements of GF (p" ) call
obtained by substituting into the polynomial an _ 

I 

an 
-I +

an- 2 a" 2 + an- 3 a" - 3 + • • - + a o ao various values for an- 1,

an -2 , etc. Since there are p elements in GF(p), there are "p•
different ways to assign a value to an- ► , and similarly to an_ 2,
an _ 3 1 • • •, ao . Thus, there are p" differen t substitutions, yield-
ing the p" elements of GF(p").

Notes: A monic nth degree polynomial is one in which the
coefficient of the highest degree tern, x", is unity.

Ail polynomial is one which cannot be fac-
torited or one which contains no divisors except scalars
and scalar multiples of itself.

A = {"a"I "a" has property P j is a mathematical short-
hand which is interpreted as "A" is the collection of
all elements "a" such that "a" has property P.

5.2	 Example: Construct GF(23)

Rather than establishing the validity of the procedure
described in Section 5.1 , we shall illustrate it by an example.

Let p = 2 and n = 3. It is required to construct Galois field
GF(2 3 ).

Since p(x) = x 3 + x + I is not zero over GF(2) (i.e., for x =
0 and x = I , p(0) and p(I ) are nonzero), p(x) is said to be
irreducible over G112). Thus, there exists an a E GF(2 3 ) such
that p(a) = 01 3 + a + I = 0. Then, the set of elements of
GF(2 3 ) is given by

GF(2 3 ) = {a 2 a2 +a1 a +a ► t lao , a l , a 2 EGF(2)I

Or, expanding this in full, the elements of GF(2 3 ) = GF(8) are

Oa t +Oa+0=0

Oa 2 + Oct + I = I

Oat f la+0=a

Oat+la+I=a+l

lag +Oa+0=a2

1a2+Oa+I=a2+I

la g + la+0 = a2 +a

Ia2+la+I=a2+a+I

5.3	 Theorem: Existence of Primitive Element(s)
and Associated Cyclic Group(s)

There exists a primitive element a E GF(p" ) that generates
the nonzero elements of GF(p" ). The nonzero elements of
GF(p" ) form a cyclic group of p"- I elements.

5.4	 Example

From the exampie given in Section 5.2, we know that
Gh'(2 3 ) is formed by

GF(2 3 ) = {( a 2 a`' +a1 a+ao)lao.a,,a2EGF(2)}

5

a-

is.
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one cyclic subgroup of order p - 1. For example, let the
ground Field be GF'(7) = (0,1,2,3,4,5,6). It can be shown that
7 = 3 is a primitive element, and the cyclic subgroup generated
is

i
where

p(a)=a3 +a t + I =0

This implies a 3 = -a - I = a + 1 . Let us start from an element
a G GF(2 3 ). Then,

a2= a•a = a 2

a3= a2 a- a- 1 =a+I

(If 4= a3a= (a+I)a =a2 +a

a 5 = a4 a = (a2 + a) a= a3 + a 2

=a+I+a2=a`+a+I

orb= a5 a = (or 2+a+I)a

= a 3 +a 2 + a = a + I +a 2 + a = a 2 + 1

a7= a°•a= (a2 +I)a =a3+a

= or +I+a

Thus, the nonzero elements of GF(2 3 ) as obtained in Section
5.2 can be written in the form:

(a, a2 . a 3 , a4 ,a 5 ' of 'a')

or

(a.a2,a+ 1,a 2 +a, a2 +a+ I,a 2 + I, 1)

Hence, since a generates all the nonzero elements of GF(23),
a is a primitive element of GF(2 3 ) and a. a`, a 3 , a4 , a 5 , a` a7
form a cvclicgroup* of 2 3 - 1 elements in GF(23).

5.5	 Example: A Primitive Element Generating
a Cyclic Subgroup

Let GF(p) be the ground field. As mentioned in Section
5.3, there always exists a primitive element which generates

*Since a' = I , a8 = a • 0, 7 = a, 09 = 07 • 0 2 = a 2 , etc. Thus, after the

first 7 elements, no new elements will be generated. In ceding termi-
nology, it every cyclic shift of a code word gives another, the code is a
cyclic code (see Ref. 2, p. 124). By analogy, the group generated by a
is referred to as the cyclic group.

6

Gp_ t = G^ _ (1 ,2,3,4,5,6)
41

This is so because

3 t =3

3 2 = 9=2 (mod 7)=2

33=3.32=3.2=6

34=3.6=4

3 5 = 5

3 6 = 1

G = G = (3,3 2 ,3 3 ,3 4 ,3 5 ,3 6 = I ), where 3 is a primitive
element in Gh'(7). Since 3 generates the cyclic subgroup of
order 6 of G/-'(7), it is also called the generator of G6.

Note: To evalute .5 5 , make use of the fact that 5 4 = 2 is
known.

Hence, 5 5 = 5 • 5 4 = 5 • 2 = 10 = 3 in modulo 7
arithmetic.

5.6	 Additional Examples: To Illustrate the Slight
Difference Between a Primitive Element
and a Generator of a Subgroup

In GF (7), 4 is a generator of a subgroup of order 3, but is
riot a primitive element, as evidenced by the fact that

4 =4

42 =

4 3 = I

Once this point is reached. further multiplication of 4 bN
itself will not generate any new elements since 44 =4 3 • 4=-4
(mod 7), 4 5 = 4 3 • 42 = 2 (mud 7), etc. Thus, 4 generates the
cyclic subgroup of order 3, G 3 = {4,2,1 }.

+	 i	
I

Z	 ^	 ^:..^	 i 	 .,I.....	 ..ice"w '^.	 j 	
^.__....	 —__	 _.^-^.e._.•



Ilowever, 5 is a primitive element as evidenced by the fact 	 7	 Theorem on Cyclic Subgroups of a
`hat:	 Given Field GF(p)

5 =5	 The following theorem enables one to obtain all of the
cyclic subgroups of a given field GF(p). It states:

5 2 = 4
Let G/'(p) he a finite field. [I'd divides p - I, then GF(p)

has an element y of order d. This eleme ► t y is a generator of
cyclic subgroup Gd C GF'(p), where Gd = (y, ry e , ..., yJ = I ).
(Note that tile symbol C means Gd is a suhs2t otGF'(p), or Gd
is contained in GF(p)). Stated differently, the uieorem says
that the order of every element must divide p - I , where p is
the order of the group.

53 = 6

5 4 = 2

5 5 = 3

56 = 1

To recap, a generator in GF(p) is one which generates o
c.rclic subgroup of GF(p). 77te generator whose evclic group is
of order p - / is called a primitive element of GF(p). An
additional example is Oven in Section 7.3.

5.7	 The Number of Primitive Elements in GF(p)

This section brietly shows how the number of primitive
elements in a given field (;FU)) is calculated (see Ref. 3, pp. 23
and 47). It turns out that the number of primitive elements of
GF(p) is given by 0(p - I ), where 0(in) is called Euler's d-tunc-
tion and is defined as the number of positive integers less than
or equal to rn that are relative prime to m.

For example, con rider GF(7) when p = 7 and p - I = 6.
here, ¢(6) is 2 since there are only two numbers which are
relative prime to 6, namely, I and 5. It has been demonstrated
(Sections 5.5 and 5.6) heuristically that 3 and 5 are only two
primitive elements in GF(7).

	

7.1	 Example: Applicat`on of the Theorem Given
in Section 7

Consider GM) = (03,2,3,4,5,6). Since' p= 7, p- I = 6.
Consider d = 3: since (p - I )/d = 6/3 = 2, d uivides p - I , and
one can conclude from the above theorem that there exists a
subgroup G 3 of GF(7), i.e., G 3 is a subset of the elements of
GF(7 ).

	

7.2	 Plausible "Proof' of the Theorem Given in
Section 7

Consider GF(p) which has a primitive element y such that

yP-1 = 1	 (_')

Also, let d divide p - 1 such that

P-	
= M	 or	 p - I = din	 (3)

d

Substituting Eq. (3) into Eq. (2), we have

.yP- 1 = ydm = I	 or	 (ym )d = I

6	 Definition of the Order of an Element
Let y be a nonzero element in GF(p), and let d be the

smallest integer such that yd = 1. The order of y 1s then d.

6.1	 Example: Primitive Element and Order of
an Element

It was shown in Section 5.5 that 5 is an element oi'GF(7)
of )rder 6 for 5 6 = I. Also, since the cyclic group of 5 is of
order 7- 1 = 6, 5 is a priinifive element of GF(7). Further,
since 2 3 = 8 = 1 (mod 7), 2 is an element of order 3.

Thus, there always exists an element y"' of order d. Also,
the element ym will generate the cyclic subgroup {( y1P1)1

(_/,, (7") 3 , • • ( y". )d I of order d (since there are d
elements). hence, the theorem in Section 7 is "proved."

To further illustrate the use of' the theorem, consider the
nonzero elements of GF(7) denoted by GP-1 :

G 6 = ( 1,2,3,4,5,6)

= (3,3 2 ,3 3 ,3 4 ,3 5 ,3 6 = I )

7



For d = 3, since p- I /d= 6/3 = 2, y r' = y 3 2=(y2)3=1,
one can conclude that there exists a primitive element y2 = 32
of order 3 that generates the elements ((3 2 ) 1 , (32 )2 , (32 )3 =

11. which constitute the subgroup G 3 . Thus,

G',=G;=((321'.(32)2,(32)3= I)

(2,2 2 ,2 3 = I ) since 3 2 = 2

Ilere, y = 2 is called the element of the cyclic subgroup G3,

and since 10 _ -1-i  = I , the order of y is 3.

7.3	 Distinction Between a Primitive Element a
and a Generator y

Let a denolC the prunrtrve element that generates all of the

noniero elements (al, a 2 ,. . •, an- t ) of Ghl p). The order of a

is 1) 1. I urther, let y denote the generator of a subgroup Gd

of' (;F(/)). If d divides p - 1, it was shown in Section 7.2 that

there exists an element y such that y'' = 1, and such that y will

generate some of the elements of GF(p) but all of the elements

of G r , i.e., Ga = (y. y `' ...., y° ), where (; J is a subgroup of

GF(p). Here• d is the order of the element y, and also the

order of the subgroup G..

	

7.4	 Different Terminology for y
Flement y has many names. It is referred to as:

( I ) The -enerator of(; since Gd = (y y2	 y^)

(2) The "dth root of unity," since y d = 1 and, hence, y =

(3) An element of order d, since d is the smallest positive
integer such that y` , = I.

	

7.5	 Different Terminology for d

Integer d has many names. It is referred to as:

(1) The order of the subgroup Gd , since G  has d elements

(2) The order of' the element y, since y d = 1 .

(3) The transform length, in the context of the studv of
-DIT over finite fields" (see Section 8).

8
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Application of Finite Fields to Discrete
Fourier Transforms

Finite fields have applications in many areas of modern
studies. Among them is the area of Fourier transforms (Refs.
4-11). We shall now describe how finite fields are applied to
the evaluation of Fourier transforms.

8	 The Discrete Fourier Transform Over
a Finite Field GF(p)

The discrete Fourier transform (DFT) of an integer
sequence a o , a i , a n , — ad- i is defined with respect to Gd,
where G  is a subgroup of GF(p) (Refs. 4 and 5). The order d
of the subgroup G  determines the number of members in
sequence an and is referred to as the transform length. Thus,
the DFT of sequence an over G  of GF' (1)) is defined as

d-i

A k = E an y" k 0 <k <d- 1	 (4)

nn =-+0

where

ao , a i , a, , - - •, ad- i is the given integer sequence whose
DFT is desired, and an C GF(p).

y is an element of GF(p) and is the generator of G  such
that G. = ( y I, y Z ...., yd = I ).

d is the order of the element y and also the order of the
cyclic subgroup G  generated by y, such that y d = I ,
and there are d elements in Gd . Ilere, d is referred to
as the transform length and determines the number of
members in sequence an and in its transformed
sequence Ak.

Ao, A i , - •	 A d- i is the transform of ao , a l ,	 aa_

and A k C Gh'(p ).

It can be shown ( Ref. 7 ) that the inverse transform is given
by

d-I

	

an = (d) i F A t y nk ,for0<n <c!- 1	 (5)
k-0

where

A o , A l l • • •, Ad- i is the given transform, the inverse
transform of which is desired.

(d) is the residue ofd modulo p, for d < p, (d) = d.

(d)- i is the inverse element ofd.

If d is a power of two, it is well known (Refs. 6 and 7) that
the fast Fourier transform (FFT) algorithm can be utilized to
realize the needed transforms.

8.1	 Choice of y and d

Considering how the transform and the inverse transform
are computed (see Fqs. 4 and 5), it is advantageous to choose
y = 2 or power of 2 and the order of 2 is a power of 2 because
multiplication in these cases means "shifting" in actual logic
implementation, and the most efficient FFT algorithm can be
used to yield a fast transform.

Also, it is advantageous to choose d to be a power of 2.
This is because fast Fourier transform techniques car. then be

9
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where

d-I
Ak =	 an ynk 0 < k <d I

n 0

yd12 = 22n

I	 ^.

applied. The reader is referred to Ref. 6 for further elucidation
on this point.

	

8.2	 Finite Field With p Equal to a Fermat Prime

A Fermat prime, /•'n , is a prime number defined by

F = 2 2"
22n 

+ 1, for n = 1,2,3,4
n

We shall consider GF(p), where p = Fn . This is because the
values of y and d resulting from GF(Fn ) will have the desired
properties discussed in Section 8 (sec Section 8.3 ).

	

8.3	 To Show That GF(Fn ) Has an Element y =2
and That the Order of y Is a Power of 2

Let y E GF(F,, ) and d be a power of 2. There exists a

theorem (see Ref. 7) which states that if

-1d12= - I (mod p)	 (6)

then y is an element of order d.

Making use of this theorem, choosin, p = Fn , since

n
Fn = 22 + 1	 (7)

2 2n = - 1 (mod Fn )	 (8)

Comparing Eqs. 16) and (8), we have

8.4	 Example: A Finite Field With y=2, and d
Being a Power of 2

Consider n = 2, such that f• 'n = 2 22 + I = 17. The theorem

predicts that there exists an element y = 2 of order _' n ' t =

22+1 = 8, that this is so is evident by

yd = 2_ 1i = 256

Since 256/17 = 15 with a residue of I,

256 = I (mod 17)

that is,

-td = 2" = I (mud 17)

Here, y (= 2) has order d (= 8) which is a power of 2. Also,

Gd = G 3 = G 8 = ( 2 1 , 2 2 , 2 3 ,	 ,27,28 =1)
2

d.5	 Example: To Obtain the DFT Over GF(5) of
the Sequence (a 0 =1, a, =1, a 2 =3, a3=1)

Since 2 2" + I = 5 fin n = 1 . 5 is a Fermat prime. We expect

y = 2 to be a ,enerator, and that it will have order d = '_ 1" t =

2t` = 4. Also. -Y generates a cyclic subgroup Gd = G4 C

GF(5 ).

We shall proceed to obtain the DFT over G4 , which is a

cyclic subgroup of (J'(5). Repeating Eq. (4),

y=2

and

d =2n+t

Hence, GF(F,, ) will have an element equal to 2, whose order
is d = 2 n+ I . Also, y will generate a cyclic subgroup Gd of
GRP'n ), where

nil
Gd = G2n+t =(21,22, .. 12	 = 1)

for d = 4, y = 2, A k = a0 + a1 2 k +a 2 j2k +a ► 23k.

Given ao = I . a t = 1 , a 2 = 3, a  = L the transform of this

integer sequence is

A 0 = I+I+3+1 = 6= 1 (mod 5)

A t = 1 + 1 2 +3 . 2 2 + 1 • 2 3 = 3 (mod 5)

A 2 = I +1 2 2 +3 . 2 4 +I • _2 "= 2 (mod 5)

A3=I+I.,3+3.,e+I .,y_3 (mod 5)

10
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4
For the above computation, we make use of the fact that yd =	 a1 = -(1 + 3 • 2-t + 2 • 2-2 + 3 • 2- 3)
2 4 = I to simplify the arithmetic.

=_(1+3.23+2.22+3.,1)=1

8.6	 Example: To Obtain the DFT -1 (Inverse	 a =z - 0 +3-2 - 2 + 2 • 2- 2.2 + 3 • 2- 3 . 2 )

Transform) of the Sequence (A 0=1, A 1=3,
A 2=2, A 3=3)

It is obvious that if the modulo arithmetic is performed
correctly, the inverse transform should he a o = 1, a t = 1, a2 =	 a3 = -(l 	 3 • 2 -3 +2 • 2-2.3 +3 , 2 - 3 . 3)
3,a 3 = I.

Before substituting in Eq. (5) which is	 = -( I + 3 • 2 + 2 • 2 2 + 3 • 2 3 ) = I

d - I	 Hence,

an= (d) I u 

Aky-nk for 0 <n<d- I
k=o	 (ao,aIIa2'a3) _ (1,1,3,1)

it is necessary to evaluate (d)- 1 , which is the inverse of d. For	 Note: For the above computation, again, we use the fact that
y = 2, d = 22 = 4,	 2-n = 2 -n • 24 This is because -td = 2 4 = I (nwd 5).

W- = 2 2	 9	 Convolution Over GF(Fn)
Since	 Leta a , • •	 a and h h •	 h he two se	 fo• I	 d ^	 o• I • 	 d	 q uences o

integers (where d will later he referred to as the transform

(d) • (d) - ' = (2 2 ) (2 -2 ) = I	 length). The discrete convolution is defined as

and

(d)-1 = 2 -2 = 2 -2 2 4=-4—= -]  (mod 5)

then

(d)-1 = - I (mod 5)

Note: Since yd = 1, 24 = 1. Also, 4 = -1 in modulo 5
arithmetic.

Thus,

an =-1(A0+A1.2-n+A2 • 2-2n+A3 .2-3n)

=-1(1+3.2-n+2.2-2n+3.2-3n),

for n = 0, 1,2,3

or

ao = -(1 +3+2+3)=-4= I

d-1

r P = E a,,h(P-n )• p-0. I,2,... d- 1	 (9)
n- o

where (p - t1) denotes the residue of p - ti modulo d.

9.1	 Example: Direct Evaluation of the
Convolution

Let do = I.a I = I,a 2 = 0.a 3 = 0 and h o = l, h1=1.1)2=
0,b3=0.

Compute the discrete convolution,

3-i

C  - E an 1) (p-n ), where d= 4
o

or

c  =a0b(p-O) +a l b(P- I ) +a 2 b (P-2) +a3b(P-3)•	 (10)

for p = 0, 1, 2, 3

11
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d-I

Bk =	 hn7
nk

n -0

A=	
n
2d

i
1 M

or

CO =ao b (0) +a l b(- I ) +a z b(-z) +a3b(-3)

j	 =ab +ab 3 +a z b z +a 3 bo o	 1 1

(Note that b -PI = b_,,. d: hence, b_ 3 = b I 1

=1.1+I.0+0.0+0.1=1

c• 1 =aob(I)+albo+azb(-I)+a3b(-z)

=ao b l +a l h o +a z b 3 +a3bz

=1.1+I.1+0.0+0.0=2

C 2 =ao b z +a 1 b (1) +a z b. +a3b( -1)

=a0hz + a I h I +a z bo +a3b3

I •0+I • I+0 • I+0.0-1

C ; =ao h 3 +a 1 b z +a z b 1 +a3ho

=I.0+I.0+0•I+0.1=0

Hence,

ccl = I,c l = _2,c, = 1,c 3 =0

Lei

Ck 
=Ak • Bk

It can he shown that the discrete convolution over CF(f;^) can
be obtained by taking the inverse transform of Ck , i.e.,

d-I

c•P = (d) 
1	 kn

Ck y	 = anb(P -n)
k-0

9.3	 Determination of the Dynamic Range

In order to avoid overflow (i.e., to avoid cP assuming
integer values outside of that allowed by GF( Fry)), it is
necessary to keep

c•P	 l

To achieve this, limits have to be imposed on sequences a n and
b . Sincen

Fn - I
IcPI	 2

d
[

-1	 d-1	 F^^ I
an l)(P-n) I 	 la"l	 ib(P -n)I

n=0	 n-0

r.. 1

9.2	 Evaluation of the Convolution by the Discrete	 Let

Frontier Transform Method

The discrete convolution of sequences a n and h„ can be
computed by DFT over CF(F,1. To do this, we compute the
discrete Fourier transform over GF(F ,) of sequences a" and	 Thus,

h , , . respeciively, i.e..

Ian l<A,Ib„ I<—B,forn= 0,1,- •• , d - 1

d- I	 F' - I

d-I IE u
” b(P-n) I<d • A • B-, " I

A k = E u,,ynk	 n=0

n--0

If A = B, then
and

'	 T---



where Ix  denotes the greatest integer less the x, and A is
called the dynamic range.

Therefore, if

	

-A<a
n ' bn —<A,forn = 0,1,2,	 d- I

then

F - I	 F - 1

- 2	 S co	
n2

9.4	 Example: Computation of Convolution of
DFf and Determination of the
Dynamic Range

Let ao = 1, a 1 = 1, a 2 = 0, a 3 = 0 and b o = 1, b I = 1, b 2 =
0, b 3 = 0. Compute the discrete convolution by using DFT
over GF(2 2 + 1).

Since F I = 221 + 1 = 5, the dynamic range is

The DFT over GF(5) of an are

4-1

A  = 1: an2nk 
=ao 

+a12k + a 2 2 2 k +a323k

n=0

where 2 is an element of order 4 in GF(5). It follows that A  -
I + I . 2k and A 0 = I + 1 . 20 = 2, A I = I + 2 = 3, A 2 = I -
1 =0,A 3 = I +3=4.

Similarly, the DFT of sequence b n is

Bo=2,B1=3,B2=0,B3=4

But

Ck =A k  • Bk

Therefore, the DFT of the convolution modulo 5 is

Co = 4, C 1 = 4, C2 = 0, C3 = 1

The inverse transform of Ck is

I

i	 9

Fn - 1	 ^4
A=	

—: ^2 = J
4 -1

4-1

Ck = (4)- 1 • E Ck 2- Pik

PI-0

_ _I (CO + C1 2- k + C2 2-2k  + C 3 2- 3k 1

=-(4+4.2-k+2-3k) for k=0,1,2,3

Note: Although d = 4, we use an "effective d = 2." This is
because the two given sequences an and hn possess
zeros in the last two terms. It is obvious. by stadying
Eq. (10), for example, that zeros in a n and bn will
reduce the number of terms. In general, if' the number
of nonzero elements in an and bn are na and n b , the

or
"effective d" is equal to the larger of na and nr,.

Hence,

- 1 <— a n , bn < 1, for n = 0,!,2,3	 (1 1)

and

5- 1	 5- I_
2 

5c P < 2
	

(12)

The given sequences an and bn are seen to satisfy the

constraint (I I).

Co = - (4+4+ 1) = 1

c 1 = -(4+4. 2 -1 +2-3 ) = -(I +2)=2

c2 =-(4+4 • 2 -2 +2-6 ) = -(4 1 +2 2 )= 1

c 3 =-(4+4 2-3 +2- 9)= -(4+4 . 2+23)

=-(4+3+3)=0

It is seen that the values of c n 's remain within the dynamic
range specified by (12).

1j	 11
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Note:	 In the above computation, the usual tricks in finite 	 Solution: Consider the specific example a = 3, b = 4, I•n =
field arithmetic have been used, namely, 	 k'r = 5.

(1) Adding to or subtracting from the result by
"multiples of 5 = 0 (mod 5)."

(2) Multiplying the result by 7a = 2° = l (mod 5)
to get an appropriate finite field element.

This is done "to bring the result of the compu-
tation to within the field."

10	 Arithmetic Operations Needed to
Compute DFT Over GF(Fn )

The arithmetic operations needed are:

(I) Negation modulo F"

(2) Integer addition modulo Fn

(3) Multiplication modulo Fn

(4) Multiplication by power of 2

We slial) illustrate the algorithms by examples

Consider GF(F,) = GF(2 2 + 1); a 3-bit word length is
required to represent all the 2 2 + I elements. In general, for
(;F(F;,) = GF(-' 2" + 1), 2" + I bits are required to represent
all of the 2 2 " + I elements. (Note that if there are 22"
elements, 2" bits are required, and there is no unused state.
Since there are 2 2 " + 1 elements, the extra element calls for
one additional bit. with 22"+1 - 2 2 " - 1 unused states.)

10.1	 Negation Modulo F"

The problem can be stated as follows: Given an element
"a" in GF(F.), what is the procedure (or algorithm) for
computing "-a"?

Solution: Consider the specific example a = 2 such that 2E:
GF (5). -2 can be computed by subtracting 2 from 5, i.e., -2
=5-2=3.

Hence, the algorithm is: Given a E GF(F,,), to obtain -a,
use the property that -a = F',, - a.

10.2	 Addition Modulo F"

The problem can he stated as follows: Given elements a.b C
(;IjF,,), what is the algorithm for computing (a + b) modulo
P, n ')

In modulo arithmetic 3 + 4 = 7 2 (mod 5). The algo„thm
may be illustrated as follows:

2 3	 22	 21	 ,o

a = 3 0	 1	 1

+b = 4 1	 0	 0

c=7 1	 I	 I

-	 I

c = 7=2 (mod 5) 0	 1	 0

Thus, the algorithm is: if the 2 2  t bit is a 1 (and the 2 1  t
bit and 2 0 th hit are both not equal to zero), discard the I in
the 2 2 -bit position, and subtract 1 from the 2 0 -bit position.
The above parenthesized condition helps to exclude the case
of 100 when a modulo operation is not needed.

Justification Jur the algorithm: When the number is 5 or

more, "discarding the 1 in the 2 2 -bit position and subtracting
I from the 2 0 -bit position" is equivalent to subtracting 2 2 = 4
and then 2 0 = 1 from the result, i.e.. subtracting a total of 5.

Generalized algorithm: To perform modulo Fn addition, let
in = n + 1. If the 2 1"-bit position is a 1 (and at least one other
bit position i^ a 1), discard the 1 in the 2'"-bit position, and
subtract I from the 20 -bit position.

10.3	 Multiplication Modulo Fn

Tire problem can be stated as follows: Given a,b G GF(F,,),
what is the algorithm for computing a • b modulo /

'n

Solution: As before, perform the binary multiplication and do
a modulo Fn arithmetic. For F" = 5, discard the I in the
2 2 -bit position and subtract 1 from the least significant
position, e.g.,

22	 20

a = 3	 0	 I	 1

b=2	 0	 1	 0

a 	 0	 1	 1	 0

-1

a • b (mod 5)=1	 0	 0	 1

14



10.4	 Multiplication by Powers of 2 in Modulo
F„ Arithmetic

The pruhlem can he stated as follows: Given that "a'•
belongs to Gl (/;^) and any integer ►►t, what is the algorithm
for computing  • " 1 modulo /••n?

Solution: Let a = 3, ►► t = '-, it = I

l4	 13	 12	 7 t	 20

a = 3:	 0	 0	 0	 1	 1

0	 I	 1	 0	 0
a , 2rn 

is

I	 I	 equivalent to
shifting left by

-	 I	 I	 m positions

The explanation is as follows: Since

2 2 = -1 (mud 5)

2 3 = -2 (nlod 5)

discarding the I in the ''- th position and minus I is equivalent
to taking a nwdulo 5. Similarly, discarding a 1 in the 23th
position and minus 2 is also equJValcnt to taking a modulo 5.

11	 Extension of the Dynamic Range of
c„' Using the Chinese
Remainder Theorem

Section 9-3 shows that to avoid "overflow," i.e., to avoid
Ic •,, I's exceeding (F, - 1)12, Ia n I's and I b n I's are kept below the
value

p - 
1

A

Conversely, if la„ I's and I h„ I's exceed A, the I cn I's will exceed
its dynamic range (F - 1 )j-'. In order to preserve precision, it

is often necessary to extend the dynamic range for the c•n's.

The method fut increasing the dynamic range for the c•n's

( Ref". 8) is as follows: Obtain the convolutions of the u n 's and
h„'s twice once over the finite field G/ •'(/• ') and once over
the finite field GF(Fm ), where ►n --f- ►t. It can be shown that

•c, is the convolution of two sequences an and hn.

the convolution of the two sequences (CO ),l  , (Cl ) t , • • (Ca)t
and (('0)21 ((' t ) 2	, (Ca )2 over the ring R(F,, • 1•n,) dc-
noted by Co , C.,	 Cd can he computed using the ('hinese
Remainder Theorem (see Ref. 3, p. 31). The dynamic range is
now from "zero to F. ' 1• ,,, - I.-

11.1	 The Chinese Remainder Theorem

This theorem provides an efficient method for solving a
certain kind of problem, e.g.. lind x given that the remainders
are I and 2 when x is divided by 3 and 4. or find all integers
that have remainders I or _' when they atc divided by each of
3, 4, and 5 (see Ref. 3, p. 31).

The theorem states: Let pt, p 2' p3' - - •, pk be integers
which are relative prime in pairs (i.e.. taking any two numbers
in the list, say, pi and p t., there is no common factor between

Pi and p. other than 1 ,e.g., p, = 8, p. = 9 are relative prime,
although 8 and 9 themselves are not prime numbers.) Also, let

P = p t p 2 p 3 ...
 Pk =P1 nr

t = p - m 2 =...=Pk 
Mk-

	

.Y — c 	 (mud pJ)

	

X = C 2 	(nlod 1) 2 )

	

X = Ck	 (mod p  )

the solution for x, which lies in the range

0<_x<1)1p2...pk

is

k

,	 ,	 t

c= t

where ?it , -  t satisfies the relation In."i - t = 1 modulo p, for j =
1.2....	 k.

11.2	 Example: Application of the Chinese
Remainder Theorem

Given x = 2 modulo 3 and x - 1 modulo 5, find x -- a
modulo (3 • 5).

15
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Solution: By the Chinese Remainder Theorem.

.\ _	 l'ilrrillri - 1 = ( I rlI 1 IN i	
1 

+ c' 2 M 2 	
2- I

i	 1

= 2rn m	 1 + In ' tn - 1
I

For rrr t = 5 and /r t = 3. since

In 
I 
/n 

I- 
I	

I (Hood /r I)

we have

C0 = ao h 0 +a I h 1 =8.foic/=2,p=0

(note h i = h i , see Section `l.1 1

c • 1 = a0 h i +a I b o = 0. for c:=2./)=1

It is seen that 0 < co* r t < 14, i.e., tL-e dynamic range of
the c'n 's is front 0 to 14. To obtain file convolution using UFT
over GF(3) only or using UFT over CFO) only would not he
good enough since the required dynamic Lange exceeds that
pnivided by GFO, ) and G/' -( S).

w r

In order to get the required dynamic range, one should use
so that	

UFT over a Galois field of order 15; but IS is not prime and
no such Galois field exists. To overcome this problem. we

vni-1= I (mud 3 ► obtain two convolutions, one over GFO) and another one
over W-15 ► , and then use the Chinese Remainder Theorem to
compute ( •o and c l . The direct sum of Galois fields (;FO) and

we get	 GF'(5) is isomorphic to the ring R( 15).*

III I -1 = 5 -1 = 2 (nod 3)

using the Fermat theorem in Section 1 1 .4. Similarly,

III-2 1 = 3 -1 = 2 (mud 5

f
I left cc.

r = 2 . 5 . 2+I •3 . 1=26=II Onod3.5)

It can be shown that the convolutions over GF(3) are:

( c • 0 ►3 = 2 (mud 3)

( c • 1 I j - 0 (mod 3)

and the convolutions over GF(5) are:

( c •o )s - 3 (mud 5 )

(c t ) s = 0 (mod 5)

	

11.3	 Example: To Illustrate How the Dynamic
Range of the Convolution of Two
Sequences Can Ire Extended

Problem: Let a0 = 4, a t = 0, ho = 2, h t = 0 he two given

sequences. Compute the convolutions of a and h using DFT

	

ovei	 and (;/•'(S).

Solution: Let us first compute the convolutions c o . CI
directly without using UFT. From

,I- 
`

I

	

c^n	 E arrh(n-rr)
PI-0

Using the Chinese Remainder Theorem,

co =2 . 5 . 2+3 . 3 . 2=38=8(mod 15)

C I =0 • 5 • 2+0 • 3 • '_=0(mod I5)

Since the last step uses ..modulo 15" arithmetic, and 15 is

not prime. we say that we have performed a convolution using
DFT defined over the ring R(15 ).

'This follows from a theorem liven in Ref. 12 which states: Let yi be
anc prune and y = q i • 11 2 - yr . I urIhcr,sup pose Jly i - I for alli.
llien.a c/-point transform on ring Mill and its inverse transforms csist.
nie inverse of the above is also true.

16
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11.4	 Fermat's Theorem	 au" = I (nu,d p)

For every integer a and a prime p, if p is relatively prime to

a.thenal' - t - I (modp)oia- t -ap-2 (modp ► .
But

f a G GF(p), it can he shown that a- t = a  2 . Thus, given	 _ t _

5 in (;F(3), 5 - 1 = 5 3 2 = 5 = 2 (nod 3).	
as	 = I (mud ^^ ►

Proof: I f a E GF(p )•	 I lence,

ap -I - 1 (nwd p)	 a - -t _ap - (in odp)
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Application of Finite Fields to Reed-Solomon
Coding

1

Another important area of application of finite fields is
coding. Since Reed-Solunr.m (RS) codes are of increasing
importance in modern deep ,pare telecommunication, this
section is devoted to the study of these rocks, employing

finite fields and fas! Fourier transforms.

12	 Application of Fermat Theoretic
Transform to the Decoding of
Reed-Solomon Code

12.1	 Reed-Solomon Code

We shall sunrtnaiii.e some of the basic ideas pertaining to
the Reed-Solomon code (Ref. 9).

1 I ) The RS code is a block code (as opposed to being a
convolutional code).

(2) An RS codewurd % ill consist of / information or mes-
sage symbols, together with P parity or check symbols.
The word len gth is N = l + P.

(3) The symbols in an RS codewurd are usually not binary,
i.e.. each symbol is represented by inure tnan one hit.
In fart, a favorite choice is to use 8-bit s;mnuts. This is
related to the fact that must computers have word
length of 8 hits or multiples of 8 bits.

(4) A multi-bit symbol is the information unit in an RS
code. Each symbol may be corrupted at a single hit-
position or by a burst of bit-errors affecting man} hit
positions. In the latter case if the corrupted symbol is
corrected, the RS code is seen to be correcting a burst
of hit-errors. This suggests that the RS code has the
"huilt-in potential" of correcting burst errors.

18

0 ) In order to be able to correct "t" symbol errors, the
minimum distance of the codewords "D" is given by
D = 2t + I . Fur multi-bit symbol sequences. the ­dis-
tance" between two symbol sequences equals the nutn-
her of symbol positions at which the two sequences
differ fur example, the distance between the sequences
2,4,3,4 and 2,0,3,4 is one. Note that each symbol is
denoted by a decimal representation.

If the minurnum distance of an RS code is D, and the
word length is N. then, the number of message symbols
/ in a word is given by

/=N-(D- I)

Combining with the formula given in paragraph (2),
above. P = D - 1.

An example of the structure of a code word in a
practical RS code is as follows:

_'23	 255

_	 Jt Y

223 mcssaye s^ mbols 	 32 parity
symbols

Fach symbol consists of 8 hits. Thus, each codewurd
has 255 symbols, or 255 - 8 hits, consisting of 223 - 8
message hits and 32 - 8 check hits. This code is capable
of correcting 16 symbol errors.

i
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12.2	 Relationships Between RS Decoding and
Finite Field GF(Fn )

It will he seen later that one of the steps in the decoding of

the RS code is "the computation of the syndromes," and this

step is identical to obtaining the DFT ol'a sequence defined in
Section S.

Also, this step is very time-consuming, and RS decoding
will be great ly accelerated if	 rthe discrete Fouier transform
techniques applied io obtain the DFT of a sequence (as
described in Sections 8.1 to 8A) is applied to "the cumputa-
tion of the syndromes." Section 8.2 concludes that in order
to apply discrete Fourier transform techniques, the elements
of , the sequence must belong to 6/`W,,) when I-',, = 2 2 " + I
such that

• There exists a generator element y = 2.

Which,which, by ( I ), is equal to i2" + I . Therefore, for f' =
j2" + I , the number ol' hits/symbol is 2" + I (see also
Section 10 ► .

12.3	 To Construct an RS Code of Wordlength
Equal to S Symbols, and Capable of
Correcting 2 Symbol errors

It follows Irum 12.2(2) that A = d = 8 = ?"' I . Hence, we
shall choose n = 2. i.e. Gh'(F'2 ) = G/•1 ` + I ) = Gh'(17).
GF0 7) will have a generator y = 2 such that y d = IS = I
modulo 17.

It follows Irom 1 _'.?(I ) that the symbols in the RS co -le
will he the elements of (J'07). Also, the number of bits/
symbol will he. Irum 12 2(3) 2n + I or S.

In order to correct two errors, the minimum distance of the
• The order of the element d (given by yd = I ) is a power	 code word is D = 'r + I = 2 • 2 + I = S. The number of

of'_.	 message symbols/codeword is / = N - (D - I ) = 8 - (S - I)
4. The number of check sym b ols is P = N - l = 8 - 4 = 4.

It follows from the above discussion that certain " param-
eters" of the RS code must he related to the "parameters" of
GF(F^^) it' the DFT techniques are to be applicable. The
required relationships are summarized as billows:

1 I ) The symbols used in the RS code must be elements of
GF(FI, ), where l i^ = 2-^^ + 1.

(2) It is convenient to choose the codeword length N to be
equal to the order of the element y = -', i.e., choose N =
d = '"' 1 . This is because GF( ,,2" + I ) will always have
a generator element y equal to 2 (set.- Section 8.2).
Also, since i2 " + I = F .

it

22" _ - I (mud /•n )

To construct an RS code with minimum distance D. we
first define a genci for polynomial as follows:

D-1	 S-1

g(Z) = ri (Z- 2i ) = rj (Z- 2)
i= 1	 i=1

(Z- 2)(7. - 2 2 )(Z 2 3 )(Z- 24)

=_ (Z- 2)(Z- 4)(Z- 8)(Z+ I I

Z 4 - I3Z3+8Z2-8Z-64

7_ 4 +4Z 3 +8Z 2 - 8Z+4 (mod 17)

Assume the message symbols to he 1,2,3,2, E (;/-'( 17 Let
us form J(Z) = Z 7 + Y 6 + 3Z 5 + , 4 of degree .1' - I = 7,
using the message symbols as coefficients. In order to generate

a "code word in a polynomial QZ)," which is a multiple of
g(Z), we proceed as follows:

(2 2 )2 - I (mod F'^^)

,2n+1 
= 1 (ntud F")

and, finally.

d=2"*1

Note that in DFT terminology, d is also the transform
length (see Section 7.3).

(3) The number of hits needed to represent a symbol is

determined by the nr,mber of different symbols used,

J'(Z)=(11Z)g(Z)+R(Z)

where

41(7.) = quotient p0l) nolilial

g(Z) = generator polynomial

19
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4

R(Z) = residue polynomial

C(Z) =q(7.)g(Z)= f(Z)- R(7. )

R(Z) is obtained by long division of the form:

q(Z)

g(1) I f(1)

R(Z)

C(Z)=(I(Z)g(Z)

Thus,

Z3-,Z'+3Z-3

Z4+4Z3+8Z2-8Z+4 1 Z7+2Z6+3Z`+,,Z4

Z7 + 4Z6 + 8Z' - 8Z4 + 4Z3

-2Z6 -5Z'+: r.74 - 4Z3

- 2Z6 - 8Z 5 - 16Z4 + 16Z3 - 8Z2

3Z' + 9Z4 - 3Z 3 + 8Z2

3Z'+12Z4+24Z3-24Z2+12Z

- 3Z4 - I OZ 3 - 2Z 2 - I ]Z

- 3Z4 - 121 3 - 24Z 2 + 24Z - ; 2

R(Z)=+ 2Z 3 + 5T. 2 - 2Z+ 12

The encoded codeword is

C(Z) = q(Z) - g(Z) = f(Z) - R(Z)

= Z 7 + 2Z6 + 3Z' + 2Z4 - ZZ3 - 5Z 2 + 2Z + 5

The codewords have the properties

O -y '. ) = q(Y') g0t )

C(2') = q(2')g(2')=q(2`)0=0, for i= 1,2,3,4

This results iron , the structure of the generating polynomial
that

g(Z)=(1_ 2' )(Z - 2 2 )(Z - 2 3 )(Z - 24)

Thus, it can he shown that

C(-I t ) = 0

C(2 2 ) = 0

C(23) = 0

C(24) = 0

C(25) = - 16 = I (mod 17), etc.

it can be shown also that if there are errors in the received

codewurds:

r(2t)$0

r(22)-*0

r(23):f0

r(24)*0

Suppose 2 errors exist in the received codewurd at the
positions underlined heloxv:

r(Z) = SZ° + 2Z' + 9Z 2 + 15Z 3 + 2Z4 + 1 Z S + 2Z6 + Z7

or, written differently,

20



x 18-1
= E C. ski + 1: er ski

1 0	 V 0

Sk = e0 (2k )0 + e I (Zk ) I + ... + e7 (2k )7

for k = 1,2,3,4

(r0 , r 1 , r 2 ,	 r_1 = (5?;),I5?,1 2,1)	 where e(Z) = ( e0 , e 1 , • • •, e 7 )is the symbol error pattern. But
C(Z) is a multiple ol' y(Z. ), and, consequently,

_ (5,2,12-3.15,2,3-2,2,11

CCYA I = C(2 k) = 0, for k = 1 1 3,4
The et ror pattern is

so that
(0,0,-3,0,0.-2,0,0)

N-
or	 C. (2k )` = 0, for k = 1 ,2,3,4

^ 0

(0,0,14,0,0,15,0,0)

Thus, Eq. (14) becomes

The received pattern can he rewritten as

8-I

( CO' C C ( 'z ,	 C7) +(e0,e1,	 e7)	 S k =	 ei(2k)'= E..fork=1,2.3,4	 (15)
^- o

(5,2,12,15,2,3,2,1 )+ (0,0,14,0,0,15,x,0)
Equation (15) reveals that the syndrome Sk is in tact the UFT

where ( e 0 , t, ,	 e_ ) is an error pattern, and CO .( 	 C I ,	
of the error pattern, i.e., Sk = F. k = DFT of ei.

C7 )are the ur.:vrrupted symbols.
The problem in decoding the RS code is to try to determine

the values of' ei , i = 0,1 2, • •	 7. Since at present e l are not
Now the syndromes Sk for r(Z) = (r0 , r 1 ,	 r7), where	 known, we let Yi and X; be the ith error amplitude and the ith

r(Z) = 5Z0 + 2Z 1 + )Z2 + 15Z3 + 2Z4 + Z S + 276 + Z', can	 error location, respectively. Thus, the syndrome in Eq. (15 ►
be computed by defining	 can he re-expressed as

N- I	 x 1

Sk = ` 
rr Yki = E	 r  

2 
k i	 (13)

i 0	 ii--o

for k = 1,2, • • D - 1 = 2t (i.e., k = 1,2,3,4) and y = 2.

Since r(Z) = (r0 , r 1 , . • r
7 

), the received symbols are
known: the syndromes S i , S 2 , S 3 , and S4 can be calculated
from Eq. (1 3). Specifically, for rt -')= (5,2,9,15',1,2,1 ), Eq.
(13) yields (,S I . S 2 , S 3 , S4 ) to be (- 8, - 5,11,- 1 ).

Actually, the way Eq. (13) was defined implicitly spells out
the relationship hetween the syndromes and the symbol error

pattern, tier From Eq. (13),

x-1

Sk =	 (Ci 
+ ei ) 2 k i

i- 0

x-I

Sk =	 y'iXik , for k = 1,2,3,4

However, as we see above. (e 0 , C I , e7 ) are all zero except
in the location i 1 , i 2 , • • • . i t , where t is the maximum number

of symbol errors that can be corrected. This is to say that

r

Sk =	 YiXik, for k = 1,2,3,4
r=t

i

r=2

Y r X k = Y I X I k + Y 2 X 
2 k

r = I

(in our example)

Hence,
(14)

21
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i 0(2k)0 +()l2 k ) I + 14(2 k 11 2
+...+ 15(,1)1 +...+0(21)',

W O c, 1 • •	 e 7 ) = (0,0,14.0,0.1 5,0.0)

E ) i	 (X 	 )k

i	 I	 k	 1

or

2	 Xix- I

Yi	
r

i- 1 I - Xx-I

S  = 14(2 k  )2 + 15(2 1 ) s , for k = 1 ,2,3,4

the last step being obtained by the usual technique 01' sum-

Since from the above ,S I , S 2 , S 3 , S4 are -8, -5, 1 1 , - I, we	 Wring a geometrical series. Thus,

have

YIXI I + Y2 X2 1 = S I =-8

Y t X 1 2 + Y2 X2 2 = S 2 = -5

Y I X I ,I + Y 2 X2 3 = S ; = I I

Y I X 1 4 + Y2 X 2 4 = S4 = - I

However, rather than solving the foul nonlinear equations
directly, it will be simpler to obtain the transform of the error
pattern. After simple calculations, take the inverse discrete
Fourier transform of the result to achieve the error pattern.
This method is now described.

From the previous discussion, since S . = h k for k = 1 ,2,34,
some of the transforms of the error pattern e(Z) are known at
this stage. The rest of the transtimns, i.e., l:' o , E F, 6 , li d , can
be computed from those already known, i.e., E l l E 2 , E. 3 , l:.4.
To do this• let us define a generating function as

E(x) _ / I x I + I: 1x- 2 + E3X 3 + ... = r !:'kx -k

k 1

(16)

in which it is noted that E. 8 = L'O . E9 = E l , etc. Since

K - II	 2

Sk = E)k- En -)Pik = 	 Y.X.k	 (17)

n - 0	 i(^1

suhstituting Eq. ( 16) into Eq. 117)gives

2
/

! (x) _	 1	 Y.X.k^ Y-k

k-1	 i=1

i =1	
`x - Xi	 a(x)

where

2
OW _	 (.Y - Xi)

= x 2 - (X I + X 2 ) x + X I X2

.Y2-a1 x+a2

and a (x) is called the "error location polynomial" since its
roots help to locate the errors:

E(x) = - Bx- I _5X-2  + 1 I.Y -3 -x -4 + .?x- s + ?x6 (18)

It can he shown that a (x) call obtained from Eq. (IS) by
the "continued fraction method" developed by Prof. L. R.
Welch and R. Scholty of US(' (Ref. 10) as an alternative
method to the Serlekamp algorithm, which solves the same
problem. The "continued fraction method" is illustrated in
Table I.

From Table I , one observes that

H 3 = 0+•?x-3+...

a(x) = a3(x)=(x-xI)(x-x2)

_ (2-Y+3)(bx-4)=x2-2x +9

Hence,

a1 = 2, a 2 =9

22
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TI u.,

FW)=(12,-9.-5, 1I, - 1, I. 11, 13)

Since

ti

/:k = r e 
n 

,nk 10r k = 0.1.2,	 7
C.i 

n=0

24

and

= Xi2- 2X1+N =O, 10,i=1,2

Multiplying; the above equation by 1 .1 Y,! gives

y .X. = ' ) -	 „

	

2 y X. t +i + )y x i, = 0, for i = 12	 11`))„ 

Suh,tituting

i	 1

into Fq. ( 1 1) ) yields

/;'Z+i-2F.1+i+9E/.=0, for 	 1,23

Using this recursive lixnulla, h.'o . 111,5, /;6• t: 7 call 	 com-

puted front F l , h", E ; , /:4 . Thus (see Eq. 15),

/•: a = 2E'4 - 9/'3 = -'l- 1 ) -`>(I 11= 1 (1110d 17)

Similarly,

E" = I I (mud 17)

/:' 7 = 13 (mod 17)

/:'8 = 12 (mud 17) = !'o

file inverse DFT of /:' k is defined h^

x- 1

(8)_ 	 E 
/,k ,-r,k f

A o

Since h'0 ,	 , /: are mm known, e^

It call he shown, as expected. that Im this example

(eo . C  • .	 e7 ) = 111,0,14,0.0,15.0,0 1

Since the received codeword is ( 5 _2 .9 ,1 5.2,1 .'.I )and the error

pattern is (0,0,14,0,0,15,0,0), the corrected coded sequence is
(5,2 9,15 11,2,1) - (0.0.14.0,0. 15.0.0) = (5.2.12.15.23,2.11.

To recapitulate. the decoding of Reed-Solomon codes using
the transform over l;/(/„) is composed ( d  folluwing
three steps (Ref. I I ):

(I) Compute the DFT over (;/ (/ „ ) of the received code

N-fuple: i.e..

N-1

Sk = ` r
err 

ymk

m = U

where rrr, G GF(F, ), and y is all 	 of order .V.

(2) Use continued fractions to determine a ; tiom the

known S, = /: i tier i = 1 • •. t and j = I ,-', • - _'(.

Then compute the ienwining transform errors /:'.

(3) Compute the inverse of the transform over (;F(F,,) of

Sk - E'k to obtain the corrected code.

I
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