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Abstract

This report attempts to provide a step-by-step approach to the subject of finite fields.
Rigorous proofs and highly theoretical materials are avoided. The simple concepts of
groups, rings, and fields are discussed and developed more or less heuristically. Examples
are used liberally to illustrate the meaning of definitions and theories. Appiications
include discrete Fourier transforms and Reed-Solomon coding.



Review of Finite Fields

The ultimate objective of these notes is to show how the
finite field can be used to decode Reed-Solomon codes. Before
developing these techniques, let us consider some of the struc-
tures and properties of finite fields.

1 Group

A set of elements with a binary operation **+™ is called a
group, G, if for any arbitrary elements a, b, and ¢, which
belong to G, the following four postulates are satisfied:

Pl: a * b€ G (closure law)

P: a+((b-c)=(a-b)- c(associative law)

P,: There exists an identity element e in G such that
a-e=e-a=aforalla €G (identity element)

P.: For a €G, there always exists an inverse element a~!
in G such that ga~! = e (inverse element)

1.1 A Commutative Group

A group is called a commutative group if the operation also
satisfies the fifth postulate:

Ps: a* b=>b+a(commutative law)

1.2 Order of a Group

The order of a group is defined as the number of elements
in the group. If the order is infinite, the group is an infinite
group. Otherwise, the group is a finitz group.

13 Exainpie: An Infinite Group

Let G = {#0,#1,#2..-} and let the operation be the
arithmetic addition. It is straightforward to verify that G
forms an additive infinite commutative group in which 0 is the
identity element, and the inverse of a is -a.

1.4 Example: A Finite Group

Let G = {-1,1} and let the operation be multiplication.
Then, it is straightforward to verify that G is a multiplicative
commutative group of order 2, so called because the operation
is multiplication, (1)« 1 =1+ (-1), and there are only two
elements.

15  Subgroup

A nonempty subset H of a group G is called a subgroup of
G, if H itself forms a group under the same operation as in G.

1.6 Example: A Subgroup

In Section 1.3, we verified that G= {0 *1,+2,---} is a
group under addition. Let / be the nonempty subset consist-
ing of all multiples of 5, ie., H= {#0x5£10,---}. It is
obvious that H is a subset of G, and H itself forms a group
under addition. Hence, / is a subgroup of G.

2 Ring

A nonempty set R with two binary operations is called a
ring if in R there are two defined operations, addition (+) and
multiplication (), such that any arbitrary elements a, b, and ¢
in R satisfy the following postulates:

Pl : a +b€ER (closed under addition)



P,: a+b=b+a (commutative law for addition)

P.: (a+b)+c=a+t(b+c)(associative law for addition)

P.: For every a € R, there exists an element O such that
a +0=0 +a=a (identity element for addition)

P_: There exists an element a such that a+(-a)= 0
(inverse for addition)

P . a-b€ER (closed under multiplication)

a- (b -c)=(a-b)- c(associative law for multiplica-
tion)

P: ab+c)=a*bt+a-cand (btc) a=b-atca
(the two distributive laws)

21 Commutative Ring

Note that postulates P, to P, require that R be a commuta-

tive group under addition. If R further satisfies the following:

P9: a* b=b+a (commutative law for multiplication)

it is called a commutative ring. If the commutative ring con-

tains an identity or unity element for multiplication such that
a*e=a-e=a,then thering is called a commutative ring with
unity (or identity ) element.

2.2 Example: A Commutative Ring With a
Unity Element

Consider the set R = {0,1,2,34,5} (i.e., the elements of R
are the integers modulo 6) and the operations addition and

multiplication defined by a+b (mod 6) and a - b (mod 6),

respectively. It is simple to show that the elements of R satisfy
postulates 1 to 9 and that R is a commutative ring with unity
element. The modulo arithmetic (see notes below) ensures that
the results of the operations remain within the group, i.e., it
ensures that the set is closed under addition and multiplication
(P, and P ).

Notes on Modulo Arithmetic

In “modulo g arithmetic,” one can subtract ¢ or a multiple
of g from the result wihtout changing the result, e.g., for
q=6,5-5=25=25-4+-6=1 (mod 6).

Similarly, one can add ¢ or any multiple of g to the result,
eg, 1-5=-4= -4 +6= 2 (mod 6). By so doing, the
operations addition and multiplication are warranted to be
“closed.”

If a = b (mod p), ¢c =d (mod p), and m is any integer, then,
(1) m+a=m-+ b (mod p)

(2) axc=btd(modp)

(3) a/c =b/d (mod p)

But n * @ =n + b (mod p) need not imply a = b (mod p)
unless n and p are relatively prime, for p may not divide a - b
if p divides n. For example, 3+ 4=3+9 (mod 15) but 4 #9
(mod 15); however, 3+4= 3+9 (mod 5) does imply 4=9
(mod S) for (3,5)=1.

3 Field

A field is a commutative ring R with unity element in
which every nonzero element has a multiplicative inverse. In
other words, a commutative ring with unity element is called a
field if the nonzero elements of R form a commutative group
under multiplication.

3.1 Order of a Field

The order of a field is defined as the number of elements in
the field. If the order is infinit~, the field is an infinite field.
Otherwise, the field is a finite field.

3.2 Example: A Field

Let F be the set of integers modulo 7, ie.. F=
(0.1,2,3,4,5,6). Let the addition and multiplication operations
be defined as a+b= ¢ (mod 7) and a*b = ¢ (mod 7),
respectively. It is easy to show that F is a commutative ring
with unity element 1. Also, every nonzero element has an
inverse element, as evidenced by

1+-1=1(mod?7)
2+4=1(mod7)
3+5=1(mod 7)

4-2=1(mod7)



5+3=1(mod 7)
6+6=1(mod?7)

The nonzero elements (1,2,3,4,5,6) form a multiplicative
group.

3.3 Corollary

Let / be a set of integers and let p be a prime; then the set
of integers modulo p (ie., 0,1,2,---p- 1) forms a finite or
Galois field of order p, denoted by GF(p). Using GF(p) as a
starting point, one can construct extension fields with p”
elements (see Section 5.1). One of the fundamental thecrems
of field theory states that GF(p) and GF(p"), where p is prime
and n is an integer, are the only possible finite fields (see Ref.
1, page 50).

3.4 Counter Exampie: To Show That the Set
of Integers Modulo 6 Is Not a Field

The ring R = (0,1,2,3,4,5) is not a finite field because some
of the nonzero elements in R do not have inverses. For

example, 2 does not have an inverse element, as evidenced by
multiplying 2 by all elements in R:

"~

+0=0 (mod 6)

2+1=2(mod 6)

2+2=4 (mod 6)
2+ 3=0(mod 6)
2+4=2(mod 6)
2+5=4(mod 6)

3.5 Examples: Finite Rings and Fields

From Sections 2.2 and 3.2, one may generalize that the set
of integers modulo any integer forms a finite ring. A set of
integers modulo a prime number forms a finite field (see also
Section 3.3).



4

Algebraic Structure (Ref. 1)

Semigroup

f

Monoid

4

Group

Commutative or
Abelian Group

Y

Ring

Commutative
Ring

E:

Commutative
Ring With
Unity Element

Field

Finite Field
or
Galois Field

Extension
Field

Properties

One operation, say, “+"; closed;
associative

Also with identity element for
“n

Also with inverse for “+"

Also commutative for *+”

With two operations “+' and **+";
a commutative group under “+”

Also closed and associative under
e 4™ and o™ are distributive

“won

Also commutative for

Every nonzero element has multi-
plicative inverse, i.e.,a” ! exists
and thataa™" = 1, where 1 is the
identity (or unity) element for
multiplication

The number of elements in the field

is finite

GF(p™) = extension field
GF(p) = ground field,
where p is prime and m is an
integer. It can be shown that
GF(p™) are the only possible
finite fields (see Ref. 1)

Summary of Relationships Between Different Albegraic Structures

Remarks

Theretore, a ring is a commutative group
under **+"’; a semigroup under **+"*; and
“+” and **+" possess the distributive
property™

Therefore, a commutative ring with unity
element is a commutative group under
“4"; a monoid under “+"

Therefore, a field is a commutative group
under addition and its nonzero elements
form a multiplicative group



5 Ground Field and Extension Field

In Section 3.5, it was concluded that the set of integers
modulo a prime number is a finite field, GF(p). GF(p) is
referred to as the ground field and GF(p™) as the extension
field of GF(p), where n is an integer and p is a prime.

5.1  Construction of the Extension Field GF(p"),
Given the Ground Field GF(p)

Let‘n (x) be a monic irredugihle polynomial (see notes
below) of degree n over GF(p),i.e.,

(x)=x"+a.  x""'+a. . x"?+...40 x°
n- i 0

1 -2

where

pe1'Gp-20"" "8, € GF(p)

A root, say, a, of p (x) exists and can be found in the exten-
sion field GF (p"). It can be shown that all elements in GF(p")
given by (see note below)

an—2+a" an—3+

y=1
{a a ta -~

0
n-1 n-2 taya}

: (1)
a ,-~-,ao€GF(q)

an—l’ n-2

satisfy the definition of a field. In general,if p is a prime and n is
an integer, there always exists a Galois field of order p" (Ref. 2).

Thus, according to (1), the elements of GF (p") can be
obtained by substituting into the polynomial a, o'+
a, ,a" *+a,_,a" %+ +a a® various values fora, |,
a,_,, etc. Since there are p elements in GF(p), there are **p”
different ways to assign a value toa,,_,, and similarly toa,_,,
Gy 3 '+ Qg Thus, there are p” different substitutions, yield-

ing the p” elements of GF(p").

Notes: A monic nth degree polynomial is one in which the
coefficient of the highest degree term, x", is unity.

An irreducible polynomial is one which cannot be fac-
torized or one which contains no divisors except scalars
and scalar multiples of itself.

A = {“a”|"a’" has property P } is a mathematical short-
hand which is interpreted as “A” is the collection of
all elements “@” such that “a’ has property P.

5.2 Example: Construct GF(2°)

Rather than establishing the validity of the procedure
described in Section 5.1, we shall illustrate it by an example.

Let p = 2 and n = 3. It is required to construct Galois field
GF(23).

Since p(x) = x3 + x + 1 is not zero over GF(2) (i.e., for x =
0 and x = 1, p(0) and p(1) are nonzero), p(x) is said to be
irreducible over GF(2). Thus, there exists an a € GF(23) such
that p(a)= a’+ a+ 1= 0. Then, the set of elements of
GF(23)is given by

GF(2%)= {a,o® +a, a+ayla, a,, a, € GF(2)}
Or, expanding this in full, the elements of GF(ZJ) =GF(8)are
0o’ +0a +0=0
0a® +0a+1=1
0 +tla+0=a
O +la+l=a+l
la? +0a +0 = o?
1o +0a+1=a”+1
la’ +la+0=0* +a

le? +la+1=a% +a+1

5.3 Theorem: Existence of Primitive Element(s)
and Associated Cyclic Group(s)

There exists a primitive element a € GF(p") that generates
the nonzero elements of GF(p"). The nonzero elements of
GF(p") form a cyclic group of p"-1 elements.

54 Example

From the exampie given in Section 5.2, we know that
GF(2%)is formed by

GF(2*)= {a, o® +a, a+a )a,.a ,a,€CF2)}



where

pl@)=a’+a' +1=0

This implies a® = -a -1 = a + 1. Let us start from an element
a € GF(2?). Then,

*=a-a=d

a®=a’a= u-l=a+l

a4=a3-a=(a+l)a=a2+a

a5=a4

ca=(a? +a)a=a’+a’
=at+l+a?=a’ +atl

S-¢x=(¢12+ol+l)a

o’ =a
=a+a’ +ta=a+l +a +ta=a’ +1

o’ =a® - a=(a’ +1a=a’+a
=atlta

Thus, the nonzero elements of GF(23) as obtained in Section
5.2 can be written in the form:

(a,0?, 0%, a* a°,a%, a")

or

(.0’ a+1,a® +a,a’ +a+1,a° +1,1)

Hence, since a generates all the nonzero elements of GF(ZJ).

. o H
a is a primitive element of GF(2%)and &, a?, 0%, 0%, 0%, 0%, a
form a cyclic group* of 2% - 1 elements in GF(23).

5.5 Example: A Primitive Element Generating
a Cyclic Subgroup

Let GF(p) be the ground field. As mentioned in Section
5.3, there always exists a primitive element which generates

*Since o’ = = a8=a.:a’= a, a?=a’ ca?= az, etc. Thus, after the

first 7 elements, no new elements will be generated. In coding termi-
nology, if every cyclic shift of a code word gives another, the code is a
cyclic code (see Ref. 2, p. 124). By analogy, the group generated by o
is referred to as the cyclic group.

one cyclic subgroup of order p- 1. For example, iet the
ground field be GF(7)= (0,1,2,3,4,5,6). It can be shown that
v = 3 is a primitive element, and the cyclic subgroup generated
is

Gp_ . =.Go =(1,2,3,4,5,6)

This is so because
3'=3

32=9=2(mod 7)=2

33=3.32=3.2=6

3=3.6=4

3% =5

36=]

g _ =G » (332,33 3% 3% 3% = 1), where 3 is a primitive

element in GF(7). Since 3 generates the cyclic subgroup of
order 6 of GF(7), it is also called the generator of G,

Note: To evalute 5%, make use of the fact that 5% = 2 is
known.

Hence, 5° =5 - 5% =5+ 2 =10 = 3 in modulo 7
arithmetic.

5.6 Additional Examples: To lllustrate the Slight
Difference Between a Primitive Element
and a Generator of a Subgroup

In GF (7), 4 is a generator of a subgroup of order 3, but is
not a primitive element, as evidenced by the fact that

4 =4
42 =2
43 =

Once this point is reached, further multiplication of 4 by
itself will not generate any new elements since 4* =43 - 4=4
(mod 7),4% =43 . 42 = (mod 7), etc. Thus, 4 generates the
cyclic subgroup of order 3,G, = {4,2,1 }.



However, 5 is a primitive element as evidenced by the fact
that:

5 =5
52=4
5326
54=2
5% =3
5°=1

To recap, a generator in GF(p) is one which generates o
cyclic subgroup of GF(p). The generator whose cyclic group is
of order p- 1 is called a primitive element of GF(p). An
additional example is given in Section 7.3.

5.7 The Number of Primitive Elements in GF(p)

This section briefly shows how the number of primitive
elements in a given field GF(p) is calculated (see Ref. 3, pp. 23
and 47). It turns out that the number of primitive elements of
GF(p) is given by ¢(p - 1), where ¢(m) is called Euler’s ¢-func-
tion and is defined as the number of positive integers less than
or equal to m that are relative prime to m.

For example, consider GF(7) when p = 7and p- 1 = 6.
Here, ¢(6) is 2 since there are only two numbers which are
relative prime to 6, namely, |1 and S. It has been demonstrated
(Sections 5.5 and 5.6) heuristically that 3 and 5 are only two

primitive elements in GF(7).

6 Definition of the Order of an Element

Let v be a nonzero element in GF(p), and let d be the
smallest integer such that ¥4 = 1. The order of v is then d.

6.1 Example: Primitive Element and Order of
an Element

It was shown in Section 5.5 that 5 is an element of GF(7)
of order 6 for 5% = 1. Also, since the cyclic group of § is of
order 7- 1= 6, 5 is a primitive element of GF(7). Further,
since 27 =8 =1 (mod 7), 2 is an element of order 3.

7 Theorem on Cyclic Subgroups of a
Given Field GF(p)

The following theorem enables one to obtain all of the
cyclic subgroups of a given field GF(p). It states:

Let GF(p) be a finite field. If d divides p - 1, then GF(p)
has an element 7y of order d. This element vy is a generator of
cyclic subgroup G, C GF(p), where G, = (y,y?,- -, ¥ =1).
(Note that the symbol C means G, is a subcat of GF(p), or Gd
is contained in GF(p)). Stated differently, the theorem says
that the order of every element must divide p - 1, where p is
the order of the group.

71 Example: Application of the Theorem Given
in Section 7

Consider GF(7) = (0,1,2,34,5,6). Since p=T,p- 1= 6.
Consider d = 3;since (p - 1)/d = 6/3 =2, d uivides p - 1, and
one can conclude from the above theorem that there exists a
subgroup G, of GF(7), ie., G, is a subset of the elements of
GF(7).

7.2 Plausible ‘‘Proof”’ of the Theorem Given in
Section 7

Consider GF(p) which has a primitive element 7y such that
=t ) )

Also, let d divide p - 1 such that

B-,,,_ =m or - | =dm (3)

Substituting Eq. (3) into Eq. (2), we have

,Yp-l =,ydm = or (7m)d =1

Thus, there always exists an element ¥ of order d. Also,
the element ¥ will generate the cyclic subgroup {(y")',
"2, (v 2, o, (@™} of order d (since there are d
elements). Hence, the theorem in Section 7 is “proved.”

To further illustrate the use of the theorem, consider the

nonzero elements of GF(7) denoted by (,'p_l :

G, =(123456)

=(33233343%3%=)



Ford =3,sincep- 1/d=6/3=2,7"=432=(y*)*=1,
one can conclude that there exists 2 primitive element v} =32
of order 3 that generates the elements (3? ». (32)2. (32)3 =
1), which constitute the subgroup G ;. Thus,

G,=G,=(3")", 3, 3H)’ =1
=(2,2%22%3=1)since 32 =2

Here, ¥ = 2 is called the element of the cyclic subgroup G ,,
and since ¥¥ = 23 = 1 the order of y is 3.

7.3 Distinction Between a Primitive Element «
and a Generator y

Let a denote the primitive element that generates all of the
nonzero elements (a',a?, - - -.a” ") of GF(p). The order of «
is p - 1. Further, let y denote the generator of a subgroup G,
of GF(p). If d divides p - 1, it was shown in Section 7.2 that
there exists an element 7y such that ¥¢ = 1, and such that y will
generate some of the elements of GF(p) but all of the elements
of Gd. i.e., Gu =(v. 7, 7"). where (id is a subgroup of
GF(p). Here, d is the order of the element 7y, and also the
order of the subgroup G .

7.4  Different Terminology for y

Element y has many names. It is referred to as:
(1) The eenerator of Gd. since G, = (v, 7, -, 7.

(2) The “dth root of unity,” since y9 =1 and, hence, Y=

1.

(3) An element of order d, since d is the smallest positive
integer such that 9 = 1.

7.5 Different Terminology for d

Integer d has many names. It is referred to as:
(1) The orde- of the subgroup G ,, since G , has d elements.
(2) The order of the element 7y, since y¢ = 1.

(3) The transform length, in the context of the study of
“DFT over finite fields” (see Section 8).



Application of Finite Fields to Discrete
Fourier Transforms

Finite fields have applications in many areas of modern
studies. Among them is the area of Fourier transforms (Refs.
4-11). We shall now describe how finite fields are applied to
the evaluation of Fourier transforms.

8 The Discrete Fourier Transform Over
a Finite Field GF(p)

The discrete Fourier transform (DFT) of an integer
sequence a,, @, d,, " a,_ is defined with respect to G ,,
where G is a subgroup of GF(p) (Refs. 4 and 5). The order d
of the subgroup G, determines the number of members in
sequence a_ and is referred to as the transform length. Thus,

the DFT of sequence @ over G of GF (p) s defined as

d-1
A= ), a7, 0<k<d-1I )
n=0
where
8y 8,,8,, '8, 18 the given integer sequence whose

DFT is desired, and a, € GF(p).
7y is an element of Gf(p) and is the generator of G, such
that G, = (7' T 5

d is the order of the element v and also the order of the
cyclic subgroup G, generated by v, such that y9 =1,
and there are d elements in G . Here, d is referred to
as the transform length and determines the number of
members in sequence a, and in its transformed
sequence 4, .

Ay A, -+ A, is the transform of a, @ , - a

sl A, €GFp).

It can be shown (Ref. 7) that the inverse transform is given
by

d-1
=@ "' ) A v for0<n<d-| (5)
k=0
where
A, A, -+ A, is the given transform, the inverse

transform of which is desired.
(d) is the residue of d modulo p, ford <p,(d)=d.
(d)™" is the inverse element of d.

If d is a power of two, it is well known (Refs. 6 and 7) that
the fast Fourier transform (FFT) algorithm can be utilized to
realize the needed transforms.

8.1 Choice of yand d

Considering how the transform and the inverse transform
are computed (see Eqs. 4 and 5), it is advantageous to choose
v = 2 or power of 2 and the order of 2 is a power of 2 because
multiplication in these cases means “shifting” in actual logic
implementation, and the most efficient FFT algorithm can be
used to yield a fast transform.

Also, it is advantageous to choose d to be a power of 2.
This is because fast Fourier transform techniques can then be

]



applied. The reader is referred to Ref. 6 for further elucidation
on this point.

8.2 Finite Field With p Equal to a Fermat Prime

A Fermat prime, F . is a prime number defined by

n
F =3* 41,
n

for n=1234

We shall consider GF(p), where p = F . This is because the
values of 7y and d resulting from GF(F") will have the desired
properties discussed in Section 8 (see Section 8.3).

8.3 To Show That GF(F,) Has an Element y=2
and That the Order of vy Is a Power of 2

Let y € GF(F,) and d be a power of 2. There exists a
theorem (see Ref. 7) which states that if

¥42= -1 (mod p) (6)
then 7 is an element of order d.
Making use of this theorem, choosin; p = F | since

n

F =2 +1 (7
2"

2 E-l(moan) (8)

Comparing Egs. (6) and (8), we have

412 = 52"
where
Yy=2
and
d=2"*

Hence, GF(F,)) will have an element equal to 2, whose order
is d = 2" Also, vy will generate a cyclic subgroup G, of
GF(F,)), where

n+l1

Gy2C iy 2212002 =)

10

8.4 Example: A Finite Field With y=2, and d
Being a Power of 2

Consider n = 2, such that F, = 22% 41 = 17. The theorem
predicts that there exists an element y= 2 of order 2"*! =
2241 =8 that this is so is evident by

v =28 =256
Since 256/17 = 15 with a residue of 1,
256 =1 (mod 17)

that is,

¥ =28= 1 (mod 17)

Here, v (= 2) has order d (= 8) which is a power of 2. Also,

8.5 Example: To Obtain the DFT Over GF(5) of
the Sequence (a,=1, a,=1, 8,=3, a,=1)

Since 22" +1=5 for n =1, 5 is a Fermat prime. We expect
v = 2 to be a gererator, and that it will have orderd =2"*! =
2141 = 4. Also,y generates a cyclic subgroup Gy4=G, C
GF(5).

We shall proceed to obtain the DFT over G,, which is a
cyclic subgroup of GF(5). Repeating Eq. (4),

A = a Y"*, 0<k<d-|

= =9 = + yk 2k 53k
ford=4,y 2,4, a,ta 2" +a,2°" +a 2.

= 1, the transform of this

leenao— l,aI =1l,a -3.:13

2
integer sequence is

A0=l+l+3+l=6 1 (mod 5)
A|=l+l°2+3°22+|°23E3(mod5)
A2=l+|'22+3'24+I-2652(mod5)

A3=l+l'23+3-2"+l-2953(mod5)



For the above computation, we make use of the fact that y¢ =
2% = | to simplify the arithmetic.

8.6 Example: To Obtain the DFT ' (Inverse
Transform) of the Sequence (A (=1, A,=3,
A,=2,A,=3)

It is obvious that if the modulo arithmetic is performed
correctly, the inverse transform should be a_ = Le,=le,=
3o.a3 =],

()}
Before substituting in Eq. (5) which is

d-1
a, =@ Y A vy for0<n<d-1
k=0

it is necessary to evaluate (d)~", which is the inverse of d. For
y=2,d=2%=4,

@' =2"?
Since
@-@"'=2%-2 %=1
and
@ '=2"2=2"22%=4=-1 (mod 5)
then

d)'=-1(mod$S)

Note: Since ¥4 = 1, 2% = 1. Also, 4= -1 in modulo §
arithmetic.

Thus,
= - . 92 . 93n
a, —-l(A0+A|-2"+A2 2 "+A3 )
=-1(143:27"42.27°2143.273m)
forn=0,1,2,3

or

g, =-(1+3+2+3)=-4=1

=-(1+3-2%+2.

B~ (1 #3242 2243.2°%Y
=-(1+43:22+2+3.2%)=3
a,=-(1+3-273+2.
=-(1+3-2+2-
Hence,
@8, a,a,) = (1,1,3,1)

Note: For the above computation, again, we use the fact that
2-n =2-n .24 Thisis because ¥4 = 24 = | (mod 5).

9  Convolution Over GF(F,)

Letagy,a,, - ,ay and by, by, " -, b,y be two sequences of
integers (where d will later be referred to as the transform
length). The discrete convolution is defined as

€= 2 Gy by PEON2 d= 1 (9)

where (p - n) denotes the residue of p - » modulo d.

9.1 Example: Direct Evaluation of the
Convolution
Letag =1,a, =
0,b4=0.

l,a, =0,a;=0and by =1,b,=1,b, =

Compute the discrete convolution,

a-i
£, Z a, b(p_n)‘where d=4
n=0
or
€p =000 p-0) T 4\ (p-1) Y0050y * A,y (10)
forp=0,1,2,3

1"



Co =gbio) ¥ 4,01y *ab(y) tash_y, C,=A, "B,

=agb, ta\bytayb, tash,

It can be shown that the discrete convolution over GF(F,) can
(Note thatb_, =b_, hence,b_,=b ) be obtained by taking the inverse transform of C, , i.e.,
S1-1+41:040-040-1=1 =
o, =@ Y v =ab

- : p k n"(p-n)

¢, =agh ta b, ta,b_ tab _,, k=0

=agbh, ta b, tayb, tayb,
9.3 Determination of the Dynamic Range

In order to avoid overflow (i.e., to avoid p assuming
integer values outside of that allowed by GF(F))), it is
=agh, tab tabytayb necessary to keep

=] +]+1+1%0+-0+0+0=2

)

agh, ta\b, tab, +ab, F

1-0+1+140-1+0-0=1

= + + + 3 i A 2
€y=agby tab, tayb, tasb, To achieve this, limits have to be imposed on sequencesa,, and

b, . Since
=1+0+1+-0+0-1+0-1=0
le | <
Hence, e 2
d-1 d-1 F, -1
o= v =9 = »_ = . _
Gt by mle nle, 0 FyE Y TN S M8 WET RS S
n=0 n=0
9.2 Evaluation of the Convolution by the Discrete Let
rontier Transform Method
s la,|<A,lb, |<B forn=0,1,-"d-1
The discrete convolution of sequences @, and b, can be
computed by DFT over GF(F,)). To do this, we compute the
discrete Fourier transform over GF(F,) of sequences a, and Thus,
b, . respectively, i.e.,
a-1 =1
== 135 8,b(pp)| <44 B< =5
Ak e Z a"‘Y"k n=0
n=0
If A = B, then

and

d-1 I"" 5.7

- k =
B, = 2 bn7’l A 2d
n=0

12



where [x] denotes the greatest integer less the x, and A4 is
called the dynamic range.

Therefore, if

-A <an,bn<A,forn=0,l,2,"-.d- 1

then

9.4 Example: Computation of Convolution of
DFv and Determination of the

Dynamic Range

Leta, = 1,84, =1,a, =0,a3=0and by =1,b,=1,b, =
0, by = 0. Compute the discrete convolution by using DFT
over GF(22 + 1).

Since F| = 22' 41 =5, the dynamic range is

LA

Note: Although d = 4, we use an “‘effective d = 2.” This is
because the two given sequences a, and b, possess
zeros in the last two terms. It is obvious, by studying
Eq. (10), for example, that zeros in @, and b, will
reduce the number of terms. In general, if the number
of nonzero elements in a,, and b, are n, and n,, the
“effective d” is equal to the larger of n, and n,,.

Hence,

-1<a,,b,<1,forn=0,123 (11)
and
T (12)

The given sequences a, and b, are seen to satisfy the
constraint (11).

The DFT over GF(5) of a,, are

4-1
= nk k 2k 3k
= = + 2
A, E a"2 a, aIZ +a22 ta,
n=0

where 2 is an element of order 4 in GF(5). It follows that A4, -
1+1-2%and 45=1+4+1+29=2,4,=1+42=3,4,=1-
1=0,4;=1+3=4,

Similarly, the DFT of sequence b,, is

B,=2,B,=3,B,=0,B,=4

But

The inverse transform of Ck is

4-1
P -nk
Q=@'- Y "
n=0
= E T AT T ™)

=-(4+4-27%+273) fork=0,1,2,3
or

co=-(4+4+1)=l

¢, =-(4+4-27'+27)=-(1+2)=2

€, =-(4+4-272+27°¢)=-(4+1+2%)=1

€, =-(4+4-277427%)=-(4+44-2+27)
=-(4+3+3)=0

It is seen that the values of ¢,,’s remain within the dynamic
range specified by (12).

13



Note: In the above computation, the usual tricks in finite

field arithmetic have been used, namely,

(1) Adding to or subtracting from the result by
“multiples of 5§ =0 (mod 5).”

(2) Multiplying the result by v =2* =1 (mod 5)
to get an appropriate finite field element.

This is done “to bring the result of the compu-
tation to within the field.”

10 Arithmetic Operations Needed to
Compute DFT Over GF(F,)

The arithmetic operations needed are:
(1) Negation modulo F,,
(2) Integer addition modulo F,
(3) Multiplication modulo F,
(4) Multiplication by power of 2
We shall illustrate the algorithms by examples.

Consider GF(F,) = GF(2% + 1); a 3-bit word length is
required to represent all the 22 + 1 elements. In general, for
GF(F,)= GF(22" + 1), 2" + 1 bits are required to represent
all of the 22" + 1 elements. (Note that if there are 22"
elements, 2" bits are required, and there is no unused state.
Since there are 22" + 1 elements, the extra element calls for
one additional bit, with 22" +1 - 22" - | unused states.)

10.1  Negation Modulo F,

The problem can be stated as follows: Given an element

a” in GF(F,), what is the procedure (or algorithm) for
computing “-a”?

Solution: Consider the specific example a = 2 such that 2 &€
GF (5). -2 can be computed by subtracting 2 from 5, i.e., -2
=5-2=3.

Hence, the algorithm is: Given @ € GF(F,), to obtain -a,
use the property that -a=F, - a.
10.2 Addition Modulo F,

The problem can be stated as follows: Given elements a,b €
GF(F,), what is the algorithm for computing (2 + b) modulo
F?

14

Solution: Consider the specific example a= 3, b= 4, F, =
F,=5.

In modulo arithmetic 3 +4 =7 =2 (mod 5). The algorithm
may be illustrated as follows:

23 22 2! 20

a=3 0 1 1
+th=4 1 0 0
S5 ®\]\l
- 1

c=7=2(mod5) 0 1 0

Thus, the algorithm is: if the 22th bit is a 1 (and the 2'th
bit and 2°th bit are both not equal to zero), discard the 1 in
the 22-bit position, and subtract 1 from the 2°9-bit position.
The above parenthesized condition helps to exclude the case
of 100 when a modulo operation is not needed.

Justification for the algorithm: When the number is S or
more, “discarding the 1 in the 22-bit position and subtracting
1 from the 29-bit position™ is equivalent to subtracting 22 = 4
and then 29 = 1 from the result, i.e., subtracting a total of 5.

Generalized algorithm: To perform modulo F,, addition, let
m=n+ 1. If the 2™-bit position is a | (and at least one other
bit position is a 1), discard the 1 in the 2™ -bit position, and
subtract 1 from the 29-bit position.

103  Multiplication Modulo F,

Tlhie problem can be stated as follows: Given a,b € GF(F)),
what is the algorithm for computing @ * b modulo F,?

Solution: As before, perform the binary multiplication and do
a modulo F, arithmetic. For F, = 5, discard the 1 in the
22.bit position and subtract 1 from the least significant
position, e.g.,

22 2| 20

a=3 0 1 1
b=2 0 1 0
. : ®\l\ :
=]

@+ b(mod5)=1 0 0 I



104  Muitiplication by Powers of 2 in Modulo

F, Arithmetic

The problem can be stated as follows: Given that “a
belongs to GI'(F,) and any mteger m, what is the algorithm
for computing @ * "" modulo F,

Solution: leta=3, m=2,n=1

equivalent to
shifting left by
m positions

The explanation is as follows: Since

22 =-1 (mod 5)

23 =-2 (mod 5)
discarding the 1 in the 2% th position and minus 1 is equivalent
to taking a modulo 5. Similarly, discarding a 1 in the 2%th
position and minus 2 is also equivalent to taking a modulo 5.

1 Extension of the Dynamic Range of
Cp' Using the Chinese
Remainder Theorem

Section 9-3 shows that to avoid “overflow,” i.e., to avoid
e, I's exceeding (F,, - 1)/2, la,I's and |b,,|’s are kept below the

value
A= F" -
= 2d

Conversely, if |a,|'s and |b, |'s exceed A4, the |¢,|'s will exceed
its dynamic range (F,, - 1)/2. In order to preserve precision, it
is often necessary to extend the dynamic range for the ¢, ’s.

The method for increasing the dynamic range for the ¢,,’s
(Ref. 8) is as follows: Obtain the convolutions of the a,,’s and
b,’s twice — once over the finite field GF(F,) and once over
the finite field GF(F, ), where m # n. It can be shown that

*c,, is the convolution of two sequencesa, and b,,.

the convolution of the two sequences (Cyy),,(C,),, ", (Cy),
and (Cy),, (C)),, . (Cy), over the ring R(F,, + F,) de-
noted by C,, C., , C4 can be computed using the Chinese
Remainder Theorem (see Ref. 3, p. 31). The dynamic range is
now from “zero to F, « F, - 1.”

141 The Chinese Remainder Theorem

This theorem provides an efficient method for solving a
certain kind of problem, e.g., find x given that the remainders
are 1 and 2 when x is divided by 3 and 4, or find all integers
that have remainders 1 or 2 when they are divided by each of
3,4,and S (see Ref. 3,p.31).

The theorem states: Let Py Py Pys 0 Py be integers
which are relative prime in pairs (i.e., taking any two numbers
in the list, say, p, and Pjs there is no common factor between
p; and p. other than T eg p;=8 P = 9 are relative prime,
allhough 8 and 9 themselves are not pnme numbers.) Also, let

PPy Py Py Py " Py My TP M T %
If
xEcl (mOdpl)
x=c, (modpz)
x®e (mod p, )

the solution for x, which lies in the range

0<x<p,p, ' p

is
k
< 3 o
=
where m,.‘I satisfies the relation mm,~ '= 1 modulo p; for j =
| P REXY
11.2 Example: Application of the Chinese

Remainder Theorem

Given x = 2 modulo 3 and x =
modulo (3 + 5).

1 modulo §, find x= a

15
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Solution: By the Chinese Remainder Theorem,

2
= : e <. o =1
X E cmm, cmm, c,mym,
i1
= 2mm."' + m.m_ "}
il (g 373

For n - Sand e 3. since

mlml_|5 I (mod pl)

so that

Sml"E 1 (mod 3)

we get

ml"' =51 =2 (mod 3)

using the Fermat theorem in Section 11.4. Similarly,

m;' =3 =2 (mod S)

Hence,

x=2:52+41+32=26=11(mod 3°5)

13 Example: To lllustrate How the Dynamic
Range of the Convolution of Two
Sequences Can be Extended

Problem: Let a = 4, a, =0,b,=2.b =0 be two given

sequences. Compute the convolutions of @, and b, using DFT

over GF(3; and GF(5).

Solution: Let us first compute the convolutions ¢, e,
directly without using DFT. From

d-1
cp 3 Z anb(p-")
n=0

16

we have
o * aoho tab_  =81ford=2,p=0
(note b_ =b .see Section9.1)
g, =agh, +a|b0 =0,ford=2,p=1

It is seen that 0 < ¢, ¢, < 14, i.e., the dynamic range of
the ¢-p’s is from 0 to 14. To obtain the convolution using DFT
over GF(3) only or using DFT over GF(5) only would not be
good enough since the required dynamic range exceeds that
provided by GF(3) and GF(5).

In order to get the required dynamic range, one should use
DFT over a Galois field of order 15: but 15 is not prime and
no such Galois field exists. To overcome this problem, we
obtain two convolutions, one over GF(3) and another one
over GF(S), and then use the Chinese Remainder Theorem to
compute ¢, and ¢, . The direct sum of Galois fields GF(3) and
GF(S) is isomorphic to the ring R(15).*

It can be shown that the convolutions over GF(3) are:

1]

(c,)

o5 2 (mod 3)

1]

(¢, ); = 0 (mod 3)

and the convolutions over GF(5) are:
(¢, )g =3 (mod 5)

(('I )S =0 (mod 5)

Using the Chinese Remainder Theorem,
c,=2°+5°2+3+3-2=38=8(mod 15)

¢, =0°5:2+0-3-2=0(mod 15)

Since the last step uses “modulo 15" arithmetic, and 15 is
not prime, we say that we have performed a convolution using
DFT defined over the ring R(15).

*This follows from a theorem given in Ref. 12 which states: Let q;be
any prime and ¢ = q, * g5 """ q,. Further, suppose dig; - 1 for all i.
Then, a d-point transform on ring R(g) and its inverse transforms exist.
The inverse of the above is also true.



114 Fermat’s Theorem

For every integer @ and a prime p, if p is relatively prime to
a,thena? ' =1 (mod p)ora=! =aP~2 (mod p).

If @ € GF(p), it can be shown that a' =4” 2. Thus, given
5in GF(3),5° ! =532 =5=2 (mod 3).

Proof: If a € GF(p),

@ ' =1 (mod p)

But

Hence,

e Rh Slig ot oo B it

aa” - =1 (mod p)

aa” ' =1 (mod p)

a '=aP"? (mod p)

Badeate e i
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Application of Finite Fields to Reed-Solomon

Coding

Another important area of application of finite fields is
coding. Since Reed-Solomon (RS) codes are of increasing
importance in modern deep space telecommunication, this
section is devoted to the study of these codes, employing
finite fields and fast Fourier transforms.

12

121

18

Application of Fermat Theoretic
Transform to the Decoding of
Reed-Solomon Code

Reed-Solomon Code

We shall summarize some of the basic ideas pertaining to
the Reed-Solomon code (Ref. 9).

(1)

(3)

4)

The RS code is a block code (as opposed to being a
convolutional code).

An RS codeword will consist of / information or mes-
sage symbols, together with P parity or check symbols.
The word lengthis N=1+P.

The symbols in an RS codeword are usually not binary,
i.e.. each symbol is represented by more than one bit.
In fact, a favorite choice is to use 8-bit s; mools. This is
related to the fact that most computers have word
length of 8 bits or multiples of 8 bits.

A multi-bit symbol is the information unit in an RS
code. Each symbol may be corrupted at a single bit-
position or by a burst of bit-errors affecting many bit
positions. In the latter case if the corrupted symbol is
corrected, the RS code is seen to be correcting a burst
of bit-errors. This suggests that the RS code has the
“built-in potential™ of correcting burst errors.

(5) In order to be able to correct “t

B

" symbol errors, the
minimum distance of the codewords “D” is given by
D =2r+1. For multi-bit symbol sequences, the *dis-
tance” between two symbol sequences equals the num-
ber of symbol positions at which the two sequences
differ for example, the distance between the sequences
2434 and 2,0,34 is one. Note that each symbol is
denoted by a decimal representation.

If the minimum distance of an RS code is D, and the
word length is NV, then, the number of message symbols
I'in a word is given by

I=N-D-1)

Combining with the formula given in paragraph (2),
above,P=D - 1.

An example of the structure of a code word in a
practical RS code is as follows:

[ ]
1 223 255
u = % S
Y v
223 message symbols 32 parity
symbols

Each symbol consists of 8 bits. Thus, each codeword
has 255 symbols, or 255 + 8 bits, consisting of 223 + 8
message bits and 32 « 8 check bits. This code is capable
of correcting 16 symbol errors.



€
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12.2 Relationships Between RS Decoding and
Finite Field GF(F,)

It will be seen later that one of the steps in the decoding of
the RS code is “the computation of the syndromes,” and this
step is identical to obtaining the DFT of a sequence defined in
Section 8.

Also, this step is very time-consuming, and RS decoding
will be greatly accelerated if the discrete Fourier transform
techniques applied (o obtain the DFT of a sequence (as
described in Sections 8.1 to 8.4) is applied to “‘the computa-
tion of the syndromes.” Section 8.2 concludes that in order
to apply discrete Fourier transform techniques, the elements
of the sequence must belong to GF(F,) when F, = 22" + |
such that

® There exists a generator element y = 2.

® The order of the element d (given by' v = 1) is a power
of 2.

It follows from the above discussion that certain “param-
eters” of the RS code must be related to the “parameters” of
GF(F,) if the DFT techniques are to be applicable. The
required relationships are summarized as follows:

(1) The symbols used in the RS code must be elements of
GF(F,). where F = 2" +1.

(2) It is convenient to choose the codeword length N to be
equal to the order of the element y = 2, i.e., chovse N =

= ey ;
d=2"""_ This is because GF(22" + 1) will always have

a generator element y equal to 2 (see Section 8.2).
Also, since 22" + 1 = F.,

n
2 =-1(mod F,)

Q") =1 (mod F,)

n+1

22 =1 (modF,)
and, finally,

d=2"*1

Note that in DFT terminology, d is also the transform
length (see Section 7.3).

(3) The number of bits needed to represent a symbol is
determined by the number of different symbols used,

o™ B e S g T L A P

which, by (1), is equal to 22" + 1. Therefore, for F, =
22" 41, the number of bits/symbol is 2" + 1 (see also
Section 10).

123 To Construct an RS Code of Wordlength
Equal to 8 Symbols, and Capable of
Correcting 2 Symbol crrors

It follows from 12.2(2) that N=d = 8 = 2"*! Hence, we
shall choose n =2, ie. GF(F,) = GFQ2** + 1)= GF(17).
GF(17) will have a generator y=2 such that y9= 28 =]
modulo 17.

It follows from 12.2(1) that the symbols in the RS code
will be the elements of GF(17). Also, the number of bits/
symbol will be, from 12.2(3),2" + 1 or 5.

In order to correct two errors, the minimum distance of> the
code word is D= 2t+ 1= 2+2+ 1= 5. The number of
message symbols/codeword is /=N - (D-1) =8 - (5-1)=
4. The number of check symholsisP=N-1=8 -4 =4,

To construct an RS code with minimum distance D, we
first define a generator polynomial as follows:

D-1 -1 ;
g2 = [ @-2=J] @2
=1 i1

=(Z-)Z-2%H2Z-2%HzZ-2Y

Z-)(Z-H(Z-8)(Z+1))

Z%-13Z23+8Z%-8Z- 64

i

1]

Z3 4473 +8Z%-8Z+4 (mod 17)

Assume the message symbols to be 1,232, € GF(17). Let
us form f(Z)= Z7 + 2Z% + 325 + 2Z% of degree N- 1 =17,
using the message symbols as coefficients. In order to generate
a “code word in a polynomial ((Z),” which is a multiple of
g(Z), we proceed as follows:

f(Z)=q(Z)8(Z)+ R(Z)
where
q(Z) = quotient polynomial

g(Z) = generator polynomial

19



R(Z) = residue polynomial q(Z)
82) [1(Z)
AZ)=q(Z)g(Z)=f(Z)- R(Z) :
R(Z)
R(Z) is obtained by long division of the form: CZ)=q(Z)g(Z)
Thus,
Z3.22%+32-3
Z°+423 +82%- 82 +4 |27 + 225+ 325 +72°
2" +425 +825 - 8Z%+ 423
-228 525 + 74 . 473
-22% . 82° - 162* + 162° - 82
325+ 97% - 37+ 822
325 +122% +2423 - 2422 + 122
w3 L1028 2112
- 321222 -2 2+ 282- 12
R@Z)=+ 223+ 52%- 2Z+12
The encoded codeword is c?®) =0
CZ) = q2)- ¢2)={(2) - R(Z) ce* =0

C(2%) =-16=1 (mod 17), etc.

2" +27Z% +3Z25422%-223-522+2Z +5

: It can be shown also that if there are errors in the received
The codewords have the properties

codewords:
C(Y') = q(v") 8(v") r2)#0
C(2") = q(2")g(2")=q(2")0=0, fori=1.234 r(2>)#0
3
This results from the structure of the generating polynomial r25)#0
that =
r(2*)#0

g2)=(Z-2"Y2z-2*)2z-2*)@2z-2%
Suppose 2 errors exist in the received codeword at the

positions underlined below:
Thus, it can be shown that
ce'y =0 NZ)=52° +2Z" +9Z% + 1523 +2Z% +12° + 225 + 27

c2*) =0 or, written differently,



.7, ,r) =(529.15212,1)

= (5,2,12-3,15,2,3-2.2,1)

The error pattern is
(00,-3,00,-20,0)

or

(0,0,14,0,0,15,0,0)

The received pattern can be rewritten as
(Cp €y Gy G ¥ ey 0,000 e)
(5,2,12,15,2,3,2,1)+(0,0,14,00,15,0,0)

where (eo. &, Ak (’7\ is an error pattern, and (Co. C

T
C.,)are the uncorrupted symbols.

Now the syndromes S, for r(Z) = (ry, r,, -+, ry), where
NZ)=S5Z0 +2Z' +9Z2 + 1523 +22Z% + Z5 +2Z6 + Z7, can
be computed by defining

(13)

fork=12,---,D-1=2t(ie.,k=1234)and y=2.

Since n(Z) = (ro. LR r7). the received symbols are
known: the syndromes S, Sz' S3. and S4 can be calculated
from Eq. (13). Speciﬁcally. for (2)= (5,29,15,2,1,2,1), Eq.
(13) yields (Sl. Sz. S3- S-: ) tobe(=8,-5,11,-1).

Actually, the way Eq. (13) was defined implicitly spells out
the relationship between the syndromes and the symbol error
pattern, for from Eq. (13),

8-1
S, = 2, (C,+e)2"
i=0
(14)

8-1
= Ci 2"! S Z 6’,- 2’(1
] =0

where e(Z) = (e, e ., . e,)is the symbol error pattern. But
C(Z) is a multiple of ¢(Z), and, consequently,

c@*)=c@2*)=0,fork=1234

so that

8-1
D, Q4 =0, fork=1234
-0

Thus, Eq. (14) becomes

e, QY =E, . fork=1234 (15)

k i

Equation (15) reveals that the syndrome S is in fact the DFT
of the error pattern, i.e., S, = E, = DFT of ¢;.

The problem in decoding the RS code is to try to determine
the values of e;, i= 0,12, ---, 7. Since at present e; are not
known, we let Y; and X, be the ith error amplitude and the ith
error location, respectively. Thus, the syndrome in Eq. (15)
can be re-expressed as

8-1
- ' XK for k=
S, =2 YXX fork=1234
=1

However, as we see above, (e, €, * - *,e,) are all zero except
in the location i, i,, - - -, i,, where ¢ is the maximum number
of symbol errors that can be corrected. This is to say that

t
=) YX)fork=1234

Sk
i=1
/
=2
= k _ k k
= E Y.X, 'lel +szz
=1
(in our example)
Hence,
= k\0 ' 3 e k\7
Sk-eo(2)+e|(2)+ te, (27),

fork=1,234
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= 002%)° +0(2%)" +14(2%)?
+...+|5(2k)5+ ,+0(2k)7‘
e,)=(00,1400.1500)

or

S, = 14252 +15Q%) . fork=1234

Since from the above Sl. S:' SJ. S4 are -8, -5, 11, -1, we

have
YR 'V, =8 =8
¥ X2+ VX 28 =5
Y, X3 +Y, X, =8 =1
Y X4+Y, X =5, =-|
However, rather than solving the four nonlinear equations

directly, it will be simpler to obtain the transform of the error
pattern. After simple calculations, take the inverse discrete
Fourier transform of the result to achieve the error pattern.
This method is now described.

From the previous discussion, since S, =k, for k=1.234,
some of the transforms of the error pattern e(Z) are known at
this stage. The rest of the transforms, i.e., £y, Eg, E .h.,.(..m
be computed from those already known, ie., E,, E,, Ey, E,
To do this, let us define a generating function as

., P -1 o -2 - -3
E(x) I:Ix +I.2x +I:3x +

il
>
ko
®
>

(16)

in which it is noted that gy * E.E = l:'l ,etc. Since

e

8-1

S,oE, = T e, =

n=0

Z rxt (17)

substituting Eq. (16) into Eq. (17) gives

Ex) = }_: (Zz: 'y,.x‘.") s
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2 ™
«3 ¥, 'y

i1 k=1

=iy &

i=1 I‘X\'

the last step being obtained by the usual technique of sum-
ming a geometrical series. Thus,

2

i
Z l‘-—i

_Pkx)

E(x) = e

where

2
o) = [ - x)
i=1

: 3
X (Xl +X2)x+X|X2

s e
X 0.x+02

and o (x) is called the “error location polynomial™ since its
roots help to locate the errors:
E(x)=-8x""-5x" 2+ 11x 3 -x 4+ %+ %x® (18)

It can be shown that ¢ (x) can be obtained from Eq. (18) by
the “continued fraction method™ developed by Prof. L. R.
Welch and R. Scholtz of USC (Ref. 10) as an alternative
method to the Berlekamp algorithm, which solves the same
problem. The “continued fraction method” is illustrated in
Table 1.

From Table 1, one observes that

R, =0+ 3+

3

o(x) = 0, (x)=(x-x )(x-x,)

I

(2x+3)(6x-4)=x%-2x+9

Hence,
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g-"X . N
g9
+ o XX+ 4 X9~
T nlkk# Nl». + _|».m| _
6+ XT - ¥= ...+m|xk+cux|nax:¢~nnm-_uxw- .I+w|xk+nnxn+unnnu €
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~_ s vl.ﬂ. +e XU+ lem - (X0l
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gray= e - i
: m L[ vg XXy X AR gt 2 -8 4
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R P L ¢ X+, X5~ |8~
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0 v
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and
o(X)=X7?-2X,+9=0, fori=12

Multiplying the above equation by )'r\'l./ gives
YX2U -2y X' 49y X/ =0, for i=12 (19)
[ o i1

Substituting

2
;' = 2 -k
E,=) Y, Xt
i=1

into Eq. (19) yields

L 3K oF = T = g
E,, ~2E,,, +9E,=0, forj=123

Using this recursive formula, £, E_, E . £ can be com

puted from £, £, £, E,. Thus (see Eq. 15),

E =2E, - 9E, =2(-1)-9(11)= 1 (mod 17)

Similarly,
Eo =11 (mod 17)
I:'7 =13 (mod 17)
I:'8 =12 (mod 17) = I:‘o
Thus,
EZ)=(12,-8,-5,11,-1,1,11,13)
Since
81
E = E e, 2"k for k=0,12,---,7
n=0
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the inverse DFT of £, is defined by

]

€
n

81
8)"! }: E 2" for n=012,---,7
k-0

CDE, P VE, TV, T

Since I:'O, LR 11'7 are now known, €y " i €, can be solved.

It can be shown, as expected, that for this example

(eo, €. e, )=1(0.0.14,0,0,1500)

Since the received codeword is (5,2,9,15,2,1.2.1) and the error
pattern is (0,0,14,0,0,15,0,0), the corrected coded sequence is
(5,29,152.1,2,1) - (0.0,14,0,0,15.0,0) = (5.2,12,15.2.3.2.1).

To recapitulate, the decoding of Reed-Solomon codes using
the transform over GF(F,) is composed of the following
three steps (Ref. 11):

(1) Compute the DFT over GF(F,) of the received code
N-tuple:i.e.,

where £ € (,‘F(F" ), and v is an element ol order V.

(2) Use continued fractions to determine o, from the
known S/’ = I:'I- for =12, . i =3 i
Then compute the remaining transform errors £

(3) Compute the inverse of the transform over GF(F,) of
Sy - Ej to obtain the corrected code.
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