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Synopsis:

The problem of modeling a dynamic system described by a system

of ordinary differential equations which has unstable components

	

`or limited periods of time is discussed.	 It is shown that the

global error in a multistep numerical method is the solution to a

difference equation initial value problem, and the approximate

solution is given for several popular multistep integration formulas.

Inspection of the solution leads to the formulation of four criteria

for integrators appropriate to unstable problems. A sample problem

is solved numerically using tnree popular formulas and two different

stepsizes to illustrate the appropriateness of the criteria.
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1.	 Introduction

When a dynamic physical system is modeled by a system of ordinary

differential equations

y' = f (Y, t )	 (la)

Y(t0 ) = Y O	(lb)

it is possible that the system will be physically unstable for some

interval of the independent variable t; an example is an aircraft

approaching a spin configuration. This situation is usually described

by linearizing the system and saying that it is mathematically unstable

at t o if the Jacobian matrix aYIY(t ) = f
y has eigenvalues with

n

positive real parts. The usual analysis 
1,2 

of a numerical method

for computing an approximate solution to the system (1) describes the

behavior of the numerical solution throughout the stable region in

which f  has all negative eigenvalues. A fundamental result is that

no multistep formula

k	 k
Ea.Y	 + hE	 f(Y	 . t	)	 0	 (2)
i=0^ 

n-i	
i=0	

i	 n-i	 n-i

for t  = t 0 + jh, yj the approximate solution at ti, can be stable

wherever the system (1) is stable and have an error order r greater

than 2. The error order of a formula is r if the ore step truncation

error is O(h
r+1

), as described in standard texts 2

This paper addresses the question of what characteristics a

multistep form , ila (2) should have in order to behave well in t-intervals
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when the model equations (1) are unstable. Section 2 gives three

examples that illustrate the analysis involved in studying typical

multistep methods. Section 3 states criteria which should be applied

when choosing a formula to simulate an occasionally unstable system

and gives an example of an inappropriate choice. Section 4 repo-ts

a numerical example with three of the formulas analyzed in tha paper.

2. Example Formulas

The Milne corrector formula

Yn = Y n-2 + 3 (f(y n' t n ) + 4f(yn-l'tn-1) + f(yn-2'tn-2))
	 (3)

has been analyzed 2 . If the formula is iterated to convergence with

any appropriate predictor, the stability depends only on the corrector.

Applying (3) to the linear test equation

y' = aY	 (4)

with two different numerical solution sequences zn , y n , yields an

error en	zn	 yn that looks like

en	
ail + bin

where the ly i are the roots of the characteristic equation

P(E) + h1Q() _ (1- 3 hX)^ Z - 3 had - (1 
3 

ha) = 0.	 (5)

The constants a and b depend on z 0 , y0 , and their first two differences.

In the Milne case, ^l	 ehX + l I (ha) 5 + 0(h6 ), and E2 = -e-hX/3 + 0(h3).

Thus, when a = fy has a negative real part, ^n is growing while ^1 is

decreasing and the leading constant term of i; 2 is the same size as

that of ^ l , so when the physical system is stable, the numerical system

l
I^ `	 i	 t	 J
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is in danger of becoming unstable if ha is large enough and b 0 0.

It is easily seen that the leading constant terms 1, -1, are the roots

of p(z) - z 2 - 1 - 0. When a has a positive real part, 
^1 

is growing

at the same rate as the correct solution, 
E2 

is being highly damped,

and the relative error will be almost constant. Thus, the Milne

method behaves well in unstable regions but is potentially unreliable

in stable regions of the exact solution.

A similar analysis can be made of two Adams-Bashforth explicit

(predictor only) forumulas:

AB2: y  = Y n-1 + 2 (3f(Yn-l'tn-1) - f(yn-2'tn-2)) 	 (6)

AB3: Y n = Yn-1 + 12(^3f(Yn-l'tn-1) - 
l6f(Y

n-2' t n-2 ) + 5f(Yn_3•tn_3))
	 (7)

The error in AB2 is e = a^ + b 2, wh ere e = e	 + Xh(3e	 -e	 )/2n
n	 n-1	 n-1 n-2

z
which has the characteristic equation	 - (1 + 2 X)^ + 2 hX 	= 0. By

assuming distinct roots that are polynomials in ha and equating the

undetermined coefficients to 	 1)(^_E2), the following system of

equation must be satisfied. If 1 = CO a 1(hW , and 2 =	 b1(ha)', then

i=0	 i=0

ao + bo = 1, aobo	0, a l + b 1	3/2, a2 + b 2 = 0, a
1 b0

+ aob l = 1/2,

aob2 + a 2bo + a 1 b 1 = 0, a 3 + b 3 = 0, aob 3 + b 
o 
a 3 + a 1 b 2 + a 

2 
b 1 = 09

which is solved by	 = 1 + ha + (ha) 2/2 - (ha ) 3 /4 + 0(h 4), ^2 =

1 (ha - (ha)2 + (ha)^/2) + 0(h 4 ). These can be rewritten as

2

&l = e
hX - (ha) 3 /12 + 0(h 4 ), i; 2 = (e	 1)_ 1) - 3(ha) 2 /8 + 0(h 3 ). So

when Re(a) < 0, both error components are decreasing, and ^n is

oscillating. When Re(X) >0, the principal error ^ due to the root 

of p(^) - 0 is following the true solution, maintaining the same

relative accuracy. The parasitic error ^n due to the non-unity root of

-
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P(0 - 0 is increasing at a much slower rate due to a zero constant

term and the exponent ha/2 being smaller than ha. Thus, relative

error should remain nearly constant in the unstable region of the

physical system. The relative error will also be good in a restricted

region of the negative complex half plane called the stability region.

This consists of all complex ha such that the numerical method produces

a decreasing solution.	 If the whole negative half plane is in the

stability regton,the formula is called A-stable? Sample stability

regions for A132 and AB3 appear in Figure 1.

The same analysis for AB3 for three separate roots 
3 
(- i ) and

i=1

for a repeated parasitic root in (l;-^1)(-^2)(f-nC3) yield contradictions

in the equations for the undetermined coefficients. Instead of a fell

analysis, then, the worst case can be assumed, that of a multiple

root corresponding to the multiple root of p(z) = z 2 (z-1) which exists

for hX	 0. This means the error looks like e n = ailn + (b+cn) ^ n2 ,  with a

linearly growing parasitic error term. However, the leading terms of
11

2 can be estimated and are found to be 2 = 12 ha + O(hX2) 	
(e12hX -1)

+ O(h 2 ). Thus, even in the worst case of large coefficients a,b,c due

to large initial errors, the parasitic error is growing at most

linearly while the solution is growing exponentially, so thii largest

contribution to the error will be the principal error term.

3. Selection Criteria

Observation of the three formulas above leads to the following
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criteria for methods that do well both in the stable and unstable

regions of the physical model.

1. All roots of p(z) = 0 should be very small, and preferably

zero, except the principal root, which is always 1. In general, a

nonzero root z  leads to a root of the characteristic equation

^ i	z i ehX K; a zero z  yields & i = ehaK - 1, for some real K.

2. The coefficients K should be positive, so that the parasitic

error is decreasing for Re(a)<0, and unless the corresponding	 z i	= 0,

JKI	 < 1	 is also necessary so the relative error doesn't grow faster

than the principal error term for Re W > 0.

3. Multiple roots should be avoided, since the error term will

include factors of n. An exception occurs for z  = 0, since only

linear error growth occurs in that case.

The above three criteria all attempt to keep the error in following

an exponentially increasing solution from growing faster than the

solution grows. The following example shows the other extreme. The

2-step Implicit Backward Differentiation Formula (BDF2) is

yn	 3 'n-1	 3 yn-2 + 3 h f 
(y n' t n )	 (7)

and p(z) = 0 has the roots 1,3. The error terms look like

l; l	ehX + 0(h 3 ), ^2	
3 e

-hX/3 + ^7 (hX) 2 + 0(h) 3 , so this method

meets criteria 1 and 3, and the small factor 1/3 in ^2 lessens the

problem with the sign of K. However, as can be seen in Fig. 2, the

stability region is such that the numerical solution, as well as the

error, is only increasing for a very small portion of the positive
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half plane. So using BDF2 on an unstable system will likely generate

a completely spurious decreasing numerical solution, except for small

stepsize h, when the error is increasing fast. A fourth criterion

has been suggested  and will be added here.

4. The stability region of the formula must not make unstable

physical solutions numerically stable.

4. Numerical Examples

The three methods AB2, AB3, and BDF2 were applied to the unstable

complex problem

Y ' _ 0 + j/2) y ,	 (8a)

Y(0) = 1 ,	 (8b)

where j = (-1) i , with two fixed positive stepsizes h and both exact

and inexact back starting values. The AB2 and BDF2 methods are second

order methods and thus have comparable errors that are larger than

those for the third order AB3 method, given the same stepsize. The

implicit BDF2 method used an Euler predictor and 10 corrector itera-

tions. The starting values given at n=0 were y n-i = exp(-i1h) for

the exact values and y n-i = exp(-iah) + .Oli for inexact starting

values, where a - (1 + j/2). All the elements in this example are

exaggerated so that the results may be easily seen to agree with the

predictions of the previous sections. The more realistic case of the

eigenvalues of the Jacobian being close to the imaginary axis, as in

spinning aircraft, would require a great deal more computation yet

i
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would reach the same conclusions.

The predicted relative errors can be expressed as

(alenhX + bl(ehX/2_ 1) n )e-nhX , (a2enhX + (b2 + c2n)(e1lha/12_1)n)e-nha

nha	 1 n -nha/3 -nha
(a 3 e 	 + b 3 (3) a	 )e	 for A62, A63, and BDF2 respectively.

When h < .25 is chosen, the numerical solution is outside the

stability region of all three methods. The logarithm of the principal

relative error is In (aIe 
nha 

/e nha ) = in a i , a constant in all cases.

If the logarithm of the relative error is not a constant when plotted

against the independent variable t = nh, then the parasitic errors must

account for most of this. For the Adams methods and c  = 0, these are

	

Kha	 n nha	 Kh^
ln(b. + c i W e	 -1) /e	 ) = ln(b. + c.n) + n ln(e	 -1) -nha, and

for BDF2 it is In b 3 + n lr,(3) - 3 nha.

Figure 3 shows the logarithm of the relative error for all three

methods with exact starting values and h = .05. Note that the BDF2

error stays less than the AB2 error throughout, indicating only small

contributions from the parasitic error terms. Figure 4 shows the same

results for inexact starting values with a corresponding increase in

b 2 , b 3 resulting in a large initial error in BDF2. As n increases, the

term b 
3(3)	

ia	 s damped until at t - 4(n =80), this term is again

negligible com compared to the b	
ha/2	 n

p	 1(e	 -1) term. Comparison of Figure 3

and Figure 4 indicates the c 2n(e
llha/12

-1) n term does not significantly

affect the error in the AB3 method, except for the initial perturbation,

althoug h the principal error term a 2 is much larger.

7igure 5 shows the logarithm of the relative error when h = .5,

which is still outside the stability region of the Adams methods but

1	 11	 t	 l

01-
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inside that of BDF2. The error in BDF2 is growing faster than that of

the other methods since it is due to a decreasing numerical solution

modelling an increasing analytic Solution. Fiqure 5 comes from exact

starting conditions but similar results arise from inexact starting

values.

5. Conclusions

When simulating a problem which is unstable over certain periods

of the independent variable, one's choice of method affects the relative

accuracy of the numerical solution. When an explicit method is used,

as is required in real time simulation and is often the case in simple

simulation programs, a multistep method of the Adams-Bashforth type will

accurately follow the exact unstable solution despite large initial

errors. The AB2 method has less computational pitfalls than higher

order formulas due to the lack of multiple roots, but computational

experience shows the lack of a leading constant term in these roots causes

all such methods to be very accurate. Multistep methods are preferable

to multistage methods, e.g. Runge-Kutta, since a k-step method is as

accurate with only one function evaluation as a k-stage method requiring

k evaluations of f(y,t).

If an implicit corrector is to t- employed, formulas with a simple

characteristic polynomial p(z) - (1-z)z k-1 , i.e. Adams-Moulton

methods, should behave better than even the (possibly) A-stable BDF

methods because they have only one non-zero root and produce increasing

numerical sequences wherever the solution is increasing, at least for
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methods of less than five steps. The best implicit method from a

stability/instaUility standpoint is the trapezoidal formula

yn	 Yn-1 + 2(f{Yn.tn) + f{Yn-l'tn-1))

which has no parasitic roots and is increasing (decreasing) only

where the exact solution is unstable (stable). However, this method

is only second order. All of the implicit methods take on their opti-

mal stability properties only when iterated to convergence, which

usually requires at least two evaluations of f(y,t). Therefore, from

the standpoint of efficiency and stability, AB2 seems to be a practical

integration method for occasionally unstable systems of ODE's.
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Captions to figures

1. Stability regions for A82 (larger figure) and AB3.

2. Stability region for BDF2 (method is unstable only inside the

region indicated).

3. Logarithm of relative error for h - .05, exact starting values -

AB2 (Q ), AB3 (L), BDF2 ( ).

4. Logarithm of relative error for ii - .05, inexact starting values -

A82 ( 0) , A83 (©) , BDF2 (0) .
5. Logarithm of relative error for h - .5 - A82 (L^), AB3 (0),

BDF2 (Q).
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