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1.0 INTRODUCTION
 

This is the second report on data processing techniques useful for
 
infrared astronomy data analysis systems. As with the first report
 
(NASA CR-151943), the investigation is restricted to consideration
 

of data from space-based telescope systems operating as survey
 

instruments. In this report the theoretical background for specific
 
point-source detection schemes is completed, and the development of
 

specific algorithms and software for the broad range of requirements
 

is begun.
 

Section 2 develops the detail detection tests and processing
 

requirements for point-source surveys and evaluates the performance
 

measurement processes. The details of peak detection decisions
 
and correlation detection are covered for the case of general
 

bandlimited white gaussian noise. For non-white noise, a modified
 

correlation test and a matched filter test are presented. A
 
technique for resampling the data which is equivalent to a matched
 
filtering approach is discussed which automatically decorrelates
 

the noise. Implementation of this Karhunen-Loeve filtering is
 

necessarily complicated, but for some kinds of noise an
 

acceptable approach.
 

Section 3 then reviews a basic processing task to indicate where
 

computation is needed outside of the normal data stream. While the
 
processing used in the primary data reduction task is important,
 

the actual software depends heavily on the specific mission hardware
 
and is best approached anew for each task using the theories of
 
Section 2 of this report and of the previous report, and of several
 
cited authors. For the general signal processing task, a routine
 
for designing digital filters is given based on the theory of
 

Section 2.5. The calibration of detector-filter systems is the
 

most complicated of the tasks off the main processing line; a routine
 
which provides this calibration for blackbody or other input spectra.
 

Finally, the preliminary processing routine for a previous survey
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program is presented and briefly discussed to indicate how much
 

processing can be done in a single pass of the-data.
 

The Appendix in Section 4 presents an interesting game which can
 

develop a fuller appreciation and understanding of the complexities
 

of data analysis.
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2.0 TECHNICAL ASPECTS
 

This section completes the task begun in the first report of
 
reviewing the theoretical basis for the design of point-source
 
survey data analysis software. The detection techniques for
 

single-channel signal and noise processing are reviewed. The
 
-schemes reviewed include peak detection, optimal filtering,
 

correlation, and Karhunen-Loeve filtering. The details of
 

digital filtering, which is applicable to many aspects of data
 
processing, are reviewed-in the final section.
 

2.1 Detection of Signals in Noise
 

In most communication systems the errors (false detections and
 

missed signals) are assumed to be of equal importance and with
 
known probabilities. In more general detection problems, however,
 

the a priori probabilities and costs of those errors are difficult 
to determine. The Neyman-Pearson test was first applied in such a 
case to radar detection with a peak measurement technique. The 
criterion can also be applied to more sophisticated detection
 

methods, and in all cases, will give the highest probability of
 
detection at a chosen false-alarm rate. The type of technique used
 

depends on the amount of information available about the expected
 

signal; generally, more-information used will result in a higher
 
detection probability at the chosen false-alarm rate. The likelihood
 

ratio is the test used where the hypothesis is chosen if:
 

= n7 . 2.1-1 

and the counter-hypothesis (no-signal) is chosen otherwise. Here
 
p(s) is the probability density function of the data with a signal
 

present and-p(n) is the pid.f. of the noise-alone, and n is the
 
-decision 
 level chosen to satisfy the -false-alarm constraint.
 

Consider the case of a signal in white noise, such that the signal
 

has a normalized mean value of one. The probability functions are:
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p -s an pn =-2.1-2
p(s 1 -(y-l) 2/4 and p(n) e-y214
 

Then the likelihood ratio test is:
 

X(y) e(y/2)-l > A 2.1-3 

To determine the threshold X0 the false-alarm probability is
 

found from:
 

-y 2 /P(f.a.) : i- e _ dy 2.1-4 
Y 

Ifwe want a false-alarm-rate of 10% or less, then y = 1.8, and we
 

choose the hypothesis ify 2- 1.8.
 

The probability of detection for a single test observation is:
 

-(y )2/4 dy
P(det.)= f e - = 0.285 2.1-5 

Y 

In terms of the likelihood ratio, note that A(y) = A6 = 1.9 and we
 

make a detection whenever (y)L 1.9. To improve this rather
 

mediocre performance, several measurements may be tested. With
 
the same false-alarm rate, we choose the decision level differently.
 

Ifwe take n1independent samples, the signal-present probability
 
distribution has unity mean and a variance of 02, and:
 

' Yn) (y1 )2
 Ps(Yl Y2' " 1 exp - 2,z-] x ... 

2.1-6
 
-(yn I )2x- exp [ 

Similarly, the noise-only probability distribution is:
 
(1__,n/2 n.y. 

pn(Y) 2-T exp (')2 2.1-7 

1 
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Taking the logarithm of the likelihood ratio, the decision test is: 

I Yi 

ni 1 -

> '2.1-8 

where 

Xo- 2 + G n In 0 

Now the probability of each kind of error is different, and we 
choose X' by evaluating P1 (f.a.) + P2 (missed signal), where 

P1(f.a.) = mt(Y) dy n )1/2 enZ2/202 dz 

and 

P2(m.s.) = 

00 

0 

Ps(y-) d { ( )1/2 e -n(z-1)2/22 dz 

2.1-9 

It now becomes clear that improving the performance of simple peak­
detection schemes becomes a complicated task even using very little 
information about the signal. If'we use more of the information 

available, and some of the knowledge about the nature of the noise, 
a mqre successful detection scheme can be derived. When multiple 
detecfions-are made on a single source, the above can be used to 
evaluate the detection probability. 

2.2 Correlation Detection 

Rather than make a detection test based on only the peaks of the data 
stream as inthe previous example, consider how we might deal with 
detecting a signal that we know. Let rk' k=l, ...,m be 
the sequential'data samples. Assuming additive noise, 

rk = {sK} + nk 
0 

2.2-1 
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where SR isthe kth value of our expected signal, and nk is the
 

noise sample. We may now derive a likelihood ratio test which
 

uses this information.
 

First, assume that the noise isbandlimited white noise with power
 

spectral density S(d), = No/2 for IwI < 9 and 'ero otherwise. The
 

noise autocorrelation function-then is given by:
 

RU) = Nos sin_____ 2.2-2 

This has its first zero at = //S so that if the received signal 

is sampled at intervals At = /P the samples will be uncorrelated, 

and being gaussian they then will be statistically independent. 

The probability density functions of the two cases will be: 

S nm/2 m rK-S)2
 

Sexp k=l 2 n
 

and 2.2-3
 

In (rk)2
m/2 

Pnr)c(2__Trn kil 2a-2


5 _o)I exp [-

n
 

and the logarithm of the likelihood ratio test results in the
 

decision test:
 

2
m SR

rKSK > n +
n X 2.2-4
 

k n k=l n
 

Now the left-hand side of 2.2-4 is just the normalized cross­

correlation coefficient of the signal with its expected template.
 

Furthermore, the variance of the noise a2 is just the noise auto­n
 
covariance function at zero frequency,
 

2- NO"
 
Gn - 2.2-5 

6
 



ORIGINAL PAGE IS 
OF POOR QUALITY 

Since one of our two signals is zero (noise only), we may-define
 

the average signal energy E and the tim cross-correlation coefficient
 

p by:
 
m 

E 1 k2 2.2-6E 2n k 1 

and
 

p= 0
 

By extending equations 2.2-3 to infinite,bandwidth &-c,the probability
 

density functions for the signal case and the noise-only case can be
 

derived as:
 

1/2 (G+E)2
 
-P1(G) 

E1
n exp 2NoE 
2.2-7 

P1/2 (G-E)]s = 2G0El exp I- 2NeE 

Since the false-alarm rate and the missed sources probabilities are
 

equal when the samples are uncorrelated, the error rate is:
 

_P e-z2/2

= 

-z
 

Pe 2.e 
 d
 

where 2.2:8.
 

y (E/N )l/2 
0. 

and thus we can determine an error rate based on the signal-to-noise 

ratio, independent of the shape of the signal. Figure 1 shows the 

error rate as a function of the signal-to-noise power ratio. Note 

that as long-as the noise samples are uncorrelated, the error rate 

is also independent of the number of samples inthe correlation 

sum. This apparently unreasonable-result is directly related to 

the assumption of statistically independent samples. For bandlimited 
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white noise there must be m = Qt/w = constant independent samples in the­

interval 0 to T. Oversampling the signal may actually result in degraded 

,performance, as will be discussed in section 2.4. If we choose the 

value of y in 2.2-8 to achieve a desired error rate, then the probability 

of detection is 

22 
P = J (2r) 

-1/2 
exp - dz 2.2-9-/-


y-(2E/No9I 2
 

which is shown in Figure 2 as a function of signal-to-noise ratio and
 

error ,rate.
 

If we have chosen the normalized signal template properly, our detection
 

test simultaneously makes a best estimate of the signal amplitude.
 

If the signal model is written as a function of a constant-amplitude
 

factor A, then the maximum likelihood estimate of that amplitude is
 
.the solution of:
 

X [ri-si (A)] a s(A) 0
i=l. 2.2-10S A
 

-or, writing s = A s ,we want the solutioh of: 

• (ri - A S i)Si =0 .2.2-11
 

-That solution is 
m
 

~:(ri Si) 
A- m 2 2.2-12 

S
Si 

and nowif Si was normalized such that Si = 1; and we re-arrange
 
the terms in 2.2-4, we have the detection test and amplitude estimate
 

simultaneously:
 

m1 
A- r S > U2 in X + 2.2-13 

n 0 2k=l R 
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Now-it is clear how the correlatioq test is a better detector than
 

a peak test. The correlation test takes an average of the signals
 

weighted by the expected response 4s a best esimate of the amplitude.
 

Because it is using n samples of the signal, the improvement in
 

error rate can be as much as fn. The uncertainty in the estimate
 

is determined from the noise autocovariance function, as in
 

section 2.3 as:
 

T t 
aA *{ s(T) s(z) Rn,(z-) dzdt 2.2-14 

00 

Ifwe have N multiple pulses available from a single source, the
 

decision test 2.2-4 can be modified to:
 

N m 1 N m
 
1 1 rsk L 2in xo+zy I X
 

ki ki=l k=- n 

The false-alarm rate given by 2.2-8 is not changed, since we are
 

designing our test for a chosen error performance. However, the
 

detection probability improVes; the new detection rate is given
 

by 2.2-9 by replacing E with E':
 

N 
E= E
i
i =1 

And since all signal energies for a given source are equal, there
 

will be a 3 dB increase in the equivalent performance for each doubling
 

of the number of signals.
 

As a final note to this discussion, the signal-to-noise ratio used
 

here is the more useful signal power-to-noise power ratio, not the
 

typical peak-to-rms value which has little physical meaning.­



2.3 Matched Filters and Non-White Noise
 

The cross-correlation term on the left-hand side of equation 2.2-4 can
 

be replaced by the equivalent matched filter. If the filter's transfer
 

function is h(ti), then the output of the filter is
 

m 
e(tk) = hi rk- 2.3-1 

and by inspection the filter output matches the correlator output
 

if
 

hi = Sm1
 

That is,the.matched filter is the time-reversed image of the signal
 

expected- It is important to note, however, that because of the time
 

reversal, the matched filter and the correlator output are equal
 

only at time T, where the entire signal train (insamples) is within
 

the bounds of the filter or of the correlator.
 

The matched filter representation is well suited to the case of non­

white noise. We will show that the optimal detector for non-white
 

noise 'replaces the left-hand side of 2.2-4 with a filter which is the
 

product of the white-noise matched filter and a pre-whitening filter
 

described in terms of the autocovariance function of the noise. To
 

avoid confusing subscripts, we shall write the filter transformations
 

in terms of time integrals which are the generalized extensions of
 

the summations in section 2.2. The output of the filter at time T
 

is:
 

e(T) 	 fh(T) r (T--r) dct 2.3-2 

0 

The sighal and noise components are easily identified as
 

S(T) = h(T) S(T-+) dt 

0 

2.3-3 
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0 

f
T 

N(T) : h(T) n (T-T) dT
 

The noise power then can be written in terms of the autocovariance
 

function as
 

= { 1Th(r) h(z) Rn(Z-T) dzdT 2.3-4
 

0 0
 

The optimum signal-to-noise ratio can be found by minimizing the
 

Lagrangian:
 

L = T h(z) Rn (z-t)dzdT - p fh(t)s(T-T) dT 2.3-5 

00 0 

The resulting variation yields: 

ho (z)Rn(T-z)dz = s(T-T) 2.3-6
 

0
 

The filter which satisfies this relation will maximize the signal-to­

noise ratio for a known signal in any noise with autocovariance function
 

Rn(T). Equation 2.3-6 is, of course, a Fredholm integral equation of the
 

first kind which is solvable only for a restricted group of covariance
 

functions Rn(T). If, however, we can adequately approximate the
 

integration by replacing the 0 to T limits with -- to +-, then the
 

Fourier transform of 2.3-6 gives immediately
 

S*(s)e-ST
H(S) Sn(S)
 

where s = iw and Sn(s) is the actual power spectral density function
 

of the noise. This matched filter is then just the white-noise
 

matched filter co nvolved with the actual noise spectrum. This result
 

was derived for the limit T ±, but a detailed derivation shows that it
 

holds wherever the data samples are uncorrelatedwhich was determined
 

from the zeros of the noise autocovariance function.
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As in the previous section, a best estimate of the signal amplitude
 

exists in the presence of non-white noise. That estimate is given
 

by:
 

Soh(T)r(T)d
 
A- 2:3-7


Th(T)s(T)dT
 

where h(T) is the solution of:
 

T 
s(t) = Rn(t-t) h(T) d-r 2.3-8 

Comparing this result with 2.3-6, we see that the optimal whitening
 

filter is the best weighting function for the correlation detector and
 

the amplitude estimate in the presence of non-white noise.
 

2.4 Karhunen-Loeve Filtering
 

The emphasis in the preceding section was an additive white noise.
 

Since this is often invalid, we derived a test based on the noise auto­

covariance function. For the white noise case we considered a flat
 

bandlimited spectrum and found that appropriate uniformly spaced amplitude
 

samples were statistically independent. For colored noise we considered
 

the continuous sampling limit and wrote the detection equations as
 

integral relationships. However, uniformly spaced samples in colored
 

noise are correlated and the sampled case is difficult to evaluate
 

explicitly. There is, however, another method which can be used to
 

generate statistfally independent samples. While these are not
 

amplitude samples, they can be used to construct the same detection
 

and performance tests as previously described. The approach used will
 

be to expand the signal in a series of functions which are orthogonal
 

over the region,0 to T.
 

The functions we seek are a set of fi(t) 'swith the normality
 

condition:
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T!fi(t) fj*(t) dt 1=j, 2.4-1
 
i+j
00 


and given these functions, the new samples rk of the data are given by:
fT
 
rk = r(t) fk(t)dt 2.4-2
 

we also need the re-sampled signal template:
 

Sk = s(t) fk (t)dt 2.4-3
 

The eigenfunctions fk(t) are the solutions of the integral equation:
 

Xj ft (t) fj (x)Rn (t-x)dx 2.4-4 

0 

Now we may write the probability density functions for the new sample
 

set, as:
 

N XT 11/2 rk-sk)Ps H exp,C 2.4-52.4-5 
k=1 
 k
 

N 1_ 1/2 rk
 
pn : ( k )/exp I­

k=l k k
 

and the detection test becomes:
 

1 N s 2
N skrk 
- ln X0++ 1 r 2.4-5 

k=l k 0 2 k=l k 
which is identical to 2.2-4 except that 02 has been replaced by 

n 
the eigenvalues Xk' and the signal samples have been transformed by a 

weighting function similar to the whitening filter of section 2.3.. In 

this case, however, equations 2.4-2 through 2.4-4 can be written as 

sums over the time sampled values with no loss of generality, hence, 

with no degradation in performance caused by correlated samples. 
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2.5 Digital Filtering
 

The-transformations of sections 2.2 through 2.4 can be written as filter
 

transfer functions.- Additionally, empirical methods can be used to
 

synthesize a desired transfer function and the equations of those
 

sections can then be used to evaluate the error rate and detection
 

performance. This latter course is often followed vhen the sampling
 

rate is constrained by some considerations other than those requiring
 

uncorrelated noise samples. Typically the desired filtering is
 

matched to the sample rate and the signal dwell time by the Nyquist
 

theorem and we wish to evaluate the detection performance of such
 

systems. Additionally, it may be desirable to further filter the
 

data to improve the signal-to-noise ratio based on the observed noise
 

spectrum. In this section we will discuss how such a transfer function
 

could be synthesized and then derive the algorithm for converting that
 

analog transfer function to a digital difference equation.
 

Given an analog impulse response function H(S), the difference equation
 

for the filter function can be derived. Also, given the nominal
 

characteristics desired, the transfer function can be synthesized.
 

Both of these techniques are described below.
 

The frequency response can generally be described as a series of
 

first-order filters. The transfer function of a low-pass filter is:
 

a, 
Hi(S) = (ai-S-) GL 2.5-1 

where ai = 2Trfi, GL is the gain of the filter.
 

fi = the corner frequency of the filter (Hz).
 

Graphically:
 

6 6 
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That is, the response of a low-pass filter is flat for f < fi, and falls 

at 6 dB per octave (linearly on a log A-log f graph). 

For a high-pass filter, 

Hi.(S)= S ) GH 2.5-2
1l 

which appears as:
 

and the slope is the same as before. Higher order forms of these
 

filters have transfer functions which are powers of the above H(S)'s,
 

with the exponent n equal to the order of the filter. That is, a
 

3rd order high-pass filter is:
 

H.S) Sa.s)3 GH 2.5-3
1H
 

and its response slope increases by a factor of n (3 in this example):
 

Finally, a circuit which can be described by a series of such.filters
 

has a transfer function which is a product of the elemental Hi(S)
 

terms, and a response curve which is a series of line segments with
 

n(± 6 dB) quantum slope changes at each characteristic frequency.
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A representative example is demonstrated by the following. The 

filter consists of a first-order high-pass filter of fi = 4 Hz, and 

a second-order low-pass filter of f2 = 40 Hz. In addition, the 

detector acts as alow-pass%3 filter of order 1 at f3 = 1 Hz. The 

overall transfer function is then: 
a2 a1
 

S+
H(S) = ( ) a2+ (Zaa+ )2 G 2.5-4 

a3 = 2 r 4 Hz
 

= 2r 1 Hz
 

a1 , = 27r 40 Hz
 

a2 

,which is pictured as:
 

1d
 
Electronics 


II 

A r 
+
 

6d.
 

A Detector.I I 

I -I I -

I iI I 

1Hz 4Hz 40Hz 
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The definition of the corner frequency is important here. Ifwe have
 

defined the fi points as the traditional 3dB or half-power response
 

frequencies, then the values used in 2.5-1 and 2.5-2 for a, must
 

be altered somewhat. Note, for example, that for a single order
 

filter (m=l), we have the half-power response at
 

2 a i2.-
H(S) H'(S) ai+ S
z 

=a 2.5-5 

1
 

as expected. For an mth order filter, we find
 

H(S) HIS) 2 j) S = (nF 1) at 2.5-6 

and similarly, for a high-pass filter:
 

S = ai /( 2.5-7
(-I) 


Given the transfer function H(S), the difference equation can now be
 

determined as follows. First, transform the frequencies. Since we
 

desire the digital equivalent frequency, determine Ai by:
 

21rfiT aiT
 
Ai = TAN ( 2 : TAN( ) 2.5-8
 

where T is the sampling interval, = 1/SR (SR is the sample rate in
 

Hz). Second, transform the H(S) function to an H(Z) function by
 

the substitution:
 

S Z- 2.5-9
 

This transformation preserves the square-magnitude response of the
 

system except for a warping of the frequency scale as given by the
 

first relationship (2.5-5). The advantage of this transformation is
 

that aliasing is not introduced by the digital representation, thus
 

avoiding the necessity of "guard" filters (anti-aliasing) which would
 

result ina digital filter of higher order than the original analog
 

transfer function.
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The 	technique thei is to express H(Z) in terms of a polynomial in Z,
 
I
as: 


H(Z) = G.*--(z 	 2.5-10
 

with the order of Q(Z) equal to or greater than P(Z). Most easily,
 

the substitution used is:
 

(A; + S) A1 +l)(Z + U.) 
I (Z+l) 2.5-11 

(Ai 	- l) 

where U 	 and P. = A. + 1

S(A + 1) 1 1 

The numerator and denominator of H(Z) are then divided by Zn, where
 

n is the order of the denominator, resulting in a transfer function
 

which is a ratio of two polynomials of equal order in powers of Z-l.
 

Equation 2.5-9 is used for S terms in the numerator. The general form
 

of this H(Z) is:
 

(n-rn)
 
A.
 

z-n(Z+l)n-m (Z l)m ( 

iz A.
 

H(Z) n 	 Gi 2.5-12
 
-
(1 + Si Z ) i Pi
 

il i=l P
 

where:
 

Ai is as defined previously;
 

n = the number of elemental filters; 

m = 	the number of high-pass filters, and the Ai's are ordered
 

with the low-pass frequencies first.
 

Pi = Ai + 1
 

and
 

Si are the expanded coefficients of the product function:
 

20
 



n 
(U.+ z)

i=il * 

such that:
 

nS1= y U. 

n j=1 
: u.( I U.) 2.5-13 
j=2 i=1 

n k-I j-I
 

j=3 j=2 i=i
 

n m-I £=I j-I
Sr I Um I- Ut X [E.... ( A01)
 
m=r 2=r-I k=4-2 i=l A
 

Again from our example 2.5-4, the H(S) transforms to:
 

H(Z) 4 (Z-)(Z+l)3 2 A2 G .2.5-14
 

Z-4(Z+UI)2(Z+U2)(Z+U3 ) P1
2 P2 p3
 

The Z-transform corresponds exactly with 2.5-12 if we consider the
 

four elements of the filter as having frequencies (inthe original
 

form) of 1, 4; 40, and 40 Hz. That is, U1 is repeated, but treated
 

as if it were two different terms. Ignoring the constant factor
 

temporarily:
 

1-2Z-I - 2Z7 3 - 4 

H =M(Z 4 - 25-15 

1 + ) Si Z­

i=l 
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where S1 = 2U1 + U2 + U3
 

S2 = U 1U1 + 2U1U2 + 2U1U3 + U2U3 

2.5-16 

S3 = U1UIU 2 + UI UIU 3 + 2U1 U2U3 

S4 =U 2
3
 

Now that we have the Z-transform of the H(S) transfer function, the
 
Noting that Z-I
 difference equation for the system can be written. 


is the unit delay function, and writing H(Z) as:
 

n Z i
 
1 + .Ti
 

H(Z) -L}(l 2.5-17

1 +n Si Z-i
 

i=1
 

where Y(Z) is the Z-transform of the output, and X(Z) is the input
 

transform. Inverting the transform we find:
 

n n 
Yj = X. + i Ti Xj- S. Y-. 2.5-18S i=l J­

where Y. is the jth sample of the output series, and X. is the
 

corresponding ith input value. Continuing our example,
 

Yn=Xn-2Xn- 2 Xn-3-Xn-4-SiYn-lS2Yn-2-S 3 Yn3-S4Yn-4 2.5-19 

It is interesting to note that because the transformation 2.5-9 is
 

bilinear, the difference equation will always be the same order in
 

Xn- i and Yn-i terms (except for canceling of some Zi terms b9 the
 

expansion of (Z+l)m(Z-l)z).
 

To find the Ti coefficients of equations 2.5-17 and 2.5-18, we must
 

expand
 

m
(+Z)n-m(-Z) = 1+Tl Z+... + TnZn 2.5-20 
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/ 

but the gain cohstant in 2.2-12 of 

m 
Ai 

n G.
(A) = COEFF 2.5-21 

must be included as a factor of all the Xi terms. 

Expanding 2.5-20 can,be done using the binomial expansion subroutine 

attached to expand (I+Z)nm and (I-Z)m, and the polynomial product 

routine to find the resulting terms. Then if we redefine the sub­

script of T by one to absorb the 1 on the r.h.-s. of 2.5-20, we can 

include the factor 2.5-21 easily into the definition of Ti: 

(l+Z)n-m(lZ)m - T1 + T2 Z+... + Tn+1 Zn 2.5-22 

.ifwe also redefine the Si and set S, = 0, then the relations 

2.2-17 and 2.2-18 can be written: 

Yi =j 
n+l 

i=l Ti Xj-i+l 
n+1 

-i=l S YY.i+l 
-t+ 

2.5-23 

= 

n+l 
Z

i=l 
(Ti Xj_i+ 1-~ 

Si Yj_i+l ) 

-This redefinition of Si has been included in the attached algorithm 

(see section 3.1). 
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ORIGINAU PAGE 1S
 

OF'POOR QUALITY3.0 	 ALGORITHMS AND SOFTWARE 


Section 3 of the first report covered indetail the basic survey
 

point-source processing scheme. However, in order to successfully
 

complete the sky survey and to define the detection test gates, a
 

number of peripheral routines are needed. This section will discuss
 

several of the most important of these routines. -Some routines are
 

simple, such as coordinate transformations used for positional
 

matching. Others, although complex and worthy of discussion, are
 

very specifically written for each mission. These routines generally
 

are part of the primary data processing system and are assembled from
 

the formula and algorithms of section 2 of this report and section 3 of
 

the previous paper. Yet, other routines which are a.partof the data
 

base merging are decisions and tests for specific types of astronomical
 

sources and dejend on the sensor bandpasses and sensitivities
 

and on the spectral characteristics of the sources being searched for.
 

Some routines which are only peripheral to the primary detection
 

scheme are so basic and important that they are worthy of individual
 
discussion here. The complete set of programs designed and tested
 

on the Celestial Mapping Program (CMP) data will be published at
 

a later date when that task is completed.
 

Two basic programs will be covered here and one front-end detection
 

scheme used on a previous survey program. First, we will discuss an
 

application of the digital filter design scheme of section 2.5. Then
 

the calibration of infrared detectors isdiscussed and a routine to
 

evaluate the spectral response of a detector plus filter combination'
 

to a variety of stellar spectra.
 

3.1 	 A Digital Filter Design Aid
 

The discussion of section 2.5 covered the algorithm for digital.
 

filter design; here, we consider the specific use of the following
 

routines. The program attached does two things. -First, the
 

coefficients of the difference equation
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N+1
 
Yj = Ti Xj_i+ l - Si Yji+l)
 

where the XYs are the input data, Yi's the output data, and Si
 
and Ti the filter coefficients determined from the desired frequency
 

response.
 

ISecond, the routine creates a pair of sample response sequences.
 

One is the impulse respdnse function of the filter. If the filter
 

characteristics were chosen to duplicate the response of a
 

detector and its electronics, then this impulse response will model
 

the radiation-hit response. The other response is the system
 

reaction to a square wave. Since the duration of the square wave
 

is equal to the point-source dwell time, the response is approximately
 

the same as a source signature.
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PROGRAM TRNSFN 76/76 OPT-I FTN 4,5t1M 05/06/77 7,01iY4 

C 

PROGRAM TRNSFN(INPUTOUTPUT) 
COMPLEX CsSUMPCOEFFoT 

5 C .'**a * 

1O 

C 
C 
C 
C
C 

THE FOLLOWING DIMENSION STATEMENT 18 USED TO CREATE 
A SAMPLE, RESPONSE SEQUENCE FOR A RECTANGULAR INPUT 
EQUAL IN LENGTH TO THE STAR DWELL TIME, AND THE IMPULSE 
RESPONSE.'SEQUENCE, 

** 

*' DIMENSION XX(200)PXP(200),YY(200),YP(2003)TIM(200) 

C. 

15 C 
C 
C 

THE ROUTINE IS DIMENSIONED FOR TRANSFER FUNCTIONS OF TOTAL ORDER 
9 OR LESS; FOR HIGHER ORDERS, CHANGE THE D.IMENSIONS ,OF ALL THE 
FOLLOWING TO N I, WHERE N IS THE DESIRED OROERR, 

20 
DIMENSION CC 0),SYM(IO) T IP) X(10),Y(IO) ,(10),RS(10),TR(IO) 

C 

99 
PRINT 99 
FORMAT(IHR)
AI:IHC $ A2=IHS S A3=1HT $ A4=IHF 

25 

30 

35 

C N AND M.DESCRIBE THE ORDER OF THE TRANSFER FUNCTON, 
C N = THE TOTAL ORDER 
C M = THE ORDER OF THE HIGHmPASS FUNCTIONS 
C 
C THE PROGRAM WILL LOOP FOR NEW TRANSFER FUNCTIONS, TO END? 
C SET VW 0, (THE LAST DATA CARD CAN BE A 8LANK TO STOP) 
C 
.50 CONTINUE 

.READ 100,NP 
100 FqRNAT(2I5),

IF(N,EQ(O) GO TO 51 
C 
C THE SAMPLE RATE SR GOVERNS THE FREQUENCY WARPING FOR THE S TO 
C TRANSFORMATIONR 

Z 

MO 
C 
C 
C 
C 

THE DWELL TIME IS DETERMINED FROM THE SCAN RATE SCNRTE AND 
THE DETECTOR SIZE SIZE, 

SIZE AND SCNRTE ARE VARIABLES USED ONLY FOR GENERATXNG 

0J 
c THE 

.;FAD 
TEST CASLS 
1QI- SRSiZESCNTL 



LNINT((SR*SIZE/SCNRTE)+Ql) 
C 
C LIST THE INPUT PARAMETERS 

50 C 
PRINT 201PNFMP SRPLN 

201 FORNATU(HI//,2OX,*N = *I4r,* M = *kls, SAMPLE RATE.- *oF 
11O040* DHELL: 

C 
55 C THE CORNER FREQUENCIES FOR THE FILTER ELEMENTS CAN BE SPECIFIED 

c AS COMPLEX (REAL + IMAGINARY) 
C THEY SHOULO BE ORDERED WZTH THE M HIGH-PASS ELEMENTS LAST 



PROGRAM TRNSFN 76/76 OPT= FTN 4,5t414 05/06/77 17,o1,5' 

60 

C 
C 
C 
C 
C 
Q
C 

EACH ELEMENT HAS A (COMPLEX)GAIN WHICH CANNOT LE ZERO 
THE GAIN CAN BE SET AS (IcO0O,O0) 
THE ORDER MUST BE EQUAL TO OR GREAIER THAN ONE 

THE FREQUENCY CARDS ARE FORMATTED (LF0O,;p5) AS FOLLOWS; 
FREQ(REAL),FREQ(IMAG),GA N(REAL)fGAINCIMAG),ORVER 

65 PI=301i1592653579 
cOEFF-:CMP0.(l,0FOeQ)
N ;0'FCMPU ,00 

00 1 I1fN 

70 

75 

READ 102,WDFRWOIGAINRGAININQRD 
102 FOFMAT(4F0,6,I5)

PRINT 205p ItWDRrvOIsNORD 
'205 FORMATCIH ,1OX,*HD(*,l2,*) : *,2F1o06f5X,*ORDER.= -p#5) 

.N=NORD. 
IF((NT+M),GE,N) GO TO 7 
WDR=WDR/(2o**(,/NORD)-,#),
WI=W DIO/(2 o**(i B/NORD) lle ) 

7 
GO TO 8 
WOR=IADR*(21*A(l j/NORD)plj) 

80 8 
WDI=WDI*(2,j**(,/NORD)-10) 
CONTINUE 

C. 

WA.I=TAN(CD1*PI/ SR) 
WAR=TAN(DR*PI/ SR) 

85 
C 
'C 

LIST THE FREQUENCIES 

90 

131 CONTINUE 
NT;NT+l 
PRINT 202, NTWDR,WDIPIWARWAINTGAINRGAINI 

202 FORMAT(IH ,1OX,*WD(r2,*) = *f2F0v6,b5Xp*WA(*1I2i*) 
l,*GAIN(*112,*) *,2FiQ,6) 
C NT)=CMPLX(WARI,,pWAI)/CMPLX(WAR4I1,WAI) 
COEFF=COEFF*CMPLX(GAINRGAINI)/CMPLX(WAR+I,#WAI) 
IF(NT,LF,(N-M)) .COEPFzCOEFF*CMPLX(WARtWAI)
NN:&N 1 

*,2F104 6,5X 

95 IF(NN,GT,O) 
IF(NTEQN) 

I1 CONTINUE 
141 CONTINUE 

GO 
GO 

T 
TO 

131 
1aj 

100 C 
C 

- LIST THE C(I) TERMS AND THE VALUE OF COEFF 

T R=P. 



T0 
 203 FIOR AT(1HO0 I ((IOXiAjp*(* ,I- N1 F 2= r ) 
105 CU 

C DETERMINE THE S(V)COEFFICIENT8 OF THE Y(J-I) TERMS
 
C
 

DO 2 =11,N
 
2 SUN(I):CMPLX (OqOf0q0)
 

It0 DO a 1=10
 
S U P C) StN (I I C C)
 

IF(X*EQeN) GO TO U
 
DO 3 JO2,N
 
IFItJ-I,L ,N) SUM(J)=SUM(J)+SUM(J 
 *C(IJl)
 



-PROGRAM TRNSFN 76/76 OPT 1 	 fTN 4t 5t41 4 05/06/79 17,0151 

115 ,3 CONTINUE
 
4 CONTINUE
 

DO 5 I:I,N
 
'5 SUM(N+2-l)pSUM(NtlmI)
 

SUm(C);CMPLX(O, OOO)
 
120 C
 

C ,IST THE S(I) COEFFICIENTS.
 
C
 

PRINT 203, (A2,ISUM(!),I:INN)
 
1 .s 	 C 

C EXPAND 	THE NUMERATQR TO DETERMINE THE T(I? COEFFICIENTS OF X(J4I,

C
 

C NOTE THAT T(I) HAS'EXACTLY (NmM+I)t(M+I)v1 NfI TERMS
 
C
 

130 	 NpFN&4
 

CALL BINEXP(XNP+teO0O)
 
IDItXzNP

NP-:
 

CALL BINEXP(YNP,-I O0)
 
135 10 1Y:NP
 

CALL PMPY(XIDIMXYIDIMYZ, D1MZ)

Do 6 1:;JJlDlMZ
 
T(1)=Z(1)*COEFE
 
TR(1)=REAL(T(1))


11'40 	 RS(T)=REAL(SUM(1))
 

6 CONTINUE
 
C
 
C NOW LIST THE T(I) COEFFICIENTS OF THE Y(J-1) TRM'S
 
C,
 

t45 	 PRINT 203, (A3,IT(C);jlIIMZ)
 
C 
c NOW ALL THE FACTORS ARE DETERMINED,
 
C Wf MAY NOW CALCULATE THE RESPONSE TO AN ARBITRARY INPUT SEQUENCE
 
C OF X(I) VALUES AS
 

150 	 C
 
C y(J) SUM(I=1 TO NtI) OF (CT(I)*X(J-I1I)-S(I)*Y(J4I1+) )) 
C 
C 

155 	 C
 
C THE FOLLOWING CARDS .MARKED **'* CREATE A SAMPLE RESPONSE ***
 
C SEQUENCE, THE INPUT RECTANGULAR PULSE I CREATED IN XX()
 
C WITH A LjNGTH EQUAL TO THE STAR OWELL TIME FOR THF INSTRUMENT ****
 

r I Dir, TLf O'LQ0 0lM-t. Q CI .icfIr 0r t c I ~ ? TLU4L T m DI IIH 4t* 	 17% 



OUTPUT IS NUMBERED SEQUE -ALLY AND THE SAMPLE TIME 15
 
c GIVEN IN MILLISECONDS, LY T S EI 

165 
Q0 11 I:lp200 
TII/(I):OO 
IF(IGE,10) TIM(X)=10Q0*(I-20)/ SR 
XX(I):OQ0 $ XP(I)=0,O* 
yY(I);OO0 $ YP(I)=00* 

11 CONTINUE 
170 LL:19+LN 

D0 12 £=20,LL 

(A
 

Q H
 



FTN 4s5+414 	 0506/7Y 1740i'51
PROGRAM TRNSFN 	 76/76 OPT!; 


C 
12 XX(U>-1,O0 

175 C 
C 

GENERATE GAUS8IAN NQISE AND ADD IT TO THEI NPUI DAIAe 

CALL RANSET(663211)
AMO, 

180 
NOISE=1 
'NOISE1 
NO SE:O 

$ 
$ 

SNR:1005 
"SNR:100 

385 

190 

IF(NOISEQ,) GO TO 123 
00 122 1=10,200 
GNOISE=OO 
p0 121 J=.i12 

121 GNOISE : GNOISE+ RANFCA) 
GNOISE (GNOTSE's6O)/SNR 
XX(T)mXX(I)tGNOISE 

022 CONTINUE 
123 CONTINUE 

XP(1O)=;,0
 
XL:N4 1 LN
2**A* 

195 	 YYM=9999, $YPM;=9999, 
00 14 J:JFp200
DO 13 I=IIL

Syy(J):yy(J)tTR(I)AXXCJ-I+3 ).R5(I)*yY(J I t),**
 

YP(J)=YP(J)+TR(I)*XP(JI+1)-RS(I)*YP(J-I+1) 
200 13 CONTINUE 

IF(YP(4),GTYPM) YPM=YP(J) 
IF(YY(J),GJ.YYM) YYM=YY(J) 

14 CONTINUE 
DO 15 J=11200 

205 YYfJ)=YY(J)/YYM $ YP(J)=YP(J)/YPM 
15 CONTINUE 

PRINT 300, YYM,YPM 
300 FORPAT(CHI1IOXp*YYMAX = *OFIQ96r* YPMAX : *fF1OR6,//)'* 

PRINT 111, (I,TIM(I),XX(I),YY(I),XP(I),YP(I)t=I 200) 
210 111 FOR 'AT(IH A I SEC X Y 

Xp YP*,/,((3XI3,5(5XFIQ3)))) f 
~ %* * * * * fC '* A A A * k 

215 GO TO 50, 
C 



0 t $ 

END
 

SYMBOLIC REFERENCE M,;AP (R4I). 

ENTRY POINTS
 
q.5 TRNSFN'
 



3.2 Infrared Filter Calibration
 

The calibration of infrared brightnesses is the single most
 

difficult aspect of a scanning sky survey. For ground-based
 

point-and-integrate systems, it ispossible, and in fact common,
 

to make all measurements of the same signal-to-noise ratio by varying
 

the integration. Since the amplitude uncertainty was shown to be
 

a function of the signal-to-noise value in section 2.2, it is clear
 

that uniform photometric accuracy is readily achieved. For
 

survey instruments, the uncertainty of the initial measurements is
 

inversely related to the signal-to-noise value, applying a fundamental
 

limit to the accuracy of the survey measurements which varies both
 

with brightness of the source and its location inthe sky.
 

Further complicating the problem isthe fact that the sources have
 

a wide variety of spectrum so that the broad band detectors typical
 

of infrared survey instruments do not have a well-defined intrinsic
 

calibration. It is possible to calibrate the detector voltage
 
2
in terms of the watts per cm it receives. However, if the survey
 

ismeasure sources in several colors, or if the calibrations are to
 

be derived from measurements made in a difficult wavelength region,
 

the measurements must be referred to a spectral intensity. The
 

wavelength bandwidth that is needed, however, is dependent on the
 

spectrum of the source being measured. Furthermore, the effective
 

wavelength of that measurement varies with the input spectrum.
 

The units of the brightness measurement are another problem. The
 

most useful form is the brightness magnitude, defined by
 

)
= -2.5 loglo (-fo 3.2-1 
0
 

where B is the observed brightness and B is the reference value.
 

This reference is different for every filter, since it is defined as
 

the response that filter-detector would observe from a particular
 
"standard" star - the archetype isa-Lyra, which is defined as a
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10,000°K blackbody source with an angular diameter of 1.5697 E-16
 
steradians. 
 The great benefit of this magnitude measurement is
 
that we skirt the question of effective bandwidth. These magnitude
 
measurements still need an effective wavelength, but for blackbody
 
spectra at wavelengths less than 50 micrometers, the effective
 
wavelength varies only very slowly until the source temperature
 

falls below 500 0K. Finally, the magnitude measurements defined
 
by 3.2-1 qan be used inversely to find the equivalent blackbody
 
color temperature if measurements are available in two br more
 

bands.
 

Figures 3, 4, and 5 show the variations in bandwidth, effective
 
wavelength, and magnitude difference for three infrared filters
 
similar to ones commonly used in previous surveys and measurements.
 
The results were derived from the attached filter calibration
 

routine which is self-explanatory.
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P F. LZI',
 

ACCrjUNT, SPTHEM, T3025,
 
MHAPCFF,
 
iFT 14
 
REVINPUNCHO
.. 

COPY?,PUNCHOUTPUT,
 
EX1To
i
 

* 	 PROGRAP IhTrRT (INPUT.,OUTPUT1 PUNCH,TAPEb=INPUT,TAPE6=OUrPUT) 
C PLANCN2 (MCDIFIEC) 
C- ----.------- INTEGRATION CAN BE DONE WITH OR THOUT THE PLANCK FUNCTION% 
C PROGRAM FOR INTEGRATING THE PLANCK HLACKHODY RADIATION FUNCTION 
C OVER AN INTERVAL &ETFRINED AiD ATTENUATED BY FILTEN-SENS.ITIVITY 
C TYPE FUNCTON3. 
C DATA SHOULD BE IN ORDER OF INCREASING WAVLLENGTH, 
C NFIJNCT x N0, OF PESPCNSE FU'CTION 
C IRITE = I WRITE iAVLLENGTh, INTENSITY, RADIANCE, PLANCK INTENSITY,
 
C =3 r DO tAOT W,HITE,
 
C NfluX 1 - PLA'CK FUhCIION TO BE CALCLIO,
 
C = 0- PIJ1'CK FQNCTION NOT TO BE CALCOLATED,
 
o ItvAVTR 1 - TRA',ISIUN DATA OC< CONSISTS OF WAV, AND TRANS, ,o

C 0 - TRA'SQIS341ON DATA DECK CON.I01, OF TRANS DATA ONLy.,
 
( NURrIAL 1 CFrALIZ~b FUNCTIONI(I) * FUNC.I1ON2(1)
 
C o - cr rOT ?:CPWALIZE
 
C IPLUT m1 IC 

= 0 CO NOT PLOT
 
C KTRANS =N0p OF SETS OF- TRANSMISSION DATA PER RESPONSE FUNCTION,
 
c I; 40, CF FUNCTIOS CQ OR 2)o
 
C. N 	 NO, OF wAvE LENGTH EF, FLJPVCILUN (OD INTEGER)
C L t,. OF TFMP. T6 BE C.LCUL.AILED (IF tHERE ARE NONE L- )t .
 
C EXPER NAfrE OF EXPERI NT UATA, ETC, FURVAT IA6
 
C TYPE ICENTIFYING NAVE OF DATA, FOH.AI 4A6,
 
C* CARD 1. FUCT,IRITENFLUXIWAVTINURMAL,IPLOT (613)

C CAPD 2 NTRAMS (113)

C CARD 3 PttN, L f (11I1, 3)
 
C CARD 9 TE&P (I5L) (9F6.2)
 
C CADS E>PER (K:14q) - AVRES (I1,.N) (Ab/(12FP6.,))
 
C CA.C 6 TYPE (V=xO) AV,AVIRAN OR TRAN (:1=,N) (WA6/C12F6,0))
 

C
 

C REFENENCE FLUX IS TWE INTTEGRAIEU FL UC OF A 10,000 DEGMLE 63, OF
 
C SWE I,56T7-16 SIR (ALPOIA LYRA) . , , THE ZLRO MAGNiFUDF REF
 
C AND IS INTEGRAL oF t,(LAbUA ,IO,OOU)*R (LAMtUDA)ADLAMBDAAOf'LUA

C 



C DEFNED WAVELENGTH IS THE FLAT KESPONSEEFFECTIVE WAVELENGTH 
C 
C* I3WDTH ZERO IS THE FLAT RESPONSE BANDINUIH. 
C 
C WAVELENGTH IS THE TPUE EFFECTIVE WAVELENGTH FOR BS8t SPECTRA AT 
c THE GIVEN TEMPERATURE 
c THE lRt i EFFECTIVE WAVELENGTH IS THE LNTEGRAL OF U(LAMBDAT)A 
c R(LAMFDA) ALAM DAACLABDA DIVIDED fY THE INTEGRAL OF F3(LAMt3DAf T) 
c *R(LA1BDA)*DLAWbDA 
c 
C BDVDTH IS THE TRUE BAN04IOTH' AT THE TRUE EFFECTIVE AVELENGTH FOR 
c THE GIVEN TFMPERATURE 
c THE TRUE EFFECTIVE UAND3IDTH IS THE II4TEGRAt OF U(LAHOAT)* 
C R(LAPDA)ADLAVeDA DIVIDED BY B(LAM UA EFF,T) 

C / DODTHDF IS TI-E PROPER BANDIDTri FOR THE DEFINFO EFFEC r[VE wAVELENGTH 
C-
C BR NAG 1 -2,5*LOC((LAVaDA EFFT)/BO(t,AMUDA 0,10)) WHERE f(LAMBODAT 
C IS THE Fst EM'ISSION 
C 
C COL' MAG IS -2t5ALCG(NT FLUX/kEF ERENCE FLUX) 
c 
C' INT FLUX IS THE INTEGRATED ELUX ON TIHE DETECTOR IN W*CH42*$TR-1 

C VIEW, FLbX IS THE INTEGRATED FLUX MULTIPLIED BY THE FIELD OF VIEW 
C 4,-0b6 STR ANC IS IN w*CMr2 
C 
C* * i AA A kA-A A ** *A -* * * * * * 
C 

REAL MAGFAC 
DIMENSION WAV(150) OCES(15O),TRA C(IO) , TE.HP(C9O),w(150),viX(150)pONXX 

I(15v)M ESP(150),W X(150),TYPE(4)t EXPLR(4)
NJ 0 
OMEGA=, 97E-16 

•P1:3,141592654 

ICOL:o 
L:Q 

READ (5,94) NFUNCT,IRITENFUX,I AVTR,NORMALaPLOT 
94 
95 

FORMAT(613) 
NJ:N4I1 
NFLUX=O 
D0 92 1=114 

92 TyPE(I)=6H 
LOLD=L 
ICOL:ICOL±1 



99 


100 


C 


20 


'i 

22 


101 


500 


98 


3 

112 


601 

600 


9 
687 

NN=0 
READ (5,99) NIRANS 
FURfrI(113) 
REAC (5,100) ViNrb 
FuRPA r(III, 213) 
Te P( I)=I0O0 
I{ERT 1ErP DEFjtNIrG
L10O 

CA.D5; I=XXI TLMP(2)zXXETC? 

TE,4P(2):100. 

TEVtP( I)"TLMI (I-
00 1 I:'J3,52 
ILMHF( 1 ) TLMPF ( I) 

I 10. 

+50O, 
O 22 1:5 ,70 
TwflP ( I LeP -)'500 0 
q I 1l $ N2=N , ED (S ij01) (EXP -Fr(K)r : t W VRE ( rI N N2 

qORMAT( A6/(12F6,4) ) 
II :N +1 
00 5O !Llp150 
WAv(I)=0.00 

INAthC 1)=0,00
RESP(I) :,0 0 

C(NllU
N2:N 

NN=NNI 
IF( M-) I,1 e3 

If(IWAVTR,Eo,9 GO TO 601READ (5,,112) ( TYPE(K ) PK=I,4)f (TRAN(I)f.1=I0 ) 
00 

FURMA1(4A61/(12F6,')) 
GO TO 600 
REAL) (5,112) CTYPE(1K)() 
CONTINUE 
DO 2 1I,1 
HfESP (I)=R&S(I)*TRA '(I)
GO in I1 ' 

,4KI ) (WAV(I)E RAN(I rII'IN) ' 
t 

1 
0 

DC 9 11I", 
TkAi,(.) =0, 
RES(I)ZRES(i) 
CUNlTllt'UE 

IF(NORVAL,FC.I) 
UIGPRp= I 
N1:1 

GO TO 700 



2.20 NSPAcb=6
 
LINE=Q 
wHirF (biRi2) (EXPFR(K)pl 10)f (TYPE(K)pK--li4) 

-'212 F0RfAf(jHjr37Xp4A6/ JX#19HTAB4E OF lNPUr DATA/ 38XjMA0//20Xf
 
IIOHVAvELENGTHp3Xgli !Fl.'ICTIr.)r,-(t)t3Xtit FUNCTION(2)i5XIJQHvqAVELENGI I
 

DO liq 
NSPACE=NSPAC +t
 

lP(5-1.3PACF)2C,'lf206f206
 
206 14RITE (6p2l 0) '4AV(I)PRE$(I)iTRAfl(I)f 4AV(lt35)FRESCI+31,))pTRAf4(1+35)
 
210 PURtiAT(2aAlF5,Pf7XF'1,4p7XF7, p!OxFb,2,?XrF7, 17XtF7t )
 

Go V0 119 
204 NSPACF=I.
 

IF(. 5-LINL)219t2j4t2l4
 
214 WRN E (6,211) 4AVCIPRES(I)tlf Al (I)iWAV(1+35)FRL$(1+35)PTRAN(1+35)
 
211 FoRmA7(lMOt2lXoP5,2,7XtF7,4p7x F7,4riOXtFb*2r7kfF/,i4p7XPF7,4)
 

Gu TO I i/4
 
219 Nl=I+LPE-1
 

jf(N2-Nl) 50#220,220
 
1V4 CONT IN-UE 

GO Tr 250
 
70Q HiGRP=RLSP(l)
 

ljo io I=2,N 
lF(BIGRP-HE8P(l))32,30r3Q
 

32' HICRP=RE8P(J)
 
30 CUKTTNUE
 

00 33 I=IN 
RL3PCl)zRESP(i)/5iGR.r
 

33 CUNlINQE

:1 NI I= 
720 NSPACE=O
 

.011 (6p?12) (EXPER(K),K lf4)p(TYPE(K)fK= ,tj)
 
.712 Ff)Rr4Af(jHlt46Xi4A6/ SQX#19HTABLE OF INPUT UATA/ 47Xr0A6//j0Xj


11OHi44yELENGTH13Xfll ,kUr,'CTION,(l)e3XrllHf'"UNCTIOt\(2)13xf
 
21 JH WNCT , ( JX2) o5X, JQHWAVL-LFNGlHr SXr I lhf UNCTION M ?3xf
 
31 11-PUNCT)LIt, (2) 3Xj I (I x2) ISIX , 1OHNORMALI Z .U, 47xf
 
10PNOPVA 1ZED//)
 
IbG=141 INC=N2
 
DO 614 1 1('G , I NV
 
NSPAC =KSPACE+l
 
1- 1 N =LI i EI I
 
1 5- 3PA C F ) 7 016 7C 6 r 7.0 4,
 



706 NRI&E, (6,710) WAV(1),RE$(1),TkAt'J(L),FESPCI) ,'AVIt3S),RESU*3b), 
I TlAN(I-135, REaP It35) 

710 FUkfOAT(12XF52t3W(,7 '4 ) IOXF5.2,3(7XF7 4))1 

GO' 	 TO' 61ja 

704 NSPAC=! 
IF(35-L1E)719,714,71 q 

714 'RITE (6711) PAV(I)RES(I),TRAN(I)RESP(IX)WAV(I+35)fRE8(.I35), 
ITRANCIt35),RESP(If35) 

711 FORtA1 (Ifl,11XF'5.23C7XFF7t4), 1OXFS2,3(7X,F7,4)) 
GO TO 614 

719 kN=+LINF-1 
IF((2-NI) 50,720,720 

61/4 CONTIUE 
750 CONTINUE 

liii FORimAT (Ff10t 74 l,8) 
250 IFCJLUXCQ.0) GO TO 307 

vll Ec6,107) (1E-PC13:1,L) 
197 FORIIAT(// 55X i 1TCM'PERATURE//(9FZ3 2)) 
809 J=O 
6 J=Jl 

IF(NFLtXPEQj0) GO TO 307 
I)U 	 '4 l rv1 

4 	 CALL 5%cTiw (TIF'P(J) ,WAV(I),RESP(X),'(I) ,qX(I)twX(1) ZINT) 
GO I0 301 

307 	 00-~ I=1,N;qx 1"=) E S P ( I 

302 	 rCmNPiNrvk 
., IF(IRITE.E.0) Go TO 300
 
31, &NPACCS5
 

O0 	216 T1-,N 
NSPACE=NSPALEt 1
 
L L1% L I NF +1
E',
IF ( 5 -I.,' 3 PA Cf )2 q ,242 12
 

242 wRpTX (6,120) WWIWX),wx(l),xx(I),IW(I)
 
120 FOR41(30X, IP12,S,4XIPE12,5,5X, IP 12 5,9X,1PEi2 S)


GO 	 TO ?V'6 

240G 	 NSPACE=i
 

2416 NRx1E (6o,122) VCIl),'X(1),0-MXX)XfW(J)
 
122 FURit4AT'[( PO,29XI1PEI2,5esXiPEt2.5V XIPL120b,9X, 1PE12,5)
 
I Go 1O 216
 
244 	 LIO W2
 

ir (IR,ETE,V 1t) GO rO 24?
 

http:PO,29XI1PEI2,5esXiPEt2.5V


--

Go r 300 
216 C I INUE 
300 H=I'AV(2)TwAv~fl

XINIZO,O 
KN~t;-2 

O)1)5 IbKN,2 
XI ]--X INT+ Cri/3. 0)ACrX (I) +4,OArX ( 1+1 t-X (It2) 

5 C Ol"R I t,,UE 
IF(rFLUX,EQ.1) GO TO 1/40' 
r,HII (RO, a ). 

14? 	 PUFhATC///IX, iIP8AXC I01H =1PE1t5,S H 'ICNO ) 

0 IC0 	 14L!
140O INIl=XltqT/Pl 

OI-IKNI,2
y IN h yJNT± (H/3,0)~ CW((I)t4, 0* ( I.tt) +"',(I+2)) 

" 	 CON1INUE 
Y hi'I=y INT/PI 
EFXxXIq AE£IGRP/YXNT
 
T F X= xI NT A JGRP/ ZI,'T
GC=2,5*ALOGxO i/E:Px)
 

BC2=2.5*ALcr,jO(1/TEFX) 
111 D00 t26 I ,N 
126 ~X 24IASVI 

XXI N,=0.0 
DO 128 I=;.N,2
 

12a CONTINUE
 
XTNT±XXINT/PI
 

EF F'I =XXI:l XINT. 
IFHqFLUX,EC.1) GO TO 146.
 
EF FT=P *FFFT
 
V HJTlz (6,130) EFFI
 

I30 	 FUkI,AT(//IX23,LFFECT-iVE WAVELENGIH 1kE12,5)
CUNI INUE 
IF CNFLLxEQ ,O) 
IF(fF(,UX.GO) 

CALL 	 SPCI!) (TF
Ui. AV= U4A y I. I 

IP(J, NE.i) G0 
hI vi L ULb AV 

tVAVrCR:EFFT 
GO TC ,
 

9F' (J)fFF T fZNIN, WAVNZNCNZNCI4ZNON)
 

7 /4451 

46 

http:IF(fF(,UX.GO


AHREF=XIRP*OMEGA
 
PUNCH 222 e AHREF
2? FOR,1AT(5X,*PEF-RENCE FLUX = *IPE12,5) 

PUNCH 223,WAVOEF, ZER?

!23FORMAT(5X,*DEFINED WAVELENGTH = *F28,* ZERO BANDWIDTH = *pF12, 

Is) 

PUNCH 221
 
!21 FORlAT(1XrAN0 TE'P WAVLNTH BDvWiTH UVHVF DR hAG COL
 

IMAG INTFLUX VIEW FIUXk)

451 	 CONT INUE
 

ZNON;0,
 
CALL SPCTRN CTEPP(J)WAVDEFZNON4,3WAVOF,ZN0N,ZNONZNON)
 
Bv AV 0F =BwAVDF /P1
 
IF(b'AVEEQ,OQ) GO TO 4441
 
D-& I. AV=X INT/BlWAV
 
DL,vr F XIfI/P AY, F
 

lq4t CONTI',UE

MAGF t4C=BWAV/DhREF.
 
SMA(; AC=ALCOt0 (fAGFAC)
 
l A(F AC=-2.5*MAGFAC
 
UtiHAG-2,5AALCGc'(YIRP*OIIEGA/AHREF )
 
AiPP=XIfP*4,5L-06 LT 5
 
PU-\CH 200,.OL, TrI.'PC),LFF1 rD&L4AV,L.VUhMAGFACBRMAGXIRPAIRP
O
FURMAT(1X, 13,ZX,6Fq,3,2EtO,3.) 

IF (J-i,) 6,88
 
CL), I ThIJE
 

IF-NFLlUX0,1.j). GO TO 888
 
NFL UX-1
 
GO 10 887
 

88 	 CUNTINUE
 
1F'(WNNTRAI,GC) 9s r97 p97
97 	 IF (I.JJNFUNCT)95fQ9696 

96 	 CUrTIINUE
 
ST C.
 
END
 
SUhROUTIrNE SPCTRw CTEvPINAVR SPV wX, XXtI I rG)
 
INSERT DESIkHE EISSIVITY HERE AS EMS - XXXX
 
E 'S = I, 0 0
 
PI:3j1a1592b54
 
IF('AVEQ,0,) GO TO 10
 
A "I 3879/(wAV*TEMP/1O000,)
 
1f(AI.GT.S8.) GO TO 10
 
BI:EXPCAI)
 
N-(3,741832E,16)/(((iAV/10000t)*5)*C(U -I,)),EMS
 
GO 10 12
 

http:1f(AI.GT.S8


0 W(3,/4!832E.'16)*EXP(-AX) ( ((CWAV/ OoOO,>*S))AfiMS 

I ×- X /P I
 
WI{, G (5 ,6b86E'- 2.)r CTEMP**(4)/PI *LM$S
 

• R TPRO
 
ENO
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3.3 A Point-Source Detection Routine QUAL2i 

The last routine presented here is a program developed for an early
 

sky survey. The purpose in reviewing it here is to illustrate both
 

the breadth of processing which can be done in a single pass bf the
 

data and also the complexity of the required software. The routine
 

unpacks and de-cominutates the data and checks for errors and gaps.
 

Three background channels are processed, the running noise
 

computed, and the dRta plotted. Within the basic detection loop,
 

the data is tested for signal peaks, correlation peaks, and signal
 

length, and the radiation hits are separated from the data. Estimates
 

of the amplitude and bias leVel are made and the position of the
 

position of the signal is found from the time of detection.
 

Inspection of a sample portion of the preliminary detection list
 

reveals some of the basic problems which the following merging
 

routines will need to deal with. The most complex problem is
 

that the correlation coefficient does not track well with some of the
 

other measurements of a good signal. For example, source number 22
 

has a good correlation coefficient, but the estimated amplitude is
 

less than half the peak height, and the amplitude estimate peak is
 

significantly shifted in time from the data peak and also from the
 

peak correlation coefficient. The correlation coefficient is below
 

a reasonable error gate, but the same is true for signal number 10,
 

where except for a slightly low p, the signal is very good. This
 

pattern persisted throughout the data, and a careful study revealed
 

that the-poor p values were the result of an uncertainty in the
 

detector bias. Since the sensor used bidirectional logarithmic
 

amplifiers, the uncertainty in bias led to a possible error in
 

de-compressing the amplifier functions which would.tend to warp the
 

signal shape significantly and degrade the value of the correlation
 

coefficient, and also warping the noise spectrum.
 

The software presented here was not designed to minimize its use
 

of computer resources which would probably have resulted in a
 

separation of the multiple functions of this routine. Furthermore,
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using a maximum sensitivity test which allowed a 10% error rate, the
 

resulting data was not s4gnificantly compressed. Of course, making
 

multiple measurements oflthe signal quality and not immediately testing
 

on them. This allowed manual inspection of the data quality and
 

careful adjustment of the tests which followed providing a sound study
 

basis for a larger detection scheme.
 



-- - -
= ..... ... ,,:. . ..... .... . . 49FTH 	 .5 +-1L ' 

_____ .______-__....__ - - .-. * - - .--- T :: - - p--

I A LOT=l r'UTH . S -C -i - _ .) I H.lt 1 J SUL, U '., 

IT_-,-I 	 7 , TAP 2( , TAEYTAPEIJ) 

£IMENStON. K~(),SEc 3 
- m-.Rs F I AS ( -'-781 , I'AX ( 65 )
 

I_,.S O ., ICOLCNT (3)
 

ODYWSIO-, yJ(65) ,KR J(---) ,AMAXJ(6,MAXJ(5)VRSQ(5,7),4.NP('---,78 

D..TP7MITO y Vv ) ,X (E5 ,39) 

-

1¢) SIcO(.-E(6) 	 ,s, KSTA( 65) 1.LVL=F ) " ,KP
 

z. 	.(o- " t, r! . (P( IB- K11,(-) ,--:YT,(7=1Jf-o.1(°, 

2Iv:t4S.Ot, AVz VAL(6=) ,Z:1O(6')
 

.-t,_wctIcfl TQVCST ~ -­

a ~V2TA'~(O~fb: ,57T
.53 ME ARCETJhz.AN
 
R$CAL FACTC(651)
 

bH 	 E ILNLCPEZ~A:ht5 	 F HtILN N ; 

LOflICP.L PEGIN2 

CD""MON Z38),F(38) ,WORK(38) ,ARG3) VAL(38) OET(1117) 

C INITIALIZE DATA AND-DO PRELIPTNARY CALCULATIONS 
" 


DATA (ZYSN({I) ,I=i,¢5)}iC., O. ,'2, ,O. ,'3..•, O,. ,21d3, •.23-4,.1935, 373C
 

2,12,C .29,,.&.~ ,t3. 2J95, .ME,6921, *33- .1 
*--"_.._ *' * 2I o.,,2 s., 1ci*ifsl d? •5 d, , 1 ,,, 4.7/7, 	 2 29,, , *, *I(t 

f. .2553,,31,, .90,.226C.233E,.21I9,,1582,.2Et3 1 _-2839,.1735,.2156"­

-CMY-

ORIGINAL PAGE I 
OF POOR QUALITY 

16 5
947 A {1.0 ST(I) ,1=1i 5 5) 0, 0,0, 0,0,0 0 5 14',13*. .23 33 , 67,5 17 

U - -$7S,:.,,fb,-87;-fu,-+ U-,5-U .-- ( ,: 3,3757-1,O7-T,qd ib2,47, c-c8, 

S2A.2 ,-7 i 75,49 5C7,L9 ,4-6,497 ,38,5134521,498, 95 ,533,C2,5 

C 

DATA (WOCI),Ii,21) /+o.7239323E+02,-O.1731253E+03,+O.150701,OE+03,
 

)7£+02,-0,2 

., . ,' .* ... ... '.. l_ +U , -U, 1 1 9 +u.; + * 552 -. + - *," q3''t *L • J
23 rrT , "03 --+ O, 241142) + 1 ,,+O , 1 .I 32-0+* 

4ii r7?z C3,-Q. 21hfl658-*O3,+0. 1972525E +O3,-O. •a8-.78 11E+G2,4-0, i52d8 
-,- t E + -.	 j T27 

http:ARCETJhz.AN
http:2Iv:t4S.Ot


P ', W 7t:r./ CDT=2S FTN G,-1L-741 05/ 

c 

C
 

C 

4 


C 

21 


7 

-

(.HA'4),Iz1l,5..)____ 04 / r1,,,,?,,,3,J,101,o2,103,1J.,1-3510,107, 

22176 1,1,l, c,23,1.,21,2,r2$ 27,2s^,J,±0,Ca,s-o 3, 
3Z3 .5, 3 311 -8- :3,7, ,2z ,I, 31_,s1,31,, 315,31L, 3-1 7,31 

-VA----XP--O.-? -), I=1,33IJH- L--ANN 2,19H121 SIG,IdfNAL TRAC' S/ 

29,3
OA A(IM25;c I2,8, )/%, q?7 EI3,35,3,7,8 19,2 ,21,22,
 

4 F T ,-48- -q O; -- - 3,9S ,5,- ,3 5"- ,9 - J , I'1. - 2 , 3 / 

FO-'MT(3F251 .) 

' :RINT - , ( ,Y ( ) ~ , C 

PRINT L6 
-U-MAI (lHIl)
 

I'-LUI = 
SYMHT=:. n8
 

FST-AZ=-23 70
 

TJI09=200. 

OY& O. 

00 21 I=I,LO

Y Y"MT - 7If-; I 

SUMY=SJ1Y+YY( I) 

NYMI 
r U _iuwz'= su Yb'i'Y-sUr'-T"..%U:Y 

SCNENO=SCNTIM+SCNL EN­
'-TE-rS'cITAx -N / x 

XHAXzX=' 44X 4 
*308 

N~TM51WFZ$ThX72.
 
OFFSET=C.5
 
YMLAX= 17. uJ
 
ICOLCR:I ,-

ZF7CTT.-

ZLONG = 7z(XMAX+1O.)


IF("PL- ,, , 60G T-O 7 

CALL FLTID3 (DPOGIOZLCNG,YMAX,ZFAOT)
 
UALL N' V1L'c." (6) 

CONTTNUE 

PRINT L6 
CNT'NUE 

00 1 J:1 ,65
 
* YSN(J)SYSNIJ) 4SYSN (J) 

M . vS(J)=O.
1A AXJ UJF=1Z-AX2JYE=-5 JL, 



-'T!171ST 7RGZ~ 5 v 

KRJ(J)=KJ(J)=rQ 

PRFtNT (J)=G 

KPRIM'E (J)=D0~ 

YN" I (J) = 

KPAK (J)=C
 

MURKEP (J)=.TRUE.
 

JN=AN. 2' r ) 
XR.AR (J)= .3
 

PETA=2 .- TANAEEC 

OMS=1 .- TAt-A 

DO9S=17N3
 

9 TCOLCtT()0o 

NP T
 

t =JL . 

ilAIr 

i ORQAX 

RA'=6.7337233*PI/12.
 

*SIL3EGP=SIN(OECP)
 
dzs ' N . I l 

STAR:T=-i
 

-on UI= u
 

PHRE;C=3I9
 

CALL AYIS (2. 0,0.0 ,7HAZIMUTH,--,XMAAX, 

L;* L L ., 'J ,-0 g'ptETC~~~l~FNru ,. 

XSYM=0. 
YU 11 J=1,NsUYNS 

* YSYM=G . 

K - 00 li K=1,18 

.!.-FSTAZ,OX,13.3)
 

T~2fl~
 

CALL SYMIOL (XSYM,YSYt,SYHT,3,J.OcdI)
 

YIOST=9.5*"0Y­

11 




... . ... . .. . 7 . . . . : i . . ... 52. . . . . .. . 
+flO Z'"P M* ' TP' ' +": .'0 2T_-r 3 Fi4, , . + : +, '. 

J') 3 .. 

_ XN(J) =XN'l J) XN.'2 (J=f, 

YN Ai(J)=0. 

3 CONTINUE 
- o paZ-J-!, _- ­

00 22 K=i,39 

ias K+3K)o(J,K)I (J, CJ,=, KIAS 

22 -D,T -- X-(J, K) C. 
C 
L; ,K,.grx 4II A THYzTLA L rwC rO. : T" - q-. Nci -S." ZtVT. 

CLTIM=ECONPA)

IF-TI-tSt -- }O-< rTc o-. GO TO 999 

7TU-PTIT.01,1) (IA( ),IA( .)3 

CALL PFCLL 
IF(UNI TYXUi 1 0,20,30 

o CO0NTI NtlI 
DO 40 I40 ,S07
 
DO 49 J=I,5
 

IB(K) =--YTEf(IACI) ,J) 

FIO--h'PS -e-GEBLOCK TIVE 

So =1 ,.0 
SOT=O ,0
 
00 49 K--I S
 
N= 1;'(1,K)409+ a(%IVK) 

IF(N.G. L-'roO.- =N- 7777?7777 
TM (K) =W/IC.0 0. 
sU=tsC+- in-K) 

SQ T=S0T4-KTM( K)
-9 cOt"ON I NUz 

TA=TAYN
 
TANX= 4 ,*(S0-3.SQT/83.)/3s.-


C 

CCNTINUE THE CALCULATION FOR TINES WITHIN THE CHOSEN LIlITS

C 

IF (TA.LT.SCNTI) GO TO 5
 
ST RT=STAPT !
 
IFSTY-T.GT.0I GO TO 41
 
FSTRE-CPHPRC
 
F S I TlM=1 A 
IF(TA.GT.SCNENO) GO TO 999
 

C 

o CORRECT OFFSET, RESCALE, AID LOG EXPAND FO2 OATA, ANJ FINO TH-" 
C AVERAGE AND DEVIATION 
ON WORDS 8 THU 64. EXCLUDE TH1E 9ACKGROUNO 
C CHANNELS ON WORDS 26, -5, AND '4. 
C 

00 70 J=RE" "
 
IF{(J.EO.26),OR.CJ.E3,T,,..OR.(J.Eo.e) GO TO 69
 

http:IF{(J.EO.26),OR.CJ.E3,T,,..OR
http:IFSTY-T.GT.0I


_ _ _ _ _ 
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__2___-FIN
F')n Aff',1 -7 2T L. L7 1:. 

ON' X(J1.1 J)z 


DIT(ILVL.7 C=fTtyE6) IV~ 
rv!h L v L.<I-I-T T V LI; u J V,'I 

I F(ITLVL.-.:). N 7LVLLVL+
 

*rn~vwmnr~rtyELhr=hF IL
 
IF(ILVL.G .ZC) O'PU(J,K)EET-I(LVL)
 

iF (I1GCLOP,,NE.) GO0 TO e3 

IF(NVL,:.G~~ ~LLE~e2)NLVL=NLVL+1
 
±NFF. -vGYTnhTr.~~Q i71TflINUtETT [fVt -1-

QT7iRR( W( '- LCET UIL 'IL-i)1 12. EP.RCt" 1 


LN-XtJJ= FS( T- )+1,4 :KvfU Izk-'
 

E0a CUlNTITht11
 

LLU
it~~ IL V U 

DlO 3K=t1,3
 
N3T~tJF-S.OVD-,K+,5,3
 

'IAS(J,K1=91A3(J,K+33)
 
ANIr tJ, ., -I( J ,R-Kr+ ) 

SUl-X=SUlIXY=SUMXX=Gv. 

SUIX=SUMXlTA (J,KK)
 

i SUM'XY=SUM.XY+flTA(J, KK)*'YY CKK-K+1) 
UU -Ii KLnlK __ 

SU'!X=SUMX4 flUX ( J,KL) 

32. SU'IX(Y=SU'YY+NX(J,KL)*YY("tCK4KL)
 

Jr I * .J. J.) .U-.. t1LlzN-17 .z! .. I GO I ic 
OSO(JK+) RN'IRNUM/ (XCEIIfl 4YOENOM,) 
LU M0
 

_______ _36 RSO(J,K+70)=G. _ _ _ _ _ _ _ _ _ 

3,Y'TW 01l~.LU .S
 

AMP(J,K+e39) =0NUM/YOENOM
 
L - U :} 1
 

AMc(J,K+79)O0..38 
1 ~(, U I U -6 

B1A5S(J,K39)= (SUYY%UX-SUYZUMJXY)/YD -NO;I 
bU 10 56 

L2 31AS(J,K+39)=u. 

15 CONTINIW 

V ~~ -. -i K=I. /,jj'4
 

'N J DT JK
 



/ /54
-4-----~T - -- - -.---.
 

p:J>:-, T T -T/7-, CPT= I FTN .. + 't______.__ 

YN'2(J) =,To,' J) 

YNt1 (J) =Yl(J)
OTA (JrK)=zYfl(J) 

SU'-=SU'-"-O4 TA (J, K)
1 ONTINUE ORn1I
A1Jpn 

IF(ICCLOtNr_,E) GO TO 70 

X3AR (J)=SU"/39.-

Do 65 K=1,39
 

CONTI NUE
 

C 

c THE NCISE FORULA
 
T, Si TH- ktL-<ZIC: LzVEL EQUAL 10 7H CUNo-%T AVcRAGz IF REAIIJG 
C THE FI2 ST RECOPO. OTHERWISE USE THE REFLVL FORMULA. 

IF (gENINi R-FLVL(JY=X[?AR(J) 

IF ((STGSO(J)-3.-*MSN(J)).GT.2,).O:.(.NOT.1IRKE(J)

- SO TO cE
,HZ>,NW )=U, 9- MSN (jl-+L. - (J )] 

17 - REFLVL(J)=0.940REFLVL(J)+o.: XgA.R(J) 

C 

C CUR-NT 2LOCK OF DATA. DISCARD ALL SIGNALS WHICH MEET THE RR TEST.
 

RMS(J)=3,*-SORT(t-SN(JJ)
 

C
 

__DO -31 K=f- 69 

IF (.-'K-R(J)) GO TO 99
 
lr{UIA(J,K).UI.UIM;AI(jJ) KP:.K(J)zK
 
DTAtAX (J)=AMAXi(OTA[J,K), 0TA'IAX(J))
 

t U Jl, K I. U kIVL-J(-
 K r, m(J)=K 
GO TO 101 

99 IF{-UIA,(J,K1-t tJ)L.(Jf-PI.f5JTTjq) GO T13 
GO TO 101 

lUu lAr.K:f U) =. FALSbz. 
KSPB=K42S 

DO 35 I=KSRB,KSRE
 
F(-V'-J,1).LT.4.TKAXJ(J)) GO TO 3­

KRJ(J)=I-23
 
IQIA,.
XJt(J)=HSUJ-1)
 

34 
 CONTINUE
 
FTWF _FVITJ.LI.AtAXJ (J) -GO TO 3
 

KAJ(J)=I-?3

AM AYUJTJ -A"P J( I 

9!' ,AX(J) :z! S (J,I) 
-5, CONTINUE 

AVnVAL(J) =PEFLVL(J)
 
ZNO(J)=P%!S(J)
 



SI I 

..l,4 TTQ 'h/7L OPT=? - FTN 4..51+ 14 06/1 

KSU ,LJ)=K 

OTAMAX(J)=OTA(J,K) 
K 

3Gt;T!I (J) =TA (KSTAF ) +J/7) .) /350. 
--i---rC-TrFTTE~D
 

Ir(KP R7E!U),EC,9) GO TO 9-

I FK Tc'- ,U.K W U I U lUc
 

IF(ZW.C(J) EC. .) GO TO 125
 

i G1- TO 192
 
P- T) l j = JJ 

No,JCT= 'RJ CT+1 
i iJI z -TUGT-ITw -TJ 

-'I R T3- 7 - H T - , i d K 5 IA JR,K -:A XIJ )-9)TKF C t ( -37 

.VRVAL(J), (J) ,KJ J) 
!ZFfT, rJ-J)-, -Lt.ITXJ 

-,PKTIM(J) , 'C'O N-NkJCT, k,,PCNT (J), KAJ (J) A;AXJ(J) 

"> FO .hAT(515,EFE12., 25,2(15, E12.5) ,-12, 5) 

lO i u I0.u 
C ­

t t TC f A CS U'.t{ A'- >-. c j,-, .A, ru-C- rf.l- E -X _T l-3"T - C Z - z I'-Ict< zFI-hc C WTL '-V7 L :IY 

AND THE TIME OF PEAK,,C TH-E SIGMA, CALCULATE THE LEGINING TIME 
ICC r'H qitt-zCA -t70- 1L G-FiO .U.11-T-1 

COUNT (J) =CUNT (J) +1 
4

NS IrIA.RI 

WRITE (?,2) pHREC J,KSTAR(J);KPEAK(.J),KPRIME(J),DTA'AX(J),2GNTU(J)
 

2MAXJ(J) ,-TvA. (J)

Lug ,'iA$4 -Z U)-=. Tr.U£. 

KAJ(J)=K.J(J)=0 
K Mfnc-t11 AA%111r$jw
 
KSTA(J)=0
 

KP AK(J) =Q 
- Iki, A W) 

90. IF{,.NOT.; RKEP(J)),ANC.(K.EO.39)) KSTAR(J)=KSTAR(J)-39 

IF((.NCT.HlARKEU(J)),AND. (Kt--.39)) K4J(J)=KAJ(J)-3"5
T-Fr (t ,.TTTT ,.fRR Uj ) *A N U ,(K ,*LU *. W )TKRT( -,ERJTJ1 -3­

91 CONTI KUE 

E.9 CONTINUE 
U 

C BACKGRCUPD DATA CHANNELS, IN MV(JK)
 
J - Zb, , b.... K= I 0 -5%
 

C
 

SUS K=r"
1 -TrrF= FJ='-T7T: 

DO ±6 K=i,39
 
HLIMT=vV (J,K)/2,20,8
 
VAL=POTNT*-"'KPAC(IBK) 

IF(J.EO.PE) WRITE(8) VAL, TIME
 

http:IF(J.EO.PE
http:RKEP(J)),ANC.(K.EO.39


56 	 / 

1 4"T
-' 4TS - 7-/7- .OPT=2 	 FT" -..+N1L*
 

- 'T-flJ7I-"cc-FTh-rTft-y-1-) VAL ,TI-


NT* POINT 
' Cf)';TT I1r
 

S2qU'-K=SUSWPK BKFAC (IGK) IK)i39.
/"KFAC 


- n-K- T. U 73K6TI...KM (i3K-Q nY (N 	 i ! 
___ICU(Ks:G 
 (IrK) ,LTIO.• ) BKSIG(IK)=O.
 

TF C C -IN2f Y Y TFALSE
 
T- FaL SE.
.'i2= 


S TCH= (ICOLCR- i e +i 

DO 2M01 LL=ISTCH,IENOcH
 
--q--=--if, 18 ) + I 

DO 3EC KK=1,39 
.., L-.,.., r (LL)'
 

E&TA4 (KK+L/70,)/353".
 = 	 ' o ±' " 1. _1 G
X'('T=z2-"3 QOi.. 	 -5 -2.771243E-O3 R"R -O.E 326.381
"1+!. 8 7Ea7sE9780 (-e 1 38 (CHAN(L)/.0)-2)+(a.3353/,2-((MODO((DmD(CH
 

11 'T(Li 67.o T
 
Y(VK)=CFRSETO,-DY+ DTA (L KK)
 
IY (Y(K<) .LI YLEAS I) Y(KK)=VL:ASA
 
IF(Y(KKi.GT.YMOST) Y(KK)=Y.OST
 

.ioA u .: : iNiC
 
CALL LIN= (X,Y,39,i,0,1,o.C, OX,-1,O,'Y ,0.35)
 

* -'r-0- - - r Tri
NUB
 
2002 CONTINUE
 

iF (tlCLC.Nt.l1) GO TO 5
 
*PIT-(-,iO3i) ((BKMN(K),RKSIGK)),K=±,3),PHRzC
 

LXIi.L),
1U2-FOf A (b = - T F3I)
 
IF((MCO(PHRECNU) .NT.c GO TO 5
 

f) L U LL' .*i.) UzL Yi. 

OOMC {T ) -S'PTMEL) 
A-;[ 2 G, 1A , ( 1HA NI ,Yt:S ( ,Q.MS {i- 1= 2 I, CHA N ) ,£ S, IH'--. 

1(1 ,Pt-S I ),I:27,44 ) , (CHAN (!I, RVS (I),QMS (I) ,I= E'-,3 ) 
...........OOE PHP.EusIA I (CH-iT -Y . -iF )I,- , MU MA( I) iRMS-T-, :~,25
1 I) OCS(I) ,I=27,44) , (CHAN(I) ,RVS (I),QMS (I), 63) 

1F2 PC-,'IAT(iH.,4XIL, XFfi.2,1l(3r4 II/,19XI,-XEi3.-,,X,EiQ.-) 


rO TO
 
30 wRIT-r(-,I1,n3I PHREC
 
-1- -Y-O- 1A,-7-i-QWA T -C1tONRECORO %,IiS, CONTINUE- k-EADII:G,/
=X- 2 .
 

1)-

II 

GO 10
 
q99 ILSTeC=PHREC 

w~i EW-TIEUTRE-,UW7- 1A
 
1004 FOr AT(1HG,5X,*TIM5 MAXIMUM REACHEO'AT RECORD *,IIO,3X,* FINAL TI 

it1H IS "-,Eij,",///) 

20 IF(ICCLOt.NE.i) GO TO 18
 

RgWINl 4
 
PR1Ni -6. 

http:tlCLC.Nt.l1
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.0RIG)NAL P GEI t -'"- ....... CPT=2 PAGEIS FTN 3*-,1j1 

OF POOR QUALITY 

IF(EOF()) 5?,81
 
! W~IC{ 1L_ t 7(-1 -T,( 3) ,K-.C
F-XR)),KI, 


GO TO &Of
 

EN FIL 7
 
HZW t.U / 

83 -*qEt'O C-,I012) PHREC,TA ,(CH2N(I) t"4S.CI) ,Q15(I),T=8,23) ,(CHAN(1I',R"MS 

IF(FOF(7)) 55,84 
I t(I) rL, , , -S (I) i =-36T3),tOti( 7,4L.)(CHTAN (1) rVST() 

*85 ENOFILE 4 

0 'C NOW COUNT UP THE OBJECTS D=T-CTED, AND THE REJECTS, ANO LIST " 3LE
 

DO 2C'C" I=1,65
 

IF(J.N5.0) ICOLCNT (J)=ICOLCNT (J)+COUNT(I)
 

21)0 	 OBJECT=OIJECT +COUNT(I) 

18 	 IF(IPLOT.N-.0) GO TO l­

1Ol 	 FO-iAT(!HC',5X,*ENO OF INPUT FILE * ,5X,4 NO PLOTS*)
 

t7 	 WqTTF (%,1009) ICOLOR,ICOLCNT (ICOLO)
 

1i STAPS*)\
i 	 UiJ6.Ti IIut
 

I (ICCLO'.NE.1) GO TO LC2
 
~ W.".-_"Z-ftt-r r-?:-S-tTPV£- R ­

-

1005 	 FOi1AT(1Hi,5X,*THE FIPST PRCORD IS *,I1G,5X,4 TH LAST RECOO IS
 

-WPT- (%011) rSTTIM,TA
 
1il1 F- Iiil liriA, IriT.D-0 3 G142S Mi I - SoS
zzUU'zJ5-


IAT T= 	 FFQ.4,1 S-CON S ) 

1015 	 FO'MiAT(i1-,$X,"SOURCES FOUrO \ I105X..,4 SIGNALS ,RJECTED \ ,I1J) 

1014-	 FOZPAT(±HO,2OX,*CHANUEL NCMENCLATURE\ Z,/,43X,4I*"OS APR SHORT WAy 

2 WAVELENGTH*,/) 

1007 	 FOZM.T(1HO,EX,*O3J_CTS DETECTED ON EACH CHANNEL*)

-'- rR r 	 rtt i T .Tm( (-'--AT T UUrT'l j izo, 25TCWWU17VFI ,-tfqN {i u,± :2 , -. 

i,(CHAN(I),GOUNT'(I),I=46,63) 

-Cnt 	 , 

I U>'mII'(,T,-----,-)
 
WRITE (E, tCOn)
 

WRITE 	(E., 10 0E) (CHANtI) ,RPCT (I) ,!=8,25) (CHAN I) ,RRPCNT (I) ,I=27 4 
' I tR hou,o6 } 

WRITE(, 16CC) (ICOLCNT (I) ,I=1,3) 
IMETU M--- ",!5,/,27X,t rNG ----- ,15)-. . .. 

!phi 	 H }~.C {I INTT1T 
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TT.FYr-	 7 
IN9NFILL 3 

2 	 OF.P. B-T-i 
PRINT "6 POOR QUALITY 

W, :I7f~ (-________ 

M0D6 FOP?"I(JIH:,58X,STARS'DETECT-D*,Y/)
 

1021 FCZMAT (iX,-. UOER CHAM ST PK E A R LIJT' TIE AMPL H 
1 I -1S T M-AN CO-, COr SH. NO-SE 8RIGHT Z-H AZIUTH rA 
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1IS T CH,KAOHP.CHKRCiRCH SHITFTF 

301 	 HT=PELK-MEAN
 
HH=S,- I GH)
 
IF(NCICE. EO..) GO TO 12
 
S "-.=3" 7 To S t
 
GO TO 13
 

13 	 C C T IuE 
ti -. r- glkp IJU t I WU) 

-ZRS= (IEAK- ISA "P)'+ 1.3o814/350 , 

1Zz= .5tjfuW72TU7-T 3.-T73$3o'.-.z7 I (MUcCUujflN- ,1m .23c1tA -lI 	 -9 
ZE°AD=Z7*+PT/180. 

=,K 
PK =-2E1,3790+1.30824054K -2.7712-3E-05PKPK -J.0321111111113+ 

1 , /-.C5.5 ;+(- J. 1 6d GRHAiN NWu I d -)- +- jTc- --372 - }- 7 [O--C( -] - ­

2AN (IWO) ,10) , 2)) .0 3 3) - 105" 
A1 r t--'.2 " 7T U.)< 1 
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Uu S (-TT--'AZr.,A U)} 
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SI Nur-_C_--y]S7fr 	 -O.CHOO! Si L 	U p+ SI N Zz- +C+COS-WZ 

DEC=AUUSU"US..SIN"(SID-C)(1.. 	 !,5_N~~SIUC
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HA=AT - (SINHA,COSHA)
 

OECOEG=OEC*180,/Pi
 

WRTTE (5,1022) ISTTL, ISTCH,CHANH(IWO),ISAMP,iPEAK,IZENO, KACH, KRCHZRS
 

1022 FOFMAT(IX,I4,7(1X,13),!X,F.3,1XF6.2,2(1X,F7.2),2(ix,F6..2),X,F7.
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2022 FORAT f14,713,2F8. 4,2F).3,5FS. 4; F8. 3,L FS..) 
GO TO 300 
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4.0 'APPENDIX: A SIGNAL PROCESSING GAME
 

The aim of this game is to develop skills in signal processing. The.
 

input data for this game are the recorded data UR(t). It is assumed
 

that the non-uniform scanning velocity has been corrected for already.
 

The time coordinate is given in discrete numbers t 0, 1, 2..;63.
 

We may consider UT(t)as being about one quarter of a single horizontal
 

scan (= constants).
 

The rules of the games are as follows. The "investigator" gets the 

sheet "Recorded Data UR(t)" and the sheet "Problem #1." After 

solving this problem he will give the solution to the "monitor" and 

to the '"dameconstructor." Now he may start-on problem #2,and so on. 
But it is important that the investigator does not get the next
 

problem sheet before he has finished the previous problem. The
 

reason isthat-the formulation of the later problems contains parts.
 

of the answers to the earlier problems. This has to do with the
 

basic structure of this simulation game: for performing any meaningful
 

signal processing operation one must have some knowledge about the
 

briginal signal and/or the noise. For example, inproblem #1 the
 

investigator istold that the noise is additive and non-negative. In
 

the later problems, the investigator will be supplied with even
 

more a priori information. Naturally, this should enable him to
 

extract the signals better and better. But the methods for doing this
 

increase in complexity.
 

On the very last pages, following the problems, the design of the
 
"recorded data" is explained,.and the true original signal is­

unveiled. Obviously -those pages should not be given to the investigator
 
before he has solved all the problems.
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.RECORDED DATA UR(t)
 

t is the discrete time variable running from t=O to t=63
 

t UR(t) t UR(t) t UR(t) t UR(t)
 

0 55 16 110 32 39 48 383
 

1 25 17 184 33 56 49 10
 

2 85 18 29 34 05 50 69
 

3 61 19 51 35 15 51 58
 

4 20 20 42 36 95 52 52
 

5 95 21 78 37 09 53 66
 

6 07 22 09 38 81 54 79
 

7 00 23 15 39 21 55 134
 
"8 62 24 13 81
40 56 94
 

9 79 25 "50 41 399 57 102
 

10 148 26 99 42 312 58 108
 

11 105 27 54 43 348 59 94
 

12. 125 28 99 "44 303 56
 

13 125 29 35 45 383 61 67
 

14 173 30 98 46 317 62 51
 

15 181 31 02' 47 317 63 63
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Problem #1
 

Given are the recorded data UR(t) with t = l...63. Wanted are the 

original data Uo(t), which represent the "one-dimensional equivalent object 

radiation" SE(a). We assume that the known influences of the telescope 

[M(x',y'); R(x', y')! and of the electrical system [G(t)] have been 

compensated already or are negligible. But the recorded signal UR(t) is 

corrupted by additive noise N(t): 

UR(t) = Uo(t) + N(t)
 

The only features known about the original signal Uo(t) and about the
 

noise N(t) are that they are non-negative:
 

Uo(t) L 0; N(ty z 0. 

Furthermore, the noise N(t) is stationary, which means that the noise
 

properties are not "drifting." In other words, short-term average
 

features of the noise remain the same from the beginning to the end of
 

the observation.
 

Try to utilize the given a priori information for computing a new
 

signal Ul(t) from UR(t), which somehow is better than UR(t) as an approximated
 

representation of U0(t). Plot U1 (t)as a continuous curve, and also
 

UR(t) for comparison.
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Problem #2 

Given are the facts: 

U0(t) 0; N(t) 0; N 50. 

By N we mean the linear average of the noise. This N can be visualized
 

as the dark current of the photoreceiver as measured with an instrument
 

which rejects high frequencies.
 

Based on these facts, try to compute a better signal U2(t)from
 

UR(t). Plot both U2(t)and UR(t).
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Problem #3
 

Given are the same facts as in the previous-problem. In addition,
 

it is known that the noise is approximately "white."
 

27i­N(t) = N + n(t); 6() = jn(t) e vt dv; 

v = m/64; m = -32, -31, ...-1,0, +1., ... +30, +31; 

16(V)1 2 constant. The amount of this "constant" is not known. Try
 

to deduce it from the recorded data UR(t). You might have to make an
 

intelligent guess.
 

66
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_
Problejn 4
 

Given are the same facts as in the previous problems, including the
 
'constant" which describes the noise power level.
 

- n 10' n - <ilO v < + 

Now that V(V)12 is known and UR( ) is computable, can you apply the­

Wiener-filter theory, at least in a guessed approximation? Try it and
 
compute U4 (t). Plot U4 (t)and UR(t). Hing: represent IU0(v)12 by
 

a gaussian function of suitable peak power and width. Signal processing
 
specialists always try itwith a gaussian function if they don't know
 

-a better way.
 

[U ( )00 P4 e'_(/v4)2 "
z 
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Problem #5
 

Try the same approach as inthe previous problem, but with a
 
guessed sinc2-shaped 1Uo(v)1 2
 

5 ); sinc z = - -­IUo(v )12 P5 sinc2(v/v


Plot the result U5(t) and also UR(t) for comparison.
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Problem #6
 

Try the same approach as in the previous problem, but a somewhat
 

different guess for 1Uo(v)I2
 

6U0(v) 1'2 = P6 sinc 2(v/v6 ) + (PO - P6) 60; 

Herein 60 means a function which is-equal to 1 for/!' 0 and equal to 

0 for v j 0. Plot U6 (t)and UR(t). 
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Problem #7 

Based on all of the accumulated experience, try your own signal 

processing approach or simply guess what Uo(t) might.have been. Call it 

U7(t). Plot U7(t)and UR(t). 
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