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ABSTRACT
 

Recent and ongoing planetary missions have provided, and are
 

continuing to provide, extensive observations of the variations of the
 

interplanetary magnetic field (IMF) both in time and with heliocentric
 

distance from the sun. 
Large time variations in both the IMF and its
 

fluctuations are observed. 
These are produced predominantly by
 

dynamical processes in the interplanetary medium associated with
 

stream interactions. Magnetic field variations near the sun are
 

propagated to greater heliocentric distances, also contributing to the
 

observed variability of the IMF. 
Temporal variations on a time.-scale
 

comparable to or less than the corotation period complicate attempts
 

to deduce radial gradients of the field and its fluctuations from the
 

various observations. However, recent measurements inward to 0.46 AU
 

and outward to 5 AU suggest that the radial component of the field on
 

-
average decreases approximately as r , as predicted by Parker, while
 

the azimuthal component decreases more rapidly than the r I 
dependence
 

predicted by simple theory. 
Three sets of observations are consistent
 

-I
with an r 1 3 dependence for IB1. The temporal variability of solar
 

wind speed is most likely the predominant contributor to this latter
 

observational result. The long-term average azimuthal component
 



"I 
radial gradient is probably consistent with the Parker r dependence
 

when solar wind speed variations are taken into account. The observations of
 

the normal component magnitude IB.1 are roughly consistent with a
 

heliocentric d-i-stance-dependence-of r- 1 .4 The observed-radial
 

distance dependence of the total magnitude of the NHF is well described
 

by the Parker formulation. There is observational evidence that
 

amplitudes of fluctuations of the vector field with periods less than
 

-3 /2 
one day vary with heliocentric distance as approximately r , in 

agreement with theoretical models by Whang and Hollweg. Relative to
 

total field intensity, the amplitude of directional fluctuations is
 

on average nearly constant with radial distance, at most decreasing
 

weakly with increasing distance, although temporal variations are
 

large. There is evidence that fluctuations in field intensity grow
 

relative to those in field direction with increasing distance. More
 

observations are needed to confirm these conclusions. The number of
 

directional discontinuities per unit time is observed to decrease with
 

increasing distance from the sun. The apparent decrease may possibly
 

be caused by geometric or selection effects. The relationship between
 

fluctuations of the field and the corotating stream structure is still
 

not understood in detailand therefore the origins of the various
 

meso- and microscale features are at present uncertain.
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INTRODUCTION
 

The study of the variations of various large scale and microscale
 

properties of the interplanetary magnetic field (IMF) with distance from
 

the sun is at present in a rapidly expanding stage in its history, The
 

missions of Pioneers 10 and 11 to the outer solar system starting in
 

1971; and still in progress, and the Mariner 10 mission to the inner solar
 

system to a heliocentric distance of 0.46 AU during 1973-1975 have
 

provided much new data bearing directly on this study.
 

The Helios 1 and 2 missions and the associated data analysis are also in
 

progress. 
In the future the Voyager mission and hopefully other outer

planet missions will add to our knowledge of the radial gradients of
 

the various properties of the IMF out to the limits Of the solar system.
 

The large scale structure of the IMF is determined in part by the
 

distribution of open magnetic fields 
on the sun and partly by interplanetary
 

dynamical processes. Knowledge of the large scale structure of
 

the coronal magnetic field is based primarily on magnetograph observations
 

of the line-of-sight component of the field in the photosphere, using
 

the Zeeman effect (see the review of Howard, 1967). The coronal fields
 

are then modeled by calculating the potential field from the measured
 

photospheric field (Newkirk et al., 1968; Schatten, 1968; Schatten et at.,
 

1969; Altschuler and Newkirk, 1969; 
see also the review by Schatten,
 

1975). 
 The results can be compared with measured interplanetary fields
 

extrapolated toward the sun or by extrapolation of the coronal field
 

outward (Schatten, 1968; Stenflo, 1971) using the assumption of transport
 

of the field by a radially flowing plasma. The radial gradients of the
 

I
 



field components used are those predicted by the spherically-symmetric
 

model of Parker (1958). Thus a comparison of experimentally-determined
 

IEF gradients with the Parker model predictions is of interest to such
 

coronal field studies, as well as to the construction of solar wind models.
 

The radial gradients in the IMF are important for plasma physics
 

problems associated with the radial distribution of energy in the solar
 

wind. Investigations of the physical processes important in the
 

expanding solar wind, such as the interactions between fast and slow
 

streams and the growth and damping of waves, can also benefit from measure

ments of the radial gradients in the components of the field and in
 

the fluctuations of both the field magnitude and the components,
 

The latter are also important because of their influence on energetic
 

particle propagation in interplanetary space. Most models of this
 

propagation up to the quasilinear approximation assume that to zeroth
 

order such particles follow a helical orbit along the mean spiral field
 

while undergoing some spatial diffusion due to the effects of field
 

fluctuations (Jokipii, 1971; Vlk, 1975a,b)° Recent nonlinear approaches
 

(V61k, 1975b; Goldstein, 1976; Jones et al., 1977) and the local
 

approximation quasilinear approach of Klimas et al. (1976a,b;1977) seek to
 

remedy the inability of previous theories to accurately describe the
 

more complex motions of cosmic ray particles with large (near 900) pitch
 

angles and/or moderate to strong magnetic turbulence. There have been
 

several attempts to determine the radial distance dependence of the
 

cosmic ray diffusion tensor (Jokipii, 1973; V6Ik et al, 1974), but
 

these have relied heavily on theoretical models for the spatial
 

dependence of the magnetic spectrum which.may not correspond to the
 

real situation (V5lk, 1975b).
 



Accepting then that the variation of the IME with heliocentric
 

distance is of significance for several-areas of solar and interplanetary
 

research, we review the present state of knowledge in this area, attempting
 

to sort out the confusion which exists about the interpretation of the
 

observations. Recent reviews of this subject have been concerned either
 

with a broad coverage of topics related to the magnetic field alone
 

(e.g., Schatten, 1971; Davis, 1972; Burlaga and Ness, 1976) or have
 

treated the more general subject of large-scale solar wind variations
 

(Neugebauer, 1975a). Smith (1974) considered radial gradients of the
 

magnetic field but concentrated on Pioneer 10 observations between 1.0 and
 

4.3 AU. Here we discuss in detail all radial gradients of
 

importance in the IF, including recent results which have greatly
 

expanded the radial-distance range available for interpretation0
 

In general, two methods of deriving radial gradients can be used0
 

(1) 	Use observations from a single spacecraft which moves over an
 

extended range of radial distance during a correspondingly
 

long time;
 

or (2) Use nearly-simultaneous observations from two or more spacecraft
 

performed at different heliocentric distances.
 

There are problems associated with both of these approaches. The first
 

method has been most used in Bl' studies, but radial and temporal variations
 

are mixed and must be carefully separated. It is customary to attempt to
 

average through such variations in the data or to use only data subsets
 

which correspond to periods of measurement within similar regions of the
 

corotating stream structure. Least square fits to the data can provide
 

3
 



additional smoothing. Solar rotation averages are often used, since
 

large variations are usually seen in the solar wind and IMF parameters
 

during a single solar rotation (Davis, 1972; Burlaga, 1975). Using
 

such averages still does not eliminate time variations completely,
 

however, since there can be significant variability from one solar 

rotation to theneiie either then orm of fluctuations or ds a trend 

extending over a nuiber of rotations. This problem will be considered
 

in more detail in the discussion of the measurements of the azimuthal
 

component gradient.
 

The second method, to combine data taken by two or more spacecraft
 

at different radial distances after adjustment of time for corotation
 

and radial propagation, has been used to look for a solar wind radial
 

velocity gradient (Collard and 1olfe, 1974) and a latitude gradient
 

(Rhodes and Smith, 1975). It is considered particularly important for
 

studies in which the gradients are relatively weak and are easily masked
 

by time-variations. One must be concerned, however, about the
 

"correlation length" of the quantity being studied. Over large
 

separation distances it may not suffice merely 'o adjust for corotation
 

and propagation delays, since there may be additional effects due to
 

continuous evolution both at-the sources of the streams and in the
 

interplanetary medium through stream collision processes. In that case,
 

data taken at widely separated points in space are not strictly comparable
 

under any circumstances. This is the same problem that arises in the
 

single spacecraft method: A steady state solar wind cannot be assumed in
 

general,, particularly when observations are taken in different streams.
 

For some studies it may be important to correlate observations taken
 

A, 



by different spacecraft of the same "parcel" of plasma. Such opportunities 

depend on an interalignment of spacecraft that is seldom realized. Thus
 

we must conclude that, while multispacecraft studies can be extremely
 

valuable, investigations of gradients in the IMF can be properly
 

carried out only for a limited subset of relative geometries and under
 

conditions that are approximately stationary in time, and such
 

appropriate circumstances may be rare.
 

5
 



1aKtit Z:Urt~' bRUUTUaL 

The large-scale "undisturbed" interplanetary magnetic field is
 

the photospheric field of the sun carried outward into the
 

solar system by the expanding coronal gas and twisted into a spiral by
 

solar rotation. A zeroth order model of this field was given
 

-by Parker- -(-195 8;---L963)-. Its geometry--has- been- calcuTated- in 

three dimensions by Hirose et al. (1970) and is shown in Figure 1.
 

Near-earth measurements of the 24F have to date been limited to the 

region within +7-i/4 of the solar equatorial plane, the range of the earth's 

annual motion only Pioneer 11, enroute from Jupiter to Saturn, has 

deviated significantly from this range, reaching 160 latitude in 

February 1976 (Smith et al., 1976, 1977b). 

That the photosphere was the source of the Dff was established in 

the mid-1960's by Ness and Wilcox using measurements made by the IMP I 

spacecraft. They demonstrated that the IMF corotated with the sun,
 

and they also discovered that the field was structured into sectors
 

(Ness and Wilcox, 1964; Wilcox and Ness, 1965). There was shown to
 

be at that time, on average, a quasi-stationary pattern of alternating 

regions of field directed either toward (+) or away (-) from the sun
 

along the spiral direction. The recent observations by Pioneer 11
 

(Smith et al., 1977b) support the view that the boundary between
 

magnetic sectors in the interplanetary medium is a warped current sheet
 

that isnearly parallel to the solar equatorial plane except very near
 

the sun.
 

It has been seen subsequently that some recurrent structural
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features of the IMF are associated with the interaction between fast
 

and slow solar wind streams (see Hundhausen, 1972 for a review of this
 

topic), and one or more high speed streams are observed in each magnetic
 

sector in the IMF. The sector pattern evolves with time, with the
 

number of sectors and the dominant polarity in a given hemisphere
 

apparently related to the solar activity and magnetic cycles, respectively
 

(Ness and Wilcox, 1967; Coleman et al., 1966, 1967; Rosenberg and Coleman,
 

1969; Hirshberg, 1969; Wilcox and Colburn, 1969, 1970, 1972; Wilcox and
 

Scherrer, 1972; Svalgaard, 1972; Russell and Mc~herron, 1973; Fairfield
 

and Ness, 1974; Svalgaard and Wilcox, 1975; Hedgecock, 1975; King, 1976).
 

Thus,although the long-term average, large-scale state of the fIF
 

structure may be the basic Archimedean spiral geometry, locally on
 

short time scales there is considerable variation caused both by
 

variations at the source which are convected outward and to the
 

colliding solar wind streams. These effects will be discussed in more
 

detail in later sections0
 

The initial formulation' for the IMF in terms of a reference field
 

B(E, 0o) at a heliocentric radial distance r = b, latitude 6 and azimuth
 

00 was given (Parker, 1958) in the form
 

Br (r,8,Q) = B (eo) b)2 (1a) 

Be (r,E,0) = 0, (Ib) 

and B (r,G,d) B (0,0) (v) (r-b) (-) sin e, (1c)
0 r 

where @ and r are related by the streamline formula 

V 
rl n (f) =; :(0 - 0').- (2) 
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V is the solar wind speed (assumed constant) and 0 is the angular
 

speed of solar rotation. Using this model, power law radial distance
 

dependences for the radial and azimuthal field components with exponents
 

of -2 and -1 are predicted; in addition to the r"I dependence, B is
 

-1
 
proportional to V as well,and the latitudinal component of the field
 

. -

is zero. The angle between the magnetic field and the radial solar
 

0 0
wind flow direction, the "spiral angle", is about 450 (or 225 ) at I
 

AU and decreases for r. r The reference field B(8,0o) could be a
 

simple dipolar solar field, where B(9,0 ) = B cos 8, or a more general
 

and complex solar field structure (Parker, 1958).
 

During the decade between 1964 and 1974, measurements of the IMF
 

by five deep-space probes have been analyzed in an effort to determine
 

experimentally the heliocentric distance dependence of the field. The
 

magnetic field experiments which have contributed to these studies
 

are listed in Table I along with a description of the type of data used
 

in each case in the least squares analysis. The results from these
 

experiments will be reviewed and compared with theoretical expectations
 

in the following sections.
 

RADIAL FIELD COMPONENT RADIAL GRADIENT
 

Observations by the various spacecraft listed in Table l,with the
 

exception of Mariner 4, have individually shown at least gross consistency
 

with the inverse square radial distance dependence predicted for B by
 

the Parker spiral model (Burlaga and Ness, 1968; Coleman and Rosenberg,
 

1968, 1971; Coleman et al., 1969; Rosenberg 1970; Rosenberg and Coleman,
 

1973; Smith, 1974; Villante and Mariani, 1975; Rosenberg et al., 1975;
 

Q 



SPACECRAFT 


Mariner 4 


Pioneer 6 


Mariner 5 


Pioneer 10 


Mariner 10 


TABLE 1. Summary of Experiments Measuring the Heliocentric
 

Distance Dependence of the IMF
 

PERIOD OF OBSERVATIONS RADIAL DISTANCE INVESTIGATORS 

RANGE (AU) 

11/28/64 - 7/14/65 1.0- 1.5 P.J. Coleman, Jr., 
E. J. Smith, 

L. Davis, Jr. 


Do E. Jones 


12/16/65 - 6/16/66 0.81 - 1.0 F. Mariani, 
U. Villante, 

N. F, Ness, 

L. F. Burlaga 


6/14/67 - 11/27/67 0.66 - 1.0 P. J. Coleman, Jr. 

R. L. Rosenberg 


3/10/72 - 11/20/73 1.0 - 5.0 E, J. Smith, 
R. L. Rosenberg, 

M. G. Kivelson, 


S. C. Chang 


11/3/73 - 4/14/74 0.46 - 1.0 N. F. Ness, 
K. Wo Behannon, 


R. P. Lepping, 

Y. C. Whang 


TYPE OF ANALYSIS 

Least squares fits to field
 
component and magnitude data
 
which were smoothed by takinj
 
27-day running averages at
 
3-day intervals (Coleman et
 
&1., 1969).
 

Least squares fits to solar
 
rotation averages of Br and
 
B only (Villante and Marian:
 
1975).
 

Same as Mariner 4 (Rosenberg
 
and Coleman, 1973).
 

Least squares fits to solar
 
rotation averages of field
 
components and magnitude.
 

Polarity weighting technique
 
used in averaging (Rosenberg
 
tet al., 1975).
 

Least squares fits to daily
 
averages of component and
 

magnitude data (Behannon,
 
1976a).
 



Behannon, 1976a). The various least squares analysis results are
 

given in Table 2.
 

The large difference between the gradient observed by Mariner 4,
 

and to a lesser extent also by Mariner 5, and the expected inverse
 

square dependence may be a result of the highly variable state of the
 

IMF during the period of those measurements, which was a rising portion
 

of the solar cycle. Mariner 4, for example, observed considerable
 

evolution of the sector pattern from one solar rotation to the next
 

(Coleman et al., 1967) just after solar minimum, and variable to quasi

stationary conditions continued through 1967 (Ness and Wilcox, 1967;
 

Wilcox and Colburn, 1969).
 

The Mariner 4 and 5 results were combined by Neugebauer (1975a) 

with those from Pioneer 10 (Smith, 1974) to show that the total data 

set was consistent with an inverse-square law variation. Neugebauer 

pointed out that the data sets from the various spacecraft were not 

strictly comparable, however, with differences both in methods of 

analysis (see Table 1) and in coordinate systems employed. The 

coordinate systems which have been used in radial gradient studies are 

heliocentric solar ecliptic (SE), solar equatorial (SEQ) and spherical 

coordinates. For an angle between the spacecraft-sun line and the solar 

equatorial plane of 7-1/40, the maximum angular excursion of Earth 

from the SEQ plane, the differences between components observed in two 

different systems at I AU in most cases would be less than one gamma. 

The differences can be greater than that, however, for strong field 

conditions (field magnitude >i-0l7 in the plane of rotation between 

10
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TABLE 2, Radial Component Distance Dependence B = A r r
 

r r
 

Spacecraft Radial Distance A C 	 Remarks
 

r
Range (AU) 	 r 


P6 0o81 - 1.0 	 -2r040o2 

145 0.66 - 1.0 3.50+0.31 -1.78+0.02 	 Smoother data used 
for both M5 and M4 
analysis.
 

M10 0.46 - 1.0 3.12+0o62 -1.96+0.31
 

M4 ia0 - 100 2.39+0.17 -1.46+0.02 Dependence for all
 
data.
 

2.16+0.12 -1.23+0.02 Dependence for quiet
 
data only.
 

PlO 1.0 - 5.0 2.11+0.55 -2.10+0.30 	 Note that the best
 
agreement is given
 
by M10 and PlO which
 
have large radial
 
ranges,
 

1i
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coordinate systems and for deep space probes at absolute heliocentric
 

latitudes >7-1/45. No attempt has been made to correct for coordinate
 

system differences although in principle this should be possible. In
 

addition to coordinate system-related differences, the differences
 

-between-the-various--results---given in Table 2 for the -best-f-t-power law---.
 

coefficients, Ar may also include contributions from systematic
 

measurement errors,
 

Figure 2 is a composite plot (Behannon, 1976b) of the Mariner 4,
 

Mariner 5 and Pioneer 6 solar rotation averages as presented by Neugebauer
 

(1975a), plus Pioneer 10 solar rotation averages (Rosenberg et al., 1975)
 

and solar rotation averages of the Mariner 10 data. The dashed line
 

drawn-through the data points indicates the heliocentric distance
 

dependence B, = 3.Or'2 Also shown (solid line) is the best fit of
 

the nonlinear model <f> = ArC to the data. This gave the result
 

"2. 1 3 Br = (2.89 + 0.16)r + 0.11 (3) 

Fitting a linear model to logarithms of the data gave the even steeper 

dependence r , as a result of low values of Br having a stronger 

influence in the log-linear case than in the nonlinear case. 

AZINUTHAL COMPONENT RADIAL GRADIENT 

In the review by Neugebauer (1975a), the variation of the azimuthal 

component B with heliocentric distance for a composite data set was also 

shown. Direct comparison was made difficult by the fact that the Mariner 

4 and 5 data were averages of the magnitude of the heliographic azimuthal 

component B,; the Pioneer 6 data were averages of (By2 + BZ2)1/2; and 

12
 



the Pioneer 10 data were the most probable values of 1B01 reported by 

Smith (1974). The various sets of data were consistent, however, in 

suggesting the exponent of the azimuthal component radial dependence to 

be > 1. 

Table 3 lists the individual results which have been obtained for
 

the azimuthal component dependence. The Pioneer 10 result is derived
 

from a least squares fit to polarity-weighted solar rotation
 

averages (Rosenberg et al., 1975) rather than to most probable values.
 

It can be seen that the gradient obtained from this more recent Pioneer
 

10 analysis is in agreement with the Mariner 10 result as well as with
 

that found for Mariner 4 when all of the data were used in the fit
 

(Coleman et al,, 1969).
 

The most inconsistent results in this case were those from the Mariner
 

5 and Pioneer 6 measurements, In addition to the Pioneer 6 results
 

shown in Table 3, Villante and Mariani (1975) obtained
 
tan Ytan c - r "1 where tan B= B /B (ax is the observed spiral 

-2a the abohereatan 

angle), and tan up = or sin /VS . Since Brc r , the above radial 

-2 
dependence implies that B, c r also if VS is taken to be independent 

of r, a valid assumption from observational evidence to date. An 

inverse square dependence is still significantly steeper, however, than 

the gradients found by Pioneer 10, Mariner 10 and Mariner 4. The 

discrepancy may be due to the small range of radial distance covered by the 

Pioneer 6 spacecraft, as well as the small number of solar rotation 

averages used in the least squares analysis. 

Figure 3 shows solar rotation average B0 data from all five space

13
 



TABLE 3. Azimuthal Component Distance Dependence B 


Radial Distance A 

Spacecraft Range (AU) 


P6 0.81 - 1.0 


M5 0°66 - 1.0 3.23+0.26 

M1O 0.46 - 1.0 2.49+0.51 

M4 1.0 - 1.5 2.57+0.21 


2.42+0.14 


Plo 1.0 - 5.0 3.93+0.22 

C
 
0 

-2.5+0.2
 

-1.85+0.02 


-129+0.36 

-1.29+0.02 

-1.22+0.02 

-1.29+0.06 

= A rC 

Remarks
 

See Table 2 remarks
 

See Table 2 temarks
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craft from which we now have gradient measurements (Behannon, 1976b).
 

This includes Mariner 10 and the Pioneer 10 data of Rosenberg et al. (1975).
 

The dashed line shows the Parker model r- dependence on radial distance,
 

"1
and the other broken line illustrates the r .3 dependence with which three
 

of the sets of data are individually consistent. A less steep distance
 

dependence
 

B - -1.12 + 0.14 
=B (3.17 + 0.19) r 1 

was obtained for the best fit to the composite set. This dependence is
 

given by the solid line in Figure 3 and is in closer agreement with the
 

"
theoretical r dependence than was found for any of the individual sets
 

of measurements, although such better agreement may simply be fortuitous.
 

Some physical mechanisms have been advanced to explain
 

the fact that in each individual case the observed BO gradient is
 
-I
 

steeper than r 1 Nerney and Suess (1975) have attempted to
 

accommodate the observed falloff of B 
with increasing heliocentric
 

distance within the framework of steady flow, three-dimensional solar
 

wind theory by considering the effects of meridional flow. 
However,
 

this theory also predicts a more rapid falloff in Br than is predicted
 

by the Parker model. In the Nerney-Suess model, the corrections to B
 
r 

and B relative to the Parker Model are essentially the same, with flux
 

tubes opening in response to meridional flow, transporting both B
 
r 

and B to higher latitudes and maintaining the same spiral angle as in
 

the classical model. Although the "best-fit" to the composite data
 

for Br in Figure 2 was suggestive of a slightly steeper falloff than r-2 ,
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the uncertainty associated with the fit is large enough so that its
 

significance is questionable.
 

-l
 
Jokipii (1975) suggested that the steeper than r dependence for 

the azimuthal component could perhaps be accounted for at least in part 

by -considering -the-influence-of solar -wind fluctuations-wh-ich-do--not 

influence B Careful observations of < 8B 6V > as a function of r 

are required to test the importance of this suggestion. The first 

test, which used Pioneer 10 data, has suggested that the effect is not 

important (Parker and Jokipii, 1976). However, from calculations using 

a numerical NRD model, Goldstein and Jokipii (1977) have concluded, 

that nonlinear fluctuations due to solar wind stream interactions can 

cause < B > to decrease significantly faster than the archimedean spiral 

calculated for -<Vs>- if certain conditions are satisfied, such as a 

correlation between Br and Vr at the inner boundary. 

Using a kinematic approach, Burlaga and Barouch (1976) have shown 
-1 

that although B may vary as r , it is also directly proportional to 

% - 900, where 0 is the initial azimuthal angle of the field near the 

sun, Since the initial value &o and its statistical properties may 

depend on both time and position, measurements of <B performed during 
-I 

an extended period may well deviate significantly from an r dependence 

They have found by averaging over a typical stream that while the Br 

variation is well-described by the inverse-square dependence, B does 

not vary in a simple way. In the case illustrated in Figure 4, when 

0 takes values between 930 and 990, measured B at 1 AU can lie
 

somewhere in the shaded area, i.e., 2.57 < B - 77. Barouch (1977) has
 

used the kinetic model to extrapolate one year of plasma and field observations
 

from 1 AU to 0.3 AU and has concluded that directional fluctuations of the
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IMF on a 6-hour timescale are primarily due to interplanetary processes.
 

Even though these various effects may each contribute to the observed
 

radial gradient in B1 it has become obvious that the major influence
 

on the calculation of a B0 gradient from measured fields comes 
from
 

variations in the solar wind speed. 
It was noted earlier that equations
 

1 were developed for the case of a steady solar wind. 
The plasma speed
 

appears explicitly in the expression for B (equation ic). With soiar wind
 

source regions at the base of the corona which differ in size and shape and
 

are continuously evolving, so that both the reference field Bo=B(8, 0 ) and
 

V are functions of time, it perhaps should not be surprising that
 

measured %q<B> does not appear to obey the ideal Parker spiral model inverse
 

power law exactly and that there are differences between different data
 

sets taken at different times, especially since in every case only one
 

spacecraft was available.
 

Using data from Mariners 2, 4 and 5, Rosenberg (1970) showed that 

the tangent of the observed spiral angle, tan a3 , has a dependence on 

solar wind stream flow speed. When the "slow" streams dominate the flow, 

tan B < tan a from the Parker model, and when "fast" 
streams dominate, 

tan B >- tan oj. Also Neugebauer (1976) has found from a study of data 

from nine spacecraft taken during 14 "quiet" intervals that the average 

direction of the IM varies with the solar wind speed in a way consistent
 

with the Parker model.
 

Significant changes in average solar wind speed between successive
 

solar rotations have been noted by various observers throughout the
 

last solar cycle (Neugebauer and Snyder, 1966; Lazarus and Goldstein,
 

1971, Rosenberg et al., 1975). A survey of a composite set of 1 AU
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solar-rotation-average solar wind speeds over the last solar cycle,
 

using only those averages which included at least 1/3 of the hours
 

in a complete solar rotation, yielded changes AVs in average speed 

between successive rotations ranging from 3 to 94 km/sec, with an 

average change -AV s - of 31 km/sec for 103 rotations (King, private 

communications). The average value of AV during the Pioneer 10
 

transit to 5 AU was 38 km/sec.
 

Figure 5 shows the most probable Pioneer 10 field angles for each solar
 

rotation plotted as a function of heliocentric distance, together with
 

least-squares fits to the Mariner 4 and 5 data (Smith, 1974; Neugebauer,
 

1975a), for the two sector directions. Also shown are the theoretical
 

spiral angles for a constant solar wind velocity of 60 kin/sec. The
 

Pioneer 10 solar rotation data clearly illustrate the considerable
 

variability with time0 Parker and Jokipii (1976) have computed the radial 

gradient in <Bs>cVr> using the Pioneer 10 solar-rotation-average magnetic 

field and solar wind speed data and have found a radial dependence of 

-1.10 + 0.08 -1.29 + 0.06 
r compared with the best-fit power law dependence r 0
 

resulting from B data without regard for speed variations (Rosenberg
 

et al., 1975). To be completely rigorous, <B Vr> should be tested, however.
 

The good agreement with the Parker model of the "best-fit" to the
 

data in Figure 3 may reflect that a least squares fit to such a composite
 

data set may tend to minimize the effects of time variations within and 

between the individual data sets from the different spacecraft. 

We conclude that although the individual sets of measurements suggest 
-1 

that the B gradient is steeper than r , there is also evidence that 
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r may still be the best large-scale, lbng-term average radial
 

gradient when proper consideration is given to the relevant temporal
 

variations.
 

NORMAL COMPONENT RADIAL GRADIENT
 

As indicated previously, in the Parker.model there is no field
 

component perpendicular to the solar equatorial (SEQ) plane in that plane
 

because of symmetry. Although all measurements pulbished to date have been
 

taken in the region near the SEQ plane, the normal component is usually
 

observed to be nonzero and the various investigations of the radial
 

distance variations of the IMF have included the determination of the
 

radial gradient in that component as well. For Mariner 10 the measure

ments used were of IBnl, the normal to the SEQ plane. The other
 

investigat6rs have all used measurements of IB.I, the component of the
 

Afield in the direction of the spherical coordinate unit vector 9. The
 

component Bn is equivalent to B in the SEQ plane, and for the majority
 

of the measurements published to dateB n and Be would not be expected
 

to differ by more than a few tenths of a gamma at I AU.
 

The least squares fit results are given in Table 4. Note that there
 

is considerable variation in the values of A the coefficient of the
 

power law fit, which estimates the value of <IB at I AU. The results
 

for those cases where B values were used imply a large value for that
 

component on average at I AU. Such large values are significant,
 

considering that the expectation from simple theory is exactly zero.
 

Coleman (1976) has demonstrated that time variations in the solar
 

magnetic field may produce IMF Be components which are nonzero for
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TABLE 4. Normal Component Distance Dependence B = A r C9 

Spacecraft Radial Distance A Remarks
 
Range (AU)
 

15 0.66 - 1.0 2.389+0.21 -2.05-0.02 B8 (Spherical coords.)
 

Mi0 0.46 - 1;0 0.82+0.31 -1.40+0.63 B (SEQ coords.)
 

M4 t.0 - 1.5 io7--0o17 -io27-o03 B, (Spherical coordso)
 

1.59+0.11 -1.38+0.02
 

PlO 1.0 - 5.0 2.93+0.31 -1.41+0.12
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significant periods and even at times comparable in magnitude
 

to the B6 component. However, systematic errors may also be important
 

for the B component results in all cases; for example, the uncertainty
 

in the spacecraft field component in the Be direction could result in
 

significant errors in measurements of B for any of the spacecraft.
 

Some consistency is seen in the gradient results in Table 4. The
 

-1.40 + 0.63 distance dependence obtained in the Mariner 10 analysis

r 

compares well with the Pioneer 10 dependence (Rosenberg et al., 1975)
 

as well as with that determined from the Mariner 4 "quiet" data set.
 

FIELD MAGNITUDE RADIAL GRADIENT 

In a preliminary study of Pioneer 10 measurements, Smith (1974) 

found that the solar-rotation most-probable values of field magnitude
 

exhibited roughly the radial dependence predicted by Parker's theory,
 

although there were departures at each end of the distance range. As
 

discussed in the section on the B gradient, there were temporal
 

variations during the analysis period which could have contributed to a
 

lack of agreement with the steady-state theory.
 

Musmann et al. (1977) have shown in a preliminary analysis that
 

the combined Helios and Pioneer 10 solar rotation field magnitude data
 

are consistent (at least between 0.3 and 3 AU) with the Parker model
 

variation B = 5(l+r2)1/2/r2 Mariner 10 data between 0.46 and 1 AU
 

2 112 2
yielded the similar best fit result B = 4(l+r ) Ir . Power law
 

models have been fitted to the magnitude data also, resulting for
 

example in a dependence on heliocentric distance of r"! °3 7 + 0.07 for
 

~1 6 5 
Pioneer 10 and r . + 0.16 for Mariner 10. Since the Parker model
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does not predict a simple power law distance dependence for the field
 

magnitude, it is not surprising that there is not better agreement
 

between these results, and their usefulness is at best questionable0
 

Within any given solar rotation considerable structure is usually
 

-- se en -in-the-magnitude o f--the-interp lanetary-f-ie-id-as-a-func t-ion-of--t-imer-

As indicated in previous sections, considerable variability is introduced
 

into the IMF by high-speed solar wind streams. High-speed streams were 

first identified in the Mariner 2 data of 1962 (Neugebauer and Snyder, 

1966). Various correlations of the plasma and magnetic field measure

ments on IMP I (Wilcox and Ness, 1965), Vela 3 (Ness et al, 1971) and 

Mariner 2 (Coleman et al., 1966) have shown that each high-speed stream 

has a predominant magnetic polarity, with one or more streams occurring 

within a single magnetic sector. The magnetic field magnitude is found 

to be enhanced in the leading part of a stream, which is the high density 

(compression) region, and reduced in the trailing part, which is the low 

density (rarefaction) region; These features have been predicted in
 

dynamical models by Sakurai (1971), Matsuda and Sakurai (1972) Urch
 

(1972) and Nakagawa and Wellck (1973). Burlaga and Balouch (1976) and
 

Barouch (1977) have shown that this is primarily a kinematic effect.
 

The magnitude enhancement of the field in the leading portion of a 

typical stream increases nonlinearly with increasing r as the fast plasma 

tends to overtake the slow plasma This is illustrated in Figure 6 which 

shows a contour map on the ecliptic plane of field magnitude enhancements 

related to the values of B(rO) that would be measured in the absence of 

a stream (Burlaga and Barouch, 1976). This piedicts that between 0.5 AU 

22
 



and I AU an increase in the field in the leading part of a typical stream
 

of almost a factor of two could be expected. Figure 7 (Behannon, 1 976a)
 

shows hourly average data from Mariner 10 and from INP-8 in earth orbit,
 

with small gaps filled in by R{EOS data (made available by Peter Hedgecock
 

through the NSSDC). Two cases in which the same stream-associated
 

magnitude enhancements were observed at widely separated heliocentric
 

distances are shown, one when Mariner 10 was at 0.78 AU and the other at
 

0.48 AU. The respective sets of observations have been normalized by
 

the average post-stream field magnitude levels. Although this compares
 

the change in magnitude enhancement for only two cases, in both of them
 

the enhancement is seen to be less at the spacecraft nearer to the sun,
 

as predicted by the theory, and a ratio of enhancement at I AU to
 

enhancement at Mariner 10 of at least 1.5 is found in both cases. 
 There
 

were more high speed stream observations by Mariner 10 during its
 

primary mission, but crucial data gaps occurring simultaneously at
 

both IMP 8 and HEOS make interpretation difficult.
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MESO - AND MICROSOALE PHENOMNA
 

The ternm "fluctuation" has been used to describe almost every type
 

of variation of the magnetic field relative to an average background field.
 

As discussed by Coleman (1968), Scarf (1970), Burlaga (1972), Smith (1973a,b)
 

and others, the vector field time series usually contains a mixture of
 

stream-stream interactions, shocks, directional discontinuities,
 

hydromagnetic waves and higher frequency phenomena, although the power
 

spectrum may be dominated by one particular type of variation at a
 

given time, with the dominant type changing with time0 Magnetic field
 

time variations with periods of a few hours or less appear to be
 

produced predominantly by waves and discontinuities, while those with
 

periods which are relatively much longer are caused by large scale
 

stream interaction effects (Coleman, 1968; Goldstein and Siscoe, 1972)
 

or by changes in solar wind stream source region conditions.
 

The short-period phenomena are related to the large-scale
 

structure in the sense that the colliding streams in interplanetary
 

space probably generate at least some of the observed microscale
 

features,
 

As introduced by Burlaga (1972), the term microscale includes
 

events and/or structures with an observed duration or Doppler-shifted
 

period of one hour or scale length of < 0.1 AU. This includes
 

directional discontinuities and shock waves, and hydromagnetic and
 

electromagnetic waves with periods less than one hour (f 2.8 x 10-4Hz).
 

Mesoscale phenomena (periods of one to 1100 hours) include long
 

period Alfven waves as observed initially in the Mariner 2 data
 

(Unti and Neugebauer, 1968; Coleman, 1967, 1968), and analyzed
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extensively by Belcher et al. (1969) and Belcher and Davis (1971).
 

Magnetic field fluctuations in the micro- and mesoscale frequency
 

regimes have been most often studied through the computation of
 

variances or root-mean-square deviations of the field magnitude and
 

the field components (both combined, as in the Pythagorean mean, and
 

separately). Additional techniques which have been employed are power
 

spectrum analysis, which gives the frequency dependence of the fluctuations,
 

and the correlation of changes in the field with changes in solar wind
 

velocity. The latter approach has been used in attempts to identify
 

Alfve*n waves in the interplanetary medium (Coleman, 1966; Belcher et
 

al., 1969; Belcher and Davis, 1971; Belcher and Burchsted, 1974, Burlaga
 

and Turner, 1976). 
 This review will consider only those experimental
 

results which relate specifically to the variation of IMF fluctuations
 

with heliocentric distance.
 

Studies of the changes in the magnetic field fluctuation spectra
 

with heliocentric distance can indicate whether or not the interplanetary
 

field is becoming more or less irregular on a given time (or, equiv

alently, length) scale with increasing radial distance (Smith, 1974).
 

This is important for attempts to locate the source regions of particular
 

types of fluctuations and to determine the degree of damping of such
 

fluctuations as they propagate in the solar wind. Interest in the damping of
 

fluctuations has been motivated largely by discrepancies between theory and
 

observation in studies of the heating, acceleration, angular momentum
 

and thermal anisotropy of the solar wind (Hollweg, 1975).
 

IMF fluctuations are of further importance in cosmic ray
 

propagation theory. 
It is believed that they play the role of scattering
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centers for the particles, producing a spatial gradient in'cosmic ray
 

intensities as well as a modulation with solar.activity (see reviews
 

by Jokipii, 1971; vblk, 1975b; Moraa, 1976). The radial variation of
 

magnetic field fluctuations causes a corresponding variation of the
 

particle diffusion, with an obvious beafng ofxithh&_avie-ifht of
 

models of particle propagation. Studies to date (Jokipii, 1973; Valk
 

et al., .1974, also see V61lk, 1975) assume that only Alfven waves of
 

solar origin contribute significantly to cosmic ray scattering and use
 

a WKB approximation for the spatial dependence of the wave characteristics.
 

The results and limitations of these computations will be discussed later.
 

There have been several attempts at theoretical calculation of
 

the radial variation of the relative magnetic field fluctuation
 

amplitude, and, predictably, results have varied as the complexity
 

of the solar wind model used for the computation has increased. For a
 

spherically symmetric solar wind, neglecting the effects of rotation
 

and assuming that the solar wind behaves as an ideal gas, Parker (1965)
 

and Dessler (1967) predicted that relative magnetic field fluctuations
 

aB/B due to small amplitude, undamped waves would increase with distance
 

from the sun up to a shock-limited ratio of LAB/B = 1. Here aB was taken
 

as the magnitude of the perturbation &B in the azimuthal (0) direction
 

of a radial magnetic field of magnitude B(r) = B (a/r)2 Parker
 

suggested that such an increase would occur, under the given conditions,
 

for compressional fast mode waves as well as for transverse Alfven
 

waves. In the limiting case (particle pressure ignored relative to
 

magnetic pressure), AB/B - r. Thus, for example, the relative field
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fluctuation amplitude would be expected to double between the orbits
 

of Mercury and Earth.
 

In contrast, recent studies using more physically realistic models
 

of the solar wind and rFr predict that the decreasing gradient in AB
 

with increasing radial distance from the sun is sufficiently steep to
 

limit AB/B to values less than one, even without damping. Whang (1973)
 

constructed a model for the propagation of Alfv'en waves of arbitrarily
 

large amplitude in a spherically symmetric solar wind and spiral IMF.
 

This model was based on 	the two-region solar wind model of Whang (1972)
 

which included thermal anisotropy and the spiral field structure. This
 

wave propagation model predicted that in the vicinity of 1 AU, Alfven
 

wave amplitudes would fall off with increasing heliocentric distance
 

approximately as r
 / . It further predicted a maximum of approximately
 

0.5 	in the relative amplitude (II/B) of Alfvenic fluctuations near
 

-
I AU and an asymptotic r l/2 variation at large heliocentric distances.
 

The predicted radial distance dependence of I1Bl/B (labeled b/B ) is
 

shown in Figure 8.
 

Hollweg (1974) used a simple analysis based on energy conservation
 

to derive expressions for the spatial variation of the amplitudes of
 

outwardly propagating, undamped Alfven waves of arbitrary amplitude
 

in the solar wind. No special assumptions were made concerning the
 

solar wind geometry or direction of propagation. He predicted that the
 

energy densities in the transverse Alfven mode should fall off as
 

p3/2, where p is the mass density of the plasma. Belcher and Burchsted
 

(1974) concluded, on the basis of Hollweg's formulation, that if p
 

-2
falls off approximately 	as r near 1 AU, then the Alfven wave amplitude
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3/2
 
-
should fall off approximately as r , in agreement with Whang's 

result.
 

OBSERVED DISTANCE DEPENDENCE OF IMP R1S DEVIATIONS
 

It is customary in the analysis of magnetic field data from space
 

to determine the intensities of fluctuat-ions (in the form of rms
 

deviations, variances or power spectral density) in both the magnitude
 

of the field and the individual orthogonal components of the field.
 

Purely compressive mode waves produce fluctuations in the magnitude
 

BI of the magnetic field but not in its direction. In the case of pure
 

Alfven waves, there are oscillations in direction but not in IBI, while
 

fast mode waves produce oscillations in both direction and il. In
 

the latter category fall the large amplitude, elliptically-polarized
 

waves identified by Burlaga and Turner (1976). They are not pure
 

Alfven waves because 61B # 0, but one cannot further determine from
 

the available data whether they are fast mode waves propagating nearly
 

along B, nonlinear elliptically-polarized Alfven waves coupled to the
 

fast mode, or possibly some other mode or combination of modes (Burlaga
 

and Turner, 1976). Barnes (1976) has demonstrated that purely Alfvenic
 

plane-polarized large amplitude disturbances cannot exist.
 

Fluctuations in field direction are determined from the field
 

component fluctuations. However, the coordinate system is important
 

for the interpretation of component measurements unless an invariant
 

quantity such as the Pythagorean mean of the three orthogonal components
 

is computed:
 

ac = JU2 + a2 + 2 (5) 
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Although the Pythagorean mean also includes magnitude fluctuations,
 

it is usually representative of purely directional fluctuations to a
 

good approximation because the power in field direction fluctuations
 

has been found in all IMF measurements to be factors of 2 to 10 or more
 

greater than that in field magnitude fluctuations (Coleman et al., 1969;
 

Rosenberg and Coleman, 1973; Blake and Belcher, 1974; Rosenberg et al.,
 

1975; Behannon, 1976aand others). Because of the interest in'determining
 

the relative fluctuation levels both parallel and perpendicular to the
 

magnetic field, some studies have transformed the observations to a
 

coordinate system in which one acis is along the average direction of
 

the field vector (eog. Coleman et al., 1969). Then variances parallel
 

and perpendicular to the mean field are computed.
 

One must be cautious about interpreting interplanetary directional
 

fluctuations strictly in terms of the presence of wave modes unless
 

tangential discontinuities or their effects are excluded from the
 

analysis, either by judicious selection of data or by suabtracting off
 

their contributions. Sari and Ness (1969, 1970) have demonstrated
 

that these discontinuities can be a major contribution to the overall
 

level of microscale fluctuations.
 

The Pioneer 10 mission to Jupiter provided the first opportunity
 

to determine the heliocentric distance dependences of fluctuations
 

over a large range of distances. The initial analysis of the most
 

probable daily variances for each solar rotation during the mission
 

"
suggested that 2(Br) roughly followed an r 4 dependence on radial
 

distance (Smith, 1974). Taken with the observed r-2 dependence for Br,
 

This further suggested than ABr/Br was approximately independent of
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distance from the sun for the distance range studied. In a more
 

complete analysis using 3-hour daily and solar rotation variance averages,
 

generally weak dependences on heliocentric distance were found for
 

both field magnitude and component fluctuations relative to the mean
 

field magnitude (Rosenberg et aLo, 1975). The weakest gradient was
 

found to be along the radial direction, consistent with the preliminary
 

conclusion by Smith. The specific distance dependences found in each
 

case are summarized in Table 6, together with those computed from
 

Mariner 4 and Mariner 10 measurements.
 

An additional computation on Mariner 4 data yielded
 

a(b) 4
s x 0.33 r * , (6) 

-'B>

where as(bx) was a measure of the power in fluctuations parallel to the
 

mean field over solar rotation periods. This result, together with
 

those obtained.for the field magnitude, suggested a relative growth of
 

compressional fluctuations with increasing radial distance (Coleman
 

et al., 1969). -These results were interpreted as indicating consistency
 

with the Parker-Dessler theory predictions for undamped disturbances.
 

A weaker relative decrease in fluctuations transverse to the mean field
 

with increasing heliocentric distance was also found. From the combined
 

results it was inferred that the compressive mode was becoming dominant
 

and the Alfven mode less significant as the distance from the sun beyond,
 

1 AU increased. We shall'return to this conclusion and its possible
 

consequences shortly, when more supporting -dataare shown.
 

The Mariner -10,observatiois yielded measurements between 1 ahd
 

0.46 AU of the field component )rms -deviationaO asdefined bt
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TABLE 5. Best Fit Power Law Results for Relative Field Fluctuation Distance Dependences
 

Mariner 4 

A 

Three-Hour (T) 
A C 

A cC 

aC A 

A 

Daily (D) 
A C 

"A c1C 

aC A 

Solar Rotation (S) 
ga C aC 

A"A c F 

C(Br) 

.c> 

All 

Q 

0.33 

0.33 

0.02 

0.01 

0M05 

0.26 

0.02 

0.01 

0.48 

0.46 

0.03 

0.02 

0.03 

0.27 

0.02 

0.01 

0.06 

0.61 

0.02 

0.02 

0.01 

0.09 

0.01 

0.01 

a(B6 ) 

.93> 

All 

Q 

0.36 

0040 

0.02 

0.02 

0.25 

-0.02 

0.02 

0001 

0.48 

0.48 

0.02 

0.01 

0.13 

-0.02 

0.01 

0.01 

0.52 

0.50 

0.03 

0.03 

0.12 

0.05 

0.02 

0.01 

a(f ) 
- t 
-<> 

All 

Q 

0.36 

0.36 

0.02 

0.01 

0.22 

0.12 

0.01 

0.01 

0.52 

0.50 

0.02 

0.02 

0.28 

0.30 

0.01 

0.01 

0.68 

0.69 

0.03 

0.03. 

0.14 

0,16 

0.01 

0.01 

_Y(B) 

-> 

All 

Q 

0,15 

0.16 

0,01 

0.01 

0.56 

0.38 

0.01 

0.01 

0.26 

0.28 

0.02 

0.02 

0,75 

0.70 

0.02 

0.02 

0,43 

0.39 

0.04 

0.02 

0.50 

0,71 

0°03 

0001 

Pioneer 10 

a(BR) 

-CR> 

0.22 0.01 -0.08 0,06 0.35 002 -0.01 0,06 052 0.04 003 0.08 

a(BN) 

-CR> 

0.30 0.01 -0.19 0.05 045 002 -0.09 0.04 0.58 0.06 0.08 0.13 

(B T) 0,28 0.01 -0.23 0.05 0.46 0.01 -0,10 0,04 0.77 0.04 0.10 0.06 

Y(B) 
-<> 

0.10 0.01 -0o16 0.08 0.20 0.01 0.02 0.08 0.49 0.07 0.30 0o16 

Mariner 10 

K (BC) 0.41 0.01 -0.25 0.06 (B-)- > 0.09 0.01 0.36 0.13 

NOTE: cA' aC are rms deviations of measured A,C values from best-fit values. Q="Quiet" data (see text).
 



Equation 5, and the field magnitude rms deviation aF (Behannon, 1976 a).
 

The heliocentric distance dependences of these quantities relative to
 

the field magnitude distance dependence, ac/F and 7F/F, were determined
 

by least squares fits to the daily averages of the hourly relative
 

fluctuation data. The best-fit distance dependences shown in Table 6
 

for Mariner 10 suggest a slow increase in the amplitude of field
 

magnitude fluctuations relative to the field magnitude with increasing
 

heliocentric distance, while the relative directional fluctuation
 

amplitude weakly decreases with increasing distance (Behannon, 1976a).
 

These results support some of the conclusions drawn from Mariner 4
 

and Pioneer 10 observations. Detailed differences may be due at least
 

in part to different states of the interplanetary medium at the times
 

of the various observations, although computational differences make
 

direct comparison difficult.
 

To facilitate such a direct comparison of the various spacecraft
 

observations of directional fluctuations, the individual Mariner 4
 

and Pioneer 10 relative (magnitude-normalized) distance dependences
 

shown in Table 6 were evaluated at various values of radial distance
 

between 0.5 and 5 AU, assuming that the measured dependences could
 

be extrapolated beyond the actual ranges of observation. At each
 

point of evaluation (i.e., for each value of r used) the three separate
 

component results were combined in a Pythagorean mean according to
 

(B)2 112 

Jr fL('])rQE (7) 
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where for Mariner 4, i = r, e,0 and for Pioneer 10, i = R, N, T. 
This
 

was carried out in both cases 
for j = S, D, T, where S = solar rotation,
 

D = daily and T = three-hourly rms deviations. The relative magnitude
 

distance dependences were also similarly evaluated for each time scale.
 

The comparative curves are plotted in Figures 9 and 10 along with the
 

acIF and oF IF distance dependences found by Mariner 10. The curves axe
 

shown as 
solid lines only over the actual ranges of observation and as
 

extended dashed lines outside those ranges for purposes of comparison
 

and interpretation
 

These figures suggest the following general radial distance
 

characteristics for the magnetic field fluctuations:
 

(1) 	The relative field component fluctuation amplitude (ac/F)
 

increases as the fluctuation frequency decreases at all
 

distances; the fluctuation amplitudes for periods > one day
 

become greater than the mean field strength.
 

(2) 	The rate of change of a /F with increasing distance generally
 

becomes less positive as frequency increases;
 

(3) 	The FIF data generally exhibit characteristics similar to
 

those given in (1) and (2), although there are some
 

exceptions;
 

(4) Mariner 4 and Pioneer 10 solar rotation statistics suggest
 

that both acF and F/F increase with increasing distance
 

at that time scale;
 

(5) 	For every pair of corresponding acIF and FIF curves for a
 

given spacecraft, except for the Pioneer 10 3-hour data, 

aFF increases at a faster rate (or decreases at a slower 

rate) with increasing heliocentric distance than Cc/F. 
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The first of these conclusions agrees with expectations and with the
 

results from spectral analyses and other studies. The second point
 

simply illustrates the general decrease in relative directional
 

fluctuation amplitudes with increasing distance except for the long

period fluctuations-. From -(4) we -conclude-that -there-is--genera-l-ly-an-

increase in the relative amplitude of large-scale, stream-dominated 

fluctuations with increasing heliocentric distance for both the 

magnitude and the direction of the field.
 

The fifth point provides support for the conclusion by Coleman et al. 

(1969) that the compressional mode is gaining in importance at greater
 

radial distances relative to the directional fluctuation modes, although
 

one must be cautious about interpretation of the field component
 

fluctuation observations since the studies summarized here did not
 

attempt to separate the contributions due to propagating fluctuations
 

from those due to static, convected structures.
 

The fluctuations with periods less than one day include the
 

contributions from Alfven waves. The Whang and Hollweg models for the
 

case of little or no damping suggest that the (un-normalized) Alfvn
 

wave amplitude varies as r3/2 near 1 AU. Belcher and Bursted (1974)
 

studied the radial dependence of klfven wave amplitudes using data
 

from Mariner 4 and 5 and compared the results to the dependence
 

calculated using Hollweg's model. The sum of the 3-hour variances of
 

the three components of the field was taken as a measure of the
 

integrated power in field fluctuations over frequencies 9.2 x 10 5Hz.
 

Data contaminated by the effects of large macroscale gradients in
 

velocity or field strength were removed. Averages over intervals of
 



radial distance are shown in Figure 11, with the break at I AU indicating
 

the separation between the two sets of measurements used in the study.
 

They concluded that the results were consistent with non-locally
 

generated waves being swept away from the sun with little or no damping.
 

3 /2
That is, radial distance dependences of close to r were found from
 

both spacecraft for the Alfven wave amplitude. When combined with the
 

"best-fit" power law field magnitude gradient observed by both,Mariner
 

10 and Pioneer 10, F rr the rr3/2 dependence gives 

BI/B = (c/F - r'0lo This is only slightly steeper than the gradient
 

shown in Figure 9 from the Pioneer 10 daily relative rms (PI0-D).
 

We know, however, that the Parker model radial distance dependence
 

of the field magnitude is not a simple power law. The dotted
 

"
 curve in Figure 9 shows c/F vs R assuming an r 3/2 dependence
 

for the fluctuation amplitudes, with normalization by the Parker
 

model magnitude dependence and multiplication by a suitable scaling
 

factor for comparison. This curve suggests that the relative fluctuation 

vs R may not be best represented by a power law. 
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On the basis of the Parker-Dessler fluctuation model and the 

positive gradient fo:nd for a s(B)/<B> (equation 6) from Mariner 4 

observations, it was estimated by Coleman et al. (1969) that the 

shock-limited ratio of iB/B = 1 would occur at a distance r = 4.3 AU. 

It was not observed at that.distance by Pioneers 10 and 11, however. 

Based on the gradient computed from Pioneer 10 measurements, it was 

estimated that the limit could occur at a distance of 10O7 AU if the
 

model is correct (Rosenberg et al., 1975). These estimates were based
 

on the very low frequency compressional fluctuations associated with
 

solar wind stream interactions, Although the Mariner 4 and Mariner 10
 

observations at higher frequencies were consistent with a growth in
 

the amplitude of field magnitude fluctuations relative to the field
 

strength with increasing distance, the Pioneer 10 curves in Figure 10
 

suggest that the relative amplitude of compressive fluctuations with
 

periods of only a few hours or shorter remains small compared with
 

unity at all distances.
 

RADIAL VARIATION OF IMF POWER SPECTRA
 

The application of power spectrum analysis to the study of magnetic
 

field fluctuations yields not only the power in fluctuations along
 

various directions in space and in the total field but also the variation
 

of that power with frequency. Such an analysis can be further augmented
 

to provide coherence and phase information concerning the fluctuations
 

and hence can be a valuable tool in the identification of wave modes
 

in the data. Published power spectral studies of the IMF include
 

Coleman (1966, 1967, 1968), Ness et al. (1966), Siscoe et al. (1968),
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Sari and Ness (1969), Coleman et al. (1969), Russell et al. (1971),
 

Sari (1972, 1975) and Blake and Belcher (1974).
 

The first IMF power spectra that were computed that show the
 

variation in field fluctuation power with radial distance utilized
 

Mariner 2 data (Coleman, 1968). A general increase in power across
 

the spectrum (from 4x10"6 to 10-2Hz) with decreasing radial distance
 

from 1 to 0.87 AU was found for the total field, and increased power
 

at the lowest frequencies for the radial component. The total power
 

in the field magnitude increased by almost a factor of 2. Figure 12
 

is an example of spectral variations of the fluctuations in the total
 

field B and radial component Br . These spectra in the frequency range
 

6
10- to 102Hz were computed from Mariner 4 data (Coleman et al., 1969).
 

The dashed curves represent the spectra taken nearest the sun (1 AU)
 

and the solid curves represent the spectra computed from measurements
 

at 1.43 AU. For both the total field and the radial component one sees
 

a decrease in power with increasing radial distance at almost every
 

spectral estimate. However, a greater decrease in integrated power
 

was found for the Br component than for the total field. In addition,
 

decreases by more than a factor of two in integrated power were found
 

for the B8 and B components. This was interpreted as additional
 

support for Coleman's conclusion, drawn from the variances of the
 

field and its components, that the compressive mode increased in
 

dominance over the transverse fluctuations with increasing radial
 

distance between I and 1.5 AU.
 

Blake and Belcher (1974) have computed power spectral densities
 

for IMF fluctuations with frequencies between 1.16xl0-5Hz and 2.96x10 -3Hz
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using Mariners 4 and 5 168.75 second averages, with eight days of
 

data per spectrum. Once agair except for a general decrease in the
 

overall power level with distance from the sun, these spectra show no
 

striking dependence on heliocentric distance between 0.7 and 1.6 AU.
 

Figure 13 shows--the--total power in components -(-t-race -of the power
 

spectral matrix) at a frequency of 3.7xl- 4Hz, corresponding to a
 

period of 45 minutes, as a function of radial distance. No attempt
 

has been made to remove the effects of the high levels of fluctuation
 

in stream-stream interaction regions. The general decrease in power
 

with increasing distance can be seen, however. The total power in
 

components was found to be usually an order of magnitude greater than
 

that in field strength at all frequencies, and the power in the
 

direction of maximum variation a factor of two to three greater than
 

in the minimum fluctuation direction0 Most of the combined component
 

(trace) spectra show a distinct break at a frequency of about 10- Hz
 

(Jokipii and Coleman, 1968), with the fall-off of the total power in
 

6
components abovetat frequency roughly as f-1 . or slightly faster
 

and below that frequency as f-1.2 or slightly faster.
 

Figure 14 is a composite display showing spectra computed from
 

Mariner 10 42-sec, 1.2 sec and 40 msec data at three different distances
 

from the sun (Behannon, 1976a). One sees once again the generally
 

observed increase in power with decreasing radial distance except at
 

the lowest frequency estimate in the case of spectra computed-at 0.6,
 

and 0.5 AU and at the highest frequencies observed. In addition, there
 

i a steepening of the spectrum at frequencies above about 0.4Hz with
 

decreasing distance ,Al, of the spectra computed thus far in this
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study tend to support these characteristics of generally increasing 

power with decreasing distance at all frequencies up to several Hz, 

accompanied by a steepening fall in the spectrum at higher frequencies. 

A number of spectra computed for varying disturbance conditions have 

been examined, and one finds larger variations in power with disturbance 

state than with distance over the distance range 1 to 0.46 AU. In 

most cases the power in the field magnitude is roughly an order of 

magnitude less than that in the components below the frequency at 

which the steep falloff occurs. Russell (1972) has predicted that 

the slope of the IMF spectrum should be steeper than f- 2 above 1 Hz, 

and, on the basis of search coil observations by Holzer et al. (1966),
 

Coleman (1968) suggested that between 0.2 and 2 Hz the spectral slope
 

should be f The Mariner 10 results support those predictions at
 

radial distances less than 1 AU. 

A comparison has been carried out of fluctuations originating at 

the same solar longitude but observed at different heliocenttic
 

distances by IMF/HEOS at 1 AU and Mariner 10 between 0.5 and 1 AU
 

(Behannon and Sari, 1977). The preliminary results suggest that, at
 

-4
'leastover the frequency range 10 to 10-2 Hz, there is little or no 

change with radial distance of the power in field component fluctuations 

,(as given by the trace of the spectral density matrix) normalized by 

the total field magnitude. This is consistent with the generally weak
 

gradient found for the rms deviation relative to the field strength.
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DIRECTIONAL DISCONTINUITY DISTANCE DEPENDENCE
 

Directional discontinuities (DD) in the IMF have been studied and described
 

in varying degrees of detail by Ness et al. 
(1966), Colburn and Sonett
 

_(1966), Burlaga and Ness (1968, 1969), 
Siscoe et alo.(1968), Belcher
 

and Solodyna (1975), Burlaga (1969, 1971a,b) Turner and Siscoe (1971),
 

Smith (1973a,b), and others. 
 These studies have shown that discontinuities
 

pass a spacecraft at the rate of approximately one per hour at 1 AU.
 

Both tangential and rotational discontinuities have been identified in the
 

solar wind (Smith, 1973a,b; Martin et al. 
1973; Solodyna et al. 1977;
 

Burlaga et al. 1977), with a predominance of TD's in quiet, low-speed
 

regions.
 

From studies of Pioneer 6 data, Burlaga (1971a) demonstrated a
 
possible radial gradient in the occurrence rate of D.D.'s. Burlaga found 0.7
 

discontinuities/hour at 0.82 AU, 0.8 at 0.91 AU and 1.1 at 0.98 AU.
 

He cautioned, however, that the higher rate nearer 1 AU could be in
 

part or entirely due to better and more continuous data coverage at 1 AU.
 

He further concluded that the Pioneer 6 field and plasma data were not
 

consistent with directional discontinuities originating primarily in
 

the collision of fast streams with slower plasma, since their occurrence
 

rate was only slightly higher in regions of increasing bulk speed than
 

elsewhere.
 

From an analysis of Pioneer 8 data, Mariani et al. 
(1973) reported
 

a possible inverse relation between radial distance and the occurrence
 

rate of discontinuities. 
 The linear best fit to the observations
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suggested a rather steep gradient, however, of 16 disc/hr/AU over the
 

small range of 0.05 AU that was covered by the measurements0 An
 

alternative explanation in terms of a variation with heliographic
 

latitude was proposed. A later, more extensive analysis using two
 

years (1968 and 1969) of Pioneer 8 data, provided additional evidence
 

that significantly more discontinuities were being observed when
 

Pioneer 8 was at higher solar latitudes (Mariani, 1975).
 

The results of an initial survey of the occurrence rate of
 

directional discontinuities observed by Mariner 10 over a heliocentric
 

distance range of 0.54 AU and five months of time (Behannon, 197 6a) is
 

shown in Figure 15. The occurrence rate is given as daily average number
 

hour and is plotted as a function of heliocentric distance in AU. Even
 

though there is considerable scatter in the data, a clear increasing trend
 

with decreasing heliocentric distance is seen. As shown, a nonlinear best
 

- 0 3 5
 fit results in a power law dependence of r 2S . Considerable structure
 

can be seen in the occurrence rate data. Reference to the magnetic 
sector
 

polarity pattern included across the top of the figure suggests that
 

at least some of the structure in the occurrence rate is related to
 

the large-scale structure of the interplanetary medium during this
 

time. A comparison of the daily discontinuity counts with the hourly
 

average field magnitude suggests that the maximum counts generally
 

occurred during the few days immediately following the passage of
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compressed fields at the leading edges of high-speed streams. However,
 

any conclusions regarding possible sources of these discontinuities
 

must await additional analysis0
 

AtL o shown at the top -ofFigare l:5ar-th--h-6litrapi c-lat tudes ...... 

of the spacecraft during this mission. As in the case of Mariani's 

result, one could also argue in this case that the variation is one 

with latitude rather than distance. However, it is less likely with
 

a predominately latitudinal dependence that the rate would have
 

continuously increased as the latitude of the Mariner 10 spacecraft
 

ranged between northern and southern extremes.
 

A similar dependence of the rate on distance has been found by
 

Tsurutani and Smith (1975, 1976) using Pioneer 10 and 11 data0 They
 

indicate that a decrease by roughly a factor of three in the occurrence
 

rate between I and 5 AU was found from Pioneer 11 observations, while
 

a change by a factor of - 2 was seen by Pioneer 10. An increase in
 

the "thickness" of directional discontinuities by a factor of 5 to 10
 

between I and 5 AU was also found from the Pioneer measurements
0
 

Further analysis of the Mariner 10 data has revealed a change in
 

discontinuity thickness between 0.46 and 1 AU that is consistent with
 

the Pioneer 10 result (Lepping and Behannon, 1977).
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SHOCK PROFILE VARIATION WITH RADIAL DISTANCE
 

Interplanetary shock waves have been the subject of numerous 

studies, both theoretical and experimental. For general reviews see 

Burlaga (1971b), Hundhausen (1972) and Dryer (1975). It is generally 

believed that most interplanetary shocks observed at I AU originate 

at or near the sun, in particular from a solar active regio (Gold, 

1955; Hirshberg, 1968; Hirshberg et al., 1970; Hundhausen, 1970; 

Hundhausen et al, 1970). The majority of the shocks observed at 

I AU have been associated with solar flare events (e.g. Chao and 

Lepping, 1974). They are seen much less frequently (roughly one per 

month) than directidnal discontinuities. Flare-associated shocks are 

predicted to propagate outward with a thickness of the order of a few 

proton Larmor radii during most of their passage through interplanetary 

space. From a study of the orientations of 22 well-determined shock 

normals in relation to the positions of the parent flares on the solar 

disk, Chao and Lepping (1974) suggested that a typical shock front 

propagating out from the sun has a radius of curvature of 1 AU at 

I AU, although any single case may vary considerably from this average. 
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Initial experimental evidence for the development of shock waves
 

with heliocentric distance was presented by Chao (1973). Comparing
 

the magnetic field and plasma observations of shock-like structures
 

at 0.98 AU and 0.85 AU by Mariner 5 with measurements made at I AU
 

by Explorers 33, 34and 35,_ Chao concluded that the observdstructures 

were nonlinear, magnetoacoustic waves that were in the process of
 

steepening. The dominant change in the magnetic signature was the
 

transition from a slow rise time in the field magnitude (on the order
 

of 12 minutes) at 0.85 AU to a rapid rise time at I AU (<C sec). The
 

"shock" thickness at 0.85 AU was estimated to be >1000 proton Larmor
 

radii (R) while at 1 AU it was <l00 R It has been suggested that
 
p p 

shocks might form in the interplanetary medium as a result of the
 

steepening of large-scale solar wind streams (Parker, 1961; Dessler
 

and Fejer, 1963; Sonett and Colburn, 1965; Razdan at al., 1965;
 

Formisano and Chao, 1971; Hndhausen, 1972 and others). Chao showed
 

that the shocks in this study were not close to the velocity gradient
 

of high-speed streams and were probably associated with solar flare
 

events.
 

The major recent evidence concerning the evolution of shocks
 

with heliocentric distance has been provided by the Pioneer 10 and 11
 

magnetic field and plasma measurements. Except for studies of the
 

flare-associated shocks of August 1972 (Smith et al., 1977a), recent
 

investigation have concentrated on the evolution of shocks associated
 

with solar wind streams. These data show that beyond 1 AU a large
 

fraction of the regions of interaction between fast and slow streams
 

are accompanied by either forward shocks, reverse shocks or forward
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reverse shock pairs (Smith and Wolfe, 1976). The observed characteristics
 

suggest that solar wind speed inhomogeneities steepen to form these
 

shocks and that the stream amplitudes decay as the shock waves propagate
 

outward (Hundhausen and Gosling, 1976; Gosling et al., 1976). Most of
 

the observed large-scale features appear to be predicted adequately
 

well by a simple fluid model of stream propagation which neglects all
 

dissipation effects except those occurring at shock interfacs, although
 

a detailed comparison of Pioneer 10 and 11 magnetic field measurements
 

with the predictions of the model has not yet been performed.
 

Based on their study of flare-associated shocks observed during
 

August 1972, Smith et al. (1977a)have concluded that the major deceleration
 

of the shocks occurred between the sun and 0.8 AU, the heliocentric
 

distance of Pioneer 9, with little if any additional deceleration
 

occurring between Pioneer 9 and Pioneer 10 at 2°2 AU. These results
 

differ from the inferences drawn by Dryer et al. (1975) based on the effects
 

of the August 1972 events on comet brightness, interplanetary scintillations,
 

geomagnetic activity and decametric emission from Jupiter, as well as
 

from spacecraft observations. The latter interpretation suggested that
 

there was a piston-driven character to the shocks out to approximately
 

0.3 to 0.4 AU, followed by a continuous deceleration out to the point
 

of decay into magnetoacoustic waves between 2 and 4 AU. In the region
 

of deceleration the shock speed was estimated to be approximately
 

inversely proportional to heliocentric radius. Neither the results
 

of the study by Smith et al. or of numerical simulations (Hundhausen,
 

1973; Dryer et al., 1976) are consistent with the suggested power law
 

deceleration, and Smith et al. have concluded that the likelihood of
 

such shocks decaying into hydromagnetic waves at large heliocentric
 

distances is small.
 Ii' 



This review has assembled and compared the heliocentric distance
 

dependencies obtained fromspacecraft measuremeits of both large and
 

small scale properties of the interplanetary magnetic field. The
 

interpretation within the- framework of the present state of knowledge
 

-of a generally highly structured and complexly interactive solar wind
 

and continuously evolving solar magnetic field indicates that substantial
 

progress has been made in understanding the average, gross characteristics
 

of the interplanetary field. However, the detailed evolution of radial
 

gradients as functions of time within different magnetic sectors and
 

individual solar wind streams is not understood.
 

As far as the large scale IF properties are concerned, measure

ments made to date are consistent in indicating that the average of
 

the radial field component Br = Ij Iaries as the inverse square of 

distance. However, the data clearly show that the azimuthal component
 

= I'I is rather strongly a function of time, being influenced both 

by the time-dependent solar wind speed and by the fluctuation and
 

evolution of the source field at the sun. The result is that unless
 

the dependence on VS is taken into account, individual sets of measure

ments by a single spacecraft give a B gradient which is steeper than
 

the r"I dependence predicted from the Parker spiral model.' A heliou
 

- 1 3
centric distance dependence B c r . was found individually fot three
 

separate spacecraft (see Table 3). A least squares best fit to the
 

composite (5 spacecraft) solar rotation average data set gives a
 

result closer to the r dependence0 A fit to the quantity B ><Vs> 

using Pioneer 10 magnetic field and plasma observation§ also yields
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a result near the spiral model prediction, and the preliminary Helios
 

results suggest general consistency with the spiral model. Between 1 and
 
-2 

0.3 AU Helios has verified that the radial component Br varies as r . while
 

-I
B shows large fluctuations about the theoretical r dependence (Mariani
 

et al., 1975, 1976; Neubauer and Musmann, 1976; Musmann et al., 1977).
 

All of the deep space magnetic field measurements to d&e show
 

that the field component normal to the solar equatorial plane can be
 

sizable and nonzero for extended periods of time, and that its
 

heliocentric distance dependence is intermediate between those found
 

for the Br and the B components. Coleman (1976) has discussed how
 

temporal variations of the solar field can result in nonzero Be for
 

significant intervals of time. Studies of stream-stream interactions in the
 

solar wind have also shown that the compressed field in the interaction 

region of a high speed stream often has an enhanced normal component,
 

which may contribute in a significant way to any long-term average.
 

The Helios spacecraft and future missions to the outer solar
 

system will contribute to our knowledge of possible solar cycle
 

variations of the radial gradients as well as to our understanding of
 

variations within the corotating stream structure. It will be of
 

value in such studies to carefully separate the magnetic field data
 

into two sets corresponding to high and low solar wind speed conditions,
 

respectively. Bame et al. (1977) have studied 3-1/2 years of IMP-6
 

solar wind data taken separately from both high speed (> 650 km/sec)
 

and low speed (< 350 km/sec) regions and have found significant
 

differences in plasma properties between the two regimes. In
 

particular, much more variability in properties has been found for
 



LOW jpeeU LUdU ror nlgn speea streams. This contrasts with the 

traditional view that the low speed state is the "typical" state of the 

solar wind and magnetic field. More such studies are needed if the
 

variability of magnetic field properties on both short and long time
 

scales is to be completely understood.
 

-- A-number--of u-questil-nf -remain concernihg the radial gradients 

in magnetic field fluctuations. More studies of existing measurements
 

and perhaps also additionaL measurements are needed to establish the
 

degree to which fluctuation levels are related to large scale structure
 

in the medium and how fluctuation levels are modulated by solar cycle
 

effects. Additional quantitative studies with a self-consistent model
 

of the solar wind are needed to fully understand the observed fluctuation
 

intensity attenuation characteristics as part of the overall energy
 

balance in the flow of the solar wind.
 

On the basis of the various observations of IMF radial gradients,
 

it can be concluded that relative directional fluctuations of the field
 

are in general not increasing with radial distance from the sun as
 

predicted by Parker and Dessler except perhaps during the more active
 

part of the solar cycle and at frequencies lower than one cycle per
 

day. All measurements up to the present time generally support the
 

conclusion that the ratio of relative magnitude fluctuation amplitudes
 

to relative component fluctuation amplitudes is increasing as a function
 

of heliocentric distance over the distance range of present observations.
 

If compressive fluctuations are indeed increasing in importance with 

increasing heliocentric distance, then this could have some influence
 

on cosmic ray propagation in the outer solar system. There would be an
 

increase in the mirroring of particles, for example, relative to the
 

scattering of particles from "kinks" in the field, 
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There is still an incomplete understanding of the influence of
 

IMF fluctuations on the scattering of cosmic rays as a function of
 

heliocentric distance. 
Jokipii (1973) concluded from theoretical
 

analysis that the coefficient for radial diffusion does not 
increase
 

with r at large distances (r >-> I AU) from the Cosmic ray
sun. 


measurements from Pioneer 10 
are consistent with such a lack of a
 

strong gradient in Kr, but V81k (1975b)has argued that there is an inconsist

ency in Jokipii's use of the WKB method while simultaneously assuming that
 

the wave normal vector 4 always remains parallel to <B>. Geometric 

optics (using WKB method) predicts refraction of 4 for MHD waves such 
that it is essentially radial at I AU if it has started out parallel 

to B near the sun (Barnes, 1969; V6lk and Alpers, 1973). The correct
 

application of the WKB method gives a gradient in K 
which increases
 r 

st&eply with increasing heliocentric distance (Valk, 1975b). 

The assumption of 4 remaining parallel to 4> was based on nu
merous analytical results in which the minimum variance direction for
 

field fluctuations was found to be approximately along j-. Solodyna 

and Belcher (1976) argue that the minimum variance analysis tends to
 

give the mean field direction rather than the direction of 4, and
 

Chang and Nishida (1973) and Denskat and Burlaga (1977) have found
 

that at 1 AU the wave vectors are in general neither along -<W nor
 

in the radial direction. Goldstein et al. (1974) have shown that
 

general Alfvenic disturbances need not have a well-defined direction
 

of minimum variance. Thi recent studies by Sari and Valley (1976)
 

and Sari (1977) show that in general the I fluctuations are
 

consistent with the general nonlinear Alfven wave solution, which
 

6.9 



has no 
 vector, with at times an additional admixture of compressional
 

(magnetosonic) waves. 
No evidence has been found that convincingly
 

demonstrates the existence of transverse Alfven waves which correspond
 

to the plane waves solution of the NOW equations. This would explain
 

the inconsistency between the WKB calculations, which predict a steep
 

gradient in Kr, and the observed lack of a strong gradient, since
 

the WKB method assumes the existence of o
 

A decrease with increasing heliocentric distance in the number
 

of directional discontinuities observed per unit time has been found
 

both by Mariner 10 traveling inward to 0.46 AU and by Pioneer 10 enroute
 

to Jupiter and beyond. 
At the same time, the thickness of these
 

structures has been found by both spacecraft to increase with increasing
 

radial distance, although the estimated thickness in units of proton,
 

gyroradii has been found to remain approximately constant between 0.46
 

and I AU (Lepping and Behannon, 1977). The observed decrease in the
 

occurrence rate with increasing distance is not presently understood.
 

It could at least in part be the result of one or more effects at work
 

during the processes (both visual and automatic) of identifying and
 

selecting events for study. Tsurutani and Smith (1975) have concluded
 

that the occurrence rate decrease found by Pioneer 10 could be a selection
 

effect related to a combination of a fixed selection criterion and the fact
 

that D.D.rs increase in thickness with distance. That is not likely to be
 

the case for Mariner 10 because thinner structures are observed inward from
 

I AU. Burlaga (private communication) has suggested that the occurrence
 

rate decrease could simply be a geometric effect, whereby the space between
 

D.D.'s increases as the solar wind expands. 
 Since the origin of discon
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tinuities is still not well understood and there is at the present
 

time no stability theory for these structures, it is not yet possible to
 

resolve the questioi of whether or not some fraction of them really does
 

physically disappear between 0.5 and 5 Au.
 

Variations of the IM with latitude have been observed (Rosenberg
 

and Coleman, 1969, Rosenberg, 1970;'Rosenberg et al., 1971, 1973, 1977;
 

Russell, 1974; Rosenberg, 1975). Rosenberg and Coleman (1969). found direct
 

evidence of a heliographic latitude dependence of the dominant polarity of the
 

INF. Rosenberg (1975) and Rosenberg et al. 
(1977) have found support of that
 

result at greater radial distances using Pioneer 10 data. Smith et
 

al. (1976, 
1977b) have found evidence from Pioneer 11 observations
 

that the IMF sector structure essentially disappeared at a heliographic
 

latitude of 160N. Other recent observations and correlation studies
 

have suggested that the solar wind and IMF come 
from open and
 

diverging magnetic fields in the polar regions of the sun and a small
 

number of such regions near the solar equator. Such observations and
 

studies as these have pointed out the need to study the I2fF and solar
 

wind in three dimensions in order to fully understand both the large
 

scale structure and microscale properties of the interplanetary medium.
 

Solutions to outstanding problems will be facilitated by data
 

derived both from recent and current missions and from Voyager and other
 

future inner and outer solar system missions. Certainly much more will
 

be known after the next decade concerning the character of the field both
 

nearer to the sun and in the outermost regions of the solar system, and
 

additional correlative studies between widely separated spacecraft will
 

hopefully resolve many questions concerning the evolution of the field
 

in both space and time.
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FIGURE,CAPTIONS
 

1. 	The zeroth order Archimedian spiral interplanetary magnetic field
 

depicted schematically in three-dimensional space (Hirose et al.,
 

1970).
 

2. Solar rotation averages 	of the magnitude of the IMF radial
 

component 	(Br) measured by Mariners 4, 5 and 10 and Pioneers 6
 

-2
and 10. Curves showing an r radial distance dependence
 

(dashed curve) and the "best" least-squares fit to the combined data
 

(solid curve) are included.
 

3. 	Average azimuthal component magnitude (B ) data corresponding to 

Br data shown in Figure 2. Curves superimposed on the data show 

(I) an r radial distance dependence (short dashes), (2) the
 

-1.3 dependence observed by three experiments independently
 

(long dashes), and (3) the "best" least-squates fit to the
 

-combined data (solid curve) which gives "1 12an r . dependence. 

4. Field components Br and 	B averaged over 	the time profile of a 

"representative" stream as functions of radial distance from the
 

sun, according to the kinematic model of Burlaga and Barouch 

(1974). <BT> - but% '> depends on § . P curves give
 
Br(r) and B0(r) for 3o in the Parker spiral direction.
 

5. 	Radial variation of the most probable values of the direction
 

angle of the IMF observed by Pioneer 10 during a solar rotation.
 

The short curves are the best fits to this angle computed from
 

Mariner 4 and 5 data. 
The solid curves are the angles corresponding
 

to the spiral model for a solar wind velocity df 360 km/sec.
 



6. 	 Burlaga-Barouch ecliptic plane contour map of B/Ba=o for a 

representative or "standard" stream. B is the value of B(r,0) a=o 

that would be measured in the absence of a stream. This shows
 

growth of field magnitude enhancement in high-speed streams with
 

radial distah6c-!rom the sun out to 1 AU.
 

7. 	Observations of the field magnitude enhancement in a recurring
 

stream at two heliocentric distances by Mariner 10 and the same
 

stream profile at 1 AU by either IM 8 or HEOS (I and 2, combined
 

data set). Enhancements are computed in each case relative to the
 

average of a 12-hour post-stream interval (the last 12 hours on
 

each data plot). Average relative enhancements support the model
 

of enhancement growth over the radial distance range of observation.
 

Because of the gap in interplanetary observations by both IMP 8
 

and HEOS during the later period, the relative enhancement for the
 

case 	shown in the lower panel is a lower limit.
 

8. 	Variation of the relative intensity b/B of Alfvenic fluctuations
 

with radial distance from the sun, as predicted by the model of
 

Whang (1973) for the propagation of arbitrary, large-amplitude,
 

nonmonochromatic microscale waves of any polarization in a spiral
 

interplanetary field.
 

9. 	Variation with heliocentric distance of the magnetic field
 

directional fluctuation amplitude (see text) relative to the total
 

field variation computed from observations of IMF rms deviations
 

over solar rotation(S), daily(D), and three-hour(T) averaging periods
 

by Mariner 4 and Pioneer 10 and for one-hour averages by Mariner 10.
 

Gradients have been extrapolated to cover the range 0.5 to 5 AU in
 



-1
 

in each case. Also shown for comparison are (i) an r variation
 

with distance (solid curve) and (2) a distance dependence calculated
 

"
from an r 3 /2 fluctuation amplitude dependence and the observed
 

(Parker model) field magnitude radial distance dependence (dotted
 

curve).
 

10. 	 Variation with heliocentric distance of magnetic field magnitude
 

fluctuation amplitude relative to the total field variation computed from
 

observations by three spacecraft. Gradients again have been
 

extrapolated as in Figure 9. Note that the longest period
 

fluctuations are approximately four times greater in relative
 

amplitude than the shortest period fluctuations at I AJ.o
 

11. 	 Averages of the logarithm of 3-hour variances computed from Mariner
 

4 and 5 observations for 15 equal intervals of the logarithm of
 

radial distance between 0.67 and 1.58 AU. The vertical dotted
 

line is representative of the standard deviations about the average
 

in each interval. The break in the curve separates the data from
 

the two spacecraft.
 

12. 	Plots of power density spectra computed from Mariner 4 total 

magnetic field (left) and radial component (right) measurements 

over 32-day intervals-near I AU (dashed ctrve) and 1.5 AU (solid 

curve). 

13. 	 A plot of the total power in field components (see'text) at a
 

frequency of 3.7x10l-4z as a function of radial distance from
 

the sun in AU, using both Mariner 4 and 5 spectra as indicated
 

by the symbols0
 



14. Composite, average radial field component spectra for "typical"
 

days at three hellocentric distances, as measured by Mariner 10. 

The generally increasing power in radial fluctuations with
 

decreasing radial distance is accompanied by a steepening of the 

high frequency end of the spectrum (see text).
 

15. Mariner 10 observations of the radial variation in the daily average
 

-occurrence rate of directional discontinuities during the 5 month
 

cruise to '0.46 AU. The discontinuities are chosen on the basis
 

of a change in direction bf >300 in an interval of time !-42 sec.
 

The nonlinear least-squares best fit curve is superimposed on the
 

data.
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