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ABSTRACT
 

The following contains results of a study on equations of motion
 

for a free-flying teleoperator. Three different kinds of models have
 

been developed and analyzed. Equations for each model were obtained.
 

Computer simulations were performed to demonstrate the adequacy of each.
 

model and the correctness of the equations. Very interesting and
 

encouraging results were obtained. Recommendations for further study
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CHAPTER 1
 

INTRODUCTION
 

Extending man's reach in space is one of the goals for the space
 

program. The Space Shuttle, which makes launching of satellites into
 

earth orbit a virtually routine event, will increase man's ability to
 

do work in space while contributing to the economy of space operations.
 

It will be a space transportation system designed to carry out various
 

missions in earth orbit. One possible way to fulfill these mission
 

objectives is to use a teleoperator.
 

A teleoperator is defined to be a remotely controlled cybernetic
 

man-machine system designed to augment and extend man's sensory, manipu

lation, and congruitive capabilities to a remote and hostile environment
 

while controlled by a man from a more benign and convenient location
 

such as a nearby spacecraft or a ground based station. The intervention
 

of man in the system can be made "minimhl" if the machine possesses
 

sufficient artificial intelligence and dexterity to perform the intended
 

shows this concept. 1
 activities. Figure 1-1 


The use of space shuttle and free-flying Teleoperator (FFTO) will
 

allow practical maneuvering of masses in outer space. A satellite that
 

is to be retrieved will generally have some initial angular motion.
 

Before the satellite can be retrieved, it will be necessary to null its
 

angular rates. The angular motion of a satellite can be expressed at
 

any instant as the resultant of a spin component and a tumble component.
 

If one of these components is zero, the satellite is in a state of pure
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Figure 1-1. Free-Flying Teleoperator Concept 
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spin or pure tumble. Utilizing a teleoperator to null pure spin or pure
 

tumble is straightforward. The problem ismore complicated, however,
 

for the general case where both spin and tumble are present,
 

Ifa disturbance-free service is to be performed on a satellite
 

which isfunctioning normally, the teleoperator needs first~to maneuver
 

itself to match to the dynamics of the whole satellite. Furthermore,
 

the arms and hands of the teleoperator also need to catch up with the
 

area on the satellite, where service is to be performed. A detailed
 

knowledge is needed of the required teleoperator maneuvering, including
 

an in-depth analysis of its kinematics and dynamics.
 

This knowledge isneeded of the dynamics of various satellites
 

intheir normal operational modes and in their failure modes. For
 

example, when a satellite loses its attitude control, itmay have un

stabilized three-axis motion such as spinning and tumbling. Knowledge
 

of these dynamics is the prerequisite to the development of teleoperator
 

specifications.
 

The resulting dynamics of the combined system of teleoperator and
 

satellite, after contact has been made, needs to be studied. 
The result
 

of this study will determine the attitude requirements for.a teleoperator
 

and also provide the information needed for the design of arm and hand
 

mechanisms for successful despinning and detumbling of a.satellite.
 

The purpose of this study isto develop a set of equations which
 

describe the state of the manipulator , the teleoperator,.the satellite,
 

and the combination of teleoperator and satellite. These equations will
 

be useful for further study of the teleoperator operation via computer
 

simulations.
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Chapter 2 of this report contains the equations relating the
 

position and velocity of the manipulazor's hand to its base at tele

operator body.
 

Chapter 3 describes the nulling of a satellite's initial angular
 

motion under the ideal condition that the teleoperatorris stationary.
 

Chapter 4 presents the set of dynamic equations which.describe
 

the combined motion of the teleoperator and the satellite.
 

Chapter 5 summarizes the results of the study and offers recom

mendation for further investigation.
 

All computer programs are written in CSMP (Continuous Simulation
 

Modeling Program), They are included in appendices.
 



CHAPTER 2
 

MANIPULATOR KINEMATICS
 

Manipulator Model
 

A manipulator model, shown in Figure 2-1, 
is chosen as the basic
 
model for the present study. 
This model is composed of two arm sections,
 

a shoulder, and a hand. The manipulator has two bending joints and two
 
swivel joints which are conceptually shown in the figure. 
 Four rotational
 
freedoms exist, they are represented by the angles a, a2, 0,,and 
2.
 
Counter-clockwise rotation is considered the positive sense6
 

Six coordinate frames
 

Si : (xi'Y!, zi) i = I to 6,
 

are defined in Figure 2-1. 
 Frame S1 is hand-fixed while frame S6 is
 
FFTO-fixed. 
 These coordinate frames hel'p to formulate the position and
 
velocity of the hand with respect to various parts of the manipulator.
 

Position Vectors for Finger Tip and Hand
 

Referring to Figure 2-1, the finger tip position in coordinate
 

frame S1 is given by
 

'=Y =5 =t , (2-1) 

5
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Figure 2-1. The Manipulator
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The position incoordinate frame S2 is obtained from (2-1) through a
 

linear transformation given by
 

cose I -sine I 0 x1
 

42 = sine1 cose I 0 Yl
 

0 0 1 Zl+t 2
 

= T21fl + T21 :2 = T2 1 (I + :L2) (2-2) 

where
 

cose I -sine I 0
 

T21 sine1 cose 0 (2-3)
I 


0 0 1
 

and
 

(2-4)
2 0 0 22'-


where [ t represents the transpose of a vector or matrix. The finger 

tip position incoordinate frame S3 is 

1 0 0 x2
 

3 0 Cosa, -sina 1 Y2j= T32L2 (2-5)
 

0 sina 1 Cosa 1 .2
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where 

1 	 0 0 

T32 0 Cosa, -sin I (2-6)
 

0, sina 1 Cosa,'
 
'I
1
 

Proceeding in the similar manner we can obtain the finger tip
 

position incoordinate frames S4, S5, and S6 as
 

+ 9 (2-7)
 

.-4 3 2:3
 

f5 = T54 '4 (2-8) 

f6 = T65 (f5 + 4) (2-9) 

where
 

1 	 0 0 

T54 	 0 cos 2 -sina 2 (2-10)
 

0 sin2 cosa2
 

cose 2 -sine 2 0
 
T sines652 coseO (2-11)
 

0 0 1]
 

tL3=[ 0 Zz33 c 	 (2-12)
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and
 

[o 0 Z4]t (2-13)
 

Combining Equations (2-1) zo (2-13), the finger tip position
 

expressed in FFTO-fixed frame isgiven by
 

C654-6 =T65T54T32(:-- + L2) + T65T54:3+ (2-14) 

By defining
 

T64 = T65T54
 

(2-15)
 

T62 = T65T54T32
 

(2-14) takes the simple form
 

f6 = T62 (Z1 + z2 ) + T64 L3 + T (2-16) 

Notice that, while L, &2'L3 and-4 are constant vectors, all the
 

transformation matrices Tij are variable since they involve variable
 

angles.
 

The position of hand can be obtained in a similar way. Let Li,
 

i = 2 to 6, be the position vector of hand in coordinate frame Si, we
 

have
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(2-17)

2 = L2 

(2-18)
h3 = T32L2 

(2-19)
 
3 + L3h = hL

(46h-eT h 

-o 54Lrl 

16k T65 (5 
+%-) (2-21) 

Combining (2-17) to (2-21), gives the hand position expressed in FFTO

frame
 

- 4 (2-22)
16 = T62 L2 + T64 3 + T6

Velocity Vectors for Manipulator's Finger Tip and Hand
 

By taking the derivative of (2-16) and (2-22) the velocity vectors
 

for manipulator's finger tip and hand are given by, respectively,
 

(2-23)

2 )+ L-3 + T65--1 62 r Tz 

and
 

(2-24:
= T62 -2+ T64 -3 + T65 -4 

Both (2-23) and (2-24) are functions of angular rates 82. &l and 2"
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Acceleration Vectors for Finger Tip and Hand
 

By taking the derivative of (2-23) and (2-24) the acceleration
 

vectors for manipulators finger tip and hand are obtained
 

= T62 (L1 + £2) + f6W 23 + T6 5 Z-4 (2-25) 

(2-26)

+ 6S+ 644= T6 2 2 


Uniqueness Consideration
 

Corresponding to a given set of angles e2, a, and a2 
the hand
 

On the other hand,

position h6 and finger tip position f6 are unique. 


given a desired hand or finger tip position, the 
set of angles is in
 

general not unique. The non-uniqueness creates ambiguity in generating
 

control signals. This difficulty can be eliminated by defining a spe

cific sequence of angular rotations at different joints.
I
 

Define a set of polar coordinates for each coordinate 
frame as
 

shown in Figure 2-2 where the coordinates are represented by (ri, 
ei, Vi

)
 

= to 6. Then a possible sequence of angular movement can 
be estab

i 1 


lished as follows.
 

1. At the beginning, the manipulator is in a folded
 

position.
 

2. For a given f6 , the desired distance f5 between the 

shoulder bending joint and the finger tip can be
 

determined from
 



x 

J1 

z 

y. 

Figure 2-2. Polar Coordinates (i
 

N
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f5 = 6- 44 1 	 (2-25) 

3. 	Rotate the base swivel joint until e2 = 06" 

4. Rotate the forearm bending joint, in the direction
 

where a, is positive, until the distance f5 is
 

obtained.
 

5. 	Rotate the shoulder bending joint until a2 = 5"
 

The finger tip is 
now at the desired position.
 

If it is desired to catch the object with the hand oriented in a dif

ferent direction, the direction of the angle a,, in Step 4 can be
 

reversed.
 

If visual aid equipment is available, the control of hand po

sition is made easier with the help of remote human guidance.
 



CHAPTER 3
 

SATELLITE'S EQUATIONS OF MOTION
 

1. PRELIMINARY REMARKS
 

A satellite is assumed to possess an initial angular velocity
 

which is the combined motion of tumbling and spinning. An external
 

moment is applied on the satellite to despin and detumble until its
 

There are several ways to accomplish the
angular velocity is nulled. 


despin-detumble operation. The dynamics of the satellite during despin

detumble process is studied in this chapter. The study includes the
 

development of the satellite's equations of motion for different cases.
 

Methods of applying external moments are discussed. Then, computer simu

lations are made to reveal the dynamic properties.
 

It should be mentioned that some of the results of this chapter
 

are available in Reference 4. But the derivation is different. Further

more, the inclusion of this study allows a better understanding-of the
 

operation of a teleoperator system.
 

2. EQUATIONS OF ROTATIONAL MOTION
 

This section presents the general equations of rotational motion
 

for the satellite. Referring to Figure 3-1, two coordinate frames are
 

defined. The inertial coordinates are denoted by (X,Y, 7) while the
 

body coordinates are denoted by (x,y, z). The origin.O of the body
 

frame is at the center of mass of the satellite.
 

14
 



z 

Figure 3-1. 
 Inertial and Body Coordinates
 



16 
7
 

The equations of rotational motion can then 
be written as


- WxW + Ix(m + WxWy)M4x = Ixxi + IxyG 

+ (I -I ) iio + £ 2 2)(3-1)
Uz yy yz yz Oy z
 

My xy(Ix + tyWz) + Iyyy + yz(z "xmy)
 

+ (I - I ) W W + ( 2 W2 (3-2) 

z xz X y z yz "y x z z Z 

+ (I - I ) WX)y + Ixy(2 -2 (3-3) 
yy xx y x 'y
 

In these equations, w .y, lb are absolute body angular rates along
 

body coordinates x,y, z, respectively. Ixx' Iyy, and Izz are-moments
 

of inertia of the satellite, taken with respect to x, y, and-z axes.
 

and Ixz are products of inertia. M My, and Mz are applied
Ixy) lyz, x , 


moments along x, y, and z axes.
 

For a given set of initial conditions and a known applied moment
 

[M I M , one can, in theory, solve for w = [w Iy, W J as a 

function of time. In general, however, this is a difficult procedure. 

On the other hand, ifthe angular rate w is given, the calculation of 

the required external moment is usually a straightforward procedure. 
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Itshould be noted that the time integrals of wo o0y, and Lz do
 

not correspond to any physical angles which might be used to give the
 

To solve for the orientation,.one must trans-'
orientation of the body. 


form continuously to another set of coordinates. Or, one may solve the
 

rotational equations interms of the other coordinates-from -the beginning.
 

One set of such other coordinates are the set of three Euleriangles.
 

They are three successive angular displacements which can carry out the
 

to another. The three
transformation from one Cartesian system of axes 


body angular rates wx, WY, and wz can be expressed in terms of Euler
 

angles and their time derivatives.
 

The Euler angles used in this study are y',e, and *,.in the
 

sequence as shown in Figure 3-2. The transformationfrom X,-Y, Z to
 

E, n, C system, representing a rotation of angle y'about the Z-axis, is
 

El' cosi* - sin y, 0 1
1
fc 


11 -strnp- cosi 0] Y (3-4)
 

1L :00 1 .1 
', n', C' to , n, c system representing a ro-The transformation from 


tation of angle e about &'-axis, is
 

1 0 0 

n 0 cose sine n' (3-5) 

0 -sine cose 



z 

Fx
 

Figure 3-2. Euler Angles 
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Finally, the transformation from E, n, to x, y, z system, representing
 

a rotation of angle 0 about a-axis, is
 

x [cost sin 0 

y -sinp coso 0 n (3-6)
 

[l0 O, -1
 

Combining (3-4), (3-5) and (3-6) gives the transformation from X, Y, Z
 

to x, y, z system as
 

xi x 

y R Y (3-7) 

zz 
.z.
 

where R is a matrix given by
 

cos4'cost - sincosesin) sinvpcos6 + cos*cosesin sinosin9 1 
R = -cos~sinq - sinycosecos -sinsin + cos~cosecos sinecosf 

sinypsine :cos~sine cose j 
(3-8)
 

Notice that R is orthogonal, therefore the inverse of (3-7) is
 

:l Rt y(3-9)
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where Rt isthe transpose of R.
 

The directions of Euler angular rates q,, & and $ with.respect to 
satellite body are shown in Figure 3-3. These three angular.rates are 

sometimes called precession, nutation and spin, respectively. 

The angular rates w wy, and wz can now be written interms of
 

Euler angles and their rates as
 

x = sine sine + 0 cos
 

wy = sine cos - 6 sin* (3-10) 

= t=cosa + $ 

The angular rate wz issometimes called the "total spin" which should
 

not be confused with the spin rate ,
 

To facilitate the analysis, a special case is considered first.
 

Then the analysis of the general case follows.
 

3. SATELLITE WITH AXIAL SYMMETRY
 

Consider a satellite body having axial symmetry, and assume that
 

only a spin rate exist under nominal condition. The xyz frame is re

defined with its origin at the mass center of the satellite and with its
 

z-axis along the spin direction. Under the nominal condition the xyz
 

frame isstationary with respect to the inertial frame. Thus the xyz
 

frame can be considered as a set of principal axes for the satellite.
 



z 

z y 

yy 

x 

Figure 3-3. 

x 

4, 

The Euler Angle Rates of the Satellite 
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Hence, an arbitrary rotation of the body relative to this coordinate
 
system will not cause the moments of inertia to change, since the rota
tion can always be resolved into components about the axes of symmetry,
 

Denoting
 

Ixx 
 yy =i
 

x a I(3-11)
l y 

Izz = 
Ia
 

the components of angular momentum can be written as
 

Hx = I Wx 

H = 't (3-12)
 

Hz = Ia t Z' 

where wk) wy -z are components of the absolute angular rate of'the body,
 
expressed along xyz axes. 
 Now suppose that the body rotates about the 
z-axis with an angular velocity $ measured relative to.the xyz system. 
Let the absolute angular velocity of the xyz coordinate system be w = 

Wzyt
[E Wy, , which is related to w' by
 

IC
 

1Z 

(3-13)
 

Li' z +
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luation (3-12) can then be written as
 

PI
x = it W
x
 

Hy = It 'y (3-14)
 

Hz = Ia (Wz +
 

,ing the relative angular momentum equation
 

(H)r=+ Wx H (3-15) 

idthe moment equation
 

M = H (3-16)
 

set of modified Euler equations are obtained
 

Mx =it x - (It - la) yz + Ia y 

M = It + - I) %&z - Iaix (3-17) 

+ )
Mz = la ( z 
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where Mx , My and Mz are components of the vector moment M resolved along
 

xyz coordinates. Assuming-there is no rotation of the xyz coordinates
 

along the z direction relative to the XYZ frame, then (3-10) becomes
 

wy = sine (3-18)
 

Wz = ' COSo
 

Differentiating (3-18) and substituting the result into (3-17), gives
 

Mx = Ita + la ( + cose)4 sine - It y sine cose
 

my = t (y sine + i o cose) + i t o cose -a(; + cose)5 (3-19) 

Mz = la (p + 4)cose - 6 sine) 

The above set of equations will be used to simulate.different
 

cases of the operation of angular rate reduction of a satellite.
 

A. Combined Despinning and Deconing
 

In this case it isassumed that the satellite is in coning motion
 

which is a combined result of spinning and tumbling. .It is further
 

assumed that the coning iswithout noding. Under this condition, by a
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suitable choice of x and y coordinates, the total angular momentum of
 

the satellite can be expressed as
 

H= i Hx +ijHy + k Hz (3-20) 

where
 

Hx =0
 

Hy = sine (3-21)
t 


H=z (icos +)
 

and i,j,k are unit vectors associated with the xyz coordinates,
 

For this case the external moments are applied in such a way that
 

the spin rate and coning rate i decrease simultaneously while the 

coning angle 0 ismaintained constant. (See Figure 3-4(a)) The desired
 

external moments should be
 

MxM=00
 

My =-k It sine (3-22)
 

Mz =-k Ia cosa + 
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Z 
z 

e z 

(a) 

y 

z 

Figure 3-4. 

ty 
Y 

X 

(b) 

Despin and Detumble Moments 
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where 	k is a positive proportional constant taken to be
 

M
 
=
k ,(3-23)
 

t
 

B. 	First Detumbling Then Despinning
 

The tumbling rate is the vector sum of x and wy given by
 

=Axy + j Wy 	 (3-24) 

as shown in Figure 3-4(b). To perform detumbling, the external moment
 

should be applied in a direction opposite to xy. Therefore, with 'the.
 

help of (3-14) and (3-18),
 

x = -50


my -M sine 	 (3-25)
0 


Mz =0
 

where M0 is a positive proportional constant.
 

After nulling Lxy' a moment is applied to zero the total spin
 

rate wz . The applied moment is given by
 

Mx = 0
 

My =0 (3-26)
 

Mz = -M
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where k3 isa positive proportional constant.
 

Ithas been found, through simulation, that the applied moments
 

or e, inorder to avoid producing
could be a linear functions of i, , 


new rates which are opposite to the nulled ones. However,.the best
 

moment which was-a-linear funcdetumbling results were obtained for a 


tion of the coning angle e. Further discussion will be presented in
 

the simulation section of this chapter.
 

C. First Despin Then Detumble
 

The analysis for this case and the way external moments are
 

applied are similar to those discussed for Procedure B,except that the
 

operation isdone in reverse order.
 

4. THE GENERAL CASE
 

case are obtained by sub-
The moment equations for the general 


stituting (3-10) and its derivatives into (3-1), (3-2) and (3-3), giving
 

Mx = IxX * sine sin* +ip cose sin4 

+ , sine cos + e cos - $ sin2 

+ Ixy [p sine cost + P 8 cose cos4 

- @ sin - - e$sine 0 sin cos* 

- ( sine sin + e cos ) (4 cose + 
t 
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+ IZ [ Cose 6sine + 

+ (i sine sin + 6 cos) Q sine cosq -6 

+ (Izz - lyy) [ sine cost - 6 sin@] (;cose 

+ I sine cosin)- ( cse +)2 

sinp)] 

) 

(3-27) 

My yy 

-

sine cos + 

sine sin5 

6 Case cos 

- 6 sin4 - 6 4 cosp] 

+ I 

+ I 

[Ccase 6 sine + 

- ( sine sin + 6 cos) (@sine cos4 -6 sin )] 

[,p sine sin + 6 cose sin 

+ $isine cos@ + e,-cos '-e9 sin6 

+ ( sine cos' - e sin ) (i cose + W 

+ (Ixx Izz) [psine sin t8 cos] (jcosa +f 

+ I [(i cose + 4)2 - (isine sin + 6 cos )22 (3.28) 
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Mz = Iz£ cose - 6 sine + J 

+ IzxE[ sine sin + ' 8 cosO sin 

+ sine cost + S cost - 0 sin 

- ( sine cos - 6 sin ) ( cose + 

+ I [p sine cost + ' 6 cose cos
 

- * sin@ - - 6 ;
$sine 8 sin cos
 

-+ ( sine sin + 6 cos) (i cose +
 

+ (I - Ixx) sine sin + cost] 

x ( sine cos - 6 sink) 

- ( sine cos@ -6 sin )2 (3-29)+ Ixy [(; sine smn + 6 cos) 2 

Note that is isdifficult to apply moments expressed along xyz
 

To get around this difficulty the nodal coordinates , n,
coordinates. 


Using

and are used for expressing the components of applied moment. 


the inverse of the transformation (3-6), one has
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[os4 -sin 0 Mx1 
(3-3(
ZME sicn cos4 


M, 0 0- -

Substituting (3-30) into (3-27), (3-28) and (3-29), ,gives the set of
 

rotational equations of motion in nodal coordinates.
 

5. SIMULATION BY COMPUTER
 

Simulation Condition
 

The satellite dynamics for the axial symmetry case has been 
simu

are snlwv:S f"r
lated using digital computer- First, equations in (-19) 

so' Losev tAt t;,va corir angle is consant, that is
,ffIp,,4 5W6,'P 

= 0 (3-31) 

Solving the first equation of (3-19), gives
 

oSine0 [1a o + i0SS0o 0a( a "s) ] 

0, it requiresSince Qsine 


(3-32)
 
+ a It)
a o coseo (I 

versa.o is known, vice 
can be solved ifThus, ; 



32 

The set of initial conditions and parameter values used for the
 

simulation are shown below.
 

Initial Conditions
 

6o = 1.1486 radians = 65.81' 

Yo = 0
 

o = 0
 

50 = 0
 

o = 0.4809 radian/second
 

= 
;o 4.19 radians/second
 

Moments of Inertia 

Ia = 9529 kg-m 2 1 

(3-34)
 

= 212129 kg-m 
2
 

It 


Proportional Constant
 

Mo = 800 kg-m (3-35)
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The following quantities are computed and/or recorded during the
 

simulation.
 

1. The magnitude of the total angular momentum H,
 

given by
 

H 	] 2 
2 H2
= + H


x 	 y Z. 

12 	(2 +2 sin2o)+ 1 2( +4 cose)2 (3-36) 

2. 	The drift angle 8 that H makes with the Z-axis,
 

given by
 

y
HZ
= 
tana 


where H y is the component of H in the XY-plane
 

and Hz is the component of H along the Z-axis.
 

Since
 

HZ = 	Hz cosa + Hy sine 

Hr e Hf+e(H Cose H sine)

XY 	x y - 2 

therefore
 



tans = 

(i 

~ 

)2 + [I, ; sine Cosa - ' a (; + iicose) sine] 2 

a ~ C oe+.2(3-37) 

1Ia ($+ Cosa) Cosa + it sin2e 
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3. The tumbling rate wxy where 

y / p2 sin2e 

4 w2y+ w2=y + 

(3-38) 
-8 

4. The total spinning rate wz given by 

Wz = ; + 4 Cosa (3-39) 

5. Total work WT at each instant. 

6. Coning rate i, 

7. Spin rate ;, which is related to the total spin 

rate LIz via 

z + Cose (3-A0) 

8. Coning angle a. 

Results of Simulation 

The results of simulation plotted in Figures 3-5 to 3-15. 

tents of each figure is listed below. 

Con
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Figure 3-5. Time responses for the "detumble-then-despin" case. 

Tumble raze Oxy 

Total spin rate wz 

Spin rate 

Figure 3-6. Time response for the "detumble-then-despin" case. 

(Continuation) 

Coning angle e, 

Coning rate 

Total angular momentum H 

Drift angle 8 

Figures 3-7 and 3-8. Similar to Figures 3-5 and 3-6, but for the
 

"simultaneous despn and decone" case.
 

Figures 3-9 and 3-10. 
Similar to Figures 3-5 and,3-6, but for
 

the "despin-then-detumble" case.
 

Figure 3-11. A plot of the values of the drift angle 8 versus
 
the proportional constant M0 for all three cases
 

having the same end condition.
 
Figure 3-12. A plot of the values of proportional constant M
°
 

versus t for all three cases having the same end
 

condition.
 

Figure 3-13. 
A plot of total work at any time versus time for
 

all three cases having nearly the same end condition.
 

Figure 3-14. 
A plot of total spin rate w versus the total work
 

for all three cases.
 

Figure 3-15. A plot of tumble rate w 
 versus the total.work for
 

all three cases.
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Figure 3-12. Proportional Constant Versus Time.
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Discussion of Results
 

The simulation shows that detumbling results in 
a decrease in
 

coning angle. 
 On the other hand, despinning results in an increase
 

coning angle. 
This can be explained by noting that detumbling alone
 

reduces Hxy while Hz stays constant, therefore the angle between Hz
 

H, which is the coning angle, is reduced. Despinning alone reduces I
 
while H stays constant, therefore increases the coning angle.
 

The change of coning angle causes a drift of coning axis. It
 

possible to exert torque at suitable instants for drift correction4.
 

However, in the present simulation, no drift correction.torque is usE
 

This is due to the fact that, although it is a simple matter to do sc
 

theory, the practical application of this procedure is di ficult. 
Th
 

drift correction involves the application of torque at particular pos
 

tions and these positions are hard to detect,
 

In one detumbling simulation, different values of the proporti
 

constant M 
were used to determine the behavior of the drift angle a. 
The result is plotted in Figure-3-11 showing that no noted increase i 

B due to the increase of Mo Also recorded from this simulation is t
 

time required for detumbling to reach a specified state versus values
 

Mo' 
The result is plotted in Figure 3-12 showing that the relationsh
 

between M and t is such that M0t 
= constant. Therefore the detumbTi
 

time and the proportional constant for moment could be determined fror
 

one another when one of the two is specified. Table 3-1 lists the nun
 

ical data obtained from this simulation.
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Table 3-1. Data for Detumble Simulation' 

(Same end condition) 

t WT
 

kg-m seconds radians kg-m
 

20 4950 0.10833 35897
 

200 495 0.10848 35904
 

800 125 0.10170 35700
 

1600 67.5 0.12030 38000
 

3000 33 0.11334 35907 
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The total works required for nulling the motion of the-satell
 

versus time are different for different detumble-despin.procedures a:
 

shown in Figure 3-13. The detumble-then-despin and the simultaneous
 

despin and decone cases are veryclose. The least work case is the
 

despin-then-detumble procedure.
 

Computer Programs
 

All the computer programs are written in CSMP (Continuous Sim
 

lation Modeling Program). They are contained in Appendix 1.
 



CHAPTER 4
 

STABILIZATION OF FREE-FLYING
 

TELEOPERATOR DURING DESPIN
 

AND DECONE OPERATION
 

1. SYSTEM CONFIGURATION
 

Figure 4-1 shows a combined system of a FFTO. and a satellite for 

despin-decone operation. The despin and decone torques are applied 

simultaneously to the satellite by the FFTO through the wrist and 

shoulder brakes. During the despin-decone operation the arm angle a1 

and a2 are locked rigid. Other symbols shown in the figure are defined 

as follows: 

=2l distance between the wrist brake and the satellite's
 

center of mass os 

2= length of FFTO's forearm.:
 

t3 = length of FFTO's rear-arm.
 

4 = length of FFTO's shoulder.
 

25 = distance from the shoulder brake to the FFTO's
 

center of mass o.'
 

e = a2 - a1 

tsf= distance between os and o.
 

The reaction torque received by the FFTO during the despin-decoi
 

operation is counteracted by a set of control jets produced by clusters
 

of thrusters mounted on the FFTO as shown in Figure 4-1. However, the
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Figure 4-1. System Configuration
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Figure 4-2. Coordinate Systems
 



thrust level of each thruster is limited, therefore an effective stab
 

zaton of the FFTO requires the simultaneous control of the control j
 

and the brake forces.
 

2. COORDINATE SYSTEMS
 

Five coordinate systems are defined here, with the help of Fig
 

4-2, for the convenience of the ensuing analysis.
 

XYZ-system: This is an inertially fixed coordinate system who
 

X, Y, and Z coordinates are fixed with respect to distant stars.
 

xyz-system: This coordinate system is fixed to the body of th,
 

FFTO. The x, y and z coordinates are along three principal axes of t1
 

body, with the origin 0 of the coordinates located at the mass center
 

of the body.
 

Xsyszs-system: This system is fixed to the body of.the sarell
 

Thex. ys ,and z axes are along three principal axes of the satelli
 

with the origin 0s of the 'coordinates located at -the mass center of ti
 

satellite body.
 

abz-system: This system has-its origin coincided with-the oris
 

of the xyz-system, but the orientation of its three axes are.fixed wil
 

respect to the FFTO's arm. The a-coordinate lies in the arm plane whi
 

is formed by three arm sections. The z-coordinate is the same as thai
 

for xyz-system. The b-coordinate is perpendicular to the arm plane.
 

The relationship between xyz and abz systems is therefore a rotation
 

angle y along the z-axis as shown in Figure 4-3(a).
 



b 

y Arm plane is 
normal to 
thTage 

a s 

as a 

zzs 

(a) 

Arm plane is 
normal to 
the page 

(b) (c) 

Figure 4-3. Relationships Among Coordinate Systems 
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This system has its origin coincided with 
the
 

asbszs-system: 

are
 

origin of the xsyszs-system, but the orientation 
of its three axes 


The as-coordinate also lie
 
also fixed with respect to the FFTO's arm. 


in the arm plane, the zs coordinate is the same as that for xsYsZs-SYs
 

The.relation
 
and the bs coordinate is perpendicular 

zo the arm plane. 


systems is a rotation-of angle ys along
ship between xsyszs and asbsz s 


Since both b andbs;aXes are
 shown in Figure 4-3(b).
the zs-axis as 


to the arm plane the orientation relationship-between-abz 
and
 

normal 


shown-in Figure 4-3(c).

asb 5z. systems can be denoted by 

an angle e as 


a vector in space, its representations in various coorc
 
If V is 


nate systems are related by the following 
sets of transformations:
 

0 va] Val
Vx fcosy -siny 
T (4

Vy siny cosy 0 VLi z Vb 

0 vvi
V cosy sin 


Vb 
bzLt
siny cosy 0 Vy 


Vz 0 0 1 VzVz
 

Vs cosys sinyS 0 Vasfa1bS [Vasi 

{vj={ sinys cosys 0 IIVbs I TaxsbszS IVbsI 
Vzs] o JVj


0ii 1 5 vzs 
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v s COsin,
y 

•a 


Vbs= sinyS
LVs 

as s 


Va'Csa 


Vb] 0 
vz -sine 


Vas cose 
Vbs 

Vzs sine 

vx c 


VyC2 

VZ 1 


o rvxsl 
 Vxs
 
xsy szs
"1=r V s(4-2b)
 

COSs 0 v =TasbsZs
o [~s2sjv
V S zS 

0 sinei [Vas] asbsz FVasl_ 

1 

1 j Vbsj Tabz Vbs 

0 Cosa LVzs] -zS
 

0 -sine Va Va 
l 0 Vbb = Tabz Vb 

0 Cosa V Vz_
 

c21 C31llV V
 

IV
=TXYZ
JC 2 ] L2 
23 C33 z VJ 

(4-3a)
 

(4-3b)
 

(4-4a)
 

[4] L21C31  22 23 LXYZ [*yJ(4b
VZ . C32 C33- VZ Vz _ 

Inthese equations the subscripts denote the coordinates along which the
 

vector components are resolved. Matrix element Cij represents direction
 

consine.
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3. KINEMATIC RELATIONSHIPS
 

In this section the kinematic relationships between various
 

variables of the satellite and that of the FFTO are developed. 

, Wz) and (wa Wb' Wz) be the absolute angular veloci-Let (wx5 , 


ties of the FFTO resolved along xyz and abz coordinates,.respectively.,
 

They are related by the transformation (4-1b), that is,
 

! al cosy siny 0 Wx
 

wb-iy cosy 0 Wy(4-5)
 

= :si:;m

Wz 0 0 l toz 

vys, vzs) and (vas, bs3 )Zs ):be the absolute
Similarly, let (xs, 


angular velocities of the satellite resolved along xsYszs.and asbszs
 

They are related by the transformation (4-2b),

coordinates, respectively. 


that is,
 

Vas cosys -sinys 0 Vxs
 

(4-6)
0 Y)

Vbs sinys cosys 


zs 0 0 j {zs3 

and (jas' Pbs' 1zs) be the absolute
Finally, let (Ia'1b' 1z 


coordi
angular velocities of the arm resolved along the abz and 

asbsZs 


Since the az-plane (arm plane) leads xz-plane by the 
time varying


nates. 


shown in Figure 4-3(a), the arm rotates with respect to the
 angle y as 


FFTO at an angular velocity ' along the z-axis. Thus we have
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b (4-7)
H 

arm FFTO arm w.r.t.
 
FFTO
 

Also, since the axzs-plane (also the arm plane) lags xsZs-plane by the
 

time varying angle ys as shown in Figure 4-3(b), the arm.rotates with
 

respect to the satellite at an angular velocity -Ys along the zs-axis,
 

giving
 

0
9as
Pas 


(4-8)

'bs + 0


'bs 


VZS .Vzs [Ysj
 

arm satellite arm w.r.t.
 
satellite
 

1

Notice that the two angular velocity vectors (pa' b' 1z) and (vas' 1bs'
 

zs ) are related by the transformation (4-3a). That is,
 

a cose 0 sine Vas1
 

(4-9)
0 bs
]j 0 1 

PI -sine 0 cose vPZj 

= 



What we are after is the relationship between ( x SyWw z), the
 

zs ),the angular.velocil
angular velocity of the FFTO, and (vxs, Vys, 


of the satellite. This isaccomplished by substituting (4-5),into (4-;
 

and (4-6) into (4-8), and then substitute the two resulting equations
 

into (4-9). The final expression is
 

cosy siny 0 W 1 0
 

-siny cosy 0 Wy + 0
 

0 	 1 WZ . 

cose 0 sine cOSys -sinys 0 Vxs 0
 

(
0 1 0 sinys coss 0 ys + 0 


4s
0 Cosc ln-sine o0Vzs 1 


Or, in the expanded form,
 

s = Vzs - (Wx Cosy + wy siny) csce
 

-V
+ (v 	COSY 5 siny ) Coto (4

+ xs s ys s
 

= 	 - z + (x cosy + y siny) cote 

- (vxs cOSys - Vys sinys) csce (4. 
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-Ux siny + 1y cosy = Vxs sinys + vys cOSys (4-13)
 

Since the rotational and translational motions are coupled, it is
 

necessary to include the kinematic equations for translational motion.
 

Let (XfS Yf, Zf) be the position of the FFTO's mass center and (Xs, Ys,
 

Zs) be that of satellite's mass center. The following relationship
 

exists.
 

Xs =Xf - tsf C13 (4-14)
 

Ys Yf - tsf C23 (4-15)
 

Zs Zf - tsf C33 (4-16)
 

Insummary, for this Satellite-FFTO system, there are eight
 

degrees of freedom. Among them ox, wy, wz and Xf, Yf, Zf are used to
 

describe the rotation and translation motion of the FFTO, respectively.
 

The other two are y and ys which are used to describe the spinningand
 

coning motion of the satellite with respect to the FFTO_For this
 

eight-degrees-of-freedom system, which will have fourteen variables
 

),
 (including wx,, Zz, xs' vys, vzs' Xf; Yf, Zf, Xs , Ys, Zs, y and ys


Equations (4-11), (4-12), (4-13), (4-14), (4-15) and (4-16) are the
 

necessary 14 - 8 = 6 constraint equations. The fourteen variables will
 

be involved inthe formulation of dynamic equations later.
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4. THE BRAKE MODEL
 

The brake model which is used as wrist brake and shoulder brake
 

is shown in Figure 4-4, in which mass A is lined up with mass-B with th,
 

brake works between them. Assuming linear friction, the.torque results
 

from the brake is proportionalto the relative axial angular velocity
 

between them, that is
 

Mbrake = K(61 - 62) (4-I;
 

where K is the frictional torque constant which can be adjusted by the
 

tightness of the brake. From the Newton's law of action and reaction,
 

the frictional brake torques resulted on mass A andB are.equal-,in mag

nitude and opposite in direction as shown in the figure.
 

5. FREE-BODY DIAGRAMS
 
- 1 

For the convenience of setting up the dynamic equations, free
 

body diagrams are used. Figure 4-5 gives the free-body diagrams for thE
 

satellite, the arm of FFTO, and the body of FFTO. In the figure, all
 

forcesand moments acting on each body are indicated.
 

Based on the brake model discussed in the last section, the brak
 

torque exerted by the shoulder brake to the arm is given.by
 

N' = K y(4-1E~ 
I 

http:given.by


Brake 

A 2
 

Mbrake Mbrake
 

Figure 4-4. Brake Model
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where K is a proportional factor and is the relative.angular.velocity
-

Similarly, the-brake.torque
between two sides of the shoulder brake. 


exerted by wrist brake to the satellite is given by
 

Mz =-Kss (4-19)
 

.s
where Ks is a proportional factor and is the relative angular velocity
 

between two sides of the wrist brake.
 

Besides the frictional torque due to the brake there is.inter

action torque at each brake junction. The interaction torque-is in a
 

direction normal to the brake torque. In Figure 4-5, M's, Mbs, M' and
 

are interacting torque components.
 

In addition to the interacting moments effected through the brakes,
 

At the

there are interacting forces among bodies at each end of-the arm. 


(Fa Fb,Fz), which
shoulder end the interacting force components are , 


are expressed along the abz coordinates. At the wrist end.the inter

(Fas, Fbs, Fzs), which are expressed along
acting force components are 


the asbsz s coordinates.
 

Also control thrust torques Txc, Tyc and Tzc along x,.y,.z axes
 

are applied on the FFTO in order to stabilize the whole system during
 

the decone-despin process.
 

It should be noted that all inertial forces and moments are not
 

shown explicitly in Figure 4-5.
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6. DYNAMIC EQUATIONS FOR FFTO
 

The moment equilibrium equations of FFTO expressed along xyz co

ordinates are given by. .assuming an axially symmetrical oody.
 

M
x lllx + (133 - 122) 'y'z 
My 22 + (Ill " 133) wzdx (4-20) 

Mz. 133 z + (122 - I1l) 1xly
 

where ill 122 and 133 are the moments of inertia of the FFTO about its
 

body axes x,y, and z, respectively. The total external moments Mx, My
 

and Mz are due to control thrust torques, forces and moments from the
 

shoulder brake, which are obtained from moments Ma' Mb and Mz'through
 

the transformation (4-1a).
 

Mx COSY -siny i0 Ma Txc
 

my{E sin bcos 0 M + Tyc (4-21) 
M !z 0 0 1" Mz T"zc 

With the help of Figure 4-5, we find
 

Ma M' + Fb,15 M' + Vb5 

Mb = - = L%- Fa25 (4-22) 

[zm K 
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where moments (Ma, Mb, M ) are the total external moments from.brake
 

end taken with respect to the center of mass, o, of the FFTO.. Successive
 

substitution of (4-22) into (4-21) and then into (4-20) gives
 

-I1 x + (133 - 122) ytz Ma Fbz5cosY - M sinv+F-aZ 5sinY + Txc
 

1
I22 y + ('11 - 33)z x M~siny + Fbessiny + Mcosy - FaZ5COSy + Tyc 

1330 z + (122 - Ill)"xLy K y + Tzc 

(4-23)
 

The external force exerted on the FFTO is the interaction force
 

[Fa' Fb' FzIt between FFTO and the arm. This force, when expressed
 

along XYZ coordinates, is given by
 

FyJ =xyz Ty [Fb (4-24)[ z F' 

The force equilibrium equation for the mass center of FFTO is tiUs
 

Xf FFa 
M nV TxYZ Tabz 

M =XYZ xyz Fb (4-25) 

%hreI %FZ' 

where M is the mass of the FFTO. 
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7. DYNAMIC EQUATIONS FOR SATELLITE
 

In a similar manner, the moment equilibrium equations of the
 

satellite expressed along xsysz s coordinates are given by
 

+
Mxs 11 xs (J -22 ) ys zs
33 


Mys J22 "ys + (Jll"-J33) vzs vxs (4-26)
 

Mzs 33 ;zs + (J22 " 11) vxs ys
 

where J11 
 J22 and J33 are the moments of inertia of the satellite about
 

its body axes x, ys and zs, respectively. The external moment Mxs,
 

Mys, and Mzs are due to forces and moments from the wrist brake, which
 

are obtained from Mas, Mbs' and Mzs through the transformation (4-2a).
 

M
xs cosys siny
s 0 Mas
 

M -siny cosy 0 M (4-27)
 

zs 0 0 1 Mzs
 

Again, with the help of Figure 4-5, we find
 

Mas as - Fbstl as -Fbs£1
 

Mbs bts + Fasll Mbs + FasZ1 (4-28)
 

M 
 -K s
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where moments (Mas , bs' Mz.) are the total external moments-taken with
 

respect to the center of mass, Os, of the satellite. Successive sub

stitution of (4-28) into (4-27) and then into (4-26) gives
 

3it;Xs+(i332%2Nysts a's os sflcosys+Nssiny sa si
 
22)4' +F .CSafly
s 

[O 2 2ys+(Jll-v33)vzs'xs j = sFbs i s Ias bs 

a33;zs +(J22- ll)'xs'ys-
 -Ksg
s
 
(4-29)
 

The external force exerted on the satellite is.thedinteraction
 

force [Fas , Fbs' Fzs ]t between satellite and the arm. This force, when
 

expressed along XYZ coordinates, is given by
 

Fs Ty Tab z F(4Fas
 
YS XYZ xyz abz Fbsj (4-30)
 

FZs 

LFzs
 

The force equilibrium equation for the mass center of satellite is thus
 

Ms 
 zb asbszs a
 
TXYZ Taz T Fb (4-31)
s XYZ xyz abz b
 

s Fzs
 

where Ms is the mass of the satellite.
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8. DYNAMIC EQUATIONS FOR THE ARM
 

Assuming that the mass of the arm ismuch less as compared to FFTO
 

and the satellite so we may consider the arm massless. As a result of
 

the masslessness, the total external forces exerted on the arm must equal
 

to zero. Referring to Figure 4-6 and resolving all forces along a b
 

and zs axes, we get
 

Fas + Fa cose Fz sine 

Fbs + Fb= 0 

Fzs + Fa sine + Fz cose 

or
 

Fal+ case 0 -sinei Fa 

Fbs 0 1 0 Fb =0 

F sine 0 cosej Fz 

or
 

Fa'FaI
 
Fbs _T-asbZs Fb (4-32) 
as az
F I abz F 1 

Similarly, the total external torques acted on a massless body
 

must be zero about any point. Choosing point A as the reference point
 

as shown in Figure 4-6 and resolving all torques along the a, b, and z
 

axes, gives
 



-L2
 

F - Fb. M 

- L--'F
 

Figure 4-6. Free Body Diagram of the Arm
 

MIS 0 
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- zs sine - M' cose + F r cosyl 

- %bs 

IM' 
Z 

- Fa r cos* - Fz r sini 

cose+M' sine + F r sin 
as b 

= 0 (4-33) 

In this equation, sino and coso can be eliminated by using the relation

ship
 

sisine
 

r
 
sinp :
 

r
 

where r and L are distances as shown in Figure 4-6, M' and M' 
are
 
z zs
given by (4-18) and (4-19). Then (4-33) becomes
 

-K'+ K	s case + M' sine + Fbt, sine
 
ss 
 as 
 F 

L -, aS S77tascase +K,'j= (4-34)

M + %s + FaL + Fz, sine 

9. DYNAMIC EQUATIONS FOR TOTAL SYSTEM
 

The set of vector equations (4-23), (4-25), (4-29), (4-31), (4-32)
 
and (4-34) describe the dynamics of the combined Satellite-FFTO system.
 
Since each vector equation represents three equations, there are a total
 
of eighteen equations. As mentioned before, the fourteen dynamic vari
ables involved in these equations are not all independent; instead, they
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are subject to the constraint equations (4-11), (4-12), (4-13), (4-14),
 

(4-15), and (4-16).
 

10. THE CONTROL LAW
 

From the analysis of the past sections, applying decone and despin
 

brakes, the FFTO will be reacted with forces and moments.which tend to
 

make it rotate. Inorder to achieve the stability of the whole system,
 

proper control torques appeared in (4-23) should be applied on the FFTO
 

to keep it to the inertial directions as stiffly as possible.
 

For this system, the angular velocities wx, oy and wz of the FFTO
 
are measured by a set of rate gyros. 
 In order to apply the proper con

trol thrust torques, the direction cosine algorithm is selected to study
 

the relationship between the inertial coordinate frame and the FFTO body
 

coordinate frame. 
 The control law will then be studied.
 

Direction Cosine Algorithm
 

Let the XYZ axes frame with unit vectors i,j, k be stationary,
 

and the xyz axes frame with unit vectors i',j', k'be the rotating FFTO
 

body axes frame. Also let
 

=Wy (4-35)
 

bz
 

be the angular velocity of the xyz frame with respect to the XYZ frame
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expressed along xyz axes, and C be the "direction cosine matrix" trans-,

forming xyz coordinates to XYZ coordinates, i.e.,
 

where V is any vector expressed in XYZ coordinates and V .isthe same', ']
 

vector expressed in'xyz coordinates. C is expressed as
 

i • i '1 iC11 C12 C13 


j j ^ (4-37)
C C21 C22 


k i k- k k}
C31 C32 C33 


Hence,,the derivatives of elements of C are
 

.it 
 jy) r_ 1
 

t 1 dt. x ', . I.
z
C .Ttt " (VW " z 13w CI
 

di~'~ 
C 2 0
C " Ci2Wz
C13 = dt (I'y -iQ = CI13 

C - dl (. - ' y) C2z - C23wy. .1 


-C21 = dt z - k = 

= 
(k - i ) 23'x 21" z2= 


=c1 - c22 x 
23 j " t = j ( - xc23 = 2w 
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C31 d k - (i'wz - k-) = 

t 

t32= dl kw ,r')=c3w 3'
 

=t33 k r k (1'wy - i'ix) = C31 y - C32wx 

The derivative of C is therefore
 

Cl11 C12 C13' 

t C21 t22 t23
 

C31 
 C32 
 C33.
 

C12'z - Cj3wy C135x - C C11yciy - Cl2'x
 

C22-z - C23,y C23wx - C21 z C21y - C22"x
 

C32)z - C33wy C33wx - C31 z C31"y - C32Ox 

Cll C12 C13 0 -wz my 

C21 C22 C23 wz 0 -Wx (4-38) 

C31 C32 C33  -wy wX 0 

Let
 

0 L z y 
= z 0 -wx 

-wy wx 0 



75
 

be the matrix characterizing the angular 
velocity of the FFTO xyz frame
 

(4-38) becomes
with respect to the XYZ frame. 


(4-39)

= CQ 

Since, in the Satellite-FFTO system, the angular velocities 
Wx,
 

set of rate gyros, the orientawy and Wz of the FFTO are measured by a 


tion of the FFTO can then be found by (4-39) 
whose block diagram is
 

shown in Figure 4-7.
 

Control Thrust Torques
 

Control torques are chosen to be proportional to angular displace-


They are chosen to be
 ments as well as angular rates. 


4-40)
T k k C(C C3 
xc -k + k2 C11 2 32 - 4-4 

- 1 51 

9 3.,
Tyc -k3ny + k4C22(C31 -C13) (4
 

(4-42)
+ k6C33 (Ci2 -Tc_= -k5w 

The first term in-each of these equations is
the part proportional to
 

angular rate and the second term isthe part proportional to angular
 

study of the geomet-
The second term isobtained through a 
displacement. 


rical relationship between XYZ and xyz frames. 
,All ki's in these
 

equations are proportional constants.
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c(o)
 

from rate gyros
 

Figure 4-7. Direction Cosine Transformation
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It should be mentioned that, while control law development and
 

stabilization techniques are not intended activities of this project, a
 

method of stabilization control is needed to maintain the dynamics of
 
the combined FFTO-satellite system in a reasonable state. 
Thus the
 

chosen control law represented by (4-40), (4-41) and (4-42) is by no
 
means optimal. However, it is effective for the intended purpose.
 

llb.SIMULATION
 

Now there are eighteen dynamic equations represented by (4-23),
 
(4-25), (4-29), (4-31), (4-32) and (4-34); there are six constraint
 
equations represented by (4-11), (4-12), (4-13), (4-14), (4-15) and
 

(4-16); there are three control 
thrust equations (4-Q)pJ -;), (4-42);
 
and there are 
nine direction cosine equations represented-by (4-39).
 
All these 35 equations describe the FFTO-Sateliite system considered,
 
For the convenience of computer simulation, a number of substitutions
 

are made among these equations to eliminate some of them.
 

Equation Elimination
 

Substituting (4-32), (4-14), (4-15), and (4-16) into (4-31),
 

gives
 

S Sa* 

X tsf131M 
Y --Txyz Tabz Tabs s s / _Tabz fFJFb
 
S f sf '23 XYZ ,xyz abz asbsz s
.ep Ts~ 1azSs5 -~s s~;Zf tsf C33 


Fz .
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Fa
 

-TXYZ Tabz F(4XYZ xyz b
 
F
 z
 

Dividing (4-25) by N, dividing (4-43) by M., taking their difference,
 

and rearranging the result with the help of (4-39),
 

z z S13-l Tab
1 Txy
Zs
2 S T2XYZ
4sf '23 xF TXyZ
m F15]z
 
C33 s Fz 

By inverting the transformation, gives
 

Fa mm C131 

Fb N +s tsf 23
sabz 
 fxyz 

Fz C33 J 

.13
 
=1TXYZ TXYZ" d[013 

abz xyz ft [23 
33
 

cosy siny O Cl C31
C21 


= D, -siny 0
cosy C22  x
C12 C32  


0 0 1 C13 C23 C3 3 
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,llWy 

c21Wy 

-12 

- c22 

x. ily 

) + C21y 

l2Wx 

c31Wy - C32 x + C31Ly - 032wx 

D 

,y COSy 

-4y siny 

- siny 

- x cosy + D6, 

D7 

(4-44) 

where Di, i = 1 to 7, are auxiliary equations 

MMs 

D1 = + sf 

as defined below. 

D2 = CI1 "y- C12 x, 

D3 =C 21 m'y - C22 .x 

D4 = C31 y - C32 Wx 

D5 = D2 (CI1 cosy + C12 siny) 

+ D3 (C2.1 cosy + C22 siny) 

+ D4 (C31 cosy + C32 siny) 
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D6 = D2 (-C11 siny + C12 cosy) 

+ D3 (-C21 siny + C22 cosy) 

3 1 siny + C32 cosy)
+ D4 ,(-C

D7 = D2 C13 + D3 C23' 'D4 C33
 

Substituting (4-44) into (4-32),
 

Fas cose 0 -sine y cosy - cx sirny + D5
 

Fbs 0 1 0 - y siny -Wx cosy + D6 D1
 

Fzs sine 0 cose D7
 

Cose cosy + D7 sine - D5 cosa
cxCose siny - cy 

= D ix cosy + Ay sjny - D6 (4-45) 

sine siny - y sine cosy - D7 cose - D5 sineLx 


Next, using (4-18), (4-19), (4-44) and (4-45) in (4-34) gives
 

MIa S 3x I cosy yD £D siny + D3 (4-46)D1 


(4-47)
SMI 


Ma =- 9 -y DIO + DII x 


% = -M~s + x D1 L siny - y D1 L cosy - D12 (4-48) 
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where D., j = 8 to 12, are defined by the following auxiliary equations 

D8 = (L1 cose +,L) Dl
 

D9 = D8 cosy
 

Dl0 = D8 siny 

Dll = D6 D8 + Ks Ts csce - K y-cote 

D12 = L D1 D5 + tIl Dl D7 sine
 

Multiplying the first equation of (4-29) by cOsys and the second one by
 

sinys, then taking the difference,
 

Vx (3l cosys)-" 22
 
S 1ys-(J22 slnYs). " 

=D13 + z1lID6 - (J33 J22 ) ysvzs cosys
 

-l
+ 33) vxs vzs sinys (4-49) 

where 

D3 = -D1 D0 1 + (K -,K Y cose)/sine 
131 1 s5 
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Multiplying the first equation of (4-29) by sinys and the second one by
 

cosy s, then taking the sum,
 

Jll ;xs snys + J22 ;ys cSYs + ('33 - J22 ) vys vzs sinYs 

+ (J - J33) vxs zs cOSys = MNbs + Fas £I 

Substituting the detail of Fas given by (4-45) into this equation, gives 

Ns = -ex t1 D, cose siny + y .t1 D1 coso cosy
 

+ ;xs all sinys + Vys J22 cosys + 014 
 (4-50)
 

where
 

D14 = ('33 - J22 ) Vy s vzs sinys + (J " a33) vxs vzs cosys 

+ tI D1 (D5 cose - D7 sine)
 

Substituting (4-50) into (4-48),
 

b= x 015 - 016 -xs J11 i°'s - ;ys J22 os -012- 14 (4-51) 

Substituting details of Fa* Fb Ma" M" given by (4-44), (4-47) and
 

(4-51) into the first equation of (4-23),
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tx (Ill + D9 cosy + 2 5 D1 + D1siny) + Ay (DIo cosy 

Jll sinys siny cyos22 siny- D16 siny)-v x - COST5 

- (133 -122) "y Oz + DII cosy + (D12 + D4) siny 

: 2 , - , 

+ £5 D1 D6 cosy + £5 D1 D5 siny + Txc " (4-52)-


where
 

D15 = D8 siny 

D16 = D8 cosy 

Similarly, from the second equation of (4-23),
 

(D9 siny - D5 cosy) + y (122 DD10 siny + D16 cosyx 


+ £5 DI) + ;xs Jll sinys cosy + ;ys J22 cOSys COSY 

= - (III - 133) + DI siny - (D2 + D14) cosy, 

+ £5 D1 D6 siny - £5 D1 D5 cosy + Tyc (4-53) 

From the third equation of (4-23)
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z = [K Q + Tzc - (122 - ill) "x OyJ/133 {4-54) 

From the third equation of (4-29)
 

;zs= [-Ks s " 022 -11 ) vxs vys] J33 (4-55)
 

Differentiating (4-13)
 

C. 

4 siny + c - sinys s coSy 
S ilyW COSs
 

(Wx cosy + wy siny) + (vxs cosys - vys sinys)Q s (4-56)
 

Summary
 

The set of simulation equations is summarized as follows
 

=vS -(W cosy + w siny) csce
 

+ (vxs cosys - vys sinys) cote (4-11) 

-Wz + (x COSY + w siny) cote
 

-(vXS COSys - vys smnys) csce (4-12)
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z [K -f+ Tzc - (122 - 11) W. W0 ] I33 , (4-54)
 

vzs [-Ks Ts -(J22 - ill) Vxs Vys3 J33 - (A-55) 

Grouping (4-49), (4-52), (4-53) and (4-56) into a single matrix equation,
 

0
 

1Ii1 + D9 cosy + t5 D1 + DI5 siny D10 cosy - D16 siny - -


D9 siny - D5 cosy 22 + D siny + £5 D + D cosy
 

0 0
 

-silny Cosy
 

-ill sinys siny -J22 cOSys siny x
[

ill sinys cosy J22 cOSYs cosy (y
 
ill c°SYs J22 sinYs- ;xsi
 

-sinys -cOSYs ys
 

- (133 - 122) 'y 'z + Dll cosy + Z5 P1 D6 cosy 

+ (D12 + D14) siny + Z5 D, D, siny +,Txc
 

- (Il - 133) wx wz + D1l siny + £5 D, D6 sifly 

- (D12 + D14) cosy - £5 Dl D5 cosy + Tyc
 

D13 + £I Dl D6 - (J33 - J22 ) Vys Vzs cOSYs
 

+ (1 - J33) xs vzs sinys 

(wx cosy + wy siny) y + (Vxs COSs - Vys sinys) Ts 
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Among the eight angular variables, ys, y, wz and vzs can be ob-


While

tained by integrating (4-11), (4-12), (4-54) and (4-55) directly. 


LO wy, xs and vys have to be obtained by solving the above four simul-
X, 


y, ;xs and ;ys and then integrating
taneous linear equations for 5x, 


them. A subroutine named "SIMQ" is used in simulation program to solve
 

these simultaneous linear equations. Z'Also,
 

Tx -kI wx + k2 ClI (C23 - C32) (4-40) 
c = 


(4-41)

Tyc = k3 wy + '4 C22 (C31 - C13) 

(4-42)

lz + k6 C33 (C12 - C21)Tzc = _k5 


The direction cosine elements Cij's are obtained by integrating 
the set
 

of nine equations given by (4-39), that is,
 

Cll = C12 z - C13 Wy 

Cl2 = C13 x - C1l t'z 

Cl3 = Cll "y - C12 wx
 

C21 = C22 wz - C23 y
 

.t22 = C23 "x- C21 "z
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023 = C21 "y - C22 1x3


C31 : C32 'z - C33 "y
 

t32 = C33 'x - C31 Lz 

C33 = C31 Wy - C32 wx 

Simulation Parameters and Initial Conditions
 

Values of parameters and initial conditions used for the simula

tion are shown below.
 

Parameter Values (Figure 4-8)
 

FFTO:
 

M = 200 kg
 

4 (0.82 + 1.52) 48.17 kg-rm2 =Il __ 


122
122212 (1.22 + 1.52) =61.5 kg-m 
2
 

13 12I (0.82 + 1.22) = 34.67 kg-m 2133 

112 = 123 131 = 0 

=
 - 0.75 m 
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x 

y
 

(a) FFTO 

x 

R 

ys 

(b) SATELLITE 

Figure 4-8. Dimensions for FFTO and Satellite 
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Satellite: 

Ms = 6,600 kg
 

R = 1.741 m, 

h = 6 R = 10.446 m 

1= 0.5 h = 5.223 m
 

J33 =21 MR2 - 10,000 kg-m 
2 

=
 

h2)
 S22 (3R2 + - 65,016.7 kg-m 2 

=
=
11 22
 

J12 = J23 = J31 = 0 

Arm of FFTO:
 

Assume Massless
 

'22 = 1.277 m
 

Z3 = 5:0 M 

Z4 = 0.5 M 

Initial Conditions
 

al a2 = 0 600 
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= 
IXO ) = 0) = 0 

xo Oyo zo 0
 

vxso= -0.3464 rad/sec
 

0"yso 


%)zso= 1.300334 rad/sec.
 

Y= 0 

Ys 0 

Cli = C22 = C33 = 1 

C12 = C21 = C23 = C32 = C13= C31 = 0 

The initial condition data shows that
 

J33 Vzs l1,000 x 1.3003 1= cot 600
 

Has I Vas 65,016.7 x 0.3464 = V3
 

Hence, H is initially along the z-direction as shown in Figure 4-9.
 

Brake Forces. The brake force factors are chosen to be ramp
 

functions are shown below,
 

K = Ks = 1000 t (t in seconds)
 



zs
 

H
 

Figura 4-9. Initial Angular Momentum of Satellite 
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Thrust Torques
 

kI = k3 = k5 = 10,000
 

k2 = k4 = k6 = 100,000
 

Simulation Results and Discussion
 

Results of the simulation are plotted in Figures 4-10 to 4-16.
 

The simulation revealed a stable joint dynamics of the FFTO-satellite
 

system. The results are very encouraging.
 

Figure 4-10 shows the time responses of FFTO's reaction angular
 

The reaction angular rates decrease as expected. The oscillarates. 


tion in each angular rate, though may not be objectionable, can be re

moved by adopting a different control law or by increasing the.wate

1, 3, 5) of the present control law.
control constant ki (i = 


Figure 4-11 depicts the time response of direction cosines Cii
 

1 to 3, of the FFTO. Their values are not constant, but the variai = 


tions are small. The maximum deviation of.the values of direction
 

This deviation practically disappears comcosines from unity is 0.014. 


pletely after 15 seconds, indicating an effective stabilization 
effort.
 

Figure 4-12 contains time responses of the satellite's angular
 

It is shown that, after 15
 rate during the detumble-despin operation. 


rate

seconds, the satellite lost most of its dynamics from an initial 


rad./sec along the zs-axis. .Similar
of 1.3 rad./sec to less than 0.1 


behavior is for other axes.
 



.20 
x_ 

.. '~ ..- ! , .V,' / I fS. 

01 -\ 50 

-. 10 / z 

-.15 I 1 

-.20 

Figure 4-10. Time Response of FFTO 
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Figure 4-11. Direction Cosine of FFTO 
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Figure 4-13 plots the angular momentum of the satellite. The
 

momentum is reduced in 15 seconds 
from its initial value of 2.6 x 104
 

kg 2-rad./sec to 2.8 x 102 kg-m 
2-rad./sec which is about 1% of the
 

initial value.
 

Figure 4-14 shows the relative angular rates at two brake junc-


The angular rate 'sdecreases nonotomically while y decreases
tions. 


with a small oscillation at the beginning.
 

Figure 4-15 shows the relative angles at two brake junctions.
 

Both angles become constant after about 15 econds indicating the
 

diminishing of relative motion between the FFTO and satellite.
 

Figure 4-16 gives the time responses of thrust torques in three
 

orthogonal directions. The maximum torque value is about 
2.6 x 104
 

newton-meters in the x any y directions and about 2.2 x 103 newton

meters in z-direction. The oscillations in torques require oscillation
 

in thrusts which may be objectionable. However, by using a different
 

control law the oscillatory behavior can be removed.
 

Simulation Program
 

The simulation is written in CSMP which is included in Appendix 2.
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CHAPTER 5
 

SUMMARY AND RECOMMENDATIONS
 

This study resulted in three kinds of equations of motion for the
 

free-flying teleoperator system. The first kind isa set of kinematic
 

equations for the FFTO's manipulator. They describe the positions-and
 

velocities of the manipulator hand with-respect to various coordinate
 

systems. These equations are useful ingenerating the reference signals
 

for the control of the position and velocity of the hand, especially for
 

catching an object which iswithin the reach of the arm.
 

The second kind of equations of motion are two sets of equations
 

which describe the dynamics of a satellite under an ideal detumble and/or
 

despin operation. The idealized assumption is that the FFTO is fixed in
 

space. The objective of this study is to obtain some understanding
 

about the satellite dynamics, paving a way for the study of more realis

tic cases later. The first set of equations is for the case where the
 

body of a satellite is axially symmetrical. Computer simulations were
 

obtained for this case. The second set of equations is for a general
 

body configuration. The analytic expression for this case isvery
 

complex. No simulation was performedfor this case.
 

The third kind of equations of motion is a model describing the
 

combined dynamics of a FFTO and a satellite during detumble and despin
 

operation. The FFTO is not assumed fixed. The motion of FFTO is due
 

to the reaction torque and force exerted by a dynamic satellite. The
 

set of equations are highly nonlinear. For the convenience of
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observation, the joint dynamic of the 
FFTO-satellite system is quieted
 

down by the use of a FFTO stabilization. 
A direction cosine control law
 

Simulation was performed to
 
is arbitrarily selected for this purpose. 


The result confirms the adequacy of the 
model.
 

test the model. 

They are.
 

All the computer simulations were written 
in CSMP. 


The parameters in these programs-can be,,
 
included inthe appendices. 


changed to simulate different conditions.'
 

The development of the above models 
has allowed us to gain a deep
 

understanding of the motion of a FFTO, 
a satel-lite, and their combina-


Momentum and competence now exist enabling 
further research to
 

tion. 


The following areas are recommended 
for further study.
 

the problem. 


To obtain a good stabilization of the
 Thrust Level Requirement. 


joint FFTO-satellite system the thrust 
level was not limited in the sim

4 newton-meters
 
ulation. The maximum thrust value was about 2.5 

x 10


3 newton-meters along z-axis.
 
along x or y axis, and about 2.2 x 10


These values seem large. It is important to find out if the detumble

more realistic thrust
 
despin operation can be accomplished using 

a 


level.
 

In the present study, the arm mass has been
 Effect of-Arm Mass. 


will complicate the analytic formulaneglected. Inclusion of arm mass 


tion a good deal. However, knowledge of effects of arm mass 
on the
 

total system dynamics and on the control effort is important. A study
 

of these effects should be made.
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Variable Arm Angles. 
Arm angles a, and a2 were made constant for
 

the present study. 
It is not known yet if there is any advantage.to be
 

gained by allowing aI and a2 to vary. Permitting variable a, and a2
 
will also increase the complexity of the equations of motion. 
But based
 

on the results obtained in the present study, this generalization can be
 

made without too much difficulty.
 

Desired Control Law. The control law governs brake forces and
 

thrust levels, 
 The control law used in this study is arbitrarily chosen.
 

A study should be made to arrive at a simple but effective control. Due
 

to the nonlinearity and the high dimensionality of the system, this task
 

is not a simple one, although the results of the present study will make
 

it easier. One important consideration is the advantage of exerting a
 
preferred combination of despin and decone torques to maintain the
 

angular momentum vector of the satellite as stationary as possible in
 

space. It is believed that this will help in reducing the need of high
 

stabilization torques for FFTO. 
The result obtained inChapter 3 can
 

help to accomplish this.
 

Additional Simulations. Due to the limitation in time many de

sired simulations could not be performed. 
With the model already
 

developed, it will be very worthwhile to continue the desired simula

tions.
 

http:advantage.to
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APPENDIX 1
 

CSMP PROGRAMS FOR CHAPTER 3
 

A. Simultaneous Despin and Decone
 

LAB3EL O5SPIiNING AND DECONIN; WITH 4=900 
INITIAL I 

CJNSTANT IAI=S;529,TTL=f2292',PH!IIo=,,Svc=OTrTflO=0,mo=o
 
DYNAM I C 
PANAMETLR TETI0=I.I486, PI 1C0=4.19,SYD{T0 5 480Y ,MS=C)O
 

M=AU E 

rTE LUZ2=( MX-I A1* ( PHIIDL+SYD)*CrS ( ITIT1) B'SYD*S IN( TETI) /I T 1+SYDN*2*... 

SIaC(TETL)*CUS(TETL ) 
SYU =CMy-2*,IT1*SYD-,TTD*CV'S(TETI)+IAI*(DItD1+SYD CCS(TrTl))*f...
 

TdT ID)/ITI SINCTETI))
 
PHlD2=IlZIAI-SYo2)?.Ccs(TETI)+SYrtTETfl*SI(TETI)
 

SYD4GUS(TETL) )*42)
 
..
ANGL=SQRT((ITI*IETIfl)*"2+(SYC*$N(TFT)*CnhS(TT)*(IT1TAl)-IA1* 


PH 1 *v2U IA r(P lI+ Y * (F 1I) .S(E I I IS I* I (E I* 2 
IETA=ATANCAPJGL)
 
N12=SQRT (TETtlCxc'2+SY0**2*SIN (TETI1)**2 1 
WjsPH ILD SYD*CCGS(TET1)
 
M=SQRT(M'X**2+WY**2+MZ**2),
 
$YDzI NTGtKL( SYt3CSYD2)
 
SY=INTGRL(ZAOjSY )
 
PHIID=INTGRL (PHI1D0,PH102)
 
PHI I=INTGRL(PhIIO,PHIID)
 
TLTI IN T 6 RL(TLXI 00,T T1 02)
 



TETI=INTGRL(TET109TETID)
 
MT=INTGRL0l0vM)
 
PkINT MT
 
PRTPLT SYDvPHIIDvTETIvHt8ETArtNI2vN3
 
TIMER DELT=0.05,FINTlV=60OPPUTCEL=5
 
FINISH ,YD=O.Cl
 
PRTPLT SYL),PHlID9 TETI vHt BETA, V12,W3 
END
 
TErOlINAL 
STUP
 
ENUJOB 

B. DETUMBLE THEN DESPIN
 

LABEL DzTUMBLING THEN UESFINING 61TH A=20
 
isNITIAL 
CONSTANT lAi=c;529YITI=21212gtPHIIC=CtSYO=09TFTICD=o
 
DYNAM I C 
PAkAM0ck TcTIO=1.1486,PHIICO=4.19,SYDO=0.4809,A=20,...
 
X=-Iqy=-Ifz=otm=o.oIN=Iolt/c=o
 
B=AN0(ApTETl)
 
L=8 'A*TETI
 
MX=C*X*TETID
 
MY=C*Y*SYU'XSIN(TETI)
 
MZ=(,.x Z 
TETID,=(MX-IAI*(PHIIL)+SYD*LQS(TFTII)*SYD*SIN(TETI))/ITI+SYD**2*...
 
SIN(TETi)*cos(TETI)
 
SYD2=tMY-2*ITI*SYD*TETlD*CCS(TFII)+IA14--(PH11D+SYO*CCS(TET1))* 


...
TETID)/(ITI*SI'(TETI))
 
PHlID2=ML/IAI-SYD2*COS(TETI)+SYD*TETID*SIN(TETI)
 
H=SQkT(ITI*l,2*(TETID*-Z+SYD;'
2*SlN(TETI) c*2)+IAI**2*(PHTID+...

SYDvCOS(TETi))**2)
 
ANGL=SQKT((ITI)TETID)**2+(SYD*SIN(TETI)*COS(TETI)*(ITI-IAI)-IAI


,i...
PHIID)',:*21 .
/(IAI*(PHIID+SYC*COS(TETI))*COS(TFTI)+ITI*SYD*SIN(TETI)**2) 

co
 



6ETA=ATAN(ANGL)
 
wl2=SQRT(TETIC**2+SYD**2*SIK(TETI)**2)
 
W3=PHIlO+SYD*CCS(TETl)
 
,M=SQRT(ilX**2+VY**2+MZ**2)
 
SYD=l[qTGRL(.3Y[;OSY021
 
SY=INTGRL(SYOSYD)
 
PlillD=IiqT(;RL(PHIIDOPHllC2)
 
PHIl=INTGi L(PHI10,PHIlD)
 
TETlD=INTGRL(1ETIDOTET102)
 
TEri=INTGRL(TETIOTETID)
 
MT=INTukL(MOpV)
 
PRTPLT SYUtPHIIDTETlqHyBETApkI2,W3 
PRINT MY 
TIMER DtLT=O.C5,FINTTV=50COC(jTDEL=25
 
FINISH WIZ=0.2CO
 
END
 
TERMINAL
 
STJP 

LABEL DETUMBLING, THEN DESPINING ITH A=200 
1,14 1T I AL 
CONSTANT IAI=c)529,ITI=212129,PtjTlO=CSYO=OTET11,,O=O
 
UYNAM I C 
PAKAMtTER TtTlO=1.1486,Pt4llCO=A.113,SYDO=0.48CgA=200t ...
 
X=-IrY=-I,,Z=OV=O.OItN=10,MC=O
 
6=AND(APTETI)
 
C=B*A*TETL 
MX=C*X)xTtTID
 
MY=(,lxY*SYU4SIN(TETI)
 
MZ=C*L
 
TETID2=(MX-IA1*(PH110+SYD*CCS(TETI))*SYC*SIN(TETI))/IT1+SYD**2*
 
SIN(TETI),xCOS(TET1)
 
'SY02=(MY-2*lTl*SYL)*T-TlD*CCS(TETI)+IAI,,(PHIID+SYD*CCS(TETI))* ... C)
ko 



TEt1DJ/(ITi*SIN(TETI))
 
PH11D2=ML/IAI-SY02*COSCTET1)4SYO*TETCD'SIN\(TETl)
 
H=WTII**TTD*+Y*2SI(EI*2+A*2(H1+.
 
SYU*-COS(TETI) )*t2)
 
ANGL=SQRTU(ITI*TETtO)**2+ (SYD*SIN(TET)COS(TET)*(ITIA)IA* .
 

PHIJ*1(A*VII+YOO(EI)CSTT)IISDSNT=l*2
 
BETIA= AT AN(ANGL )
 
W12=SU F(T,!TCl"2+SYD**2*S IN(TET1 1*42) 
3=PHILO+SY'D*COS(TET1)
 

M=SQRT (MX~c*2+PY*4*2+MZt *2) 
SYD=LNTGRL(CSYOC ,3Y02)
 
SY=INTGRL( SYO ,SYO)
 
PHIIU)=INTURLCPHIIOOPH 1102)
 
PHII=irJTGRLfPHIIO,PHIIO)
 
TETLD=1NTGRL(TL:TIDO,TETIC2)
 
TL:TI= INTGRL(TETIOTETID)
 
MT=INTGRL (MO,Mt)
 
PRTPLT SVDPHI I0,TET1,HBET7Al~32,W3
 
PRINT MT 
TIMER DELTO0.O5,FINTIV=SOC ,CUTCEL=5
 
FINISH W12=0.200
 
END
 
TERM INAL
 
STOP
 
hNDJU B
 

LABEL DETUMBLING THEN DESPINING WITH A=800
 
INITIALI
 
CONSTANT IAI=9529,ITI1=21212S,PHIIC=O,SYO=O,TETIDO=O
 
UYNAMIC
 

*0cPARAML:TCR TET1O=I.1486,PHII0O=4.l9, SYCO=0.480SA=800, 

X=-Uy=-lvZ=OtM=.ON=I~dd0=0
 

-3=AND(ATiETL) 

C=BvlAvTI~
 

http:TET1O=I.1486,PHII0O=4.l9


MX=C'4X*TETID
 
MY=C*Y cSYwrSIN(TETL)
 
ML=C*L
 
TLTID2=(MX-IAI*IPHIID+SYr)*CDS(TETI))*SYD SIN(TETII)/ITI+SYD**2*.,.
 
SlNiTET1)*CJS(TETI)
 
>YL)2=iMY-2 ITI*SYDe TETLD*CCSITETI)+IA1*(PHIID- SYD, COS(TETL))*...
 
T TILW( ITI*SIN( TETM 
PHIIL)2=MI/IAL-SY02*COS(TETI)+SYDY"(17TID1,STN(TETI)

H=-,)Qt [(ITI**2*(TETID -*2+SYD*u2*SIN(TETI)Y,'2)+IAI**2*(PHIID+...
 
SYD*ClUS(TETIl)**21
 
ANGL=sQt r((III*TETLC)I**2+(SYD*Sl q(TETI)9ACOS(TETI)*tlTI-IAL)-IAI* ...
 
PH 110 Wr.2) /(I A L, ( PHI I D+SYC *COS( TETI ) )*C [,IS (TETI) +IT I*SYD*S IN FET 1) **2) 
13LTA=ATAN(ANGLJ
 
l?-=SQRT(IETIC**2+SYD**2*Sff\(TFTI)**2)
 

si3=PHiI0+SYO; CCS(TET1)
 
M=SQKT(MX**2+VY**2+MZ**2)
 
,YD=INTuRL(, Y00,SYD2)
 
SY=itjTGRL($Y0qSYQ)
 
PHllu=lt TGRL(PH1I00?PHII02)
 
PHI I= VqTGRL (PHI I 0,PHI ID) 
TErLU=INTGRL(TETIlJUTETlD2)
 
TETI=iNTGKL(TCTIOtTETID)
 
MT=INTGRL(M0,V)
 
PKTPLT SY0,PHIIDTETIHBETAjWI2,W3
 
P-UNr MT
 
TIMER DELT 0.05,FINTIV-80CCUTDEL=5
 
FINISH wIZ=MW3=N 
CUNTINUE
 
TIMER DELT=U.05pFINTI.A=70C*CUlDEL=5
 
PARAMETLR T T10=1.14861pl-iIIDO=4.19,SYDO 0.4609,A=800,...
 

END
 
TERMINAL
 
STOP
 
ENDJUB 



LABEL DETUMBLING THEN DESPINING WITH A=1600
 

INITIAL
 
CUNSTANT IAI=1;52991TI=2121299PHIIO=CSYO=OTETIGC)=C
 
DYNAMIC,
 

...
 
PAKAMLTER TtTIO=L.1486,PHIICO=4.19tSYDD=0.48CgvA=160()? 


6= AND (A, TL:r I 
G=U-ic A* T ET I 
MX=C* XF TI: T I D 
4y=F* y-7-,,YL)vS IN (TETI) 
ML=C*Z
 

SYt), SIN(TFTI))/ITI+SYD**2*..
TETIDZ=(MX-IAI*(PHIIE)+SYD'COS(TETI)),-

SINlTET1)*ClJS(TETl)
 
SY02=(MY-2 ITI,,ISYD*T -:Tlr)*CCS(TET1)+IAI*(Pfilto+SYD*COS(TETI))*...
 

TEllDJ/(TTi*5IN(TETl))
 
PHIL02=M/-/IAI-SYD2"'COS(TEII)+SYCYTETIC SIN(TPT1)
 

FET 10 -*2+SY C' Y'2*SIN(T -TI),-*21+IAI* -2*(PHIID+...H= >QRT (IT 1** 2* 

ANGL=SUKTI(ITI',TETID)**2+(S D, SIt\(T -Tl)-"COS(TETl)*EITI-IAI)-fAl*...
 

PHILD)lv-*2)/(IAlh (PHIIC)+SYC#COS(TETI))*CJS(TETI)4lTl*SYD*SIN(TETI)**2)
 

dETA=ATAN(ANGL)
 
IN( Tf-T I )*,X,2tc -* 2+SYD*--12*Swlz=swkT (TET 

lw3=PHIlU+SYU%4CCS(TEM
 
M=SQkT OviX 24-MY-X2+MZ**2 
SYD=INTGRL(SYCOvSYr2)
 
SY=INTGKL(SYQv5yD)
 
PHI1D=lNTtRL(PHIlDOPHIlD2)
 
PHIl=INTGRL(PHIlOqPHIlD) I
 

TETlU=INTGRL.(TETlCOTET102)
 
TETl=INTGRL[TE7lOvTETlD)
 
MT=INTGkL(MOM)
 
PRTPLT SYDtPHIl1)vTETltHt5ETApVJ2,V 3
 

PRINT MT
 
TIMER DELT=0.05,FINTIM=000,C-UTDEL=0.5 
FINISH W12=0.200
 



&:ND
 
TERM INAL
 

ENOJO B
 

LABLL VETU)MbLING Tj-EN QESPINING WITH A=300O0
INITIAL 

L=PY=,EIO


COJNSTANT 
IAI's5zg, ITI=212129,Ps.41 L 
 ,Y=OTTD
DYNAMIC
 
PARAMETLR TET1O=t.14o6,PHILEO..


4 V YD=.4C)7=!)o
 

t3=ANju A, TEI)f

C~b*A'rEI 

AY=Clx'YVSYO~S IN( TETI1) 
t4Z=C*L
 

SLiDZ=(T 
 X IrA I*,( PII SYD*CCS (TETI) }'vSYD'-S IN( TET I /IT I3 y **
 S1/ET I ,CUS'S I~lIT 0 24 C r I~] T ) 1 1 I HI O S 0 C S ) i
 
PHI IO2=14Z/ IA I -SYoDz-COS{ TFT 1)1S~-EH=SQRT(IrI*42;rrzrlJDA * N TTIe+(Y~n*2rSfNITT)*1lA42(HI+.
 
ANGL=s~4Tu(i1:*rErIDj**2tccYD*siN(T 


I,(O(EI*IT1-IA1I1-A1* 

..
 

Wl=S( RI(TErIc*v'2+-SYD0*2*SINCTETl)*;2
 

M=SQiRT MV2-Y,2My*
SYO)=INTGAL( SYDOvSYoJ
 
5Y=INTGRL (SYOIsyo)
PHII10=INlTC}ALCPhi 100,PHJID21
PHI I= IlNTORL ( PHI 10, PH I ID) 

http:ITI=212129,Ps.41


TbTID=INIGRL(TET1CO,TET1O2)
 
TL:T1= INIGRLC TET 10, TET 10)
 
MT=IPJTGRL (M0,M) 
PRTPLT SYfJrPHIID,TETI ,H,BETA,)WI2,W3 
PRINT MT 
TIMER 0ELT=U0 05v FINT1M=600 ,CUT0EL=5 
FINISH v120.200 
END 
TERMI NAL
 
STOP
 
ENDJOE3 

C. DESPIN THEN DETUMBLE
 

LABEL DcSPINING THEN DEChING I ITF 4A800
 
INI TIAL 
CUNSi ANT 141=9529, IT1=212129,PHI10gSY00,?TFT1DO 
DYNAMIC 
PARAMETER TEVIO=l.1486,PHI1CO=4.19,SYDOQO,4809,A=BOO, o0 

XO3Ty~oz=-1,10N0.0,N0=0
 
t3AND(ApTcTI)
 
C = B*A *TEll
 
MX=C'sXs Te1 ID
 
MY=Lc'~Y*SY0*S 1t'UTETI)
 

TETIDZ=(MX-IAI*(PHIIDfSYD*CD'S(TETI))*SYD*SINCTET1))/ITI+SYD**2*..
 
SIN(TET1 )*COS(TETI) I 
S>Y02=(M4Y-Z*IT1*SY0*TETl0*C0S(TET1)i-IA1I, PHh10i-SYDCS(TET1f* ... 
TETI.D)/( iT1*5 IN TETI)) 
PHl1D2=ML/IAl-SYD2*C0S(TET1)+SY*TETDkSINC'TETI) 
H=SQT(ITt**2*(TETI0**2+SYC*1%2*SIN(PTT)*' 2i+IA1**2*{PH104... 
SYD*CO4(Te:TI) )'t*2)
 

http:TEVIO=l.14


CT TI-A)A1
1*TrT 10)* -- (5YD*SIN( lET I) CfS( TETI)ANGL=SURTE( *COS( TETI) +ITI* SYDSI(TT
PH I iD)*32/ GIAI*( PHI ID+SYD*CLOS (TFT1 ) 

BE fA=ATAU4(ANGL) 2 )
NIP2SQRT(TETI**2+SYD*&2*SIk(TET1)** 
W3=PHiIlotSY0*CCS( TETI 

Z VZIX -YM=SC4RT (,X., 
SYEWINTur'L C.COSYD2)
 
SY=INTCKL( 5Y0, SYD)
 
PHIl0~1NTuRL(PHllOG,PH 1102) 

PHiIL IN! GRL CPl 110, PHI 10
 

TETIU=I;ITbRLC(TETI1DO, TETIDL) 
tTlX=INTG'RL(TETlOTETID))
 
MT=4NTG7RL(MU , VW 
PRTPLT SYUPH~L1D1TLTlHBETAWI2VW3
 
PRINT MT
 
TIMER DELT=O .C5 ,FINTI W= 5C,CUJOEL=5
 

FINISH v12Md,3=N 
CONT INUc 
TIMER Cc:LTtJ.0 S, FLNTIM6bCC,OUTOELZS 8OOY.

PARAMETER TETlO=I.1/t6,PHICO4.9,SYLO0oo48os7A=
 

t'RTPLT SYD,PHlIU,TETI ,H,BETA ,XAI2,W3 
tEND
 
TEKMINAL 
sTuP
 
ENDJO B
 



APPENDIX 2
 

CSMP PROGRAM FOR CHAPTER 4
 

TITLE CSMP SIMULATION 3F THE SATELLITE-FFTO SYSTEM 
INITIAL 

DI=M*MS*LSF/(M+MS) 
CONSTANT KI=1OOO00 ,K2=IOOOO.,KBlOOOO.,K4=iO00O.,... 

K5=10000.,K6=1O'OOO.,LI=5.223,L5=O.75,LSF=7.0,... 
L=3.6385,111=48.T17.22=61.5,133=34.67,... 
J11=65016.7,J22=65016.7,J33=10000.OM=200.O,... 
MS=bOO.0, SINO=O.866,COSO=O.5 

DYNAMIC
 
K=1000.0*RAMP(O.0) 
KS=I000.O*RAMP(0.0)
 
WX=INTGRL(OO,WXDOT)
 
WY=INTGRL0.0,WYDOT)
 
WZ=INTGRL(0.O.WZOOT)
 
VXS=INTGRL(-O3464,VXSOOT)
 
VYS=INTGRL(O.OVYSDOT)
 
VZS=INTGRL(I.300334,VZSDOT)
 
CII=INTGRL(Io0,CIIOT)
 
C12=INTGRL W.0,Cl2DOTJ
 
C13=INTGRL (0O.,CI3DOT)
 
C21=INTGRL (o.0,C21D0T)
 
C22=INTGRL( 1O9C22DOT)
 
C23=INTGRL( O.0,C23DOT)
 
C31=INTGRL 0o.0C3i03T) 
C32=INTGRL(0.0C32DOT)
 
C33=INTGRL (I.0,C33DOT)
 
RS=INTGRL(O.0,RSDOT)
 
R=INTGRL(O.O,RDOT)
 
C11DOT=CI2*WZ-CI3*WY
 
CI2DT=C13*WX-C11*WZ
 
C13DOT=CI1*WY-C12*WX
 
C21DOT=C22*WZ-C23*wY
 
C22DOT=C23yxWX-C21*WZ
 
C23fLOT=C21*WY-C22*WX
 
C3 1OT=C32*WZ-C33*WY
 
C3200T=C33*WX-C31*WZ 
C33DOT=C31*WY-C32=WX
 
SINR,C3SR.SINRS,COSRS=SINCOS(fRS)
 
TXC=-K1*WX+K2*CI>(C?3-C32)
 
TYC=-K3*WY+K4*C22*(C3-CI3)
 
TZC=-K5*WZ+K6*C33*{CI2-C21)
 
H=SQRT([Jll'VXS'*2+(J22*VYS)**2+(J33*VZS)*2)
 
WZDOT=(K*RDOT+TZC-(122-I1t)*WXtwY)/133
 
VZSDOT=-KS*RSOOT/J33
 
RDOT=-WZ+(WX)COSR+WY*SINR)*C0SO/SIND-(VXS*COSRS-...
 

VYS*SINRS3/SING
 
RSDOT=VZS-(WX*COSR+WYmSINR)/SINO+(VXS*COSRS-...
 

VYS4SINRS3*CQSO/SINC
 

116
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D2=CIIDOT*WY-Cl2DOT*WX
 
D3=C21DOT*WY-C22DGT*WX
 
D4=C3 1DCT--'xWY-C 3200T=WX 
D5=(CII*CISR+Cl2*Sl IR) D2+(C21*COSR+C22*SINR)XcD3...
 

+ (C3 P6cCOsp+C32x-S I NR) *D4 
D6=(-Cll*SINR+CI2*COSR)*D2+( -C216cSINR+C22*COSR)*...
 

D3+(-C31*Cr)SP+C32*(-'OSR)*04
 
07=CI3*D2+C23*D3+C33*04
 
DB=Dl*(L+Ll*COSC)-


D9=DB*COSR
 
D10=08 SINR
 
Dll=06*D8+KS ,-RSDOTISINO-K*RDCT*COSO/SINO
 
D12=L-lDl*D5 -LI*Cl*D7*SI40
 

COSO)/SINO
D13=-LI*DI*D6+(K*rDOT-KS*RSCOT 

D14=(J33-,)22)*VYS,-,VZS*SINPS+ijll-J33)*VXS*VZS*---


COS RS+L I* 0L*{D5*C-)SJ-D7*S ING) 

D15=D8*SINR
 
D16=DS*COSR
 
Bl=-(133-122)*WY*'IZ+DII*COSP+L5*DI*06*COSRi-...
 

(D12+DI4)*SINR+Dl--L5*r)5*STNR+TXC
 
B2=-(111-133)*W7 *WZ+FIIL*Sll'R+L5-XDL*D6*SINR-.-

{012+D!4)*COSR-DI*L5icD5*COSP,+TYC
 
B3=DI3+Ll"Dl*-06-(J33-JZ2)*VYS*VZS*COSRS+(Jll-..-


J33)*VXS*VZS*SINRS
 
B4=VXSVCOSRS*RSC-OT-VYS*SINRS*RSDOT+WX*COSR*RDOT...
 

+WY-SINR*RDOT
 
Ali=lll+09*COSR+DI*L5+015*SINR
 
A12=DIO*COSR-DI6*SINR
 
A13=-JII*SINRS*Slt4R
 
A14=-J22*COSPS*SINR
 
AZI=Dg*SINP-Dl5*COSR
 
A22=122+Dl*L5+DIO*SINR+DI6*COSR
 
A23=Jll*SINRS*CCSR
 
A24=J22*COSRS*COSR
 
A33=Jll*COSRS
 
A34=-J22*SINPS
 
A41=-SINR
 
A42=COSR
 
A43=-SINRS
 
A44=-COSRS
 ...
 
WXDDT,'4YD13TVXSDDTVYSDOT=SLJBXYZIBIBZB3tB4t 


...
AIIAI29AI3,Al4vA2liA22vA23tA24,A33PA34, 

A41,A42,A4.3vA44)
 

TIMER FINTIM=joO.0,0UTDEL=O.8
 ...
 
PPTPLT WXWYWZtVXSVY-7VZStCilC22,C33tRSDOTiRDOT9 


RSR TXC, TYCTZCtH 
LABEL CSMP SIMULATION OF THE SATELLITE-FFTO 

SYSTEM
 

PID 
TOP
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C THIS SUBROUTINE IS USED TO CHANGE THE ARGUMENT TO BE
 
C LESS THAN 18*2*Pl BEFORE CALL ISIN4 AND 'COSI
 
C (ARGUMENT OF LIBRARY SUBROUTINES 'SINe AND 'COS' IS
 
C LIMITED TO 1842*PI)
 
C
 

SUBROUTINE SINCOS(R, RS,SINPCOSRSINRSCOSRS)
 
REAL LIMIT
 
LIMIT=2.O18oO*3.141592653
 
IR=R/LIMIT
 
AR=R-IR*LIMIT
 
SINR=SIN(AR)
 

COSR=COS(AR)
 
IRS=RS/LIMIT
 
ARS=PS-IRS*LIMIT
 
SINRS=SIN(ARS)
 
COSRS=COS{ARS)
 
RETURN
 
END
 

C THIS FORTRAN SUBROUTINE IS USED TO CHANGE THE 
C UNSUBSCRIPTED ARRAY INTO SUBSCRIPTED ONE BEFORE 
C CALL SUBROUTINE 'SIMQ (SUBSCRIPTED ARRAY IS NDT 
C PERMITTED IN CSMP) 
C 

SUBROlUTINE SUBXYZ(B,B2,B3,B4,AI1,AI2 9A13,AL4,A21,
 
C A22,A23,A24,A33,A34,A41,A42, A43,A44,WXDOT,WYOOT,
 
C VXSDOTVYSDOT)

DIMENSION A(4,4),B(4)
 
N=4
 
A(1.1)=AlI
 
A(1,2)=AI2
 
A(13)=A13
 
A(i1,4)=A14
 
A(2,1)=AZ!

A(29 2)=A22
 
A(2,3)=A23
 
A[294)=A24
 
A(3,1)=OO
 
A(3,2)=OO
 
A(3.3)=A33
 
A(3,4)=A34
 
A(4,1)=A41
 
A(4,2)=A42
 
A(4,3)=A43
 
A(4,41=A44
 
B(1)=Bl.
 
B(2)=B2 
B(3)=B3
 
B(4)=B4
 
CALL SIMO(A,BN,KS)
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WXDOT=B( I) 
WYOOT=8 (2)
 
VXSDOT=B(3)
 
VYSDOT=B(4)
 
RETURN 
END
 

C THIS SUBROUTINE IS USED TO SOLVE A SET QP SIMULTANEOUS
 
C LINEAR EOUATIGNS
 
C 

SUBROUTINE SIMO( AB,N,KS)
 
DIMENSION A(I) .B(1)
 

C 
C FORWARD SOLUTION
 
C
 

TOL=0O0
 
KS=O
 
JJ=-N 
DO 65 J=.,N
 
JY=J+I
 
JJ=JJ+N+l1
 
BIGA=O 
IT=JJ-J
 
DO 30 I=J,N


C 

C SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN
 
C 

IJ=IT+I
 
IF(ABS(BIGA)-ABS(A( IJ))) 20,3S,30
 

20 BIGA=A(IJ)
 
IMAX=I
 

30 CONTINUE
 
C 
C TEST FOR PEVOT LESS THAN TOLERANCE 
C 

IF (ABS (BIGA )-TOL) 35,35,40
 
35 KS=1
 

RETURN 
C 
C INTERCHANGE R.OWS IF NECESSA:Y
 
C 

40 11=J+N*(J-2)
 
I T=IMAX-J
 
DO 50 K=J,N.
 
11=I1+N
 
I2=I1+IT
 
SAVE=,A(il)
 
ACI1)=A(12)
 
A(1 2)=SAVE
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C
 
C DIVIDE EQUATION BY LEADING COEFFICIENT
 
C
 

50 AUI1)=A(II)/BIGA
 
SAVE=B(IMAX)
 
B(IMAX)=B(J)
 
B(J)=SAVE/BIGA
 

C
 
C ELIMINATE NEXT VARIABLE
 
C 

IFtJ-N) 55,70,55
 
55 IOS=N*(J-1]
 

DO 65 IX=JY,N
 
IXJ=IQS+IX
 
IT=J-IX
 
DO 60 JX=JY,N
 
IXJX=N-xJX-I)+IX
 
JJX=IXJX+IT
 

60 A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX))
 
65 B(IX)=B(IX3-(B(J)*A(IXJ))
 

C
 
C BACK SOLUTION
 
C 

70 NY=N-1 
I T=N*N 
DO 80 J=,NY 
I A=IT-j 
I B=N-J 
IC=N 
DO 80 K=IJ 
B(IB)=B(IB)-A(IAJ*B(IC) 
IA=IA-N 

80 IC=IC-I
 
RETURN
 
END
 


