
USER-ORIENTED TIME-SHARED

ON-LINE SYSTEM

Laszlo Betyar

Brain Research, Institute,

Data Processing, Laboratory,

University of Cahifornia, Los Angeles

-U - 77-15953

C'-tIfljnniv- Sysin ICaifcrtia 32 p
unclaz

00/60 29489

REPRODUCED By

NATIONAL TECHNICAL
INFORMATION SERV)CE

U.S. CPARTMENI OFCOMMERtE
SARINO3FIELD,VA.221G1-1

RUNNING TITLE: USER-ORIENTED TIME-SHARED

ON-LINE SYSTEM

Please address correspondence to:

Laszlo Betyar

3rain Research Institute

Data Processing Laboratory

University of California

Los Angeles, California

USER-ORIENTED TIME-SHARED ON-LINE SYSTEM

AT THE DATA PROCESSING LABORATORY (DPL), BRAIN RESEARCH INSTITUTE (BRI),

UNIVERSITY OF CALIFORNIA LOS ANGELES (UCLA).

Introduction

In biological' research it is often necessary for the experimenter

to have on-line data analysis for experiment control. In order to

provide the most flexible computational service, the Brain Research

Institute has developed a user oriented time-share console system. The

total hardware/software system provides the user with an on-line console,

analog-to-digital conversion, relay drivers and sense lines.

Computing FaciIity of the BRI

The general computer configuration of the DPL is illustrated in

Fig. 1.

Insert Figure I about here

The Central Processor Unit (CPU) is an SDS 930 computer with 3 time­

multiplexed communication channels (TMCC) and I direct access communic­

ation channel (DACC):

2

I. All the magnetic tape units are on the Y channel (TMCC).

2. The character devices, such as printer, card reader, graph

plotter, typewriter, paper tape reader, and punch are on

the W channel (TMCC).

3. 	 On the E channel (DACC), a single digital-to-analog (D/A)

converter services the oscilloscopes of the consoles and

of the system control unit.

4. 	Analog-to-digital (A/D) conversion is provided at two stations,

each capable of accepting 16 channels of input. Together

they have-a conversion rate of 20K/sec, at a precision of

10 bits and sign. These AID converters are on the C channel

(TtCC) and they use a common multiplexer, located in the

system interface unit.

The System Interface Unit includes a 24 bit parallel input (PIN)

communication, 24 bit parallel output (POT) communication, and the 6

bit character buffer of the console keyboard input.

The Remote Console (Fig. 2) consists of a 64 button (key) keyboard

(Fig. 3) for input, and a 10 cm x 8 cm memory scope (Fig. 4) for output.

Each key may be interpreted in an upper and a lower case.

------Insert--Figures--2,-3---and-4-about--here

Insert Figures 2, 3, and 4 about here

3

Logic 	of Console-Computer Interaction

The 	console may communicate with the computer intwo modes:

1. 	Direct execution mode, inwhich the user's request,

presented by keypress is immediately processed. The

console inthis mode can be used as a programming or

control device;

2. Program execution mode, inwhich the CPU executes a

prestored program when time isavialable. This mode

is used during the actual on-line experiments.

In both modes each key inupper case is interpreted as an operator

and in lower case as an operand.

A set of 64 operators for the console keyboard iscalled an operator

level, of which there are 60. The first ten levels, 0 through 9, are

System Levels, and consist of basic arithmetic and system programs coded

inmachine language; they are avilable to all users, but cannot be al­

tered by them. The remaining 50 levels, called User Levels, are identi­

fied with letters of the alphabet and symbols; they may include both

system and user programs. These User Levels function as private librar­

ies for each investigator. Initially, each key is defined as-the basic

system level (1). The operators of this level are given inAppendix 1.

User's new programs are generated by stringing together system

level programs or previously defined user's programs. This string is

4

obtained by pressing the associated keys in the desired order. These

programs are stored as a string of console characters and are inter­

preted just before execution. They are-storage-medium independent and

relocatable. The interpretation and execution of a user program is

done by the SHARED-LABORATORY-INTERPRETIVE PROCESSOR (SLIP).

Shared-Laboratory-Interpretive Processor

The console programming language is the SHARED-LABORATORY-INTER­

,PRETIVE PROCESSOR (SLIP). The syntax of SLIP is very simple: Users

without previous programming background have learned within a few hours.

Learning the use of the console for experiment control takes only a few

minutes, as knowledge of all the available functions is not necessary.

The system detects syntax or procedure errors made by the user, and in­

forms him of such mistakes by appropriate messages on his output device.

The development of SLIP was greatly facil'itated by the SDS 930's

priority interrupt feature, whereby the central processor may be

interrupted at almost any time to service external devices such as

the consoles.

Logic of Request

Each console key press results in an interrupt. When a console in­

terrupt is presented to the system and minimum working conditions exist

(see Appendix 2), the request will be recognized and executed. Interrupts

are serviced by the console interrupt processor (CNSL, see Appendix 3).

5

This routine saves the volatile registers, and then calls the console

read routine (CRED) to read the character corresponding to the key pressed.

CRED puts the character in a string (KAR) and updates the storage address

and communication cells in the user's status table. Multiple use of CRED

is guaranteed by providing a separate entry point for each of the users.

When CRED returns to CNSL the interrupt is cleared and the registers are

restored.

Logic of Processing

In DPL, all the non-console programs as well as the console's input/

output routines are written so that they are processed by channel-oriented

interrupt processors. This means that when all the interrupts are ser­

viced, the CPU is idle, waiting for requests from the channels or consoles.

During this period, a wait processor which iscalled the commutator (COMM),

uses the CPU, cycling around the users looking for service requests.

This COMM (Appendix 4) has three tables, each as long as the total number

of users. The tables are endless in that when the COMM arrives at the

bottom, it is automatically reset to the top. These tables provide the

communication between users and the processing routines. When COMM detects

that a character is waiting to be processed in the user's input string,

itcalls the console key. string interpreter (CONS) to service that user,

and then goes to next user. When called, CONS (Appendix 5) tests all the

characters for reset condition, type of display, and mode of operation.

According to the request, it calls one of the following;

1. 	 Scope display routine (SCLR),

2. 	 Routine for the requested operator, which may be unary

(i.e., require no operand), or binary (i.e., require

an operand),

3. 	 Explicit data string decoder (DECD) which decodes real,

complex, or alphanumerical elements to define the

operand, or

4. 	 None of the above, in case no-action is yet required.

The commutator protects CONS against multi-entrance.

Interpretation of Console Characters

There are two leveis of any key input: upper and lower case. A

character input on upper case may be a unary or a binary operator. On

lower case, it may be a specific operator (data level, reset, alter,

terminate (0)), or an operand (aIphanumerical and special characters as

data, or a symbolic data reference). when a unary operator is requested

by the key input, the string processor (CONS) calls it indirectly via the

table of operators. Most of the unary operators operate on the contents

of the accumulator (AC), but they do not necessarily alter it (e.g.,

PLOT).

7

When a binary operator is requested, CONS gets the address of the

associated routine and saves it, and sets the console to lower case

to allow the presentation of the operand. The end of the operand is

indicated by the terminator (). The terminator resets the console

to upper case and when detected by CONS, causes CONS to call the prev­

iously selected subroutine, which executes the requested binary oper­

ation. If the operand is a symbolic data reference, the string pro­

cessor (CONS) calls the table look-up list processor (LSER,.-see.Appendix

6) which searches for the data in the data-in list (DIL) or scalar-in

list (SIL) using the key-level-user-type (KLUT) identification. If

neither list contains that KLUT, the data is not in the core memory of

the computer. Therefore, the magnetic tape search list processor (CTSR)

is called to search for it in the external storage. If found, the data

will be stored in the memory, added to the DIL or SIL, and the requested

operation will take place. If not found, an error message is displayed

on the user's scope.

When there is no more room in the core memory for data, it is dump-­

ed onto magnetic tape (the external storage) and identified by the sy­

bolic reference KLUT. Each user may have one tape assigned uniquely to

him, and one unit is always available for common use. The tapes in wait­

ing status are positioned to the logical end of the tape, which is signa­

led by a specific single word record. When a new block of information

(data, program or level) is written on the tape, it over-writes the pre­

sent END record and another is written to indicate the new logical end.

8

The user may redefine symbolic references, in which case the previously

defined block is not erased but lost because the last defined reference

is the only one retrievable. Some data is used only temporarily and is

therefore never written onto magnetic tape; this protects the external

storage against extensive use.

The above described logic also applies when searching for a user's

program.

Input/Output

The channel-oriented input/output routines IOY, IOW and !E are

also list processors. They can be time shared because all the channels

may operate simultaneously. If a request is presented when a channel

is idle, it is executed immediately; if it is busy, the request is stored

in the channel's waiting list and executed upon completion of the prev­

ious request.

Time-Sharing and Multi-Processing

The present size of the computer (16K) and the relative slowness

of the secondary storage devices do not permit a completely automatized

monitor system. That is why there are several types of small systems

available.

9

With one particular system resident in the core memory of the computer,

it is possible to service several console users.concurrently together

with background activity, which may be A/D conversion in the format re­

quired by the IBM FORTRAN Monitor System (FMS), graph plotting from tape

(generated on IBM 7094 in FMS format), or various test programs on the

FMS format tapes. All of these background activities are programmed so

that they are completely interrupt-driven. They use the highest priority

interrupts in the system, which are the clock and the channel interrupts.

Besides these background activities, theoretically an unlimited num­

ber of remote consoles may be served simultaneously. At the present,

there are..orly three of these.

Interrelation of Background Activity and SLIP

There are system programs developed which allow the parameter intro­

duction of background activity programs via the console system. Other

system programs simulate console key-presses to be decoded and executed

by the SLIP system (see Appendix 7).

The system forbids in all programs the use of a closed loop for test­

ing of conditions to be met (such as unit ready, beginning of tape, etc.).

While a program is waiting for these conditions, it must call the system's

wait processor, which waits either a requested period of time, or until

the condition is met.

10

During this period the COMM continues cycling so that if anyone needs ser­

vice, the computer's time is not wasted.

Presently, we have the following four TIME-SHARING-SYSTEMS:

1. 	A/D conversion(s) with simultaneous console servicing (ACON),

2. 	 Magnetic tape to CALCOMP graph-plotting with simultaneous

console servicing (PCON),

3. 	Several types of testing with simultaneous console servicing

(TCON),

4. 	 A/D conversion with event detection, with simultaneous

console servicing (ICON).

Summary

The existing system within the Data Processing Laboratory and the

planned additions are an approach to provide research workers within the

BRI with the ability to interact directly with a highly sophisticated,

digital computing complex in as direct and simple fashion as possible.

It is anticipated that with the accumulation of experience using the pre­

sent system, significant advances will be possible in the system design

through determination of interface parameters between the biological tc-:

scientist and the.digital computer.

FOOTNOTES

I. This system was supported by US Public Health service under

Grant NB02501-05, National Aeronautics and Space Administration under

Grant NSG505, and the office of Naval Research under ONR233(91). The

author acknowledges Mr. Lionel Rovner for development of the hardware

for the remote console system, and Mrs. Lynne Howard, Mr. Richard Johnston,

Mr. Will-iam McGill, and Mr. Hal Wyman for software development.

12

APPENDIX 1

TABLE OF SYSTEM LEVEL 1

INTERPRETATION OF CONSOLE KEYS IN THE BASIC SYSTEM LEVEL

OPERATOR OPERAND KEY FUNCTION OF THE OPERATOR

RETN 0 00 Program terminator

WAIT 1 01 Wait requested

CONT 2 02 Continue operation

BUG 3 03 Debug routine

LIST 4 04 Alphanumerical display of

accumulator (AC)

TYPE 5 05 Print on scope

RUN 6 06 Starts or stops a previously

defined background activity

SET 7 07 Parameter set-up

BLNK 8 10 Scope erase

PLOT 0 11 Vector display of AC on scope

FIND Q 12 Search a value in the AC

EXT W 13 Extract element(s) from AC

PRGL E 14 Load program to AC for correction

PRG- R 15 Store program from AC

13

APPENDIX J (CONT)

OPERATOR OPERAND KEY FUNCTION OF THE OPERATOR

TRNC T 16 Truncate the values in AC

HEDL Y 17 Examine the header of AC

TMOD U 20 Modify the type of data in AC

MODE I 21 Select scope at plot mode

CURS 0 22 Extract and extend a part of AC

INC P 23 Increment or decrement index

continuation or level

SHFT A 24 Change the initial index of AC

ROT S 25 Rotate AC to the left or right

FLIP D 26 Invert the order of values in AC

MOD F 27 Execute modulo n

MIN G 30 Find the smallest element of AC

RAND H 31 Generate a random vector in AC

ZERO J 32 Count zero-crossings in AC

INTP K 33 Linear interpolater

AVG L 34 Compute the average of AC

SGMA 35 Compute the standard deviation

of AC

SIN Z 36 Compute the sine of AC

COS X 37 Compute the cosine of AC

ATAN C 40 Compute the arctangent of AC

14

APPENDIX 1 (CONT)

OPERATOR OPERAND KEY FUNCTION OF THE OPERATOR

LOG V 41 Compute the logarithm of AC

EXP B 42 Each element of AC acts as an ex­

ponent of e

ABS N 43 Replace AC with absolute values

HIST M 44 Distribute values in AC with

present bin width

CONJ 45 Set the signs of values in AC

X 46 Multiply

/ / 47 Divide

< < 50 Logical operator less than

= 51 Logical operator equal

52 Logical operator greater than or

equal

SUM (53 Sum the AC

A A 54 Compute-the data between.success­

.ive elements of AC"

PROD) 55 Compute the product of elements

of AC

* * 56 Filter the AC

57 Raise AC to an exponential

15

APPENDIX I (CONT)

OPERATOR OPERAND KEY FUNCTION OF THE OPERATOR

+ 60 Add

61 Subtract

SPACE SPACE 62 No operator

LOAD CR 63 Load data into AC

PROG 64 S;gnify subsequent key-presses as a

user generated program

'END 65 Program or repeat loop end in­

dicator

DATA 0 66 Terminator of a binary operand

RSET RSET 67 Reset the console to wait input

status (error correction)

ALTR r 70 Editing operator

11 1 71 Comments mode definition

SKIP $ 72 Unconditional branch

REP 73 Do loop generator (repeat)

1/ 74 Label sign

? ? 75 Conditional branch

- 76 'Store data from AC

LEV k 77 Operator or data level change

request

10

APPENDIX 2

MINIMUM REQUIREMENTS

A. CONSOLE SYSTEM RESIDENT IN CORE

1. For the console system:

a. The interrupt processor (CNSL and CRED)

b. The commutator (COMM), "i'ts' setupv.routine -(COiS)

c. String interpreter (CONS)

d. Basic list processors and list tables (see Appendix 6)

e. 64 words of basic level I operator addresses (LEVI)

f. 64 words of symbolic names associated with LEVI

g. LEVEL I programs

2. For each console:

150 words of accumulator (AC) and .its' 5 wotd list e1ement

50 words of-statO tablei(tST)

30 words of key assemble register (KAR) and its' 5 words fist element­

64 word tab6k of the, rsidnt user-level operat6rs.(dPR)

64 wards for syiibolic names of the resi.ddnt user level operatqos (OAME)

17 APPENDX 2 (CONT)

Their 	roles:

AC 	 is used to perform operation on vector(s) and scalar(s) where the

accumulated sum will be in AC. It consists of 6 words of header

and 144 words of data storage.

CST 	 table containing the parameters for each console.

KAR 	the program in symbolic format (key input).

OPR 	 the table of addresses for the specific console's resident user

level operators.

NAME 	the table of names (maximum 4 characters) associated with OPR.

3. 	 For the basic system:

a. 	 Clock, wait and interrupt processors

b. 	 Basic I/O processor (IOX)

c. 	 I/O lists (YSTACK, WSTACK, ESTACK)

B. UNIT ASSIGNMENT

Magnetic tape unit 7 is the external storage area assigned for common use

for data and users' programs.

APPENDIX 3

INTERRUPT PROCESSING
 18

Console:
 2 3 #

Interrupt 206-

Processor: 203 20
 205 217

V

SAEAB,X SV ,j

SAVA B, SAVE A,13X SAVE A,B,X
 I­

X-2 x= iX:(n-1)*2
/RRM .XBRM CREDX
 I I

'CONTINUE

* CONTINUE

SELECT CONSOLE

READ CHARACTER

YES SERESET NODE

RESET
 - INDICAToRM

INO

STORE CHARACTER

INTO KAR

INCREMENT THE

STORAGE COUNTERS

RESTORE ABX
STATUS FLAG

CORRECTION

RETURN TO THE
 CLEAR INTERRUPT

INTERRUPT
 AND RETURN TO THE

1PROCESSOR
 INTERRUPTED

ROGRAM

19

APPENDIX 4

A. 	COMMUTATOR FLOW CHART

SAVE RETURN PICK UP

ENTRY ADDRESS - INDICATOR (I)

FROM FLAG'S
IN TABLE

TABLE POSITION

No

SAVE I T (O41

O T B E NDY ESFLAG

YES

SAVE 	I AT (041)
, 	EXIT

SET 	040 TO
TO.IT E -
 USER(I) STATUS

TABLE ADDRESS

B. 	INFORMATION

The following are information cells for communication between the commutator

and the commutator users:

1. 	One cell is reserved to indicate the current user being

serviced (041).

2. One cell is reserved for the status table address of the

user being serviced (040).

0

20

APPENDIX 4 (CONT)

Inaddition, the commutator communicates with three tables that are

resident incore.

IFLAG 	 STATUS TABLE ADDRESS j RETURN ADDRESS

Table 	 contains the flag Indicators which provide information about

the status of each console or user. The console flags are

always set to ZERO while keys are being processed. When the

last key is executed, the flag is set to wait for keypress status.

Table 2 contains the address of the status tables of the console or users.

Table 3 	contains the exit address for the commutator to go to ifa console

user or program needs servLcing.

APPENDIX 5 23.

STRING PROCESSING

ENTRY FROM

OM

RESET Z\ YES ESET.

PCEOR-

NO

GET

KEY

PRINT
_,,"OS._R3,
PR ENT YES ON

-~-­ ~*SCOPE

NO!

ALTER
 YES ALTER

.PROCESOR""

NO

_____CO MPENTS ~YES

OPERATORPROCESSOR) -CE
CMME NTS

0

-LEVE

\NOS ,NO "0

LOWERY-EN!D .bN--PR o NO
-- ~yZER ZERO YES LESVELO _

CASE SISc , MODE

NO YES ES

GTSET UPPER
 PROGRAMO
OPERATORj CASEPRCSO -

LEVEV E YES
ZERO LEVEL ARY LVL YS LEVEL 0M--

PROCESSOR
 NO PROCESSOR

YES NNo

SROGRAM PROG
 SET LOWER Y PMODE CASE <PR

PROCESSOR) _______ J'IOOE PROCESSOR

,NO JNO
/XECUTE '- CALLY

UNARY 4DTA CAL
LSER SRNG < Comm,

_ //_ XCUT'

RETURN K________UPDATE BIARY

22

APPENDIX 6

1. FLOW OF LIST PROCESSING

a. Users' Program and Data Block Request (LSER):

K L7-- U T/CLII' -- RF---
ENTRY FROM

P I ,,YES NO

[DIS IT IN - NO - PAL/DAL PTOP
DIL/PIL _THE LIST -EMPTY
 DAL/PAL

i _,_. ZI YES
PROG

--DAT OR-ADD TO KEY-1 PBOT

DATA OR EXECUTE LISTI DIL/PIL

- PROGRAM I. AND
ISET POINTER _

-'I~REQUEST
,DATA

STORE ITSEE E1/

ADDRESS INTO EXCUT

OPERAN ADRSS PROGRAM ,

(ST+27)
 (/ COMMvo;

EXECUTE THE

\
REQUESTED

BINARY OPERATION - YES

OPERATOR CST+2 ,." FOUND

\DPERAND CST+27_/

] NO

DATA
ATOP

DIL/PIL DATA OR SET AC TO

L PROGRAM
____ "SCALAR ZEROi

(RETURN PROGVj

23

APPENDIX 6 (CONT)

b. 	List Processors:

ATOP = Adds to top of a list

PTOP = Removes from the top of a list

ABOT = Adds to the bottom of a list

PBOT = Removes from the bottom of a list

PMID = Pop out middle of a list

2. 	LISTS AND THEIR BLOCK FORMATS

a. 	Lists

DIL = Data in list DAL = Data storage available list*

PIL = Program in list PAL = Program storage available

list*
SIL = Scalar in list

SAL = Scalar storage available

list

CAL = Cell available list

* 	 In the DAL and PAL the headers and data are junk; only the

last three words of the list elements are meaningful.

* 	 In the SAL and CAL only the last two words of the list elements

are meaningful.

24 APPENDIX 6 (CONT)

b. List Format

(1) List pointers:

(op Address Neg if empty

I Bottom Address

(2) 	List elements:

K L U IT/L

CM T SCALE Header

Address

Previous 	Element Neg if first element

Next Element Neg if last element

(3) Lists:

(a) Data Block (150 words)

K L U CL.A

ICMI T SCALE

1

SIn the DAL and PAL the headers and data are junk; only the last

three words of the list elements are meaningful.

25 APPENDIX 6 (CONT)

(b) Program Block (30 words)

K L IUj T
I li L
T j1 2

3 4 5 6
to

1,0

L

(c) Scalar

i K L U CL Header

CM T SCALE

Scalar

Previous Neg if first element

Next Neg if last element

CL = Least significant part of continuation number

CM = Most significant part of continuation number

26
APPENDIX 7

COMMUNICATION BETWEEN
SYSTEM PROGRAMS AND CONSOLES

.. Parameter Input/Output (TALK)

SYSTEM ROUTINE
REQ ES S

REUTES

_PARAMETER

SNEW

PARAMETER

IY
ij

YES

RREMOTE CONSOL
E

INPUT/OUTPUT

/ CALL TALK

FRO EO

,-FOR INPUT/OUTPUT>

CON OLE

COM UNICATION I STORE
I10PARAMETER

SYSTEM ROUTINE

CONTINUES

N
I

2. Simulation of Console Key Presses

The first word address and length of the string of

simulated key presses is placed in the console status table

via a system routine (UPDT). The length of the string must

be less than 1l9 characters.

DPL DATA PROCESSING SYSTEM (1965)

MTU
/DI16 ANALOG
'<A >INPUTS

SDS 930
SYSTEM AI 16 ANALOG

Mh TMCC
1 .I -

IS K MEMORY

- - - - -
:532K MEMORY

- -UNIT
POT (24 BITS)
PIN (24 BITS)

INTERFACE f INPUTS

2 E A
D4RERA

L-
[

OUTPUT
24 SENSE

LINE INPUT

F ' 1 SCONSOLE.SYSTEM O.
[MTU'

.; I DACC I.t_

MTUMTU MTU ' MTU PLANNED
... j EHSCF SYSTEM OUPUT MEMORY

IDISPLAYS SCOPE
S MILIONCONO2

6 MILLION INO. 2
)CHARACTER

SDISC I

GRAPH
PLOTTER

GRAPH
PLOTTER

TELE
TYPE LIE

CARD
READER

PAPER
TAPE

PAPERNO3
TAPENO3 0

I 2 WRIE PRITER 400QCM IN READER PUNCH

Dotted line indicates planned system expansion

Figure 1, DPL Date Processing System (1965)

__

28

tIIIiLi

'pP
_ 7

f IL)JG//$tr~.t
'3

&
C

'-di

-r ~-. -- -,I? ,ff

I-

- .--r~

1

i/lj
I

Figure 2.
The Remote Console

K? 0

----. - - . -- ±-J - . ' .,- .-, - -, - ",9 " _'

T. ;c
vi, ,c ,To 3r,,
:(--- --) ...
•'>7((? 57,(,7 T AT-Ct.- (Xt"r

-- - . r ..-, 2..

Fiaure 3. Console KeVboard

Y- 3 T Y PE 3 A7 5 ~ A 7 ~

7 iTLT ,< I'bT

iI

~Ip'

© -
Z,

*1 - zz .j-- ¢ .--. ,­
0ii

- <

$igu e 4.Co sol Memor Scope

M~Mf -t- -. =t~nj.±~niid -l>

Figure-- emryScp4.Cosoe

