Ne =50~

USER~ORTENTED TIME-SHARED

ON-LINE SYSTEM
Laszio Betyar

Brain Research, Institute,
bata Processing, Laboratory,

University of California, Los Angeles

afl
ale . N
etoCETERTED TIPE-SHR: N77-75953
BSA*CB—1ﬂ9éEE) BEFF-CEIERTED TIPE~SRREED
ég-llﬁi SYSTIEE {Caliicx§ia tniv.) 32 E
t | Unclas

06/60 29488

REPRODUCED BY

NATIONAL TECHNICAL
INFORMAYION SERVICE

U. §. CEPARTMENT OF COMIERCE
SPRINGFIELD, VA 22161

o

RUNNING TITLE: USER-ORIENTED TIME-SHARED

ON-LINE SYSTEM

Piease address correspondence to:
Laszio Betvar
3rain Résearch Institute
Data Processing Laboratory
University of California

Los Angeles, Catifornia

USER~ORIENTED TIME-SHARED ON-LINE SYSTEM]

AT THE DATA PROCESSING LABORATORY (DPL), BRAIN RESEARCH INSTITUTE (BRI},

UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA).

Introduccion

In biological research it is often necessary for the experimenter
to have on-line data anaiy;is for experiment control. In order to
providg the most flexible computationatl service, the Brain Research
Institute has developed a user oriented time-share console system. The

total hardware/software system provides the user with an on~line console,

analog-to~digital conversion, relay drivers and sense [ines.

Computing Facility of the BRI

The general computer configuration of the DPL is illustrated in

Fig. 1.

M em e e mm A MR 4 B AL ma kT w PR RE Lm0 L va U ous mr e b

insert Figure 1 about here

B R siEb e e md G Lo n b En s mr e R b o mas t RE mu FCome B3 e e - -

The Central Processor Unit (CPU) is an SDS 930 computer with 3 time-

multiplexed communication channels (TMCC) and) direct access communic-

ation channel (DACC):

1. All the magnetic tape units are on the Y channel (TMCC).

2. The character devices, such as'printer, card reader, graph

plotter, typewriter, paper tape reader, and punch are on

the W channel (TMCC).

3. On the E channel (DACC), a single digital~to-analog (D/A)
converter services the oscilloscopes of the consoles and

of the system control unit.

k. Analog-to~digital (A/D) conversion is provided at two stations,
each capabie of accepting 16 channels of input. Together
they have a conversion rate of 20K/sec, at a precision of
10 bits and sign. These A/D converters are on the C channel
(TMCC) and they use a common multiplexer, located in the

system interface unit,

The System iInterface Unit includes a 24 bit parallel input (PIN)

communication, 24 bit parallel output (POT) communication, and the 6

bit character buffer of the console keyboard input.

The Remote Console (Fig. 2} consists of a 6k button (key) keyboard

(Fig. 3) for input, and a 10 cm x 8 cm memory scope (Fig. 4) for output.

Each key may be interpreted in an upper and a lower case.

Ik g e o A Sk S gk by g ok A R e s el e e e KL s e M et B el e P S B R el ek

e A Lt e T Y R S R TN S W A O R ST A Ry ST G ek T G N M G MO S Y N M S 4 S LR U S TR ST A W

Logic of Conscle~Computer Interaction

The console may communicate with the computer in two modes:

1. Direct execution mode, in which the user's request,
presented by keypress is immediately processed. The
console in this mode can be used as a programming or

control device;

2. Program execution mode, in which the CPU executes a
prestored program when time is avialable. This mode

is used during the actual on-line experiments.

In both modes each key in upper case is interpreted as an operator

and in lower case as an opetrand.

A set of 6L operators for the console keyboard is called an operator

level, of which there are 60. The first ten levels, 0 through 9, are

System Levels, and consist of basic arithmetic and system programs coded
in machine language; they are avilable to all users, but cannot be al-
tered by them, The remaining 50 levels, called User Levels, are identi-
fied with letters of the alphabet and symbols; they may include both
systéem and user programs. These User Levels function as private librar-
ies for each investigator. 1Initially, each key is defined as ‘the basic

system jevel (1}. The operators of this level are given in Appendix 1.

User's new programs are generated by stringing together system

level programs or previously defined user's programs. This string is

obtained by pressing the associated keys in the desired order. These
programs are stored as a string of console characters and are inter~
preted just before execution. They are storage-medium independent and
relocatable., The interpretation and execution of a useraprogram is

done by the SHARED~LABORATORY-INTERPRETIVE PROCESSOR (SLIP).

Shared-Laboratory-Interpretive Processor

The console programming language is the SHARED-LABORATORY-INTER-
PRETIVE PROCESSOR (SLIP), The syntax of SLIP is very simpie: Users
without previous programming background have ‘learned within a few hours.
Learning the use of the console for experiment control takes only a few
minutes, as knowledge of all the available functions is not necessary.
The system detects syntax or procedure errors made by the user, and in-

forms him of such mistakes by appropriate messages on his output device.

The development of SLIP was greatly facilitated by the SDS 930's
priority interrupt feature, whereby the central processdr may be
interrupted at almost any time to service external devices such as

the consoles,
Logic of Request

Each console key press results in an interrupt. When a console in-
terrupt is presented to the system and minimum working conditions exist

{see Appendix 2), the request will be recognized and executed. Interrupts

are serviced by the console interrupt processor {CNSL, see Appendix 3).

5
This routine saves the volatile registers, and then calls the console
read routine {CRED) to read the character corresponding to the key pressed.
CRED puts the character in a string (KAR) and updates the storage address
and communication cells in the user's status table. Multiple use of CRED
is guaranteed by providing a separate entry point for each of the users.
When CRED returns to CNSL the interrupt is cleared and the registers are

restored.
Logic of Processing

In DPL, all the non-console programs as well as the console's input/
output routines are written so that they are processed by channel-oriented
interrupt processors, This means that when all the interrupts are ser~
viced, the CPU is idle, waiting for requests from tbe channels or consoles.
During this period, a wait processor which is called the commutator {(COMM),
uses the CPU, cycling around the users looking for service requests,

This COMM (Appendix &) has three tables, each as long as the total number
of users, The tables are endless in that when the COMM arrives at the
hottom, it is automatically reset to the top, These tables provide the
communication between users and the processing routines. When COMM detects
that a character is waiting to be processed in the user's input strfng,

it calls the console key. string interpreter {CONS) to service that user,
and then goes to next user. When called, CONS (Appendix 5) tests all the
characters for reset condition, type of display, and mode of operation.

According to the request, it calls one of the following;

1. Scope display routine {SCLR),

2. Routine for the requested operator, which may be unary
(i.e., require no operand), or binary (i.e., require

an operand),

3. Explicit data string decoder (DECD) which decodes reat,
compiex, or aiphanumerical elements to define the

operand, ofr

L. None of the above, in case no-action is yet required.

The commutater protects CONS against muiti-entrance.

Interpretation of Console Characters

There are two ileveis of any key input; upper and lower case. A
character inpui on upper case may be a unary or & binary operator. On
lower case, it may be a specific operator (data level, reset, alter,
terminate (O)), or an operand {alphanumericai and special characters as
data, or a symbolic data reference). UWhen a unary operator is requested
by the key input, the string processor (CONS) calls it indirectly via the
table of operators. Most of the unary operators operate on the contents
of the accumulator (AC), but they do not necessarily alter it (e.g.,

PLOT) .

When a binary operator is requested, CONS gets the address of the
associated routine and saves it, and sets the console to lower case

to aliow the presentation of the operand. The end of the operand Is
indicated by the terminator (O). The terminator resets the consoie

to upper case and when detected by CONS, causes CONS to call the prev-
iously selected subroutine, which executes the requested binary oper-
ation. If the operand is a symbollc data reference, the string pro-
cessor (CONS) calis the table look-up iist processor (LSER, .see. Appendix
6) which searches for the data in the data-in list (DIL) or scalar-in
list (SIL) using the key-level-user~type (KLUT) identification. IFf
neither list contains that KLUT, the data is not in the core memory of
the computer. Therefore, the magnetic tape search list processor (CTSR)
is called to search for it in the external storage. If found, the data
will be stored in the memory, added to the DIL or SIL, and the requested
operation will take place., If not found, an error message is displayed

on the user's scope.

When there is no more room in the core memory for data, it is dump-
ed onto magnetic tape (the external storage) and identified by the sy-
bolic reference KLUT. Each user may have one tape assigned uniquely to
him, and one unit is always available for common use. The tapes in wait-
ing status are positioned to the logical end of the tape, which is signa-
led by a specific single word record. VWhen a new block of information
(data, program or level) is written on the tape, it over-writes the pre-

sent END record and another is written to indicate the new togical end.

The user may redefine symbolic references, in which case the previously
defined biock is not erased but lost because the last defined reference
is the only one retrievable. Some data is used only témporarily and is
therefore never written onto magnetic tape; this protects the external

storage against extensive use.

The above described logic alse applies when searching for a user's

program.
Input/OQutput

The channel-oriented input/output routines IO0Y, I0W and IOE are
also list processors. They can be time shared because altl the channels
may operate simuitaneousiy. If a request is presented when a channel
is idle, it is executed immediately; if it is busy, the request is stored
in the channel’s waiting list and executed upon completion of the prev~

ious request.
Time-Sharing and Muiti-Processing

The present size of the computer (16K) and the relative slowness
of the secondary storage devices do not permit a completely automatized
monitor system. That is why there are several types of small systems

available.

With one particular system resident in the core memory of the computer,
it is possible to service several console users ‘concurrently together
with background activity, which may be A/D conversion in the format re-
quired by the IBM FORTRAN Monitor System (FMS), graph plotting from tape
{generated on IBM 7084 in FMS format), or various test programs on the
FMS format tapes. All of these background activities are programmed so
that they are completely interrupt-driven. They use the highest priority

interrupts in the system, which are the clock and the channe! interrupts.

Besides these background activities, theoretically an unlimited num-
ber of remote consotes may be served simultaneously. At the present, -

there are-only three of these.
Interrelation of Background Activity and SLIP

There are system programs developed which ailow the parameter intro-
duction of background activity programs via the console system. Other
system programs simulate console key-presses to be decoded and executed

by the SLIP system (see Appendix 7).

The system forbids in all programs the use of a closed icop for test-
ing of conditions to be met (such as unit ready, beginning of tape, etc.).
While a program is waiting for these conditions, it must call the system's

wait processor, which waits either a requested period of time, or untii

the condition is met.

10

During this period the COMM continues cycling so that if anyone needs ser-

vice, the computer's time is not wasted.

Presently, we have the following four TIME~SHARING-SYSTEMS:

1. A/D conversion{s) with simultaneous console servicing (ACON)},

2. Magnetic tape to CALCOMP graph-plotting with simultaneous

console servicing (PCON),

3. Several types of testing with simultaneous conscle servicing

(TCON),

L, A/D conversion with event detection, with simultaneous

console servicing (ICON).

Summary

The existing system within the Data Processing Laboratory and the
planned additions are an approach to provide research workers within the
BRI with the ability to interact directiy with a highly sophisticated,
digital computing compiex in as direct and simple fashion as possible.

It is anticipated that with the accumulation of experience using the pre-
sent system, significant advances will be possiblie in the system design
through determination of interface parameters between the biologicai ~o:

scientist and the .digital computer,

11
FOOTNOTES

1. This system was supported by US Pubiic Health service under
Grant NBO2501-05, MNational Aeron;utics and Space Administration under
Grant NSG505, and the office of Naval Research under ONR233(91). The
author acknowledges Mr. Lionel Rovner for development of the hardware
for the remote console system, and Mrs, Lynne Howard, Mr. Richard Johnston,

Mr. William McGill, and Mr. Hal Wyman for software development.

12

APPENDIX 1

TABLE OF SYSTEM LEVEL 1}

INTERPRETATION OF CONSOLE KEYS IN THE BASIC SYSTEM LEVEL

OPERATOR OPERAND ‘KEY FUNCTfON OF THE OPERATOR
RETN 0 00 Program terminator
WAIT 1 0! Wait requested
CONT 2 02 Continue operatioq
BUG 3 U3 Debug routine
LIST L. oL Alphanumerical display of

accumulator (AC)
TYPE 5 05 Print on scope
RUN 6 06 Starts or stops a previousiy

defined background activity

SET 7 07 Parameter set-up

BLNK 8 10 Scope erase

PLOT g 11 Vector display of AC on scope
FIND Q 12 Search a value in the AC :

EXT W 13 Extract elemegt(s) from AC

PRGL E 14 Load program to AC for correction

PRG~ R 15 Store program from AC

APPENDIX 1 (CONT)

OPERATOR OPERAND KEY
TRNE T 16
HEDL Y 17
THMOD U 20
MODE 1 21
CURS 0 22
INC P 23
SHFT A 24
ROT S 25
FLIP D 26
MOD F 27
MIN G 30
RAND H 31
ZERD J 32
INTP K 33
AVG L 34
SGHA ; 35
SIN z 36
Cos X 37
ATAN C Lo

13

FUNCTION OF THE OPERATOR

Truncate the values in AC
Examine the header of AC

Modify the type of data in AC
Select scope at plot mode
Extract and extend a part of AC
Increment or decrement index
continuation or level

Change the initial index of AC
Rotate AC to the left or right
Invert the order of values in AC
Execute modulo n

Find the smallest eiement of AC
Generate a random vector in AC
Count zero-crossings in AC
Linear interpolater

Compute the average of AC
Compute the standard deviation
of AC

Compute the sine of AC

Compute the cosine of AC

Compute the arctangent of AC

APPENDIX 1 (CONT)

OPERATOR OPERAND KEY
LOG v L
EXP B L2
ABS N L3
HIST M by
CONJ) Lg
X 46
/ / 4Ly
< < 50
=~ = 5]
2 = 52
SUM (53
A A 5k
PROD) 55
% o X3
1 0 57

14

FUNCTION OF THE OPERATOR

Compute the logarithm of AC

Each element of AC acts as an ex-
ponent of e

Replace AC with absolute values
Distribute vatues in AC with
present bin width

Set the signs of values in AC
Muitiply

Divide

Logical operator less than
Logical operator equal

Logical operator greater than or
equal

Sum the AC

Compute- the data between.success=-
ive elements of AC’

Compute the product of elements
of AC

Fiiter the AC

Raise AC to an exponential

APPENDIX 1 (CONT)

1

OPERATOR OPERAND KEY FUNCTION OF THE CPERATOR
+ - &0 Add
- - 61 Subtract
SPACE SPACE 62 No operator
LOAD CR 63 Load data into AC
PROG i 6l Signify subsequent key-presses as a

user generated program

"END - 65 . Program or repeat lcop end in-
dicator

DATA ° 66 Terminator of a binary operand

RSET RSET Y Reset the console to wait input

status (error correction)

ALTR ov 70 Editing operator

M it 71 Comments mode definition

SKIP $ 72 Uncondi tional branch

REP : 73 Do lcop generator (repeat)

v J 74 Label sign

7 2 75 Conditional branch

- ~- 75 ‘Store data from AC

LEV k 77 Operator or data level change

request

APPENDIX Z

MINIMUM REQUIREMENTS

A, CONSOLE SYSTEM RESIDENT IN CORE

I. For the console system:

a. The interrupt processor {CNSL and CRED)
b. The commutator (COMM), ‘its' setup’.routine -(COMS)

c. String interpreter {CONS)

d. Basic list processors and list tables (see Appendix 6)
e. 64 words of basic level ! operator addresses (LEVI)
f. 64 words of symbolic names associated with LEV]

g, LEVEL I programs

2, For each console:

150 words of accumulator (AC) and .its' 5 woid list element

50 words of status tabVel{{ST)

30 words of key assemble register (KAR) and its' 5 words list element.
6l word tabte of the resident user level operators. (OPR)

64 words for symbolic namés of the resident user level operators (NAME)

A 1
APPENDIX 2 (CONT) /

Their roles:

AC is used to perform operation on vector(s) and scalar(s) where the
accumulated sum wiil be in AC. It consists of 6 words of header
and 14l words of data storage.

CST table containing the parameters for each console.

KAR the program in symbolic format {key input).

OPR the table of addresses for the specific console's resident user

level operators.
NAME the table of names (maximum & characters) associated with OPR.

3. For the basic system:

a. Clock, wait and interrupt processors
b. Basic I/0 processor (I0X)

c. I/0 lists (YSTACK, WSTACK, ESTACK)

B. _UNIT ASSIGNMENT

Magnetic tape unit 7 is the external storage area assigned for common use

for data and users' programs.

INTERRUPT PROCESSING

fonsole:

Interrupt
Processor:

W
SAVE A,B,X
X=0
BRM_CRED, X

PR | A—

CONTINUE

APPENDIX 3

18
/“"-.
&2 /#n\\
206~ |
204 \ 217 /
\L !
V4 .
. A ——
SAVE A,3,X SAVE A,B,X | |
X=2 X=b | X={n-1)%2
BRM CRED,X BRM_GRED, X b

L TR S VR PR

‘CONTINUE

- e em e

aa = e wa o

CONTINUE
——

A4

|
SELECT CONSOLE

READ CHARACTER

lNO

SET RESET MODE
INDICATOR

STORE CHARACTER
INTO KAR
INCREMENT THE

STORAGE COUNTERS

STATUS FLAG
CORRECTION

7

RETURMN TG THE
INTERRUPT
PROCESSOR

hid

RESTORE A,B,X

CLEAR INTERRUPT
AND RETURN TO THE
INTERRUPTED
PROGRAM

APPENDIX &

19

A. COMMUTATOR FLOW CHART

ENTRY >——>

i
EXIT |

~ TO0 THE
SER

B, INFORMATION

SAVE RETURN PICK UP
ABDRESS INDICATOR (I)

P
TN TABLE FROM FLAG'S
TABLE POSITION

NO l
/

TABLE END
1

SAVE I AT (041)
SET 040 TO
USER(I) STATUS

TABLE ADDRESS

The following are information cells for communication between the commutator

and the commutator users:

1. One cell is reserved to indicate the current user being

serviced (04l).

2. One cell is reserved for the status table address of the

user being serviced (0k0).

20

APPENDIX 4 (CONT)

In addition, the commutator communicates with three tables that are

resident in core.

FLAG STATUS TABLE ADDRESS RETURN ADDRESS

Table 1 contains the flag .indicators which provide information about
the status of each console or user. The console flags are
always set to ZERO while keys are being processed. VWhen the

tast key is executed, the flag is set to wait for keypress status.
Tabie 2 contains the address of the status tables of the console or users.

Tabie 3 contains the exit address for the commutator to go to if a console

user or program needs servicing.

APPENDIX 5

21,
STRING_PROCESSING
ENTRY FROM
oM
RESET NV_ YES 4//§égg;\>
" \PROCESSOR ;= ~EEIRD -
NO
‘ l
I GET
KEY
 PRINT
(mm > _YES - on
~ " SCOPE
NO =
. f ATER N\
PROCESSOR
- 7 COMMENTS
\ PROCESSOR /
—_—
¥
LEVEL -)\\\\\\
= [zERO)= YES 7 kvl
PROCESSOR “‘\\\\//,//’
NO
4
~ LOWER _xﬁgy//’iiﬁY‘i:> NO___—PROG~~_ NO
CASE ™SIGN . MODE >
. l \\[;Y/ES ES
i NO § N
TN ; / PROGRAM
GET | SET UPPER PROCESSOR |
OPERATOR | | CASE

/’/iECEL ves [L

O
s feaLrs—/ DECODE N
LSER DATA COMM
=\ STRING a?"L\M_,/
e

— : -Em
= RETURN 1 UPDATE _ BINAR‘:E’>
AN POSITION OPERATO

i

EVEL O °

/—TEVEC™ YES —
A zro Voo TevEL e YES gy \
PROCE SSOR =0 \“\\v/ﬁa/ o { PROCESSOR

NO
———— YES G r ~———JL-——— 0 ,
< PROGRAM A\ | SET LOMER] BROG YES_ PROGRAM
: ’ CASE S
\ PROCESSOR / . [MODE PROCESSOR

=

—_—

APPENDIX 6

1. FLOW OF LIST PROCESSING 22
a, Users' Program and Data Block Request (LSER):
-
LK L u J T/CL}
ENTRY FROM
e
A
Y
vEs/////“//\\“‘\\\ i No 1T
PHID g™ ~7IS IT IN SN0 o "PAL/DAL | PTOP
~_ THE LIST EMPTY "
DIL/PIL - “\\\\\ DAL/PAL
! - \/ \/
= | YES
PROG .

P i ADD TO KEY-! PBOT ,
.~ DATA OR EXECUTE LIST !
“~—_ PROGRAM == DIL/PIL

S~ | _SET POINTER .
| | A
PATA
STORE ITS
ADDRESS INTO EXECUTE
OPERAND ADDRESS PROGRAM
e M

i

i

EXECUTE THE }
REQUESTED

BINARY OPERATION ¥

/

AN

OPERATOR CST+2
OPERAND CST+27 /
T3
\

e

ATOP
DIL/PIL

r.—r“____' e i o et et
[2

e mr—

f/ RETURN
\. p

— ———

| SET AC TO
| SCALAR ZER

1

J

|

{/ DISPLAY

23
APPENDIX 6 (CONT)

b. List Processors:

Adds to top of a list

ATOP =

PTOP = Removes from the top of a list
ABOT = Adds to the bottom of a list
PBOT = Removes from the bottom of a list
PMID = Pop out middle of a iist

| 2. LISYS AND THEIR BLOCK FORMATS

a. Lists
DIL = Data in list DAL = Data storage available list"
PIL = Program in iist PAL = Prograﬁ storage available
SIL = Scalar in list list™
SAL = Scalar storage available
Iist**
CAL = Cell available Iist**

* In the DAL and PAL the headers and data are junk; only the

last three words of the 1ist elements are meaningful.

%% In the SAL and CAL only the last two words of the list elements

are meaningful,

APPENDIX 6 ({CONT)

b. List Format

(L) List pointers:

Top Address

Bottom Address

%
(2} List elements:

(3) Lists:

K L U |T/CL

M| T SCALE

Address

Previous Element

Next Element

(z) Data Block (150 words)

*

¥
—

.— 150 words —

CM | T SCALE

6

= = Header

/”rﬁqh““ﬁwh___frffz‘

T~

sl

=Data

Neg if empty

Header

Neg if first element

Neg if last element

In the DAL and PAL the headers and data are junk; oniy the last

three words of the list elements are meaningful.

APPENDIX 6 (CONT}

(b) Program Block (30 words)

A

(c) Scalar

CL

CH

]

i

<5 words ———

30 words

K L U cL

M1 T SCALE

Scalar

Previous

Next

Header

Program
Max. 114

Characters

25

Header

Neg if first element

Neg if last element

Least significant part of continuation number

Most significant part of continuation number

APPENDIX 7

COMMUMICATION BETWEEN SYSTEM PROGRAMS AND CONSOLES

1,

2.

Parameter Input/Output (TALK)
}

‘SYSTEM ROUTINE N
REQUESTS ; REMOTE CONSOLE

\ PARAMETER / INPUT/OUTPUT

- i\ 47
/ \
/ CALL TALK
—~ -~
< pm YES =/ /FOR INPUT/OUTPUT
: ON REMOTE
' ‘ CONSOLE -

NO END OF
COMMUNICATION >==} STORE
4 PARAMETER

/SYSTEM ROUTTNE \
CONTINUES /

Simulation of Conscle Key Presses

The first word address and length of the string of
simulated key presses is placed in the console status table
via a system routine (UPDT). The length of the string must

be less than 119 characters.

26

DPL DATA PROCESSING SYSTEM

(1965}

SYSTEM
INTERFACE
UNIT

1

r

16 ANALOG
T INPUTS

16 ANALOG
INPUTS

24 RELAY

DRIVER
QUTPUT

24 SENSE

3

LINE INPUT

CONSOLE

(O

SCOPE
DISPLAYS

N
MTU
' $DS 930 Th"é:-l?)
I8 K MEMORY
MTU POT {24 BITS)
2 + — Tu C" I—".-—-_m_-__—
Y | 32 K MEMORY | PIN_(24 BITS)
[} —
' DACE
)
1 |
l [
i 1 '
T 1 — -7 |
3 b I oace II L
—— IFI
N\ ~\ PLANNED
A T R ¥ TR el } INTERFACE |
| e i iy t WITH HSCF
———] —~—nand M | L
. ,..-L
- -"\
\ p
[o
TG | ==
. W | 8 MILLION |
JCHARACTER |
| DISC
\\-x.._.. .--’/
A
GRAPH GRAPH TELE CARD PAPER PAPER
PLOTTER PLOTTER TYPE LINE READER TAPE TAPE
| 2 WRITER PRINTER 400 C/MIN READER PUNCH

Dotted iine indicates planned system expansion

»

Figure 1, DPL Data Processing System (1965)

D/A

SYSTEM
INFUT

NOD. 1

KEYBOARD

CONSOLE
SYSTEM OQUT-
PUT MEMORY

SCOPE

NO. 2

NGC. 3

. — -

—— e e e ——

L3

Figure 2,

The Remote Console

28

&ZJC CIC T N’)fdﬂ

s..m-

9(»(<’ﬁ'&)“)(af)(»
"C DI 30 5T JC)0 ,,,)‘U)

HQE-

(ﬂ,)(9()()(“f)f()()\())

ts)in R Mm "

(g{/)_()(?);(J)f)f ,}fﬁ/)(’)(ﬁ)

)f)f“'()"()U()Q) ,»CU

. e =S

Fiaure 3. Console Kevboard

62

A
1
i
A
E
A
.
K

. o LT -, » -

) 1 g EAPS A ¥ K B B Kl £ S i T o e e At S - — Ty
L) 1 7 ” = T N e e e o
b s Sl L A et X 31
i et o, 1m s . e
wbgnsniens wodin eon e ot A i <1

39

- W

A st ot 1y St i b g S
.
bt T
\
x
B

L)

VEATICAL) e o WEN TN Ty *
"y . - ™ - r@ o TSR TR Aeema, 7 .
TYPE 3A75 / 4 TYPE 3A7S A
- QAN ALY AMPL"‘[ER » I k QAN AD} i
{..!-,i 4;«'*} ! . AMPLIFIER ropro, I
“) ¥, L TAACE " '\
d '\ e, N)] 4 , R “_ L
; : Dl e -
- 0 :
. !T 1
= L
]
| F 3 ae
3 DEE
"+ BHD

& .l
3 ior /AN W #"
o eTre AYerrmeret | £ttt . ey

P
- 4 .BE AL
- - o
d) d T
) ,; wrur QORI REHARES
- 1Qy =5 Ay s
. @J Kc,&' T e A 1‘-?1#/‘ TA ;i A .
Wt h (2 - TE lwn e ri-;,q_[VL] LA can nuu"“"‘"ﬂ' {e{lng o}t ﬁfﬂbacﬁl' A
3 1.— -1) i oy BIIPU\'-——:':::-!::. seaLg nLu '
3 . L It
™ -8 - i} m semsL um - ' i
uuvaom: e, 3 -nn-e [CTT: ‘ 14
3 v somme ¥-._...*...‘ < 13
A " me :

’

-
B

L mn s umer e m e T T A X P P e M e e e A e i R e e i bl ' o
§ RN AU DO TR T MO NS — -

: " Assssni

i

!

’ |
|

H

Figure 4. Console Memory Scope

