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ABSTRACT
 

Efforts in crystal casting during this quarter were
 

directed towards developing a crucible to prevent crack­

ing and establish parameters for achieving the maximum
 

growth rate for single crystal ingot solidification.
 

Emphasis was placed on reducing the furnace superheat
 

to increase growth rate and to cast SiO2 liners directly
 

in graphite crucibles.
 

Fast growth rates were achieved by reducing the fur­

nace temperature as close to the melt point as the instru­

mentation would allow--30 C. Good single crystal growth
 

was achieved on top of the seed by this technique, but
 

the periphery of the seed was too cool to seed single
 

crystal growth. Ingots were quenched from 10000C with
 

helium to shatter the crucible; this did not prevent
 

cracking of the ingot. Low density fused silica bodies
 

were fabricated. The wetting characteristics of liquid
 

silicon in a vacuum atmosphere was sufficient to cause
 

penetration into open paths such as cracks and voids.
 

Slicing tests were performed to determine:- (1) the
 

effectiveness of grooved support rollers in reducing
 

blade wander, (2) the effectiveness of slow, non­

synchronous and stationary workpiece motions on slicing
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performance; and (3) the performance and life of diamond
 

plated tungsten wire.
 

With grooved rollers positioned on either side of
 

the workpiece, blade wander and wafer taper were reduced
 

an order of magnitude. For a stationary workpiece, twice
 

the blade force was required to obtain cutting rates
 

comparable with rocked workpieces. This resulted in wire
 

breakage, deterioration of cutting rate, and waviness of
 

wafer surfaces.
 

Slow non-synchronous rocking of the workpiece
 

dramatically improved the surface quality. Wafers could
 

be sliced at 0.2 lb., 90 gm, instead of 0.15 lb., 68 gm,
 

force per wire and still produce high surface quality.
 

Eighteen runs were conducted with the same 5 mil,
 

0.12 mm tungsten wires plated with 400 mesh diamonds.
 

No wires or wafers were broken, and no significant
 

deterioration of slicing performance-or wafer quality
 

was observed on any of the eighteen cuts through-the
 

4 x 4 cm workpiece. The wafers from these tests are
 

the highest quality to date.
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SUMMARY AND PROGRESS
 

SILICON CRYSTAL CASTING
 

Efforts in crystal casting during February were
 

directed towards developing a crucible and casting pro­

cedure to prevent cracking and establish parameters for
 

achieving the maximum growth rate for single crystal
 

ingot solidification. Emphasis was placed on reducing
 

the furnace superheat to increase growth rate and to cast
 

SiO 2 liners directly in graphite crucibles.
 

The operating parameters for runs 151 through 69-C
 

are presented in Table I, Tabulation of Heat-Exchanger
 

and Furnace Temperatures.
 

Establishing Parameters for Achieving Maximum Growth
 

Rates
 

Previous reports have shown that growth rate is
 

very sensitive to furnace temperature and rate of furnace
 

temperature decrease. To achieve fast growth rates, the
 

furnace temperature should be maintained as close to the
 

silicon melt point as the instrumentation will allow.
 

The heat exchanger temperature must be decreased rapidly
 

to conduct away the heat of fusion and force the growth
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TABLE I. 

TABULATION OF BEAT-EXCHANGER AND FURNACE TEMPERATURES 

RUN 

51 

PURPOSE 

Determine maxim 
growth rate. In-
crease rate of heat 
exchanger tempera­
ture decrease. 

SEEDING 
FURN.TEMP. H.E. TEMP. 
ABOVE M. BELOWjM.P*. 

11 1362 

RATE OF 
H.E. TEMP. 
AC/HR. 

155 

GROWTH CYCLE 
DECREASE 

FURN. FE/H. 

C/HR. 

2.36 

GROWTH 
TIME IN 

HOURS 

4.66 

REMARKS 

Seed melt out. Poly­
crystalline ingot. 

52 Determine maximn 
growth rate and 
prevent cracking. 

6 1360 111 1.2 5 Good seeding. 0 Helium back 
filled at 840 C to break 
crucible. Ingot shattered. 

53 Develop coating 
inside graphite 
crucible to pre-
vent cracking. 

4 1 No silicon penetration 
into crucible or cracking 
of silicon. 

54 Develop coating 
inside graphite 
crucible to 
prevent cracking. 

1 .1 Silicon penetrated graphite. 

55 Develop coating 
for graphite and 
fused silica 
crucibles. 

12 Terminated power. Graphite crucible cracked 
due to penetration of 
silicon. Some cracking in 
fused silica crucibles. 

56 Develop coating 
for fused silica 
crucibles to pre-
vent cracking. 

15 4 Silicon penetrated behind 
coating causing ingots to 
crack. 



TABLE I. (Cont.)
 

TABULATION OF HEAT-EXCHANGER AND FURNACE TEMPERATIURES
 

SEEDING GROWTH CYCLE 
RUN PURPOSE FURN.TEMP. H.E.TEMPABVEM.?CB~W 0

ABOVE M.P PC BELOW M.P.° 
RATE OF DECREASEH .T M . FU NH.E. TEMP. FURN. CE/H.oC/R0 

GROWTH
I E ITIME INOR 

REMARKS 

0C/HR. C/HR. HOURS 

57 Develop coating 
for graphite 

5 .1 SiO coating evaporated 
allowing silicon to 

and fused silica contact the fused silica 
crucibles. crucible. 

58 Develop coating 10 2 Coating failed. Silicon 
for graphite contacted surface. 
and fused silica 
crucibles. 

59-C Determine maximm < 5 1382 84 1.43 3.5 Top froze over as " thick 
growth rate and single crystal. Partial 
prevent cracking. seed melt back and single 

growth from seed. 

60-C Determine maximum 
actual growth rate. 

< 5 37 
(1360) 

81 3.14 3.5 Top froze as " thick 
polycrystalline layer. 

Graphite plate Good seeding with single 
seated on heat ex- crystal growth from seed. 
changer to extract 
heat across entire 
bottom. 

61-C Sane as 60-C. Re- < 6 21 79 1.16 5.16 Good seeding and growth 
duced heat loss by (1383) to top of ingot. 
reducing size of 
view port in top 
cover. 



TABLE I. (Cont.) 

TABULATION OF EAT-EXCHANGER AND FURNACE TEMPERATURES 

GROWTH CYCLESEEDING

RUN PURPOSE 	 FURN.TEHP. H.E.TEMP. RATE OF DECREASE GROWTH REMARKS
 

ABOVE M.P°C BELOW M.PC H.E. TEMP. FURN. PTEP. INNTiE 

0 /HR. C/HR. HOURS
 

62-C Same as 61-C. Thin < 5 21 
 141 1.11 	 4.5 Silicon ingot shattered. 
wall crucible (.040") 	 (1384) Seed melt out.
 

63-C Same as 60-C 	 Run terminated one hour after all liquid. Polycrystalline material.
 
Possible heat exchanger failure.
 

64-C Develop lin& inside 	Approx. 
 Woven silica material failed.

graphite crucible 15 
 Second crucible--cast liner-­
to prevent cracking. (1.75 hr.) 
 silicon penetrated.
 

.4-1 
65-C Grow single crystal 	 < 5 1 3 Insufficient melt back on
 

to periphery of 
 outer periphery of seed.
 
crucible and de­
velop cooling
 
cycle to prevent
 
cracking.
 

66-C Develop crucible 	 Heat to 8500C in vacuum for two hours. Low to high quartz trans­
liner in graphite 
 formation caused crucible to
 
mold. Cycle quartz 
 crack.
 
through high low 
transformation
 
temperature.
 

67-C Grow single crystal 	 < 3 52 80 0 4 Insufficient melt back on 
(1360) outer periphery of seed. 



RUN PURPOSE 

68-C Grow single crystal 
to periphery of 
crucible and 
develop cooling 
cycle to prevent 
cracking. 

69-C Grow single crystal 
to periphery of 

crucible and 
develop cooling
 
cycle to prevent
 
cracking. 

TABLE I. (Cont.)
 

TABULATION OF EAT-XCHANGER AND FURNACE TEMPERATURES
 

SEEDING GROWTH CYCLE 
FR.EP ETM RATE OF DECREASE GROWTH REMRK 
ABOVEN.PC LW. HTM . .E.AOE .PC.__..C/HRI TEMP. FURN. FeM.

C/HR. 
Mf'E IN4
HOURS 

< 3 22 82 0 5 Insufficient melt back on 
outer periphery of seed. 

< 3 18 80 0 7 Insufficient melt back on 
periphery of seed.
 



interface to the ingot surface before the liquid is
 

supercooled due to the decrease of the furnace tempera­

ture.
 

Runs 51, 52, and 59-C were undertaken to determine
 

the maximum growth rate and to alter the cooling cycle
 

to prevent cracking. By rapidly reducing the furnace
 

temperature by quenching with helium, the outside surface
 

cools and contracts more rapidly than the interior. It
 

was hoped that the tension would cause the crucible to
 

shatter before the ingot cracked.
 

In run 51 the instrumentation was not calibrated
 

accurately allowing the furnace temperature to increase
 

to 110C above the melt point and melt out the seed. The
 

ingot was polycrystalline but strongly directional grains
 

were present.
 

For run 52 the melt was superheated 60C and the heat
 

exchanger was increased to 13600C. After growth the ingot
 

was cooled to 8400C in 20 hours. At this temperature the
 

power was turned off and helium was backfilled into the
 

furnace to a pressure slightly below atmospheric. The
 

furnace was cooled to 5750C in approximately 2 hours at
 

which time the ingot burst. The ingot shattered into
 

many pieces. Sectioning showed that good seeding and
 

single crystal growth had occurred.
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For crystal casting run 59-C, the furnace was heated
 

above the melt temperature until all the melt stock was
 

melted. It was slowly decreased in temperature until the
 

top froze over with a thin skin. The heat exchanger
 

temperature was increased from 1280 to 13820C and held
 

at this temperature for one hour. The thin skin was
 

still across the entire top of the melt when solidifica­

tion was started by decreasing the furnace temperature
 

1.430 C per hour and the heat exchanger at 840 C per hour.
 

After 3k hours, the temperature monitored on the crucible
 

wall declined rapidly indicating that solidification was
 

complete.
 

For this run the furnace was cooled to 10220C in
 

12 hours. The power was turned off and helium was back­

filled into the furnace. The temperature was decreased
 

to approximately 250 0C in 3 hours. Cracking was not
 

observed with the fibre optic light source; however, the
 

ingot was again shattered. Quenching with helium did not
 

prevent cracking in the silicon ingot and does not appear
 

to be a promising solution.
 

A polished and etched cross-section of boule 59-C
 

is shown in Figure 1, Polished and Etched Cross-Section
 

of Boule 59, 60, 61, and 62. Figure I shows that seed
 

melt back was not complete near the top and outer
 

periphery, but single crystal growth was good in the
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SEED 460
 

SEED 

SEED 

# 62
# 61 

Figure 1. Polished and Etched Cross-section of Boules 59-C, 60-C, 61-C, and 62-C.
 



central section of the ingot. The entire top of the
 

ingot which appeared as a white area in Figure 1 was
 

single crystalline, apparently nucleated from the thin
 

skin that formed on top at the start of solidification.
 

As the furnace temperature.was decreased, single crystal
 

material grew down into the melt. It grew one-half inch
 

down into the melt before it made,contact with the­

single crystal growing up -from.the bottom. From this
 

run it is apparent that the temperature at the top of
 

the melt is cooler than at the bottom. The shape of the
 

seed gives one a good perspective of the shape of the
 

isotherm at the beginning of solidification.
 

For run 60-C the heat flow conditions were changed
 

by seating a graphite disc on the heat exchanger. The
 

crucible is positioned directly on this plate to increase
 

the seed temperature during seeding to assure sufficient
 

seed melt back. During growth the plate can conduct
 

heat from the bottom of the crucible to the heat ex­

changer.
 

As for run 59-C, the furnace temperature was de­

creased until a solid skin grew over the entire top of
 

the melt. The heat exchanger temperature was only in­

creased to 13620C, 200C lower than for run 59-C, and the
 

furnace temperature decrease was increased from 1.43 to
 

3.140C per hour. After 3 hours' growth, the ctucible
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broke due to entrapment of liquid between the growth
 

from the top and growth from the seed. Figure 1 shows
 

that good seed melt back and seeding was achieved.
 

Crystal growth was not particularly good as evidenced
 

by grains above the seed.
 

It appeared that seeding was improved by the
 

graphite plate but growth problems were created either
 

due to the graphite plate or due to the increased rate
 

of temperature decrease of the melt.
 

Figure 1 shows clearly that the top of the melt is
 

cooler than the bottom causing solidification to progress
 

from the top and bottom towards the center. One source
 

of heat loss from the top center of the heat zone is the
 

2" diameter viewing port. This was insulated and closed
 

to one-half inch for run 61-C to minimize heat loss from
 

the top center of the furnace.
 

It is apparent from Figure 1 that the seed should
 

be melted back more. Therefore the heat exchanger
 

temperature was increased to 1382 C and furnace tempera­

ture increased approximately 1 C above the previous run.
 

No skin formed over the melt. The rate of furnace
 

temperature decrease was slowed to 1.16°C per hour.
 

This caused the growth time to increase from 3.5 to 5.16
 

hours.
 

Both seeding and growth were improved over the
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previous two runs as can be seen in Figure 1. The seed
 

was melted back substantially in the vertical dimension
 

but only slightly on the diameter. Single crystal
 

growth was almost complete to the top of the melt.
 

For run 62-C the furnace temperature was decreased
 

10C from the previous run but the seed melted out
 

probably during the heat-up cycle. For this run, a I mm
 

wall thickness crucible was used so the crucible would
 

break before the ingot broke. The ingot was polycrystal­

line and cracked into small pieces as is apparent in
 

Figure 1, a polished and etched cross-section of run
 

62-C. Run 63-C had to be terminated due to a heat ex­

changer failure one hour after the silicon was melted.
 

Run 65-C was a repeat of run 63-C but the furnace
 

temperature was held at approximately 40C above the melt
 

point and decreased at 19C per hour during growth. The
 

thermocouple in the heat exchanger failed during seeding.
 

It was estimated that the temperature was about 13620C
 

and was decreased at 80 C per hour. The ingot was
 

solidified in three hours. It was apparent from frac­

tured sections of the ingot that the seed had melted out.
 

Apparently the heat exchanger temperature was higher
 

than our estimates causing seed melt out.
 

For run 67-C the furnace temperature was held less
 

than 30C above the melt point and the heat exchanger
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temperature was held at 13600C. Since the furnace
 

temperature was only 3OC above the melt point, the
 

furnace temperature was not decreased but only the heat
 

exchanger temperature was decreased at 800C an hour.
 

It required four hours for complete solidification even
 

though the furnace was about 30C above the melt point.
 

Solidification occurred from the top down into the melt
 

and from the seed up. Good seed melt back occurred
 

except the outer periphery of the seed that was in con­

tact with the crucible. Single crystal growth occurred
 

above the seed to within 1 cm from the top where it con­

tacted the layer growing down from the top. Single
 

crystal growth broke down from the edge of the seed
 

where there was almost no melt back. It appears that
 

the bottom of the crucible near the outer periphery of
 

the seed was too cool and therefore, there was no seed
 

melt back and seeding.
 

In view of this problem, heat flow conditions on
 

the bottom of the crucible were changed. A 2 cm thick
 

graphite plate was placed under the crucible to conduct
 

more heat to the bottom center of the crucible. For
 

this run the furnace temperature was again held at less
 

than 30C above the melt temperature, but the heat
 

exchanger temperature was allowed to increase to 13900C
 

in order to melt back the periphery of the seed.
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The melt was doped with boron to achieve a-resistivity
 

of approximately 5 S cm.
 

After solidification was complete the heat exchanger
 

temperature-was 955 C.' 
For this boule, the heat ex­

changer temperature was not increased to equilibriate
 

the temperature of the boule but instead the furnace
 

temperature was lowered while the heat exchanger was
 

held constant at 9550C.
 

This cycle would minimize the effects of the ex­

pansion mismatch of the silicon and silica. 
Silicon in
 

contact with the crucible wall is prevented from con­

tracting during cool down since the center section is
 

held constant at 955 C. The temperature of the boule
 

was then reduced from 9550C to 
room temperature in
 

about 15 hours. This procedure reduced the cracking
 

but did not eliminate it. A polished cross-.section
 

Sirtl etched revealed that the outer periphery of the
 

seed- was not melted back. The outer periphery of the
 

seed is approximately I cm high. Above-this height,
 

the seed melted back in the form of a hemisphere and
 

single crystal growth occurred. Single crystal growth
 

did not occur from the bottom edge of the seed where
 

it was too cool for melt back to occur. The resistivity
 

ranged from 2 to 8 £ cm in the central single crystal
 

region.
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Run 69-C was the same as for 68-C, but the furnace
 

temperature was increased by approximately lOC to
 

achieve melt back on the bottom periphery of the seed.
 

The cooling cycle was also identical except that the
 

heat exchanger temperature was reduced to 7750C and
 

held constant during cool down. The cooling cycle
 

minimized but did not prevent cracking. A fracture
 

cross-section through the seed shows that melt back
 

was not achieved on the outer periphery of the seed.
 

The boule is currently being sectioned for further
 

characterization.
 

In conjunction with the experimental work described
 

above, an equipment design was started to monitor the
 

position of the interface with ultrasonics.
 

Development of a Crucible to Prevent Cracking
 

Runs 53, 54, 55, 56, 58, and 64-C were conducted to
 

develop coatings or crucibles that would prevent crack­

ing of the crucibles and ingots. Previously it was
 

shown that silica coatings on fused silica crucibles
 

can prevent cracking. Ingot cracking only occurred
 

when the coating allowed silicon to contact the clear
 

fused silica crucible.
 

Runs 54, 55, 56, 57, and 58 were performed to
 

evaluate various grain size fused silica coatings on
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clear fused silica crucibles.
 

Run 54 was spray-coated with I part 200-mesh fused
 

silica-powder and 3 parts coloidal silica binder. 
 It was
 

sintered for 16 hours at 5000C, loaded with 30 gm silicon,
 

and heated above the silicon melt point. The run was
 

terminated after six minutes due to silicon penetration­

onto a graphite crucible that was run along with this run.
 

The coating failed on the fused silica crucible causing
 

areas of the ingot to crack. Silicon penetrated a crack
 

or weak spot in the coating to contact the clear fused
 

silica wall.
 

For run 55, 30 ml fused silica crucibles were rough
 

ground inside and etched with 50% HF for 30 minutes. The
 

crucibles were spray coated with a mixture consisting of
 

3 parts coloidal silica binder and 1 part 80/200 mesh
 

fused silica powder. 80/200 mesh powder is screened
 

through 80 mesh screen onto a 200 mesh screen; therefore,
 

the grain size is no larger than 177 or smaller than 74
 

microns. After sintering at 5000C for four hours, the
 

crucibles were loaded with 35 grams of silicon and heated
 

above the melt point. Areas of the ingots cracked when
 

silicon penetrated breaks in the silica coating.
 

Run 56 was conducted the same as run 55, but with a
 

140 mesh fused silica powder. The coating failed in
 

certain areas due to poor bonding to the surface of the
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fused silica crucible.
 

From the previous two runs it appeared that the
 

coarse particles did not bond to the crucible sufficently,
 

allowing molten silicon to lift the coating and bond to
 

the wall. Therefore 200 mesh silica particles were used
 

for two 30 ml fused quartz crucibles used in run 58.
 

An unground crucible was spray-coated with 200 mesh
 

fused silica sintered at 4600C for 12 hours, re-spray­

coated, and sintered at 4600C for one hour. A second
 

sur­30 -ml crucible that had been abraded on the inside 


face was spray-coated with 200 mesh alpha quartz and
 

The crucibles were loaded
sintered at 2000C for one hour. 


with 35 gms of silicon heated 100C above the silicon melt
 

point for two hours and cooled to room temperature. The
 

quartz-coated crucible shattered and the upper portion
 

of the ingot cracked. The fused silica crucible remained
 

intact but was cracked. Fine cracks were induced in the
 

top edge of the silicon ingot. Failure of the-spray
 

coatings appears to be due to weak bonding between the
 

coating and crucible. When the coating separates from
 

the crticible wall, molten silicon breaks through and
 

adheres to the wall causing the crucible and ingot to
 

crack on cool down.
 

Cracking can be prevented by coating fused silica
 

crucibles, but this may not be the most economical or
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reliable crucible. Graphite crucibles coated or lined
 

with fused silica would be more economical if the graphite
 

mold could be reused many times. Graphite's expansion
 

coefficient of approximately 4 x 10-6 cm/cm°C is close to
 

silicon's expansion coefficient and therefore will not
 

induce cracking in the silicon ingot or crucible. In
 

light of this, silica lining for graphite crucibles was
 

studied-. A graphite crucible was spray coated with 200
 

mesh fused silica dried at 3000C for one half hour, loaded
 

with 20 gm of silicon and heated 40C above the melt point
 

for one hour. The coating blistered in several areas. The
 

silicon in the bottom was not cracked, since the silica
 

coating prevented silicon from penetrating into the
 

crucible.
 

A pyrolytic coated graphite crucible was spray-coated
 

with fused silica and tested as described earlier for run
 

54. Silicon penetrated through the silica coating, pyro­

lytic coating, and graphite crucible to form SiC causing
 

the crucible to break. In run 55, a graphite crucible
 

was spray coated as described for run 54. This coating
 

failed and the power had to be terminated. Failure of the
 

fused silica coatings on the graphite crucibles appears
 

to be due to the large difference in the expansion co­

efficients of graphite (approximately 4 x 10-6cm/cm0C)
 

and fused silica (.5 x 10-6 cm/cmC). The graphite
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expands away from the silica coating due to its higher
 

coefficient of thermal expansion. Spray coatings are
 

thin, and when unsupported by the graphite, break, allow­

ing the silicon to penetrate into the graphite.
 

One difficulty associated with developing reliable
 

coatings for silica or graphite crucibles may be shrinkage
 

associated with sintering. As the coating shrinks, it is
 

put into tension. This causes cracks to develop allowing
 

silicon to penetrate the crack and lift the coating. It
 

would be desirable to put the coating into compression to
 

prevent cracks from forming.
 

It appears that graphite crucibles must be coated with
 

SiO2 that has an expansion coefficient as large as or
 

larger than the graphite. Crystalline quartz has an ex­

pansion coefficient of approximately 7 x 10- 6cm/cm°C and
 

undergoes an expansive transformation at 5730C, making it
 

a particularly attractive coating for graphit6 crucibles.
 

The relationship of fused silica to its crystalline
 

counterparts is often a source of confusion. Fused silica
 

is a noncrystalline form of-silicon dioxide. Essentially,
 

it is a high-viscosity melt phase, or glass, that is
 

thermodynamically unstable, but kinetically stable at
 

ordinary temperatures. At atmospheric pressure, the
 

crystalline forms of silica are quartz, tridymite, and
 

cristobalite. The densities of these polymorphic forms
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are 2.65, 2.26, and 2.33 g/cm3 , respectively, whereas
 

33
 
.
the density of fused silica is 2.20 g/cm3
 

Quartz is the stable crystalline form from room tem­

perature up to 11400 K. Tridymite is stable from 11400K
 

to 17430K, and cristobalite is stable from 1743°K up to
 

its melting point, 19960K. Each of these, in turn, has
 

additional polymorphic forms within different temperature
 

ranges.
 

Tridymite is particularly interesting since it is the
 

stable equilibrium phase in the temperature range of in­

terest, its coefficient of thermal expansion is.close to both
 

silicon and graphite, and it only undergoes a small volume
 

change during the displacive transformation at 1600C.
 

Silicon reacted with fused silica above 5000C in
 

vacuum will form silicon monoxide:
 

2.2 g/cc 2.33 g/cc 2.05 g/cc
 

SiO 2 + Si 4 2 SiO
 

Silicon monoxide is unstable at 14120C in .1 Torr
 

pressure, but it could be protected by a protective
 

layer of SiO 2. This approach was used in run 57 using
 

a 30 ml clear fused quartz crucible and a graphite
 

crucible. The crucibles were spray-coated twice. The
 

first coating was 1 part 100 mesh silicon, 1 part 200
 

mesh silica and 6 parts coloidal silica binder. After
 

heating to 200 C for 3 hours, a second coating consis­
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ting of 1 part 200 mesh fused silica and 3 parts coloidal
 

binder was applied. After sintering at 2000C for four
 

hours, the crucibles were loaded with 35 gms of silicon
 

and heated above 14120C for six minutes. Considerable
 

outgassing was experienced as the silicon melted, since
 

it penetrated the coating and reacted with graphite to
 

form SiO. The ingots and crucibles from this run were
 

completely shattered. It is apparent that the second
 

coating of SiO 2 did not prevent the SiD from evaporating.
 

For run 58 coatings were made starting with quartz
 

powder, since theoretically the quartz should undergo an
 

expansive transformation to form tridymite. This may
 

compensate for sintering shrinkage that causes failure.
 

A graphite and 30 ml fused silica crucible were spray­

coated with 200 mesh alpha crystalline quartz powder. A
 

slurry of 3 parts binder and I part powder did not spray­

coat easily; therefore, non-uniform coatings were developed.
 

After drying the coatings at 2000C for 2 hours, the
 

crucibles were loaded with 30 gms of silicon, heated 100C
 

above the melt point for two hours, and cooled to room
 

temperature. The fused silica crucible shattered since
 

liquid silicon had penetrated under the coating. Possibly
 

the expansive transformation and high expansion coefficient
 

of approximately 7 x 10- 6 cm/cm0 C caused the coating to
 

buckle off the fused silica.
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For the graphite crucible, there was almost no trace
 

of the coating on the wall. Silicon ran to the outer
 

periphery of the crucible bottom, but did not penetrate
 

or crack either the crucible or thin section of silica.
 

The thin coating did not adhere to the crucible, and was
 

probably unable to support itself. Traces of the coating
 

were observed on the bottom. Debye-Sherrer x-ray diffrac­

tion patterns were made from quartz coatings that were
 

heated above the melting point of silicon. The patterns
 

contained few quartz liners but strong tridymite and
 

cristobalite patterns. The quartz apparently transformed
 

to a distorted cristobalite phase as suggested by Coyle.1
 

The graphite crucible spray coated with crystalline
 

quartz failed probably because it was not thick enough to
 

resist buckling.
 

Thicker liners appear more reliable because they can
 

be fabricated more reproducibly and are thicker, therefore
 

stronger. Liners can be fabricated by slip casting or
 

by casting directly in a graphite crucible. AVCO's
 

Materials Division has contracted to slip cast fused
 

silica and crystalline quartz liners.
 

In addition, some commercially available slip cast
 

fused silica crucibles are on order and will be evaluated.
 

It has been shown in the JPL wetting study that the slip
 

cast fused silica caused very little cracking of the silicon
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in contact with it. This supports our observations that
 

sintered coating prevents cracking of the silicon ingots.
 

Bonded fused silica particles are not strong enough to
 

break the silicon ingot. Crucibles fabricated out of
 

tridymite might be the ideal solution, since the coefficient
 

of thermal expansion of tridymite is close to silicon and
 

graphite. No stress would be induced on the ingot surface
 

for it would not have to tear free of the crucible.
 

Casting a liner directly in a graphite crucible
 

appears to have economic and technological advantages
 

over slip casting and therefore it is being pursued.
 

Basically, this process involves pouring a slurry into a
 

graphite crucible and extruding it up the sides of the
 

crucible with a mandrel. The mandrel describes the shape
 

of the crucible interior and is removed when the lining
 

is dry.
 

A slurry with approximately 70%, 325-mesh crystalline
 

quartz and 30% binder was poured into a graphite crucible
 

and a .100 wall thickness liner was extruded with a man­

drel. There was considerable porosity in the coating.
 

The crucible and liner were baked out on a hot plate at
 

800C for several hours. Before loading in the furnace,
 

several pieces of silicon were placed in this crucible
 

so they could be observed when they melted. A small
 

graphite crucible lined with a fused silica blanket and
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loaded with a small piece of silicon was also loaded into
 

the furnace. The furnace was evacuated and heated to
 

1400 C in 16 hours. The temperature was increased to
 

14180C and liquid was observed after two hours. It was
 

held at this temperature for 1% hours before the power
 

was turned off.
 

There was no sign of reaction between the quartz
 

liner and the silicon. Silicon penetrated into the pores,
 

but not into the graphite, and the silicon layer on the
 

bottom of the crucible was not cracked. Debye-Scherrer
 

x-ray diffraction patterns were made from the quartz
 

liner. The quartz has transformed to a distorted
 

cristobalite.
 

The silicon in the other crucible penetrated through
 

the fused silica blanket and cracked the crucible due to
 

SiC formation. The wetting characteristic of silicon
 

in vacuum appears to be sufficient to. cause silicon to
 

penetrate into open porosity or voids.
 

It appears that coatings and liners will have to be
 

dense with no interconnecting porosity since the silicon
 

will penetrate through any open path in the silica. In
 

view of this it is apparent that high density crack-free
 

liners are required. To achieve high density by slip
 

casting, small-size continuous particle distribution
 

(less than 10 micro meter) is required. A continuous
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particle size distribution is achieved by ball milling,
 

but air is also incorporated into the slip due to the
 

rolling action. The air can be removed by evacuating the
 

contents under a mechanical pump vacuum.
 

Shrinkage occurs during drying of the slip. Cracking
 

can occur if the rate of.drying is not carefully con­

trolled. The overall shrinkage can be controlled by con­

trolling the initial water content. A certain amount of
 

drying shrinkage is associated with thickness of the water
 

film between particles. By decreasing the thickness of
 

the water film, the over-all drying shrinkage is reduced.
 

The solids content can be as high as 83%. Unfortunately,
 

the water content cannot be reduced below this level or
 

the slip will not flow.
 

Crystal Systems has developed a pressure casting
 

technique where the slip is pressure cast in a graphite
 

mold to force the particles together and force the
 

water into the mold. This method minimizes shrinkage.
 

A 325 mesh quartz slip was prepared and evacuated
 

with a mechanical pump for run 66-C. Two liners were
 

slip cast in graphite crucibles. One liner was made using
 

30% DI water and the other using-30% coloidal silica
 

binder. The crucibles were heated up to 8500C for two
 

hours in vacuum to determine the degree of sintering
 

shrinkage and to determine the effect of the-high-low
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quartz displacive transformation. There was no evidence
 

of sintering or shrinkage in the crucible lindr made with
 

water. The liner made with the coloidal silica binder ex­

panded sufficiently during the low to high transformation
 

to cause the crucible to crack. It appears that the-bond
 

between the particles was too strong to allow for re­

arrangement during the expansion that occurred during
 

the transformation. On the other hand, the quartz particles
 

in the liner made with no binder were not bonded And
 

rearranged to allow for expansion.
 

It appears that the quartz expands more than enough
 

to make up for the sintering shrinkage. To allow for
 

particle rearrangement during sintering, the amount of
 

coloidal binder will have to be reduced-to decrease its
 

strength. Alternatively, the quartz powder can be heat­

treated to form tridymite before it is made into a slip.
 

25
 



DERIVATION OF THE
 

MAXIMUM THEORETICAL GROWTH RATE
 

In deriving the equation for the maximum growth rate,
 

it is assumed that the interface is hemispherical as shown
 

in Figure 2, Schematic of Crystal Growing Furnace. The
 

symbols and constants are identified in Figure 3, Identifi­

cation of Symbols, and the Temperature of the Heat Exchanger
 

and Helium Inlet and Exhaust Temperature vs-. Helium Flow
 

Rate is presented in Figure 4.
 

Furnace Shell 

(Vacuum Tight7-_ 

Heating Element F 
Pyrometer

Crucible -


Seed Crystal
 

Heat Exchanger. Thermocouple
 

Tungsten Tube
 

Vacuum Pump
 

Figure 2. Schematic of Crystal Growing Furnace
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Heat Flow for the Heat Exchanger Method is as
 

follows:
 

Latent Heat + Heat In = Heat Out
 

(1) L t + A K d =AK dT 
dt 1l dr s s dr
 

2rw 2 pdr
(2) d
(2 dm = = - assuming hemispherical growth interface 

r(3) 2rL at-dr 2 dT s dT(3)2 s 2 r 2 U­

(4)()dt =lS --s - dTdT K drI 

psL 

dT
 
dr K drs
(5) Maximum Growth Rate 


psL
 
(6)sd 2s L 


(6) 2rrK dT c Q (AT)ss heat removed by helium gas
drs p
 

dr CpQ (AT)
 

(7) Maximum Growth Rate 
 dr 27C=2(AT)
 

dr .2215 Cal/1O0C (ATC) Q 1/min
 

r2cm2 x 2u x 432 Cal/g x 2.3g/em 
3
 

dr_ 
~2 

3.54 x 10 - 5 Q (AT)
 

r
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Determine maximum growth rate assuming:
 

AT z 10000 C at 100 1 /min (Figure 4)
 

Q = 100 liter/min 

r =4 cm 

dr
- _3.5 -5 .218 cm/min
 

The preceding derivation and example shows that the
 

maximum growth rate is dependent on the helium flow rate.
 

To-maintain growth rate constant, the helium flow must be
 

2
 
increased as a function of r
 

There is no theoretical maximum growth rate based on
 

heat flow considerations. Growth rate is limited by the
 

practical consideration of how large a gradient can be
 

applied to the solid before it shatters.
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L latent heat of fusion - 432 Cal/g 

T temperature 

K1 = thermal conductivity of the liquid 

dT/dr I = thermal gradient.in the liquid at some 
point r1 close to the interface
 

Al = 21r 2 = area of the isotherm which goes 
through r1 - assume = to areas of interface 

k = thermal conductivity of the solid 

dT/dr = thermal gradient in the solid near the 
interface 

A 2rr2 = area of the interface s 
PS density of the solid at M.P. 2.3 g/cm2
 

dr/dt = radial growth rate 

m = 2/3rr3pS 

drdm/dt = mass fr.eezing per unit time = 2wr2 ps -t 

C = Specific heat of helium 1.252 Cal/goc 

(density of helium 0.1769 g/liter) 

C = .2215 Cal/liter 0C
 

Q= Flow rate - liter/min 

Figure 3. Identificatlion of Symbols
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SILICON INGOT SLICING
 

Efforts in crystal slicing were concentrated on
 

slicing silicon. Testing was directed toward the prob­

lems of wander, wafer surface quality, and blade life.
 

In conjunction with the slicing tests, wire and
 

wafer characterization was conducted and the feed
 

mechanism was modified to make it more rigid.
 

A summary of the cutting tests is presented in
 

Table II. All slicing tests were performed on 3.8 cm
 

(111) silicon cubes using 25 to 28 wires supported by
 

grooved rollers on either side of the workpiece.
 

Run 12 was intended to measure the effect on blade
 

wander with grooved blade support rollers positioned
 

on either side of the workpiece.
 

Twenty-five blades were used, made from 6 mil,
 

.15 mm stainless steel wire, coated with a I mil, .025
 

mm thick copper coating and charged two times with 45
 

pm natural diamonds.
 

During the run the machine was shut down for five
 

days while modifications to the blade supports were
 

made. In addition, prior to the shutdown, the water
 

and detergent 60:1 coolant used in runs 10, 11, and the
 

beginning of 12 was replaced with a water and Rust-Lick
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TABLE II.
 

SILICON SLICING SUMMARY
 

RUN PURPOSE 
FEED 

FORCE/BLADE 
lb gm 

AVERAGE 
CUTTING RATE 

mil/min mm/rin 
WIRE TYPE REMARKS 

12 Measure effects of 
blade wander with 
support rollers in 
position. 

.15 68 1.5 .038 Double impregnated 
45 pm diamond in 
copper plated .2 mm 
0 wire 

Run aborted midway due 
cutting rates. 

to low 

13 Continuation of 
run 12 with new 
wires. 

.15 

.20 
68 
90 

1.5 
2-3 

.038 

.07 
Double impregnated 
45 prn diamond in 
copper plated .2mm 

-wire 

Rollers show significant improve­
ment in blade wander. Damage at 
wire pack change. 

14 Test Nickel-
Diamond plated 
stainless, steel 
wires, 

.15 68 2.0 .05 400-mesh diamond 
nickel plated on 
.2 nm 0 stainless 
steel wire 

Wire breakage due to hydrogen 
embrittlement. 

15 Test cutting 
dry. 

Double impregnated loading observed. 
45 pm diamond in testing necessary. 
copper plated .2 mm 
0 wire 

Further 

16 Test run without 
rocking workpiece. 

.3 136 2-2.5 .05 Double impregnated 
45 pm diamond in 
copper plated .2 mm 
0 wire 

Twice normal feed forces were 
required to achieve usual cutting 
rates. Wafer surface quality poor. 

17 Test effects of 
slow non-
synchronous
rocking of work-
piece cycle/ 
minute. 

.2 90 2-3. .06 Double impregnated 
45 pm diamond in 
copper plated .2 m
0 wire. 

Very good surface quality and 
good cutting rates maintained 
throughout run. 



TABLE Il. (CONT.) 

SILICON SLICING SUMMARY
 

RUN PURPOSE 
FEED 

FORCE/BLADE 
lb gm 

AVERAGE 
CUTTING RATE 

mil/min rm/min 
WIRE TYPE REMARKS 

18-S First run using 
DiNi plated 
tungsten. 

.2 90 6.6 .17 400 mesh dinnd 
nickel plated an 
.127 mn tungsten wire 

Cutting rates dropped to 2.5 
mils/min at the end of this 
run. 

19-S Determine cause 
of cutting rate 
decrease, 

.2 90 2,5 .06 Same wire. This run was aborted midway 
through due to low cutting 
rates. 

20-S Wires used in 
runs 18-S and 
19-S turned up-
side down. 

.2 90 5.9 .15 Same wire. Good cutting rates until 
contact was made with glass 
mounting block, again drop­
ping to 2.0 mil/min. 

21-S Isolate cause of 
cutting rate de-
crease at comple-
tion of runs. 
Change mounting 
block to graphite. 

.2 90 2.75 .07 Same wire. Wire dressing with an 
aluminum oxide dressing 
stick. Cutting rates in­
creased and also increased 
with contact in graphite. 

22-S Life test of wires 
and effects of 
dressing. 

.2 9C 3.9 .10 Same wire. Good cutting rates and 
wafer quality. 

23-S Life test. .2 90 4,1 .10 Same wire. Light dressing prior to 
run. 

24-S Life test. .2 90 3.5 .09 Same wire,. Slight decrease in 
rates. 

cutting 

25-S Life test. .2 90 3.7 .09 Same wire. Cutting rate 
stabilizing. 

seems to be 



TABLE II (COW.) 

SILICON SLICING SUMMARY 

RUN PURPOSE 
FEED 

FORCE/BLADE 
lb gm 

AVERAGE 
CUTTING RATE 

mil/min mm/min 
WIRE TYPE REMARKS 

26-S Life test. .2 90 3.6 .09 Same wire. Amount of dressing and feed 
force are critical. 

27-S Life test. .2 90 3.7 .09 Sane wire. Wafer thickness may be 
changing due to support
roller degradation. 

28-S Life test. .2 90 3.6 .09 Sane wire. Very good wafer surface 
quality. No dressing prior 
to this run. 

29-S Life test. .2 90 3.7 .09 Same wire. Same as run 28-S. 

30-S Life test and 
test effects of 
machine modifica-
tions. 

.2 90 3.0 .08 Same wire. Stiffening feed mechanism 
has improved wafer quality. 
Final feed calibration not 
complete at this time which 
may account for decreased 
cutting rates. 

31-S Life test; in-
crease rate of 
rocking. 

Same wire. Calibration problem. Changed 
gear motor on rocking drive 
to 3.0 cycles/min. 

32-S Test effects of 
rocking 6 cycles/ 
min 

.2 90 4.2 .1 Sane wire. No pressure change during 
run. Improved surface 
quality. 



TABLE II. (CONT.) 

SILICON SLICING SUMMARY 

RUN PURPOSE 
FEED 

FORCE/BLADE 
lb gm 

AVERAGE 
CUTTING RATE 

m1/mn mm/min 
WIRE TYPE REMARKS 

33-S Test effects of 
changing blade-
head speeds at 
ten minute 
intervals 

.2 90 3.76 .094 Same wire. Steady increase in cutting rates 
with speed increases and steady 
increase in machine noise 80-100 
cycles/minute test range. 

34-S Test effects of 
slow bladehead 
half usual speed
10 cycles/minute 

.2 90 2.2 .06 Same wire. No significant improvement in 
wafer surface quality. 

Ul 35-S Determine 
optimm rocking 
speed 

.2 90 3.2 .08 Same wire. Small hydraulic lines on rocking 
slave changed to accommodate 
faster speeds which changed 
calibration leaving feed force
unknown 

/ 

36-S Test effects of 
dry cutting 

.2 90 3.76 .1 Same wire. Dry cutting was aborted due to 
a loading condition. Run con­
tinued wet with good cutting 
rates. No damage to wires 
from cutting dry. 



40:1 coolant.
 

Cutting rates throughout testing remained in the
 

1 to 2 mil/min, .;025 to .05 mm/min range at a blade
 

force of 0.15 pounds, 68 gms, per blade. Slicing was
 

interrupted for inspection of blades after one-half inch
 

of cutting, when cutting rate remained approximately
 

1 mil/min.
 

Run 13
 

Run 13 was a continuation of the cut begun-in
 

run 12 using a second set of wire blades from the same
 

lot of blade materials used in run 12. The coolant was
 

an ethylene glycol and water 1:1 solution as used in
 

runs I through 9.
 

Cutting rates, at a blade force of 0.15 pounds per
 

blade, were in the 1 to 2 mil/min, .025 to .05 mm/min
 

range as in run 12. An increase to 0.20 pounds, 90 gms,
 

per bladb resulted in an increase in cutting rate to the
 

2 to 3 mil/min, .05 to .075 mm/min range. Including
 

the possible effects of a shutdown from Friday afternoon
 

to Monday morning the cut was completed at a cutting
 

rate of 2 mil/min, .05 mm/min, which was holding steady
 

at the end of the run.
 

After slicing through the silicon block, a wire was
 

examined with a SEM. SEM photographs showing the diamond
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concentration and distribution and size are presented
 

in Figure 5, SEM of 8 mil, .2 mm Copper Plated Stainless
 

Steel Wire Impregnated with 45 Um Diamond Used in Run 13
 

(300X and 2000X).
 

It is interesting to note that there was no observ­

able damage to the wire such as diamond pull out or wear
 

on the copper plating. The cross-section illustrates
 

the low diamond concentration.
 

Wafer surface quality during periods of continuous
 

cutting was very good, with no scoring and almost no
 

visible waviness. Damage occurred where the blade set
 

was replaced after run 12.
 

The preliminary data currently suggests that taper
 

ranges from 0.5 to 1 mil, .0127 to .025 mm over a 1", 2.5 cm
 

depth of cut. Because of the limits of the current taper
 

measuring process, the meaning of these values over a
 

4 inch, 10 am depth of cut is presently unclear.
 

It does appear certain, however, that the use of
 

support rollers has been an important addition to the
 

process.
 

Run 14
 

In run 14, for comparison with the slicing perfor­

mance of diamond-impregnated wire blades, a set of 27
 

diamond-plated stainless steel wire blades were used.
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Figure 5. SD{ of 8 rail, .2 mm Copper Plated Stainless Steel Wire Impregnated with 45 w Diamnnd Used in
Run 13 (300X and 20001) 



The blades were fabricated with a proprietary process
 

by nickel plating 400 mesh diamonds onto a 5 mil, .13 mm
 

stainless steel wire. SEM photographs are presented
 

in Figure 6, SEM of 5 mil, .13 mm Stainless Steel Wire
 

Nickel Plated with 400 Mesh Diamonds, Unused, (300K and
 

2000X). Note the high concentration of diamonds in
 

relation to the impregnated wire. Swarf removal was
 

considered essential for this high diamond concentration.
 

Swarf could easily fill in the small spacing between
 

diamonds. In view of this, water with no additives
 

was flushed over the work and out the drain. This pre­

vented the possibility of swarf build-up that occurs in
 

the coolant during recirculation.
 

At a blade force of 0.15 pounds, 68 gm. per blade,
 

cutting rates held in the vicinity of 3 mil/min, .075
 

mm/min, during much of the run, but wire breakage was a
 

problem toward the end of the cut. This was apparently
 

the result of hydrogen embrittlement during plating,
 

related to the evolution of hydrogen. The wires were
 

not baked at 450°F as is a typical treatment for pre­

venting hydrogen embrittlement in stainless plated
 

products.
 

A wire that had cut completely through the silicon
 

block was examined with an SEM for signs of degradation.
 

An SEM of the used wire is presented in Figure 7, SEM
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Stainless Steel Wire Nickel Plated with 400 Mesh Diaunnds, Unused (300X and 200§C)
Figure 6. SEX of 5 mil, .13 mm 



Figure 7. S24 of .5 mil, .13 mu Stainless Steel Wire Nickel Plated with 400 Mesb Diamnd Used in Run 14, 
(30oX and 2000X) 



of .5 mil, .13 mm Stainless Steel Wire Nickel Plated
 

with 400 Mesh Diamond Used in Run 14 (300X and 2000X).
 

No signs of degradation can be observed. Loading and
 

swarf can be observed in some of the spaces between the
 

diamond particles.
 

Wafer surface texture in terms of waves, scoring,
 

and similar visible properties appeared particularly
 

good.
 

Run 15
 

Run 15 was a brief test of cutting dry with a
 

single wire of the double diamond impregnated type used
 

in runs 12 and 13. Results of the test were inconclu­

sive, but further testing of cutting dry is anticipated.
 

Run 16
 

In run 16 the workpiece was held rigidly without
 

rocking. Double impregnated wire blades of the type
 

used in runs 12, 13, and 15 were used. Water was used
 

as the coolant.
 

A blade force of 0.3 pounds, 136 gm. per blade
 

was required in order to obtain cutting rates in the
 

2 to 3 mil/min, .05 to .075 mm/min range. This was
 

twice the force required for comparable cutting rates
 

in run 8 and one and one-half times that required in
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run 13, runs in which the workpiece was rocked with
 

synchronous motion and a phase angle of 900.
 

Cutting rates of 2 to 2.5 mil/min, .05 to .065
 

mm/min were maintained at first; then wires broke and
 

cutting rates deteriorated to near zero at the end of
 

the cut.
 

In addition, wafer surfaces were uniformly wavy to
 

an unacceptable extent throughout the cut.
 

The run was considered verification of previously
 

held attitudes favoring the use of small contact areas
 

and low cutting forces for obtaining maximum cutting
 

rates and the best wafer surface quality.
 

Run 17
 

Run 17 was intended to determine the effects on
 

slicing performance of rocking the workpiece with a
 

slow, non-synchronous motion.
 

Blades were of the double impregnated type used in
 

runs 12, 13, 15, and 16. Water was used as a coolant
 

and the workpiece was rocked with a frequency of one­

half cycle per minute.
 

At a blade force of 0.2 pounds, 90 gm. per blade
 

cutting rates were maintained in the range of 2 to 3
 

mil/min, .05 to .075 mm/min throughout the run.
 

The wafer surfaces generated in this run were
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dramatically smoother in appearance than wafer surfaces
 

from previous tests, with virtually no waves, scoring,
 

steps or other typical surface damage.
 

The cut was made in one continuous operation with
 

no shutdowns and startups. In addition, prior to the
 

run the feed mechanism was modified slightly in order
 

to eliminate some of the play in rocking components.
 

The entire wafer surfaces from this run appeared
 

of comparable quality to the very best smaller areas on
 

wafers from earlier runs with synchronous rocking of
 

the workpiece at a phase angle of 900.
 

For slicing runs 18 through 36 a wire pack with
 

twenty-eight 5 mil, .127 mm diameter tungsten wires was
 

used. Tungsten was chosen as a core material because
 

of its high modulus of 50 million and high strength
 

400 thousand psi. Four-hundred-mesh diamonds were
 

electroplated on the wire with a nickel plating. SEM
 

photographs of unused wire are presented in Figure 8,
 

SEM of Tungsten Wire 5 mil., .127 mm Nickel Plated with
 

400 Mesh Diamond Unused (300X and 2000X).
 

The diamond appears buried beneath the nickel
 

plating in the unused wire and the concentration is much
 

lower than for the diamond plated stainless steel wire.
 

Feed forces for all runs was .2 pounds, 90 gm per
 

wire. Slow non-synchronous rocking of the workpiece
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Figure 8 SIN of Tungsten Wire 5 mil, .127 mn Nickel Plated with 400 Mesh Dianond Unused (300X and 2000X) 



was used for all tests.
 

Average cutting rates for each run are presented
 

in Figure 9. The average rates were calculated by
 

dividing the depth of workpiece by the length of time
 

required to cut through it. A cutting rate of over
 

6 mil/min, .15 mm/min was achieved for the first run
 

18-S until it cut into the glass mounting block. This
 

is illustrated in Figure 10, a graph of Cutting Rate
 

vs. Distance Cut.
 

The cutting rate remained below 2 mils/min, .05
 

um/min for the next run 19-S. It was terminated after
 

cutting 2 cm and the wire package was turned over.
 

Cutting rates of about 6 mil/min, 0.15 mm/min were ex­

perienced until the wires cut into the glass. Soaking
 

and cleaning the wires with methanol to remove swarf
 

or the epoxy bond did not increase cutting rates above
 

2 mil/min, .05 mm/min that were achieved at the end of
 

the previous run. SEM photographs of a section of wire
 

used in this run are presented in Figure 11, Tungsten
 

Wire 5 mil., .127 mm Nickel Plated with 400-mesh
 

Diamonds Used in Runs 18, 19, 20 (300X and 2000X). It
 

appears that nickel plating has been dressed away to
 

expose the diamonds since more diamonds are exposed than
 

on the unused wire. No cause for the low cutting rate,
 

such as loading or pull out, can be observed in these
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Figure 11. SE2 of 'ingsten Wire 5 mil, .127 mm Nickel Plated with 400-mesh Dianods Used in 
Runs 18, 19, 20 (300X and 2000X) 



photographs.
 

Light dressing with a soft A1203 stick increased
 

the rates to 2.75 mil/min, .069 mm/min for the remainder
 

of the run. A graphite mounting block was used rather
 

than the glass and cutting rates increased when the
 

wires cut into it.
 

For the next run 20-S, no degradation in cutting
 

rate was experienced. An average cutting rate of 3.9
 

mil/min, .1 mm/min was in fact achieved after light
 

dressing.
 

The glass mounting blocks that were used until
 

this run appear to have degraded the performance and
 

life of the wire after having cut into it. It may have
 

turned the diamonds in their bond or caused them to
 

become dull.
 

After the graphite mounting block was used, cutting
 

rates stabilized at approximately 3.5 mil/min, .9 mm/min
 

through run 29-S. Wafer surface quality appeared to
 

improve for each run. Sudden increase in feed force
 

and machine stoppage caused localized roughness in­

creases on the wafer surfaces. The taper for the worst
 

wafers was about I mil/inch, .001 mm/cm. Kerf loss was
 

approximately 8 mil, .2 mm for all wafers. Wafer-to­

wafer thickness variation increased from run 18-S to
 

29-S. The wires were not precision spaced in the wire
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package and increasing variation in wafer thickness
 

indicates a degradation of the grooves in the rollers.
 

After run 29-S the following machine modifications
 

were performed:
 

1. Refinement of cylinder (feed mechanism)
 

2. Stiffening of vertical plate (feed mechanism)
 

3. More flexible hoses installed on rocking
 

motion hydraulic system
 

4. Roller bearing surfaces changed to free
 

floating to allow self-centering
 

5. Roller material changed to nylon instead of
 

delrin.
 

Stiffening of the sensitive feed mechanism and
 

modification of roller support system were successful
 

as surface quality parallelism and wafer-to-wafer
 

thickness variation in run 30-S show improvement.
 

Someof the noise suspected to be from the feed
 

mechanism is in fact being transmitted through the
 

roller support system due to acceleration of the
 

bladehead. This condition may be minimized by altering
 

roller support system, but this will be an-inherent
 

problem when reciprocating a massive bladehead.
 

For runs 31-S, 32-S, and 35-S the speed of the
 

non-synchronous rocking was varied from one-half to
 

50 cycles/min. It was difficult to draw any conclusions
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from these tests since the run to run differences in
 

cutting rates outweigh the effect of changes in rocking
 

speed. For run 35-C, the rocking rate was changed
 

during the run. It appeared that the cutting rate increased 

up to about 6 cycles per minute and held constant for
 

further increases. More conclusive results will be
 

obtained when the number of wires is increased, since
 

this increases the sensitivity.
 

Runs 33-S and 34-S were condtcted to determine the
 

effect of bladehead speed on cutting rate and surface
 

quality. For run 34-S the entire cut was made at
 

40 cycles/min, half the usual speed. Cutting rates of
 

2.2 mil/min, .06 mm/min were maintained throughout
 

the run. There was no observable difference in surface
 

quality over previous runs. For run 33-S, the cutting
 

rate increased directly with the bladehead speed, as
 

shown by other investigation for loose abrasive slicing.
 

Run 36-S was conducted to determine the effect of
 

dry cutting. The dry cutting was aborted after
 

cutting less than a mm, due to loading of the blade.
 

The run was continued wet with an average cutting rate
 

of 3.76 mil/min, .1 mm/min, indicating that there was
 

no damage to the wire from cutting dry.
 

After 18 runs with the same diamond-nickel-tungsten
 

blade package, all producing the highest quality wafers
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obtained from the program to date, no significant
 

deterioration of performance had been observed. No
 

wires or wafers have broken throughout these tests.
 

If there was no mechanical failure of the wire, only
 

degradation in cutting performance, the whole blade
 

package could be turned over for further cutting.
 

As blade life increases, a critical analysis of
 

wire abrasive and bond degradation is important due to
 

the time element involved in testing to destruction.
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CONCLUSIONS
 

1. Fast solidification rates were achieved by re­

ducing the furnace temperature as close to the melt point
 

as the instrumentation would allow--30 C. Good single
 

crystal growth was achieved on top of the seed by this
 

technique, but the periphery of the seed was too cool to
 

seed single crystal growth.
 

2. Rapid-ly cooling ingots from-1000oQC by quen-chig
 

with helium did not prevent cracking of the ingot by
 

shattering the crucible.
 

3. Fused silica or quartz bodies fabricated from
 

bonded powders must be dense to prevent penetration. The
 

wetting characteristics of liquid silicon in a vacuum
 

atmosphere were sufficient to cause penetration into open
 

porosity cracks or voids.
 

4. Grooved rollers positioned on either side of the
 

workpiece have been effective in reducing wander to less
 

than I mil/inch or 0.01 mm/cm.
 

5. Surface quality was dramatically improved with
 

the use of slow, non-synchronous rocking of the workpiece.
 

6. Slicing a stationary workpiece required twice the
 

blade force (0.3 lb/wire) to obtain cutting rates com­

parable to those measured while slicing a rocking
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workpiece. This resulted in wire breakage, rapid de­

crease in abrasive life, and rough, wavy silicon wafer
 

surfaces.
 

7. Wires fabricated by nickel plating diamond on a
 

tungsten core have exhibited good performance for over
 

eighteen runs. No wires or wafers have broken, and
 

slicing performance and wafer quality have not deteriora­

ted after eighteen cuts through 4 x 4 cm workpieces.
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SCHEDULE OF MILESTONES--INGOT'CASTING PArE 1 OF 2 

TEM DESCRIPTION 

I Modify instrumentation 

Do 1 7 

4 

5 

6 

7 
8'" 

Develop crucible/coating com. 

Develop max. growth rate 

Program & Design Review 

9 Characterization m om 

11 

12 

13 

14 

Determine actual growth rate 

Growth rate function of h. e. 

=we-, =4 

MEE- 7 -" 

15 

16 

17 

Growth rate function of crucib e-
__,_ 

Monitor interface position----

-

---­

.--­ ,- -

19 Growth rate function of orien. 

201_ 
_ _ _ _ _ _L 
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- - - - - --- 

IT DSRMonth 
DESCRIPTION 

Growth rate function of d 

3 

4 
S 
6 

7 

Draft final report 

9 

13 

14 

15 

16 

17 

18 

19 

20 

SCHEDULE OF MILESTONES--Ingot-Casting PAGE 2 OF 2 

1976/1977 
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SCHEDULE OF MILESTONES--INGOT-SLICING PAGE I OF 2 

IE DESCRIPTION Month 1976/1977 

1 Characterization 

3 Program & Design Review
 

S Modify Varian wire support-­

6 - ­

7 Modify Varian coolant system
 

9 Diamond-plated tool 
.005" 0 m- ]--n
10 _-__ _- _- _ _ _ _-__ _.. ....... 

11 Diamond-impregnated tool .005"
 

12
 

13 Slicing test -- 4cm cube
 

14
 

15 Diamond-impregnated tool -.003
 

16
 

17 Diamond-plated tool - .003"
 

19 Sl'icihg, tests - 10cm kerf length 

20 
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SCHEDULE OF MILESTONES-Ingot Slicing PAGE 2 OF 2 

1 
2 
3 

DESCRIPTION 

Slicing tests -.Ol5cm wafers 

Slicing test-10cm x 15cm 

Month 1976/977
D J __ 

.. -

A 'T __ 

aim 

4 
5 

6 
Slicing test - .015 wafers---

6,__,___,__ _,__ _,,-- - - - - - -

--­
- - - - - -:- -

7 Draft final report.---­

9IF 
10 

*1 - -­

12 

13 

14 

16 

17! 

1918 __ _ __ _ _- , -ii 
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