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EFFECT OF DIGITALLY COMPUTED DRIVES ON PERFORMANCE OF
CONTINUOUS LINEAR SYSTEMS

Russell V. Parrish
Langley Research Center

SUMMARY

The dependence of the Bode response upon digital sample rate for first-
and second-order linear continuous systems driven by a digital computer is
derived. Open-loop lead compensation introduced within the digital computer
in order to increase the system bandwidth is also examined in terms of derived
Bode responses. This introduction of lead terms within the digital computer
(open-loop compensation) 1s shown to be effective at operating frequencies
below the Nyquist frequency. Indeed, in most practical applications, empirical
determination of these lead coefficients appears to be a sufficient compensa-
tion method.

INTRODUCTION

The introduction of lead terms into the drive equations of an external
hardware device in order to extend the bandwidth of the device is a common prac-
tice in flight-simulator systems. The devices are generally position-driven
servo systems (although the techniques presented herein are not restricted to
position-driven systems) used to present visual or motion cues to the pilot
of the flight simulator, and compensation is desired to lower the time delays
involved. The practice, when carried out in the continuous domain (i.e., within
an analog-computer simulation), amounts to open-loop continuous compensation.
The compensator has to attempt to act like an inverse plant (the plant being
the hardware device). Such compensation had been successfully used in many
simulators and was generally understood within the simulation community.

With the advent of digital simulation, the use of lead terms was continued
(refs. 1 and 2). However, unlike the use in analog simulation in which the
compensation was effective within the linear operating range of the servo, the
use in digital simulation was less effective, particularly at low iteration
rates. Moreover, the problem is not generally well understood within the simu-
lation community. Indeed, even the case of no compensation (i.e., the effects
of a digital drive on an analog-system response) is not well understood.

This paper presents the derivation of the dependence of the Bode response
upon digital sample rate for the following cases:

Effects on first-order linear systems

No compensation
First-order compensation



Effects on second-order linear systems

No compensation
First-order compensation
Second-order compensation

Bode plots for each case at various sample rates are also presented. These
plots may be used to determine the increased bandwidth obtainable for digi-
tally driven first- or second-order linear systems through the use of open-loop
lead compensation at selected sample rates. In actual practice, however, non-
linearities of the servo systems, such as velocity or acceleration limits, are
encountered, and the increase in bandwidth is not as great as that of the
linear system.

B,C

c(nT)
c(s)
e(t)
e(z)
cgs(nT)

cgs(t)

SYMBOLS
zero of Z-transfer function for output of first-order system GGOH(z)
parameter of first-order linear model of position-driven servo, 1/sec

parameters that determine the zero of Z-transfer function for output
of second-order system GGoy(z)

system output value at discrete time nT

Laplace transform of system output

system output as continuous function of time

Z-transform of system output

system output value at discrete time nT during steady state
system output as continuous function of time during steady state

zero of Z-transfer function for digitally compensated second-order
system output c(z)

zero of Z-transfer function for first-order digitally compensated
second-order system output c(z)

zero of Z-transfer function for second-order digitally compensated
second-order system c¢(z)

differential of =
coefficient of sine term of cgg(nT) of first-order system
coefficient of sine term of cg4(nT) of second-order system

coefficient of cosine term of cgg(nT) of first-order system



u(s)

uH(z)

coefficient of cosine term of cgg(nT) of second-order system
coefficient of cgg(nT) of first-order system

coefficient of cg5(nT) of second-order system

Laplace transfer function for linear model of position-driven servo
Laplace transfer function of notch filter

Laplace transfer function of zero-order hold

Z-transform of G(s)Ggg(s)

Laplace transfer function of continuous compensator
Z-transform of H(s)

Laplace transfer function of optimal compensator

imaginary part of complex number

index of simple poles of a Z-transfer function

-

number of simple poles of c¢(z)

index of sample period

dummy variable for =z

simple pole of Z-transfer function

real part of complex number

parameter related to damping parameter of second-order model of
position~driven servo, 1 -§82

Laplace operator

sample period, sec

time, sec

Laplace transform of drive signal without compensation
Z-transform of u(s)H(s)

normalized variable combining sample period and natural frequency of
second-order model of position-driven servo



y normalized frequency variable

Z{ } Z-transform of function within braces

z Z-transform operator

a,B dummy variables

2 damping parameter of second-order model of position-driven servo

Eny&2 damping parameters of notch filter

w frequency of sinusoidal drive signal, rad/sec

Wy notch frequency of notch filter, rad/sec

Wy natural frequency of second-order model of position~driven servo,
rad/sec

wp secondary frequency of notch filter, rad/sec

Abbreviations:

DAC digital-to-analog converter

Z0H zZero-order hold

SAMPLED DATA MODELS

Figure 1 is a block diagram which presents the general form of the sampled
data model used in deriving the steady-state sinusoidal sequence response of
the digitally compensated position-driven servo. The drive signal is generated
within the digital computer. Examples of such drives are an aircraft altitude
signal for a terrain model board, a target image azimuth angle for an image
projector gimbal, and a motion base vertical position. Quite often, velocity
and acceleration terms exist naturally within the simulation program, and the
necessary terms therefore exist naturally for lead compensation. When these
terms do not exist, it is possible to derive and include new equations without
resorting to differentiation of the position signals. (Intuitively, digital
differentiation would not add lead information since the process is dependent
only on past and present values of position.)

Once the drive signal is constructed within the digital computer, it is
output to the position-driven servo through a digital-to-analog converter (DAC),
a sample-hold device, at a fixed iteration rate of 1/T. In many applications
it is necessary to insert an analog notch filter between the DAC and the servo
to remove the stair-stepping effect of the DAC (regardless of whether lead com-
pensation is being used or not). The notch filter, with the notch set at a
frequency of 1/T Hz, will be ignored for the purposes of this paper, even
though it has some effect on the servo response. The rationale for ignoring
this effect is discussed in a later section.

i



The position-driven servo is modeled as a linear first- or second-order
unity-gain system by ignoring nonlinear characteristics such as amplitude,
velocity and acceleration limits, friction, stiction, and so forth.

The compensation method considered here has been the application of a con-
tinuous method to a discrete system (i.e., the compensator has attempted to
cancel the pole or poles of the continuous system only). Figures 2, 3, and 4
show the specific forms of the compensator for the first- and second-order
systems.

Salzer, in reference 3, proves that a sinusoidal input sequence of angular
frequency W (where W is less than the Nyquist frequency), when operated
upon by a discrete transfer function, results in a sinusoidal output sequence
which is of the same frequency and which has an amplitude and phase relation-
ship to the input. The derivation of these amplitude and phase relationships
for the first- and second-order systems, both without compensation and with
compensation, are presented in appendixes A and B.

BODE RESULTS

Bode responses are presented in figures 5 to 12. The amplitudes and phases
of the steady-state sequence responses to sinusoidal sequence inputs are given
as a function of normalized frequency (normalized to the natural frequency of
the servo) for various normalized sample periods (normalized to cycles of the
natural frequency of the servo per sample).

First-Order Linear System

Figure 5 presents the Bode plots at various sample periods for the continu-
ous first-order linear system, the digitally driven first-order linear system
without compensation, and the first-order compensated system.

No compensation.- The differences in response between the digitally driven
system without compensation and the continuous system occur in both amplitude
and phase. However, the major differences occur in phase; in fact, the phase
lag of a zero-order hold alone is -180(wT/2m) deg.

First-order compensation.- As may be seen in figure 5, compensation of the
digitally driven system can be very effective. Indeed, at iteration rates above
five samples per cycle (aT/2W < 0.2), the compensated response is superior to
the continuous system response. However, operating ranges must be restricted

w 1 Zﬂ)

to frequencies below the Nyquist frequency (— < E —5
a a

Second-Order Linear System

Normalization to remove the effects of the damping parameter of the
second-order linear system on the Bode response was not possible. Therefore,
three damping factors are treated (E = J2/2, 0.85, and 0.45).



Figures 6, 7, and 8 present the Bode plots for the continuous second-order
linear system with damping factors of J?/Z, 0.85, and 0.45, respectively, and
for the digitally driven system without compensation and with first-order com-
pensation. The plots are presented at various sample periods.

No compensation.- The differences in response, shown in figures 6, 7,
and 8, between the digitally driven system without compensation and the continu-
ous system occur in both amplitude and phase. However, the major differences

occur in phase.

If an attempt were to be made to estimate the frequency and damping of a
linear second-order system by driving the system sinusoidally from a digital
computer in order to obtain the Bode response, the estimates would be low. For
example, the estimates that could be obtained from the compensation cases of
figure 6 are presented in table I.

First-order compensation.- As may be seen in figures 6, 7, and 8, improve-
ments in phase lag obtained through compensation are accompanied by increased
gains. Higher iteration rates (lower values of mnT/Zﬂ) improve the phase
response but incur increased gains (greater than unity). It appears from com-
paring the three figures that first-order compensation of second-order systems
will be more effective for highly damped systems, thereby giving more improve-
ment in phase lag with less increase in gain.

Second-order compensation.- Unlike first-order compensation, second-order
compensation of the second-order system yields Bode responses that are practi-
cally independent of the damping parameter. Figure 9 presents the Bode plots
for the second-order digital compensation of the second-order linear system.
For the three damping factors selected (J§/2, 0.85, and 0.45), the amplitude
and phase responses overlap too closely to differentiate among them on the
scales of figure 9. As may be seen from figure 9, second-order compensation
obtains large improvements in both gain and phase lag for the iteration rates

w 1 2n
shown at operating frequencies below the Nyquist frequency {— < — —].
wh 2 wpT

NOTCH-FILTER EFFECTS
The insertion of an analog notch filter (ref. U4) between the DAC and the

servo has been mentioned previously. The filter is of the form

wp2 2 s? + 2ENONS + wN2

Gy(s) =
wy2/ 52 + 2Ewps + Wyl

The notch frequency wy is set at 2m/T while the secondary frequency wp

is usually set at about 1/3 wy. Normalized to the scales of figures 5, 6, 7,
8, and 9, the preceding frequencies become wy/a = 2n/aT, wy/w, = 2W/w,T and
wp/a = 2n/3aT, wp/wp = 20/3w,aT. Therefore, even the secondary frequency
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1 2n 127
approaches the Nyquist frequency QE—E; and -E-——-> and makes a thorough analy-
a

w,T
sis difficult and unnecessary. Figure 10 presents the Bode response of the
typical notch filter. The effects of the notech filter on the response of the
linear servo follow approximately the superposition theorem, and the filter
affects both the uncompensated and the compensated system response in the same
manner. Thus, the effectiveness of compensation, as discussed from figures 5
to 9, is practically unaffected by the inclusion of notch filters in the sys-
tem. TIn any case, total system response may be approximated, if desired,
through the use of the superposition theoremn.

IMPROVED COMPENSATION

The compensation method considered here has been the application of a con-
tinuous method to a discrete system (i.e., the compensator has attempted %o
cancel the pole or poles of the continuous system only). An intuitively better
compensator of the discrete system would be the inverse of the zero-order hold
and the plant. In the continuous case,

HO(s) =

G(s)

In the discrete case,

T
HO(s) = ————
Gou(s)G(s)

The realization of H9(s), even within a digital computer, is not possible.
However, approximations are available. For example, the two-term series expan-
sion for eS3T yields

T sT

Gou(s) , _ _1

esST

and the three-term series expansion yields

292
1+ sT + 2 T
T
Gog(s) ) 1 .37
2



Use of even the two-term approximation increases the complexity of the
compensation, however. A first-order plant would require second-order
compensation:

1 T
Ho(s)=1+s<—+T + s2 —
a a

and a second-order plant would require third-order compensation:

2 1 28T T
HO(S)z1.+s<—£+T>+s2—+i>+s3_
Wy wn2 Wy wn2

Use of the three-term approximation involves even more complexity. For
the first-order plant,

2 2

1+S<T +l>+s2<}‘—+l>+s3('r—>

a a 2 2a

1+s(1>
2
1 T T T2 T2 713
14+ sl—+ =]+ 82—+ —] + 83— - — ] +.

a 2 2a 4 Ja 8

and for the second-order plant,

2 2
1+ST+§ +32L+T—+§ +s3—T—+£_T
Wy wn2 2 Wp wn2 Wn

ey

26 T of 1 ET T2> T £T2 T3>
+8[— +=]+ 82— + 2+ —)+ 83 +— - =]+ . ..
wn 2 ( 4 (aDnZ 2wn 8

HO(s)

HO(s)

n
—_

Examination of the responses shown in figures 5 and 9 for particular values
of a, wp, and T may reveal, in most practical applications, that these



increases in complexity are not warranted. However, the additional lead sug-
gested by these approximations without a change of order, as shown in table II,
can be analyzed with the previously developed sample-data methods.

Figure 11 presents the Bode plots for the first-order system with no com-
pensation, and with the three different first-order compensators of table II.
Figure 12 presents the comparable results for the second-order linear system
with a damping parameter of J2/2.

The additional phase improvement presented in figures 11 and 12 is obtained
from the additional lead, but at the expense of gain distortion. It is there~
fore recommended that, rather than attempting to cancel the system poles or to
approximate the inverse hold-plant system, one should empirically determine the
lead coefficients of the compensator, possibly by using the values of table II
as starting values. Empirical determination of the coefficients may allow for
response improvements in light of the nonlinearities of the servo system, in
addition to improvements above and beyond those obtained from using estimates
of the continuous system poles.

CONCLUDING REMARKS

The dependence of the Bode response upon digital sample rate for first-
and second-order linear systems, both with and without open-loop compensation,
has been derived. Bode plots that may be used to determine the increased band-
width obtainable for digitally driven first- or second-order systems through
lead compensation were then presented. The examination of these plots revealed
the following:

The effects of driving a continuous first- or second-order system from a
digital computer are manifested chiefly within the Bode response of the system
as changes in phase. Attempts to estimate the natural frequency and damping
of a second-order system from Bode responses obtained in such a manner (i.e.,
digitally driven) are likely to result in low estimates.

The introduction of lead terms into the drive equations within the digital
computer so as to extend the bandwidth of the system has been shown to be effec-
tive at operating frequencies below the Nyquist frequency. Indeed, first-order
lead compensation of first-order linear systems, and second-order lead compen-
sation of second-order systems, give excellent improvements in both phase and
gain response, particularly at iteration rates above five samples per cycle of
the natural frequency of the system. First-order lead compensation of second-
order systems gives improvement in phase response that is accompanied by
increases in gain response (greater than unity).

The improvements in phase, with accompanying gain changes, may not be
fully realized in practical applications since nonlinearities of the servo sys-
tems (such as velocity limits, acceleration limits, friction, etc.) often limit
the possible increases in system bandwidth.
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Attempts to approximate the inverse hold-plant discrete compensator may
be unwarranted in terms o&f Improved response. Empirical determination of lead
coefficients for the compensator appears to be more practical.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

August 8, 1977
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APPENDIX A

DERIVATION OF BODE RESPONSES FOR FIRST-ORDER LINEAR SYSTEM

This appendix derives Bode responses for the first-order linear system.
The first-order system is to be solved for the case of no compensation.and the
case of first-order compensation. -

No Compensation
The Bode response of a first-order open-loop linear system driven by a

digital-to—analo% converter (DAC) may be obtained directly from the substitu-
tion of z = eJ¥l into the Z-transform of the system (ref. 5) as follows:

Given
G(s) o
s + a
1 - ¢-sT
GOH(S) =
s
then
z -1 [1 1 1 - e-aT
GGoy(z) = Z<G(S)G0H(s)} = Z{\— - =
Z S s +a z - e-aT

Substitution of z = eJWT yields

(1 - e—aT) (e-ij - e-aT)

GGOH(eij) - -
(eJWT _ g-aTy (o-JwT _ g-aT)

(1 - e=@T)(cos wT - e-aT __j sin wT)

1 - 2e-aT cos WT + e—2aT

Since

Amplitude = RZ + 12

11



APPENDIX A

and

I
Phase = tan—!{—
R

then, finally,

1 - e-aT - ~
Amplitude = \/cos2 wT - 2e-aT cos wT + e-2aT 4 s5in2 wT
1 - 2e=aT cos wT + e-2aT
1 - e—aT
1 - 2e-aT cos wT + e-2aT
and

-sin WT
Phase = tan—] < )

cos wT - e-aT

First-Order Compensation

A block diagram of the model-to be used in deriving the Bode response of
the first-order digital compensation of the first-order linear system is shown
in figure 2. The drive signal is a sine wave, and the compensator is the
inverse of the plant. The Z-transform of the system output is

e(z) = uH(z)GGoy(z)

and is derived in the following manner:

Given

u(s) =

H(s)

12

R



APPENDIX A

i then

W\ s + a
ulH(z) = 2 <—)———————{}
{a s2 +w2

Now let y = w/a and x = aT so that

1
yz(z - cos Xy + — s8in xy)
y

uH(z) = - -
(z - edX¥)(z - e~ JXY)

Given

G(s) =

S + a
1 ~ ST
GOH(S) =
s

then

G (2) z -1 . a 1 - e X
Z = =
OH z s(s + a) g - e-X

1
Now let A = -cos Xy + — sin xy so that, finally,
y

y(1 - eX)z(z + A)
C(Z) =

(z - e ¥)(z - eJX¥)(z - e~ JXV)

The Bode response for the system will be obtained from the inverse
Z-transform of the system output c(z). The method of solution used to solve
the no-compensation case, that is, substitution of z = eJT into H(z)GGpu(z),
would not yield the correct results for this system; rather, the results would
be applicable to this system with an additional sampler placed ahead of H(s).
The inverse Z-transform is obtained by use of the relation (from ref. 5)

1
c(nT) = —— e(z)zn-l4z =

k
2mj .

[z0=1(z - py)e(z)] 2ps

i=1

13




Inversion of

results

e(rT) = y(1

= y(1

= y(1

= y(1

APPENDIX A

y(1 - e X)z(z + A)

C(Z) =
(z - e ¥)(z - eJX¥V) (2 - e~ JXY)
in
zl(z + A) zl(z + A) zl(z + A)
- e} - - + - + -
(z - eJX¥)(z - e=JXV) zea-X (z - e X)(z - e JIXY) z=edXy (z - e X)(z - eJ¥¥) zma-JXY
x) e~NX(e=X 4+ 4) eJNXY(1 + Re~JXY - e~XeJX¥ - ge~X) e INXY(1 + ReJXY - eXe-JX¥ _ Ae‘x).l
- e~ + -
(1 - 2e~¥ cos xy + €2X)  2j sin xy(1 - 2e~X cos xy + e~2¥) 2j sin xy(1 - 2e~* cos xy + e~2¥) |
% e NX(eg-X 4 1) sin nxy(1 - 8e™¥) + A sin (n - 1)xy - e ¥ sin (n + 1)xf}
- e” +
1 - 2eX cos xy + e~2X sin xy(1 - 2e~¥ cos xy + e~2X)
x) e NX(e~X 4+ 4) sin nxy[1 - Ae X 4+ (A - e%) cos xy] cos nxy[(A + e~X) sin xy]
- e” + - -
1 - 2e~¥ cos xy + e2X sin xy(1 - 2e~¥ cos xy + e~2X) sin xy(1 - 2e~X cos xy + e~2X)

The first term in the preceding equation is a transient term that is approxi-
mately zero at steady state (large values of n). Let

Then

14

E{ =1 - 8%+ (4 -eX) cos xy

-(A + eX) sin xy

1]
1

y(1 ~ e™X)

sin xy(1 - 2e~¥ cos xy + e~2¥%)

cgs(nT) = G1(Eq sin nxy + Fq cos nxy)




APPENDIX A

where c¢gg(nT) implies large values of n. By polar conversion, the amplitude
and phase lag of cgg(t), the sine-wave reconstruction through the points of
egs(nT), now become

Amplitude = G1\/E12 + Fq2
and

F1
Phase = 57.3 tan~1 —
Eq

15



APPENDIX B

DERIVATION OF BODE RESPONSES FOR SECOND-ORDER LINEAR SYSTEM

This appendix derives Bode responses for the second-order linear system.
The second-order system is to be solved for the cases of no compensation,
first-order compensation, and second-order compensation.

No Compensation
The Bode response of a second-order open-loop linear system driven by a

digital-to—ana%o% converter (DAC) may be obtained directly from the substitu-
tion of 2z = eJW into the Z-transform of the system as follows:

Given
(.L)n2
G(s) =
s2 + 2Ewps + wn2
1 - e-sT
GOH(S) =
s

then

7z - 1 1 s + 2Ewp
GGpg(z) = Z{=— - -
z S (s + Ewp)? + wp?(1 - £2)
Let x = wyT and r o V1 - g2 so that

g g
z<; - e5X cos rx - — e=EX sin rx| + [e=28X - e-EX cos rx + — e-8%X sin rx
r r

GGQH(Z) =
z2 - 2ze~5X cos rx + e-2EX
Let
_rx € _rx o
B=1-etXcosrx-—=e EX sin rx
r
and
-2EX -Ex 3 ~EX a3
C = e=28X _ e-EX cos rx + — e~&X sin rx

r

16



APPENDIX B

then

zB + C
GGOH(Z) =

22 - 2ze~&X cos rx + e—28X

Substitution of z = eJwT yields

(B cos wT + C) + jB sin wT

GGOH(eij) =
(e=2Ex 4 cos 2wT - 2e~%%X cos rx cos wT) + j(sin 2wT - 2e=EX cos rx sin wT)
Let
a = e28X 4 cos 2wT - 2e~%¥ cos rx cos wT
and

B = sin 2wT - 2e~&X cos rx sin wT

As a result,

BB cos wT + C) + jB sin mTi] (a - jB)

GGoy(edwT) =
OH o + jB (a - jB)
[@(B cos wT + C) + BB sin mT] + jEuB sin wT - B(B cos wT + Cﬂ
o2 + B2
Finally,

]
Amplitude = ——2\/@(3 cos wT + C) + BB sin wT]2 + [aB sin wT - B(B cos wT + c)) 2

a? + B

and

oB sin wT - B(B cos wT + C)
a(B cos wT + C) + BB sin wT

Phase = tan-! [

17



APPENDIX B
First-Order Compensation

Figure 3 presents the block diagram of the model to be used in deriving
the Bode response of the first-order digital compensation of the second-order
linear system. The Z-transform of the system output is

e(z) = uH(z)GGoy(z)

and is derived in the following manner:

Given
w
u(s) =
52 +w2
2Ewys + wn2
H(s) = —mmm8m8—
w2

then

w 28wps + wp?

28w s Wy /28
uH(z) U— —— > =7 +
02 2 + w2 0y \s2

w2 52 4wl

Let y & w/w, and x = w,yT so that

2€yz<z - cos Xy + E%_ sin xy)

y
uH(z) = - -
(z - edX¥)(z - e~JXY)
Since
zB + C zB + C
GGog(z) = = - :
22 - 276X cos rx + e=X&X (7 - e=5XeJrX)(z - etXe-Jrx)
and if Dq 1is defined as
1
D1 = -cos xy + 5—— sin xy

18
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APPENDIX B

then, finally,

2Eyz(z + Dq)(zB + C)
_ (1)

e(z) =

(z - eJX¥)(z - e‘jiy)(z - e~EXeirx)(z - e-fXe-Jrx)

Second-Order Compensation

The block diagram of the model to be used in deriving the Bode response
of the second-order digital compensation of the second-order linear system is
shown in figure 4. The Z-transform of the system output is derived in the
following manner:

Given
w
u(s) = ——
s2 + w2
s2 + 2Ewps + wn2
H(s) = -
wn2
then
w s2 2Ewps + wn2
ulH(z) = 2

_;5 (s + jw)(s - jw)

From Z-transform theory (ref. 5),

2
Z
uH(z) = (p - pi)—————E— uH(p)
- eIp =D
i 2 e P=Pj
Therefore,
z o (G2 + 2380w + wp?
UH(Z) = — .
Z - eJU)T wn2 2jw
VA w (-jw)2 - Zj(g(ky,l)n + U)n2
+ ———— —
7 - e—JwT wnZ -2jw
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Let y = w/wpy and X = wpT. Then

i 2[(1 - y2) + 32y |(z - e~35Y) - 2[(1 - y) - jggy](z - e3%Y)

uH(z) _ )
2j(z - eJXY)(z - e~ JXV¥)
z[2(1 - y2) = (1 - y2)e=I%XV + j2Eyz - j2rye-IXY]
2j(z - eJX¥)(z - e-J%¥)
z[}(1 - y2) - (1 - y2)edxy - Jetyz + ngyeri]
2j(z - edX¥)(z - e-JXV)
z[1 - y2)(23 sin xy) + JY¥yz - jUgy cos Xi]
2j(z - eIXY)(z - e=JXV)
1 - y2 , >
2Eyz(z - COS Xy + sin xy
) &y
(z - eJXV)(z - e-JxV)
Let
1 - y2
Do = -cos xy + sin xy
2 y 2%

As a result,

2tyz(z + Dp)
uH(Z) =

(z - eJXY)(z - e=JxV)
Since G(s) and GOH(s) are unchanged from the first-order compensation case,

zB + C

GGoy(z) = . -~
(z - e~EXelrx)(z - e-&Xe-Jjrx)

20
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APPENDIX B
Finally,
2Eyz(z + Dp) (2B + C)

e(z) = (2)

(z - edXV)(z - e~ JXY)(z - e~EXeirX)(z - e~bXe-JrX)

Inverse Z-transform of Second-Order Linear System

The difference between equation (1) and equation (2) lies wholly in the
difference (for a given x, y, and &) in the constants Dq and Dp. There-
fore the Bode response can be derived from the equation for either case, with
the other case being obtained by a mere change of subscript. Let D = Dq or Dy,
depending on the desired compensation; then

28yz(z + D)(zB + C)
e(z) =

(z - eJX¥)(z - e~JXV)(z - e-EXeirX)(z - e-EXe-Jrx)

Inversion of c¢(z) results in

= |gn=1 - eJdx : n-1 - e-Jx .
e(nt) = [20-1(z - e3WW)e(2)] __juy + [2071(2 - e=3W)e(2)] _ _ixy
+ [?ransient terms that are (functions x e-nExi]

At steady state,

(T = 2 eJNXY (eJXY 4+ D)(eJX¥YB + C)
CSS n = y

2j sin xy(eJXY - e-EXeJrx)(eJXy - e-EXe-Jjrx)

e=JnXy(e=-JXY¥ 4+ D)(e~JX¥B + C)

2j sin xy(e~JXY - e-8XeJrX)(e-JXy - e-&Xe-jrx)

Let

28y

Gy =
sin xy(eJ¥Xy¥ - e—ExejPX)(e-jxy - e~EXoJrx) (eJxy - o-EXe-Jrx)(e-Jjxy - e-Exg-Jirx)

(3)
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oo -

Then

eJnxy . . . . .
cgs(nT) = Gzl:Z (eJXY 4+ D)(eJXYB + C)(e~JXY - e-EXeJrX)(e-J%Xy - g-&Xe-Jrx)
J

e-Jjnxy

2]

(e=JXY + D)(e=JXVB + C)(eJXV - e-EXejrx)(eJxy - e'gxe“jrxﬁ

G2 . A
—([eJ'nXYB + (DB + C)ed(n=1)xy , peed(n=2)xy|
27

- e-gx{ﬁej[1n+1)xy+rx3 + (DB + C)ed(nxy+rx) , DCej[Zn-T)xy+rﬂ
+ Bedl(n+Mxy-rx] . (DB + C)ed(nxy-rx) . pced [(n-”XY-PX]}
+ e‘2EX[Bej(n+2)xy + (DB + C)ed(n+1)xy DCejnin
Go . . .
- ___G}—JnxyB + (DB + C)e-3(n-Txy , DCe-J(n—Z)xi]
2]
- e-gx<be-j[1n+1)xy+rx] + (DB + C)e-J(nxy+rx) 4 DCe-j[}n-1)xy+ri]
+ Be-il(n+Mxy-rx] 4 (DB + C)e~Ji(nxy-rx) , pce- [(n-1)xy-r‘x:]}
+ e-ZEX[be-j(n+2)xy + (DB + C)e-J(n+Mixy 4 DCe‘jnxi]>

= Gg([B sin nxy + (DB + C) sin (n - 1)xy + DC sin (n - 2)xy]

e‘€X<B sin [(n + Dxy + rx] + B sin [(n + 1)xy - rx]

+ (DB + C) sin (nxy + rx) + (DB + C) sin (nxy - rx)
+ DC sin [(n - 1)xy + rx] - DC sin [(n - Dxy - rx]}

e=2EX[B sin (n + 2)xy + (DB + C) sin (n + 1)xy + DC sin nxiD

+

(Equation continued on next page)
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= G2<§in nxy[B + (DB + C) cos Xy + DC cos 2xﬂ
- COS nxy I:(DB + C) sin xy + DC sin 2xy]
- 2e~8X cos rx[}in nxy(B cos xy + DB + C + DC cos xy)
- cos nxy(DC sin xy - B sin xyﬂ
+ e~2EX gin nxy[B cos 2xy + (DB + C) cos xy + DQ]
+ e~2EX cos nxy[B sin 2xy + (DB + C) sin xy]}
Finally,

css(nT) = Go(Ep sin nxy + Fp cos nxy)

where
Ep = [B + (DB + C) cos xy + DC cos 2xi]
- 2e~¢X cos rxl}B + DC) cos xy + (DB + Cﬂ

+ e‘2§X[B cos 2xy + (DB + C) cos xy + Dd]

Fo = —[KDB + C) sin xy + DC sin 2xy] - 2e~€X cos rx sin xy(B - DC)
+ e‘2§x[B sin 2xy + (DB + C) sin xyj

and, from equation (3),

28y
sin xy13 - 2e-8X cos (xy + rx) + e—2€xﬂ[} - 2e~&X cos (xy - rx) + e—ZE%]

Gy =

23
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Therefore, the amplitude and phase lag of cgq(t), the sine-wave recon-

struction through the sample points of

Amplitude = Gp\Ep2 + Fp2

and

Phase = 57.3 tan-1 —

24
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TABLE I.~- ESTIMATES OF FREQUENCY AND DAMPING FOR A

CONTINUOUS SECOND-ORDER LINEAR SYSTEM

Sample

period

0.05
.1
.2
Continuous

Frequency
estimate

0.9
.825
715

1.0

Damping
estimate

0.65
.61
.58
L7071

TABLE II.- COMPARISON OF COMPENSATOR TRANSFER FUNCTIONS

Compensation
method

Plant poles

Plant poles + two-
term approximation
of hold

Plant poles + three-
term approximation
of hold

26

First-order linear
system
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H(s)

Second-order linear
system
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Figure 1.- General form of sampled data model.
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