
-l

01R - ts 02641o

UNCLASSIFIED

(NASA-CR-152061) NUMERICAL AERODYNAMIC 0122
78 t1

SIMULATION FACILITY PRELIMINARY STUDY,

VOLUME 1 Final Report-(Burroughs Corp.)

133 p HC A07/ZF A01 CSCL 1IB Unclas

- t G3/09 _5-252

FINAL REPORT

NUMERICAL AERODYNAMIC SIMULATION FACILITY

PRELIMINARY STUDY

October 1977

Distribution of this report is provided in the interest of information

exchange. Responsibility for the contents resides

in the author or organization that prepared it.

VOLUME I

Prepared under Contract No. NAS2-9456 by

Burroughs Corporation

Paoli, Pa.

for

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

UNCLASSIFIED

UNCLASSIFIED

FINAL REPORT

NUMERICAL AERODYNAMIC SIMULATION FACILITY

PRELIMINARY STUDY

October 1977

Distribution of this report is provided in the interest of information

exchange. Responsibility for the contents resides

in the author or organization that prepared it.

VOLUME I

Prepared under Contract No. NAS2-9456 by

Burroughs Corporation

Paoli, Pa.

for

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

UNCLASSIFIED

CONTENTS

VOLUME I

Chapter/
Paragraph
 Page

1 INTRODUCTION 	 I

1 NASF STUDY OVERVIEW 	 1-1

1.1 NASF OVERVIEW 	 1-3

1. 1.1 	 Major Elements of the Navier Stokes Solver 1-4

1.2 STUDY METHODOLOGY 	 1-7

1.3 TECHNOLOGY STUDY OVERVIEW 	 1-10

1.4 	 PROCESSOR - FLOW MODEL MATCHING 1-12

STUDY OVERVIEW

1.5 FACILITY STUDY 	 1-19

1.6 ARCHITECTURE EVOLUTION 	 1-21

2 THE BASELINE SYSTEM, A SYNCHRONIZA3LE 2-1

ARRAY MACHINE

2.1 	 OVERVIEW 2-1
2.2 	 HARDWARE 2-3
2.3 	 SEQUEINCE
 OF OPERATIONS 2-5
2.4 	 SOFTWARE 2-7
2.5 	 FAULT TOLERANCE, TRUSTWORTHINESS 2-8

3 	 HARDWARE 3-1

3.1 INTRODUCTION 	 3-1

3.2 PROCESSOR 	 3-1

3.2. 1 Processing Element (PE) 	 3-5

3.2.2 Instruction Handling 	 3-6

3.2.3 	 Processing Element Memory (PEM) 3-7

3.2.4 	 Processing Element Program Memory (PEPM) 3-9

3.2.5 	 Processor Interface 3-9
3.3 TRANSPOSITION NETWORK 	 3-12

3.3.1 TN Requirements 	 3-12

3.3.2 	 Choice of the Transposition Network 3-13

3.3.3 	 Design of the Transposition Network 3-15

ii

Chapter/
Paragraph

3.3.4
3.4
3.5
3.6
3.6.1
3.6.2
3.7
3.7.1
3. 7.2
3. 7.3

3.7.4
3.7.5
3.7.6

4

4.1
4.2
4.2.1
4.2.2

4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.3.1
4.2.2.3.2

4.2.2.3.3

4.2.3

4.2.3. 1

4.2.3.2

4.2.3.3

4.2.3.4

4.2.4

4.2.4.1
4.2.4. 1. 1

4.2.4.1.2
4.2.4.2

4.2.4.3

4.2.4.4

CONTENTS (Cont'd)

Page

Required Bandwidth 3-20

EXTENDED MEMORY (EM) 3-21

CONTROL UNIT (CU) 3-22

DATA BASE MEMORY 3-25

Requirements 3-25

Implementation 3-25

PHYSICAL DESIGN ISSUES 3-28

Packaging and Layout 3-29

Signal Distribution 3-30

Power Supply 3-32

Return Wires and Shields 3-33

EMI Control 3-33

Cooling 3-33

SOFTWARE AND OPERATIONAL DESCRIPTION 4-1

MATCHING 4-1

OPERATING SYSTEM DESCRIPTION 4-1

Introduction 4-1

Objectives 4-2

Purpose of Operating System Software 4-2

Workload Assumptions 4-2

Salient Characteristics 4-3

Computational Envelope 4-3

B 7800 Integration 4-3

Limitations 4-3

MCP Software 4-4

Overall Software 4-4

Organization 4-4

B 7800 Software for the NSS MCP 4-5

NSS Software

Other System Software
Job Structure

Introduction, WFL and the Job
Organization of a Job

FORTRAN Support

4-5

4-6

4-6

Concept 4-6

4-6

4-7

Program Load and Overlay Support 4-7

System Operations 4-8

iv

CONTENTS (Cont'd)

Chapter/
Paragraph Page

4.3 LANGUAGE AND COMPILER 4-9

4.3.1 Input/Output Operations 4-18

4.4 INSTRUCTION SET 4-18

4.4.1 Code Emission from the Compiler 4-18

4.4.2 Instruction Set Tables 4-23

4.4.3 Discussion 4-23

4.4.3.1 Control Bitvectors 4-23

4.4.3.2 PE Registers 4-30

4.4.3.3 Arithmetic Tests 4-31

4.4.3.4 Diagnostic Controller 4-31

4.4.4 Data Word Formats 4-32

4.4.5 Timing 4-36

4.5 DATA ALLOCATION 4-39

GLOSSARY G-1

REFERENCES R-1

V

CONTENTS

VOLUME II

Chapter/Paragraph Page

5 	 IMPLEMENTATION TECHNOLOGY 5-1
5.1 	 DIGITAL LOGIC 5-1
5.2 MAIN MEMORY 	 5-10

5.3 	 ARCHIVAL STORES 5-14
5.3.1 	 Conventional Magnetic Technology 5-15

5.3.2 	 Advanced Magnetic Storage 5-17
5.3.3 	 Other Archival Stores, Including Optical 5-18

5.4 	 GENERAL DESIGN CONSIDERATIONS 5-20

6 	 FACILITIES 6-1
6.1 	 GENERAL ENVIRONMENTAL REQUIREMENTS 6-1

6.2 ELECTRICAL REQUIREMENTS 	 6-2

6.2.1 Power Characteristics 	 6-2

6.2.2 	 Transformer and Distribution System 6-3

6.2.3 Branch Circuits 	 6-3

6.2.4 Grounding 	 6-6

6.2.5 Lighting 	 6-6

6.2.6 	 Communications 6-6
6.3 	 PROCESS COOLING REQUIREMENTS 6-6

6.3.1 	 Process Cooling Air Supply Conditions 6-7

and Ranges

6.3.2 	 Process Coiling Chilled Water Conditions 6-10

6.3.3 Air Filtering 	 6-10

6.3.4 Supply Air 	 6-10

6.3.5 Room Pressure 	 6-11

6.3.6 	 Electrical Power for Process Cooling 6-11

Equipment

vi

CONTENTS (Cont'd)

Chapter/ Paragraph Page

6.3.7 Ventilation Requirements 	 6-11

6.3.8 Humidifying Methods 	 6-11

6.4 	 ARCHITECTURAL/STRUCTURAL 6-11

REQUIREMENTS
6.4.1 	 B 7800 Maintenance Floor Requirements 6-14

6.4.2 Bolted'Grid Stringers 	 6-14

6.4.3 Floor Panels 	 6-14

6.4.4 Floor Finish 	 6-14

6.4.5 	 Sub-Floor Treatment 6-15
6.4.6 Floor Cutouts 	 6-15

6.4.7 Floor Sealing 	 6-15

6.5 EQUIPMENT DELIVERY ACCESS 	 6-15

6.6 	 ACOUSTICAL TREATMENT 6-16
6.7 VAPOR BARRIER 	 6-16

6.8 	 FIRE PROTECTION 6-16
6.9 	 SECURITY 6-16

7 SCHEDULE; COST AND RISK 	 7-1

7.1 	 TASKS 7-1
7.2 	 SCHEDULES 7-1
7.3 	 COSTS 7-13
7.4 	 RISK 7-14

8 	 PROCESSOR-FLOW MODEL MATCHING STUDIES 8-1

8.1 	 INTRODUCTION 8-1

8.2 	 CODE CHARACTERIZATION 8-2
8. 2. 1 Code Studies and Methodology 	 8-3

8. 2.2 	 Results 8-5
8. 2. 3 Discussion of Results 	 8-19

8. 	 3 PERFORMANCE OF THE SYNCHRONIZABLE 8-22

ARRAY MACHINE MEASURES AGAINST

EXISTING CODES

8. 3. 1 	 Code Discussion 8-22
8. 	 3.2 Synchronous Array Machine Compilation 8-25

and Execution of Loops

8. 4 	 ADDITIONAL ARCHITECTURAL EVALUATIONS 8-35

8.4. 1 Summary 	 8-35

8. 4. 2 	 Throughput Measured Against Given Parameter 8-35

8. 4.2. 1 	 EM Size 8-35

vii

CONTENTS (Cont'd)

Chapter/ Paragraph Page

8. 4. 2. 2 NSS Throughput 8-35

8.4. 2. 3 EM to DBM Transfer Rate 8-35

8.4. 2.4 DBM Size 8-37

8. 4. 2. 5 PEM Size 8-37

8. 4. 2. 6 PEPM Size 8-37

8. 4. 2. 7 CU Memory Size 8-38

8. 5 OTHER ASPECTS OF ARCHITECTURE COMPARISON 8-39

8. 5. 1 Data Allocation and/or Rearrangement 8-39

8. 5. 2 Temporary Propogation 8-41

8. 5. 3 Interconnection Schemes 8-43

8.5.4 Programmability . 8-43

8. 5. 5 Irreducibly Non-concurrency 8-44

8. 5. 6 Parts Count Comparison 8-44

8. 5. 7 Accuracy 8-45

8. 5. 8 Error Detection and Error Correction 8-45

8. 5. 9 Generality of Purpose 8-45

9 FUTURE DIRECTIONS 9-1

9. 1 OBJECTIVES, STARTING POINTS 9-1

9. 2 SUTDY TASKS 9-2

9. 2. 1 NSS Design Study 9-2

9. 2. 2 System Design Study 9-2

9. 2. 3 , Facilities Study 9-2

9. 2.4 Processor Design Task 9-2

9. 2. 5 Software Definition Task 9-3

Appendix

A Data Allocation A-I

B Topics in Transposition Network Design B-i

C Fault Tolerance and Trustworthiness C-i

D Logic Design Issues D-1

F A Tradeoff Study on the Number of Processors F-I

I Number Representation I-I

Machine Comparison

E Processing Element of Existing Components E-1

G Host System G-1

H Alternate DBM Designs H-1

J Fast Div 521 Instruction J-1

K The Four Architectures K-1

L Lockstep Array Versus Synchronizable Array Machine L-1

viii

LIST OF ILLUSTRATIONS

Figure Page

1-1 NASF System Block Diagram 1-2

1-2 SAM Block Diagram 1-4

1-3 NASF Study Approach 1-8

1-4 Parallel Configuration 1-24

1-5 Parallel Configuration - Refinement 1 1-24

1-6 Parallel Configuration - Refinement 2 1-26

1-7 Parallel Configuration - Refinement 3 1-26

1-8 Parallel Configuration - Refinement 4 1-28

1-9 Parallel Configuration - Refinement 1-28

2-1 SAM Block Diagram 2-2

2-2 Transfer Rates 2-4

3-1 Internal Block Diagram of PE 3-4

3-2 Instruction Fetching Machines 3-6

3-3 PEM Logic 3-8

3-4 Fanout Tree 3-10

3-5 Transposition Network 3-14

3-6 Transposition Network Functioning for N=II 3-18

3-7 Synchronization 3-24

3-8 Uninterruptible Supply for the DBM (if CCD) 3-28

3-9 Unbalanced Signal 3-31

3-10 Paddleboards 3-31

ix

LIST OF ILLUSTRATIONS (Cont'd)

Figure Page

4-1 Example of Typical Pattern in Simplest Form 4-14

4-2 Use of Source Code with Parallelism on Different

Indices 4-16

4-3 Alternate Method of Using Identical Code on Different

Indexings 4-17

4-4 An Example of Source Code 4-20

4-5 Matching Code Streams 4-22

4-6 Format 4-34

4-7 Instruction Formats 4-35

4-8 Overlappability 4-38

x

LIST OF TABLES

Table Page

1-1 NSS Characteristics 1-6

for NSS FORTRAN

3-1 Characteristics of Hardware Elements 3-2

3-2 Comparison of Transposition Networks 3-16

3-3 Powers of 2 in Arithmetic Modulo 11 3-17

4-1 Preliminary Definition of Extentions to Normal FORTRAN 4-13

4-2 Processing Element Instructions 4-24

4-5 Timing Information (all PE times) 4-37

xi

INTRODUCTION

Burroughs Corporation is pleased to submit this final report of the findings of the

Numerical Aerodynamic Simulation Facility (NASF) Preliminary Study. This

report presents a unique solution to the problem of nufneric aerodynamic simulation.

The solution consists of a computing system designed to meet the stated objective

of providing an effective throughput of one billion floating point operations per

second for three dimensional Navier-Stokes codes.: Burroughs presents this design

with full confidence that it is feasible to complete the detailed design and con­

struction of this machine within the required time-frame. This high level of

confidence is based on Burroughs' extensive and continuing experience in the

design and development of very high performance computer systems. It is

Burroughs' belief that the computer industry will not produce a commercial

general purpose machine with the required performance by the early 1980's.

Consequently, we feel that the design and construction of a relatively specialized

system is not only feasible, but necessary to the achievement of NASF objectives.

This view is based on two business judegrnents. First, projections of both

computing-power and cost of performance of' commercial computers for the

1980 to 1985 time-frame do not include a machine of this capacity or price. That

is, a generation gap will exist between any NASF implementation and concurrent

commercial products. Second, market trends indicate that an insufficient market

exists to sustain development of a machine with two orders of magnitude speed

increase on a commercial basis.

In summary, we believe that the system presented in this report constitutes the

best approach to meeting the NASF goals in a timely and cost-effective manner,

and that NASA has an opportunity to maintain a "forefront" position in the scientific

community while achieving these goals.

This report consists of two volumes. Volume 1 provides an overview of the NASF

preliminary study, and presents the results. Volume 2 contains additional technical

data in support of these results, including detailed discussion of key design issues.

Volume 1 is organized into four chapters.

Chapter 1

Chapter 2

presents an overview of the study. The organization and
methodology are described to identify the origin and develop­
ment of the results.

presents an overview of the NASF system, emphasizing the

Navier-Stokes Solver (NSS) which is the key element.

Chapter 3 is a detailed discussion of the hardware of the NSS.

Chapter 4 presents a discussion of the software elements of the NASF.

2

CHAPTER 1

NASF STUDY OVERVIEW

The results of this study have produced a unique solution to the problem of numeric

aerodynamic simulation for three-dimensional Navier Stokes equations. In order

to fully appreciate the design, its features, and subtleties, the methodology of the

study which evolved this solution must be understood. This chapter is intended to

explain that methodology. First, the problem and solution, in brief, will be

presented, then basics of the study approach will be explained. Next, a description

of each of three sub-studies follows with emphasis on specifically what was examined

and why. Finally, the results of the sub-studies are merged to highlight their impact

on the processor architecture evolution, and show I-w the "baseline design" for

NASF was selected. Subsequent chapters will discuss details of that design.

STUDY OBJECTIVES

The Numerical Aerodynamic Simulation Facility Preliminary Study Objectives

were to determine the feasibility of designing a system delivering one billion

floating point operations per second effective throughput for three dimensional

Navier Stokes codes by 1982. If feasible, a processor architecture and functional

design definition were to be developed, supporting that assertion, with attendant

requirements of power, size, cost, schedule, etc.

i-1

NSS

DATA BASE

MEMORY

MEMORIES

IE 2 ** 83 FILE

STO RAGE]CENTRALCE T A

PROCESSORS4'- 2 AND
PROCESSOR
PERIPHERALS cX

TERMINALS INTERACTIVE
AND GRAPHIC TERMINAL

REMOTE LOCAL USER
TERMINALS

(50) DISPLAYS SUB SYSTEMS

(50) (2)

Figure 1-1, NASF System Block Diagram

1-2

1. 1 	 NASF OVERVIEW

The basic structure of the candidate baseline NASIF system is shown in Figure 1-1.

The major elements are:

* 	 The Host, a Burroughs B 7800 multiprocessing system

* 	 An Archival Storage system

0. 	 File Memory

* 	 The Navier-Stokes Solver (NSS) ... the high throughput workhorse
of the system.

The 	Host Computer

The host, a Burroughs B 7800 system, acts as the system manager and support

facility. It provides the user interface, schedules and dispatches NSS tasks, and

executes supporting functions such as compilation, data reduction, and output

generation.

The 	Navier Stokes Solver (NSS)

The NSS is the high throughput computational element. It is a highly parallel

processing array, designed to provide the required computational throughput on

three-dimensional Navier Stokes programs. The Data Base Memory (DBM) of

the NSS provides the interface between the NSS and other system elements. The

program and data files are loaded to the DBM by the host. The NSS with the DBM

constitute a high speed "computational envelope", allowing the NSS to run at maximum

speed essentially without outside interruption or dependence until job completion.

The 	Archive Memory

The Archive provides a very large storage capability for long term retention of

programs and data bases. It consists of a commercially available mass memory

system, which is managed by the host.

1-3

1.2 X 108 BITS/SEC.

DA TA
BASE

MEMORY

EMI EM 2 EXTENDED
MEMORY

EI

1.75 X l0l BITS/SEC.

TRANSPOSITION NETWORK

(521/512 PATHS)

1.75 X 10" BITS/SEC. PEAK

PROC. I

PUNIT

PROC 2 PROC. 512

CONTROL

1-4

Figure 1-2. SAM Block Diagram

The File Memory (FM)

The FM provides for short term file retention, staging and buffering between the

host, the archive, and the DBM. It consists of a standard disk pack sub-system,

and is also managed by the host.

1. 1. 1 Major Elements of the Navier Stokes Solver

The principal innovation in the NASF system is the NSS. The organization of the

NSS is shown in Figure 1-2, and its characteristics are summarized in Table 1-1.

The major features of this processing array are:

- Highly Parallel Architecture

The NSS consistsof 512 computational processors, each with its own
local data and program memories. These are coordinated by a single
control unit, and connected via a transposition network to 521 modules
of extended memory.

- Synchronizable Operation

This feature of the NSS suggests the name we have given to the com­
putational array, the Synchronizable Array Machine, or SAM.
Previous processor arrays have operated in "LOCKSTEP", essentially
synchronizing on every instruction cycle. The computational array
of the NSS is synchronized explicitly by the code stream only when
necessary. Between synchronization points, the individual processing
elements may operate asynchronously, allowing them a degree of
freedom in scheduling instruction sequences.

- Conflict Free Memory Access

The transposition network between the processing elements and ex­
tended memory allows conflict free access to vectors in any dimension
at full memory bandwidth. This eliminates the non-productive time which
would otherwise be consumed by reordering or transposition of data
before processing.

- Data Base Memory

The Data Base Memory is the interface between NSS and host. By
having all input and output restricted to this single point, the rest of
the NSS is independent, and can proceed at full computational speed
without any need for interaction with the host.

1-5

TABLE 1 NSS CHARACTERISTICS

Computational Capacity (On instruction mix)

Number of Processing Elements

Number of Extended Memory Modules

Memory capacities (total)

Extended memory

Processing element memories

Processing element program memories

Transfer rates (bits/sec)

PE - PEM

PE - PEPM

PE- (PEM+PEPM)

EM - via TN --PEM

streaming mode

1word/transfer

EM -DBM

Program loading to all PE's simultaneously

Clock, synchronous throughout the NSS

Total No. of IC packages, including memory
(almost all LSI)

Word Size:

1.7 x 109 floating operations/sec.

512

521

34 million words

8 million words

4 million words

per path no. paths total

490x 106 512 2.5 x10 11

490x 106 512 2.5 x 1011

lo 9 	 5 x10 1 1
 512

4x 108
 512 2x 1011

1 x 108
 512 .5.5 x 1010

-	 - 1.4 x 108

4 x 108 per PE

50 MHz minor cycles

25 MHz major cycles

200,000

48 Bits

1-6

System Balance

All transfer rates and execution speeds are tuned to one another in
concert with the requirements of the application. This provides for
high efficiency by balancing the utilization of system elements.

Ease of Use

A high level user language, complemented by an instruction set oriented
to efficient implementation of high level language programs allows
ready access to the computational power of the NSS, without encumbering
the user with assembly language programming or implementation details.

1. 2 STUDY METHODOLOGY

Experience in the design and manufacture of data processing equipment, . especially

very-high-performance computer systems, leaves many lessons behind. In addition

to knowing what a design team should do, there are some lessons about what should

not be done.

The Burroughs study team took care to avoid a serious problem that often traps

those aiming at maximum speed - namely pushing the state of the art on too many

frontiers. One could rely on significant advances in

(1) Architecture,

(2) Hardware Technology, or

(3) Software Technology.

For increased performance we chose Advanced Architecture taking care to build

on mature or developed software whenever possible. In addition hardware imple­

mentation will be conservative, consistent with performance goals, and will not

rely on imposing inordinate speed requirements or new, untried technologies.

Selecting architectural elegance as the new frontier, the study concentrated on

matching the architecture to the problem. Existing computer structures were not

integrated to force-fit a "super-structure" of these units to the problem. The

reasons were:

(1) La6k of Architectural Flexibility

(2) Inefficient and Not-Cost-Effective.

1-7

ii J TECHNOLOGY

STUDY

C
R
I
T
I

A PROCESSOR/FLOW MODEL
L MATCHING STUDY

' I

S

U
E

FACILITIES

STUDY

ARCHITECTURE

-- PROFILE

BASELINE

DESIGN
DEFINITION

Figure 1-3. NASF Study Approach

1­

Although performance requirements may be met in this fashion, the lack of

architectural freedom with the structures implies that many hardware and software

elements are not utilized, others must be customized resulting in a machine that

has 	some "dead-wood".

The 	NASF system presented here was developed by evolution from careful analysis

of the problem characteristics to insure a genuine fit. Top Down design fundamentals

were practiced so that on each of the several design iterations, results could be

traced to assumptions. Traceability of this sort allows bottlenecks or errors found

to be identified at their origin where viable alternatives could be reexamined.

1. 2. 	 1 Sub-Studies

Specifically, three sub-studies were executed simultaneously as required by the

original contract statement of work.

(1) The Technology Study developed a data base of logic and memory
technologies by literature seraches, vendor interviews and confer­
ences, etc. Trends of critical issues and parameters of these
technologies were studies and a technology forecast developed for
the 	1980-1985 time frame.

(2) 	 The Matching Study analyses the flow models and their characteristics
and matched them against candidate processor architectures.

(3) 	 The Facility Study established metrics for the total facility and, at
a more detailed level, the facility issues addressing "buildability"
of the final system.

Each sub-study was executed with two objectives as shown in Figure 1-3.

(1) 	 How do results affect processor architecture choice?

(2) 	 How do results affect specific design choices in the baseline design?

That is, first a processor architecture was evolved as a result of the sub-studies,

then a second iteration of the studies supported a more detailed design to the

functional design level referred to as the Baseline Design. The result is an NASF

definition that directly addresses the salient issues of the problem itself. This

NASF definition meets or exceeds all requirements and can be built with a high

degree of confidence - an assertion of great significance for such an ambitious task.

1-9

1. 3 TECHNOLOGY STUDY OVERVIEW

The objective of this phase of the study was to establish a technology forecast for

the NASF time frame and assess which logic and memory technologies are most

appropriate for the design of such a facility.

The approach taken consisted of the following four tasks:

(1) Data Gathering

(2) Establish Critical Issues

(3) Examine Technologies & Trends

(4) Extrapolate 1980-85 Forecast.

Data gathering consisted of a three phase effort: a comprehensive literature serach,

trade conferences and workshops; and interviews with vendors and suppliers such

as Motorola, Fairchild, National Semiconductor, Intel, Signetics, and Texas

Instruments. The data base acquired is reviewed and analyzed in Chapter 5

(Vol. 2) of this report.

The critical issues which were established were of two types - those affecting

performance and those affecting development.

Performance Development

(1) Speed (1) Cost

(2) Reliability (2) Maturity

(3) Power (3) Extensiveness

(4) Availability

Metrics for judgement of these issues and clarifications of their importance were

then developed and used as criteria in the architecture/design process.

Under performance issues, speed of a logic family may be judged by propagation

delay times, while with memory the key figures are read/write times. Density

refers to the average number of gates or memory cells per chip. Reliability is

largely a function of density since failures frequently occur at the substrate to

pin connection, and as the number of pin connections decreases per given function,

1-10

the 	reliability increases. Power consumption is a measure of the energy costs
associated with a device. A smaller speed-power product indicates better system

performance per kilowatt.

As to developmental issues, cost should be considered in the light of performance

per dollar, as well as absolute cost. Maturity is determined by field verification
of manufacturer's specification. Another consideration in selecting a technology

is the availability of the devices. In addition, multiple sources for all componentry

are 	essential. These factors are important considerations in the selection of a

technology family.

The technology survey provided inputs to the study not only in the obvious area of
surveying the'implementation of digital logic, but 	also in some areas of packaging,

random access and serial memories, and archives.

From the many technologies used to implement digital logic, which are discussed

in Chapter 5 of Volume II, three are of sufficient interest to report here:

(1) 	 ECL has been the technology of choice in implementing high-speed
digital computers for over ten years; however, the speed-power
product, and hence the amount of processing that can be done per
watt of power, has been continually improved, and in the last year
some LSI has been available in ECL. ECL is a mature but still
developing technology, exemplified by Fairchild's "lOOK" ECL
family. This family could be used as a starting point for a base­
line 	design.

(2) 	 12 L has much better speed-,power product than ECL, allowing
far more functions per watt. It is currently too slow for the NASF
requirement but both speed and availability of standard parts2 are
improving each year. I L would consume considerably less powerthan ECL, and is currently utilized internally in LSI chips where the
speed is tolerable.

(3) 	 MESFETs promise another improvement, by an order of magnitude,
in the speed-power product as compared to 12 L. They are also very
fast; however, they are still in early development. Years of develop­
ment will be required before the MESFET's technology becomes
mature.

A

1-1l

From this study we conclude that ECL is the most feasible current technology for

implementation of an NASF design, and the base line design will begin with ECL

as a starting point.

Memory technology represents an area of low risk for the NSS. 16K-bit dynamic

RAM's (Random Access Memory) are currently available. 16K-bit static RAMS

and 64K-bit dynamic RAMS are on the drawing board.

CCD shift register memory is currently available in pilot quantities in the 64K

bits size. Another factor of four in storage size (256K-bits) is expected by 1980.

Manufacturers reported the occurrence of spontaneous errors in CCD memories.

This leads to a requirement for continuously monitoring the contents of a CCD

memory and rewriting it correctly when bit errors occur.

Present bubble memories put severe complexities into the controlling and driving

circuitry, making them very difficult to use.

Sufficient information about the magnetic storages available for the archive was

obtained to indicate that there are several commercially available contenders for

the archive storage. No effort was made to determine-which of today's contenders

were likely to be withdrawn from the market in the next two years, nor to uncover

the new contenders which are undoubtedly under development.

1. 4 PROCESSOR - FLOW MODEL MATCHING STUDY OVERVIEW

The key sub-study in this effort was the Matching Study. Certainly, it had the

most profound effect on the evolution of SAM as the chosen processor architecture

as well as some design details. This sub-study was broken into several tasks

prior to the actual matching or evolving process itself.

- Cataloging and examination of pertinent generic architectures for
consideration to be used as a starting point.

- Establishment and discussion with NASA-Ames of critical issues and
basic requirements and capabilities imposed on the architecture by
the problem definition.

1-12

Research and discussion of the fundamental characteristics of the
flow models which affect the processor architecture.

Following these tasks, the results were merged with those of the other two sub­

studies the total implications of which determined the final architecture.

Generic Architectures considered as starting points were:

- Hybrid system composed of analog computation devices with digital
control and storage.

- Parallel array architectures with replicated arithmetic units executing
the same program on different data achieving performance as a
multiple of the number of arithmetic units.

- Type 1 - Lock-Step synchronous arrays with clock-by-clock
tight coupling of arithmetic units.

- Type 2 - Non Lock-Step array with coupling at predetermined
synchronization points rather than every clock

- Pipeline architectures where operations are streamed through
different stages with performance as a multiple of the number of
states.

A complete discussion of these generic architectures is found in Appendix L of

the Final Report.

Critical issues, basic requirements and capabilities were jointly developed between

the study team and NASA Ames personnel. Topics examined were:

(1) Navier Stokes Solver Capabilities

(2) Programming

(3) NSS - I/O

1. 4. 1 NSS Capabilities

The NSS is to solve the three-dimensional Reynolds averaged Navier Stokes

equations, using both explicit/implicit and totally implicit, dimensionally-split,

finite-difference methods.

1-13

The NSS is to compute, at high efficiency, problems containing a variety of boundary

conditions which include the independent variables, their derivations, and other

auxiliary variables, a variety of internal and external geometrics and a variety

of turbulence models ranging from algebraic to 7 differential equation descriptions.

The NSS is to compute solutions for up to one million grid points. This implies

a data base range from 14 million words for

5 conservation variables at 2 time levels

I turbulence variable

3 grid coordinates

to 40 million words for

5 conservation variables at 2 time levels

7 turbulence variables at 2 time levels

3 grid coordinates

12 metrics (including time)

I Jacobian

The NSS is to obtain steady state solutions for one million grid points in 10 minutes

of CPU time for 3-D problems using algebraic turbulence models. At present this

must be measured using 2-D explicit/implicit and implicit codes as performance

metrics.

Two examples of typical programs and their computational requirements are given

below:

Explicit code (MacCormack) status: A 2-D airfoil steady-state solution was

obtained in 7 minutes on CDC 7600 for 2100 grid points. The steady-state was

reached after 13 chord lengths of travel by computing inviscid solution for 7 chords

and viscous solution for remaining 6 chords. Effective computing speed on 7600

is about 2 MFLOPS. Assuming twice the computational effort at each grid point

for the 3-D case, this implies that to compute 13 chords in 10 minutes for one

million grid points requires an effective computing speed of 1. 4 gigaflops. Greater
efficiencies by 1980 can be expected.

1-14

Implicit (Lomax, Steger) code status: A 2-D airfoil steady-state (13 chords

traveled) was obtained in 10 minutes on CDC 7600 for 2300 grid points - all cal­

culations were viscous. The effective computing speed on 7600 is about 2 giga­

flops. This code implies that an effective computing speed of 2 gigaflops will be

needed for a 3-D calculation over one million grid points. However, researchers

working on the implicit code are confident that improvements in the treatment of

boundary conditions and other strategies can improve the speed of the method by

a factor of 2 which implies that 'at least a one gigaflop effective rate will be needed.

It is concluded that the minimum effective computing rate needed for the Navier

Stokes problem is one gigaflop.

A precision of 10 decimal digits is required.

A general purpose computing capability equal to that of the highest speed commer­

cially available computers of the early 1980's time frame is desired.

1. 4. 3 Programming

A high level programming language consistent with ease of mapping the solution

methods onto the machine, optimum machine performance and the available

language development time is necessary.

Desirable programmability features of the Navier-Stokes machine are as follows:

A FORTRAN-like high level language with extensions necessary for efficient

problem mapping, as well as the following features:

- a stable optimizing compiler

- good compiler diagnostics

- warning from the compiler of possible run-time inefficiencies

- ability to give good run-time diagnostics and statistics

- vector length independence

- freedom from the need to do explicit-mode vector manipulation

- ease in specifying data allocation

1-15

1.4.4 .NSS I/O

The 	primary I/O activities of the machine are the input of initial problem parameters,

restart from stored data, and the output of snap-shots and restart dumps. Another

important activity is the output of debug dumps. Two basic types of Navier Stokes

solutions are desired - steady and unsteady (or more correctly quasi-steady).

Steady cases are characterized by the appearance of a solution that does not vary

with time after some large number of time steps or large number of characteristic

body lengths travelled. Unsteady cases are characterized by the appearance of a

solution that is periodic in time after some large number of time steps. In order

to analyze the unsteady or periodic nature of these solutions more time steps (on

the 	order of six times that of steady cases) are required. Additional data output

is also required in these cases. It is estimated that 75 percent of the time will

be used to solve the steady flow case and the remaining 25 percent, the unsteady.

The following output capabilities for these cases are desired.

(1) 	 Snap Shots

a. 	 Integrated quantities such as drag, lift and moments approximately
every 15-30 seconds.

b. 	 Surface quantities such as pressure and skin friction. If the
grid moves with time, the grid coordinates must also-be output.
A given quantity such as pressure, plus the coordinates could
total up to approximately 60, 000 words of output every 15-30
seconds.

c. 	 Flow quantities in the field such as pressure or Mach number.
For a grid of 1, 000, 000 points an entire field of, say, Mach
numbers plus coordinates would be 4, 000, 000 words. However,
it is 	 anticipated that only selected grid points need to be output
and this would be about one one-hundredth of the above of
40, 000 words every 30 seconds. These snapshots require the
heaviest output and for 60 minute runs would accumulate up to
50, 000, 000 words for the unsteady cases.

(2) 	 Restart Dumps

(3) 	 Debug Dumps

(4) 	 Formatted I/O

1-16

1. 4. 	5 Flow Model Code Characterization and Analysis

Codes supplied to us by NASA Ames were analyzed statically and dynamically to

determine what the specific characteristics of the Flow Model problems are and

how do they impact computer architecture. The codes studies were written for

two specific computers. Features in each code that were specific to its target

machine were stripped away to find the basic issues. The areas that were examined,

group themselves naturally into those issues which address processor requirements,

memory requirements, or communications requirements, and are outlined below.

Memory Requirements

(1) 	 Data Base Size - (The actual input/output variables)

(2) 	 Program Size

(3) 	 Workspace Size (Those variables never outputted in normal production
code - the temporaries)

(4) 	 Access Patterns (dimensionality of problems, subarray structure,
indexing patterns)

Communications between Processorsand Memories

(1) 	 Number of Computations per Data Base Access

(2) Interaction of Problem Variables

(3) Data Dependency

(4) Control Structures

(5) Access Patterns (planes, rows, columns, etc.)

Processor Requirements

(1) Word Size and Format

(2) Relative frequency of operations

(3) Index computations

(4) Number of input operands per output operands

(5) Scalar operations

(6) Frequency of intrinsics

(7) Program Structure

1-17

Each of these issues were examined in detail and the results are listed in Chapter 9

with a full discussion of the methodology. Several items were stated by NASA-

Ames as required and were therefore assumed.

The study of the memory requirement showed that the canonical problem variables

and number of grid points produce a data base memory of 14-40 million words

(NASA-Ames requirement). The workspace size was found to be approximately

40 temporaries per database variable. This of course is programmer and

architecture dependent and hence is only an indication of the relationship between

work space and data base. It was found that the problem arrays are generally

4 dimensional with 3 geometric and 1 variable coordinate. They are accessed in

a fairly regular manner in the sense that the indexing is a funqtion of the loop

variable plus or minus a small integer. There is almost no indexing that occurs

as a function of loop variable and another integer variable set outside of the loop.

The structure of the loops indicate that entire arrays are processed in a given

piece of the computation rather than small subarrays. Program size is relatively

small at under 4000 card images.

Requirements on communication bet*een processor and memory structure were

determined by a number of flow-model program parametersi The data dependency

studies of variables in loops showed that there existed complex first order linear

recurrences which were functions of each of the three geometric variables. These

recurrences occurred in over 60 percent of the executing Implicit program. The

study of the control or branching structures within the programs showed them to

be relatively simple and generally linked to loop variables. Some were data

dependent but when they occurred the variables were functions of inner loop

parameters.

Further studies of the relationship between the data base memory requirements,

the workspace requirement and the number of floating point operations showed

that a fetch or store to data base memory occurred infrequently in comparison

to the number of floating point operations. Typically the Implicit (Steger) program

has an average incidence of 15 floating point operations per fetch.

1-18

Additidnally, by investigation of the indexing patterns within loop structures one

found that there is relatively low interaction among problem variables on different

grid points. For example, variables are fetched from several adjacent points,

computations are performed and then a result is stored relative to the grid point.

There is no continual switching back and forth of index patterns. The access

patterns appear to be simple rows, columns and planes with a skip distance of 1.

Processor requirement studies showed that multiply, add, and multiply-add

instructions are extremely important floating point operations. For example in

the Implicit Code it was found that 58 percent of all operations were multiplies,

44 percent were adds and 2. 5 percent were divides. 60 percent of all operations

occurred as multiply-add pairs. Division and intrinsics as SQRT and EXP occur

rarely and double precision is never required. Since most of the array references

are to three and four dimensional arrays, integer arithmetic calculations are a

strong requirement. The combination of work space requirements and the average

number of input operands to output operands (3. 5) places certain requirements on

the processor. NASA-Ames has additionally specified 10 digit accuracy requirement.

The data collected from the studies was used to define and delimit the characteristics

of the requisite architecture. The output from the matching study together with

the technology study and facilities study data were then used to develop definitions

of an architecture discussed in Section 1. 6.

1. 5 FACILITY STUDY

The primary objectives of this sub-study were threefold:

- Identify housing and support requirements of the facility

- To provide cost and schedule engineering estimates for effective
planning

- Assessment of NSS implementation issues as they would impact
architecture and design choices.

i-i9

These objectives were pursued by determining the facility requirements of units

or subsystems already identified and placing reasonable b6unds on facility require­

ments for those elements which have yet to be specified. After a preliminary

definition of the NSS, an implementation schedule and an engineering cost estimate

were assembled, and analyzed. As the NSS definition proceeded, additional

iterations on the schedule and cost were performed.

Finally, the critical issues relevant to implementing the NSS were defined and

guidelines developed to insure that the design would indeed be realizable. This

effort raised some interesting considerations which impacted the architecture

choice and some design details as well.

Critical issues affecting the implementation or realization of the NSS in particular

are:

(1) Critical Path Analysis was examined to eliminate short waterfalls
in the schedule by locating their source and minimizing their
occurrence.

(2) 	 Procurement problems can be avoided if there is an early identifi­
cation of long-lead items, if custom componentry is minimized, if
multiple sources are employed wherever possible, and if adequate
protective documentation is obtained from each vendor. This issue
can be the largest single risk factor in any program schedule, cost,
and possibly performance.

(3) 	 Production considerations include maximuzing the number of
replicated units to minimize production learning curves and take
advantage of economies of scale. Standardization of componentry,
connectors, cables, etc., minimizes inventory problems and
smoothes the production process.

(4) 	 Module or Subsystem Interface Management demands the reduction
of complexity of interconnections between all functional elements.

(5) 	 Debugging and Maintenance: As in the production considerations, if
the number of complex elements, which field engineers must work
with, are kept to a minimum, then deubgging and maintenance are
simplified - furthermore, this minimizes the inventory of spares.

1-20

(6) 	 Packaging of any design must have the highest density consistent
with heat removal. It must be such that the LRU (lowest replaceable
unit) is easy to isolate, test and replace. Additionally, usage of
common board types should be maximized.

(7) 	 Logic Design Rules and Noise Budgets. A technology choice for the
design must be mature enough to develop credible noise budgets,
and provide adequate operational margins.

(8) 	 Power. Finally, power considerations suggest that we avoid complex
power distribution schemes, and concurrently maximize the distri­
bution of heat dissipation. These considerations will lead to some
interesting features explained in the next section.

1. 6 	 ARCHITECTURE EVOLUTION

The 	selection of the Synchronizable Array Machine for the baseline system is here

described as an evolution of concepts which grew out of the findings of the three

substudies. A parallel architecture was selected after examination of 3 generic

types, hybrid, pipeline, and parallel.

The 	hybrid was rejected for three reasons:

(1) 	 Difficulty of Programming. Years have already been spent in
algorithm research in digital form. Even more investigation would
be needed to recast the aerodynamic flow equations into suitable
form for analog computation.

(2) 	 Inaccuracies, and Unpredictability of the Inaccuracy. Such limited
accuracy as analog devices have is often data dependent, and changes
with age as component values drift. In digital computation, any
desired degree of accuracy can be specified.

(3) 	 Untrustworthiness. Unlike a digital computation, where tests can
continuously monitor the computation process to ensure that correct
results are being produced, an analog computer is essentially open
loop 	as far as error control is concerned. A faulty component or
off-scale input produces an output voltage which is not distinguishable
from the output voltage of a properly functioning component.

Although analog processors have a very high computation rate, these limitations

make them totally unacceptable for the NASF.

1-21

Pipeline architectures as we know them today appear to suffer from inefficiencies,

namely:

(1) Long start up times between vector operations,

(2) Difficulty in dealing with transpositions, and

(3) The need for massive amounts of work space memory to accommodate
propagation of temporary variables.

Certainly these problems can be dealt with and solutions developed to make a

pipeline a suitable architecture (as we have done for the parallel architecture) but

a re-examination of the Facilities Study highlighted other issues which made the

selection of a parallel array more sensible for Burroughs.

Assuming both architectures could be evolved to produce a design of equal per­

formance, Burroughs is more confident that the parallel machine can be manu­

factured with less risk. The claim is based on observations:

(1) 	 The large number of replicated units in a parallel array minimizes
production and debugging and field engineering learning curves.
Certain economies of scale could be realized in development as
well.

(2) 	 Burroughs experience, in three generations of parallel high per­
formance systems (namely ILLIAC, PEPE, and-the Burroughs
Scientific Processor (BSP), provides an invaluable data base of
knowledge in the detailed design and manufacture of such a system.

The beginning of the architectural development, therefore, was based on the generic

parallel configuration shown in Figure 1-4.

From this point, the definition of SAM can be well understood as series of refine­

ments based on results of the sub-studies.

The Alternating Direction Implicit method for solving aerodynamic flow models,

with split operators, requires that data arrays be transposed during access.

Planes are required to be fetched in parallel from any 2 of 3-dimensions in the

same grid. This implies the need for an efficient transposition mechanism.

1-22

Several different designs were considered. The selected Transposition Network

(TN) is a unique innovation offering:

(1) low parts count

(2) minimal data access delay

(3) simple control requirements

(4) simple but flexible data allocation

This design demands that memory be partitioned into a prime number of banks

larger than the number of processors.

The Transposition Network (TN) is shown in Figure 1-5 as the first refinement

of the generic parallel configuration.

The occurrence of a significant number of floating point operations to fetches

(especially in the implicit code) implies a large workspace requirement. In fact

up to 40 temporary variables per data base variable may be generated. Propagation

of such a large number of temporaries throughout the machine would cause severe

timing penalties. To mitigate this problem, local memories for each processor are

required. In addition, the bandwidth of the TN can then be reduced without per­

formance degradation. This makes the Transposition Network simpler and less

costly. The absence of data dependencies among points in the same plane allows

this refinement (Figure 1-6) to occur. The increased cost of many data memories

in the processor is offset by the decreased requirement for storage capacity in

Extended Memory for temporary variables. The nomenclature for the main

memory can now be appreciated as Extended Memory (EM).

The result of this refinement allows one to think about parallelism as a series of

vertical slices. That is:

Given a series of statements of the following form:

1-23

DATA BASE MEMORY

C TO HOST SYSTEM

MEMORY

CONTROL

UNIT

PROCESING F-T I-] -I

ELEMENT (PE)PROCES[ING H

Figure 1-4. Parallel Configuration

DATA BASE MEMORY

TO HOST SYSTEM

MEMORY

MODULES El El -E [a .. -
CONTROL

UNIT

TRANSPOSITION NETWORK

I
PROCESSING I --PE [:] .--
ELEMENT (PE) L

Figure 1-5. Parallel Configuration - Refinement 1

1-24

DOPAR-ALLEL (on one or more indices, say L J, K between limits)

STATEMENT 1 - involving variables indexed on the parallel indices

STATEMENT -2 - involving variables indexed on the parallel indices

STATEMENT n - involving variables indexed on the parallel indices

ENDO

there are two ways of thinking of the parallelism.

In the first method, statement 1 is executed on the vectors implied by the parallel

indices. Then statement 2 is executed as a vector statement, and so on up to the

nth statement. Having each statement executed separately as a vector statement

is called "horizontal slicing" of the parallelism.

The second method is to assign a processor to a particular instance of the set of

indices. Processor 17, for example, may handle all computation associated with

J=1 and K=19, while processor no. 222 handles J=3 and K=22. Each processor

now executes, essentially independently, a piece of code involving the I index.

This kind of parallelism has been called "vertical slicing". Vertical slicing is

appropriate when, as in the Navier-Stokes equations, there is little interaction

between the variables at one grid point and the variables at another.

Three or more generations of parallel processors have been shown that instruction

interpretation of parallel constructs by the CU creates a bottleneck. The CU must

be extremely fast to keep up with the array. Its complexity is severe enough

without this responsibility. The program size has been observed to be small

enough to consider placing program memories in each processor as shown in

Figure 1-7. This now results in a stand alone processor with manageable inter­

face (very few lines) to the control unit, elimination of massive cabling and a

simpler CU. These savings and their attendant design, schedule issues will offset

the cost of multiple copies of the program memory, as well as improve performance.

In a parallel array with a single program memory, the distribution of instructions

by the CU serves to synchronize the operation of the PE's. Distribution of the

program to local program memories results in a requirement for a synchronization

1-25

_ _ _ _

DATA BASE MEMORY

2 : TO HOST SYSTEM

EXTENDED MEMORY

MEMORY
MODULES E) El 1:1 El--. - -[.
CONTROL

UNIT

TRANSPOSITION NETWORKII I

PROCESSING pE

ELEMENT (PE) E,
 L .~. .,
PE MEMORY I fl
(PE M) _________________

Figure 1-6. Parallel Configuration - Refinement 2

DATA BASE MEMORY

T: TO HOST SYSTEM

EXTENDED MEMORY'

MEMORY

MODULES
 El EH DI LI L ... E

CONTROL

UNIT

TRANSPOSITION NETWORKI I_ _

PE PROGRAM

MEMORY (PEPM) FPEPM

PROCESSING liii...
ELEMENT (PE)
PE MEMORY PM

(PEM)

Figure 1-7. Parallel Configuration - Refinement 3

1-26

mechanism between CU and PE's. To provide maximum flexibility, we elected

to invoke the synch mechanism explicitly in the code stream (Figure 1-8). This

allows synchronization to occur only when necessary, (i. e., just prior to parallel

fetches and stores). This allows data dependent branches to be run concurrently,

and data dependent instruction options (e. g., round after normalize if overflow) to

be executed only when needed.- Since a limited level of concurrency of different

operations can occur, idle processors can execute confidence checks on themselves.

Different code sequences for boundary conditions or on either side of a shock

front may be accommodated as well.

The choice of 512 as the number of processors is based primarily on the highest

expected 	speed of efficient memory chips.. 16k-bit static RAM chips are expected

to be available at about 100 ns cycle time, by 1980, and are appropriate to PEM,

PEPM, and Control Unit Memory (CUM). 64k-bit dynamic RAM chips are expected

to be available at nearly the same time, at speeds nearly matching the present

200 ns or so speed of current 16k dynamic RAMs. These are the memory chips

in the baseline system.

Consider, for example, the effect on the design of a choice of 256 processors. The

twice-as-fast PEM and PEPM memories would require 50 ns chips, which would

be available only in a 4k-bit size. Thus, the total number of memory chips would

double, from the 37, 888 memory chips of the baseline system to a total of 75, 776

chips. The twice as fast EM would require 16K-bit chips to maintain the same

speed, and its size would quadruple from 29, 176 memory chips to 116, 704 chips.

Parts count in the twice-as-fast processor is estimated to double, making no net

savings, 	 but increasing the required design effort.

The size 	of data base for codes expected to execute for 10 minutes indicates as

10 1 7
much as bits of data are operated upon. To expect no failures in that time

is ambitious indeed, therefore it was necessary to impose a strict philosophy of

fault detection and correction in the design of the hardware and software, including:

(1) Hardware Error Detection

(2) Hardware Error Correction

(3) Arithmetic Residue Checking

1-27

E

DATA BASE MEMORYcTO HOST SYSTEM

MEMORYTH

EXTENDED

MEMORY

MODULES E 0 I LI'" LI

CONTROL

UNIT

TRANSPOSITION 8NETWORK

PE PROGRAM
MEMORY (PEPM) PEPM

P R O C E S S I N G mp. . .

ELEMENT (PE)

PE MEMORY PM SYNC

(PEN)

Figure 1-8. Parallel Configuration - Refinement 4

DATA BASE MEMORY

HOST SYSTEM2:> TO

MMTENRED MEMORM

]
 CONTROL
MEMORY P [] [[[]* . *
[

UNIMODUES []

-
8 NETWORKTRANSPOSITION

521E/512PARALLEL DATA CHANNELS

MEMORY (PEPM) PEPM

PEPROESN

L(PE)

Figure 1-9. Parallel Configuration - Refinement 5

1-28

Figure 1-9 is a block diagram of SAM, the Baseline Design for the NSS. Its

evolution, as well as subsequent design decisions and guidelines results in a

design which features:

1. 7 	 HIGH THROUGHPUT

The 	throughput potential of the NSSs is 1. 7 billion floating point operations per

second. This is derived from the relative ratios of the instruction mix com­

bined with the expected execution time of the operations. This yields 294 nano sec/

512 floating point operations which is equivalent to 1. 7 Billion Floating Point

Operations/ sec. Additional study of the baseline for the specific codes indicates

that the required effective rate of 1 Billion FLOPS is achievable.

1.8 	 EASE OF USE

High level language requirements, the guidelines of matching code to the user

language and indeed the use of a High level language to write the compiler were

important decisions made early in the study. The Vertical Slice Concept allows

all classical serial optimization techniques to be utilized on the SAM. Recognizing

that this architecture has unprecedented flexibility, it is incumbent upon the 'om­

piler to have debug aids to protect the user.-

The 	protected environment in which SAM operates - the high speed computational

envelope - isolated from the rest of the system requires that it have only a very

small operating system of its own. I/O to and from that envelope will not be

incumbrence upon the user or SAM as well.

This architecture is designed for a class of applications, yielding somewhat

degraded performance for:

(1) 	 Problems with intimate arithmetic data dependency from one grid

point variable to another,

(2) 	 Interactive environments, and

(3) 	 Multiprogramming environments.

1-29

In conclusion, we feel this represents a unique solution to the problem of numeric

aerodynamic simulation, and Burroughs presents this design with full confidence

in its feasibility. We believe that this system is the best approach to meeting the

NASF goals in a timely and cost-effective manner, maintaining NASA's position

in the forefront of scientific endeavor.

1-30

CHAPTER 2

THE BASELINE SYSTEM, A SYNCHRONIZABLE ARRAY MACHINE

The following description is that of the baseline system, a specific design of a

synchronizable array machine (SAM), which has been selected as suitable for the1
NASF. This design will undoubtedly be refined as the design effort progresses.

2.1 OVERVIEW

The Numerical Aerodynamic Simulation Facility (NASF) simulates aerodynamic

conditions using the time-averaged Navier-Stokes equations. The equations are

solved on a Navier-Stokes Solver (NSS) which has a nominal computational

throughput of approximately 1. 7 billion floating point numerical results per second

and a sustained throughput on the actual algorithms of over one billion numerical

results per second.

The design of the Navier-Stokes Solver has resulted from solutions to several

design questions:

- Hardware of more than adequate computational power

- Efficient data flow. Elimination of non-productive moving of data
from one location in memory to another.

- Programming methods that make efficient use of the hardware

capabilities.

- Programming methods that are easy for the user to understand

and apply.

2-1

.5-
LOAD/

UNLOAD
DBM

DATA

SI iI I.

I EXTENDED MEMORY MODULES

I I (521)

TRANSPOSITION NETWORK H
PM(51 2) I

PEM PEM PEM PEM

PE PE PE PE I I

CONTROLLER
Figure 2-1. SAM Block Diagram

2-2

The NSS uses up-to-date technology for its hardware, and contains less than

200, 000 integrated circuits including all logic and memory.

Reliability and trustworthiness of results are guaranteed by a number of stratagems

which are described herein.

The Navier-Stokes Solver is embedded in a system that uses a commercially

available processor as the host computer. Figure 2-1 is a block diagram of that

system. Details of the host processor are not different from those of many

existing installations. The file memory is made of standard disk packs which are

the standard product line disk pack of the host. The archive is either an IBM 3850,

CDC 38500, or equivalent.

2.2 HARDWARE

The NSS itself is embedded in this system, and its block diagram is shown in

Figure 2-1 with transfer rates shown in Figure 2-2. It consists of:

- 512 processors. Each processor is individually capable of 3. 6
million floating point numerical results per second, on 48-bit
words, and is capable of a significant amount of overlap between
index calculations, floating point operations, and memory cycles.
Each processor contains units for arithmetic, indexing and
instruction decoding, the processing element (PE), a 16K word
data memory (PEM, or processing element memory), and an 8K
word program memory (PEPM)

- 521 extended memory (EM) modules. The extended memory contains
34, 144, 256 words of memory in 65, 536-bit dynamic RAM semi­
conductor memory chips.

- A transposition network (TN). Links the processors with the
extended memory.

- A control unit (CU). Controls the transposition network and
synchronizes the actions of the PE's, and loads and controls the
PE's under certain circumstances. The control unit contains its
own memory (CUM) of 32K words.

2-3

@48 BITSIORD

EXTENDED MEMORY
(521 MODULES)

1.75 X 10" bits/sec

TRANSPOSITION NETWORK

(521/512 PARALLEL PATHS)

1.75 X 10" UITSISEC

PEAK RATE

(512 WIORDS OF 48 BITS
PER 14o us)

PROCESSIIIG ELEMENTS 3.4 x i0 BITS/SEC I

(512) - (I \0RB/140 Ius)

2 X 1o BITS/SEC 2 X 10" 15TS/SEC
PROCESSOR

BANK (512 ACCESSES (512 ACCESSES

PER 120 IIS)
PER 120 IlS)

SPEte'S PE'S

(512)(5)

Figure 2-2. Transfer Rates

2-4

A data base memory (DBM). The DBM is a staging area where the
next task is assembled, and results are sent. It has over 108 words.
A transfer rate of 140, 000, 000 bits per second (2, 500, 000 words per
second), is maintained between DBM and EM during these transfers.

A diagnostic controller (DC), is supplied, with an interface with the
host, so that maintenance and verification of trustworthiness can be
enforced by programs resident in the host.

This choice is the result of a four-way tradeoff among quantity of hardware,
difficulty of design, throughput, and flexibility. The exhibited throughput figure

of 1. 7 billion floating operations per second (bfops) is comfortably above 1. 0

billion required, and is conservatively figured on the basis of a mix of instructions.

If well-ordered multiply and add operations are used we could observe 2. 33 bfops.

The compiler compiles two instruction streams which are to be executed con­

currently. The first stream is for the control unit; the second is executed by all

the processors in concert. At specific instructions, mostly fetches from EM and

stores to EM, the two streams come together, and the control unit and all enabled
processors execute the instruction in synchronism across the entire array. In

the stretches of code between such synchronizations, the processors are free to

execute independently, each from its own copy of the processor program in PEM,

including data-dependent branches independently of the other processors or the CU.

2.3 SEQUENCE OF OPERATIONS

There seem to be two classes of users, in general, algorithm developers and

production users. Algorithm developers and experimenters do much more com­

piling for the NSS. They may make occasional single very long runs. They will

do more data reduction on their data, when they get it.

The production user will probably use most of the machine's time. He will use

NSS programs that are on file. Interactively from his terminal, he sets up an

experiment. This includes body geometry and grid geometry.

2-5

Having determined a suitable set of experiments, the user then describes these

at someexperiments to the NSS scheduler (or to CFD's NASF operator who,

appropriate time, will describe them to the NSS scheduler.).

If the proper program is not in place in program memory and CU memory, it

is first loaded.

Two paths for loading programs into the NSS exist. The B 7800 can cause pro­

gram to be loaded into the CUM by means of the DC. Alternatively, code executed

by the CU can transfer code from DBM to CUM via the EM. It is planned to use

the DC path to load a bootstrap into the CU, after which the CU will load the rest

of the program from DBM. The processors' code file can either be broadcast from

the CUM, or broadcast from the EM. Broadcasting from the CUM is faster,

since the transposition network setting must be incremented between each word

when broadcasting a sequence of words in parallel to all processors from EM.

Data, which has been staged by the host in DBM, is transferred to EM by an

After that, program is self-contained withininitialization phase of the program.

EM, CU, and processors, except for emitting results to DBM from time to time.

Within the CUM is a table (prepared by the host) allocating whatever spaces in

DBM are needed by the program for such output.

Overlays into EM, using DBM as backup, are possible. Since EM is large

enough to contain the largest presently envisioned programs, it is not intended

to provide such an overlay facility with the first delivery, but it is proposed for

later extension.

During the course of the running of the program, data from Extended Memory is

loaded into the PEM's via the Transposition Network. The transposition network

passes two-dimensional subarrays and one-dimensional vectors from the extended

memory with full parallelism. Control of extended memory modules and of trans­

position network is emitted from the control unit. Extended memory module

addresses are computed in the processors.

2-6

When faults or error are detected during the running of the program, two courses

of action are possible. For those cases which are likely to be transients, the

program is terminated, and restarted from the last restart point, if any. As later

analysis will indicate, only programs with running times of longer than 15 minutes

or so should have restart points. For those cases where hard error is suspected,

or in the case of a restarted program with a repetition of failure type, the program

is terminated, and the failed processor removed from the system, and a good

processor inserted instead. Manual replacement is rapid. However, automatic

on-line replacement appears not to be difficult either, and will be considered for

inclusion in the design. Software will make a determination as to which of these

two actions is to be taken, depending on the nature of the detected fault. The self­

contained nature of the processors, and the fact that only four module types

(processor, EM module, DBM module, TN logic module), make up over 90 percent

of all components, make for a very simple remove-and-replace repair philosophy.

After replacement, diagnostics are run.

2.4 SOFTWARE

The operating system is resident on the B 7800 except for a small part that resides

on the NSS and handles loading and interrupts. A listing of operating system

requirements is found in Chapter 4.

The language is an extended FORTRAN. The extensions are suggested by the nature

of the program, and by the ways in which the yardstick programs fit onto the NSS.

An essential feature of the architecture is the ability to execute in parallel on two

dimensional elements of a three-dimensional set of data. Therefore, a feature of

the language is statements that cause parallelism on-two indices simultaneously.

For example, "DOPARALLEL J=l, 100 DOPARALLEL K=1, 100" are two successive

statements that tell the compiler that all 10, 000 J, K pairs correspond to com­

putations that can be done in parallel. The compiler then takes this 10, 000-wide

parallelism and cuts it.into twenty 512-wide pieces. Neither the iteration of 20

nor the width of 512 is visible to the programmer.

2-7

2. 5 FAULT TOLERANCE, TRUSTWORTHINESS

Reliability calculations (very approximate, at this writing) indicate that the mean­

time-between-failure (MTBF) for hard failures is high enough that the NSS needs

only error detection, followed by repair, as a defense against hard failures.

For 	transient failures, exactly the opposite is true. In Appendix C, analysis of

how 	infrequently can failures be tolerated, indicates that error correction and

error detection will have to be widespread throughout the NSS. An apparently

successful run with wrong results is far worse than an aborted run.

The 	prime defense against transient errors is proper design. However, the use

of LSI means that the designer can no longer specify with 100 percent assurance

the 	absolute maximum limits of values of individual components, since the equivalent

resistors, transistors, etc., are not accessible to measurement. Thus, design

can 	only guarantee some very low, but never exactly zero, transient error rate.

From analysis and conclusions of Appendix C the following design is abstracted.

* 	 Every memory has both error detection and error correction.
For PEM, PEPM, and CUM parity plus retry may save signi­
ficantly in components over a Hamming-plus-parity (SECDED).
However, if retry is ineffective in correcting errors, SECDED
must be used.

For 	EM SECDED is selected. If the error rates of the EM memory
chips are much higher than estimated, a double error correction,
triple error detection code must be used at the expense of more
check bits.

For 	DBM, the characteristics of CCD chips will force us to
periodically read the contents of DBM and correct all the correctible
errors, before additional errors make them uncorrectible. Whether
SECDED or a more powerful error correction code is needed is to
be determined. A periodic correction cycle of seven minutes is
expected.

* 	 For processors and CU, a repertoire of consistency checks is
listed in Appendix C. These are in the baseline system design.

* 	 Software checks (conservation of energy, conservation of mass,

etc.) are recommended.

2-8

.e Residue checking on arithmetic operations will check much, but
by no means all, of the arithmetic logic in the processors.
It also clearly interferes with processor throughput. A tradeoff
analysis between these two effects is planned for Phase II of the
NASF design, so as to achieve maximum usefulness of the NASF.

* 	 Data is initialized to "invalid".

* 	 Data transfers between processors, CU, and EM are covered by

the same SECDED code used in the EM.

2-9

CHAPTER 3

HARDWARE

3.1 INTRODUCTION

The characteristics of the hardware elements of the NSS are tabulated in Table 3-1,

and described in more detail in the sections below. Hardware is here defined as

both the functional characteristics of the machine, both block diagrams and logic

design, and the physical, or nuts-and-bolts aspects. Physical issues are critical

to the success of the NSS design, and are therefore discussed in their own section

at the end of this Chapter.

3.2 PROCESSOR

Each processor has three component parts. These are the logic portion, or Pro­

cessing Element (PE), the data memory or Processing Element Memory (PEM),

and program memory (PEPM). All three parts are expected to fit within 200

integrated circuit chips, and therefore will fit on one module no larger than a

single large printed circuit board.

A key element in packaging this combination of elements on a single printed circuit

board is the use of Large Scale Integration (LSI) circuits. It is estimated that

there will be the equivalent of 13, 000 gates in the processing element. To package

all these gates in an estimated 100 packages or less will require the use of LSI

at two hundred to a thousand gates per package, possibly including customized

3-1

gate arrays. Only a few Medium Scale Integration (MSI) packages, and practically

no Small Scale Integration (SSI) packages, can be used. Commercially available

LSI will be used as far as possible, but standard gate arrays with custom

metallization may be needed. Appendix E describes a design using today's

ECL 100K circuits with less than double this projected parts count for the PE.

Memory in the processor will use 16K-bit chips. Therefore, the PEM requires

49 memory chips; the PEPM requires 25 memory chips. Some controls are also

required.

Table 3-1. Characteristics of Hardware Elements

Processor

- Number: 512

- 48 bit data word

- Multiply time, 360 ns; add time, 240 ns; add product 440 ns (multiply
and add); for normalized, rounded floating point operations.

- One large p/c board for the processor includes PE, PEM, and PEPM.

- Approximately 100 integrated circuits in PE.

- Overlapped instruction fetching and decoding, partially overlapped
index arithmetic.

Processing Element Memory (PEM) and Processing Element Program
Memory (PEPM)

- Number: 512 of each on same boards as PE's.

- Memory cells: 16K-bit integrated circuit chips, (49 chips and
25 chips, respectively).

- Cycle time: 120 ns.

- Error control: parity checking with retry upon failure, error halt
on second failure.

Extended Memory (EM)-modules

- Number: 521 modules ­

- Memory cells: 64K-bit RAM chips, 56 chips per module, 65536
Words per module.

- Cycle time: 260 ns single word, interlaces for 140 ns/word
for block transfers.

- Capacity: 65, 536 words per module, 34 X 106 words total.

3-2

Table 3-1. (Cont'd)

Error control: Hamming plus parity for single error correction,

and double error detection. Error detectors are in PE, DBM controller.

Error correctiors are logged.

Transfer method, 7 bytes per word, one byte per 20 ns, to PEM,

word-parallel to DBM bus.

Auto-incrementing address register for streaming fetches.

Transposition Network (TN)

- Block transfer rates, one word per 140 ns.

- Path width, 8 bits per path, 521 Paths to EM, 512 paths to processors.

- Control setup time, 80 ns (measured from start of controlling
instruction in CU).

- Delay from EM to PEM, in streaming mode, 80 ns.

Control Unit (CU)

- CU memory: same technology as PEM,

- Average instruction execution time: 350

- Complexity: 30, 000 gates

- Synchronization time: 180 ns.

Data Base Memory (DBM)

- Implementation, 256K-bit CCD chips.

- Capacity, 6 X 109 bits.
6

but 32, 768 words.

ns (estimated).

- Transfer rates, 140 X 10 bits/sec to/from EM. Unloads into
disk-pack file system of host processor on other side.

- Controller accepts input from CU for DBM-EM transfers, accepts
input from host I/O channel for DBM-host transfers, and resolves
conflicts between the two. Design of the controller is dependent on
choice of host processor (whether the host buffer DEM-disk pack
transfers, or whether buffering resides in the controller).

Diagnostic Controller

- Accepts single instructions from diagnostic program running on host.

- Overrides any CU action.

- Manipulates PE's and EM by causing CU to execute single instructions.

3-3

TO/FROM TO/FROM
CU

I (8BITS)
TN
(8-BITS)

PEPM PEt

S--TN & CU BYTE-SERIALIZER,

ADDRESSES INTERFACE ERROR CORRECTION

INSTRUCTIONS 	 EM ADDRESSES

ADDRESSES 1

INTEGER
 INTEGER
 PARITY

REGISTERS ARITHMETIC 	 CHECKER/

GENERATOR
UNIT

49-BIT BUS

INSTRUCTION

PREFETCH

(USUALLY I WJORD)

NS

2 INSTRUCTION/120

MAXS

Fiue3148-BIT 	 BUS

TO INITEGER
INSTRUCTION 	 FLOATING .L POINT]POINT TMTcFLOATING

DECDEINSTRUCTION
 UNIT

OTHER

Figure 3-1. Internal B3lock Diagram of PE

3.2. 1 Processing Element (PE)

The main features of the PE design are:

- Optimum arithmetic speed.

- Local registers to reduce stores and fetches to PEM.

- Separate index arithmetic section and index registers for over­
lappability of address calculations.

- -Simple CU interface, only a few signals.

- Independent, overlappable byte serializer and error checker
for the Transposition Network interface.

-- Barrel switch for fast alignment of addends and normalization
of results.

-- Error correction and detection at several points.

- Independent, overlappable instruction fetching.

Figure 3-1 shows the general arrangement of the sections within the processing

element. Instruction fetching and decoding form one partially independent section.

The 16-bit integer registers and a 16-bit adder form a second independent unit.

The floating point unit is the most complicated of all the blocks shown in Figure 3-1.

In it, there is a separate adder for exponents, and multiplication hardware.

Multiplication is disucssed in a section of Appendix D. A 39-bit (plus guard digits)

adder and a barrel switch needed for alignment are included. Associated with the

floating point arithmetic units is a bank of eight 48-bit registers. The path to

processing element memory carries addresses from the integer arithmetic unit

while a bidirectional 49-bit-wide data bath is connected to the register file, to the

parity checker-generator, and to the transposition network interface. The TN

interface is also used for converting words in and out of byte-serial form for

transfer to and from the CU.

The processing speed, and therefore the number of processors, arises from the

speed of economic memory.

3-5

3. 2.2 Instruction Handling

In designing the PE, a goal is to get as much overlap of operations as possible

while keeping the design of the controls relatively simple. As always in specifying

solutions to engineering problems, optimization results from tradeoffs. Figure 3-2

shows the chosen mechanism for achieving a reasonable amount of overlapped

operation with relatively simple controls.

One, two, or three instructions are in various stages of execution, in the integer

arithmetic controls, the floating arithmetic controls, or in the PEM controls.

One word's worth, either one full word instruction or two half-word instructions

are in the instruction staging register.

When any of the three semi-independent execution stations finishes, and if the

next instruction is for that station, and if the instructions at the other two stations

will not interfere with further action at the idle station, then the next instruction

is passed to the free station, or in the case of the PEM fetch controls, the address

field of an address-bearing instruction is passed.

When the first half-word instruction is emptied out of the Instruction Staging

Register, the second half-word becomes the "next" instruction.

PLPH

STAG ING
REG ISTER,

1 TO1
ARITEG RTIC ARITHMETICFTC

CONTROLS COlTROLS lTOL

Figure 3-2. Instruction Fetching Machines

3-6

When all of the Instruction Staging Register contents have been passed to the

relevant execution station, a new word is loaded from memory. Whenever a

word is loaded into the instruction staging register, the program counter (PCR)

is incremented, and the next address in PEPM is caused to read. Thus, PEPM

read access time is usually overlapped with instruction execution. To keep the

instruction handling simple, the binary code used for each operator adheres to

certain rules:

1. 	 The first bit of each instruction is "1" for full-word and "0"

for half-word.

2. 	 The second bit of each instruction is "1" if the address field is an
18-bit field and is used for fetching. This bit, plus the "00" or
"01" at the beginning of the address field indicates that a PEM fetch
is to be executed. PEM access time can thus be overlapped before
the rest of the instruction is decoded.

3. 	The next bits of the instruction are "00" for index arithmetic

operations, "10" or "11" for floating-point operations, and "01"

for 	other cases.

The timing information in the software chapter is based on particular designs for

the logic, which is discussed at greater length in Appendix D on logic design.

In particular, a multiplication algorithm for the baseline system is disclosed.

3.2.3 Processing Element Memory (PEM)

The processing element memory is 48 bits per word plus parity. A fault detected

by the'parity checker will result in the refetching of the fetched word, and the dis­

abling of any results in the next PE major clock. Each faulty parity thus costs

120 extra ns, but only in the PE in which the fault is found.

Since there are 16, 384 bits per chip, and 16, 384 words in the memory, the

obvious organization, of one chip per output bit, is adopted. Chip address controls

are connected directly to the memory address register, which is designed with

sufficient drive capability to drive all chips in parallel. Two of the address bits

are used to select one of the four output bits of each chip.

Logic surrounding the individual chip is shown in Figure 3-3.

3-7

12 BITS ADDRESS

R/Wi PE CUIP

INITIATE (ONE OF 49)

2 BITS OF ADDRESSI SELECT4

PARITY GENERATOR

PARITY IPARITY

ERROR CHECK BIT OUT

DETECTION/

CORRECTIONI

TO/FROMPARALLEL

DATA BUS

T.N.

: C> PARALLELTO
SERIAL/PARALLEL

SHIFT PROCESSOR

FROM CU

TO PE REGISTERS

Figure 3-3. PEM Logic

3-8

Cycle time is 120 ns, giving 8, 300, 000 words per second per PE. Since there

are 512 PE's and 49 bits per word, the transfer rate is 2. 0 X 10 bits/second

for the entire parallel channel.

Although the normal word length is 48 bits, some data is packed in two 24-bit

words per memory word, giving an effective size just slightly larger than the

specified 16, 384 -words.

3.2.4 Processing Element Program Memory (PEPM)

The processing element program memory is the same as the PEM except for

being half as many words. Program addresses within PEPM are fixed at linking

time, not dynamically assigned at overlay time, so that absolute addresses can

be used; that is, the program counter is used directly as the PEPM address

register.

A full word is fetched at each cycle. Some instructions are full word, some are

half word. The word length is the same, 48 bits, as in PEM.

Loading PEPM from the CU can be done at the rate of 140 ns/word, from the

CU memory. Therefore, it is not inefficient of time to overlay program. The full

8192 words of every PEPM are loaded in only 1. 2 ms.

3.2. 5 Processor Interface

The processor board has a card-edge connector with about 90 pins. Thus, there

are relatively few connector junctions in this machine, considering the amount of

circuitry involved.

The pins are assigned as follows:

8 signals from the CU for broadcast variables

8 signals to the CU for data transmission

9 signals to the transposition network. (8 data plus strobe)

9 signals from the transposition network

3-9

4 COPIES OF 26 SIGNALS

CA13INET FIRST LEVEL 4 REQUIRED
NUMBER (CABINET LEVEL)FAllOUT BOARD 8 COPIES OF 28 SIGNALS

SECON-D LEVEL

FAlOUT OARD 32 REnUIRED

I I I I I III

8 PE'S DAISY-CHAINED

PER BELT

512 R[0.

Figure 3-4. Fanout Tree

3-10

6 one-bit lines "on", 1Trunning", "interrupt CU", "fault", "I got here",
i"go" .

4 bits of control code from the CU. Codes include "load program counter",
"halt", "clear memory address register", and others.

S lines given processor number. Some of these lines come from the

cabinet-level fan-out board so that all cabinets are wired identically.

25 (approximately) power and ground connections. Multiplicity of
ground connections is needed for the mechanical (and electrical) termination
of 8-signal belts.

10 spares.

Between the CU and the processors there is a set of fanout boards. These boards

provide the fanout function so that signals being broadcast need not have 512 wires

each coming from the CU. These boards also contain the necessary logic func­

tions of signals being sent to the CU. For example, every "on" PE is to have its

"running" bit ORed together so that CU can tell if any PE is running. This requires

the 512-input OR of "on" AND "running". The cabinet level fanout board contains

the cabinet part of PE number, the least significant end of the number being wired

into the backplane.

The wiring consists of one 18-signal belt to the transposition network and one

24-signal belt to the last-level fanout board, which is daisy-chained to a number

(typically 8) of other PE's. Some of the PE signals ("on" and "running", etc.)

are logically combined at the fanout board and cannot be daisy-chained.

The least significant end of PE own.number is wired at the backplane connector

to "one" or "zero", these being two voltages supplied from the PU board..

Figure 3-4 shows the fanout tree for the connection between CU and PE's. The CU

has 4 groups of 27 signals. Most of the matching signals in each group are

replications of the same signal. The CU uses 108 signal pins to communicate with

the array of PE's.

In each cabinet of 128 PE's there is a cabinet-level fanout board. This board has

27 connections to the CU, two signals for the "cabinet number" jumpers wired into

the backplane, and eight copies of a 29-signal interface to the "row" fanout board,

for a total of 241 connections.

3-11

The 	"row" or second level fanout board has a 29-signal interface with the first

level board, two 24-signal belts that daisy-chain to eight PE's each, and 16 copies

of a 	4-signal interface to those same 16 PE's. The result is a signal count of

141 	before ground, power, etc. are added.

3.3 	 TRANSPOSITION NETWORK

The transposition network (TN) accepts vectors whose elements are not in

contiguous addresses, and passes them in parallel to the processors as though

they were contiguous. For fairly general types of vectors, there are no memory­

conflicts. The vector elements are emitted in parallel by the EM modules. The

TN rearranges their sequence on the way to the processors. Design of the trans­

position network has to face several issues:

1. 	 What patterns of scrambled order of data elements, coming from
the EM modules, must be unscrambled in getting to the processors?

2. 	 What logic design gives the best tradeoff among parts count, flexi­
bility of connection patterns, and ease of control?

3. 	 What is the tradeoff between parts count and bandwidth?

These issues are discussed in turn.

3. 3. 1 TN Requirements

Addresses in extended memory are continuous, in terms of address space. For a

single address A, the EM module number M is given by

M = A mod 521

For 	a set of up to 521 addressesA. (0 <i< 521) whereA i = A +p*i, we have
i 0

module numbers M. = (A0 mod 521 + (p*i)) mod 521. Swanson (see reference)

calls this a p-ordered vector, starting at M0 , In the terminology used in the

Burroughs Scientific Processor (BSP) project, p is the "skip distance".

The 	requirement for the transposition network is simply this. A set of memory

addresses, each separated by a constant amount p, is found in different memory

modules. The transposition network takes the first member to the first PE,

3-12

the 	second member of the set to the second PE, and so on. (See Figure 3-5). To

allow the maximum number of options, the number of'memory modules must be a

prime number. Fortunately, the number of memory modules is completely

invisible to the programmer, who works with an address space described by

successive numerical addresses, very conventionally.

In the section on data allocation, it is shown that more complex two-dimensional

arrays can also be fetched in parallel using this same unscrambling of p-ordered

vectors.

In addition to unscrambling these p-ordered vectors, the transposition network

must also transmit in the opposite direction, for passing addresses from

processors to EM modules, and for storing. In addition, there is a broadcast

mode, in which a single word from a single EM module is transmitted to all

processors.

3 3.2 Choice of the Transposition Network

Several possible transposition networks were considered. These include:

1. 	 The selected transposition network, described below, and on wich
which a patent application is now pending. It has low parts count
(2N log2 (N)), short delay, and is easy to control.

2. 	 The Benes network. Parts count and delay are as good as the selected
network. Control is complex, requiring over 2000 bits for each
desired permutation, of which there are over 5212. These control
patterns take either a very long time to compute, or require a very
large ROM

3. 	 A version of routing, as in ILLIAC IV. This scheme is rejected for
delay; up to 16 register-to-register transfers are needed to rearrange
a single 2 56-long vector of variables, or for parts count, since the
added delay can be partially overcome by additional hardware.

4. 	 A scheme, wherein each processor has its own EM module, and

neighbor-to-neighbor connections allow one processor access to

the data in other EM modules. This is similar to Sutherland's

scheme as described in Scientific American for September 1977.

With the data accessing patterns of the benchmark programs, either
a) the percmtage of idle time among processors is very high, or
b) the data allocation options are very restrictive, and data allocation
is very difficult to figure out.

3-13

P-ORDERED VECTOR

START ING
OFFSET
M

4

SEPARATION

P

0 2 3

- t1.0 BITS

F-
C) ~1

3 SEPARATION
0 BITS

STARTING
OFFSET

0 1 2 3

-

4 5

UNSCRAMBLED

il-I N

N-PRIME (521)

Figure 3-5. Transposition Network

3-14

5. 	 A full crossbar between EM modules and processors. This has
excessive parts count, on the order of N 2 .

Table 3-2 summarizes these comparisons. The alternate schemes are discussed

in Appendix B.

The transposition network has the following properties:

- Transfers between a p-ordered connection of EM modules and the
direct, 1-ordered, PE modules.

- Receives p and M0 (10 bits each) from the CU for control.

- Has delays given by the approximately 50 feet of wire between
EM and PE, plus the delay through 10 gates.

- Broadcasts to all processors from a single EM module are also
performed.

As becomes clear below, control of the TN requires a shift distance of 10 bits,

a 10 bit control setting for the skip distance p which is read from a 520-word

by 10 bit ROM, and about three bits of control to specify the action: unscrambling

the p-ordered vector, broadcast, or any other combination finally specified.

3. 3. 	3 Design of the Transposition Network

The 	equations relating EM module number to i, are repeated as follows:

M. 	 (s +p. i) modulo 521

1

where Mi is the physical location, or position, of the ith element of the vector

being fetched. We wish to transpose this ordering in such a way that the ith

element falls into position number .

Consider the solution of the equation

i = (M - s)/p

3-15

Table 3-2. Comparison of Transposition Networks

Feature
Baseline Benes

Network

Routing
Nearest
Neighbor Crossbar

No. of Components 2N log2 N 2N log 2 N N Factor 7 X N N 2

Delay (clocks per
transfer)

1 1 Many 1 1

Control Complexity Simplest Very *

Complex
Simple Simple Simple

Programming
Restrictions

Essentially
None

None Essentially
None

Severe None

No. of EM
Modules

N = Prime N = Prime N = 22n

(Preferred)
N < B < A All
rel. Prime
N = AB

Any

No. of
Processors

P < N P<N P = N P = N No Constraint

eI
Reason for Rejecting

for the .moment forgetting that the arithmetic is modulo 521, a fact which we shall

reintroduce. We can solve this equation as follows:

i = b - logb(p))

where b is the base of some logarithm, as soon as we can define a suitable

logarithm.

To continue this explication, let us simplify the example to 11 EM modules, instead

of 521, and take 2 as the base of the logarithms, according to Table 3-3, which is

in arithmetic modulo 11.

Table 3-3. Powers of 2 in Arithmetic Modulo 11

p 2 m p m log2 p

1 =20 =210 1 0

2=21 2 1

4=22 3 8

8=23 4 2

5=24 5 4

10 =25 6 9

9=26 "7 7

7=2 7 8 3

3 =28 9 6
96 =2 10 5

2101 =

The exponents of 2, in Table 3-3, can be used as the logarithms of the numbers

on the left hand column, in performing modulo 11 arithmetic. We solve our

equations as follows, and translate it into hardware as shown in Figure 3-6.

Essentially equation 148 on page 110 of Shanks book on number Theory

(Reference 26).

3-17

EM MODULES

(i)-*2 58 103 69 114 710 M = s+p.i

0 I 2 3-4 5 6 7 8 .910 (Mi = 3+4" 1)

BARREL]

(i)--6 4 7 0 5 8 Gi= Mi-S = P'

G­i ­ 0 2 3 4 5 6 9 10 (Gi= 4. i)

(i)-- 0 3 6 2 4 8 7 Li= log 2 (G i)

L0 2 R 6 7 89 (Li Iog2(4- i))

BARREL-­

(i) 0 2 4 8 5 10 9 7 3 6 Pi L i - og2(p)

P(- 01 23 456 7 8 9 (Pi = l
1

2 (4 ' i) - 0g2 (4)

= 10g2('i)

(i)--w 1 2 3 5 8 1 I0 Qi;= 2Pi = 210g2(i)

Qi -- 0 2 3 4 5 6 7 8 9 10 (Qi = 2 1og2 (i=i

PROCESSORS

Figure 3-6. Transposition Network Functioning for N=11

3-18

.1. 	 At the top of the figure, the module number M i is given by s+p. i.

A numerical example accompanies the figure, with s=3 and p=4.

2. 	 After passage through a conventional barrel switch, the positions
are given by Gi = p.1. That is, a shift left of s subtracts s from each
signal's position. The barrel is 11 wide and shifts end around.

3. 	 A wiring scramble, a permanent part of the backplane, takes every
position Gi and converts it into a new position log 2(G) where
"log" is defined by Table 3-3. Note that 210 = 20 the barrel is
10 wide and end around therefore. The 0 position is not involved, since
the barrel already put i=0 in the 0 position, and the log 2 function is
not defined for log2 (0).

4. 	 A second barrel now subtracts log2 (p) from the position Li. For
example, p=4 and 1og2(4) = 2 by Table 3-3, so the barrel shifts
left by 2. Table 3-3 is stored in a ROM in the CU.

5. 	 A second wiring scramble, the inverse of the first, finishes the
transformation.

Each step in the solving of the equation takes the physical location of the 11 signals

and rearranges them to a new set of physical locations; the successive physical

locations being the M i, G., Lk, Pil and Qi respectively. Down the right side of

Figure 3-6 is the algebraic representation of the separate steps; down the left

side is indicated what the numbers on each line mean.

The extrapolation from 11 EM modules to 521 EM modules is shown in Appendix B

in Table B-2. Here, in modulo 521 arithmetic we find that powers of 2 do not

cover the 520 values, but we find that powers of 3 will. Everything else remains

the same. The upper barrel has width 521. The wiring scramble is described

by Table B-2. The lower barrel has width 520.

An additional detail in the design of the TN is the provision for broadcasting.

Module number s is noved to position 0 on the output of the upper barrel. An'extra

path is inserted from position 0 at the output of the upper barrel, to position 0 of

the input to the lower barrel. All other outputs of the upper barrel are forced to

zero. All control signals, for all shift distances, are enabled in the lower barrel,

so the lower barrel's outputs, all of them, are the OR of all the lower barrel's

inputs. Only one input is not zero, therefore the output of the lower barrel is

equal to that one input.

3-19

Some simplification of controls can be achieved if the barrel chips latch their outputs

on command, but such latching is not a required feature. The latching control is

used both a) to latch data as it passed through for retiming purposes, and b) to disable

the level by latching onto previously established zero inputs. The Fairchild 100158

shift matrix is capable of implementing the transposition network, but somewhat

and all gates must be duplicatedinefficiently, since the individual chips shift end off,

in order to achieve end-around shifting.

The path width of 8 bits, and a per-byte clock of 20 ns, means that 140 ns is

required to transfer an entire word of 55 bits. Seven bytes are 56 bits, leaving

one spare bit location in the transferred word.

The above description of the transposition network differs considerably from the

description in the patent application Wwhich involves an extension of the ideas

in Swanson's article. The two descriptions are of the same connections between

individual gates, and therefore of the same transposition network. This alternate

description is included in Appendix B.

3. 3.4 Required Bandwidth

The transposition network described has an 8-bit wide path, so that seven successive

transfers are required per word. This is designed to match the postulated EM

speed (260 ns cycle time memory chips, with an interlace of two submodules per

EM modul6). Since the TN is a much smaller amount of hardware, and less cost,

than the sum of the EM modules, it makes no sense to nake EM performance

suffer because of limitations in the TN. Therefore, the TN is designed to keep up

with EM cycle time.

On access time, we note that the access time to EM, as seen from the procesor,

includes the EM access time (a large fraction of 260 ns) plus the round trip delay

from processor to EM and back, of 100 ns. The TN design adds 120 ns to this

access time because of the byte serial nature of the word returned through it.

Since TN transfer times are only one or two percent of the total execution times,

I -

A patent application has been applied for on the transposition network. This work

was done under the subject contract.

3-20

a wider TN, with reduced access times, is not an effective investment in hard­

ware for speedup purposes.

3.4 EXTENDED MEMORY (EM)

Each extended memory module contains two submodules of 28 memory chips each,

each chip contains 64K-bits, so that each EM module contains 65, 536 words. Since

there are 521 modules, there are 34 X 106 words total.

Each EM module is split into two halves for interlacing: Odd numbered addresses

are in one submodule, even numbered addresses are in the other. Each half

consists of 28 chips, with two bits of data per chip, and one half chip unused.

The EM module interfaces the transposition network on a byte-serial connection

8 lines wide, and likewise on the DBM side. On the TN side, it executes the

following operations on command from the CU (these operations being portions

of CU instructions):

- LOAD the address register from the TN while loading the increment
register from the CU

- FETCH one w6rd to TN from the address given,
address.

and increment the

- STORE one word received from TN to the address given,
increment the address.

and

- LOAD the word received from the TN into the
do-not store.

data register,

- SEND the word in the data register to the TN, do not fetch.

- SEND module number (wired into the backplane) into the TN.

Error correction code generation and detection is done in the DBM controller

and the PE. It does not affect the EM module at all.

3-21

On the DBM side, the EM module responds to just three commands, sent from the

EM control portion of the CU:

- LOAD address register.

- FETCH one word, increment address by 1, data register is connected
to the 140 megabit bus that goes to DBM.

- STORE - Accept one word from 140 megabit bus and'store it.
Increment the address by 1.

At one time, a shift register implementation, using 64K-bit CCD chips, for the

EM was considered. No satisfactory tradeoff between block size, access time or

transfer time could be found. A RAM implementation of EM is clearly superior.

3. 5 	 CONTROL UNIT (CU)

The control unit executes a set of instructions of somewhat greater diversity than

those that belong to the PE, but has no need for the complexity of floating point

hardware.

The 	control unit includes the following functions:

1. 	 Integer arithmetic for address claculation and loop control.

2. 	 Synchronization with PE's; commands sent to the PE's.

3. 	 Controller for EM-DBM transfers; resolution of conflicts with
DBM-host transfers initiated by the host.

4. 	 Interface with host I/O channel for communication with host­
resident programs and for loading NSS programs.

5. 	 Machinery for broadcasting program to the PE's.

6. 	 Local memory.

In addition, the CU can be manipulated by the diagnostic controller for diagnostic

purposes.

3-22

The CU memory will be manufactured of the same technology and will share parts

types with the PEM. The CU cycle time will be 40 ns. A homogeneous CU memory

allows the allocation of space to program and data in an optimum manner. The

size of the CU, perhaps 30, 000 or 40, 000 gates, is small enough that redundancy

of operation is not necessary although error detection is desirable. Several mem­

ory bounds separate the operating system, the CUI's own program, program files

for loading into the PE, and CU data. CUM can be loaded either by the DC or

from EM.

3. 5. 1 Synchronization

Synchronization requires that all processors and the control unit wait until the

last one of them is ready to perform some action, whereupon the last one's being

ready triggers the entire set into synchronized action. Synchronization can be

accomplished in two ways, depending on whether that last ready element is one

of the processors, or is the control unit.

If the last ready element is expected to be the CU, we call this "type I" synch.

It goes as follows. As each processor reaches the point in the program at which

it waits, it raises an "Igot here" flag. When the CU reaches the point in the CU

program that corresponds, it checks all the "I got here" flags from enabled

processors (unenabled processors don't count, so the condition tested is the

512-way AND of "I got here" OR NOT "enabled"). When all "I got here" bits are

detected as being true, the CU issues a "go" signal which is received at all

processors simultaneously.

If the last ready element is expected to be one of the processors, this is called

"type I" synch. The CU reaches the point in the program where the cooperating

process is to start, and performs some action of its own (typically, setting the

TN to some unscrambling pattern), and sends an "all is ready" signal to all

processors. The processor, sensing the "all is ready" signal, continues.

3-23

4 5
CU CLOCK t jI 2 I g11 1. 1 1 I 9 I I 1 12 113 114 115 116 117 118 1I9

4 6 19 ° 0-s cI ,,c PE CLOCK to I 12 13 t4 15 1 17 18 110 i 112 113 114 115 116 1I1 118
PERIOD

i° 5 I6 8

EliCLOCK II 12 1 14 15 16 F 18 19 Ill 112 113 114 11 117 I1

{-I PE START HERE
-
CU SET TN CONTROLS

fFROMICU

'ALL IS READY'" AT PE r

PE SEND ADDRESS F 112131

Eli RECEIVE ADDRESS 11777

"11GOTHERE" FROTPE _L...,.
IATCC

nGOn TO PE and TO Eli

Ell
CYCLE
DATA AVAILABLE FROM Eli i_______

DATA TRANSMITTED TIRU TO I' IT 1 3 47 17 1-1

DATA RECEIVED AT PE I '1 2-173FI45 T s I
START-- rPEMSTORE CYCLE

(Overlapped or PE Load Register)

PEM READY

FOR NEXT FL.OR

PEM LATCHES
START

PEM CYCLE _ _... . _

x "I GOTHERE", PE TO CU r_-_-- _

" "GO" BACKFROMCU
- (CU Sets TH Controls Early) ADDRESS DATA WORD

BYTE SERIALIZER OUTPUT I . I I I 1314 I' 161I7
BYTES RECEIVED AT CU I1 1 331 1 2 1 3 1 I SI T17 I

Eli MODULE CYCLE START

PE READY FOR
F pE SYNC NEXT FL O.

START
"ALL IS READY'' FROMCU

e' "I GOTHERE" FROMIPE

-' BYTE SERIALIZER OUTPUT IFROM PE -I,3II1 14,IS I
AT ElliI mlzl~l 1 3 1617l

- Eli MODULE CYCLE START

Figure 3-7. Synchronization

The'EM fetches and stores use a mixture of both. The CU sets the TN controls

and issues "all is ready". The PE's transmit addresses to the EM modules
sIimulatneously with sending "I got here" to the CU. When the CU sees the AND
of all the "I got here's" coming true, it knows the last address is being loaded,
and simultaneously transmits a timing pulse to EM, and "go" to the PE's. For
fetches, the result is that the PE's time their memory cycles in PEM in synchro­

nism with the data being received through the TN from the EM's. For stores
the relative timing at the EM is different by a constant delay. See Figure 3-7.
When N=I, an option is for the PE to load a register instead of PEM.

3.6 DATA BASE MEMORY

3. 6. 1 Requirements

The Data Base Memory (DBM) stand between the host and the archive on one
side, and the rest of NSS on the other. Its controller accepts commands from
the host for transfers to and from the host, and to and from the archive if a
separate I/O channel is provided directly to the archive. The controller accepts

commands from the NSS's control unit for transfers between DBM and the extended
memory in the NSS. The controller also contains mechanisms for error correction

and error control.

8
Requirements are a transfer rate of about 10 bits per second to and from ex­
tended memory, and to match whatever other sources the host may having including
file storage, on the other side. Although the memory of the host computer is avail­
able to be used as a buffer between the DBM and other elements of the host system,

a minimum use of such buffer areas is a design goal.

The size of the DBM is such as to hold a reasonable number of data bases, each
of which is 3 X 108 to l09 bits in size. Thus, the minimum size is "several"

billion bits. The size selected is 6 X 109 bits.

DBM could be successfully implemented in a variety of technologies. It could be
CCD, rotating magnetic storage, or magnetic bubbles. A CCD version of the
DBM is preferred, for a nuniber of reasons, and is discussed below in Chapter 3
as an element of the baseline system. Rotating magnetic storage (disk) would be

3-25

the low-risk choice if the DBM design had to start today. Disk has several

disadvantages with respect to CCD. Timing cannot be adjusted to eliminate buffer

requirements. Access time is longer. Scheduled maintenance is required. Size is

larger. Error correction codes are more complex. Magnetic bubbles apparently

will require more development before they become suitable. Extrapolation from

existing bubble designs indicates that bubbles will require very wide parallelism

to achieve the desired transfer rates. Bubbles also require more off-chip

circuitry, and more complex control than CCD's. Disks and bubbles, as alternate

DBM designs, are discussed in Appendix H.

3. 6. 2 Implementation

Current projections indicate that by 1980 there will be 256K-bit CCD memory

chips. The advantage of using CCD chips instead of disk packs is a simplification

of the controller, since timing is under the control of the controller and only very

small buffers will be required.

A second advantage is that the same error correction code can be used in DBM

as is used in extended memory, and check bits need not be generated on transfers

between the two memories, just checked.

There is a "natural" block size for a CCD memory given by the length of the

internal shift registers.times the number of chips read in parallel. By setting the

logical block size equal to the natural block size, a number of advantages are

gained. One can arrange things so that the first bit of any block is most of the

time in place, so that access time is usually zero; after shifting the block around

at maximum speed, we rest for a while at the "next-bit = first-bit" location.

Whenever the next access comes quickly enough, and it will during EM-DBM

transfers, there is zero access time to the next block. Using natural block sizes

also simplifies the addressing controls, since logic address and the CCD chip

control bits are identical.

To keep the block size from being too large, the number of chips read in parallel

must be kept down to some reasonable number. Seven chips in parallel matches a

simple logic design for the error detection and correction logic, albeit somewhat

3-26

different from the byte-serial, 8-bit-parallel logic used in the EM, and also matches

the block length, since eight 7-bit pieces will make up one word with Hamming plus

parity error control. Each module of DBM reads seven chips in parallel, perhaps

at an estimated 2. 5-MHz rate, or 3.2 microseconds per word per module. With

eight modules there is an average rate of 8/3.2 or 2. 5 words per microsecond,

giving a raw data rate of 55 bits per word or 140 X 10
6

bits per second. Of these

bits, 48 bits per word, or 120 X 10 bits per second are actual data. Each module

contains 3584 memory chips (512 by 7). .The entire DBM contains 1-34, 217, 728

words of 55 bits each or over 7.3 X 109 bits total.

The entire contents ofDBM (CCD version) is continually read and rewritten at the

single-module transfer rate (18 M bits/sec nominal), so that any spontaneous

errors that arise during the CCD refresh process can be eliminated before they

turn into double errors and are uncorrectable. The entire contents are scrubbed

free of errors every seven minutes.

A CCD design for the DEM will require trouble free power. Depending on the

nature of the a-c power at Ames, the system may need tb ride through transients

of only tens of milliseconds; easily done with filter capacitors. In addition, there

may be a need to cover outages of many minutes requiring battery backup. Be­

cause of the need for scrubbing errors, one cannot reduce the power during standby

as much as in some other systems, perhaps power is not reduced on standby at

all. It is estimated that the DBM requires 500 amperes at 12 volts, and 400 amperes

at 5 volts, plus other voltages at lower currents. This could easily represent a

12 kw or larger load on the batteries of uninterruptible power supply. The simplest

arrangement, in which the batteries remain connected at all times, is shown in

Figure 3-8. It has no 60-Hz transformers, thereby saving space and weight.

3-27

A0
12V

L" +1 KW12V

- ~240v__ ;

C

D.C. SWITCHING

REGULATORS

Figure 3-8. Uninterruptible Supply for the DBM (if CCD)

3.7 PHYSICAL DESIGN ISSUES

The 	physical design of high performance digital equipment is a subject that is

often underrated in importance.

Subjects'discussed include:

1. 	 Signal distribution, among the bays, and along the backplane, is a
special case because the wiring is particularly regular.

2. 	 Power supply design is dependent on physical design for control of
impedances, for reduction of noise on the power supply lines, and
for reduction in electromagnetic interference.

3-28

3. 	 EMI control is exercised at two levels. First, packaging and layout
produces circuits that do not emit unwanted radiations. Second,
shielding, primarily imposed by physical design, contains those
radiations within the equipment.

4. 	 Cooling is a major issue.

Concepts to be used in the physical design include:

1. 	 Belts of wire for compact, controlled-impedance signal distribution

2. 	 Batch termination of signals on those belts.

3. 	 Elimination of discrete components

4. 	 Use of low-impedance stripline for power distribution

5. 	 Complete, solid ground planes in the circuit boards

3.7. 	1 Packaging and Layout

Packaging and layout options have not yet been finalized. The two high-usage

boards, the processor board and the EM module, are each about the same

package count as the boards used on the MSI version of PEPE (now at System

Development Corporation, Huntsville, Ala.). Reevaluation of the wiring rules, and

the segmentation of the board into partially independent areas, should bring some

relief in terms of complexity. For these two boards, a 6-layer implementation

is envisioned. The central two layers are a ground layer and a power distribution

layer; the ground layer is a solid sheet, except for small holes, and is brought

out to every third pad or so in the connector edge of the board. Each surface

then carriers two signal layers.

The use of card-edge connectors is permissible and may simplify the module

physical design. Reliable card edge connections require attention to design

details that are usually sloughed over in low-cost electronic equipment giving

card-edge connectors a bad name. Reliable high-density connections require

pin-and-socket connectors. Here, however, the density is low, and reliable

card-edge connections are possible, reducing costs, and possibly saving back­

plane area.

3-29

3. 7. 2 Signal Distribution

Signal distribution will be by means of belts similar to those found in ILLIAC IV,

-with some differences.

Inter-unit signals can be either differential or single ended. In belts, differential

signals require three wires per signal. There are two for each signal plus a

ground between each signal for shielding and a ground at the edge of each belt.

Single-ended signals take one -wire per signal plus a ground between each signal

and on the outside of the belt, or just two wires per signal. (Figure 3-9).

Single ended signals are judged to be adequate. Hence, an 18-signal belt requires

37 wires. A 24-signal belt requires 49 wires. The signals listed in Section 3. 2. 5

will require the following belts:

1. 	 18-signal belts to and from the transposition network on both faces,
to PE and to EM (8 data plus 1 timing, 2 directions).

2. 	 24-signal belt from processor to row fanout board. Two belts leave
each fanout board and daisy-chain past eight processors.

3. 	 24-signal belt from cabinet fanout board to each row fanout board.
There is no daisy chaining here.

4. 	 24-signal belt (four of them) from CU to cabinet fanout board.

There is a similar fanout tree carrying addresses and control to the EM modules.

The widths of the belts in that fanout tree have not yet been identified.

Choices are limited for belt fabrication. Low dielectric constant is needed for

minimum delay. This implies polyester insulation. Teflon is a second choice,

electronically slightly superior, but subject to mechanical damage, specifically

a cold flow phenomenon which can create delayed faults.

Characteristic impedances are fairly well limited to the range from 75 to 100

ohms, over the range of wire sizes from No. 28 to No. 32 on 0. 025 or 0. 050

inch 	centers.

3-30

All ground wires are carried through to the logic ground of the source or destination

circuit at every connection to the belt.

Highly reliable termination to connectors is by batching soldering the belts. The

paddleboards or other media to which the belts are soldered have eteched copper

conductors at cable-wire spacing, each conductor having a line etched down its

center to help align the wires of the belt (Figure 3-10).

GND
Signal 1

Signal 2 Current Flow

Signal 3 Direction

Figure 3-9. Unbalanced Signal

r Stripped Endof Belt

Soldered inMatchi
One "Glow" of I ng

I /.. Tinned PC
Artwork

Insert in
Card Edge

Connector

Figure 3-10. Paddleboards

3-31

3.7.3 Power Supply

The NSS may consume up to a quarter of megawatt of power from the ac mains,

plus a comparable amount of power in the cooling equipment. It is important to

design a power supply which is relatively efficient, as well as showing good

regulation, tolerating lack of quality on the ac mains input and being efficient of

space. This implies switching power supplies, and solutions to the resulting

noise problems.

Many conventional "good practice" rules of thumb for grounding and power supply

connections must be revised for high-current, low voltage systems. A correct

rule is that no wire carrying large currents is allowed to be the connection whereby

the ground "reference" voltage is tied together between various parts of the machine.

Thus power supply returns are isolated from each other at the power supply end,

eliminating ground loops. Backplanes are tied together through the ground wires

accompanying signal cables. Backplanes are tied to reference ground directly,

so the return wire at the power supply is not a reference point for ground.

Reference ground is tied to chassis at one or more points. When both reference

ground and chassis are strictly unpotential, as we expect in the NSS, multiple

ties to chassis are allowable, and are a convenience in debugging.

Packaging individual power supplies with each processor has significant advantages.

Instead of distributing hundreds of amperes at backplane distribution impedances

of 0. 0001 ohm or so, one can distribute unregulated high voltage at reasonable

impedances, greatly simplifying the backplane construction. The independence

and self-sufficiency of the processor is enhanced.

If individual supplies are not used, then hundreds of amperes must be distributed

with voltage accuracies of tens of millivolts. Between supply and load, only a

few nanohenries of inductance are allowed. To keep inductance down, the backplane

is constructed as a stripline, and the output transistors of the shunt regulator and

the card connectors are both mounted together on the same stripline (electrically,

although a bolted connection allows mechanical separation).

3-32

3. 7. 4 Return Wires and Shields

Every signal (except for the very shortest signals), is carried on two conductors

so that there is a return conductor, or single ground conductor, with every signal.

Power supply connections are likewise made with both "going" and "returi" conductors

contained in the same stripline or pair of wires. Signal returns are tied to signal

ground at both ends, to allow the return current to flow, to provide inductive shield­

ing, and to eliminate mutual inductance. Such multiple ground connections are often

erroneously called "ground loops". Differential signals are carried on 3-conductor

cable.

3. 7. 5 EMI Control

The EMI (Electromagnetic Interference) requirements on the NSS have not yet

been determined.

The design so far described will be free of many features that tend to promote

electromagnetic radiation. For example, every signal is accompanied by a return

wire so that large loops that tend to radiate are eliminated. The switching

regulators are separated from the power mains by filters.

On the other hand, any EMI reducing feature that would cost significantly in

terms of design, time, performance, or cost, has not been included. Totally

shielded RFI-tight enclosures are not being proposed, although clearly they

could be provided, at a price, if required. Isolation of signal ground (or "reference

ground") inside the cabinets from the shielding enclosure is required for good EM/I

control. Here, it is proposed to connect signal ground to chassis at multiple

points. Isolation will be a nuisance during debugging, may make the NSS more

susceptible to its own interference, and will necessitate the including of trans­

former or optical isolation of signals.

3.7.6 Cooling

The NSS (excluding the DBM) may dissipate a quarter of a megawatt, as a crude

estimate. There are nine or ten cabinets (four processor cabinets, four EM

cabinets, and one or two cabinets for the transition network, control unit, and

diagnostic controller). Thus, there is roughly 25 kilowatts per cabinet.

3-33

The quantity of heat involved is difficult but not impossible to handle by air cooling.

Air cooling has maintenance advantages, since circuitry is not tied into the equip-

Fluid cooling allows denser packaging withment by fluid-bearing umbilicals.

high-powered components. Heat pipes may be useful for transferring heat from

The final cooling design must be based on the packages in whichspecific hot spots.

the desired LSI components can be made available. Considering the rate at which

new package types are beingintroduced in recent times, it would be premature to

prejudge the cooling design at this point.

3-34

CHAPTER 4

SOFTWARE AND OPERATIONAL CHARACTERISTICS

4. 1 MATCHING

An underlying concept in Burroughs computer development since the B 5000 has

been the congruence between hardware and software design. In the present

instance, the architecture of the machine has been matched to the class of pro­

grams that represent the problem, and the language is also matched to this same

set of applications. The architectural features, such as the instruction set and

the patterns of accessing the data, therefore match the language, at least theor

normal usage of that language as it applies to the set of applications.

The following sections discuss the operating system, the language and compiler,

the instruction set, and in a separate writeup, the data allocation.

4.2 OPERATING SYSTEM DESCRIPTION

4. 2. 1 Introduction

An operating system description, for the NSS, can at this time be reasonably

complete only if it based on existing system software. The Burroughs B 7800 is a
candidate for the host propessor, and the attachment of the NSS to the host bears

similarities to the attachment of the BSP to its B 7700/B 7800 host. The following

4-1

operating system description is based on using the B 7800 and the B 7800 Master

Control Program (MCP), and upon leaning on some of the design decisions and

experience gained in the BSP project.

The 	following description is therefore conditional on using a B 7800 for the host

processor.

4. 2. 	 2 Objectives

4. 2. 	 2. 1 Purpose of Operating System Software

The purpose of the operating system is to provide software support for the

following:

1. 	 Scheduling and controlling the flow of programs and files between
the B 7800 and the NSS.

2. 	 Allocating and maintaining the temporary files on the DBM.

3. 	 Supporting the NSS FORTRAN programs for functions that cannot
be performed in problem mode because of overall system
implications.

4. 	 Supporting other functions of the B 7800-NSS interface such as
performance monitoring, error logging, and operator control.

5. 	 Providing certain system utilities such as dump and log analyzer.

4. 2. 2. 2 Workload Assumptions

The NSS is designed to operate efficiently on tasks with the following characteristics:

1. 	 Data base sizes up to the size of the EM.

2. 	 Long running programs: a minimum runtime of one second, a
typical runtime of several minutes to several hours.

3. 	 Batch job oriented.

4-2

4. 2. 	2. 3 Salient Characteristics

A basic tenet of NSS design is to providecontinuous execution of aerodynamic

simulation programs at rated speed. To this end, Data Base Memory provides

access time and transfer rates sufficient to sustain fully-overlapped sequential

I/O, and provides capacity to contain all files required by a typical program on

this high-performance device.

4. 2. 	 2. 3. 1 Computational Envelope

The 	computational envelope is defined as: "The NSS task, once started, runs to

completion within the high-performance computational and I/O environment of

the NSS without requiring intervention of or access to the much slower B 7800

processor or its I/O devices. " In particular:

1. 	 All NSS program and data files must be fully contained within
DBM while the program is in operation; input and output files
must be copied to or from DBM before the task is started or
after it completes, respectively.

2. 	 Each NSS program is self-contained as far as resources are con­
cerned. No dependencies on B 7800 actions shall occur during
the runtime of the program.

4. 2. 	 2. 3. 2 B 7800 Integration

NSS programs exist as tasks within the standard WFL (Work Flow Language) job

structure of the B 7800. The job task itself runs entirely on the B 7800. A NSS

task, once initiated, runs wholly within the computational envelope without further

B 7800 dependence until it terminates.

4. 2. 2. 2. 3 Limitations

Some functions traditionally associated with operating systems are not provided

on the NSS, although of course they are a normal part of theB 7800 itself.

Specifically:

1. 	 NSS FORTRAN is the only language provided.

2. 	 Interactive programs are not supported.

4-3

3. 	 Initially, no provision will be made for programs whose total file
sizes exceed Extended Memory capacity.

4. 	 Operator intervention on behalf of running aerodynamic simulations
is disallowed, although the operator may terminate an NSS task.

5. 	 A mix of tasks with very short runtimes can not be processed with
maximum efficiency.

4. 2. 	 3 MCP Software

4. 2. 	 3. 1 Overall Software

The 	MCP software consists of or interacts with the following components:

1. 	 A compiler and binder for NSS FORTRAN programs.

2. 	 A modified version of the B 7800 MCP (Master Control Program)
and WFL compiler.

3. 	 A supervisory control program for the NSS.

4. 	 A network definition that includes Burroughs-supplied NDL (Network
Definition Language) source to support the B 7800 Data Communications
Processor (DCP) to Diagnostic Controller (DCP) interface.

5. 	 A maintenance and test routine which runs on the B 7800 using
DCP-DC interface.

6. 	 All other standard B 7800 software selected by Ames.

7. 	 Various utilities and subroutine libraries.

Items 2., 3., 4., and some of 7. constitute the NSS operating system.

4. 2. 	 3. 2 Organization

The MCP software consists of two major parts: (1) modifications and extensions

to existing software that runs on the B 7800, and (2) new software to run on the

NSS.

4-4

4. 2. 	 3. 3 B 7800 Software for the NSS MCP

Modifications and extensions to the B 7800 MCP and utilities will provide the

following functions:

1. 	 Initialize the NSS system.

2. 	 Process the extended work flow language for aerodynamic simulation
jobs.

3. 	 Allocate space in DBM and maintain the DBM directory.

4. 	 Transfer files between B 7800 devices, including archive, and
DBM.

5. 	 "Forward" tasks to the NSS (DBM) for processing and retrieve them
when completed.

6. 	 Maintain a log of performance, error, and accounting information.

7. 	 Provide various "analyzer" utilities to edit and format dumps, logs,
etc.

8. 	 Schedule and initiate tasks on the NSS.

4. 2. 3. 4 NSS Software

MCP software on the NSS will provide the following functions.

1. 	 Interface to corresponding B 7800 software for NSS initialization,
task forwarding, dump, etc.

2. 	 Provide wrap-up for normal and abnormal termination.

3. 	 Provide processor program overlay loading for NSS FORTRAN
programs.

4. 	 Service NSS interrupts, such as those errors that cannot be handled
by the individual processors.

4-5

4. 2. 	4 Other System Software

4. 2. 	 4. 1 Job Structure

4. 2. 4. 1. 1 Introduction, WFL and the Job Concept

A job is a program (and task) which invokes, and determines the relative sequence

of, a set of programs. These programs constitute a set of logically related tasks

which perform sone data transformation on files. A job is written in NSS Work

Flow Language (WFL) and it runs on the B 7800. The WFL contains the standard

B 7800 WFL as a proper subset, so any B 7800 job can run unmodified on the host

of the NASF. The NASF extensions in WFL provide the following functions.

1. 	 Invoke NSS FORTRAN compiler and linker.

2. 	 Specify resource requirements for scheduling and allocation
purposes.

3. 	 Copy files between B 7800 devices and DBM, and specify relevant
file attributes.

4. 	 Specify a job restart point following B 7800 or NSS failures.

4. 2. 	4. 1. 2 Organization of a Job

The basic outline of a typical job is constrained by the computational envelope

and LINKER concepts. The typical job will contain, in this sequence:

1. 	 None, one, or more NSS FORTRAN compilations.

2. 	 A LINKER task.

3. 	 One or more COPY tasks to transfer input data files from B 7800
to Data Base Memory.

4. 	 A COPY task, is needed, to transfer program to CUM (Control
Unit Memory)

5. 	 One or more executions of NSS programs.

6. 	 One or more COPY tasks to transfer the output files back to B 7800
devices from Data Base Memory.

4-6

In addition, any number of B 7800 tasks may be interspersed with the above, such

as to generate input files or process output files. These are asynchronous with,

and 	do not impede the execution of other NSS tasks.

4. 2. 4. 2 FORTRAN Support

Implementation of I/O support is divided between the B 7800 MCP, the NSS MCP,

and the compiler-generated program code. B 7800 MCP code will copy the files

between DBM and B 7800 devices. The SCHEDULER on the B 7800 will provide

DBM file allocation and directory maintenance, and connect files to programs.

NSS code will process error interrupts, and NSS problem code will perform actual

transfers between DBM and extended memory, including DBM address, EM

addresses, and sending control words to the DBM controller.

The 	following FORTRAN functions will be supported by NSS software:

1. 	 STOP will transmit the operand to B 7800 supervisory console,
and terminate with normal End of Task (EOT).

2. 	 Error End of Task.

Checkpoint will not be supported. Restarts, in aerodynamic simulations, are more

suitably an applications program responsibility.

4. 2. 	4. 3 Program Load and Overlay Support

The NSS is designed to run only one program at a time. No additional program

or data area may be preloaded into CUM, PEM, or PEPM in order to minimize

setup delays when starting the next task.

The LINKER accepts object code files from one or more separate FORTRAN

compilations and produces a single load code file, called the loadfile. In the

process, the LINKER assigns memory locations to all program instructions and

data areas, and resolves or relocates address references accordingly.

4-7

For the case that the PI&PM part of the user program is too large to be romplettly

PEPM contained, the LINKER supports an overlay facility. With this mechanism,

the user may divide a program into multiple phases, and specify which phases may

share the same memory locations. The LINKER must also generate certain

information for the MCP.

The loadfile for an NSS task contains information to be used by the B 7800 MCP

for forwarding, the NSS code (if different from the previous task's), data, and a

directory containing descriptive information about the code and data.

Data is either initialized, uninitialized, or initialized to "invalid". Initialized

segments have their initial contents present in DBM as generated by the Compiler/.

Linker. Uninitialized segments occupy no space on DBM, linkwise segments to

be initialized to "invalid" are not present on DBM, but are initialized to "minus

infinity" by the execution of appropriate NSS code.

4. 2. 4. 4 System Operations

Information will be accumulated ff the "monitor" option has been selected at

run time. Some of this information is accumulated by the B 7800 as part of

normal monitoring; some by the NSS-resident operating system. The following

is a list of information that may be included in such monitoring.

1. Interval timer reading at time of report (for NSS information).

2. Real time Clock at time of report (in B 7800).

3. Count of TN-using instructions.

4. Some measure (to be determined) of PE idle time.

5. A measure of CU idle time.

6. Count of error corrections performed.

7. List of addresses associated with error corrections.

8. Time spent in specific subroutines (CU subroutines, at least:
PE subroutines present a monitoring problem, since time can
be different in each processor.

4-8

The 	CU's interval timer is coordinated with the B 7800 clock at the beginning of

a run.

The 	MCP will log, for the NSS, the same types of actions presently logged by the

B 7800 MCP, including Beginning-of-Task and End-of-Task of NSS tasks, OPEN

and 	CLOSE of DBM files. The B 7800 log will be extended to include records of

forwarding action and records of COPY action to/from DBM. Status, as displayed

on the B 7800 operator's console, will be extended to include NSS tasks.

NSS 	Initialization is that process whereby the NSS is transformed from any state
into the state in which it normally processes user programs. This process re­

initializes all parts of the system. No process corresponding to B 7800 "coolstart",

where the disk directory is saved, or to a B 7800 "halt-load", where jobs are

restarted from a last inactive point, is to be implemented on the NSS. Although

the NSS MCP does not preserve task state across failures, the job can be restarted

via B 7800 intervention, including restarts from the restart points provided in the

application program itself.

Initialization consists of the following steps:

1. 	 The driver program, running on the B 7800, determines that the
B 7800-NSS DC connection is operational.

2. 	 The driver transfers NSS MCP to the CU via the DC. Once this
piece of code is loaded into CUM, the NSS is started running on
its own.

3. 	 An initialization phase of the NSS MCP will perform various

initialization functions, including confidence tests.

4. 	 The MCP will then complete its initialization, and inform the

B 7800 via the CU-B 7800 interface

The NSS will then be ready to process programs.

4. 3 	 LANGUAGE AND COMPILER

The source language that takes full advantage of the parallelism of the SAM will

look to a large extent like normal FORTRAN, with extensions and with some

restrictions.

4-9

The 	compiler and its language perform a number of functions:

1. 	 Allows the user to control the machine.

2. 	 Converts user inputs into machine language.

3. 	 Transforms the serial input language into parallel operations on the
array.

The 	interface with the user (the language) has a number of features:

1. 	 It is FORTRAN-based (FORTRAN with extensions),

2. 	 Convenient constructs are provided to allow the user to obtain
full use of the power of the machine.

3. 	 The user is not asked to specify information that the compiler
can just as well determine for itself.

4. 	 Error messages are provided to alert the user to erroneous input.
The compiler will not abort on error, but continues to compile
for syntax.

5. 	 Warning messages alert the user to possible inefficiencies in his
compiler code.

The compiler performs part of the analysis, leaving the user free to concentrate

on the problem at hand. For example:

1. 	 The parallelism specified by the user is problem-sized, independent
of the number of PE's (512). The compiler takes the parallelism
inherent in the problem and cuts it up into 512-sized pieces for
execution.

2. 	 The compiler distinguishes between CU DO loops and PE DO loops
on the basis of the content of the loop.

3. 	 The compiler distinguishes between FE subroutines and CU sub­
routines on the basis of the content of the subroutine.

4. 	 The compiler takes care of address calculation in EM on the basis
of the data declarations. Explicit computations related to EM
addresses are never required in the program source deck.

5. 	 All details of the transposition network functions are hidden from
the user.

4-10

For 	the machine, the compiler performs certain efficiency-preserving operations:

I. 	 PE index register usage is designed to minimize the need for
storing indices or other integers in PEM. When two or more
variables in the same statement are indexed by the same set of
indices, the offset is calculated only once.

2. 	 PE floating point register usage is based on an algorithm that
minimizes PEM fetches and stores. Variables created in one
statement are left in registers if needed for the next statement,
not refetched.

3. 	 Opportunities for using the multiply-add instruction are recognized
and exploited.

A key point in the design of language and compiler is to recognize that the users

of the NSS are primarily aerodynamicists, mathematicians, and numerical

analysts more than they are programmers. A great deal has been learned in the

last twenty years about how to present the necessarily complex machinery of a
computer to the user in such a way that the managing of the complexity is automated

and hidden, and the user is presented with a tool that bears directly upon his
problem. In the present instance, for example, the number of PE's, 512, shows

nowhere in the input language, and programs can be written calling for any degree

of parallelism at all.

The 	extensions to the language (Table 4-1) reflect the architecture of the NSS.

Somewhere inside a program from the NSS, one may find statements such as:

DO 	PARALLEL 10 J = 1,00

DO PARALLEL 10 K = 1,27

(statements)

10 CONTINUE

The 	statements inside tis loop will be done within the PE's. The compiler will

assign a specific pair of J, K values to a specific PE. Within the statements, then,

statements are executed over 512 sets of J, K values simultaneously, and the J, K

indexing operation is implicit in the PE number of the PE that is executing on any

particular piece of data. One advantage of the NSS is therefore the elimination of

some of the indexing necessary in a conventional serial machine and replacing it

by place-of-execution.

4-11

The 	compiler will take the programmer's word that his DO PARALLEL declara

represents a valid parallelism. If some operation within the loop(s) cannot be

executed in parallel across the 	parallel indices, this is an error.

Analysis of the codes submitted by Ames shows that almost all of the computation

falls into repetitions of the following typical pattern:

1. From a data-base array, which would be declared to be in EM,
a set of variables are fetched, which are the inputs to a parallel
computation. Typical operation is in parallel on two dimensions
of a three or more dimensional array.

2. 	 The resulting variables are the input to a fairly extensive amount
of computation which does not involve any other variables.

3. 	 The results are stored back into EM.

Table 4-1. Preliminary Definition of Extentions to
Normal FORTRAN for NSS FORTRAN

Definition

DOPARALLEL 	 Equivalent to DO, but tells the compiler that
each iteration of the loop is independent of
the previous iteration, and that therefore all
iterations can proceed simultaneously in
parallel, no limit is placed on the number of
iterations. Temporary variables within
the iterations are undefined upon exit from
the DOPARALLEL, except for 	those that
receive the result ofglobal operations.

EM ARRAY 	 A declaration similar to the DIMENSION
statement. Variables in EM ARRAY's are saved
upon exit from DOPARALLEL 	loops. EM
ARRAY declarations must precede any
DOPARALLEL loop in which they are used.

EM ARRAY A(...)=B(...) 	 The indices in A are a reordered subset of the
indices in B, and the ranges are also a subset.
An equivalence declaration which results in
the reordering of indices in order to avoid
writing multiple copies of almost-identical
code.

1-12

Table 4-1. Preliminary Definition of Extentions to
Normal FORTRAN for NSS FORTRAN (Cont'd)

Definition

CU Variables 	 Variables stored in the CUlIM, Where a single
variable is used across the entire extent of
the parallelism, such as for controlling
synchronous DO loops, will probably need to
be explicitly declared. Such declarations will
generate "WARNINGs" about efficiency.

PACK and UNPACK 	 Intrinsics to pack two 24-bit words per 48-bit

word, or to unpack them.

ENDDO 	 Optional substitute for labelled "CONTINUE"

statements.

GLOBAL 	 GLOBAL operations are called from within
DOPARALLEL loops. These include maximum,
minimum, sum, product. Although the input
language makes these operations look like
functions, they are macros. Results can be
left in a CU variable, or in a PE variable.

DO 	 DO will be a CU (global) or independent PE

loop depending on the variable used as loop

control.

SUBROUTINE 	 A distinction is made between a synchronized

or "CU" subroutine and an unsynchronized or

"processor" subroutine. The compiler, when
compiling the calling program, must have
some way of identifying the type of subroutine
being called. Since separate compilation of
subroutine is allowed, apparently two types of
calls will be needed. Further 	discussion of
this point is needed.

Indexing patterns are generally simple. Three nested DO loops on the geometric

variables, with a small fixed-length DO loop inside the third index, cover most

cases. Operations inside the outer two loops are independent of previous or

following iterations, so that, in a 100 by 100 by 100 grid, for example, one can

call for the 10, 000 iterations of the inner loop to proceed in parallel

4-13

EM ARRAY A(18, 100, 100, 100)

DIMENSION B(18, 100)

(other declarations or statements intervene here)

DO PARALLEL 15 K=1, 100

DO PARALLEL 15 L=I, 100

DO J=1, 100

DO N=I, 18

B(N, J) = A(N, J, K, L)

ENDDO

ENDDO

DO J=1, 100

(here a sequence of arithmetic statements)

ENDDO

DO J=1, 100

DO N=I, 5

A(N, J, K, L) = B(N+2, J)

ENDDO

ENDDO

15 CONTINUE

Figure 4-1. Example of Typical Pattern in Simplest Form

4-14

The 	typical pattern can be programmed as shown in Figure 4-1. The entries have

the 	following significance.

1. 	 EM ARRAY declares that the following array is resident in EM;
that is, it is a database array. Fetches from and stores to an
EM ARRAY will be via the transposition network, so that, in the
case of three geometric variables J, K, L parallelism may be
present on any two of the three indices.

2. 	 Dimension statements declare arrays within PEM.

3. 	 DO N=1, 18 followed by B(N, xx) = A(N, xx) will result in a single
EM fetch of 18 words, since the inner loop N is the first index,
and addresses are sequential in PEM. If the order of looping
were reversed a "WARNING, INEFFICIENT CODE" message
would be produced.

4. 	 ENDDO is an alternative to CONTINUE statements for ending
DO loops.

5. 	 A(N, J, K, L) = B(N+2, J) stores results back into the first through
fifth elements of A from the third through seventh elements of B.

To share code while indexing along different grid dimensions, one needs to not
only call subroutines using different indices, one also needs to fetch data from

A to B (and store it back) where the index in B is first one, then another, index
in A. The simplest method, from the point of view of least compiler complexity
used is shown in Figure 4-2. Separate EM read statements, each looped on a
different index J, K, and L, precede calls on PE subroutine DOIT. Inside DOIT
is a loop on the index that is passed as a parameter to DOIT.

A second mechanism for sharing code (used in the BSP extensions of FORTRAN)
is to declare arrays with the indices permuted. A description of the index
permutations is then passed to the subroutine when it is called, and used to

control the different modes of fetching. Figure 4-3 is an example. Explanations

of various lines are:

D(18, J==:100, L=1:100, K=1:100) = A(18, J, K, L) declares that D,
when referred to is the 100 by 100 by 100 subset of array A with
indices permuted first, third, second.

4-15

EM ARRAY A(18, 100, 100, 100)

(declarations)

DO PARALLEL 15 J=l, 100

DO PARALLEL 15 K=l, 100

DO 25 L=l, 100

DO 25 N=I, 18

B(N, L) = A(N, J, K, L)

25 CONTINUE

CALL DOIT(J)

(more statements, then:)

15 CONTINUE

DO PARALLEL 16 J=l, 100

DO PARALLEL 16 L=l, 100

DO 26 K=1, 100

DO 26 N=1, 18

B(N, K) = A(N, J, K, L)

26 CONTINUE

CALL DOIT(K)

(more statements, then:)

16 CONTINUE

DO PARALLEL 17 K=1, 100

DO PARALLEL 17 J=l, 100

DO 27 L=l, 100

DO 27 N=I, 18

B(N, L) = A(N, J, K, L)

27 CONTINUE

CALL DOIT(L)

(more statements, then:)

17 CONTINUE

Figure 4-2. Use of Source Code with Parallelism
on Different Indices

4-16

SUBROUTINE FACIT (IA, 1B IC, G)

EM ARRAY G(18, 100, 100, 100)

(declarations)

DO PARALLEL 10 IA = 1, 000

DO PARALLEL 10 IB = 1, 000

DO 15 IC = 1 100

DO 15 N= 1, 18

B(N, IC) = G(N, IA, IB, IC)

15 CONTINUE

DO 20 IC = 1, 100

(here, arithmetic operations within the PE)

20 CONTINUE

DO 25 IC = 1, 100

DO 25 N = 1, 5

G(N, IA, lB, IC) = B(N, IC)

25 CONTINUE

10 CONTINUE

(a) Declaration Subroutine FACIT

EM ARRAY A(18, 100, 100, 100)

ARRAY B(18, K=1:100, L=1:100, J=1:100) = A(18, J, K, L)

ARRAY D(18, J=1:100, L=1:100, X=1:100) = A(18, J, K, L)

(other statements, then:)

CALL FACIT(J, K, L, A)

(later:)

CALL FACIT(J. L, K, D)

(later:)

CALL FACIT(K, L, J, B)

(b) Use of Subroutine FACIT

Figure 4-3. Alternate Method of Using Identical Code on Different Indexings

4-17

*FACIT(J, L, K, D) then declares that the code FACIT is to be executed
using K for internal indexing, and the array description D for controlling
operations on the EM array declared within that subroutine.

Restrictions to normal FORTRAN are seen, but are not ominous. Inside a

DO PARALLEL loop, the compiler takes the expressed parallelism and produces

a hiddenloop that uses the 512 PE's in several iterations to cover the entire

parallelism. Thus, PE variables will be overwritten in a later iteration, and

will be undetermined upon exit from the loop. Exiting from a DO PARALLEL

loop thus wipes out all PE variables used within that loop except those that had

the same value in all PE's (for example, a global maximum could be saved, or

the last value of some index, but not an entire array full of values).

Equivalencing inside EM ARRAYS is restricted because of the need to perform

EM fetches and stores efficiently. See the section on Data Allocation below.

4. 3. 1 Input/Output Operations

Several operations within the NSS bear some similarity to the I/O operations of a

conventional computer.

Loading and unloading PEM from or to EM occurs in response to a CU-issued

command after bringing the array into synchronism.

Dumping and retrieving snapshots and restarts from the DBM is done by means

of commands issued from the CU. The CU needs the same addressing machinery

to access extended memory for these as for loading and unloading.

4.4 INSTRUCTION SET

4. 4. 1 Code Emission from the Compiler

The compiler parses the input code, recognizes programmer-specified parallelism,

finds additional parallelism by analysis, and translates the input source into a

parallelized form. The analysis contained in the compiler will find parallelism

for some serial-looking code that the programmer knew could run in parallel and

parallelizes it; the purpose being that the programmer will be allowed to write

4-18

in a more familiar-looking language. It will not be guaranteed, on its own, to

turn ahy kind of serial FORTRAN into efficient code for the NSS.

The compiler turns the sequence of statements in the input into a sequence of

instructions for the NSS. There are three categories of instructions. First,

there are those, like floating point arithmetic, that are executed within each

processor independently of any other processor or the CU. Second, those

executed in the CU without regard for what the processors may be doing.

Third, those instructions which require cooperation between the CU and

the processors for their execution.

Out of the compiler come two instruction streams. The first is the CU instruction

stream; the second is the instruction stream for all the processors. Instructions

in the third category occur in both streams, and include the requirement that all

elements, the CU and all the PEs currently executing, are finished with previous

instructions so that they can cooperate in this one.

It may be instructive to trace the source code through the compiler and see the

resulting emitted code. Figure 4-4 shows part of the source code of-a hypothetical

program written in a hypothetical source language. Line I declares a 16 element

array that is allocated space in every PE memory. Line 2 declares an array that

will have 60 elements in every PE memory, and whose other dimensions will

correspond to the dimensions over which parallelism is to be found. Line 3

declares a data base array in extended memory. In the declaration, it is necessary

to identify the special indices over which parallelism is to be found, because

of the compiler's need to pad such arrays to proper size. There may be some

other way to state this language extension. Other declarations are skipped over.

Lines 4 and 5 says that 10, 000 iterations over the J and K indices can be done in

parallel. Since there are only 512 PEs, and since the memory allocation algorithm

divides the array up into subarrays, to be specific in the example, "say measuring

S x 100, the compiler must implement a loop that iterates 20 times, since it takes

a set of 20 of these subarrays to cover the declared A array. DO loops, cut the

declared 10, 000-wide parallelism up into PE array-sized pieces.

4- I

Line No.

DIMENSION G(4, 4), F(100, 4), AA(100, 4,4) 1

DIMENSION B(3, 20) 2

EM ARRAY A(20, J=1:100, K=1:100, L=1:100) 3

DOPARALLEL J=l, 100 4

DOPARALLEL K=I, 100 5

B(1, 20) = A(20, J,K, 1) 6

B(2, 20) = A(20, J,K, 2) 7

DO 6 L=1, 100 8

IF(L. LT. 99) B(3, 20) = A(20, J,K, (L+2) MOD 3) 9

IF(L. GT.1) DO

DO 14 N=1, 4

F(L, N) = F(L, N) -AA(L, N,

- AA(L, N, 3)*F(L+1, 3)

14 CONTINUE

ENDIF

CALL FILTRZ

CALL LUDEC(G)

CALL FORBAK(G)

6 CONTINU*E

ENDDO

ENDDO

10

11

)*F(L, 1) -AA(L, N, 2)*F(L- 1, 2) 12

-AA(L, N, 4)*F(L- 1, 4) 13

14

15

16

17

18

19

20

21

Figure 4-4. An Example of Source Code

4-20

Line 6 is a fetch through the transposition network from the A array to the B array.

So is line 7. These two lines provide the loading of the first two elements of a

three element circular buffer to hold the data base while L is iterated. Line 8

iterates on the third dimension. Depending on whether L has been declared a CU

variable or a PE variable, this will be a CU test, synchronized across the entire

array, or a PE test, independently done in each PE. In the present case, it does

not matter, since the next line will synchronize the DO loop whether the loop

statement itself does or not.

In line 9, L is not within 2 of the end of the L loop. Another section of data base

must be fetched to the circular buffer. The fetch from extended memory will

result in synchronization of the array. Line 10 is either a CU test or a PE test

depending on the declared place of residency of L. As with line 8 and 9, it will

not matter this time because the array is freshly synchronized as a result of the

fetch from extended memory in the previous line. Resynchronizing wastes

virtually no time compared to the execution time of the rest of the DO L loop.

Line 11 ought to be, for efficiency, a PE test. The programmer should remember

to declare, N as a PE integer.

Lines 12 and 13 are a typical PE arithmetic statement. F has been declared as

a PE array, as has AA. Line 14 marks the end of the DO 14 loop on N. Line 15

marks the end of the IF condition of line 10. .The branch instructions associated

with this point are either PE or CU depending on L again. Lines 16, 17, and 18

are Subroutine calls. For best efficiency, these should have been declared as

PE subroutines. Perhaps the compiler can recognize PE subroutines from the

array and variable declarations. Line 19, CONTINUE, is the end of the L loop,

a serial loop. Lines 20 and 21 are the end of the parallel J, K loops, and there­

fore are also the end of the hidden loops that processes the 20 iterations.

Figure 4-5 shows the resulting code streams, in very generalized form, of PE

and CU instructions. Double arrow-head lines connect the points of synchronism

in the two data streams. The L index is assumed to be a PE index. Statement

numbers are used to key the codes of Figure 4-5 to the statements of Figure 4-4.

4-21

CU CODE STREAM

NHIDDEN=1

4, 5 TEST MHIDDEN>20. INCREMENT i

6
BROADCAST NHIDDEN
EM FETCH FROM A

MHIDDEN

7 EM FETCH FROM A

IF NO PG ON, SKIP TO L5

EM FETCH FROM A

L5 --

LI -

SYNCH,

CHANGE PE PROGRAM ADDRESS
TO L2 TO- L2

FURTHER
STATEMENTS

Figure 4-5. Matching

PE CODE STREAM

SYNCH

RECEIVE BROADCAST

ADDRESS CALCULATION
INSTRUCTIONS FOR
ELEMENTS OF A

RECEIVE EM DATA INTO
13(1) ARRAY

ADDRESS CALCULATION

FOR ELEMENTS OF A

-L9

-- 6

- 6

RECEIVE EMDATA INTO B(2)

TEST L, INCREMENT
IF[L> 100, GO TO L3

-
4-

8
L8

STEST L,
IF L> 99 SKIP TO L4

ADDRESS CALCULATIONS

FOR ELEMENTS OF A

4- L9

RECEIVE EM DATA
INTO B(2)

TEST L,
IF < 1, GO TO L6

--LA
4-10

TEST N, INCREMENT
IF >4, GO TO L6

4 - L7

ARITHMETIC OPERATIONS - 12

GO TO L7

ARITHMETIC OPERATIONS

CALL FILTR Z

CALL LUDEC

CALL FORBAK

GO TO L8

4--L6

- 14
-16
17

-- 17

MORE ARITHMETIC OPERATIONS

SYNCH 4-L3

GO TO L9

CONTINUE 4-L2

Code Streams

4-22

4. 4. 2 Instruction Set Tables

Table 4-2 lists the instructions in the Navier-Stokes Solver. The instructions

occur in two separate instruction streams, which are compiled together. One

instruction stream contains instructions for the processing element; one contains

instructions for the control unit. Table 4-2 therefore contains three sections.

The first is those instructions which are self-contained within the individual PE,

such as floating point multiply. The second section section lists those instructions

in which are executed entirely from the CU. This includes those instructions in

which the CU forces all the PE's to take a particular action that overrides the

current PE instruction. The third section of the table includes those instructions

which occur as matching elements in both instruction streams. "Synchronize",

for example, is an instruction found in all instruction streams. Only after all

PE's have reached this instruction will the CU cause the next operation to be

executed simultaneously in all PE's. All of the instructions in the third section

require some sort of synchronization, since all elements of the NSS execute it

-jointly.

The mechanism of synchronization is described in the section on the control unit.

In a type I synch the PE's wait for the control unit-to say "go" before doing the

instruction. In a type II synch, the control unit performs an action (say setting

the TN), and raises an "all is ready" line. PE's see this line up and go on. The

CU will wait to go on until all "I got here" lines are up.

4. 4. 3 Discussion

4. 4. 3. 1 Control Bitvectors

Each processor has at least two control bits. The first, an "enable" bit, says

whether that processor is engaged in the current computation. The second bit is

the "run" bit. When set, it says the processor, is "running"; when reset, it says

the processor is "waiting". These bits are used to help implement the synchroniza­

tion process. For example, the CU will not issue a "go" signal for a synchronous

action until all enabled processors are waiting.

4-2:

Table 4-2. Processing Element Instructions

Arithmetic Instructions (Floating Point Operands)

ADD, SUB One operand is in memory, register, or is literal.

MUL, DIV Second operand is in register. Result to register.
Literal option allows MIlL by 1/2, ADD ±1, reciprocal,
etc. , in one instruction.

MAD Add product of two operands to third. Leave result in
register.

SSQ Form sum of squares of two operands.

ABS Make sign positive.

ADDD, MULD Double-length sum, Double length product.

Index Arithmetic (Integer Arithmetic) See note 1. Both single (16-bit) and

double length (32-bit) 2's complement

IADD, ISUB Normal integer arithmetic. Literal option saves
instructions.

IMUL Integer multiply

IDIV Integer Divide.

ID521 Fast DIV by 521. Used in calculating EM addresses.

IMOD Saves remainder instead of quotient from integer division.

ILIT 16-bit literal to integer register.

Test and Branch

LT, LE, GT Normal two-way tests. Proper response if one or both

GE, EQ, NE 	 numbers are "infinity" to be determined. "Infinitesimal"
is smaller in magnitude than any number except zero.

TIX 	 Test and increment indices. Non-unity increments
permitted.

AND, OR, NOT 	 Logic combinations of tests results, and -of the one-bit
registers, one of which is the enable bit.

BIT 	 Test LSB of 16-bit word (used for this processor's bit
of the 521-long bit vector).

4-24

Table 4-2. Cont.

JUMP 	 Branch Unconditionally.

CALL 	 Subroutine entry. Includes automatic handling of the
parameters to be passed to the subroutine, including
the array descriptors. The're is a LIFO stack of sub­
routine entry and return information. This stack does
not allow recursive calls, since the addresses within
the code file are in absolute.

RETURN 	 Return information, at the end of the subroutine, will
be found on the top of the subroutine return information
stack. In the case of a function subroutine, the top of
the stack is also used as the location for the value to be
returned. The stack is in memory (PEM). On return,
the information for this subroutine is deleted, and the
stack is cut back.

INFY 	 Test for equal to "infinity".

INFL' 	 Test for equal to "infinitesimal".

POP 	 Execute stack action of "RETURN", but do not change
program counter setting. Expected to be useful in
disgnostics.

TOS 	 Set stack pointer to new value.

Conversion and Formatting

FIX 	 Integerize a floating point number, destination will be
integer register.

FLOAT 	 Take contents of integer register, convert to floating,
and insert in floating point register.

INFZ 	 Convert operand to zero if infinitesimal.

SETFL 	 Set infinitesimal control bit. Underflow creates
infinitesimals.

SETZ 	 Reset infinitesimal control bit. Underflow creates zeros.

PAK2 	 Round two 48-bit floating operands to 24 bits each, and
pack into one 48-bit register.

4-25

Table 4-2. Cont.

PAKI 	 Pack two integers into two 24-bit fields on one 48-bit
register.

MIM, MIL 	 Move the most significant (or least significant) half of a
48-bit word to a 32-bit integer location, in the least
significant 24 bits.

MFL 	 Move the least significant half on one 48-bit register to
the leading half of another, with zero fill.

ZFM 	 Zero the least significant half of a 48-bit (floating point)
register.

Memory and Data Movement

FETCH 	 From source desginated in address field to register.
Source may be register, PEM, or literal.

STORE 	 From register to destination designated in address field.
Integers are stored right justified with zero fill.

System Control

WAIT 	 Instruction of indefinite duration. Resets "run" bit
while leaving "enable" set. Will be exited when CU sets
program counter to new value, or on time-out interrupt.

STOP 	 Reset "run" and "enable" bits both. Do not fetch next
instruction.

HELP 	 Reset "run", and "enable" bits. Send.ONE on interrupt
line to CU.

PNO 	 Read processor number into specified integer register

SB 	 Set LSB of word to result of test in previous instruction

SHF 	 Shift right end around N places (48 bits)

Note 1. Almost all integers need be only 16 bits long. Only a few of the
integer operations are used for the 32-bit EM addresses. Normal integers
are 16 bits, but double-length integers will be used for EM addresses. Thus,
each instruction comes in two forms, single length and double length. ID521
need be implemented only in the extra-precision mode.

4-26

Table 4-2. Cont.

CU INSTRUCTIONS

(The CU instruction list is still incomplete)

System Instructions

Test interrupt register (automatically resets bit)

Set/Reset bit in mask register

CU Register Instructions (used for address calculations, TN settings, etc.)

Integer arithmetics, IADD, ISUB, IIVFUL, IDIV, IMOD,

Numeric shifts

Jump Instructions

In user programs, there may be no need for CU branch instructions
other than the capabilities found in the list of Joint-CU-PE instruc­
tions. However, for diagnostics and initialization, there is need for
CU branching independently of any cooperation of the PEs. Presumably
the same logic tests are available here, as in the Joint-CU-PE list,
plus unconditional Jumps.

i/o

DBM-EM transfers. Load and Unload. Operation requires the speci­
fication of DBM starting address, EM starting address, and number
of words. For details of this operation, see the section below on
"Data Allocation".

Transmit word to host, receive word from host.

Unconditional Control of PEs (requires no necessary PE state)

Broadcast to PEM or PEPM. Increment address register in PE for
each word received.

Set PE register, including PCR (Program Counter Register), PEMAR
(Processing Element Memory Address Register)

Set "on/off", "run", etc., bits in PEs

Halt at end of next PE instruction; Restart PEs from halted state

Halt unconditionally, in mid-instruction.

4-27

Table 4-2. Cont.

EM Access

LOADCU. One of the otherwise unused ports of the TN (the 513th,
say) is used to transfer data to the CU from the module selected by
the offset.

STORECU. Similar to LOADCU except for the direction of trans­
mission of data.

JOINT PE-CU INSTRUCTIONS

(An instruction is found in both the CU and PE streams)

Transposition Network Instructions

LOADEM. Fetch from EM to PE Register or PEM. In the PE instruc­
tion is the address of the register containing the EM address, and an
address field (which may contain PEM address or register address),
and the address of the register containing the increment. In the CU
instruction are three register addresses, pointing to the offset and
skip distance settings for the transposition network, and the number
N of words to be transferred. N will be broadcast to the processors
during the execution. Synch is type II for timing purposes.

STOREM. Similar to LOADEM except for the direction of trans­
mission of data.

SHIFTTN. In this instruction, the processor-to-EM and EM-to
processor paths are set to different settings and at the EM side
the output of the TN (going toward the EM) is wrapped around to
feed the input to TN that is normally from EM. The result is a
processor-to-processor data transfer corresponding to the two
settings. For example, with both skip distances set equal to 1, the
result is a routing equal to the difference in the two offsets.

EMNO. Read EM module number to the processor.

SET TN CONTROLS (may be needed for diagnostics).

Branch Instructions executed jointly

Tests on CU register contents, including index test and increment.

Synchronous version of PE index test and increment. If any PE

iterates again through the loop, the loop is taken, non-iterating PEs wait.

Subroutine CALL and RETURN, where array is synchronized.

4-28

Table 4-2. Cont.

Other

Synchronize (type I), variants of this instruction may modify the settings
of the PE "on/off", "run", etc., bits.

Broadcast. Transmit one 48-bit word from the CU to all PEs that

are on.

Unbroadcast. Read to the CU the OR of one 48-bit word from each

PE that is on.

Note: Control bitvectors are stored in EM, and do not require any special
CU instructions.)

DIAGNOSTIC CONTROLLER INSTRUCTIONS

(These instructions are passed one at a time to the DC via its own connection,
separate from the CU's host connection. A maintenance panel issues these
same instructions either via push button or perhaps via an incremental magnetic
tape cartridge.)

Load CU Register (an appropriate subset of all CU registers)

Load words in CU memory at address A. (Address register is

restored subsequently)

Execute "I", where I is a CU instruction. PE testing may involve the
PE-controlling instructions loaded thusly into the CU.

Read CU register (approximately the same subset as for Load)

Step entire system 1 clock pulse. Note that the PE and EM clocks
are delayed from the CU clocks by the wire length, so that if one clock
sets a signal in the CU for the PE to read, the next clock will load that
same data into the appropriate PE register. That is, the wire from CU
to PE is of zero length with respect to clock phase.

Step I instruction in the CU instruction stream and halt.

Run N clocks.

Halt CU after next instruction.

Halt CU after next clock.

Run.

4-29

The CU can turn disabled processors back on, when the degree of parallelism

expands again. This mechanism could be a bit-vector distributed from CU.

Alternatively, the CU could turn on all processors, which then test bit vectors

fetched from EM.

A second area where the design remains to be finalized is the case that some

processors are to be loaded from one area stored in EM, and other processors

are to be loaded to another. There will be two LOADEM instructions in the CU

instruction stream. Some processors must cooperate with the first, others must

cooperate with the second. The case that must be designed against is that pro­

cessors waiting for the second somehow cooperate with the first LOADEM

instruction. The simplest solution is a programming restriction prohibiting

conditional execution of statements that compile to LOADEM or STOREM instruc­

tions. All enabled processors cooperate in every LOADEM. This costs no

efficiency, since the two LOADEM instructions must be separately executed anyhow.

4. 4. 3. 2 PE Registers

Registers in the PE are clearly called for. It is not desirable -to store every

temporary result into PE memory only to be refetched to the PE. Two recipes

for supplying those registers have become popular. Recipe number 1 is the

Polish stack, extolled at length in the May 1977 issue of "Computer" magazine;

recipe number 2 has registers with addresses assigned by the compiler for every

temporary variable.

Recipe number 2, addressable registers, gives the compiler more options about

holding operands fetched in one statement so they can be held locally instead of

being refetched in the next statement. Addressable registers are used at the

expense of code file size, compiler running time and complexity, but allow the

compiler to optimize throughput. Therefore the PE instructions are based on the

use of registers addressible by the compiler.

4-30

4. 4. 3.,3 Arithmetic Tests

In the codes that were scrutinized, arithmetic tests are used mostly for the

purpose of controlling which of several run-time options the code will take.

These tests seldom test results that were created during the run.

Enter and exit subroutine are hardware operators, and handle any address

environment management that is needed. Recursive subroutines apparently are

not needed, and will not be allowed.

4. 4. 3. 4 Diagnostic Controller

The diagnostic controller is a subject for further discussion. Its instructions

could be passed to it one at a time from an external channel, thus looking the

same whether issued from the host or imposed by button-pushing from the

maintenance panel, or they could be executed in
 sequence, in which case test

and branch instructions are needed also.
 The diagnostic controller's instruction

set has not yet been finalized. Control of the rest of the NSS is
 obtained indirectly,

through the "execute (instruction)" instruction, since the CU instruction being

executed can control the rest of the machine.

One expects that the bulk of all diagnostic and confidence programming for the
NSS will be programs that run on the CU and the processors. The diagnostic

controller represents a method for boot-strapping one's way up to the point

where the CU is able to execute code.

Like the control unit, the diagnostic controller is a centralized control element

of the synchronizable array machine. The diagnostic controller has a port to

receive commands from the host, a port to emit results back to the host, and is
capable of exerting control over the array even when suitable programs resident

within the array are lacking.

The diagnostic controller also can receive commands from, and display results

to, a maintenance panel to give the array a small degree of stand-alone

maintainability.

4-31

4. 4. 4 .Data Word Formats

The standard 48-bit floating point word format is sign, 8 bits binary offset exponent,

and 39 bits of fraction part. The fraction is between one half and one. Various

other significances are

+ 8 39

Exponent Fraction

sign of Binary Point
word

also coded into the exponent field.

- 11111111 (255) in the exponent field is "unrepresentable" (or
"O"), the result of exponent overflow, divide by zero, etc.

Memory will normally be initialized to "- aO"with the fraction
part the address.

- 00000001 (1) is "infinitesimal", the result of exponent underflow.

- 00000000 (0) prefaces zeroes, and is also used to prefix integers
that have been converted to integer from floating point. Note
that such integers never legally enter floating point operations
without first being FLOATed, which normalizes them and attaches
the proper exponent. Multiplication by zero produces a positive
result.

In addition to floating point words that enter into floating point operations, some

data is found in memory in half-words. Floating point packed format is the

leading 24 bits of a floating point word, rounded, packed two per word. Packed

integer is a word of two 24-bit integers.

The "unrepresentable" (or "infinity") code substitutes for the arithmetic fault

interrupt, which is impossible to implement in any reasonable way when there

are hundreds (or even thousands) of arithmetic operations being carried on at

the same time.

A discussion justifying the word format is in Appendix K.

4-32

Rounding

All floating point operations are rounded except when part of programmed multiple

precision operations. If we visualize a floating point number as the nearest

possible respresentation, quantized, of a real number, then the unrepresented

part, to the right of the end of the word, can have any value from -1/2 LSB to

+1/2 LSB, with uniform distribution. When this is true, the proper procedure

for rounding is to add exactly 1/2 LSB and truncate.

This scheme has an apparent bias, in that if the guard digits were exactly one

half, it rounds always up, instead of randomly up or down. Actually, there are

not infinitely many guard digits, just many, and the number being rounded has

already been truncated ever-so-slightly, to the right of the last guard digit.

Certain details of perfect rounding are extremely difficult to implement in a

lock-step machine, without paying a significant penalty either in throughput or

additional logic. Here, in the SAM, we need not have all processors-executing

identically timed instruction, but can enjoy data-dependent timing for perfect

rounding.

In addition and division rounding is done after normalization, giving about one

more bit of precision than rounding before normalization. Very infrequently,

the addition of 1/ 2 LSB will propagate a carry into the adder overflow position,

causing a renormalization by one place. The extra time for this renormalization

is normally bypassed, and taken only when the overflow is observed to occur.

Instruction Words

Instruction words come in two sizes, full word and half word (Figure 4-7). The

full-word instruction contains a "0" prefix for "full word", an opcode field, and

either two PEM addresses, or one PEM address and one or two 4-bit local

register addresses, or an EM (24-bit) address and a register address. The

address field is 18 bits long, with a 2-bit code for the following 4 cases for the

other 16 bits.

4-33

Sign 8 Bits 39 Bits
Bit

Infinity

± 11111111 undefined

exponent field all ONEs

±

Norrmal floating point format

eeeeeeee normalized fraction

tB Binary Point

±

Floating point 1. 0 (approximate)

10000000 1 1111. 1111

±

Floating point 1. 0 (exact)

1000000011 100000. 000

±

Infinitesimal

00000001 undefined

exponent 1 more than all zeroes

±

Standard zero

00000000 1 0000000.

minimum exponent

0000

Figure 4-6. Format

4-34

o OPCODE UNASSIGNED 24-BIT INTEGER

o O8-BIT ADDRESS FIELD 18-BIT ADDRESS FIELD

IOPHOR 18-BIT ADDRESS FI

OPCODE .- t. REG REG REG|

10%ODE ~~?~&Y

Figure 4-7a. Examples of Full-Word and Half-Word Instruction Formats

ABSOLUTE ADDRESS 00 i6 BIT ADDRESS

LITERAL 10 16 BIT LITERAL

INDEXED ADDRESS 01 X.REG. ADDRESS

R4 12

REGISTER CODE I II RE G_ W 7'-

OTHER (IF NEEDED) -I OTHER1

Figure 4-7b. 18-Bit Address Field Encoding

4-35

1. 	 a 16-bit address

2. 	 a 4-bit index register number, and a 12-bit increment to the index.

3. 	 a 16-bit literal Interpretation of the literal is opcode dependent.

4. 	 a 4-bit register number or "other". 11 bits are spare.

A half-word instruction begins with "1". The other 23 bits consist of either a

short (5-bit) opcode followed by an 18-bit address field, or a longer opcode

followed by register addresses. Register operations have the same opcode as

operations from memory, the only difference being the full-word vs. half-word

bit 	(Figure 4-7a and b).

4. 4. 	5 Timing

The 	previous sections on the PE and CU exhibit timing diagrams of some of the

crucial instructions. From the timing diagrams on multiplication, multiply and

add, and add in the PE section, and from the timing diagrams for EM operations

in the CU section, Table 4-5 is extracted. This table gives the execution times,

in the PE instruction stream, of most of the common instructions.

In addition to instruction execution times, the following information also pertains

to timing.

1. 	 The maximum instruction fetching rate is 120 ns per word.
A word contains either one or two instructions.

2. 	 The minimum instruction execution time is 40 ns for any instruction.

3. 	 If the next instruction is overlappable with any instruction currently
in execution, it will start 40 ns after that instruction or whenever
it is fetched from memory. The maximum overlappability occurs at
the end of a store to EM, when one can be emitting data through
the TN from the byte serializer, doing a floating point operation, an
integer add, while simultaneously fetching the next instruction.

4. 	 An EM fetch cannot start until 480 ns after the end of an EM store.
During this time, the PE may do any self-contained operation, such
as subroutine entry or return, or calculating the address for the
following EM fetch. An EM store (as seen at the PE) cannot start
until 360 ns after the end of any previous EM fetch.

5. 	 Two successive type II synchs must be separated by 180 ns. The

intervening 140 ns can be used for other instructions.

4-36

Table 4-5. Timing Information (all PE times)

PE Instructions (major instructions)

Multiply

Add/Subtract

Multiply/ Add

Divide

ABS, Change Sign

Synchronize

Fetch

Add Integer

MUL integer

ElM Fetching and TN Operations

Fetch N words to PEM

Fetch 1 word to PE Register

Store N words from PEM

Store 1 word from PE
Register

Shift 1 Word

(transmit to EM data register,

Read EM Module No.

360 ns register-to-register

240 ns register-to-register

440 ns register-to-register

1800 ns register-to-register

40 ns register-to-register

180 ns Type 1

40 ns Type 2

120 ns add to arithmetics when operand

is taken from PEM

40 ns overlappable with floating point

operations

240 ns last 40 ns overlappable with next
floating point operations

(380 + 140 N) ns includes sending address
from PE to EM. Assumes that CU
instruction for setting TN (80 ns)

occurred prior to PE need for instruction,
and that most of the synchronization delay
is overlapped with the setting of TN controls
and transmission of addresses to EM.

Type II synch included. PEM cycle will
overlap succeeding instruction if possible. *

520 ns Type I synch included

(40 + 140N) includes PEM cycle time

80 ns (type II synch)

280 ns provided that CU is 80 ns ahead of
the PEs, so that synching is overlapped

reset TN, and transmit back to PE)

40 ns Type II synch

Addresses of the N words are to satisfy the constraint given in the "Data
Allocation" section.

4-37

I I I I I
40

I
,S TIME

I I I
INCREMENTS

I I I I I I I I I I I

MUL FL. F " . ,

lIUL INTEGER I14. .. I

FL. - -­- - -

HUL BY Mf'WRy M. F77,

FL. I, '- C -

FETCH FOR
PEM

-14TO

FL,

IN.

SYNCH

_

I

F7771

STORE FOR PEM
TO Ell

ft.

FL.

INT. FTTTWT fl

sYNCH[flT-- 1

STORE FOR PE REQ.

TO EM

FL

INT.

._r

SYNCH

Figure 4-8. Overlappability

4-38

The PE is divided into several semi-independent parts. A given instruction will

start whenever its pattern of keeping these parts busy does not interfere with the

busy pattern the parts used in previous instruction. The parts are: floating point

unit and registers, index arithmetic and registers, PEM, and synchronization

logic. The times in Table 4-5 are a sort of "across-the-PE" time. For example,

the 80 ns given to "Store to EM from PE register" actually occurs only in the

integer unit, from whence comes the address. If this instruction were squeezed

between two floating point operations, it might only add 40 ns to the entire operation.

Figure 4-8 shows the overlappability of a few selected instructions, to show that

the settings of the counters would be in a number of cases. There are some

interesting opportunities for much more overlap than assumed in Table 2-5. For

example, Fetch one word from EM to PEM would be charged with only 40 ns of

PE time if it could be preceded by all floating point operations and succeeded by

integer operations.

4. 5 DATA ALLOCATION

The transposition network will take any set of elements in extended memory, that

are spaced apart uniformly in memory address, and fetch them in order to the PE's.

The classical examples of vectors that are accessible thusly are rows, columns,

and diagnoals of two dimensional arrays.

In fetching, in parallel, a vector of words from the EM, we need the addresses

within each module of extended memory. These addresses are calculated in the

processor, with processor number i calculating the address of the ith element

of the vector. The compiler furnishes, to the CU, the starting module number MO

and the skip distance p. The following discussion develops the formulas whereby

the processors do this address calculation.

The overall address within EM is given by:

Ai = A 0 + pi

4-39

where A i is the vector element address, A 0 is the address of the zeroth element

of the vector, i is the element number, and p is the skip distance. This equation

describes the 521 addresses of the 521 elements accessible from extended memory

on a single fetch, for most common cases. One can calculate each Ai within the

PE, using i = PE number. The address-within-module is given by:

AM i = Ai DIV 521

Module number Mi = A. MOD 521. DIV 521 canwhere DIV is a "Floor" divide,

be made quite fast, as described in Appendix D. Note, all counts are started from

zero, not one, in the above equations.

the user pro-All calculations are done with algorithms supplied by the compiler;

grammer has only symbolic addressing to contend with.

For example, consider an array A(100, 100, 100) with indices 1, J, K, which is

being fetched inside DOPARALLEL I and DOPARALLEL J loops. K, the iteration

number, is known. The computations go as follows-

Temp1 = Iteration no. x 100 x 5 + PE NO.

J =Temp1 DIV 100 + 1 (assuming 5 100-long rows are being computed
per crack. 512 per crack is also computable,
but complicates the expressions)

I = Temp1 - 100(J-1) + I

K = (Iteration no)

After getting I, and J, the Address in EM is calculated

A. = A 0 + 100 x 00 x (K-1) + 100 x (J-1) +I

Finally the address within module is given by

AM. = A. DIV 521

1 1

As appendix J shows, the DIV operator can be more economically implemented

if M.I is read from the EM module which will by this time be attached to the

processor, giving the equation

AM i = (Ai - Mi) DIV 521

4-40

The above equations are an upper bound on address computation complexity. Good
compilers add increments to addresses, rather than adding iteration-number times
a single increment to the base each time, thus saving multiplies. Furthermore,

the J and I calculations are done only once per outer iteration. A fully coded out

example appears in Appendix A.

Equivalencing inside EM ARRAYS is resti~icted because of the need to perform

EM fetches and stores efficiently. For example, in

DO N=1, 18

B(N, xx) = A(N, xx, J, K) (xx is any other index, irrelevant here)

(inside DOPARALLEL J and DOPARALLEL K) we have declared the first index

of B to be the one that increments by one, in going through the PEM addresses,

in accordance with FORTRAN custom. In EM, however, the 18 elements of A, for
the 18 neighboring addresses in B, are in the same module, not neighboring

addresses. For interlacing, they are separated in the EM module by an odd
increment. Therefore, the first index in EM arrays is the index with the largest

increment, and the compiler will pad out the space assigned to the other indices
in an EM array to occupy an odd multiple of 521 words. For example, consider

A(18, 100, 100, 100). This will appear in EM as eighteen successive areas,

each containing 1, 000, 000 words of data, and occupying 1, 000, 841 words of

space (521 x 1921, where 1921 is the smallest odd number equal to or larger that
1, 000, 000/521). The increment to the EM address-within-module is 1921 for
each word fetched in the burst of 18. This rearrangement of EM arrays is

invisible to the programmer.

It is important that these same arrays appear on the outside, in the B 7800
programming environment, in conformance with their declaration in NSS FORTRAN.

A (5, 100, 100, 100) in EM, when transferred to the B 7800 environment, can be
addressed as an array AA(5, 100, 100, 100). Hence the DBM to EM transfer path

must be supplied with the correct instructions to rearrange the array coming

from DBM into the format used in EM. This is a hardware instruction, and will

be invisible to the user programmer. The sequence of loading A(5, 100, 100, 100)
from DBM to EM; where the last three indices are known to be the geometry

4-41

indices, is therefore as follows. The first five elements are loaded from successive

addresses in DBM into five addresses in EM module 0 at increments of 1921;

the next five into EM module 1 at increments of 1921; and so on through 521 EM

modules. The base address is now incremented by 1 and the process continues.

Thus, the declaration of an EM array inside the NSS is identical to the declaration

of that same array outside the NSS. The user programmer never sees the EM

hardware address, just as he never sees that there are 512 processors.

Further details of EM data allocation are described with respect to this hardware

address. Further study of some additional cases is called for in phase II of the

project.

Both one-dimensional vectors, and many two-dimensioned data objects have the

property that the successive module numbers Mi of their elements are separated by

a constant amount

M i = (M 0 +i -p) MOD 521

where p is that separation

The transposition network takes such a scrambled sequence of memory modules

and orders the data on the PE side so that ith element of the vector appears at

the ith PE. Because there are more PE's than the extent of any single dimension

of the array, the transposition network must be able to take two-dimensional

subsets of three dimensional arrays, and distribute them in parallel across the

entire set of PE's. Furthermore, it will usually be true that the two-dimensional

subset is only part of the entire extent of the array. For example, suppose there

is a computational grid of 100 x 100 x 100, and 512 PE's. The programmer has

nested two looped statements, DO K=1, 100 and DO L=1, 100, specifying a 10, 000

element wide parallelism, which the compiler then must cut up into pieces.

For the case of array A(100, 100, 100), the ten thousand elements of A for a fixed

L, (A(*, t, L)), are all packed with separation unity, so the compiler can cut the

10, 000 wide parallelism into pieces of 5 x 100 (or, if row ends don't matter,

4-42

into pieces 512 long, although there will still be 20 of them). The ten thousand

elements of A(J*, *)* are separatedbyaseparation of 100. Again, the 512 successive

elements of a 100-ordered vector are easily handled by the transposition network.

For A(*, K, *), there are 100 rows of 100 elements each. The beginning module

number of the second row is just 101 after the beginning module number of the

first, because 10, 000 modulo 512 - 101. Five 100-long rows fit in parallel

across the 521 modules with starting points just 101 apart.

At first blush, this appears to be a lucky accident, allowing five successive rows

of 100 to fit end-to-end along the 521 memory modules. A few numerical experi­

ments show that this is no lucky accident, that almost all two-dimensional subsets

of the form A(*. K, *), where the middle index is not the parallel one, work well.

The' conditions are these:

The problem is to find a number of rows (number =521/JMAX)

that start at positions that are equal to, or just over JIvIAX

apart in their starting positions.

Let N = 521/JMAX, and G and H arbitrary integers. Then we wish
to satisfy

(H x JMAX x KMAX) modulo 521 - (JMAX + G) modulo 521

where both H and G are adjustable parameters. In fact, all

that is required is that reasonable solutions be available for a

variety of values of JMAX and KMAX, not for all of them. The

numerical experiments show that reasonable two-dimensional

fetching, simultaneous on first and third index, is available for

most combinations of JMAX and KMAX.

The compiler will emit "WARNING: ARRAY SIZE CAUSES INEFFICIENT

EM FETCH PATTERN" when bad combinations are met during compilation.

-p. 'I
"*" is used to designate items fetched in parallel.

4-43

GLOSSARY

Burroughs Scientific Processor (BSP)

Concurrency

Control Unit (CU)

Control Unit Memory (CUM)

Data Base Memory (DBM)

Diagnostic Controller (DC)

Extended Memory (EM)

Single Error Correction Double
Error Detection (SECDED)

Navier Stokes Solver (NSS)

Numeral Aerodynamic Simulation
Facility (NASF)

Parallelism

- An example of a lockstep array.

- The execution of program, which may be
the same or different, on more than one
data set simultaneously.

- There is one control unit per SAM. It
coordinates the actions of the processors,
and executes the portion of the operating
system that is local to the SAM. -It includes
Control Unit Memory.

- A random access memory for the control
unit's program and data.

- A large memory used for staging jobs for
the SAM. It contains the input files for the

next job, and the output files for the last
job.

- A controller which exerts maintenance type
control over the CU and the processors. It
can also be used for initialization.

- A set of 521 memory modules,, being the
memory containing the main data base of
the program.

- An error correction code.

- That particular SAM that is part of the
NASF.

- Concurrency in which the identical program
is being executed simultaneously on differ­
ent data.

G-l

Processor Element (PE)

Processor

Processing Element Memory (PEM)

Processing Element Program

Memory (PEPM)

Synchronizable Array Machine (SAM)

Temporary Propagation

Transposition Network

- The logic engine of the processor.

- One of 512 cooperating processors all
executing the same program.

- The data memory of the processor.

- The program memory of the processor.

- A particular architecture of parallel
processor.

The NSS is a SAM.

- The tendency to require more temporary
variables in a parallel machine than are
required for the same algorithm pro­
grammed for a serial machine.

- A set of switchable data paths between
the EM modules and the processors.

G-2

REFERENCES

1. 	 J. L. Steger "Implicit Finite Difference Simulation of Flow About Arbitrary

Geometries with Application to Airfoils", submitted to ATAA, 1977.

2. 	 Joseph E. Wirsching "Computer of the 1980's -Is It An Array of pComputers?"
WESCON 75

3. 	 R. M. Beam and R. F. Warming "An Implicit Finite-Difference Algorithm

for Hyperbolic Systems in Conservation-Law Form".

4. 	 R. W. MacCormack and B. S. Baldwin, "A Numerical Method of Solving the

Navier-Stokes Equations with Application to Shock-Boundary-Layer Inter­
actions" AIAA 13th Aerospace Sciences Meeting, Jan. 1975.

5. 	 R. W. MacCormack "An Efficient Numerical Method for Solving the Time-

Dependent Compressible Navier-Stokes Equations at High Reynolds Number"

NASA Technical Memorandum, Ames Research Center, July 1976.

6. 	 Steger, J. L. and P. Kutler, "Implicit Finite Difference Procedures for the

Computation of Vortex Wakes" AIAA paper 76-385, 1976.

7. 	 Shyh-Ching Chen and David J. Kuck, "Time and Parallel Processor Bounds

for Linear Recurrence Systems" IEEE Trans Computers, Vol. c-24 No. 7,

July 75.

8. 	 Reigel, Earl "Parallelism Exposure and Exploitation in Digital Computing

Systems" (either) Burroughs Corporation, FSSG, TR-69-4 (or) Doctor's

Thesis, University of Pennsylvania, 1969.

9. 	 Chin Chae and Herschel H. Loomis Jr., "High Rate Realization of Finite-

State Machines" IEEE Trans Computers, Vol. C-24, No. 7, July 75.

10. 	 P. Burnick and David J. Kuck "The Organization and Use of Parallel
Memories", IEEE Trans Computers, Dec. 71, prefers N price and just
larger the 2n i17, 67, 257J.

11. 	 David J. Kuck "A Survey of Parallel Machine Organization and Programming",
ACM Computing Surveys, Vol. 9, No. 1, March 1977

12. 	 D. J. Farber and K. C. Larson, "The System Architecture of the Distributed

Computer System - - The Communications System", Proc. Symp. on

Computer-Communication Networks and Teletraffic, Polytechnic Institute
of Brooklyn, 1972.

R-1

13. 	 R. J. Swan, A. Bechtolsheim, Kwok-Woon Lai and J. K. Ousterhout, "The
Implementation of the Cm* Multi-Microprocessor", Cargenie-Mellon
preprint, Nov. 1976 (submitted to 1977 National Computer Conference).

14. 	 C. G. Bell, R. C. Chen, S. H. Fuller, J. Crason, S. Rege, and D. P. Siewiorek,
"The Architecture and Applications of Computer Modules: A Set of Compo­
nents for Digital Design", IEEE Computer Society International Conference,
Comp. Con. 73, March 1975, pp. 177-180.

15. 	 May 1977 "Computer" Special Issue on Stack Architecture.

16. 	 Roger C. Swanson, "Interconnection for Parallel Memories to Unscramble
p-ordered Vectors", Nov. 1974, IEEE Trans. Computers.

17. 	 J. Bruce Mawson, "An EAI Discussion of an Advanced Hybrid Computer System",
Electronic Associates, Inc., West Long Branch, N.J.

18. 	 Spectrum, March 1977, Van Tuyl and Liechti, "Gallium Arsenide Spawns

Speed" (IESFETs)

19. 	 Electronics, August 5, 1976, special issue on optical communications.

20. 	 D. Heller, "A Survey of Parallel Algorithms in Numerical Linear Algebra"
February 1976, Carnegie-Mellon preprint.

21. 	 AT&T 1977 annual report (short description of the Chicago experirnent,
in which customer traffic is being carried over optical waveguide)

22. 	 Analog Devices' Product guide (for state-of-the-art analog components).

23. 	 Analog dialog, Vol. 11, Nov. 1, 1977, (monolithic multiplier, 18-bit D-A).

24. 	 IEEE Journal of Solid State Circuits, April 1977. Special issue on I2L.

25. 	 G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L, Slotnick and R. A.
Stokes, "The ILLIAC IV Computer", IEEE Trans. Computers, Vol. C-17,
No. 8; August 1968.

26, 	 Harry Gray, "Digital Systems Engineering", Chapter 9

27. 	 Daniel Shanks "Solved and Unsolved Problems in Number Theory", Spartan
Books, 1962.

28. 	 W. H. Dunn, C. Eldert, P. V. Levonian "A Digital Computer for Use in an
Operational Flight Trainer", 1. R. E. Transactions on Electronic Computers,
June, 1955, pp. 58-60.

R-2

