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ABSTRACT

The problem of a cylindrical shell containing a circumferential

through crack is considered by taking into account the effect of trans-

verse shear deformations. The formulation is given for a specially

orthotropic material within the confines of a linearized shallow shell

theory. The particular theory used permits the consideration of all

five boundary conditions regarding moment and stress resultants on the

crack surface. Consequently, aside from multiplicative constants repre-

senting the stress intensity factors, the membrane and bending components

of the asymptotic stress fields near the crack tip are found to be iden-

tical. Since these two fields are coupled in the shell problems, the

difficulty in justifying the superposition of membrane and bending

stresses and, particularly of the related stress intensity factors when

apFlying the results to fracture problems has thus been removed. The

stress intensity factors are calculated separately for a cylinder under

a uniform membrane load, and that under a uniform bending moment. The

stress intensity factors are calculated for values of O< X2= [12(1 -v2)]t

a/ Rh<10 and 0<a/h<10, where 2a, h, and R are, respectively, the crack

length, the thickness, and the (mean) radius of the cylinder. Sample

results showing the nature of the out-of-plane crack- surface displace-

ment and the effect of the Poisson's ratio are also presented.

1. INTRODUCTION

Depending on the mechanical behavior of the material and the nature

of the loading and environmental conditions, in designing the line pipes
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and c ylindrical containers it is often necessary to consider fatigue crack

propagation and fracture among the possible modes of failure. This requires,

in addition to the application of standard techniques in the failure analysis

of the component, the treatment of the problem from the viewpoint of fracture

mechanics. In using this approach the initial flaws or certain types of im- 	
i f

perfections which may exist in the material are treated as "cracks". These

cracks may propagate under the fluctuating external loads as fatigue cracks,

or under the sustained loads and sufficiently adverse environmental condi-

tions as stress corrosion cracks, or a combination of both, namely as fatigue

corrosion cracks. Aside from containing flaws and local damages in the form 	 am- i

of notches, other stress raisers, or surface scratches which may b^ due to

design, manufacture, or accidental causes, since pipes and containers are

generally welded components they would almost always contain some imperfec-

tions in the form of lack of total fusion, elongated slag inclusions, voids,

arc burns, and a variety of other surface irregularities which may act as

fracture nuclei. Thus, it appears that in actual structural components, the

existence of defects which may lead to fracture initiation and propagation

is unavoidable and therefore, one must design around them, primarily through

the appropriate selection of material and dimensions of the component and by

setting up rational defect inspection and acceptance standards.

Fracture mechanics approach has been highly successful in dealing with

this so-called fracture control problem which involves subcritical propaga-

tion of fatigue and stress corrosion cracks and unstable fracture. The most

widely used correlation parameter in this type of problems is the stress in-

tensity factor which has been used quite effectively to predict the crack

propagation rate in the component and for a given crack size, its residual

strength. Using, then, this information, the "working life" of the component

may easily be estimated.

Up to now, fracture mechanics research

tainer safety, has dealt almost exclusively

the component. There is, of course, a good

pressurized cylinders under normal operatin

by far the most dominant stress component.

loads caused by known and unforseen factors

as applied to pipeline and con-

with the longitudinal flaws in

reason for this, namely that in

g conditions, the hoop stress is

On the other hand, any secondary

would be primarily in the axial
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direction. These are mostly bending and axial constraint stresses. Some

of the sources of these stresses are support misalignment, variety of

thermal fluctuations, ground settlement and earthquake, hydroelastic or

aeroel stic loading, axial constraint in buried pipes, gross bending in

offshore piping caused by variety of oceanic disturbances and that gener-

ated during installation, stresses arising from vehicular vibrations and

impact, and the residual stresses in and around the girth welds. One may

also point out that the axial stresses would be much more time-varying than

basically pressure-induced hoop stresses and hence would tend to facilitate

the formation and propagation of fatigue crocks in the circumferential di-

rection.	 If the thickness-to-radius ratio in the cylinder is sufficiently

small, thEn a bending theory of shells may be used to formulate the cir-

cumferential crack problem and, by approximating the internal stresses

(such as residual and thermal stresses) by a linear function in the thick-

ness coordinate, the general solution may be obtained by appropriately

superimposing the results of membrane and bending solutions. The existing

solutions of this problem take into account the membrane loading only and

are based on an 8th order shallow shell theory in which the effect of the

transverse shear stress is ignored and the crack surface boundary condi-

tions are approximated by using the Kirchhoff assumption (*) [1-3]. The

consequence of this assumption in shells is the same as in the bending

of cracked flat plates [4-7]. It has been shown that if a plate bending

theory compatible with the number of independent boundary conditions is

not used to solve the crack problem, the computed stress intensity factors

may contain errors and the angular distribution of membrane and bending

stress resultants would be different [4-7]. This would then make it dif-

ficult to justify the superposition of membrane and bending solutions in

** That is, on the traction-free crack surface instead of satisfying

the conditions Mn s = 0, V= 0 separately, the condition V+ aMn /3s = 0 is

satisfied, thereby making the number of boundary conditions four) and

the order of the reduced differential equation (eighth) compatible.
Here n and s are the coordinates normal and parallel to the crack, Mns

is the twisting moment, and V is the transverse shear.
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fatigue crack propagation and fracture analysis.

The aim of this paper is to solve the problem of circumferentially

cracked cylindrical shell by taking into account the effect of transverse

shear and to obtain the stress intensity factors for bending moment as

well as the membrane force as the external load. The problem for longitu-

dinal crack was recently solved [8] by using a higher order shallow shell

thoery described in [9]. In the present paper the effect of Poisson's

ratio on the stress intensity factors and the nature of the out-of-plane

displacement along the edges of the crack (i.e., bulging) will also be

studied.

2. FORMULATION OF THE PROBLEM

In this problem the general shallow shell equations developed in [9]

for an isotropic medium will be used. However, as shown in [10] and [11]

for the classical shell theory, in this case too it can be shown that the

related differential equations of the orthotropic shells car be factorized

and reduced to the equations of isotropic shells if one assumes the material

to be "specially orthotropic".

Referring to Figure 1 and following [9] the equilibrium equations for

a shallow shell may be expressed as

N..	 =
U,j	

0	 ,	 (2.1)

V iii + (Z ,i N ij ) ,j + q (X l , X 2 ) = 0	 ,	 (2.2)

Mij,j - V
i = 0	 ,	 (i = 1,2,	 j = 1,2)	 (2.3)

where N ij , Mij , and V i , (i,j = 1,2) are, respectively, membrane, moment and

transverse shear resultants, and the indicial notation and the summation

convention are used. The components of strains are given by

i	 e..=I[U	 +U.	 +Z W	 +Z W	 ]	 ,	 ( i , j=1 , 2 )	 (2.4)
ij	 2	 i,j	 J,i	 ,i , j	,j ,i

where U 1 , U2 and W are, respectively, X 1 , X 2 , and Z-components of the

-4-
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displacement vector, and the fiinction (X 1 ,X 2 ) giving the equation of the

middle surface is known. Let 6 l and 62 be the angles of rotation of the

normal to the shell surface. The (transverse) shear strains may then be

expressed as

9i 
= W i 

+ Bi	
,	 i = 1,2	 (2.5)

With the Hooke's law

c ij	 aijkg.Nkz/h
	 (2.6)

and the relations giving M ij and V i in terms of B i and o i , respectively,

the formulation of the problem would be complete, technically the ten equa-

tions (2.1) - (2.5) accounting for the ten variables c ij , B i , 8i  U i , and W.

First, eliminating U1 and U2 from (2.4) one obtains the following

compatibility equation:

e AejQ (c ij,kz + Z,ijW,kz) = 0

	
(2.7)

where e ik is the permutation symbol (*) . Next, defining the stress function

F(Xl9 X 2 ) by

N.-eikej^F,kQ	
(2.8)

it is seen that (2.1) is satisfied and (2.2) and (2.7) reduce to

M i j , ij + Z
,ij e Ae j , F ,U + q = 0	 (2.9)

eimejnekpezgaijkRF,mnpq + hZ
,ij e ikeji ,kz = 0	 (2.10)

Even for simple shell geometriP; for anisotropic materials the

e ll = 0 = e22 , e12 = 1 = -e21.

-5-
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differential equations are not tractable. However, as in [10] if one assumes

a special orthotropy, the related differential operators in these equations

can be factorized and the problem can be made analytically tractable. Let

the material be orthotropic and the stress strain relations be

_ 1	 _ N12
E 11	 hE l (N 11 - v 1 N 22 )	'	 e12	 2hG

12	 '

v	 v	
(2.11)

E 22	 hE 2 (N22 - v 2 N11)	
E1	 E2

In this case too the following is the condition for the factorization

of the operators:

E
2G 12 =	

1 2	
(2.12)

1 + v 2

The material satisfying the condition (2.12) is said to be "specially ortho-

tropic".	 It has been shown that for certain orthotropic materials the value

of the shear modulus calculated from (2.12) and that measured experimentally

are very nearly the same and consequently with the assumption of special

orthotropy, the analysis can be simplified quite considerably [11]. 	 If we

now define

E_ ^El 
2	

v= v	 c= (E l /E 2 )	 (2.13)

the stress-strain relations (2.11) become

N

E 11	 hE ( c^ - 
A

22 ) 	'12	 1hE N12

12	 2.14)
E 22	 hE ( c N 22 - vN11)

From the linear thickness variation of the stress components 
aii 

one obtains

M	 = D(c 2 6	 + vB	 )	 , M	
= D 1-v (s
	 + 6	 )

11	 1 1 1	 2,2	 12	 2	 1,2	 2,1

3

M22 = D(vB l,l + 62,2 
IC2)
	 D = 12Eh	

(2.15)

-6-
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is	 l

Also, assuming a linear transverse shear stress-strain relationship, one

finds

el	 chB ^l	 e2	 hB ^2
	

(2.16)

where B is the effective shear modulus. Referring to [12], it will be

assumed that

B = 5	 E	 (2.17)

6 2 l +v

Defining now the operator

vc = c j + c , (2.18)

equations	 (2.9), (2.10),	 and (2,3)	 may be reduced to

vcvcF + hE(aX - 2	
aX l aX 2 aX l aX 2 + a 2 X ) W = 0 (2.19)

Dvcv
cW

-	 (1	 -	
Bh : 

c)(
2

-	 2	
aX l aX 2	aXlaX2

+ D2Z7x-T, )F =	 (1	
- Bh

vc)q (2.20)

B	
+

1

aW	 =	 D	 [vca
aX 1	h6	 c	 1

+ 1+v
	 a

2c	 aX 2
( as2 -ax as1 )]

3x 

(2.21)

1.
s2 _LW_ = hQ [v c

s+cl
2

2v
aXl

(36 1
aX2 -

as

aXl )]
(2.22} 

Equations (2.19) - (2.22) provide the formulation for an arbitrary shallow

shell in terms of the unknown functions F, W, 6 1 , and B2.

Now let us assume that in the domain of interest the curvatures of the

shell are constant. Then in (2.19) and (2.20) the terms involving Z may be

replaced by
+A'

a2Z_ _ 1	 32Z _ _ 1	 32Z _ _	 1	
(2.23)

aX	
R2	

R2	 aXlaX2	 R12

-7-



Also, following [8], if one introduces the dimensionless quantities given

in Appendix A, equations (2.19) - (2.22) may further be simplified as

v4 ^ -	 (X1 a^ - gall axay + ^
' 2 ^)w = 0	 (2.24)

v ow + a2(1-Kv2)(?^ ^ - 2x 12 axay + ^2 a )^

X 4 (1-Kv 2 ) h q	 (2.25)

(1-Kv 2 )s + ax =K	
12v 3Y (as^ as

- ay )	
(2.26)

as	 as
(1- Kv 2 )s + ay	 K 12V ax ( ay - ^)	 (2.27)

The constant a used in Appendix A to normalize various quantities is a charac-

teristic length parameter in the shell. Usually in crack problems the shell

is assumed to be "infinitely large" and a is takers to be the half crack

length.

Defining now a new function Q by

asx

Q( x ,Y) = ay - aŝ 	 (2.28)

equations (2.26) and (2.27) may be expressed as

2	 _ N 	 asp 	1
Bx = Kv 

s x ax K 2 ay

I>

	

= Kv2 Sy - ay 
+ K l+ V 3.Q	

J2 ax

and, it may easily be shown that

	

a 2 s	 a2s
°26 = aQ +	 x + —Y
x ay a^ axay

a 2 s	 a2s	
>

2	 2—Q x
° ^y = - a;: + axay +a^ JI

(2.29)

(2.30)

-8-



as	 as

V( x , y ) = K(	 + ^) - w (2.31)
ax

from	 (2.29)	 and	 (2.30) we obtain

s x= 	 ,a +K 12vay

(2.32)

B	 =	 a„-K1-gas,
y	 ay	 2	 ax

In	 (2.32)	 eliminating 0 and then	 using	 (2.31)	 we	 find

KV 2 1p	 - i	 - w =	 0	 . (2.33)

Similarly,	 eliminating w,	 (2.29)	 yields

K 1 -I V 2Q - Q = 0 (2.34)

The solution of the shell	 problem must then satisfy the differential	 equa-

tions	 (2.24),	 (2.25),	 (2.33)	 and	 (2.34)	 and all	 the necessary	 )oundary con-

ditions.

3.	 CYLINDRICAL SHELL WITH A CIRCUMFERENTIAL CRACK

Consider now a cylindrical 	 shell	 containing a circumferential	 through

crack of length 2a shown 	 in Figure 2.	 In	 this case	 a 1 =	 0 =	 A l2 ,	 and	 if

we further assume that q = 0,	 (2.24)	 and	 (2.25)	 become

v 4 ^ - (aa)2	 a_	 = 0 (3.1)

V 4w + (aa2)2(1-Kv2)	 a4	 = 0 (3.2)

Eliminating	 ^,	 from	 (3.1)	 and	 (3.2)	 it	 follows	 that

4
v 4 V 4w + X12 (1-Ka-	 = 0 (3.3)

-9-
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(3.5)

v	 f	 I	 I

The problem will be solved by using Fourier transforms. It will be as

that through a proper superposition the original shell problem has bee

duced to a perturbation problei- in which self-equilibrating force and

resultants acting on the crack surfaces are the only nonzero external

(hence, the assumption q = 0). Thus, in some neighborhood of the cra(

'which the stresses are expected to be nonzero, the transform of w and

inve.?iun may be expressed as

f ( x , a ) = fm w(x,y)e i Cty dy

_CO

w( x ,Y) = 27r (Wf(x,a)e-iaYda

Substituting from (3.5) into (3.3) one obtains an 8th order ordinary linear

differential equation in f. Looking for a solution in the form f= R(a)exp

(mx), the characteristic equation of the problem is found to be

4

M8 - (K a 2 + 4a 2 )m 6 + (6a4 + a2 KX4a2)m4

- 4,, 6 m 2 + a 8 = 0 .	 (3.6)

If we define

p = m2 - a 2	 (3.7)

equation (3.6) can be written in terms of p as follows:

p4 - KX2p 3 + a2(1-2Ka 2 )p 2 + a2(2a 2 - Ka 4 ) p + a40t 4 = 0	 (3.8)
L

It should be emphasized that the roots of (3.8) are in general complex and,

of course, are not known as a function of a in closed form. Appendix B

describes a convenient procedure for solving (3.8). After solving (3.8)

let the roots of (3.6) be ordered such that

Re (M 4 <0	 ,	 m^+4 = -R^j = J = 1,..,4	 (3.9)

-10-
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The solution f(x,a) of the resulting, ordinary differential equaticn sat-

isfying the regularity conditions at x = + co may then be expressed as

4

F R.(a)exp(m.x)	 ,	 x>0

j=1 J
	 J

f(x,a) _ < 8	 (3.10)

S P.(a)exp(m X )	 ,	 Y.
J=5 J	 J

If we let

^( X ,Y) =I F g (x ,a)e
-iyada

_m

from (3.1), (3.2) and (3.10) we find

4

((a 2 /a) 2 S ( m
i 
/P i ) 2 R

i
(a)exp(m

i
X)	 , X >0

g ( X ,a) = <
a

	(a 2/a) 2	 ( m
i 
/P i ) 2R

i
( a ) e X P( m

i
X )	 , x<0

5

Similarly, assuming

Q( X ,Y) = 27T 
1o" h(x,a)e-iyada

from (2.34) we obtain

(A 1 (a)exp(r 1 x)	 ,	 x>0	 ,

^A 2 (a)exp(r 2 x)	 , x<0 ,

where

 2	 = 2	 2 P
	r l = - [ (, Z 

+ r 1 - v	
r2	 a 

+ 71-v

Also, lei us assume that

r

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)



(3.16)

I

V(x,Y) = 2n J^ 6(x,a)e-iy0Lda

w

It can be shown that the remaining differential equation (2:33) is satisfied

if a is assumed to be

4 R.(a)
F -^ exp(m.x) , x>O

e(x'a) - ! 
1 K pj -1	 3

	

8 R (a)	
(3.17)

KP11 exp(mj x) , x<O

t	
j

The expressions given by (3.10), (3.12), (3.14), and (3.17) satisfy

the differential equations of thr, problem (*) . If one now determines the

arbitrary functions Rj(a), (j = 1,..,8) and A i (a), (i= 1,2) in such a way

that the boundary conditions of the problem are 4:so satisfied, one then

has the solution.

4. BOUNDARY CONDITIONS

As mentioned earlier, the only external loads in the problem are the

self-equilibrating force and moment resultants on the crack surfaces. These

forces can be decomposed in such a way that in solving the problem one needs

to conside r (with respect to x = 0 plane) either syiimetric or antisymmetric

loading only. In these two cases the following conditions of symmetry will

be satisfied:

N xx ( x , y ) = N xx (-x,Y)	 , N xy ( x ,Y) = -N xy (-x,Y)	 ,

Mxx (x,Y) = Mxx (-x,Y)	 , Mxy (x,Y) = -Mxy (-x,Y)	 ,	 (4.1)

V x ( x ,Y) = -V x (-x,Y)	 ,

(*) It should perhaps be pointed out that (3.17) is a solution satisfying

the differential equation (2.33), and is not the most general solution.

However, with (3.17), since the solution thus found satisfies all the dif-

ferential equations and, as wi ll be shown, all the boundary conditions,

it must be the solution of the physical problem.

-12-
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for the symmetric problem, and

N xx ( x ,Y) = -N xx (-x,Y)	 ,
 

Nxy(x,Y) = Nxy(-x,Y)
	

,

Mxx (x,Y) = - Mxx (-x,Y)	 ,
 

Mxv (x,Y) = Mxy(-x,Y)
	

,
	

(4.2)

Vx( x ,Y) = V x (- x ,Y)	 ,

for the antisymmetric problem. One may note that (4.1) and (4.2) are valid

for all values of x and y, and in the odd functions the discontinuity at

x =0 may be allowed only on the crack surface, outside the crack all these

functions (indeed, all field quantities) must be continuous. 	 It is there-

fore clear that in solving the problem one needs to consider only one half

of the cylinder, say x> O. Symmetry conditions similar to (4.1) and (4.2)

are, of course valid for all the remaining field quant i ties. Thus, there

are only five unknown functions R 1 ,.., R41 and A l which may be determined

from five conditions specified at x= + 0.

Consider now the symmetric problem f or a circumferentially cracked

shell. Noting that before the superposition which led to the perturbation

problem the crack surfaces were free from all external loads, and since

outside the crack all quantities are continuous, from (4.1) it may be -on-

cluded that

N xy ( O I_Y = 0	 , Mxy ( O 9-7 = 0 , ^ x ( O 1 -Y	 = 0 ,	 -co<y<-	 , (4.3)

and N xx (+O,y) and Mxx (+O,y) are known functions in -1<y<l. The problem is

then a mixed boundary value problem. Using (4.3) three of the five unknowns

(Rl9 .. 9 R41 A0 can be eliminated. The remaining two may be determined either

from a system of dual integral equations or a system of singular integral

equations arising from the mixed boundary conditions.

In terms of the normalized quantities the relevant force and moment

resultants are given by

a2	 32^
Nxx
	 ay	 Nxy	 axay

-13-



_ a "x	 a

My x ham axax + v ay )

a 1 -v asx	
as

aV x 	a2 	 agx

ay	 axay + ay	
(4.4)

Using (4.4) and the results obtained in Sections 2 and 3, for x>0 these

quantities may be expressed in terms of R l ,.., R4 and Al as follows:

(
m 	 2	 4

Nxx ( x ,Y) = - 27T J 	^?) a2	 (P ) 2Rj( a ) enlJx le-iyada (4.5)

_	 1^J^

2 4 m3	 m•x

N xy ( x ,Y) = 2n j_CO ^( 2) aG P^" R
j (a)e J ]e -lyada ,	 (4.6)

1	 d	 co 
4 m. -vat	 mix l a

M (x,y) _	
J	

-1	 R (n)e 	 e- y da
xx	 2 T h	 L^ 1 Kpj -1	 J

2 Fr x
K(l2v	

iar1A,(a)e 1 e -iya da	 (4.7)

1 all-v)	
is 

4 m.R
_J J _ emJxe-'Yada

Mxy(x,Y) 	 27r -^-	 Kp.-1
J

	

2 

foo

	 r x
- 2 h—X4 14v	 (a2+ r^)A 1 (a)e 1 e - ^ Yada 	 (4.8)
7 

_00

4 Kp.m.	 m•x

V x (x, y ) _- 2n 
1 is F J	 Rj (a)e J 

e-ly°`da
y	 1 pj-

°°	 r x
- 

2n K 
2

	

	
a2A1(a)e 1 e-tyada	 (4.9)

_m

We will attempt to solve the problem by reducing it to a system of

singular integral equations. The problem is "symmetric" and the "normal"

membrane and moment resultants are specified on the crack surface. There-

fore, the natural "dual" quantities which should be considered as the new

unknown functions are

-14-
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x

.v u ( +O ,Y) = G l (_)	 ,	
y B

x ( +O,Y) = G2 (Y)	 ,	 (4.10)

corresponding to the "normal" displacement and rotation on the crack surface,

respectively. In (4.10) the derivatives of the dual quantities are used to

make them dimensionally consistent with N xx and 
Mxx 

and in order to insure

that the resulting integral equations will have Cauchy type singularities

[131. The mixed boundary condition along x =0, --<y< W may now be expressed

as follows:

lim N xx ( x , y ) = FOY)	 , -l-y<l	 ,	 (4.11)
x-*+0

lim Mxx (x, y ) = F 2 ( y )	 ,	 -1<y<l	 ,	 (4.12)

x-*+0

u(O,Y) = 0	 ,	 1<IYI<CO	 (4.13)

s x (O,Y) = 0	 ,	 1<lyl<-	 ,	 (4.14)

Referring to the definitions (4.10) and the physical conditions (4.13) and

(4.14), it is clear that the functions G l and G2 must satisfy the following

single-valuedness conditions:

1	 1

J 
G 1 (y)dy = 0	 I G2 (y)dy = 0	 (4.15)

From (2.4), (2.14), (2.8), and (2.1) it may be shown that

a= u ( +O,Y) _ - ax ^( +O ,Y) + (a2/a)2 
3x 

w ( +O ,Y)	 (4.16)

Then, after some manipulations, the quantities defined by (4.10) may be ob-

tained as follows:

i-

E

Gl (Y) _ (^? )2 2n	 a	 ( mj - 4) R^( a ) e'	da
J	

1	 J

r^ 	 4 mJRj(a) -
G
2 
(Y)_ - Zn I a	 KpJ-1	

e Yai da
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A-	 ----

m
K 1 2v r a2Al(a)e-iyada

(4.18)

Now, using (4.3) and inverting (4.6), (4.8), (4.9), (4.17), and (4.18),

we obtain five linear algebraic equations in R l ,..,R41 and Al which, after
r

some modifications and by using (4.13) and (4.14), may be expressed as

1
A1(a) = 2 rG2(t)eiatdt	

(4.19)

J-1
a m3

4 R^(a) = 0	 (4.20)

M5	 1

4 R^(a) = l v is J 
G 2(t)e

iat
dt ,	 (4.21)

2	 -1
5

4 R^(a) = i ^ ^ (a 2 + r^) ( 1G 2(t)e iatdt	 (4.22)

1	
j
	 2	 )-1

,4 R^
( a) = -i(X/a2)2 a fG l (t)e iat dt	 (4.23)

1	 J	 1-1

The solution of the system of equations (4.20) - (4.23) is given in Appendix

C.	 By substituting from (4.19), Appendix C, (4.5) and (4.7) into (4.11) and

(4.12), we obtain two integral equations to determine the unknown functions

G1 and G2 of the following form:

lim 
fl 

F G^(t)dt I WH i ^(a,x)e i(t-y)ada = Fi(y)
X >+0 -1 1	

J
_CO

i = 1,2,	 -1<y<l
	

(4.24)

By examining the functions H id , it can be seen that they are bounded every-

where in -m<a<-. Therefore any possible singularity of the kernels in (4.24)

at y =t must be due to the behavior of Hij(a,x) as ate+-. Note also that Hid

contains exponential damping terms of the form exp(m
i
x) and exp(r l x), where

Re(m3 )<0, Re(rl )<0. However, since in limit x will go to zero, for y= t

this damping does not insure the convergence of the inner integrals in (4.24).
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is that the functions

For the purpose of examining

and for extracting the

asymptotic behavior of mj

(3.15) it can be shown

The major difficulty in this problem, of course

mj (a) are not known explicitly in terms of a.

the singular behavior of the kernels in (4.24)

singular parts, all one needs, however, is the

and r  as	 Thus, from (3.6) - (3.8) and

that for large values of Jul we have

2

mj(a) = -lal 0 + 24 _ 84a + ... ) 	 (4.25)

r 1 ( a )	 -l a l (1 + K l l v a	
- ... )	 (4.26)

Using now the relations (4.25) and (4.26) and separating the asymptotic

values of H ij for large ial, the kernels in (4.24) may be expressed as

fHije,(t-y)ada = J"oH^(a,x)et-y)ada

00	 -CO

+	 [ H ij (a,x) - H^j (a,x)]e
i(t-y)a

da	 (4.27)

where H . is the asymptotic value of H ij for lal-,—. On the right hand

side of (4.27) the first term gives Cauchy type kernels 1/(t-y) on the main

diagonal terms, and the second integrals are uniformly convergent for all

t and y (in which, the limit x= 0 can therefore be put under the integral

sign). After the asymptotic analysis and some lengthy but straightforward

manipulations the integral equations and the kernels may then be expressed

as follows:

I

1G 1 (t)	 2	 1
t _y dt + F J k lj (y,t)G(t)dt = 2 ,r F l (Y)	 -1<y<l	 (4.28)

1	 1 -1

1-v	 1 G2 (t)	 2	 1

—	 f	 t-y dt +
	 I k2j(y,t)Gj(t)dt

0	
= 2,r a- F

2 (Y)-1 <Y<l
	

(4.29)
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k ll(Y,t) _ fm(2)2a2 7 2mjQj(a)- 1]sina(t-y)da
0	 1	 J

X2 
2	 4 m?

k 12 (y,t) = 2(^) 
fo

a2	 4 N j (a)si na(t-y)da
 1 J

2

4

k 21 (Y, t ) _ - ^r jW Y P ( m^ - va2)m^Qj(a)sina(t-y)da

0 1 J
4

k22 (y,t) _ -2 T J ̂117
2
 (m^ - vrt 2)m^Nj(a)

0	 1	 J

K(1 -War l + 1 2 2 ]sina(t-y)da

(4.30)

(4.31)

(4.32)

(4.33)

do-

where the functions N j (a) and Qj (a) are giver in the Appendix C. Using the

results of Appendix C it can be shown that k 12 (y,t) = k2l(y,t).

5. THE ASYMPTOTIC STRESS FIELD AROUND THE CRACK TIPS

The solutions of the singular integral equations (4.28) and (4.29) have

integrable singularities at the end points y= +1 and are of the following

form:

Gi(Y) = g i (Y)( 1 -Y 2 ) Z	 i= 1,2
	

(5.1)

where gl and 9 2 are bounded in -1<y<l. Similar to the plane problems, it

can be shown that the behavior of the stress distribution in the immediate

neighborhood of the crack tips is dependent on g i (+l) only. To show this,

one needs to substitute (5.1) through the expressions of R l ,..., R4 given

in Appendix C and A l given by (4.19) into the original expressions for Nij

and M ij , (i,j = x,y), such as those given by (4.5) - (4.8). 	 Using now the

relation [141

fo

a eu-l-ba	
- lb{COSI(ca)da = -	 r

(b2 +c2) 
u/2 { cos l(utan)	 ,

(b>O	 ,u > O)	 ,	 (5.2)

-18-
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and [8,10,11] for large values of lal

1

J (t) e iat
dt= ( 2 a )^ {g(1)exp[i(a -	 sign(a))]

+ g(-1)exp[-i(a - 4 sign(a))] + 0 ( T )}	 (5.3)

arounJ the end point y= 1, x= 0 the leading terms of the asymptotic stress

and moment resultants may be expressed as

N ( x ,Y)	 axx gl1 )
fo

L (1 +alxl)e -Ixlasin[(1-y)a	 -	 4]da	 ,(5.4)
2^ o

Nyy ( x ,Y) a	
91	

1) j (1 - alxl)e -Ixlasin[(1 -Y)a 	-	 "Ida	 ,	 (5.5)

2 n o fa

N xy ( x ,Y)

1

= 913 a xe -Ixlacos[(1 -y)a 	- 4]da	 (5.6)
2^ J o

Mxx ( x ,Y) a
920 )

12a

n

1	 (1+ alxl)e -Ixl
°sin[(1 -y)a	 -	

4
	 Ida

2^ o ,^

(5.7)

fw
Myy (x,Y) = g2 1 - 12a	

1 (1 - alxl)e -IxIasin[(1-y)a - 4]da2 ^r	 p
(5.8)

1)

fW
f^l xy (x,Y) = g2	 12a	 '` xe

-Ixlacos[(1 -y)a - 4]da	 (5.9)
2^	 o

From (5.4) - (5.9) it is seen that, aside from fhe magnitudes as rep-

resented by g l (1) and 9 2 (1), the asymptotic behavior of the membrane and

bending stress distributions around the crack tip will be identical. This

is, of course, in agreement with the uncoupled in-plane and bending results

for flat plates [4-7]. Defining the polar coordinates r,e by

x = rsine	 , y - 1 = rcose	 ,
	

(5.10)

evaluating the integrals, and observing that in dimensionless quantities

(see Appendix A)

-19-
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1

1

i	 I

f

12az
h	

M13 = a1J	
(i.J = x.Y) (5.11)

from (5.4) - (5.9) the asymptotic stress distribution may be obtained as

	

9 1 ( 1 ) + zg2(1)	 5	 e	 1	 50°(r, ©,z) -	
r–	 [4 cos 2 - T cos 2 ]	 (5.12)xx

2^2r

	

9 1 (1) + z9 2 ( 1) 	 3	 e	 1	 5e
a(r,e,z) = -

	 r–-4
— [ cos 2 

+ 21
cos 

2 ]
	 (5.13)yy

22 r

91(1) + zg2(1)	 1	 ©	 1	 5e
a  (r,e,z) : -	 –	 [-	 sin 2 + 4 sin 2 ]	 (5.14)

2 2r

In this "symmetric" problem the stress intensity factor is defined by

k l =	 lim2X2-a a ll (O,X2 )	 (5.15)

X
2 
-a

which, referring to Appendix A and (5.12) may be obtained in terms of gl(1)

and g2 (1) as follows:

k l (Z) _ - Eta [9 1 ( 1 ) + a 9 2 ( 1 )]	 (5.16)

It should be noted that even though the analysis given in the previous

sections is valid for specially orthotropic as well as isotropic shells,

(a) because of the dependence of x and y on the orthotropy constant

c = (E 1 /E 2 )^4 , r and e defined by (5.10) are not the physical coordinates,

and consequently the angular distribution of the stress state in orthotropic

shells would be different from that of isotropic shells as given by (5.12)-

(5.14); and (b) since the roots m  and r  are very heavily dependent on c,

the numerical results obtained for the isotropic shells by assuming c = 1

cannot be eadily adopted to the orthotropic shells.

6. CRAC.. SURFACE DISPLACEMENTS

After obtaining the functions G 1 and G2 upon solving the integral

equations (4.28) and (4.29), through the expressions for R l ,..,R4 1 and

t

-20-



A l , any desired Field quantity in ti,e shell can be expressed in terms of

G1 and G2 and be easily evaluated. One such group of quantities of some

practical interest is the components of crack surface displacement vector.

In the symmetric problem under consideration, referring to the definition

(4.10), the in-plane component of the crack surface displacement (i.e.,

the crack opening displacement) may easily be obtained as

1

u( +O,Y) _ - j G 1 (t)dt	 ,	 -1<y<l	 (6.1)

Y

The component of the displacement vector which is perpendicular to the

shell surface, i.e., w(x,y), is given by (3.5) and (3.10). Expressing

alain R l ,..,R4 in terms of G  and G2 (Appendix C), w may be obtained as

follows:

J

1 	 4

w(+O,y) _ - n 	 G l (t)dt

 fm

 S Qj(a)sina(t- y)da
_1	 p 1

( 1 	 00 4

-	 1 G 2 (t)dt	 Nj(a)sina(t-y)da

-1	 0 1

-1<y<l (6.2)

where Q  and N  are given in Appendix C.

7. NUMERICAL SOL UTI ON AND RESULTS

The singular integral equations (4.28) and (4.29) subject to single-

valuedness conditions (4.15) are solved by using Gauss-Chebyshev integra-

tion formulas.	 Thus, equations (4.28), (4.29) and (4.15) are, respectively,

replaced by

	

n	 g l (tj )	 2
Wj L t y	 + Z k lm (Y i , t j )9m ( t ^)] = 2TrFl(Yi)

	

j=1	 j	 i	 m=1

(7.1)

-21-

x



(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

i

°- }	 t

Wj^l^ 92	 1	 I k2m(Yi•tj)gm(tj)^
j-1	 m=1

	

2,r a F2(Y i )	 i = 1 ,.. ^^- 1 	,

n	 n
W.g (t.) = 0	 W.g (t.) = 0

j=1	 l	 j=1	 2

where

tj = cos (n-1 n )	 ,	j = 1,..,n

y i = cos(2n-2 n)

W l = Wn	 2 n-1	 Wj - nnl	
j = 2,..,n-1

N

it shell under uniform mem-

the practical applications

are considered separately.

factors are normalized with

For example, if the applied

As a numerical example a cracked cylindric

brane and binding loads is considered. To make

of the results more convenient, these two loads

The calculated results for the stress intensity

respect to the corresponding flat plate values.

loads are

N 11 (0,X 2 ) _ -N
11 

= -ham
	 ,	

Mll(O,X2) = 0	 ,	 -a,X2<a	 ,	 (7.7)

the input functions in the integral equations (4.28) and (4.29) become

F I (Y) - -N 11 /hE	 ,	 F 2 (Y) = 0	 ,	 (7.8)

and the corresponding flat plate stress intensity factor is a m T. Then the

membrane and bending stress intensity ratios 
knm 

and k bm are obtained from

(5.16) as follows:

k 1 (0)	 E

knm = am,r =
	
m 9

1 (1)	 (7.9)
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r ,Y^
^i

a
•

k1(h/2) - kl(0)
	 _ E	 h

k bm	
Q va-	

2am -Z —a g 2 ( 1 )	 (7.10)

m

The "bending stress intensity factor" is thus based on the bending stresses

at the outer layer of the shell, Z = +h/2.

Similarly, if the external loads are

N 11 (O,X 2 ) = 0	 Mll(O,X2) = -Mll = - 6 ' b	a<X<<a	 (7.11)	 am-

Then the input functions become

F 1 ( y ) = 0	 F2(Y) 	 E 1	
,	 -1<y<l	 (7.12)

In this case too the corresponding flat plate stress intensity factor is

defined by a b 3a, and the stress intensity factor ratios are obtained as

follows:

kl(0)	 E

kmb = Qoda 
= - 2ab gl(1) (7.13)

k 1 (h/2) - k
1
 (0)

kbh =	
o b 

a	 — _ - 2a 
b 

2a g2(1)	 (7.14)

In the numerical calculations the effective transverse shear modulus for

the shell is assumed to be B = 5G/6, G being the shear modulus of the material.

Also, the Poisson's ratio is taken as v= 1/3 in all calculations except for

one set of results where the effect of v is investigated. One may note that

X2 is used in this analysis is the standard shell parameter a defined in the

formulation of the problem by using the classical (i.e., the 8th order) shell

theory. Also note that in the present analysis there is an additional para-

meter a/h, which, within the conf;nes of the shallow shell theory, gives the

thickness effect.

The numerical results are shown in Tables 1-5. To help visualizing

the trends some of the results are also shown in Figures 3-6. Tables 1-4

show the stress intensity factor ratios 
krrvi, 

kbm, krTib, and k bb defined by

-23-



k	 •

(7.9), (7.10), (7.13) and (7.14), respec*ivEly.	 In these tables the

•	 values given for a, = [12(1-v 2 )]^4 a; Rh = 0 correspond to the flat

plate. Both a 2 and a/h have been varied from 0 to 10. For 
X2> 

10 and

a/h >10 the linearized shallow shell theory used in this study is prob-

ably not valid.	 For very thin shells (i.e., a/h = 10) under uniform

membrane loading (Tables 1, 2 and Figures 3, 4) if is found that the

membrane component of the stress intensity factor kMM is indistinguish-

able from the results found by using the classical theory [1]. However

the bending stress intensity factor k bm is quite different. The results

given in Tables 1-4 show that, particularly for large values of a 2 , the

thickness parameter a/h may have considerable effect on the stress in-

tensity factors. Table 3 and Figure 5 show that when a 2 -0 the results

are in good agreement with the flat plate bending results given in [5]

and [6] and the axially cracked shell results given in [8].

For a specific geometry a 2 = 4 and a/h = 2, Table 5 shows the effect

•	 of the Poisson's ratio v on the stress intensity factors. For the two

most important components k mm and kbb (i.e., for the primary stress in-

tensity factors under membrane and bending loads) the effect of v does

not seem to be significant. Hence the results given in Tables 1-4 and

calculated for v= 1/3 can be used for materials with a Poisson's ratio

0.2 <v <0.4, which may cover nearly all structural materials.

Figures 7 and 8 show some sample results for the out of plane dis-

placement w(+O,y) calculated on the neuL- •al surface along the line of

the crack. The tread seems to be quite similar to the bulging results

obtained for the axially cracked shell [11]. 	 It should again be em-

phasized that in these numerical calculations the crack surface membrane

stress is compressive and the bending moment is applied in such a way

that the outer layer of the shell on the crack surface is again compres-

sive. Under these loads, as seen from the figures, on the crack surface

the displacement w is in the outward direction.

ACKNOWLEDGEMENTS

This study was supported by the National Science Foundation under

the Grant ENG77-19127 and by NASA-Langley under the Grant NGR-39-007-011.

-24-



REFERENCES

1. F. Erdogan and M. Ratwani, "Fatigue and Fracture of Cylindrical

Shells Containing a Circumferential Crack", Int. J. Fracture

Mechanics, Vol. 6, pp. 379-392 (1970).

2. F. Erdogan and M. Ratwani, "A Circumferential Crack in a Cylin-

drical Shell under Torsion", Int. J. Fracture Mechanics, Vol. 8,
PP • 87-95 (1972) .	 -- --^---

3. E. S. Folias, "A Circumferential Crack in a Pressurized Cylinder",
Int. J. Fracture Mechanics, Vul. 3, pp. 1-12 (1967).

4. J. K. Knowles and N. M. Wang, "On the Bending of an Elastic Plate

Containing a Crack", J. of Mathematics and Physics, Vol. 39, p.
223 (1960).

5. N. M. Wang, "Effects of Plate Thickness on the Bending of an
Elastic Plate Containing a Crack", J. of Mathematics and Physics,
Vol. 47, p. 371 (1968).

6. R. J. Hartranft and G. C. Sih, "Effect of Plate Thickness on the
•	 Bending Stress Distribution Around Through Cracks", J. of Math-

ematics and Physics, Vol. 47, p. 276 (1968).

	

•	 7.	 0. Tamate, "A Theory of Dis l ocations in the Plate under Flexure

with Application to Crack Problems", The Technology Reports,

Tohoku University, Vol. 40, p. 67 (1975).

8. S. Krenk, "Influence of Transverse Shear on an Axial Crack in a

Cylindrical Shell", Technical Report, NASA, NGR 39-007-011,

Lehigh University, (July 1976).

9. P. M. Naghdi, "Note on the Equations of Shallow Elastic Shells",
Quart. Appl. Math., Vol. 14, p. 331 (1956).

10. U. Yuceoglu and F. Erdogan, "A Cylindrical Shell with an Axial
	

F.
Crack under Skew-Symmetric Loading", Int. J. Solids Structures,

Vol. 9, p. 347 (1973).

11. F. Erdogan, "Crack Problems in Cylindrical and Spherical Shells",

in Plates and Shells with Cracks, G. C. Sih, ed , Noordhoff

International Publishing, Leyden, pp. 161-199 (1977).

12. E. Reissner, "On Bending of Elastic Plates", Quart. Appl. Math.,
Vol. 5, p. 55 (1947).

13. F. Erdogan, "Complex Function Technique", in Continuum Physics,

Vol. II, A. C. Eringen, ed., Academic Press, pp. 523-603 1975).

-25-



14. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and
Products, Academic Press (1965).

15. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,
Dover Publications (1965).

i

•	 -26-



ti	 r
i

APPENDIX A

The Dimensionless Quantities

X =
X

c a

X

,	 y= 3c	
a	

, z= a	 , (A.1)

u= /C--
al

v=	
a

w=a
	

, l> (A.2)

Bx =
Vc By = z s2 = a h ..

a xx cE
,	

ayy = co

2E QQxy 	 E2
(A. 3)

N 11 0 22 N12

N xx
_

chE Nyy	 hE

_
Nxy	 hE

(A.4)

M

M

= E = E Mxy = -	 E
(A.5)

xx

h

yy

V x
V

=
^lhB

V

Vy =	 hB 2 (A-6)

X41 = 12(1-v2)
 —h,—R7,

2 4 	
a2 = 12(1-v 2 ) c 

a'{ 

-R-7,
 2

a12 = 12(1 -v2) ham
4
 _ , a 4 = 12(1- v 2 )

2
	K = B	

(A.7)
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APPENDIX B

Procedure for Solving a Quartic Equation

Consider the following quartic equation:

p `' + a 3p 3 + a 2 p 2 + a l p + a o = 0	 (B.1)

Although in the shell problem the coefficients a o ,..,a 3 are real, for the

sake of generality, here it will be assumed that they are complex. There-

fore the roots of (B.1) are in general complex. Assume that (B.1) can be

written as the difference of two squares:

(p 2 + Ap + B) 2 - ( Cp + D) 2 = 0	 (B.2)

Then, from (B.2) it follows that

p 2 + ( A + C)p + (B + D) = 0 	 (B.3)

p 2 + ( A - C)p + (B - D) = 0	 (B.4)

If the constants A, B, C, D can be determined in terms of a 3 , a 2 , a l , ao,

then the four roots can be found in a straight-forward manner by solving

equations (B.3) and (B.4).

Comparing (B.1) and (B.2), one can write:

2A = a 3	,	 (B.5)

2B + A 2 - C 2 = a 2	(B.6)

2AB - 2CD = a l	(B.7)

B2 - D 2 = a o	(B.8)

Eliminating C and D in (B.6) - (B.8) and defining 2B = u, one finds:
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I
	

J

U3 + b 2 u 2 + b l u + bo = 0	 (B.9)

where

b2 = -a 2	 bl = a l a i - 4a
0
	bo = 4a o a 2 - a^ -a oa 2 	 (B.10)

Let u  be a root of the cubic equation (B.9), (see, for example [15] for

determining the roots of a cubic). Then

B = 2
	

(B.11)

and from (B.5)

a

A = 2
	

(B.12)

Once A and B are known, one can determine C and D from (B.6) and (B.8) as

follows:

a2
C 2 = U  + 4 - a 2	(B.13)

U2
D 2 = 4 - a o	(B.14)

It is seen that C and D are multiple-valued functions and one should choose

the correct branch in order to obtain the correct solution.

C 2 and D 2 can be written in the complex form as follows:

ie 1	ie2

C 2 = p i e	 D2 = p 2e	 (B.15)

where Pi , p 2 , e l and e 2 can be determined by using (B.13) and (B.14). Thus

	

ie l /2	 i(e1/2 + n)
Cl = pl e	 C2 = of e

	

i e 2 /2	 i(e2/2 + n)
D l = 

Vp1 
e	 D2 = 4 2 a	 (B.16)
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AL

All pairs of (C,D) satisfy equations (B.6) and (B.8) but not (B.7).

Therefore C and D must be selected such that equation (B.7) is satis-

fied, i.e.,

2CD = u12 3 - a l	(B.17)
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Expressions for k
i
(a), j= 1,..,4

RJ(a) = i[QJ(a)C1(t)e iat
dt 

+ NJ(a)C2(t)eiatdt]
	 (C.1)

	

JJ
-1	 JJ-1

N (a) = l	
m2m3m4 {

-a ^ [m 2 (^ - nom)
1	 0 a	

p2^ p3p4	 72	 2 p 3 	 p4

M 4 	 m4	 m4	 m4	 .`

- m2 ( 2 - 4 ) + m2 (M - 3 ]	3 p2	 p4	 4 p2	 p3

m4	 m4
+	 12ov (a2 + r^ ) [m2(-3 - 4)

2	 P3	 P4

	

m 4	 m4	 m4	 m4
- m3 (PP	2 - 4 ) + m4 (p 2 - p3)]}	 (C.2)

	2 	 4	 2	 3
3

2	 (m m m )	 m2 m 2	 m2 m2
Q(a)=	 1	 (-a )	 234	 [( 3 F4 - 4 3)

1	 D a t2 a P2 3PP4̂  P 3 P4 P4 P3

m2 m4 m4 m2	 m2 m3 m3 m2

- ( 2 -4 - 4 -2 + ( m3 - 3 m2	 (C.3)P2 
P4	

P4 P2	 P2 
P3	

P3 
PZ

m m m m	 nil 	 m4m4

D(a) _ (P l p2 { ( m ^ -m2)(m3-m4)( 1 2	 +	 3m4 )

	

1 2 3 4	 P̂1P^ P ar P4^^
	m 4m 4 	m4m4

+ (m^ - m 3)( ►n4 - m2)(pl7 +	 pp-47	1 3 	 2 4

	

m 4 m4 	m4m4
+ (m^ - m4)( m2-m3)( P

IP7 + PP P7)}	
(C.4)

	1 4 	 2 3

The expressions of N 2 and Q2 are obtained from (C.2) and (C.3) by replacing

the indices in m
i
 and p

i
 sequentially from 2, 3, 4 to 3, 4, 1. Similarly

for N 3 and Q 3 the indices are replaced by 4, 1, 2, and for N 4 and Q4 by

1, 2, 3.



Table 1 Stress intensity factor ratio kIn

^2 a/h	 0.5 a/h = 1 a/h =2 a/h =5 a/h =10

0.0 - 1.000 1.000 1.000 1.000

0.5 - 1.011 1.010 1.010 1.010

1.0 1.072 1.057 1.052 1.051 1.050

2.0 1.274 1.205 1.180 1.171 1.169

3.0 1.503 1.389 1.339 1.319 1.315

4.0 1.717 1.569 1.499 1.470

1.613

1.465

1.6065.0 1.517 1.738 1.650

6.0 2.104 1.897 1.792 1.745 1.737

8.0 2.400 2.197 2.056 1.986 1.973

10.0 - 2.462 2.306 2.205 2.185

Table 2 Stress intensity factor ratio kbr,

a 2

0.0

a/h = 0.5

-

a/h = 1

0.000

a/h = 2

0.000

a/h = 5

0.000

a/h = 10

0.000

0.5 - 0.050 0.047 0.046 0.046

1.0 0.101 0.100 0.098 0.098 0.099

2.0 0.103 0.110 0.119 0.130 0.139

0.0893.0 0.066 0.052 0.052 0.073

4.0

5.0

0.036

0.017

-0.010

-0.055

-0.037

-0.117

-0.024

-0.126

-0.004

-0.106

6.0 0.002 -0.087 -0.179

-0.264

-0.217

-0.359

-0.202

8.0 -0.018 -0.x.30 -0.359

10.0 _ -0.161 -0.322 -0.463	 I -0.481

z

&am ,
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Table 3 Stress intensity factor ratio kbb

X2 a/h = 0.5 a/h = 1 a/h = 2 a/h = 5 a/h = 10

0.5 0.737 0.693 0.660 0.653

i.0 0.738 0.672 0.636 0.612 0.608

2.0 0.648 0.549 0.508

0.422

0.493 0.493

3.0 0.615 0.484 0.401 0.401

4.0 0.602 0.455 0.376 0.343 0.342

5.0 0.595 0.441 0.350 0.308 0.303

6.0 0.592 0.434 0.335 0.284 0.277

8.0 0.589

-

0.426 0.319 0.254	 i 0.242

1 0.423 0.311 0.236 0.219

Table 4 Stress intensity factor ratio kmb

a 2 a/h = 0.5 a/h = 1 a/h = 2 a/h = 5 a/h = 10

0.0 - 0.000 0.000 0.000 0.000

0.5 - 0.015 0.013 0.011 0.010

1.0 0.034 0.032 0.028 0.025 0.023

2.0 0.044 0.047 0.045 0.041 0.039

3.0 u.A1 0.046 0.046 0.044 0.042

4.0 0 036 0.042 0.043 0.041 0.040

5.0

6.0

0.032

0.029

0.038

0.035

0.039

0.036

0.038

0.035

0.036

0.033

8.0 0.024 0.030 0.031 0.030 0.029

10.0 - 0.026 0.028 0.027 0.026
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Table 5 The effect of Poisson's ratio on the
stress intensity factors, a/h= 2,

a2=4

V kbm kbb kmb

0.0 1.473 -0.013 0.387 0.031

0.1 1.479 -0.017 0.387 0.035

0.2 1.487 -0.023 0.385 0.038

0.3 1.495 -0.033 0.379 0.042

1/3 1.499 -0.037 0.376 0.043

0.4 1.506 -0.047 0.369 0.045

0.5 1	 1.519 -0.068 0.354 0.048
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----Result from the 8th order theory [1]
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