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Abstract

We consider so-called differential games of kind (qualitative

games) involving two or more players each of whom possesses a target

toward which he wishes to steer the response of a dynamical system

that is under the control of all players. Sufficient conditions are

derived, which assure termination on a particular player's target.

In general, these conditions are constructive in that they permit

construction of a winning (terminating) strategy for a player. The

theory is illustrated by a pursuit-evasion problem.
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1. INTRODUCTION

Differential games of kind, especially games of pursuit and evasion,

were introduced by Isaacs, Ref. 1. Much of the subsequent literature on this

subject deals with extensions and generalizations of problems discussed by

Isaacs; a particular favorite is the "homicidal chauffeur game", Refs. 2,3.

These games concern situations in which two players exert control over a

system; one player (pursuer) wishes to steer the state of the system to a

given set, while the other player (evader) desires to keep it out of that set.

Thus, such games involve a single set which is the pursuer's "target" and the

evader's "anti-target".

Differential games of kind (qualitative games) in which each of two

players has his own target toward which he wishes to steer the system's state

were considered by Dlaqui^re et al., Ref. 4; such multi-target games encompass

games with a single target, of course. A general discussion of two-target games

may be found in Ref. 4, where there are also presented conditions sufficient

to assure one player that a particular subset of the state space is one from

which his opponent cannot guarantee himself a win (that is, termination on

his target).

In this paper we consider qualitative two-target differential games.

For such games we give conditions sufficient to assure one player that a par-

ticular subset of the state space is one from which he is guaranteed a win;

that is, if he utilizes a strategy for which certain conditions are met and

play begins in an appropriate subset of the state space, then he is assured

of steering the state to his own target before his opponent can steer it to

his,
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2. PROBLEM STATEMENT

In order to admit a class of strategies sufficiently general to be

of interest in many applications we allow the system under discussion to be a

generalized dynamical system, Refs. 5, 6.

We suppose that n real numbers , x i , i = 1, 2, ..., n, fully

describe the system at a given instant of time, t E (-w, w) . Thus, the

system is described by a vector x = (x l , x 2 , ..., xn ) T E D , loosely called

the "state" of the system, where D is a domain or the closure of a domain

in Rn . The state evolves, that is, changes with time, as a trajectory of

a generalized dynamical system

x( t ) E F (x( t ), t)	 (1)

where F ( • ) is an appropriately defined vector-valued function from

DI R 	 into all nonempty subsets of R n .

Since the system is under the control of two agents (players),

we consider two prescribed sets, P ', i = 1, 2, of set-valued functions
d.

of x and t . Let U', i = 1, 2, be given subsets of R ' , the players'

control spaces.' The elements of P' are the i-th player's admissible

feedback controls (strategies) p'( • ) : D x R 1 + all nonempty subsets of U' .

Next let there be given a function f( • ) : D x U1 x U2 -r R 

and for given p'(•) a P' , i = 1, 2, define F( • ) by

F(x, t)	 (z e D I z = f(x, u l , u 2 ), u i E p'(x, t))

= f (x, 101 (x, t ), p2 ( x , t))•

For given (xo, to) E D x R1	 a solution of (1) is a function

One can allow for state and time-0ependent constraint sets U' 	 U'(x, t)

by prescribing set-valued functions U i ( • ) .

f.
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x(') : [t0' tf) -} D , x(to) = x0 , that is absolutely continuous on all
compact subintervals of [t 0 , tf) and satisfies

x(t) G f(x(t), pl (x(t), t), p2 (x(t), t))	 (3)

a.e.	 [to , tf ) .

To assure existence of solutions of (3) we make the following assumption

Assumption 1. The sets of admissible strategies, P i , i = 1, 2 , are such
that for all p i ( • ) G P i , i = 1, 2, and all 	 (xo, to) G D x R l , there is
at least one solution of (3).

Of course, the choice of P i satisfying Assumption 1 depends on
function f( • ) . Conditions assuring existence of a solution at (xo, to)

are of the following kind (e.g., see Refs. 5,6,7):

i) F(xo, to) is compact and convex, and

ii) F( • ) is upper semicontinuous on a compact set containing (xo, to) .
Now let T l and T2 be two prescribed closed sets contained in

D and such that D ^ T1 u T2	 These are the "targets" of players 1 and 2,

respectively.

Before we can define a "winning strategy" and a "winning set" for

a player we need to introduce the concept of "play".

Definition 1. A play is a quadruple {(xo , to ) , p 1 (•), p 2 (•) , x(•)} such
that

1- i (xo, to) e [D \(TI U T2 )^ x R 

2.	 p i ( • ) a Pi , i = 1, 2,

tGiven two sets, A and B , A \ B -6 
{a e A I a ^. B} .
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3. x(-) : [to ' tf] .} D	 or x(-) : [to, t f) -' D if x(tf ) is not

defined, with x(to) - x D , is a solution of (3) generated by

p '(-)	 1 = 1, 2,

4. x(t)	 T  u T2 for t e [t D , tf)

5. either i) x(t f) e T1 u T2 for tf <	 or

ii) tf = - , or

iii) tf is a finite escape time for x(•)

that is, x(t) + x c- DD or 11x(t)II + 	 as

t + tf .

Now we can define the concepts of winning strategy at a point

and then of a winning set.

Definition 2. A strategy p l H E P1 is winning for player 1 at

( X D , to) E [D \(T1 u T2 )] x R l iff the set of all plays

{(XD, to) , p l (,) , p 2 (,) , 
x(-)) for all p 2 ( • ) E P2 is nonempty and

contains no members satisfying 5i) with x(t f) E T2 , or 5ii) or 5iii) of

Definition 1. A completely analogous defirltion, with 1 and 2 inter-

changed, holds for a winning strategy p 2 ( • ) E p2 at (xD , to ) .

Simply stated, a winning strategy for a player at (xD , to)

guarantees termination on his, and only his, target no matter what the

strategy of the other player.

Definition 3. A set W c D \(T 1 U T2 ) is 1-winning ( or 2-winning) iff

player 1 (or 2) Aas a strategy p l (•) (or p 2 (•)) that is winning for

him at all (x D , t o ) e W x Rl

3



An essential part of the solution of a game is the mapping of

D into its 1-winning and 2-winning subsets, along with the characterization

of the associated winning strategies, p l ( • ) and "p2 ( • )	 In the terminology

of Ref. 4, the union of all 1-winning (or 2-winning) sets together with T1

(or T2 ) is SE (or Sp ) .

In the next section we consider the problem of finding winning

strategies by giving a theorem of conditions sufficient for a set to be

1-winning (2-winning).

3. WINNING SETS

The game as defined in Section 2 is completely symmetrical with

respect to players 1 and 2. In this section we give conditions sufficient

for a set to be 1-winning. Of course, the theorem with 1 and 2 interchanged

holds equally for a 2-winning set.

The conditions in the theorem below depend on an a riori chosen

quadruple {V 1 ( • ) , V 2 (•) , k l , k 2 } where V
i
(-) : D + Rl , i = 1, 2, are

C l functions for which there exist constants C 1 and C2 such that

i) T1 D AI A {x E D I V 1 (x) s C 1 }

ii) T2 c A2 Q {x E D I V 2 (x) < C21

and

iii) k  > 0 , k 2 are scalar constants.

Given a quadruple (V 
l
(-) 1 V 2 ( • ) , k l , k2 } , let

	

W(V 1 ,	 V 2 , k l , k 2 ) © {x E D \(T 1 u A2 )^ V1 xkl_ Cl > V 2 x k2 - C2 }	 (4)

t

r
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Before stating a theorem, we introduce another assumption.

Assumption• on 2. If D = Rn , given p i (•) E P i , i = 1, 2, and a quadruple

(V l ( • ), V 2 (•), k it k 2} , no solution of (3) with (x O , to) a W(Vi) V
21 

kit k 2 ) x R1

has a finite escape time.

This assumption is satisfied if

i) equation (3) satisfies a linear growth condition, or

ii) function V l (•) in Theorem 1 below is radially unbounded;
	

^i

that is, V l (x)	 - as I1x11 -F w .

Now we are ready to state the main theorem.

THEOREM 1. If there exist a_ quadruple {V l (•), V 2 (•), kit k2 } , a strategy

P l (.) E P 1 and a_ function p l ( )	 D + all nonempty subsets of U l , such that

i) P1 (X, t) = pl (x)	 V(x, t) e D x R1

ii) V x E W ( V 1 , V 2 , k i t k2 ) and V u l E 5 1 (X)

	sup	 VV (x) f(x, u l , U2 ) s - k	 inf	 VV
2(x) 

f(x, u I , u 2 ) z - k

	

2
EU	 U

2	 1	 1	 2
EU 

2	 2	 2
U 

iii) Assumption 1 is met,

iv) D is an invariant set of (3) with p
i
( ) = P1 ( • ) and all p 2 ( • ) c- P2

or else D = R n and Assump tion 2 is satisfied,

then W(V 1 , V
21 

kit k 2 ) is 1-winning.

Proof. first we show that if a trajectory of (3), with p l (•) = plO ,

any p2 ( • ) E P 2 and (xo, to ) E W(V i ) V21 k i t k2) x R 1 , remains in

W(V I , V 2 , k it k 2 ) for t < tf , then it terminates on T 1 u T2 ; that is,

5ii) of Definition 1 cannot occur. In view of condition iv), no such

trajectory has a finite escape time and so may be

11
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extended over any interval [t	 t)	 including t =	 in case of
0 f	 f

non te rip ination. Consider a trajectory corresponding to solution

	

x( • )	 [to , tf) + D if t f = W , with

x(t0) = x0 G 41(V1' V2' k 
	

k 2 )	 In view of ii) and the supposition that

x(t) a W V 1 , V2 1 k l , k2) for t e [t0 , tf)

VV 1 (x(t)) x(t) 6 - kl

VV 2 (x(t)) X(t) > - k2

a.e. [to, t f )	 Upon integration, e.g., see Ref. 7, we obtain for

t e [t0 , tf)

V 1 (x0 ) > V 1 ( x ( t )) + kl ( t - to)	 (5)

V 2 (x0 ) 6 V 2 (x(t)) + k 2 (t - to )	 (6)

Let

o	 Vl(x0) - Cl
t = t0 +	 (7)k 

1

and suppose that 't < t f . Then it follows from (5) and (7) that

V 1 (x(t)) 6 C 1 .

By the definition of V 1 ( • ) , namely, T
i
 D 61 , this implies that

x(t) E T1 , contradicting the supposition of termination at t = t f or

else non-termination, tf = W . Thus, t > tf and termination must

occur on T1 U T2 at t = tf < m .

Next we demonstrate that termination takes place on T1 \ T2

Two cases must be considered, k 2 6 0 and k2 > 0 .

For k2 5 0 , since

ORIGINAL PAG1; 1S
OF POOR QUALM



V i (x) - C 1 > 0	 for	 x C- D \	 Ti (p)

V 2 (x) - C2 > 0	 for	 x E D \ A2 (9)

it follows from (4) that

W(V i )	 V 21
	 k i 9 	k2 )	 = D \(T i u p2 ) (10)

Hence,	 by condition iv),	 x(t) E W(V I ,	 V2, k i ,	 k 2 ) for	 t E [t o ,	 t f )	 .

In view of (9), for each	 x 0 a W(V i , V 2
1

k i ,	 k2 )	 there exists an	 e > 0

such that

V2 (x 0) = C 2 + e (11)

Since	 x(t) E W(V i , V2 ,	 k i ,	 k 2 )	 for all t c- [to , tf )	 ,	 it follows

from (6)	 that

V2 (x 0) < V 2 (x(t)) V	
t (=- [t

o ,	 tf ) (12)

whence,	 by (11),

V 2 (x(t)) a C 2 + e V t E [tO, tf)

which implies that x(tf) I A2 :1 T2	Out x(tf ) E Ti U T2	so that

X(tf) E 
71 \
	 T2	. ,

For	 k2 > 0 ,	 suppose there is a	 t < tf for which

X(t)	 W(V i ,	 V
21
	 k i , k 2 )	 .	 Then, by continuity of V i ( • ),	 V 2 ( • )	 and x(•),

there exists a	 t < tf	such that

x('t)	 E W(V i ,	 V 2 1
	k i , k 2 )	 V t e [to ,	 t)

and

k i	k2

V 1 (x( t ))-C i	V2(x(l))-C2

(13)

11

1

It
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Now,	 M) and (9) hold for	 x(t) c W(V l , V21 k i t k 2 ) and so, by continuity

of	 V l (-)	 and	 V2 ( • )	 and by positivity of	 k l and k2

V 1 (xo)- c l 	V l (x kt))-C l i	
(t -	 tC)

1	 1
•	 (14)

V 2 ( k ) - C2	 V2( xkt) ) -C 2
+	 t -	 t0 )	 .

2	 2

Since	 xo r_ W(V l ,	 V 2 ,	 k it	 k 2 )	 ,	 it follows from (4) and (14)	 that

k l 	 k2> _

V l (x(t))-c l 	V2(x(t))-C2
(16)

This	 contradicts	 (13), and so

x(t) E W(V l , V2 9 	k it	 k 2 )	 V t c [to ,	 tf)

Thus, as shown earlier, 	 x(tf ) E Tl I T2 .

Novi suppose there is a	 t G t 	 such that x(t) E A 2 \	 T1 D T2 i T1

and	 x(t) 4- T1 a A2 a T1 u T2	 for all	 t e [to , t) Since	 x(t) e A2 \	 T l	 >

V 1 WO) > C-1

and

V 2 (x( t )) 6 C 2 (17)

Substitution of (16) and (17)	 in	 (14) yields

Vl 
^l -G^t ltp

I,



f	 a

-fu-

and

V 

x k2-C ^ 1

2 0	 2	 t-t0

so that	 j

ki	

A

I

1 ( XOT 1 < 2x0 2V	 -C2
8

which contradicts x0 E W(V l ; V 2 , k l , k 2 )	 Hence, x(t)	 A2 \ T1	T2 \ T1	 1

for t < tf so that x(tf) c Tl \A CT \ T2

Since these conclusions hold for all x
0
 E 

W(V 1 3 V2' k l' k 2 ) '

that set is a 1-winning set.

Remarks

1. Since a winning strategy "p l ( • ) with (x0 , t0 ) a W(V l , V 21 k l , k 2 ) x R1

guarantees that x(t) E W(V 1 , V2 , k l , k 2 ) for all t E [t 0 , t f ) , only

the restriction of the strategy to the 1-winning set need be determined.

2. There may exist 1-winning strategies at (x 0 , t0) ^'- W(V l , V 2 , k l , k2 ) x R1

In general, however, such strategies will not be 1-winning at other

initial points.

3. If k2 < 0 , region A2 is an avoidance set in the sense of Ref. 8.

4. As k  + 0 , t given in (7), tends to - • Thus, if k  = 0 ,

termination cannot be guaranteed; in particular W(V 1 , V 2 , k l , k2)

need not be 1-winning. However, the inequality in (4) then requires

k2 < 0 so that, by the second of conditions ii) of the Theorem,

W(V 1 , V21 kl , k2 ) cannot be 2-winning.

5. If T2 =	 , let V2 (x) = constant # C 2 for all x E D \ Tl and

let k2 = 0	 The inequality in (4) is then satisfied trivially.

a



The set W(V l , V2) k l , k2 ) being 1-winning is then equivalent to

target T
i
 being capturable in finite time. Theorem 1 is thus

related to the target capture theorem of Ref. 9.

6. Let

S(R,) 6 (x a W(V l , V 2 , k l , k 2 ) I V l (x) 4 R} a 
Ti u T2

and suppose that it is required to accomplish termination on

Tl \ T2 for all x 0 a S(R) in a time interval not exceeding t* - to .

This can be assured by the conditions of Theorem 1 with

k 	
Q*Cl	

(18)
t -to

For, as shown in the proof of Theorem 1, for given x D c W(V l , V21 k i , k2)

t = tD+	
k	

a tf
1

*
and x(tf ) e T  \ T2	 Thus we impose	 sup t 6 t	 whence

k-Cl

xoss(R.)
*

tf - t
0

6 -^6t - to
1

giving the condition (18).

;. If more than one set, say T 2 , T3 , ..., Tr , is to be avoided before

terminating on T
i
 \ (T2 u T3 u ... u T r ), the conditions of Theorem 1

are augmented by introducing for i e (2, 3, ..., r}

Ai ^
_ {x e D I V i (x) 4 C i } :) Ti ,

replacing W(V l , V 29 k l , k 2 ) by

W(V l , V21 ..., V r , k i , k 2 , ..., k r )	 (x e D \ (Tl u o2 u ... u Add

k l	 ki

V l x -C l	 V i x -Ci 	
i = 2, ...> r}

}
1
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i

and requiring V u l ® pl(x)

inf	 VV i (x) f(x, u l , u 2 ) > - k 

u"c-U2

4•	 EXAMPLE

Here we illustrate the use of Theorem 1 by means of a very simple

example, a pursuit-evasion game between inertialess objects P and E with

constant speeds vp and vE	respectively. The equations of motion (see

Figure 1) are

R = v E cos (a + OE)

0 = v R sin	(a + OE)
	

(19)

r = vp cos 0p - V E cos PIE

8 = r (vp sin O p - v E sin 0E)

The targets of E and P	 respectively, are

T
I
 = {(R, 0, r, 0) a R4	 R < PE = constant > 0}

(20)

T2 = ((R, 0, r, 0) E R 4	 r s pp = constant > 0} .

Thus, the evader, E , wishes to choose the values of O E so

that he reaches T1 (R = p E ) before he is intercepted (r = p p)	 no

matter how the ursuer	 P	 choases the values of 0P	 , , p- .

To apply Theorem 1,	 let

vi
=R ,	 V2	

t:

i

i	 d

A



so that Ai = Ti , i = 1, 2, and

VV l = ( 11 0 0 0, 0)

VV2 = (0 1 0, 1 1 0)

Conditions ii) of Theorem 1 become

VI: cos (a + OE ) < - k l < 0

-vp - ve cos O E > - k2

and W(V,, V21 k l , k2 ) is defined by

k

r - pp	
k2 

(R - PE)
1

Condition (21) implies

k
-1 < cos (a + 0 E ) < - V1 < 0

E

1
(21)

(22)

(23)

(24)

so that

v

k l	 11
 —

E
 for d e [0 5 m) .

i
For give., k l	region W is maximized by choosing the smallest

k2 such that (22) is met for all possible a = 0	 0	 This results in

VE
k 2 _ 

"vP + 11+6

whence

k2	 1 + l+d vP

71	 (	 ) v E s

Hence, the largest W results from d = 0 	 namely,

j



v +v	
(25)r -Pp> v P(R-pE)

P

i The c;:rresponding escape strategy, according.to (24), is given by

cos (a + O E ) = -1 ; that is, E moves radially inward and is assured

termination without interception by P provided the initial conditions

satisfy (25).

Strategy OE = n - (0	 is continuous on D = R4	Hence,

for sufficiently well-behaved OP	system (19) possesses a solution at

every initial state. Furthermore, (19) satisfies a linear growth condition.

Thus Assumptions 1 and 2 are met and 'W given by (25) is indeed 1-winning,

that is, winning for the evader, E .

Since v 	 and vE are positive, (25) implies that

r - pp > R 
-PE 

no matter how much faster the evader is than the pursuer.

Thus, W(V l , V 2 , k l , k2 ) does'not include initial configurations for

which P lies between E and his target, T
i
 . This restriction is not

surprising since Theorem 1 relates to all initialp	 g	 positions for :which the

i	
evader's strategy is winning (see Remark 2).

l

i

i
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List of Symbols

x
	

lower case "eggs"

x
	

"multiplication" symbol

0 zero

T
	

script upper case "tee"

G
	

"belongs to" symbol

E
	

lower case epsilon

P

	
lower case rho

0
	

lower case theta

0
	

upper case theta

a
	

lower case alpha

a
	

lower case delta

A
	

upper case delta

7T
	

lower case pi

R
	

script lower case "ell"

"infinity" symbol

"empty" symbol
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